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Abstract

The road network is an active environment which is continuously affected by inci-
dents and disruptions, resulting in delays and economical damage. As car owner-
ship and road transport increases, so too does the pressure on the road network.
This results in an increased impact of incidents and disruptions as more individu-
als and businesses are affected by it. Meanwhile, a recent increase in interest in
Autonomous Vehicles (AVs) offers opportunities to lessen the impact of incidents.
AVs require up-to-date information on the road network in order to make routing
decisions, which promotes the implementation of connected traffic data ecosystems.
Such ecosystems allow vehicles to communicate with one another, or with the infras-
tructure at large to rapidly disseminate information across the grid. In the context
of incidents, this means that all connected vehicles can be informed of road closures
as soon as they are detected. However, there exists a gap in the literature on inci-
dent detection from AVs as a domain. While research considers individual incidents
in specific circumstances, no existing research has attempted to classify incidents as
a domain or as groupings. This holds true for data on incidents as seen from vehi-
cles as well. As such, a study on incident detection from vehicles that considers the
breadth of all possible incidents is needed for the detection of incidents for the pur-
poses of disseminating them between vehicles faster, and thus to lessen the impact
of incidents on the road network towards the future. In this thesis we assessed the
use of Convolutional Neural Networks (CNNs) to classify unsigned physical (non-
placarded, tangible) incidents from street images. We do this by firstly gathering a
dataset of images, and secondly by training a CNN to distinguish between images
containing unsigned physical incidents and images without such incidents.

Applicable incident classes were determined by a grouping study which made use
of a Formal Concept Analysis which resulted in a taxonomy of incidents. In total we
then targeted 8 classes: Vehicle crash, Road Collapse, Fire, Animal on Road, Treefall,
Snowy Road, Flooded Road, and Landslides, as well as negatives (images of normal
driving conditions). We first collected 7,759 images of incidents by web harvest-
ing from Google, Flickr, and Bing, as well as images supplied by the Geograph UK
project. As searching depth-wise (i.e. returning hundreds of images each query)



returned poor results on first experimentation, we decided to perform breadthwise
querying by searching for combination pairs between synonyms of various concepts.
For instance, query pairs between street, road and landslide, rockslide yields 4 pos-
sible query pairs. 40,063 images have been collected after 118 queries, of which
5,844 images have been included in the final dataset. Additionally, we have sub-
mitted queries in various non-English languages to expand the dataset further. We
have searched for images using Dutch, Farsi, Mandarin, Croatian, and Slovak by
asking colleagues to supply the most effective queries in their own language. In
total, we collected 12,630 images over 63 queries, of which 1,641 were included
in the final dataset. 5,145 images from the Geograph project were included. Selec-
tion of suitable images was done manually by the author to rigorously control the
quality of the input images.

After selection of the positive examples, each class is comprised of the following
amount of images: [summary of image numbers]. We aggregated a true-negatives
dataset of 40,000 images by combining images from Berkeley Deep Drive (20,000),
Cityscapes (10,000), and Geograph tagged with road transportation (10,000). We
also retain 200 negative boundary cases of the class snow during the cleaning of
Geograph images to help determine whether the model has the correct visual cues.
We distribute this dataset into training, validation, and testing splits containing
70/20/10% of all the images respectively. We create a second dataset to test the
sensitivity of unsigned physical incident detection to unseen data from different
geographical regions by training a second model. We use images supplied by the
Geograph project and distribute them into a 72.5/22.5/5% training, validation, and
testing split based on the geotags supplied with the images. The training and vali-
dation splits contain images from England, Ireland, and Scotland, with the region
of Wales being used for the testing split.

Incident detection was performed by training a CNN with the ResNet-34 architec-
ture which performs multiclass-classification over the 8 target classes and the neg-
atives class. The best model achieved a top-1 accuracy of 97.15% and an average
unweighted Fl-score of 0.8909. We trained and evaluated a second ResNet-34
model for the geographically stratified dataset. The resulting top-1 accuracy for
this experiment was 92.9% during testing with an average unweighted F1-score of
0.9169. Assessment of the fully-connected layer of the ResNet-34 model using t-
SNE clustering reveals that the model is easily able to tell classes apart. Assessment
further revealed that there exists a notable overlap between negative and positive
images gathered from the Geograph platform. The results of this thesis indicate that
unsigned incidents as a domain can be learned very well. Further research should
expand the gathered dataset, consider more incident classes, improve the generated
models, perform rigorous bias testing, and experiment with spatial relatedness of
features in images (e.g. animal is on the road versus animal is next to the road).
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Introduction

1.1 Motivation

Traffic is a highly dynamic environment and ephemeral changes to the on-road
conditions impact it continuously. Incidents that interrupt the road network can
cause economical damage and cripple connectivity, leading to increases in travel
time, delays in deliveries, and missed connections to other modes of transportation.
Congestion caused by incidents on English trunk roads and motorways is estimated
to cost approximately half a billion pounds every year [43], and one in five journeys
on these roads result in delays [76]. Furthermore, traffic on England’s trunk roads
and motorways has grown by over 50% since 1993, and is expected to grow another
31% by 2041 [42]. Combined with the continued trend of car ownership worldwide
[25] and a continued increase in road vehicle miles [76], the impact of incidents
on the serviceability of the road network may worsen as more vehicles depend on
the road network for commutes, leisure, and the transportation of goods.

In recent years there has been a marked increase in the development and inter-
est for Autonomous Vehicles (AVs). The term AV refers to vehicles which possess
a certain level of automation, measured on a scale from 0 (no automation) to 5
(full automation in all conditions) [96]. Driver assistance software is becoming in-
creasingly common in mass-manufactured vehicles, with level 1 and 2 AV features
(driver assistance, partial driving automation) being readily implemented in many
consumer vehicles sold today [72]. Major car manufacturers such as General Mo-
tors and Daimler are scaling up their AV production as they undergo the transition
from research & development towards mass-manufacturing [72]. Industry research
predicts predicts that AV sales will reach 51,000 vehicles sold annually by 2021 and
surpass 36 million annual sales by 2040 [48]. Figure 1.1 displays this steep pre-
dicted rise in AV sales. In a connected traffic data ecosystem [23], vehicles will be
able to further share traffic information about the state of the road network with
one, for instance through Vehicular Ad-hoc Networks [29], as well as communicating
with the infrastructure through Vehicle-to-Infrastructure communication, e.g. as in
[69]. Such networks thus make it trivial to distribute information about the road
network to any connected car, which greatly improves the ability to disseminate in-
formation on incidents as they happen. AVs may make use of connected traffic data
ecosystems to retrieve navigation data and updates on the road network status for



2

Autonomous Vehicle Sales by Region, 2020-2040

40,000

30,000

20,000

10,000

——-—‘

0
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040

® AMERICAS EMEA = APAC

Source: IHS Markit © 2018 IHS Markit

Fig. 1.1: Predicted AV sales in the coming decades per geographical region with the y-axis
in millions of sales per year. Image Source: [48].

autonomous navigation, and are thus a major driving force behind the implementa-
tion of connected vehicles. The rapid increase in interest from both consumers and
producers as well as their implications for our everyday transportation has lead to
AVs being regarded as a disruptive technology [14, 28, 93].

While a significant amount of work has been performed on the recognition of ‘com-
mon’ incidents that affect a road network such as sudden pedestrian crossing [32,
30], there is a notable lack of literature on the breadth of incidents that may exist,
as well as efforts to create systems to classify such incidents. While less common,
these unusual incidents may severely restrain the accessibility of the grid when they
occur. For instance, a flooding event or a landslide may close the road, potentially
for days. Being able to recognize such incidents may also help to add context to the
road network. If a vehicle fire is detected on a particular highway, traffic experts
may wish to look at the imagery and determine whether the source of the fire may
have other implications such as fumes and bio-hazards.

In response to the increased interest and availability of AVs, both industry and
governments alike have started producing infrastructure that accommodates AV
functionality. England’s highway system has pledged to equip roadways with 5G-
connectivity to support Vehicle-to-Vehicle and Vehicle-to-Infrastructure communica-
tion, stating that "The rise of connected and autonomous vehicles is expected to be one
of the most significant and potentially disruptive changes in future personal mobility."
[42, p.19]. Such initiatives allow AVs to communicate trivially with both one an-
other and the network at large. This in turn facilitates recent work by major car
manufacturers such as BMW [2] and Mercedes on High-Definition maps (HD maps)
to complement connected vehicle ecosystems. HD maps allow sensed information
from vehicles to be uploaded to the central map which can then be disseminated
to vehicles and systems. This is currently done using dedicated sensor vehicles, but
in the future the logical next step is to use information derived from road-going
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connected vehicles. With a sufficiently large fleet of connected vehicles such initia-
tives thus allow for live updates and cars that are always aware of the state of the
network.

Along with this increase in interest and available technologies there is an ongoing
discussion on how safe AVs are. A study concerning the opinion of respondents
in English-speaking countries indicates that there exists high concern over the per-
formance of AVs while a majority of respondents also express the desire for them
[88]. In March 2018, the first-ever fatal impact of an AV with a pedestrian occurred
during nighttime in Tempe, Arizona, causing AV manufacturer Uber to halt all road
testing of AVs in that state [66] and renewing the debate on the reliability of the
technology used. As is evident, safety is an important topic for AVs.

AVs rely on information derived from sensors installed on the vehicle to interpret the
environment around them. Interpretation is performed through a variety of sensors
such as LIDAR laser scanners, RADAR systems, optical (red-green-blue) cameras,
infrared cameras, and thermal cameras [32], each with their own strengths and
shortcomings. For instance, laser scanners can create 3D representations of their
environment and provide distance measurements at the cost of requiring more en-
ergy and more vulnerable moving components. Cameras recording the red-green-
blue (RGB) spectrum on the other hand are considerably cheaper when compared
to LIDAR systems and easy to attach to existing vehicles, though they relinquish the
3D representation and the exact measure of distance of laser scanners.

After identifying that connected and autonomous vehicles with sensors equipped
and able to recognize a variety of incidents may provide a great benefit to the road
network, we aim to recognize incidents from imagery using a well-established infor-
mation extraction method known as Convolutional Neural Networks. With reference
to RGB imagery, in recent years there has been a renewed interest in a particu-
lar type of image-interpreting methodology. In 2012, seminal work performed in
[55] has seen Convolutional Neural Networks (CNNs) become a standard choice for
image-interpreting tasks. Their ability to learn what characteristics to look for in
an image without manual feature creation has resulted in CNNs widespread adop-
tion for tasks where manually extracting characteristics is too costly. For instance,
every year since the re-invigoration of CNNs in 2012, the popular ImageNet [26]
classification competition has been won by a CNN variant. This task consist of the
classification of 1,000 classes with over 1,2 million images in total with the goal
being to achieve the highest possible classification accuracy. Recent developments
have seen CNNs become easier to train, faster to process, and more efficient through
improvements to their hardware requirements and configuration.

1.1  Motivation
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1.2 Research Goals

Based on our research intent stated in the previous section we formulate the follow-
ing research question:

How can we automatically detect unsigned” physical incidents from sen-
sors that can be mounted on driving vehicles?

"See p.6 for definition

We formulate our hypothesis for this research question as follows:

CNNs can accurately classify unsigned physical incidents in RGB images
derived from cameras mounted on driving vehicles

To test this hypothesis we formulate four research questions:

* RQ1: How can incidents be assigned to groupings for the purposes of classifi-
cation?

* RQ2: How do we create an image dataset of unsigned physical incidents?

* RQ3: How accurately can convolutional neural networks detect unsigned
physical incidents using an image dataset?

* RQ4: How stable is the classification of unsigned physical incidents when
applying a trained model to unseen geographical regions?

The main purpose of this research is to determine whether incidents are learnable
by using CNNs as well as to create a basis for research into incidents affecting the
road network. Hence, we do not concern ourselves with exhaustively including
all possible incidents or maximizing the classification accuracy as such goals are
beyond the scope of this research.

1.3 Thesis Outline

In Chapter 2 we give an overview of the state of the literature on incidents and
incident detection, as well as the background on CNNs and their workings. In
Chapter 3 we present our choice of methodology and the research set-up that will
be considered. In Chapter 4 we give an overview of the most important results of
the research, which will be further discussed in Chapter 5. In Chapter 6 we present
the conclusions of our research. Lastly, in Chapter 7 we give recommendations for
further research.

Chapter 1 Introduction



Background

In this chapter we discuss the background material as applicable to this research.
Firstly we present an understanding of incidents in existing literature where we
define our working definition of unsigned physical incidents. Secondly we discuss
concepts relating to image classification and CNNs.

2.1 Incidents

In this section we consider research on incidents and how they relate to roads.
We begin by defining unsigned physical incidents before considering past research
performed on unsigned physical incident detection.

2.1.1 Definition

In order to delineate incidents as a concept we first discuss the definitions that have
been proposed in existing literature. The United States Federal Highway Adminis-
tration defines an incident as follows: "An ’incident’ is defined as any non-recurring
event that causes a reduction of roadway capacity or an abnormal increase in demand."
[75, p.2]. This definition does not suit the objective of the research as it does not
account for a reduction in serviceability, and it attempts to limit incidents to non-
recurring events. Incidents under consideration in this research may be recurrent
in nature, such as snowfall which occurs seasonally in many regions in the world.
Berdica defines an incident as follows: "An incident is an event, which directly or
indirectly can result in considerable reductions or interruptions in the serviceability
of a link/route/road network." [11, p.118]. This definition is well-suited for this
research as it covers for the reduction in serviceability while not delimiting the con-
text in which incidents may occur. As such, we use Berdica’s definition as a basis
for defining incidents during the research.

In extension to this definition of incidents we delineate the physical nature of in-
cidents. For lack of an existing definition, we consider physical incidents to be
incidents that are interpretable by sensors such as cameras, sonar systems, and
laser scanners. For instance, a traffic light hack leading can lead to a crash, but the
cause of the crash is not easily interpretable using only imagery. By this definition,
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non-physical attacks could be malicious attacks made onto a connected network of
vehicles, such as packet-dropping attacks (intentionally removing information from
the stream), fabrication and alteration of distributed facts, and the creation and dis-
semination of false information to the network [74]. Consider also the possibility
of antagonistic attacks on critical infrastructure [39] such as electricity, which in
turn may cripple systems such as traffic lights. Instead, physical incidents concern
problems to the road network that can be sensed either by one sensor or a combi-
nation of sensors. Such incidents can include snow, flooding, stray objects on the
road, and vehicle crashes.

Within physical incidents we distinguish between signed and unsigned incidents.
Signed incidents are incidents which are signposted or otherwise marked as a haz-
ard. For instance, roadworks and parades are often signposted with barriers, traffic
signs, and high-visibility equipment. On the contrary, unsigned incidents are often
ephemeral and unexpected by nature, such as a flash-flood after heavy rainfall. Fig-
ure 2.1 gives an example of both types of physical incidents. In this research we only
consider unsigned physical incidents. We do not consider signed physical incidents
because it shares a broad overlap with highly researched subjects such as street sign
recognition, which may result in the task being solved through generalization (e.g.
algorithms with the ability to read street signs, and thus hazard markings).

Fig. 2.1: On the left: A signed physical incident in the form of brightly demarcated road-
works [27]. On the right: An unsigned physical incident in the form of a flooding
[87].

Enhancing the definition of incidents as proposed by Berdica with the concepts of
physicality and signage, the working definition for unsigned physical incidents used
in this research will be as follows:

An unsigned physical incident is an event without road signs or hazard
markers that can be detected by sensors, which directly or indirectly can
result in considerable reductions or interruptions in the serviceability of
a link/route/road network.

Chapter 2 Background



2.1.2 Unsigned Physical Incident Detection

In this section we consider the various means which have been deployed to detect
physical incidents.

Unsigned Physical Incident Detection using Live Sequence Data

There exists a considerable corpus of literature which attempts to classify physical
incidents through live sequence data such as live traffic counts. Such research may
consider post hoc analysis of sequence data to interpret and gain insight into how
traffic incidents affect the road network, such as in [7] where the authors explore
visualization techniques to aid decision-making after the incident occurred. More
relevant to our research objective is the real-time detection of incidents from a
streaming signal such as live traffic counts, such as in [113] where the authors try
to predict simulated incidents on freeways and urban arterial roads using expert
knowledge employed through a Bayesian network. The end goal of such research
is often to predict incidents as they happen. This particular branch of research
can be delineated as Automatic Incident Detection (AID) [63]. At the turn of the
century, AID systems were noted to be performing poorly despite low false-positive
rates. Notably, traffic management experts were often detecting incidents at much
faster rates than the algorithms could [63]. Live sequence data has also been aug-
mented with other data sources such as video sequence data through data fusion,
such as in [112] where the authors investigate the application of multi-source data
through Support Vector Machines and Evidence Theory. Beyond improvements in
detection algorithms from traffic sequences, recent AID research has expanded to
cover improvements in personal connectivity. In [52] the authors consider the use
of Bluetooth sensors placed along a highway to detect incidents from trace data. In
[85] the authors apply natural language processing to detect incidents from Twitter-
sourced data. Research is frequently performed using video sequences, which we
consider in the next section.

Unsigned Physical Incident Detection using Sensors

In this section we discuss the detection of unsigned physical incidents using sensor
data. We firstly describe incident detection by mounted camera systems before dis-
cussing mobile sensor platforms. Here, we discuss the state of the methodology in
object detection as relevant to this research before discussing literature on unsigned
physical incidents.

2.1 Incidents
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Fixed Traffic Cameras

Early work on the detection of unsigned physical incidents predominantly consid-
ered the use of fixed cameras such as CCTV cameras mounted on poles to aid traffic
experts. In [63] the authors discuss the state-of-the-art of video detection of inci-
dents at the turn of the century, noting that incident detection algorithms on video
data are able to reach accuracies between 80 and 90% on live incident detection
from traffic cameras. Furthermore, video incident detection performed on traffic
cameras could estimate variables such as travel speed, vehicle stalling, and vehi-
cle counts to aid in the decision-making process. However, the authors also note
that traffic management experts often vastly outperformed incident detection al-
gorithms on top of having a much quicker detection time. Since then, incident
classification systems using traffic cameras have improved notably. For instance, an
AID system installed in the Polish city of Gdynia resulted in a 20% improvement in
incident response rates after installing a video-based AID system. State-of-the-art
commercial classification systems using traffic cameras are reportedly able to reach
incident detection accuracies as high as 95% on a variety of incidents, such as a re-
duction in visibility, vehicle slowing or stalling, shoulder-lane driving, road debris,
and congestion [100]. However, research indicates that in spite of these significant
improvements in algorithm quality, modern video-based AID system continue to be
limited by poor video quality and weather conditions [54].

Object Detection using Sensors on Mobile Platforms

All of the aforementioned research has considered the task of identifying unsigned
physical incidents with the intent of monitoring the road network at large. While
fundamentally the task of identifying unsigned physical incidents remains unchanged,
identification from a road-going ego-vehicle (the vehicle on which the sensors are
mounted) has a different end-goal. Instead of identifying hazards with the intent of
monitoring a system, research in this domain attempts to identify unsigned physical
incidents with the intent of keeping the ego-vehicle safe.

A commonly studied topic in the field of detection from driving platforms is the de-
tection and tracking of pedestrians. While pedestrians are not an incident per se, the
vast body of literature on this topic can be used to give insight on the methodologies
employed in the domain of object detection and tracking from driving platforms. A
comprehensive study of pedestrian identification performed in 2007 records the use
of RADAR, LIDAR, mono-and and stereo visible light cameras, and near, thermal,
and far-infrared cameras [32]. The majority of the research at the time applied
support vector machine classifiers and artificial neural networks. Recent compre-
hensive research has indicated that a high performance on pedestrian detection
using images in the visible spectrum is often achieved using either convolutional
neural networks or boosted decision trees (incremented learning of decision trees
to overcome misclassifications of previous trees) using manually extracted image
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characteristics [114]. The best recorded model only performs a few percent be-
low the human baseline on the tested benchmark dataset. Data fusion techniques
to maximize the available sensor information are also widely considered, such as
combining camera images with LIDAR [64] or RADAR data [13]. Research into
sudden pedestrian crossing is less frequently considered as it requires the inclusion
of dynamic factors to separate safe pedestrians from hazardous ones. The authors
of [17] attempted to detect sudden crossings from partially occluded regions. They
advocate the use of data fusion methods to cover for shortcomings in cameras and
LIDAR systems. The authors of [53] have performed near-miss analysis of video
sequences with human-level accuracy using semantic segmentation (per-pixel clas-
sification) and trajectory prediction using a convolutional neural network. Sudden
pedestrian crossing has also been considered during night-time driving [51] where
the authors use far-infrared images with manually-selected image characteristics
(e.g. textures) and boosted decision trees to overcome shortcomings that hinder
cameras recording in the visible spectrum.

Unsigned Physical Incident Detection using Sensors on Mobile Platforms
Research by Zhou et al [118] considers the state of animal detection systems for
road-going vehicles until 2014. They record five research efforts that are applicable
to intelligent vehicles which intend to classify various species of animals. However,
most recorded research efforts concern general animal classifiers which may be
applied in intelligent vehicles rather than specific classifiers for animals on the road.
Directly relevant to unsigned physical incidents is the research effort by Saleh et al
[86] where researchers have detected kangaroos on the road from images through
semantic segmentation with the express purpose of collision prevention.

Other types of unsigned physical incidents are scarcely considered in existing lit-
erature. Research by Chen et al [20] considers the use of LIDAR sensors for the
detection of road obstacles by defining the driving surface, then detecting outliers
on this driving plane. In [59], the authors approach this same task by using images
from RGB cameras to solve for the perceivable edges of the driving surface in order
to find the ground plane boundaries of potential obstacles on the driving surface.
However, none of the research attempts to define the object that is obstructing the
driving path, and neither method distinguishes 'regular’ obstacles such as cars from
unusual obstacles such as debris. To our best knowledge, the only research in this
domain that defines the type of hazard to occur on the driving surface is [91] in
which the authors attempt to detect shallow holes and water hazards on the driving
surface using the (lack of) returns of a given horizontal beam of a LIDAR scanner.

In conclusion, while there exists a considerable body of literature on the detection
of unsigned physical incidents, such literature often does not pertain to driving

2.1 Incidents
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platforms, and less frequently attempts to define the type of incident, let alone
consider multiple incidents at once. To our best knowledge, no literature has been
published that considers incidents beyond a vaguely-delineated concept, such as
animals or obstacles. Therefore, a typology of incidents has to be created in order
to adequately consider the breadth of incidents that may occur on a road network.
Furthermore, the lack of research in this domain results in a lack of available data,
and therefore a data gathering effort has to be undertaken so that incidents the
incidents under consideration may be recognized from sensor data.

2.2 Image Datasets

Concluding from the previous sections there thus exists a lack of datasets on un-
signed physical incidents, which prompts the necessity to generate a dataset during
the research. In this section we describe notable existing research on generating
large-scale image datasets for the purposes of classification in order to understand
best practices for dataset creation. In the interest of relevance we only consider
web-gathered image datasets in this section.

Large-scale datasets using web-gathered images for classification have been widely
considered in computer vision studies. In 2009, the National University of Singa-
pore released the NUS-WIDE dataset, which consists of 269,648 images and their
associated tags from Flickr. This research attempted to build a dataset through
the gathering of Flickr images which they test against ground truth generated for
81 high-level concepts (e.g. building, car, and waterfall) from volunteers from sev-
eral high schools and university colleagues. They found a significant amount of
noise (incorrect images) in some concepts but very low noise in others. Overall,
the signal-to-noise ratio was found to be around 50%. With a total of 5,018 unique
tags it was the largest dataset at the time. The authors do not discuss storage and
dissemination practices for the dataset.

Later in this same year Deng et al [26] released the ImageNet dataset consisting
of 3.2 million images across 5,247 synsets, which are sets of synonyms and depth-
wise related concepts. The implementation of synsets is based on Princeton Univer-
sity’s WordNet [68]. The ImageNet database employs a tree structure which groups
synsets at various semantic levels. For instance, the husky class is a subset of the
working dog grouping, which is in turn a subset of dogs. It is furthermore notable
for being a dataset with a high signal-to-noise ratio, in which it differs from other
datasets at the time. An average of 99,7% precision is achieved for each differ-
ent synset. Data was collected by querying "various search engines" [26][p.4] with
queries consisting of the semantic concept and appending their parent synset name.
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Furthermore, images are translated to Chinese, Spanish, Dutch, and Italian to form
multilingual queries. Images are subsequently cleaned using Amazon’s Mechanical
Turk service [6], where users are paid to perform tasks which require human judg-
ment, such as deciding whether an image fits a set of criteria. For a given batch,
each image was presented to the worker with its synset term and Wikipedia defini-
tion, and the user was asked whether an image is acceptable for the term or not.
They also successfully circumvent low accuracy on difficult semantic concepts by
showing the same image to multiple users so that a consensus can be reached. Im-
ages are disseminated through www.image-net.org and are supplied as image URLs
so that users can download their own data. Images are also supplied as a direct
download, in which case images may only be used for non-commercial and research
purposes as the authors of ImageNet do not possess the copyright of the gathered
image material.

Recent developments on the collection of large image datasets has seen image
datasets generated with more images for a smaller subset of classes. To create the
LSUN dataset [110] the authors attempted to expand on a small subset of synsets
with a similar methodology as ImageNet. The authors use manually selected ad-
jectives to perform synonym searching using the Google Images API. For the 20
selected subsets they collect millions of images through a similar mechanical turk
set-up as ImageNet. Their methodology differs from ImageNet’s methodology in
that they supply ground truth images along with their usual batches. Batches of im-
ages were only accepted if the average accuracy of the batch exceeded 85%. Over-
all, the ImageNet dataset is more is more accurate, but the LSUN dataset contains
a greater number of images in total, gathering 1 million images for each synset for
a total of 20 million images. The dataset is supplied through a Lightning Memory-
Mapped Database, which is a fast key-value storage database. It only stores the URLs
to the collected images.

2.2 Image Datasets
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2.3 Image Classification

In this chapter we discuss concepts relevant for scene classification before consid-
ering convolutional neural networks (CNNs) as a methodology to apply for this
task.

2.3.1 Supervised Scene Classification

From the standpoint of engineering, the primary purpose of computer vision is to
create computational models of tasks performed by the human visual system [83].
The classification of images into distinct groups is one such task. Classification as
a general task can be understood as "... the problem of identifying which of a set of
categories (sub-populations) a new observation belongs, on the basis of a training set of
data containing observations." [3, p. 39]. In this research we perform a task known
as Scene Classification, specifically single-label classification where the constraint is
that for every image there is only one label associated with it. This task has been
formulated by Boutell et al [16] as follows:

"Let X be the domain of examples to be classified, Y be the set of labels,
and H be the set of classifiers for X — Y. The goal is to find the
classifier h € H, maximizing the probability of h(x) = y, where y € Y
is the ground truth label of x." Boutell et al. [16, p.1]

Single-label classification can thus be approached as a supervised learning problem,
as labeled data can be used to train a classifier with the explicit task of maximizing
the probability h(z) = y. Hastie et al [40] describe supervised learning as follows:

"Supervised learning attempts to learn (function) f by example
through a teacher. One observes the system under study, both the
inputs and the outputs, and assembles a training set of observations
T = (z4,vi),i = 1,...,N. The observed input values to the system x;
are also fed into an artificial system, known as a learning algorithm
(usually a computer program), which also produces outputs f in re-
sponse to the inputs. The learning algorithm has the property that it
can modify its input/output relationship f in response to differences

yi — f(x;) between the original and generated outputs." Hastie et al.
[40, p. 29]

Supervised classification requires the use of a training dataset. This is the set which
the classifier gets to use to improve its performance by tuning its parameters to
maximize the amount of correctly predicted examples. Secondly, a validation set
is used against which the classifier is measured without learning from its mistakes.
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This validation dataset is used to continuously check whether the classifier is able
to perform well on new, unseen data. Once a classifier is trained that performs
well on the validation dataset it is then tested against the test dataset. This dataset
is evaluated only once in the development of the model, and serves as the final
accuracy check on new, unseen data.

Following the aforementioned principles, datasets have to be divided into three
splits; training, validation, and testing. Typically, each set contains progressively
fewer examples. Every image included in the training dataset is another image
that the algorithm learns from. However, taking away images from the validation
dataset would mean a weaker insight onto how well the model performs on unseen
data. If there are too few images in the test dataset then the final reported results
of the tested model may be uncertain as a conclusion is then drawn on too few
examples. Most published research allocates between 70 and 80% of the data for
training and 5-10% of the data for testing, with the remainder being allocated to
the validation split.

In order to effectively classify images to labels, it is firstly necessary to extract fea-
tures from these images. A digital image with red-green-blue colour bands is in
essence a matrix with three dimensions and hundreds of rows and columns contain-
ing information on a wide variety of topics such as hue, contrast, geometric features,
and brightness. These features are muddled and compressed to the same three di-
mensions. In order to classify images based on information from these images it is
worthwhile to extract information from these images first. It is therefore necessary
to perform Feature Extraction so that the chosen characteristics of the image (e.g.
colours, textures, and edges) adequately describe the phenomenon to be classified.
Many feature extraction techniques exist, such as first & second-order edge detec-
tion, image motion descriptions, shape matching, texture extraction, and statistical
features [84].

Features extracted from images can then be used to predict a label by using a classi-
fication algorithm, also referred to as a classifier. The Softmax classifier is one such
classification algorithm. It is given as follows:

esi

pi(2) = o (2.1)

where p; denotes the probability of a class j given an input vector z, which may
for instance be the feature maps computed using feature extraction. In doing so,
images can be assigned to a particular class based on the features extracted from the
image matrix. This function can be optimized by calculating the cross entropy loss
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function during the training phase, where the classifier can learn from examples.
Loss is the difference between the predicted label and the ground-truth label [4].
The algorithm for cross entropy loss is given as follows:

Li =—fy, +1log) e (2.2)
J

Where p,i is the predicted probability for the true class label. The Softmax classifier
combined with cross entropy loss attempts to minimize the estimated class proba-
bilities and the actual class distribution. If a classifier does not perfectly predict the
label of an image (a confidence of 1 on the correct label) it will incur loss. The
Softmax classifier incurs more loss the lower its confidence for the correct label is.
By optimizing the classifier to have a minimal amount of loss, the Softmax classifier
is thus trained to want all of its confidence on the correct class every time.

In the next section we discuss Artificial Neural Networks, which is a methodology
that combines both feature extraction and classification.

2.3.2 Artificial Neural Networks

Feature extraction is a process that may take up considerable time and requires
expert knowledge on the topic. With so much information compressed into three
dimensions, which are the right features to use to train a classifier on? Artificial
Neural Networks (ANNs) offer a solution to extract information from the image
matrix without manual intervention. The elementary form of ANNs contains only
an input layer with an activation function and subsequently a classifier. One early
implementation of this concept is known as Rosenblatt’s Perceptron [81] which is
given in Figure 2.2.
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Fig. 2.2: Rosenblatt’s Perceptron, where X; represents numeric inputs, W, represents
weights applied to the inputs, §; represents the threshold which determines acti-
vations, and o; is the resulting vector of computed values. Image Source: [70]
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Once the weighted value satisfies the threshold of the activation function, the neu-
ron of the input layer activates with a positive value and is thus included in the
classifier. For instance, we might have a binary activation function; If the value is
above 0, we activate the neuron (assign it a value of 1). Otherwise, its value is zero.
Such functions lets neural networks 'choose’ which parts of the input data to use to
solve a particular problem. In doing so, each neuron of a layer can store separate
bits of information as their weights can be tuned individually and thus learn dif-
ferent representations. After the activation function computes which features are
present in the input data, the activated features can be used in a classifier such as a
Softmax classifier. To emphasize this point, neural network layers make up a train-
able feature extractor to use in a classifier, which is attached as a separate layer at
the end of the network. Using the loss derived from the classifier, the network can
then be tuned to provide better features for the classifier to use.

However, the above algorithm was found to be insufficient to learn more complex
representations due to its linear nature, and soon after researchers began experi-
menting with Perceptrons with multiple layers [50]. Yet, in order to start learning
sequential layers effectively a means of efficient automatic tuning of the weights for
each layer had to be invented. This came in the form of backpropagation, the basis
for which was first conceptualized by Werbos [108] and later popularized by Rumel-
hart et al [82]. The resulting gradient signal can then be used to tune the weights
of any given function by updating it relative to its derived gradient. Simply put,
backpropagation is a means of deriving which neurons caused the computed loss
value, and to update neurons with regards to their success or failure accordingly.

The gradient derived from backpropagation can then be used to optimize a net-
work. The simplest form of optimization for neural networks is gradient descent
[19], which is an iterative optimization algorithm which can be used to find the
minimum of a function. In the context of a neural network, this is a function F can
be parameterized by the model’s parameters w € M, where the desired output of
the function is to correctly classify every training sample. On each iteration, gradi-

ent descent computes the gradient of the function as ;F(w) = VL. The gradient
computed can then be updated as w = w — aV,,L, where « is a hyperparameter
known as the learning rate. This same process is performed for the biases b of
each layer. The minimum here represents the global minimum of the loss function,
which can be expressed as a high-dimensional polynomial governed by the net-
work weights [21]. While this local minimum is not necessarily the best solution
(which is referred to as the global minimum), modern deep neural networks are
empirically verified to be equivalent to other local minima, and thus yield similar
performance on unseen data [21]. Intuitively, gradient descent can be understood
as a ball rolling down a hill. The fastest way to reach the bottom, and thus the

2.3 Image Classification

15



16

global minimum, is to find the steepest slope to roll down on. Figure 2.3 expresses
this visually. At every iteration the function computes the gradient for the current
timestep z, then updates the weights so that at the next iteration it will roll in the
steepest downward direction, thus minimizing the function. Iteratively doing so
will lead to a network that has converged onto its lowest local minimum on the
loss surface. More sophisticated optimization algorithms exist which aim to solve
problems with gradient descent, but for the sake of brevity we do not discuss them
in this background chapter. For more information on optimization theory we refer
the reader to Weise [107].

Fig. 2.3: Gradient descent through subsequent updates, where each x represents a
timestep. Image Source: [5]

Notice that the process of gradient descent can only be performed for a single func-
tion, and thus a single layer of a network. To extend this concept to deeper layers
within the network, chain rule derivation was introduced to derive the gradient at
each layer of networks that feature multiple layers. Chain rule derivation is a means
of deriving for a variable within a composite function. It is given as follows:

F'(z) = f'(9(z)) ¢ () (2.3)

Where F' and G are functions, and x is the variable to solve for. Within neural
networks, each layer can be interpreted as a function that transforms a given vector
of inputs to a new vector of outputs by applying a transformation to each element
[80]. Assuming that each of these layers are derivable, we can thus derive the
gradient for a particular neuron by first deriving the layers between it and the loss
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function. This process is repeated for each neuron in the network all the way up to
the input layer.

Updates performed using gradient descent take into account all data points at once.
With large datasets, this causes problems with virtual memory. To remediate this
problem, Stochastic Gradient Descent (SGD) was conceptualized. SGD relaxes the
need to use the entire dataset during training by instead performing gradient de-
scent using a randomly chosen data point from the entire dataset. This makes it
possible to iterate through the examples and perform gradient descent at each data
point [15].

With SGD and backpropagation using chain rule derivation it became possible to use
layers in a network. Networks using multiple hidden layers are known as Multilayer
Perceptrons. On top of the input layer with its activation function, such networks
contain one or more fully-connected hidden layer which uses the weighted sum
of all the outcomes of the previous layer combined with a non-linear activation
function, as shown in Figure 2.4. This non-linearity lets networks compute more
complex (non-linear) features [80].
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layer layer layer
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Fig. 2.4: Multilayer Perceptron with one hidden layer. Notice how each neuron in the
hidden layer uses the combination of all of the input neurons. Image Source:
[65]

The next section discusses the variant of neural networks which was invented to
deal with the problem of extracting features from image matrices.

2.3 Image Classification
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2.4 Image Classification using CNNs

Convolutional Neural Networks were conceptualized as a variant to traditional neu-
ral networks to handle information extraction tasks from images. Traditional neu-
ral networks were not widely considered for this purpose due to their globally-
connected structure. Layers with global connectivity analyze the entire pixel space
for different features at each location, which is wasteful as neighboring pixels in
images are typically correlated and patterns that appear in images often appear in
various places across the image space. Furthermore, the amount of parameters re-
quired per layer is unmanageable for deeper networks. For instance, a layer with 3
color bands and 200 x 200 pixels uses 120,000 weights for a single feature. Clearly,
this results in poor scaling if many such features have to be extracted. Layers with
complete connectivity between layers are known as fully-connected layers.

The pursuit of conceptualizing networks with more manageable parameter counts
lead to the invention of Convolutional Neural Networks (CNNs). Conceptualized by
Fukushima et al in 1980 [31] and popularized by LeCun et al [58] eighteen years
later, CNNs use locally-connected layers known as convolutional layers, from which
the network architecture derives its name. Convolutional layers slide filters of P x P
pixels spaced D pixels apart across local portions of the image which are multiplied
with the input image at each location. This process is displayed in figure 2.5 This
produces matrices that contain values indicative of features that may be present in
images, such as an edge, contrast, or colour adjacency. To further reduce the param-
eter load, each filter is computed globally across the image space. That is, one filter
checks every section of the image for the same feature. The number of filters can be
chosen per layer, and as such a convolutional layer can compute many features such
as an edge detector and a color adjacency filter all within the same layer. On top
of reducing the parameter count per feature computed, their theoretical accuracy
is only slightly worse than fully-connected networks [55]. Convolutional layers are
followed up with an activation function in the same way that fully-connected layers
are. A commonly-used non-linear activation function is the ReLU (Reactified Linear
Unit) non-linearity, which sets any negative input value to zero.

Many CNN architectures use pooling layers at various places in the model. Just
like convolutional layers, pooling layers consist of a sliding window of P x P pixels
spaced D pixels apart. Pooling layers summarize information by keeping a statistic
about the window being considered, such as the maximum value [55]. At each filter
position the pooling layer extracts a value according to a criterion (e.g. maximum
or average value), then assigns this value to a single output pixel. Figure 2.6 demon-
strates this for a 2 x 2 pooling layer with max-pooling. Effectively, 2 x 2 max-pooling
halves the resolution of all feature maps, and in doing so it significantly reduces the
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Fig. 2.5: An example of a convolutional filter, where I is the input image and K is the
learned filter. Notice how the resulting multiplication makes up a new, smaller
image. Image source: [104].

computational load for subsequent convolutional layers, as well as filtering noisy
activations and allowing wider extents to be viewed by small filters.

Fully-connected layers, convolutional layers, pooling layers, and ReLU activations
form the basis for modern CNNs. As an example on how these components look
operationally, Figure 2.7 displays the LeNet-5 architecture [58] which is a CNN
architecture that uses all of the aforementioned components. Layers denoted with
C are convolutional layers. For instance, the first layer learns 6 filters, resulting in
6 activation maps. Layers denoted with S perform subsampling, sizing down the
images by averaging all values within their 2 x 2 sliding window. Lastly, activation
maps are passed through two fully-connected layers before being used as output in
the classifier.
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Fig. 2.6: An example of a max-pooling operation, where all 64 feature maps in the system
is subjected to a 2x2-pixel sliding filter, taking the maximum pixel at each location
in a 2x2 grid in the operation. Image source: [60].

Modern published CNN architectures see both SVMs and Softmax classifiers in use.

The classification accuracy offered by the choice of classifier does not seem to vary
greatly, though it has been suggested that SVMs may offer a slight improvement
in accuracy over Softmax classifiers [99]. Nevertheless, the majority of benchmark
CNN architectures use the Softmax classifier as the output classifier of choice, such
as in [98, 41, 46].
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Fig. 2.7: The LeNet-5 architecture which uses two series of convolutional layers followed
by a Tanh activation function and an averaging pooling layer. The Gaussian con-
nections refer to the output classes for classification. Image source: [58]

CNNs are often limited by their data availability. Because CNNs learn from their
input data, a large amount of input data is required to learn filters that general-
ize well to unseen examples. For instance, a model that has only been trained on
daytime images will likely perform poorly on nighttime imagery, as the filters may
not trigger due complications such as missing color information or a lack of clearly
visible edges. As a result, image datasets for CNNs are desired to be in the range
of thousands to millions of examples in order to ensure that the model is robust
and generally applicable. One such example is the ImageNet dataset, which con-
tains 1.2 million images covering 1,000 target classes [26]. Nevertheless, even such
large amounts of data may prove insufficient for training deep CNNs with millions
of learnable parameters. One technique to increase the potential of the network to
generalize beyond the given training dataset is to apply augmentations to the input
data. Augmentations refer to deliberate deformation and transformation of the in-
put image matrix. Examples of such augmentations are geometrical operations such
as rotations and shearing, as well as operations that adjust the image appearance
such as greyscale transformations, contrast, and adjusting hue. Controlled experi-
ments have shown that classification accuracy improves slightly after applying such
transformations [77, 22].

To summarize, convolutional neural networks are a methodology that combines
both feature extraction and classification by using filters to learn feature repre-
sentations, using these features in a classifier, and subsequently they use the loss
of the classifier to provide better features to use in classification. This powerful
combination saw highly accurate CNNs become the defacto standard for many
classification-related computer vision benchmarks such as classifying the popular
ImageNet dataset [10]. Beyond hypothetical classification scenarios, CNNs have
been widely applied in domain research cases. In the domain of incident detection
they are often used for computer vision tasks, such as near-miss detection [53],
animal detection [86], and road boundary detection [59].
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2.4.1 Influential Network Architectures

In the past couple of years models have progressed in their layout and design prac-
tices. Best practices evolved, and so too did the efficiency of CNNs. Several notable
network architectures have been developed that furthered insights into their work-
ings.

After LeCun et al invented the LeNet-5 architecture [58] in 1998 there was a gap
in the development of CNNs, which lasted until 2012 when Krizhevsky et al [55]
conceptualized the AlexNet architecture. Its base architecture is similar to LeNet-5
though it used more layers and more modern insights in its design. It featured 5
convolutional layers which used 11x11, 5x5, and three consecutive 3x3 wide filters
with an input image size of 227x227 pixels. It also substituted average pooling for
maximum pooling. Aside from reinvigorating interest in CNNs, a second notable
contribution was to train the model on a Graphics Processing Unit (GPU). GPUs had
previously been identified to speed up tasks requiring linear algebra [57], which
neural networks make use of in the form of matrix multiplications (convolutional
filters, pooling layers). The speed-up gained through GPUs made it feasible to train
deeper CNNs than had previously been the case. The AlexNet architecture also
made use of ReLU non-linearities, which peg negative values to zero, leaving any
positive signal untouched. Krizhevsky et al explored the effect of deeper sequential
convolutional layers and advocated their importance, noting a drop in accuracy if
any of the five convolutional layers in the model were removed.

Another noteworthy architecture is GooglLeNet which was invented in 2014 [98].
GoogLeNet explored the concept of parallel convolutional layers with different fil-
ter sizes in what was dubbed an inception module. They also attempted to address
the vanishing gradient problem, where consecutive layers in deep neural networks
receive decreasingly little gradient [45], by using not one, but three Softmax clas-
sifiers at various locations in the model so that earlier layers could also receive
signal. In doing so, they could train deeper networks than had previously been
the case. Figure 2.8 displays the architecture with one of the inception modules
highlighted.

2.4 Image Classification using CNNs
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Fig. 2.8: GoogLeNet with one of the inception modules highlighted. Blocks in red are pool-
ing layers, blue blocks indicate convolutional layers, yellow blocks represent Soft-
max classifiers, and green blocks concatenate the outputs of inception modules.
Image source: [78].

In that same year the Visual Geometry Group of the University of Oxford published
VGG. VGG also had the ambition to go deeper using convolutions, but did so with a
stronger emphasis on consecutive convolutions. VGG relied on consecutive blocks
of 3 x 3 convolutions followed by pooling layers. By using consecutive blocks of
3 x 3 convolutions the model extracts more refined and non-linear features using
fewer parameters when compared to larger filter sizes. It also featured three fully-
connected layers at the end of the model. Figure 2.9 displays the 16-layer version
of the VGG architecture. VGG notably furthered the belief that depth is impor-
tant for CNNs and that traditional architectures like AlexNet and LeNet are able to
achieve state-of-the-art performance without requiring complex adaptations such
as with GooglLeNet. The downside of VGG are its extreme parameter requirements,
especially due to its three fully-connected layers.
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Fig. 2.9: The VGGNet architecture. It uses blocks of consecutive convolutions followed by
pooling layers. Image source: [111].
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The next major improvement in architecture design was the ResNet architecture
[41], which is able to reach a considerable accuracy whilst using relatively few
parameters, a manageable number of operations, and a simple optimization func-
tion. ResNet also advanced the number of layers used in deep neural networks
considerably and controlled for the vanishing gradient problem that had occurred
in previous works. He et al. noticed that despite controlling for overfitting, network
accuracy decreased as depth increased. They proposed that stacking identical layers
onto a stack of convolutional layers in a traditional architecture (e.g. VGG, AlexNet,
LeNet), should theoretically not decrease the accuracy of the network, yet experi-
mentally they noticed that this was the case. This deviation in accuracy was found
to be caused by the residuals of the function to be learned, which is the error by
misclassification. Traditional network layers could not learn the identity mapping if
there were no residuals to correct for as the gradient had to pass through the layer
to update earlier layers. The authors proposed to solve this problem with shortcut
connections as in Figure 2.10.

weight layer

weight layer

F(x) identity

X

Hx)=Fx)+x @

Fig. 2.10: Identity mapping as applied in ResNet models, where F(x) is a module with two
3x3 convolutional layers, BatchNorm, and ReL.U activations, x are the incoming
feature maps, and H(x) is the function to be learned at the end of the module.
Image source: [41].

As a result, if the module has nothing to add to the prediction, it can be deactivated
(weights set to zero). During training, this lets F'(x) get closer to 0 (no activations)
when = gets mapped to H(z). Skip connection allowed models to be trained with
greater ease and fewer parameters. It also allowed deeper models to be trained
than had previously been the case. Further, ResNet architectures heavily rely on
Batch Normalization (BN) layers [49], which in the ResNet architecture are layers
that normalize the outputs of a convolutional layer before the activation function.
BN layers ensure that weight updates no longer have to adapt to changes in the
distribution between layers in a network. They do so by enforcing a unit Gaussian
distribution so that input training batches have zero mean and unit variance. As a
result, Networks using BN layers can reach convergence rates up to 14 times faster
when compared to identical architectures that don’t use BN layers [49]. Using BN
layers has also empirically shown to reduce the need for regularization methods,
thus further increasing robustness against poor initialization.

2.4 Image Classification using CNNs
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Fig. 2.11: Overview of models according to their top-1 accuracy on the ImageNet dataset,
number of parameters, and the amount of performed operations. Image source:
[18].

While deeper and more refined architectures have been published in the past years
we do not discuss them in this background section. Figure 2.11 gives an overview of
the classification accuracy of popular model architectures on the ImageNet dataset
[26] versus their number of parameters and the operations required.

2.4.2 Hyperparameter Tuning

Control over the learning process is exerted through hyperparameter tuning. A hy-
perparameter is not a parameter learned by the network, but instead one that is
set by the user during the learning process. Choosing the correct hyperparameters
is key for training neural networks. For instance, wrongly parameterized networks
may attempt to learn too quickly and suffer from overfitting due to lack of regu-
larization. Often, hyperparameters are derived experimentally. The best practices
for hyperparameter tuning include searching for parameters on a logarithmic scale,
random searching instead of grid searching (searching for combinations using set
intervals rather than sampled from a distribution), and starting off with large in-
crements until settling on finer modifications to the parameter in question [61]. A
model is trained for a number of epochs by evaluating a set of images in the dataset
iteratively. During one epoch, the model thus iteratively learns from images within
the dataset until every image has been shown.

The choice of hyperparameters depends on the layers present in a network, as well

as the optimization algorithm to be used. The following hyperparameters are rele-
vant for this research:
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» Total n epochs: The total amount of times that the model is shown the training
dataset. During each epoch, the model is shown every image in the dataset
once. The amount of epochs depends on the task, model architecture, and the
tuning of other hyperparameters, which may control the speed of convergence
and the degree to which the model converges compared to its theoretical
maximum potential.

* Batch size: The batch size is the amount of training samples that are shown
to the model in an iteration. Using batch sizes above one allows models to
use batch normalization layers and will lead to faster processing times as the
model can apply the same filters to multiple examples at once. For sufficiently
large batch sizes come with a trade-off towards generalization error, which is
observed to increase as a result of increasing the batch size [92].

* Initial learning rate: The initial learning rate is the speed at which the model
starts to learn using optimization methods such as gradient descent. The
learning rate is a multiplicative value applied to the gradient magnitude.
Lower learning rates thus means that the gradient signal is weaker, and up-
dates to the network are thus less prominent. It can be interpreted as the
maximum speed at which a ball is allowed to roll down a hill.

* Learning rate decay: It is worthwhile to slow down the learning process once
the model stops learning from the set learning rate. This is done by reducing
the learning rate. This can be interpreted as slowing down the ball rolling
down the mountain. If the ball is bouncing back and forth between mountains
without slowing down, it helps to slow it down so that it can roll into the
ravine below.

* [, regularization strength: During evaluation by the loss function, for every
weight in the model we apply the term 1w)\Q, where w are the weights of a
given layer and ) is the regularization strength which can be chosen. This
penalty encourages weights to be small, which in turn encourages simpler
networks without overly specific filters. As a result, applying regularization
reduces the capacity for a model to overfit [56].

Many benchmark models and optimization algorithms are published with suggested
ranges and initialization values for use during training, which help to determine
which ranges to search in.
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2.4.3 Model Fine-tuning

As established, CNNs perform feature extraction through learned filters. While
some of these filters may be task-specific, many high-level filters are general fil-
ters such as edge detectors which are commonplace between tasks. It is possible
to re-use these filters learned on one task to a new task through a method known
as Fine-Tuning. Model fine-tuning attempts to improve the efficiency of learning a
new task by using filters learned from another task. During model fine-tuning the
last fully-connected layer is reset along with the classifier, and earlier layers in the
network are opened up to receive gradient, and thus to have their filters adjusted
[73]. Re-training the entire network has the benefit that it already has learned fil-
ters which may simply be fine-tuned to better fit the task at hand. Fine-tuning may
also consider re-training only the final fully-connected layer and the classifier whilst
freezing the rest of the network, which lets the pre-trained network act as a fixed
feature extractor [73]. For the purposes of model fine-tuning, programming frame-
works for CNNs often supply models with pre-trained weights for popular model
architectures.

2.4.4 Interpreting CNN Classifications

A common problem that arises with scene annotation using CNNs is the lack of
insight into the triggers for each class, as millions of parameters influence each
decision. This makes it difficult to determine whether the model is learning the
right representation for the class in question. A particular problem specific to this
use case is the lack of data and unique representations, and as a result the model
could base its decision-making on the wrong visual cues. For instance, the model
might recognize landslides only by cliffs, which are a rare occurrence for the other
incident classes. Given the millions of parameters in a network, manually inspecting
and inferring filters is an arduous task. Instead, various methodologies have been
developed to help interpret and understand the behaviour of CNNs.

Visualization of Filters

With regards to modern deep convolutional neural networks, research performed
by Simonyan et al [94] explores two techniques to gain insight into the workings of
CNNs. The first proposed method aims to find Class Model Visualisations using back-
propagation, where instead of optimizing the weights, the optimization algorithm
optimizes the input image so that it maximally activates the weights of the network
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bell pepper lemon husky

Fig. 2.12: Class model visualisations for a given a target class. Each figure represents an
image to which its target class maximally responds. Image source: [94].

with respect to a certain class. This creates a visually-ideal image for a target class
which can be seen in Figure 2.12.

The second method proposed by Simonyan et al considers image-specific class
saliency. The formulated task is to rank input pixels of a given image on their
relative influence in the classification function. The pixels of the resulting images
can be interpreted as the pixels which need to be tweaked the least to affect the
classification outcome the most. Figure 2.13 provides an example of images and
their computed saliency.

A third type of visualization concerns Class Activation Mapping (CAM) [116]. Class-
activation mapping is based on the observation that convolutional layers are able to
perform feature localization within an image without being explicitly being tasked
to do so [117]. This characteristic is lost once features are run through the fully-
connected layer, which reduces the stack of matrices to a single vector. Intuitively,
CAM can be understood as the linear sum of the presence of all visual patterns at
different spatial locations within an image. Thus, using CAM may help to under-
stand the visual triggers of a target class within a particular image. The process and
result of using CAM is given in Figure 2.14.

Fig. 2.13: Visual saliency for several images from the ImageNet dataset, where whiter pix-
els indicate a higher visual saliency. Image source: [94].
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Dimensionality Reduction

Beyond inspection of the filters of the model, dimensionality reduction methods can
be applied to determine which images the model perceives to be similar. Of these,
a method suitable for high-dimensional data is the T-distributed Stochastic Neighbor
Embedding (t-SNE) method [62]. t-SNE first computes a similarity matrix S1 con-
sisting of the Gaussian probabilities that a set of points could be neighbours based
on their similarity according to the Euclidean distance between all sets of points
their original high-dimensional space. Next, it randomly arranges all data points
in a lower-dimension space. In the lower-dimension space it computes a second
similarity matrix 52, but instead it uses the probability of the Student-t distribu-
tion rather than the Gaussian distribution. Through gradient descent it then tries to
minimize the Kullbach-Leibler (KL) divergence between S1 and 52, which is used to
determine the location of each point on the lower-dimensional mapping at each suc-
cessive iteration, minimizing the distance of each point to similar points and maxi-
mizing the distance to dissimilar points. In the case of CNNs, t-SNE can be used to
determine perceived similarity using the input features of the fully-connected layer.
Visually similar images will have similar filters and triggers, and are thus more likely
to be clustered by t-SNE.
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t-SNE has several parameters that can be adjusted to exert control over the dimen-

sion reduction process:

* Iterations: The number of iterations determines how many times the algo-
rithm goes over every datapoint in the dataset to optimize the KL-divergence,
and thus to cluster the points together. Iteration should continue at least until

the algorithm has converged.

* Learning rate: The learning rate controls the magnitude of updates made to
minimize the KL-divergence at every timestep. The expected range for the
learning rate is in the order of 10 to 1000 for most tasks [89].

* Perplexity: The perplexity is a measure for information that is defined as 2 to
the power of the Shannon entropy. It can be interpreted as a smooth function
for the selection of the amount of nearest neighbours. In effect, perplexity
determines how many points should be considered when forming clusters.
When the perplexity is too high the data tends to clump together and form a
singular ball. When it is set too low it fails to find meaningful clusters. The
value to use for perplexity should be based on the size of the dataset. Bigger
datasets generally require a higher perplexity [106].

When properly configured, t-SNE gives an impression of the structure of the data
within the high-dimensional space.
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Methodology

In this chapter we discuss our choice of methodology and display our settings as
applicable. Figure 3.1 gives a sequential overview of the topics discussed in this
section.

Stage 1: Incidents Taxonomy 3.1

!

Identification of Attributes

!

Taxonomy of incidents

!

Stage 2: Dataset building 3.2

|
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Fig. 3.1: Overview of project methodology and the distinct phases, as well as their out-
comes.
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3.1 Formalizing Unsigned Physical Incidents

There are many incidents which may affect a road network, and many incidents are
indeed related. For instance, snowy and inundated roads are distinct phenomena,
but related incidents as they both pertain to natural events which affect the road
surface. In order to consider the breadth of possible incidents we therefore propose
the use of a taxonomy to establish semantic groupings which can be adapted to
local circumstances as needed.

Using similarity in attributes to relate incidents to one another provides the ben-
efit of groupings. Groupings can be used to classify related events that may be
hard to classify as individual incidents, for instance due to their rarity. In order
to determine the structure of the taxonomy we have performed a Formal Concept
Analysis (FCA) [33] in order to uncover attributes and attribute groupings relat-
ing to incidents. We iteratively refined and grouped attributes until they provided
binary semantic groupings at various levels. These semantic groupings allow for
the option to classify incidents at a higher level. This allows for the classifier to
be assessed on which semantic groupings it can recognize, as well as to determine
which groupings can be assessed at a more complex semantic level in future work.
From the FCA we identified two aspects that were commonly shared between inci-
dents. The first grouping is the most likely cause of an incident. We identify that
incidents can be caused by man-made or natural causes. For instance, a car crash
involving two cars is most often the cause of driver error or a mechanical failure,
both of which find their root in a human failure. Flooding on the other hand is most
likely caused by natural causes. The second grouping is whether the incident is a
well-defined discrete (set of) object or a continuous field, which we refer to as a
cover. Flooding is a continuous phenomenon, since there is no discrete delineation
of the incident. On the other hand, a flock of sheep can be counted, and thus be
considered a discrete incident, which we refer to as objects. We display how this
may be formalized in figure 3.2, which is the resulting taxonomy of incidents that
we maintain in this research.
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The taxonomy has been designed with several considerations in mind.

* While a glitch in a traffic system may cause panic on the street, it is hard
if not impossible to detect this incident in imagery. Hence, the inclusion of
digital incidents is beyond the scope of this research and not considered. In
a full hierarchy of possible incidents it will be on the same level as physical
incidents.

* We consider attributes for incidents by their perceivable cause. For instance,
it is possible that a tree was purposely cut to block off a road, making it a
man-made adversarial incident. However, such an incident is often hard to
distinguish from natural treefall, which is far more abundant in occurrence.

* Signed physical incidents are not considered in this research as the detection
of signage such as road signs are broadly researched using computer vision
techniques. With sufficient research progress the detection of road signs may
soon cover for the detection signed incidents and events such as roadworks
and parades.

The lowest-level labels refer to individual incidents that may belong to the specified
groupings. In this research we consider 8 lowest-level labels for classification. We
chose a variety of incidents that can easily be semantically described for the pur-
poses of searching for images and for which we have a reasonable indication that

Physical Incidents

4 L 4 L 4
Signed Physical Unsigned Physical
Incidents Incidents

A ! }

! Roadworks |
: Events | Man-made Natural
' Parades |
| Etc.. ! |

Object Cover Object Cover
MAHOA 7 MARCA 7 NAT-O1 & 1 NAT:CA
MAN-0-2 MAN-C-2 NAT-D.2 NAT-C-2
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----------------- NAT-C-4

Fig. 3.2: Taxonomy of incidents and their Semantic groupings
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we can collect hundreds of images in the research period. We also tried to cover the
spectrum of combinations in objects and surfaces. We use the following working
definitions during the research:

Animal on Road: Any animal, both living and dead, situated on or within
close proximity of the driving surface

Collapse: A major break-up of the driving surface which would be too big for
common motor vehicles to drive across without incurring damage

Fire: An uncontrolled and active fire anywhere in the image that may affect
the driving conditions immediately or when left uncontrolled

Flooding on Road: A (section of) driving surface that is submerged in a cover
of water puddles such that it causes drivers to change their driving behaviour

Landslide: A cover of dirt, rocks, or natural debris originating from a raised
surface, which has settled on the driving surface

Snow on Road: Any amount of snow on the driving surface such that it could
cause drivers to change their driving behaviour

Treefall: A tree, trunk, or sizable branch leaning over or lying on the driving
surface in such a way that it would obstruct traffic

Vehicle Crash: Any visible collision between one or more motor vehicles, or
a motor vehicle collision with an object in the environment, such as a tree

The chosen classes and their attributes are given in table 3.1. We list one proto-
typical example for each image class in figure 3.3 to illustrate how incidents look
operationally.
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Incident code Man-made | Natural | Object | Surface

Vehicle Crash MAN-O-1 X X

Road Collapse MAN-S-1 X X
Fire MAN-S-2 X X
Animal on Road | NAT-O-1 X X

Treefall NAT-O-2 X X

Snowy Road NAT-S-1 X X
Flooded Road NAT-S-2 X

Landslide NAT-S-3 X X

Tab. 3.1: Positive unsigned incidents under consideration during this project.

3.1 Formalizing Unsigned Physical Incidents 35



36

(b) Road Collapse [8]

(c) Animal on Road [1] (d) Treefall [9]

(f) Flooding [79]

(g) Landslide [105] (h) Fire [102]

Fig. 3.3: Prototypical examples of the incident classes covered in this research.
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3.2 Dataset Creation

This section discusses the process for setting up the training dataset. The data for
this project consists of imagery collected from various web sources and benchmark
datasets. In this chapter we first describe the constraints to which suitable images
are subjected, followed by an overview of the sources and compositions used for
the positives and negatives of the dataset.

3.2.1 Imagery Constraints

The input data for this project is imagery of various incidents occurring on the road
network. However, it is necessary to constrain the input imagery to certain rules in
order to filter the imagery to relevant examples. The proposed constraints cannot
be automatically tested, and thus the human reviewer has to assess each images’
suitability manually. We maintain the following guidelines to determine whether
an image is suitable:

* Viewpoint roll
There are only various possible angles in which a camera is likely to be fitted
on a vehicle. Under normal operation it is unlikely that a vehicle-mounted
camera is ever rotated beyond a couple of degrees in either direction.

* Viewpoint height
Given the range of vehicle ride height for various vehicles, we consider im-
ages taken between 50cm (sportscars) and 4 meters (trucks) height above
the surface for inclusion.

* Viewpoint pitch
The viewpoint should be forward or slightly-downward facing. Images should
have a maximum allowable pitch of 15 degrees either up or down.

* Viewpoint yaw
The viewpoint should face the road network as much as possible. For instance,
an image taken from on the road, but having very little road in view of the
image is most likely irrelevant to the assessment of road network conditions.
As such, the yaw should ideally be less than 30 degrees in either direction.

e Lateral offset

The viewpoint should be positioned on or close to the street in order to be
representative of the vehicle’s spatial position on the street. The maximum

3.2 Dataset Creation
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allowable camera viewpoint should be the edge of the sidewalk (e.g. to simu-
late a parked car).

* Incident location
The incident in an image should be relevant to the driving conditions. For
instance, snow on the side of the road is not an incident if the driving lane
itself is cleared of snow. On the contrary, a car crash with a car standing on
the side of the road is still relevant for driving conditions of other cars of the
road as network accessibility may be reduced during cleanup operations.

These guidelines should constrain all of the imagery used in the research to only
contain imagery which is relevant for the incident affecting the road. That said,
these guidelines are not definitive, and ultimately it is up to the human interpreter
to determine whether an image is relevant or not. Depending on the data availabil-
ity for each class we may relax these constraints. For every image we only use a
single image label. That is, only one class exists per image. For instance, images
that contain both a crash and fire are not included.

3.2.2 True-Positives Dataset

In this section we discuss our procedure for generating a set of images that con-
tain incidents, which we refer to as the true-positives dataset. We first discuss our
approach to collecting images from web sources before considering image selec-
tion, storage and the generation of a labeled dataset consisting of normal driving
conditions, which we refer to as true-negatives.

Web Retrieval Approach

Given the high amount of data required to train CNNs there exists a need to build
a large dataset. Furthermore, images have to be diverse in nature to represent
the many possible conditions in which incidents may occur. For instance, snowfall
can occur anywhere and the visual cues in a city may be different than those of a
snowy forest road. In order to maximize the amount of data that can be gathered
during the project we maintain a retrieval strategy inspired by previous work on
the ImageNet [26] and LSUN [110] datasets.

Image Searching

Image searching is done by using the APIs of three search engines, as well as using
images from the Geograph UK project [35]. We send prepared queries to the Google
Custom Search API [37], the Bing Web Search API [67], and the Flickr Image Search
API [109]. For each API, the user prepares a query and sends it to the API endpoint,
which returns a list of image URLs matching the query.
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The Google Custom Search API lets users query for images through a custom search
engine, which is a customizable instance of the regular Google search algorithm.
We set up a custom search engine with the only modification to the standard set-
tings being the filtering of sites. We filter out the top-level domains of 13 stock
photo suppliers: dreamstime.com, depositphotos.com, pixoto.com, bigstockphoto.com,
istockphoto.com, fotolia.com, colourbox.com, 123rf.com, fotosearch.com, alamy.com,
gettyimages.com, and shutterstock.com. This reduces the amount of copyrighted
stock photos appearing in the search, and thus improve the returns from the search
engine. Bing and Flickr’s API have no customizable settings with relation to the
search engine itself. Customization is only done through prepared queries.

For the Geograph UK project we contacted the organization and requested a set
of images matching the following search terms: road snow for images with snow,
road flooding for images with floodings, cows/ducks/sheep on road for images with
animals.

Image Retrieval and Storage
Searching using an API allows for parameters and options to be set. We send the
API query with the following parameters specified for each API:

¢ Google Custom Search!
imgType: photo
googlehost: google.uk (Specifies which Google host should handle the query)
gl: uk (Sets the geolocation of the query)
cx: 013675800614641398741:wwg9y3xxkjO (See previous section; specifies
the custom search engine instance to use)
filter: 1 (Filter duplicates within the query)
imageSize: medium (Return images which have a size of 'medium’ ( 500 pix-
els))

* Bing Image Search?
imageType: photo
offset: O (starting index of matching images)
count: 100 (Number of images per query)

e Flickr Image Search?®
tag mode: all (specifies to search for images that contain the intersection
(Cand’) of all tags)
format: json (The format in which the response is sent)

'https://developers.google.com/custom-search/json-api/v1/reference/cse/list
2https://docs.microsoft.com/en-us/rest/api/cognitiveservices/bing-images-api-v7-reference
3https://www.flickr.com/services/api/flickr.photos.search.html
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media: photos

per_page: 100 (amount of images per query)

page: per_page * 100 (index of images, determined by per_page)

sort: relevance (returns most relevant images)

nojsoncallback: 1 (gives a raw JSON return without function wrappers)

All prepared queries have to be sent with an API key. Google and Flickr provide
free API keys for registered users, while Bing Image Search is a paid service with a
free trail, which we make use of during this research effort. Google limits the query
rate of free users to 100 unique queries per day, thus limiting the total amount
of images retrieved per day to 1,000. Querying is thus done over the span of
weeks. Each query sent returns a JSON file with the URLs of all images in the
query. We download each returned image and retain the returned JSON file for
metadata purposes. Bing and Flickr-derived images provide a unique image ID for
metadata-retrieval purposes, while Google does not. We store Flickr and Bing im-
ages with their relevant image ID, and we generate a 10-character random filename
for Google images.

Query Expansion

While all of the listed search engines implicitly perform query expansion (broaden-
ing the results gathered by a query by considering heuristics such as synonyms and
spelling) when retrieving search results, it is still worthwhile to searching using ex-
plicit synonyms. Doing so returns a wider variety of images and expands the search
in breadth rather than in depth, as the quality of depth-wise searching typically had
a noticeably drop in quality after the first few pages. Furthermore, breadth-wise
searching has the added benefit of displaying various possible representations of
the incident in question, such as snowfall in a forest, countryside, or in a city. In this
research we used prominent synonyms with varying geographic implications. For
instance, we used four variants of road types during the querying process, namely
street, highway, road, and route. Streets and roads are typically used in (sub)urban
scenes, while highways and routes are more often used to denote roads outside
of cityscapes. We also consider various other terms for the incident in question,
such as vehicle types when considering crashes. A full list of expanded queries is
available in Appendix A.

Multilingual Queries

Beyond the English language we include queries of various other languages native
or skillful to colleagues. By doing so we aim to retrieve images that are not returned
through English queries, as well as to capture a greater geographical diversity as a
result of the inclusion of resources not covered by the English language. The fol-
lowing languages have been used for querying: Dutch, Slovak, Mandarin, Croatian,
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and Farsi. To do so, we asked colleagues to translate the subject into a query that
they would use to find images in their native or proficient language. We provide
an example in English and ask colleagues to translate it. To save time on the clean-
ing process, we first manually enter each query at the three API hosts to inspect
whether the query yields images of the incidents in question. Approved queries
are then sent to the API so that images may be harvested. We list the table with
multilingual queries in appendix A.

Selecting and Storing Images

Before image selection is performed we remove duplicates from the returned im-
ages. We check each queried image within an incident class for exact equivalence
to every other image in the incident class. This process is meant to eliminate redun-
dancy during the selection step and to reduce the chance that duplicates are added
to the dataset. Since Bing returns more metadata than Google and Flickr we remove
identified duplicates from the images returned by Google and Flickr. During image
cleaning, for every returned image we manually determine whether to include the
image to the dataset or not based on the criteria presented in 3.2.1. We assess
images through a self-written terminal tool where images are resized to 500x500
pixels and assessed for suitability. To do so, resizing is done using Nearest Neighbour
interpolation so that images retain their original representation as much as possible.
Selecting images is done only by the author. While this adds a significant amount of
workload to the research, it ensures that there is stability in the semantic definition
of the dataset. We consider this to be integral to the research, as the primary intent
is to determine whether incidents are recognizable from image data. It also adds to
the discussion on the specifics of the dataset as its exact content is known.

3.2.3 True-Negative Dataset

Since this research is concerned with recognizing incidents, a dataset of negative
examples has to be sampled. For this purpose we sample from various sources to
cover the preconditions of the research:

* Berkeley Deep Drive (20k)
we sample 20k images from the 100k images subset of the Berkeley Deep
Drive (BDD) dataset [90]. This dataset is notable for its variety in scenes
and weather conditions. The inclusion of scenes containing wet and snowy
conditions makes this dataset especially relevant to help distinguish between
disruptive and non-disruptive weather conditions. It also contains variations
in rotation and angle similar to the incidents dataset. The scenes are recorded
in a variety of cities in the United States and contain the only the 10th frame
of each video in their 100k videos dataset. We sample 20k images from this
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dataset as it captures the widest variety of driving conditions of the nega-
tives datasets such as weather conditions, geographic diversity (within the
United States), day/nighttime, and complications such as reflections of the
dashboard.

* Cityscapes (10k)

To further improve the geographic diversity of the dataset, we sample images
from the Cityscapes dataset [24]. This dataset covers a variety of street scenes
of German cities and contains every 20th frame of 30fps video sequences.
While it contains a low variety of weather and camera conditions, the driving
conditions in the dataset are distinctly more European than the BDD dataset.
We include 10k images from the Cityscapes dataset to improve the geographic
diversity of the negatives class.

* Geograph (10k)

Finally, we use a random sample of 10k images tagged as road transport’ from
the Geograph project [34]. The dataset contains unfiltered stills covered by
the tag, and therefore reflects all sorts of photos, at times even irrelevant to
driving conditions in general. While most photos are taken from a viewpoint
similar to BDD and Cityscapes, a number of images also contain odd angles
and targets (e.g. streams or pastures). We include this dataset to offset the
strong urban focus of the aforementioned benchmark datasets, as well as to
counteract potential overfitting on the difference in viewpoint rotation, an-
gle, and orientation in the incidents dataset. We retain 10k images from this
dataset to ensure the inclusion of landscape images, which are frequent in the
positives dataset. The 10k images are a random set returned from the search
term road transport.

* Geograph Snow Negatives (200 images)
As an experiment we collect approximately 200 images of boundary cases for
the snow class of the Geograph data to determine whether it is able to pick
out negative cases based on the relevant attributes, which is snow on top of
the driving surface. These images are selected when filtering for positives in
the class snow. Figure 3.4 gives an example of a positive image with snow
versus a negative image with snow.

Pre-processing

Images from the BDD dataset often contain elements from the ego vehicle in the im-
age itself such as the dashboard and the bonnet. To reduce the chance of overfitting
the negatives dataset onto irrelevant visual cues we crop out the bottom 25% of all
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Fig. 3.4: On the left: a true-positive image of snow which contains snow on the driving sur-
face [101]. On the right: A true-negative image of snow which does not contain
snow on the driving surface [36].

images in the dataset. To compensate for the change in aspect ratio we crop 12,5%
from both the left and right side of the image, thus retaining the aspect ratio.

Images are resized to 224x224 to match the input size of ResNet. We do not con-
sider cropping to be viable on this dataset as it may risk cropping out the incident,
since incidents in images are frequently small and off-center

3.2.4 Data Management Strategy

We maintain a data management strategy to ensure that the dataset can be used
for future research. During the research we retain all collected images until the
end of the research effort on an external hard drive and regularly back it up on
the Google Drive service of the university. Images are stored in a SQLite database
with their relative file path from the top of the data folder, their calculated split,
and their class. SQLite supports querying and allows for a more structured file
storage than plain text storage methods, while providing the benefit that resulting
databases are small. Furthermore, lightweight readers are available to view records
and perform elementary queries. For non-commercial use we distribute a zip of
the images that are used to train the complete model in the following structure:
split/class/images. The folder thus consists of three split parent folders, and
eight class folders for each parent folder. We will not supply the negatives images
directly as BDD and Cityscape’s licenses do not allow re-sharing of the dataset. Re-
searchers can instead re-construct the negatives dataset with the scripts generated
in this research. We will make the Geograph negatives dataset available with a copy-
rights file to ensure Creative Commons compliance, as per the Geograph project’s
request. We will create a SQLite database containing the image id, class, split, and
URL to the original image so that users can reconstruct the positives of the dataset
themselves.
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3.3 Incident Recognition

In this chapter we discuss our set-up for the incident recognition models, as well as
the settings for the visualization and insight methods.

3.3.1 Model

To make the most use of the limited amount of data we apply fine-tuning onto a
ResNet-34 [41] model which has previously been trained on the ImageNet dataset.
To account for the imbalance in the number of positives and negatives and to limit
overfitting onto specific classes, we perform weight updates relative to the inverse
fraction of a class’ images compared to to the total set. For instance, if the neg-
atives class contains 80% of the images, each weight update resulting from these
images is multiplied by 0.2, thus reducing the influence of the negatives class at
each update.

We evaluate our model using two metrics. Firstly we present the average top-1
accuracy (the model’s best guess for a given image across all n images within a
class, not taking into account false positives) for all classes. We then expound the
accuracy by considering the confusion matrix of all classes. We use the F1-measure
Van Rijsbergen [103] to consider the model’s accuracy with regards to the inclusion
of false positives, which is given as follows:

Precision x Recall

1= — (3.1
Precision + Recall

Here, the precision is measured as the number of images correctly predicted to
belong to a class divided by the number of all images predicted to belong to that
class. Recall is the number of correctly predicted images for a given class divided
by the number of images that should have been predicted to be positive. The F1
measure ranges between 0 and 1, where 1 indicates perfect precision and recall,
and 0 means no precision or recall at all. The F1-measure represents the harmonic
mean of the precision and the recall and gives a good indication whether a model is
balanced in its predictions. For instance, if a model always predicts negatives, it may
reach an overall accuracy of 100% for the negatives (all negative images classified
as such), but in reality its predictions are baseless. The average F1-measure for this
class would be lower, as it considers the amount of images that should have been
returned versus the total number of returned images, and thus punishes the model
for overzealously classifying images to a given class.
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3.3.2 Optimization

We optimize the model using the RMSprop optimization algorithm [44, s.29] with-
out applying momentum. RMSprop is part of the adaptive family of optimizers,
which are conceptualized to deal with common problems occurring with stochastic
gradient descent. We chose the RMSprop algorithm for one particularly favourable
property: Gradient updates are performed by keeping track of recent gradient
magnitudes and subsequently subtracting the running average from the parameter,
which has a smoothing effect on gradient updates. We do not consider momentum
during optimization as the implementation of momentum in the coding environ-
ment did not work. Optimization is only performed during the training stage of
each epoch.

3.3.3 Training Settings

Training settings are derived experimentally. We initialized the model with a 0.001
learning rate and observed the convergence pattern. From there we reduced the
initial loss by a factor 10 and set up our decay schedule to decay when the model
would stop improving. We did not tune other hyperparameters as the observed
accuracy was already satisfactory after convergence. We thus initialize and train
the model using the following parameters:

* Batch size: 10 images per batch
We use the maximum number of images per mini-batch that the GPU on the
implementation environment allows.

* Total number of epochs: 50
* Initial learning rate: 0.0001

* Learning rate decay schedule: 10, 30, 40
We don’t decay the learning rate between the 10th and the 20th epoch as the
model continued to converge quickly during experimentation runs.

* L2 regularization strength: 0.0001 (ResNet default)

To artificially improve the robustness of the trained model we apply various random
augmentations to the training data, with the probability of occurrence set to 50%
where applicable:
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* Random horizontal flip
Horizontally-flipped driving images still pertain to incidents on the road and
helps to train filters that are less sensitive to a particular driving side.

* Random grayscale transform
Reducing the image colour information to grey tones may help to reduce de-
pendency on colour-sensitive information, which is relevant for classes such
as snow and fire.

* Random rotation up to 5 degrees in either direction
Small variations in rotation can help to train filters that are less sensitive to
variations in rotation.

* Jittering hue/brightness/contrast/saturation up to a factor of 0.05
Small alterations to the image may mimic common variations in image quality,
and thus make filters more robust against lower-quality images.

Augmentations and values for the augmentations are applied with understanding
to the task at hand. For instance, it is unlikely that a vehicle-mounted camera will
be rotated beyond a couple of degrees, nor is it expected to see severe colour muta-
tions. Lastly, we normalize all images passed to the model to the mean and standard
deviation of the training subset to improve numerical stability. Normalizing to the
mean and standard deviation acts as a means to ensure that the input images al-
ways follow the same distribution, which stabilizes gradient backpropagation as it
no longer sends a gradient signal that varies by the distribution of the input images.
During training we apply all augmentations while we only apply normalization dur-
ing validation and testing.

Network training is performed using PyTorch version 0.3 running on Python version
3.6. The model is trained on the freely-available Google Colaboratory platform [37].
Colaboratory is a notebook environment similar to Jupyter Notebooks, but it allows
for free access to a NVIDIA (memory-limited) K80 GPU on which models can be
trained on for up to 12 hours at a time. We restart the optimizer to decay the
learning rate as Google Colaboratory does not facilitate scheduled learning rate
decay during the learning process itself. It is not known whether this is a bug or by
design.
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3.3.4 Interpretation Methods

In this research we apply Class Activation Mapping [116] (CAM) to the average-
pooled final convolutional layer of the ResNet model to determine which visual
cues the model responds to. We do so by assessing outliers which we detect us-
ing t-SNE dimensionality reduction of the inputs to the fully-connected layer of the
ResNet model. For the CAM method we use an existing implementation provided
by the authors of the CAM method intended for ResNet models in PyTorch [115].
t-SNE dimensionality reduction is performed using the SciKit Learn [89] implemen-
tation.

We use t-SNE dimension reduction to determine which images are visually similar
and to detect unusual outliers such as an incorrect classification in the middle of a
cluster, as well as to get a sense for the general underlying structure of the predic-
tion function. To do so, we test a variety of perplexity settings. We use the heuristics
proposed in [106] to tune the algorithm and interpret their resulting plots.

e Step count
We run the model a total of 1,000 iterations to ensure convergence.

* Learning Rate
We use a learning rate of 500 to ensure a stable convergence. After testing we
assessed that it leads to a fast convergence while not sacrificing the quality of
the plot.

* Perplexity

Perplexity is tested at rates of 20, 50, 200, and 250 to assess the effect of clus-
ter tightness and to test whether the geometrical structure remains constant.

We then visually assess the patterns visible in the most expressive t-SNE plot and
discuss remarkable mis-classifications using CAM.
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3.4 Geographical Stratification Set-Up

In order to assess whether incidents can be learned independently from their en-
vironment we run an experiment using a geographical stratification. We run an
experiment using the three incident classes present in the Geograph data; Animals,
Flooding, and Snow, as well as considering negatives. We only use these three classes
and the full dataset of negatives as the images retrieved from the Geograph project
have reliable geotags that are situated in the United Kingdom or Ireland and as such
they can be stratified to a region of these two countries. We geographically stratify
images based on their location. Images within England, Scotland, or Ireland are
included in the training or validation dataset, while images situated in Wales are
used in the holdout dataset. In doing so we effectively split the Geograph data to a
72.5/22.5/5% split, with the 5% holdout data situated in Wales so that we can test
the trained model performance on unseen data from a new geographical region.
Figure 3.5 displays the geographically stratified positive data-points.

During training and validation of the geographically stratified dataset we include
the harvested and multilingual data. 75% of the harvested and multilingual data
in each of the three positive incident classes is added to the training dataset, while
the remaining 25% data is distributed to the validation dataset. While it is possi-
ble that some of the scraped data is situated in Wales, we don’t suspect that this
inclusion will cause significant geographical correlation. The ratio of Geograph
to non-Geograph data in this class is greater than 2:1 for all three classes, so the
vast majority of all images are accounted for. As such, it is very unlikely that geo-
graphical correlation will occur as a result of including multilingual and harvested
images. Model training will occur with the same parameters as the model assessing
all incident classes, as the chosen hyperparameters were observed to lead to good

convergence.
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Fig. 3.5: Overview of positive data-points as stratified during the geographical validation.
Negative data-points have been stratified in the same manner. Highlighted in
green is the country of Wales, which is the unseen geographical region to test in.
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Results

This section discusses the results that have been derived for the research. Firstly we
present the created dataset, and secondly we present our results for the classifica-
tion. Where applicable, we refer to the dataset covering all eight incident classes as
the complete dataset.

4.1 Data Collection Results

In this section we discuss the images that have been collected during the research.
Appendix A contains the queries performed for the harvested and multilingual
queries.

Using query construction by using synonym combinations, we performed 118 queries
which retrieved 40,063 images, of which 5,844 were included in the dataset. We
retain 2,439 images from Google, 2,742 from Bing, and 663 from Flickr. It is impor-
tant to note that duplication filtering works in favour of the total amount of images
retained from Bing. We did not track the total amount of duplicates removed. Fig-
ure 4.1 lists the distribution of images retained per class along with their sources.
As can be seen, Google and Bing provide a superior rate of correct images when
compared to Flickr, while being highly similar in the amount of correctly returned
images per class.
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Fig. 4.1: Overview of images per class as derived from each source using the harvesting
queries.
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By translating representative queries into various non-English languages, we per-
formed 63 queries which retrieved 12,846 images, of which 1,641 were included in
the dataset. We retain 762 images from Google, 804 from Bing, and 74 from Flickr.
Figure 4.2 displays the distribution of images retained per class by source.
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Total n source images: 12,846

Fig. 4.2: Overview of images per class as derived from each source using the multilingual
queries.

In table 4.1 we give an overview of positive collected images as gathered from
harvesting queries, multilingual queries, or by cleaning Geograph images.

Incident Harvested Multilingual Geograph | Total
Animal on road | 534 79 708 1,321
Collapse 362 123 6 491
Crash 1,158 320 - 1,478
Fire 791 74 - 865
Flooding 453 446 1,257 2,156
Landslide 676 149 - 825
Snow 1,265 304 3,174 4,743
Treefall 605 146 - 751
Total 5,844 1,641 5,145 12,630

Tab. 4.1: Total amount of images per class as collected by gathering type.

40,221 images have been included in the negatives dataset in total, of which 20,000
from Berkeley Deep Drive, 10,000 from CityScapes, 9,981 from Geograph, and 240
negative boundary cases of snow gathered during the cleanup of the Geograph
positives dataset.

Chapter 4 Results



4.2 Model Classification Performance

Here we present the results for both classification cases, starting with the full
dataset.

4.2.1 Complete Dataset Performance

Training was concluded after 50 epochs and we retained the model with the lowest
validation loss, which occurred at epoch 37. Table 4.2 displays the final accuracy
and F1-score derived for each phase on the best model. A near-perfect accuracy is
achieved during training, with the validation and testing set displaying consistently
high accuracies with a lower F1-measure, indicating some degree of classification
confusion. Remarkably, the model performs better during testing than during val-
idation. The confusion matrices for the training, validation, and testing phase are
given in tables 4.3, 4.4, and 4.5 respectively, which displays the expected trend that
most misclassifications pertain to the negatives class. Figure 4.3 displays the loss
for the model at every epoch during training, while Figure 4.4 displays the accuracy
of the model at every epoch. As can be seen, training loss and accuracy improved
steadily while the validation loss and accuracy display an erratic convergence pat-
tern until the learning rate is sufficiently decayed after the 30th epoch.

Metric Training Validation Testing
Accuracy 99.49%  96.31% 97.15%
Avg. Unweighted F1-score | 0.9403 0.9054 0.8909
Loss 0.02149 0.2135 0.1761

Tab. 4.2: Classification performance of the best model trained on the complete dataset

Predicted F1- Top-1
True Measure | Accuracy
Animal on Road 872 1 0 0 0 0 0 1 15 0.9842 98.08%
Road Collapse 0 350 0 0 0 0 0 0 1 0.9957 99.72%
Vehicle Crash 0 0 984 0 0 1 0 0 11 0.9904 98.79%
Fire 0 0 0 500 0 0 0 0 2 0.9966 99.66%
Flooded Road 0 1 0 0 1470 0 0 0 32 0.9840 97.80%
Landslide 2 0 1 0 1 562 3 0 5 0.9860 97.91%
Treefall 0 0 0 0 0 3 522 0 5 0.9887 99.87%
Snow on Road 1 0 0 0 2 0 0 3238 59 0.9891 98.12%
Negative 8 0 6 2 12 0 1 8 27730 | 0.9970 98.49%

Tab. 4.3: Training split confusion matrix (n=36,502) of the best model trained on the
complete dataset. The x-axis represents the true class and the y-axis represents
the predicted class.
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Predicted F1- Top-1
True Measure | Accuracy
Animal on Road 237 1 3 0 1 6 1 0 31 0.8360 84.64%
Road Collapse 0 71 1 0 3 3 0 0 12 0.8160 78.89%
Vehicle Crash 0 0 283 2 4 6 2 1 10 0.9056 91.88%
Fire 1 2 0 174 2 0 1 2 6 0.9560 93.55%
Flooded Road 3 4 3 0 396 4 0 8 44 0.8637 85.71%
Landslide 1 3 4 0 2 151 2 0 12 0.8412 86.29%
Treefall 1 0 1 0 1 9 129 0 7 0.8571 87.16%
Snow on Road 1 1 3 0 3 0 0 988 42 0.9611 95.18%
Negative 43 2 19 0 43 5 18 19 8248 | 0.9814 98.22%

Tab. 4.4: Validation split confusion matrix (n=11,086) of the best model trained on the
complete dataset. The x-axis represents the true class and the y-axis represents
the predicted class.

Predicted F1- Top-1
True Measure | Accuracy
Animal on Road 129 0 1 0o 2 1 o0 1 1 0.9021 95.56%
Road Collapse 0 50 1 0 O 0O 0 O 3 0.9174 92.59%
Vehicle Crash 1 0 155 0 O 0 1 1 2 0.9394 96.88%
Fire 0 0O o 97 0 1 0 O 2 0.9848 97.00%
Flooded Road 0 1 0 0O 188 0 1 2 20 0.8806 88.68%
Landslide 0 1 0 0 O 65 1 0 3 0.9028 92.86%
Treefall 0 0 1 0 1 2 67 1 1 0.9241 91.78%
Snow on Road 2 0 O 0 3 0 0 468 14 0.9689 96.10%
Negative 19 3 12 0 21 6 2 6 3894 | 0.9854 98.26%

Tab. 4.5: Testing split confusion matrix (n=>5,263) of the best model trained on the com-
plete dataset. The x-axis represents the true class and the y-axis represents the
predicted class.
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Fig. 4.3: Loss curve of the model trained on the complete dataset. The y-axis represents

Fraction of correctly classified examples

the loss incurred at each epoch (lower=better), while the x-axis represents the
epoch at which the loss occurred. A steady decrease is indicative of a model that
is converging well.
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Fig. 4.4: Accuracy curve of the model trained on the complete dataset. The y-axis repre-

sents the accuracy rate at each epoch, while the x-axis represents the epoch at
which the accuracy has been recorded.
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4.2.2 Geographical Stratification Performance

Training was concluded after 50 epochs and we retained the model with the lowest
validation loss, which occurred at epoch 15. Table 4.6 displays the final accuracy
and F1-score derived for each phase on the best model. The confusion matrices
for the training, validation, and testing phase are given in tables 4.7, 4.8, and 4.9
respectively. The trends visible in the confusion matrix largely follow the trend seen

for the complete dataset, though deviations in accuracy and F1-measure are more
prominent during this experiment. Figure 4.5 displays the loss for the model at
every epoch during training, while Figure 4.6 displays the accuracy of the model at

every epoch. As in the last experiment the training accuracy steadily converges to a
minimum while the validation accuracy only stabilizes after 30 epochs. Remarkably,

the model has its lowest validation loss recorded early on in the learning process.

Metric Training Validation Testing
Accuracy 97.90%  96.59% 92.90%
Avg. Unweighted F1-score | 0.9403 0.9054 0.9169
Loss 0.0771 0.1352 0.1973

Tab. 4.6: Classification performance of the best model trained on the geo-stratified dataset.

Predicted F1- Top-1
True Measure | Accuracy
Animals on Road 853 6 2 100 0.9099 88.76%
Flooded Road 5 1479 9 219 0.9040 86.39%
Snow on Road 4 13 3394 227 0.9594 93.29%
Negative 52 62 32 28354 | 0.9880 99.49%

Tab. 4.7: Training split confusion matrix (n=34,820) of the best model trained on the
geographically stratified dataset. The x-axis represents the true class and the
y-axis represents the predicted class.

Predicted F1- Top-1
True Measure | Accuracy
Animals on Road 281 2 3 41 0.8633 85.93%
Flooded Road 6 509 12 155 | 0.8263 74.63%
Snow on Road 4 10 1135 73 0.9478 92.65%
Negative 33 26 20 8997 | 0.9810 99.13%

Tab. 4.8: Validation split confusion matrix (n=11,316) of the best model trained on the
geographically stratified dataset. The x-axis represents the true class and the
y-axis represents the predicted class.
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Predicted F1- Top-1
True Measure | Accuracy
Animals on Road 73 0 0 O 0.9299 100%
Flooded Road 1 54 3 0 0.9319 93.10%
Negative 10 3 48 2 0.8205 76.19%
Snow on Road O 0 3 112 0.9782 97.39%

Tab. 4.9: Testing split confusion matrix (n=309) of the best model trained on the geo-

Fig.

graphically stratified dataset. The x-axis represents the true class and the y-axis
represents the predicted class.
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4.5: Loss curve of the model trained on the geo-stratified dataset. The y-axis repre-
sents the loss incurred at each epoch (lower=better), while the x-axis represents
the epoch at which the loss occurred. A steady decrease is indicative of a model
that is converging well.
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Fig. 4.6: Accuracy curve of the model trained on the geo-stratified dataset. The y-axis

represents the accuracy rate at each epoch, while the x-axis represents the epoch
at which the accuracy has been recorded.
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Discussion

In this chapter we discuss the process throughout the research, as well as the results
derived from it. We first consider the taxonomy and the process of creating the
dataset before discussing the results derived from the model.

5.1 Taxonomy

The taxonomy proposed in this research provides a solid basis for future research
that wants to consider roadscape incidents. It provides a systematic overview of
incidents and accommodates sub-groupings at various levels. For instance, if a clas-
sifier is found to perform very well on a high-level grouping, then the taxonomy
can be expanded with sub-groupings which can then be added as new classes. This
may include expansion onto spatial characteristics as well. For instance, further
research may consider the animal on road class in more detail while specifically
aiming to classify for spatial relevance e.g. is the animal on the road, or next to
the road?, which can be considered two separate incidents. Further, the proposed
taxonomy may serve as a basis for other research efforts where spatial context and
sub-grouping are important, such as illegal dumping (e.g. rubbish on road, or rub-
bish next to the road). For instance, it may be necessary to further sub-group differ-
ent types of rubbish as well as their spatial location (e.g. ’on’, 'near’, or far from’
the driving surface) for the purposes of determining whether they are dumped or
deposited in the right place.

5.2 Dataset creation

The querying strategy has proven to be effective in generating a dataset of spatially
explicit images which mimic roadscape incidents. Through query construction us-
ing synonyms and breadth-wise searching we can describe a wide variety of spatial
contexts while ensuring that images remain relevant to the research case. While
the resulting dataset is limited in size, the classification accuracy indicates that it
is effective for training purposes. The data collection and cleaning process may
have progressed far quicker if the process had been outsourced, for instance using
Amazon’s Mechanical Turk such as in ImageNet [26]. However, this would create
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uncertainty in the dataset as there may have been many interpretations of incidents.
By having only one person clean the data we keep the dataset semantically consis-
tent, which we consider crucial for the research. Since the content of the entire
dataset is known and accounted for, we can infer more accurate conclusions on the
dataset and ensure that the dataset does not contain false inclusions or irrelevant
incidents. We can therefore guarantee that the dataset is accurate in its depiction of
the target class with a uniform semantic definition. The resulting dataset created in
this research is furthermore remarkable in its scope. While many large-scale image
datasets used for classification focus solely on the class, images in our dataset have
the explicit characteristic that they are relevant for a particular type of scenario.
While it is orders of magnitude smaller than large, popular datasets, we hope that
the resulting dataset may fill a niche in spatially explicit classification. With specific
reference to datasets relating to on-road incidents, to the best of our knowledge, it
is the first dataset that has attempts to cover roadscape unsigned physical incidents
at a broad scale. It is thus a good starting point for future research in the domain
of unsigned incident detection from ego-vehicles.

5.3 Incident Recognition

In this section we discuss the results and the process of incident recognition. We
also discuss the t-SNE and CAM interpretation methods for the complete dataset
model.

5.3.1 Model Training Process

Initially we planned to fine-tune only the fully-connected layer of the pre-trained
ResNet model. In doing so, only one gradient update would have to be performed
rather than for all layers, which would reduce the computation times during train-
ing. However, the resulting model vastly underperformed when compared to a
fully re-trained network. We hypothesize that this is caused by the scale mismatch
between typical images in the ImageNet dataset and the dataset generated in this
research. Comparing Figure 3.3 (which contains example images of our dataset)
to Figure 5.1 (which contains images of the ImageNet dataset) it becomes appar-
ent that there is a scale mismatch between our dataset and the data on which the
network was pre-trained. Many classes and objects in the ImageNet datasets are
close-ups, whereas the examples relating to road incidents often have smaller-scale
objects and areas of interest. As convolutional filters are learned from input data,
the effective scale of the learned filters logically depend on the size of the object
or area of interest. Hence the filters learned from the ImageNet dataset trigger on
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visual cues relating to close-ups which are often not present in the incidents dataset.
Re-training all layers of the network alleviated this problem.

The convergence curves of figure 4.3 and Figure 4.5 display a very erratic conver-
gence pattern, which prompted questions on overfitting. Experiments performed
during model training saw the validation loss and accuracy improve steadily if the
model were to be initialized with a lower learning rate, which is reflected in the con-
vergence curves such as in Figure 4.3. At epoch 30 the learning rate is decreased by
a factor 10 to 1e™5, and afterwards there are no fluctuations as significant as earlier
in the curve. However, starting out with a lower initial learning rate did not lead to
better results, while the overall convergence rate would be slower. Hence, we chose
to accept the erratic convergence on the validation set in favour of faster training
under the assumption that the achieved local minima would not differ significantly.
Based on the final accuracy and loss, this assumption appears to be correct. In part,
the poor convergence during validation may be caused by the lack of dropout lay-
ers in the ResNet architecture. For every given neuron in a layer, dropout layers
randomly turn off that neuron’s signal by setting it to O with a probability of P.
This excludes its signal from the classification process, and thus it trains neurons
in a more balanced fashion as no single neuron becomes too influential during the
learning process. Given the achieved results we do not consider this lack of dropout
to be a problem.

Fig. 5.1: Example images from the ImageNet animals subset [97]. Notice how most ani-
mals are centered and prominently in view.

5.3 Incident Recognition
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5.3.2 Model Classification

The high accuracy of both models is striking. It surpassed all expectations, and
the implications for further research are notable. The confusion matrices show en-
couraging patterns, and evaluation of the F1-score confirms that the model is not
overclassifying images to any particular class. While not immediately ready for
deployment, the results achieved from a small dataset are encouraging for future
research. Ideally, the model should have even fewer misclassifications to mitigate
the amount of noise produced to the grid. However, the results were achieved using
a dataset of limited size. If the accuracy is indicative of the overall task difficulty,
then a larger-scale data collection effort may quickly lead to the production of a
deployment-ready model. However, the high model accuracy also warrants suspi-
cions of bias. While we took great care in limiting the influence of biases where they
might occuy, it is still plausible that the final result is affected by it. During data se-
lection we attempted to emulate incidents as seen from an ego vehicle perspective,
while also trying to ensure the inclusion of enough images to train a CNN. This lead
to trade-offs during the selection process and the inclusion of some images which
would not be included had there been enough data. Consider for instance images
taken from the passenger side window. While they do capture the incident on the
road itself, they might not be ideal in terms of camera parameters (pitch, yaw, an-
gle, etc). Further research would do well to determine the degree of bias caused by
the inclusion of such images. This can perhaps be combined with field-testing, e.g.
through the analysis of still images from crowd-sourced driving videos of incidents.
At the same time, this would give an indication of reliability during field-testing, as
well as potential weaknesses of the current trained model.

A notably consistent error of the trained model is the confusion between Snow or
Flooding and the negatives class. Both classes have a very hard-to-delineate defini-
tion. Even for a human classifier it is difficult to determine whether a given cover
of snow or flooding might cause problems to a vehicle passing through. This un-
certainty is reflected in the consistency that misclassifications occur between the
three splits. Notice also how the Animal on Road class is hardly misclassified during
training on the full dataset, but also how it is one of the worst-off classes during
validation, despite having a greater amount of training samples when compared
to other problematic classes such as Road collapse. Inspection of misclassified im-
ages of the test set reveals that the classifier struggles with a variety of predictable
problems, such as low-resolution images and blurred images. The high degree of
false positives on the testing split of the model trained on the complete dataset can
to some degree be explained by the observation that the classifier mistakes small
and distant objects to be animals. We conjecture that the domain to classify for is
broader than most other classes, as animals exist in many shapes and sizes. Further-

Chapter 5 Discussion



more, the domain is made more complex by the requirement that animals should
be spatially relevant. That is, animals should directly be relevant to the driving situ-
ation. This is currently not trained for in the dataset, i.e. there are no animals in the
negatives dataset. By adding images of animals that are not relevant for the driving
situation it is possible to explicitly train for this relevance. We therefore urge that
further research considers the complexity of the class domain before considering
this particular class fit for field-testing.

An notable observation that requires further clarification is the big swing in classifi-
cation accuracy of the road collapse class. It goes from being one of the best classes
on the training set to being the worst class during validation, but swings back to
high accuracy on the test set. This can perhaps be attributed to the limited amount
of samples for the class. Further research should determine whether the observed
accuracy swing is a sign of poor generalization, or otherwise an outlier.

5.3.3 Classification Interpretation

In this section we discuss the model performance by interpreting visual cues derived
from CAM images, as well as inspection of the t-SNE dimension reduction results.
Firstly, we present the model’s class attention on the prototypical images listed in
3.3. In seven out of eight cases the model correctly predicts the target class, and in
six out of eight cases the model has its class attention on the right locations, as the
class attention for snow is too far off the road. The CAM results are encouraging as
they indicate that the model did not overfit onto irrelevant visual cues such as cliffs,
at least for the given prototypical images. These results also indicate that bounding-
box prediction or semantic segmentation (per-pixel prediction) is a possible avenue
of research. One such option may be to perform active learning onto the CAM
boundaries, where the model iteratively suggests bounding boxes or pixel regions
which are corrected by a domain expert [119].

5.3 Incident Recognition
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(a) Predicted: Negative [12] (b) Predicted: Collapse [8]

(c) Predicted: Animal [1] (d) Predicted: Treefall [9]

(e) Predicted: Snow [95] (f) Predicted: Flooding [79]

(g) Predicted: Landslide [105] (h) Predicted: Fire [102]

Fig. 5.2: Class attention of predicted class overlaid on prototypical images of each class.
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Interpreting t-SNE

The t-SNE plots used for inference were derived using a perplexity value of 50.
With a total testing split size of 5,263 samples, the t-SNE plot considers a total of
151 nearest neighbours for each point. With a learning rate of 500 and 1,000 itera-
tions, this configuration produces a plot which displays the underlying geometry of
the classification results well. The t-SNE figure which we use for interpretation is
given in 5.3. We list the other t-SNE plots in Appendix B. We have marked several
remarkable clusters and outliers. It should be noted that clusters may change loca-
tions between runs because of t-SNE’s random initialization of the gradient descent
algorithm. As such, the relation of clusters and data-points towards one another is
more relevant than their actual position on the coordinate plane. We also display
the distribution of image sources after t-SNE dimensionality reduction in figure
5.4.

5.3 Incident Recognition
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Fig. 5.3: t-SNE dimension reduction of inputs to the fully-connected layer for every image of the complete dataset model, which are used to make predictions
on which class each image belongs to. Point grouping is performed with a perplexity of 50. The inner circle of each point represents its true class,
with the outer circle representing its predicted class. Letters a through f represent samples which are inspected in Figure 5.5. The red ellipse
indicates a region consisting of almost exclusively of geograph negatives.



Several patterns appear in the t-SNE plots:

* The model can tell most classes apart with great ease
Most positives classes are clustered together without a fuzzy border towards
the grey negatives cluster, with the exception of the flooding and the landslide
classes. The uncertainty of these classes is reflected in the reported accuracies
for these classes, while the other classes are far less affected by uncertainty
throughout all three splits.

* The flooding class has the greatest uncertainty in its classification region
As indicated by point of interest d, the flooding class strongly gravitates to-
wards the Geograph negatives cluster and shares a large indecisive boundary
region with it. This overlap is consistent between t-SNE parameter settings
and can also be seen in the other t-SNE plots in appendix B.

* Images within the negatives set are easily distinguishable within the neg-
atives cluster
Outlined with a red ellipse we find a cluster that predominantly consists of
negative Geograph images. We conjecture that this cluster is formed by the
comparatively greater amount of countryside images within the Geograph
negatives set when compared to both the Berkeley Deep Drive (BDD) and
the Cityscapes negatives. We explored this observation further in figure 5.4,
which in turn reveals that images within the negatives cluster are notably
dissimilar, which the model is able to pick up. At a glance, the BDD subset
provides the greatest spread within the negatives cluster, which indicates that
it provides the most diverse data for training purposes. Notice too how there
is a visible separation between the BDD cluster and the Geograph cluster, de-
spite the fact that they visibly belong to the same macro cluster. This is a
strong indication that the model perceives them as dissimilar.

* There are no clusters segregated by source within the clusters of positive
classes
As seen in figure 5.4, positives clusters containing Geograph images do not
contain distinguishable sub-clusters. While the model has the tendency to see
each source as similar, they are not so similar that theyre considered to be
separate. This is an encouraging observation as it indicates that the potential
for bias as a result of source dissimilarity is likely limited.

In figure 5.5 we give an overview of images from the highlighted areas of
interest of figure 5.3.
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tion but with the same parameters as figure 5.3, and thus reflects the same global patterns.



Interpreting misclassified CAM Images

(a) Landslide misclassified as Fire (un4{b) Animal on Road misclassified as Negative
coloured)

(c) Crash misclassified as Negative (d) Flooding misclassified as Negative

(e) Negative misclassified as Flooding (f) Landslide misclassified as Treefall

Fig. 5.5: Outliers identified during the t-SNE dimension reduction process. Where applica-
ble, we overlay the class attention for the predicted class on a violet (low atten-
tion) to red (high attention) color ramp.

5.3 Incident Recognition
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for each example listed in 5.5 we discuss observations from the images.

* 5.3a: We display this image without overlaying class attention as the cause of
the misclassification is quite clear. The image has a high degree of yellow-red
tones visible, and the boulder on the road is not clearly situated on the driving
surface.

* 5.3b: This particular case is least explainable of all. Its spatial position would
indicate that it should be classified as flooding, while it is misclassified as a
negative. There are no clear clues as to why this happens. The class attention
model does not provide an insightful explanation either. Most remarkable is
that the model considers the image similar to snow, yet still classifies it as a
negative. We remain inconclusive on what is happening during this classifica-
tion.

* 5.3c: The low resolution of the original image may make it hard for the model
to determine that a car is rolling over. Furthermore, such representations are
rare in the dataset, so it may be case of not having seen enough representa-
tions to correctly classify it.

* 5.3d: Here we see the semantic uncertainty of the Flooding class. The puddle
on the right looks significant enough to be considered flooded, which is why
it was included as a positive. However, the model classifies it as a negative,
perhaps due to the lateral offset to the road and the lack of distinctive features
on the puddle. Many such misclassification in this general cluster share this
characteristic.

* 5.3e: The object highlighted by the class attention is in fact a car parked
on the side of the road. We hypothesize that the hard-to-see details at this
distance makes it likely that it is mistaken for an animal. Furthermore, the
flooding is far away in the image as well, which would decrease the likelihood
of a correct classification further.

* 5.3f: The misclassification to fallen trees is perhaps caused by the leafy mate-

rial in the landslide debris. There are several such images in the dataset, but
this appears to be the only misclassified one.

70 Chapter 5 Discussion



5.3.4 Geographical Stratification

In driving scenarios it is imperative that trained models generalize well across var-
ious regions or landscapes. A model needs to detect incidents regardless of the
terrain that the vehicle is in. This is especially the case for classifiers tasked with
recognizing hazardous situations. For instance, if an incident detector is unable
to recognize a flooding in a desert (e.g. during a flash-flood) it may result in an
autonomous vehicle that drives straight into a hazardous situation. Being able to
generalize well to unseen geographical regions is therefore an important consid-
eration for a model’s fitness to deploy and quality. Although Wales as a region is
quite similar to the rest of England and Ireland, the accuracies and F1-measures
achieved on the test set are indicative that the trained model remains stable in un-
seen regions with a similar geographical layout as the trained model achieves high
accuracy values for the applicable classes in a geographical region which it has not
been trained in. This is encouraging for the eventual deployment of models trained
to recognize incidents, as incidents should be learned across the entire domain. The
trained model’s performance is furthermore indicative that geographical correlation
within the dataset can be largely ruled out, further solidifying the hypothesis that
the trained classifiers are reliable. The next step in determining the capacity of inci-
dent classifiers to generalize should be a new experiment that contains data from a
very dissimilar landscape, such as Asia.

Remarkable observations from the confusion matrices are the varying degrees of
accuracy for the flooding class across the three splits, and the lower accuracy of the
negatives class during testing. During validation, the flooding class is misclassified
much more often than during training and testing. This is perhaps caused by the
limited sample size, or possibly due to a poor model balance resulting from the best
model being recorded early in the process as we used loss as an indicator of model
quality. The best recorded model also occurred early in the training process while
the model was still converging, which may have resulted in an imbalanced decision
process. A larger test sample size may result in more conclusive results on model
balance.

5.3 Incident Recognition
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5.4 Limitations

5.4.1 Limitations of the Taxonomy of Incidents

The taxonomy is currently limited in its differentiation between man-made and
natural objects. While incidents such as fires relating to road networks are often a
man-made phenomenon (e.g. a car burning after a wreck), natural fires may be a
likely cause of disruptions as well. We observed that the taxonomy would quickly
become an intensely discussed topic during presentations, and meetings. While
it was remarked that it is not necessarily incorrect, it was noted that it would be
hard to determine which attribute each group belongs to. Fire can both have a
man-made and a natural cause, and determining what caused it belongs to may
be difficult. The current taxonomy is governed by a most likely cause distinction,
which is an ill fit for a full consideration. One potential solution may be to consider
such incidents in both groupings with a stringent definition to differentiate between
both. However, the question then remains whether such closely-related incidents
can be recognized from images, and whether it is necessary to be able to recognize
them as distinct incidents. While the source of the incident reflects a reality about
each target class, it is perhaps impossible to create a ruling that accurately captures
this uncertainty from image-based sensors.

An addition to the process of creating deeper groupings in the taxonomy is to con-
sider the concept of synsets (sets of related synonyms) such as those used in Ima-
geNet [26]. Princeton’s WordNet [68] may form a good basis for some of the classes
in this research which are not combinations of various terms. For instance, landslide
is listed as a distinct synset, along with its hypernyms rockslide and mudslide, while
animal on road is not listed as it is a combination of animal and road. Instead, the
various hypernyms of animals may be considered separately, and then combined
with their context term (e.g. road). For classes which have hypernyms, standard-
ized search terms should be considered as much as possible so that the semantic
definition will remain the same throughout future research efforts.

5.4.2 Dataset Creation Limitations

Images gathered by API harvesting contained many duplicates prior to the selection
of images. We filtered many of these duplicates by checking each image with every
other image for their exact equivalence without considering resizing and artifacts.
However, this filtration process is imperfect as we only check for exact equivalence
between images. This means that resampled, resized, and images which have a fil-
ter applied to them are retained in the dataset. While we suspect that few duplicate
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images have been saved during the cleaning process, it is worthwhile to consider
cleaning any remaining duplicates out further. A better solution may be to use
feature extraction methods, such as perceptual image hashing using feature points
which is able to accurately detect equivalence while accounting for a wide variety
of distortions, transformations, and alterations [71].

The data used in this project relies on single labels for classification. This limits
the model to only being able to detect a single incident at a time. We did not con-
sider multilabel-classification to be immediately relevant for the case as multiple
incidents occurring at once is unusual, and thus it would be hard to build up a suf-
ficiently diverse dataset. Multilabel-classification would require a different model
set-up as well, for instance by training an ensemble of binary classifiers (a true/false
classifier, one for each class to indicate whether it is present) at the end of the model
for each output class instead of a single classifier.

5.4.3 Incident Detection Limitations

Due to the limited amount of images available for most classes the model is ex-
pected to be limited in the amount of representations that it can recognize. Classes
with a difficult semantic definition such as flooding (e.g. when is the road covered
enough to be considered flooded?) may especially be affected by this limitation. A
stringent definition of semantically unclear classes may help to build a dataset that
has a less uncertain decision boundary. The lack of dynamic information in static
images may also make the detection of certain classes more difficult. Based on the
confusion matrices generated, detecting flooding from static images has been ob-
served to be a more difficult case than a well-delineated incident such as a landslide.
The inclusion of information from continuous (video) data may help to improve the
classification accuracy for the flooding class, as being able to see the turbulence and
waves on the water may aid in determining that water is covering the surface. Data
fusion methods such as using LIDAR data may help to further differentiate a nor-
mal driving surface from a covered one, as the return of the laser beams originating
from the device will be different depending on the cover (e.g. loss of signal for a
wet surface).

The model may furthermore be limited by its spatial interpretation of certain classes.
Ideally, incidents in question should only be considered an incident if they are rel-
evant to the road itself. All images gathered during this research have this feature,
either explicit (e.g. cow is standing on the road) or implicit (sheep standing on a hill
next to the road without a fence). However, in many cases there has not been a ro-
bust set of negatives tailored specifically to differentiate between incidents that are
immediately relevant to the road network and those that are not. There may thus

5.4 Limitations
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be some uncertainty on whether the model is able to tell apart relevant incidents
from non-incidents. In this research we inspected the possibility for the class snow
to become spatially relevant. Based on the classification results it appears that this
approach may be successful. A visual confirmation for one prototypical case is given
in figure 5.6, where the model successfully has its highest class attention based on
the snow on the driving surface rather than snow elsewhere in the image. Further
research should run experiments to test to which degree it is able to determine
relevance for other classes.

Lastly, there is a small chance that the full dataset classification may be sensitive
to biases as a result of the way that the negatives dataset was generated. The
negatives set of the full experiment does not contain scraped images which differ
from the Geograph negatives and the driving datasets. There is thus a chance that
this model has learned to distinguish scraped positive from non-scraped negatives.
The geographically stratified model does not suffer from this suspected bias in that
it is well-formed. That is, the test dataset contains the same sources as the training
and validation data, and scraped images are only used to enhance the model during
the training and validation process. Here, we still see the same high performance
on the test set, which indicates that the task can likely be solved well even when
accounting for possible biases. We thus consider the bias of choosing different
sources between the training and testing dataset to be a remote possibility. While
there are too few misclassifications to draw conclusive numbers on potential biases
towards each source at this moment, Figure 5.4 supports the hypothesis that any
potential biases by sources are a minor influence at worst, as there is no clear
separation of scraped and Geograph images within the three clusters of positive
classes. For a decisive test on the influence of biases by source type we suggest
that a new experiment is run with a second curated test dataset that also contains
scraped samples so that the degree of bias can be assessed.

5.4.4 Limitations of the Geographical Stratification

From the test accuracy of the geographical stratification we can infer that learned
incidents can be recognized in new regions. Furthermore, we can rule out that
geographical correlation has played a decisive role in the high accuracy. While the
resulting model is less accurate than the main experiment, the reported accuracy
still greatly exceeds our expectations. While this means that we can largely rule
out immediate geographical correlation, the difference in landscape between rural
England, Ireland, and Scotland does not differ much from Wales, so it is not known
how well the model generalizes to a different country or continent altogether.
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Fig. 5.6: An image of rural Iceland with snow on the driving surface. We overlaid the class
attention for the class snow on a blue to red color ramp. Red colors indicate a
higher class attention. The model’s confidence for the class snow in this image is
99.5%. Notice how despite that the image contains snow everywhere, the only
snow in focus is on the surface itself. Original image source: [47]
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Conclusion

The road network is under increasing pressure as car ownership rises and road
transport intensifies. This increase in road network pressure intensifies the effect
that incidents have on the road network. At the same time, vehicles equipped with
sensors are becoming increasingly prevalent on the road network as autonomous
vehicles are beginning production. To our best knowledge, no existing research has
previously been performed on the recognition of incidents as a domain using images
as seen in sensor-equipped vehicles. This formed the motivation for this research,
namely to assess incident detection as a domain. In this research we have created a
taxonomy for unsigned physical incidents, gathered a dataset of images to be used
in classification, and investigated whether unsigned physical incidents are learnable
by convolutional neural networks. Based on the results and the discussion we draw
up the following conclusions to our research questions:

* RQ1: How can incidents be assigned to a typology for the purposes of
classification?
Incidents can be assigned to a typology by considering their commonly shared
attributes through a taxonomy structure. By assigning groupings as part of a
taxonomy incidents can be evaluated by similarity, which limits the amount
of classes needed during classification. This lets incidents be classified with
varying levels of depth, such as animal on road as a general concept versus
specific species of animals. In doing so, the taxonomy can be expanded and ad-
justed to fit local conditions while retaining a common hypernym between tax-
onomies. The taxonomy workflow is not limited to this research specifically.
The taxonomy workflow can serve as a basis for research where attribute-
specific groupings have to be assigned and synonym trees such as Princeton’s
WordNet cannot be considered.

* RQ2: How do we create an image dataset of unsigned physical incidents?
A dataset can be created by querying search engine APIs and image host-
ing initiatives for images of incidents using crafted queries by considering
synonyms, as well as translating queries into other languages. By searching
breadth-wise using synonym pairs, semantic concepts such as snow can be ex-
panded into related terms like blizzard and combined with context terms such
as street, which denotes an urban context, to harvest images from a diverse
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set of representations. The developed methodology enables sampling efforts
for datasets that require the inclusion of context terms to gather thousands
of images which span the context domain. The dataset generated during the
research has the intrinsic trait that every recorded image of unsigned physical
incidents is spatially relevant to the road network. This enables opportunities
for testing how classifiers react to learning spatial relevance within classes.
Lastly, the created dataset is a first of its kind in that it is spans the domain of
incidents beyond one individual class. We hope that this dataset serves as a
basis for further research into unsigned physical incidents.

RQ3: How accurately can convolutional neural networks detect unsigned
physical incidents using an image dataset?

A Convolutional neural network using the ResNet-34 architecture is able to
detect our subset of incidents with an overall accuracy rate of accuracy rate of
97.15% and an average unweighted F1-score of 0.8909. We can thus conclude
that CNNs can very accurately classify unsigned physical incidents using an
image dataset. The achieved accuracy far exceeds initial expectations, and
it is a strong indicator that unsigned physical incidents as a domain can be
learned well using CNNs. It should be noted that the final results may suffer
from bias due to an imbalance in the type of images between the negatives
and positives dataset, though it is not expected to be a major factor in the
classification accuracy.

RQ4: How stable is the classification of unsigned physical incidents?

In this experiment we have trained a second model on three classes (snow,
flooding, and animal on road) for which we have geo-tagged images. By
stratifying three types of incidents to England, Scotland, and Ireland for train-
ing/validation and by testing on the region of Wales, we have proven that inci-
dent recognition is stable between similar geographical regions. Furthermore,
we can rule out immediate geographical correlation as a result of sampling,
reinforcing the hypothesis that incidents as a domain can be learned well. The
overall accuracy of this second experiment was an accuracy of 92.90% with
an average unweighted F1-score of 0.9169. The achieved accuracy indicates
that unsigned physical incidents as a domain can be generalized well, which
is an important consideration for operational models as they must be able to
function in any environment and under any circumstances.
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Based on the answers to the research questions we can thus prove our hypothesis
and answer the main research question as follows:

Main Question: How can we automatically detect unsigned physical
incidents from sensors that can be mounted on driving vehicles?

To answer our main question we have first created a classification
system by setting up a taxonomy for unsigned physical incidents,
and subsequently we have web-harvested a dataset. After train-
ing two CNNs models to determine how well unsigned physical
incidents may be learned by a classifier we draw up the following
conclusion:

Conclusion: If the assumption that the training procedure has been
minimally influenced by biases holds, then CNNs can accurately clas-
sify unsigned physical incidents in RGB images derived from cameras
mounted on driving vehicles by web-gathering images of incidents that
are representative of driving scenarios. Furthermore, classification was
found to be well-generalizable between similar environments.

To summarize, in this research we have created a taxonomy of unsigned physical in-
cidents, a classification dataset of unsigned physical incidents, and two pre-trained
models capable of recognizing unsigned physical incidents. Through the high accu-
racy achieved during the research we have proven that unsigned physical incidents
can be recognized well, even in unseen but similar geographical areas. We hope
that this research has formed a basis for further research in incident detection from
ego-vehicles as a domain, which was previously under-researched, as our results
indicate that it may be made operational with due diligence.
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Recommendations

In this chapter we give our recommendations for future research. Firstly, we con-
sider the taxonomy and the dataset creation process before we suggest improve-
ments to the model. Lastly, we reflect on general insights that may be taken away
from the research.

* Future research should consider the taxonomy of incidents in more depth
In this research we briefly considered how incidents may be formalized from
groupings of attributes. Future research should consider in more depth which
incidents and attributes can be used to deepen the taxonomy. Further research
may also consider how incident groupings can use make use of Synsets as in
[26] to generate formalized semantic groupings so that common hypernyms
such as natural or man-made may stay constant in definition.

* Further data gathering efforts should consider the use of outsourcing ser-
vices such as Amazon’s Mechanical Turk
In this research we considered the integrity of the dataset integral to determin-
ing whether incidents could accurately be detected from incidents. Now that
this hypothesis has been proven it may be worthwhile to consider upscaling ef-
forts and to determine whether mass-gathered images with a fitting cleaning
regime may help to create a richer dataset and to process images faster than
may be achieved by manual cleaning. The trade-off is that the rigid semantic
definition that has currently will expand, which future research may have to

account for.

* Test the potential bias of assuming that scraped images are equal to im-
ages from driving datasets
In the full dataset experiment we did not include scraped images in the neg-
atives dataset. This may be a potential source of bias as the model may have
learned to distinguish the scraped images from the other sources. While we
do not consider this to be a major risk as the geographically stratified ex-
periment indicates that a high accuracy can be reached regardless, further
research would do well to assess the degree of bias caused by this decision.
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The high accuracy of the resulting models are encouraging indicators that the task
can be learned well. However, several issues prevent us from suggesting that it is
ready for deployment. Firstly, while the model accuracy is impressive, there are still
too many false positives and false negatives. The implication is that too often the
model would send out a false signal. If it were to be broadcasted, it might close a
road while there is no reason for it. The model should therefore have even fewer
false positives before deployment should be considered. We give the following
recommendations to improve the current model to a deployable state.

* Further research should test the classification accuracy on lightweight
models
In this research we opted to use a deep CNN to determine the degree to which
incidents may be learned from images. Given that many features have to be
detected for an AV to drive autonomously, it is desirable to use lightweight
model for tasks that are less crucial. Lightweight models require fewer pa-
rameters and operations during runtime, which results in faster processing
speeds, and thus for frames to be processed faster. Given the achieved accu-
racy we propose that further research considers the use of lightweight models
for this task to test whether the task can be offloaded to a model that is less
resource-intensive. Figure 2.11 gives an overview of such models. Models
with a parameter count and number of operations similar to ENet can be con-
sidered lightweight.

* Consider field-testing the model to determine how it will behave in prac-
tice
The current model has been trained on a sparse dataset, which means that it
has been trained on a limited set of the many possible representations of the
incident classes. It is therefore plausible that the model may not perform well
in field-testing. We suggest to perform field-testing with the model on video
sequence data to determine how the model will respond to actual driving sce-
narios rather than web-gathered images. For instance, this can be done using
videos recorded from a dashboard camera near incidents, which may then be
fed to the model to determine whether it can pick up the incidents in each
video.

Chapter 7 Recommendations



* Experiment with localization and spatial relatedness

In this research we have touched upon the concept of spatial relatedness.
Specifically, we do so by assessing whether the classifier can correctly deter-
mine that images that contain snow along the road but not on the road itself
is not in fact an incident. However, this process may be made explicit. As an
example for the snow class, for a given image the driving surface may first be
predicted, and subsequently a classifier may check pixel-wise for snow in that
image. the classifier can then predict the amount of snow onto the driving
surface by masking the image to only the driving surface. This may help to
differentiate edge cases and to create a hard definition of how much snow is
accepted for driving conditions. Similar cases may be devised for other inci-
dents, such as animals in close proximity to the road. Research such as in [38]
may be considered for this case.

Lastly, we propose that this research may serve as an example for other training
efforts where a clear semantic definition and dataset are lacking. For instance,
consider the problem of illegal dumping. Debris, garbage bags, and other trash
are not a problem in itself so long as they are in the correct location. However, a
pile of garbage along a country road with no clear indication of ownership strongly
indicates that it has been dumped. Such a research set-up would benefit from
following a similar approach, where normal conditions can be discriminated from
anomalous situations within a particular context.
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Appendix A: Data Retrieval

This appendix contains auxiliary information about the data retrieval methods used
in the research.

Expanded Queries

This section contains the expanded queries used when harvesting web sources.

We create our queries by combining search terms from two subsets. The first subset
of context terms accounts for the context in which incidents may occur. The second
subset covers the representations of the incident in question. For instance, in the
combination set {’snow on’, blizzard on’} and {’street’, road’} where representations
for snow are the representation and the street types are context terms, there exists
four combinations; ’snow on street’, ’blizzard on street’, snow on road’, and ’blizzard
on road’. Depending on the incident in question we may use context terms either as
prefixes or suffixes, whichever approximates natural language the closest.

Context Terms

Driving Surfaces

We used the terms {’road’,’highway’,’street’}, and 'route’} as context terms for driving
surfaces. We chose these terms to represent various environments. Our reasoning
is that roads and streets are general place indicators found in urban areas, while

highways and routes are more prevalent in non-urban areas.

Vehicles

The terms ’lorry’, ’truck’, vehicle’,’motorcycle’,’highway’, and ’dashcam’ were used
to denote types relating to vehicles. While implicitly not vehicles, we include the
latter two terms as they often relate strongly to incidents. For instance, a car crash
happening on a highway may simply be shortened to a highway accident. Likewise, a

85



86

Code Incident
MAN-O-1 Crash
MAN-C-1 Collapse
MAN-C-2  Fire

NAT-O-1  Animal on road
NAT-O-2  Treefall
NAT-C-1  Snow on road
NAT-C-2  Flooding
NAT-C-3  Landslide

Context
Vehicles pre-fix

Surfaces pre-fix

Vehicles pre-fix

Surfaces suffix

Surfaces suffix

Surfaces suffix

Surfaces suffix

Surfaces suffix

Tab. 7.1: Queries performed to retrieve data

car crash recorded on a dashcam may be shortened as a ‘dashcam crash’. Depending
on the incident in question we apply them either as prefix or as suffix. We denote

this for each incident individually.

Chapter 7 Recommendations

Query Terms
{crash’, ‘ac-
cident’,  ’colli-
sion’}
{’collapse’,
’sinkhole’,
"destroyed’}
{’burning’, ’on
fire’}
{’animal cross-
ing’, ’animal
standing  on’,

‘deer on’, ’sheep
on’}

{’tree blocking’,
fallen tree on’,
‘treefall on’}
{’snow’, ’bliz-
gard’” , ’snow
city’}
{’flooding on’,
‘overflowed’,
’submerged’}
{’landslide
on’, ’'mudslide
on’, ’rockslide
on’,  ’boulder
on’, rocks on’,

‘rockfall on’}

Queries
18

12

12

16

12

12

12

24
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Multilingual Queries

The following terms were used to query for multilingual queries:

D

E

E

H I

Animal Collapse

Flooding

Landslide

Vehicle Crash

w

: Wegverzakking, Brandende Aardverschuiving -auto ongeval,
weg zinkgat weg auto Overstroomde  over weg Sneeuw op straat, = Omgewaaide - verkeersongeval
: weg, sneeuwoverlast op  boom,
straat omgewaaide boom |
- Wateroverlast op weg,
straat/weg stormschade boom |
Croatian Zivotinja poZar na kliziSte na cesti, snijeg na cesti stablo na cesti éprometna nesreca
3 na cesti autoputu Kkliziste prekrilo 5
: : cestu
4 Farsi cale Soe e b R il oals 3 eas,3 alisl | (Saiil, clsaleas
Mandarin DTN NERIBIE, DIEMIE AEEAR Ok, EIEE QI8 1877, EiE 18, B DERE Eﬁﬂ?ﬂ EE
: K, REEAEK i Pl :
Slovak poziar cez zaplavena zosuv pody na strom cez cestu auto
i cestu vozovka/cesta ceste ujazdeny sneh na -nehoda/havaria,
cestefvozovke, sneh

fulica

na ceste, zasnezena
cesta

, cerstvy sneh na
ceste/ulici/vozovke/

-dopravna nehoda

Fig. 7.1: Queries performed per language for each class.







Appendix B: t-SNE plots

In this appendix we list the t-SNE plots that were produced using a perplexity of 20,
100, 200, and 250. Note that the spatial structure differs between runs because of
the random initialization of the gradient descent algorithm of t-SNE.
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Fig. 7.2: t-SNE dimension reduction of inputs to the fully-connected layer for every image of the complete dataset model, which are used to make predictions
on which class each image belongs to. Point grouping is performed with a perplexity of 20. The inner circle of each point represents its true class,
with the outer circle representing its predicted class.
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Fig. 7.3: t-SNE dimension reduction of inputs to the fully-connected layer for every image of the complete dataset model, which are used to make predictions
on which class each image belongs to. Point grouping is performed with a perplexity of 100. The inner circle of each point represents its true class,
with the outer circle representing its predicted class.



c6

suonepuswwoossy 2 i9ydeyn

k s‘:, Negative
) o o Fire
o
o, Snow
° "
Ne ,5?% . © Flooding
o
. - Collapse
o © o L *. g .
2 e Landslide
h{ AT Animal
Crash
o ° 002°
O Treefall
Q
L-I°Y g
Co
[-]

!

Fig. 7.4: t-SNE dimension reduction of inputs to the fully-connected layer for every image of the complete dataset model, which are used to make predictions
on which class each image belongs to. Point grouping is performed with a perplexity of 200. The inner circle of each point represents its true class,
with the outer circle representing its predicted class.
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on which class each image belongs to. Point grouping is performed with a perplexity of 250. The inner circle of each point represents its predicted
class, with the outer circle representing its predicted class.
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