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1. Background 

Human beings are altering Earth’s land surface at a fast pace and on a large scale (Foley 

et al., 2005). These alterations include changes in land cover (the biophysical attributes 

of the earth’s surface, such as forest, river) and land use (the way humans use the land) 

(Lambin et al., 2003). Land cover and land use changes are influenced by complex  

socio-economic and political drivers as well as the biotic context, and are directly 

affecting local and global biological processes. As such, these drivers have an effect on 

biotic diversity worldwide (Newbold et al., 2015), contribute to local and regional 

climate change (Schmitz and Barton, 2014) and are the primary cause of soil 

degradation (Wagner et al., 2015). The on-going changes in land cover/land use are 

also reshaping agricultural landscapes and their potential to support, provide and 

regulate  ecosystem services, which are essential to meet current and future human 

needs. Therefore, assessment of land cover and land use changes is crucial for 

informing land use policies aiming at designing biodiversity-based land management 

practices (Kremen and Merenlender, 2018) that can reduce agro-biodiversity losses 

and environmental degradation (e.g. soil fertility loss, erosion, loss of habitat). 

Assessing land cover/land use changes is particularly important for sub-Saharan 

Africa, which is experiencing rapid transformation in rural and urban areas as a 

consequence of urbanisation and population growth. Ethiopia serves as a good case for 

studying the impact of these changes since it is now the second most populated country 

in Africa with more than 100 million people and a population growth rate of 3.0% per 

year (World Bank 2018). 

 

2. Landscape ecology for multifunctional agro-ecosystems  

Agro-ecosystems are of major importance to humans since they provide food, feed and 

energy, while supporting a significant amount of biodiversity. Intensive conventional 

agriculture as promoted in the Green Revolution since the 1970s increased agricultural 

productivity through mechanization and extensive use of chemical fertilisers and 

pesticides (De Nooy van Tol, 2016). However, this has also led to considerable 

homogenisation of agricultural landscapes, loss of biodiversity and a deterioration of 

regulatory functions, such as the maintenance of soil fertility or the regulation of pests 

(Chapin Iii et al., 2000; Baudron and Giller, 2014; Brose and Hillebrand, 2016). Today, 

there is growing consensus on the need for alternative agricultural practices that 
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conserve biodiversity and natural regulatory processes in order to meet global food 

demand and dietary diversity, mitigate climate change and restore degraded 

landscapes (Kremen and Merenlender, 2018). Plant pests cause significant crop losses 

worldwide and constitute one of the barriers to the achievement of global food security. 

The use of pesticides has been demonstrated to have a detrimental impact on pest 

resistance, human health, natural enemies and the overall sustainability of agro-

ecosystems (Pretty and Bharucha, 2015). Finding alternative agricultural practices that 

minimise or eliminate pesticide use, restore and/or conserve soil fertility and natural 

regulation while maintaining or improving production capacity is crucial (Chappell 

and LaValle, 2011). Designing sustainable agro-ecosystems in particular for 

multifunctional subsistence agriculture requires an understanding of the functioning 

of crop pest populations within agricultural landscapes (Wood et al., 2015). 

 

3. Effect of landscape composition and structure on arthropod populations 

The natural control of pests by their natural enemies is an important regulatory  

ecosystem service, the value of which has been estimated as 4.5 billion US$ in the USA 

alone (Losey and Vaughan, 2006). Natural pest control is the ecological process by 

which naturally occurring predators and parasitoids suppress the population of pests. 

Agricultural landscapes are often a matrix of cropped and non-cropped habitat with 

varying complexity (for instance in term of diversity, homogeneity and connectivity) 

that can influence the distribution and abundance of species across different spatial 

scales (Rusch et al., 2016). While cropped fields are ephemeral and often disturbed, 

non-crop habitats are more stable and, depending on the vegetation composition, may 

provide resources (e.g. pollen, nectar), a moderate microclimate and refuge for natural 

enemies of stemborers. Non-crop habitats may also cause an increase in natural enemy 

densities within the crop fields due to movement facilitation of insect populations 

(Kruess and Tscharntke, 1994; Thomson and Hoffmann, 2013). In agricultural 

landscapes, two features that influence the spatial and temporal dynamics of arthropod 

species are (i) cropping systems (e.g. rotation, intercropping, ratio annual/perennial 

crops) and practices (tillage, use of pesticides, harvesting), and (ii) the availability of 

non-cropped habitats within the matrix of crop fields (Woltz et al., 2012; Bianchi et al., 

2013; Chateil and Porcher, 2015). When crops senesce or are harvested, most herbivore 

and predatory arthropods move to surrounding semi-natural habitats for diapause or 
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to find suitable resources (Zhao et al., 2016). Accordingly, landscapes composed of a 

mixture of semi-natural habitats and perennial crops may provide more resources and 

sustain larger natural enemy populations than simple landscapes (Chateil and Porcher, 

2015; Geertsema et al., 2016). Despite the speed of change in land cover and land use, 

and negative impacts on both functional (Northfield et al., 2014) and overall diversity 

(Crowder and Harwood, 2014), the effects of land cover and land use changes on 

biodiversity and ecological processes remain poorly quantified and understood 

(Bennett et al., 2015). This is particularly the case for Africa where research 

investments are typically low (Lemessa et al., 2015; Zhang et al., 2018). This 

dissertation aims at contributing to fill this knowledge gap by analysing how changes 

in agricultural landscapes and farming practices are influencing the incidence of maize 

stemborers, Busseola fusca (Fuller), in Ethiopia in order to identify stemborer 

management strategies at the field, farm and landscape levels for a sustainable 

intensification of maize-based production systems. This research aims at answering 

the following questions (Fig. 1): (i) What is the trajectory of change of farming systems 

in Southern Ethiopia, what are the drivers of these changes, and how are these changes 

affecting the dynamic of agricultural landscapes? (ii) how do current agricultural 

landscape elements, in particular perennial crops and semi-natural habitats like 

hedgerows, influence the abundance of stemborer natural enemies? (iii) how does the 

landscape composition and its associated management practices impact maize 

stemborer infestation levels and maize productivity? (iv) how does landscape 

composition influence the performance of the push-pull system in terms of maize 

stemborer infestation level, abundance of natural enemies and maize productivity? By 

bringing some elements of answers to these question, this research aim to identify and  

inform future management practices at the field, farm and landscape levels for a 

sustainable intensification of maize-based production. 
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Figure 1: Conceptual framework of the study, showing the relationship between maize 

stemborers, landscape patterns and farming systems. Adapted from Benoît et al. (2012). 

 

4. African cereal stemborers: life cycle, biology and ecology 

Stemborers can be major pests of maize and other grain crops, such as sorghum, millet 

and sugarcane, throughout Africa, causing yield losses from 20-50% in maize and 

sorghum (Getu et al., 2001b). However, yield losses due to stemborers vary widely by 

country, season, crop type and management (Khan et al., 2007b). The two important 

stemborers species attacking maize and sorghum in Ethiopia are the exotic Chilo 

partellus (Swinhoe) (Lepidoptera: Crambidae) and the indigenous Busseola fusca 

Fuller (Lepidoptera: Noctuidae) (Le Rü et al., 2006). Temperature, relative humidity, 

rainfall and elevation are the most important physical factors affecting the distribution, 

abundance and species composition of stemborers (Polaszek et al., 1998; Getu et al., 

2001a; Asmare et al., 2014). In the Eastern and Southern parts of Africa, B. fusca is 

dominant in mid to high altitude areas between 600 m and 1800 m above sea level 

(Getu et al., 2001a; Guofa et al., 2001; Calatayud et al., 2014). Stemborer infestations 

can increase after short rainy periods and be problematic in crops grown on soils with 

low fertility (Ong'amo et al., 2006).  
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Life cycle 

B. fusca is a nocturnal moth. Its life cycle takes about two months in Hawassa, 

Ethiopia, and includes a complete metamorphosis, including egg, larval, pupal and 

adult stages (Fig. 2). Eggs of stemborers are flat and oval with a creamy-white colour, 

are about 0,8 mm long and are laid in overlapping batches of 10-80 eggs on the upper 

and underside leaf surface, mainly near the midribs (Azerefegne and Gebre-Amlak, 

1994). B. fusca females usually lays eggs between the stem and leaf sheets. The 

oviposition of B. fusca starts quickly after mating, peaks during the second day after 

mating and gradually decreases until the fifth day (Calatayud et al., 2014). The 

development time of eggs depends on the temperature and ranges between 4-8 days 

(Khadioli et al., 2014).  

    Figure 2: Life cycle of Busseola fusca (Calatayud et al., 2014). 

B. fusca has five larval stages, during which it can cause crop injury. Early instar larvae 

feed on the growing points of plants and young maize leaves, and later larval stages 

bore inside maize stems. Damage on leaves can be identified by so-called “dead-heart” 

when the youngest partially unfurled leaf of the plant begins to whiter, while infested 

stems can be recognised by entry or exit holes on the top of the stem or tunnels within 
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the stem. The larvae feed and grow within the maize stem during 2-4 weeks. The pupal 

stage in the stem lasts for 9-11 days and is terminated by the emergence of the adult 

moth (Calatayud et al., 2014). Fifth instar larvae may enter diapause during the dry 

season and at high altitudes, which can last up to 6 months. The larvae pupate and 

emerge as moths under favourable conditions during the following growing season 

(Kfir et al., 2002b).  

Figure 3: Damage of the stemborer Busseola fusca on the leaves (A), in the stem (B) and on 

the cob of maize (C) (Pictures credit: Y. Kebede).  

Busseola fusca phenology in the Hawassa area  

In Hawassa, B. fusca can have up to three generations (Gebre‐Amlak et al., 1989), and 

the first two can cause damage to maize fields (Fig.4). The first generation of eggs are 

laid from early April until the end of May, peaking around the end of April. The first 

generation larvae pupate from early June until late August. The eggs of the second 

generation are laid between the first week of July and early September. The majority 

of second generation larvae go into diapause and remain dormant from September to 

February, while a small proportion may pupate in September or October and give rise 

to a third generation. The diapausing larvae pupate in April. The first larval generation 

feeds on maize planted in March, whereas the more abundant second generation, may 

inflict serious crop injury in maize planted later than April. The third larval generation, 

which appears in September-October, does typically not cause damage in maize that 

has been planted in April or May because the crop is reaching maturity and is no longer 

a high-quality host plant (Gebre‐Amlak et al., 1989). 

 

B C A 
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Figure 4: Life cycle and generations of Busseola fusca in the Hawassa area, Southern 

Ethiopia.  

 

Mobility and dispersal  

Newly hatched larvae crawl away from the hatching site, and movement is stimulated 

by light, gravity, plant architecture and plant semiochemichals (Van Rensburg et al., 

1988). In this phase, larvae do not stay on the oviposition plant, but spin off on a silken 

thread and, supported by wind, travel to other plants (Polaszek et al., 1998). As soon 

as larvae find their new host plant, the feeding process starts (Berger, 1992). The larvae 

leave the whorl in the direction of the plant internodes where they start tunnelling into 

the stem, and when the feeding conditions deteriorate, larvae migrate to another plant 

(Berger, 1992). Adult moths live for about 2-5 days and do not generally disperse far 

from emergence sites (Calatayud et al., 2008). However, the dispersal capacity and 

range expansion of B. fusca has been poorly documented, and therefore reliable 

estimations are lacking.  

Host plant range and natural enemies  

Stemborers larvea have been recorded to feed on maize (Zea mays), sorghum 

(Sorghum verticilliflorum), rice (Oryza sativa, Asian rice) or Oryza glaberrima 

(African rice), and sugarcane (Saccharum officinarum). Stemborer larvae also feed on 

wild grasses in the three main families Cyperaceae, Gramineae, Typhaceae (Polaszek 
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et al., 1998; Khan et al., 2007a). A recent surveys on 197 plants in 15 African countries,  

Calatayud et al. (2014) reported B. fusca to occur on only seven wild plants species: 

Sorghum arundinaceum, Setaria megaphylla, Pennisetum purpureum, Panicum 

maximum, Cymbopogon nardus, Cymbopogon giganteus, and Arundo donax. 

Although these wild plants species can serve as alternative oviposition sites for B.fusca, 

they have been reported of being poor host with low carrying capacity (Van den Berg, 

2017). However, the presence of wild plants can serve as refuge for stemborers natural 

enemies, which may colonise maize fields later on (Getu et al., 2002). 

A survey on natural enemies in Ethiopia indicated that there were, 21 parasitoids, 14 

predators and seven pathogens that may affect stemborers. All the natural enemies 

were recorded on eggs, larvae and pupae of stemborers (Getu et al., 2001a). The most 

widely distributed and abundant parasitoid of stemborers in Ethiopia is Cotesia 

flavipes Cameron (Hymenoptera:Braconidae), which is a larval endoparasitoid that 

originates from Asia. This parasitoid has spread from Kenya to Ethiopia (Getu et al., 

2003) where it was released as a biocontrol agent of stemborers. Parasitism of 

stemborers is generally lower in crop fields (typically lower than 10%) than in wild host 

plants (Kankonda et al., 2017) and peaks during the non-cropping season in non-crop 

habitats (Mailafiya et al., 2011). Predators, such as ants, spiders and earwigs, can cause 

high mortality of eggs and young larvae (Bonhof et al., 1997).  

 

5. Current pest management strategies of stemborers at field scale  

Stemborer pest management may involve chemical, mechanical and ecological 

methods. Chemical control of stemborers is limited because of the cryptic behaviour of 

the larvae in the stems (Lawani, 1982), and insecticides are often too expensive for 

smallholder farmers of Ethiopia. Indigenous predators are often not able to keep 

stemborer populations below economic injury levels (Kfir et al., 2002a). Cultural 

farmers’ practices to control stemborers damage include: appropriate residue disposal, 

planting date manipulation, and destruction of volunteer and alternative host plants. 

Planting date influence infestation levels and yield loss caused by maize stemborers 

(Gebre‐Amlak et al., 1989; Ebenebe et al., 1999). Manipulation of the sowing date 

ensures that the most susceptible stage in maize growth does not coincide with peak 

stemborer activity. Soil tillage practices can significantly reduce insect populations 

through mechanical damage by burying maize roots or by bringing them the roots to 
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the surface where they may be killed by weather factors, birds or other natural enemies. 

Tillage at off season will destroy volunteer plants, stubble and weeds that may provide 

food and breeding sites for stemborers (Kfir et al., 2002a). Although burning or partial 

burning of maize stems decreases the population of stemborers by 95%, this cannot be 

considered as a sustainable solution given that crop residues are usually the only 

organic matter supply to maintain soil fertility for smallholder farmers (Kfir et al. 

2002). In addition, maize crop residues are also an important source of fuel for 

smallholder farmers. Therefore, there is high competition for the use of maize residues 

as mulch and feed for livestock (Valbuena 2012), which represent a major livelihood 

asset for smallholder farmers.  

Functional diversity may contribute to the reduction of crop losses by repelling pests 

via plant-mediated semiochemicals (Khan et al., 2010; Farooq et al., 2011), or by 

increasing mortality due to top-down control by natural enemies (Mailafiya et al., 

2011). This principle is applied in the push-pull system, which involves the 

intercropping of a pest repelling crop within maize (i.e. push; Desmodium spp. or 

Molasses grass, Melinis minutiflora) and planting a trap crop in the border (i.e. pull; 

Napier grass, Pennisetum purpureum or Brachiaria) (Khan et al, 2010). The push-pull 

system is a promising farming strategy for African multifunctional subsistence 

agriculture. However, its adoption by farmers has been limited in Kenya (Fischler, 

2010), possibly due to farmers’ reluctance to replace food crops, such as common bean, 

by a fodder crop, and the reluctance to reduce maize production area in favour of 

companion trap crops in an already land-constrained situation. The adoption of the 

push-pull system may be further stimulated by replacing the Desmodium spp., which 

can only be used for feed, by a multipurpose grain legume such as common bean, which 

is an important source of protein in local diets (Fischler, 2010). Beyond their ability to 

fix nitrogen, legume crops produce secondary metabolites as defence compounds 

against herbivores (Wink, 2013). Indeed, traditional maize/bean or maize/cowpea 

intercropping systems are less prone to stemborer infestations than sole maize 

(Amoako-Atta et al., 1983; Chabi-Olaye et al., 2002; Chabi-Olaye et al., 2005; Belay et 

al., 2008), and tend to provide higher maize yield (Songa et al., 2007; Seran and 

Brintha, 2010). However, the push-pull system has often been assessed as a package 

and the contribution of each component is not clear (Eigenbrode et al., 2016). In 

addition, the performance of the push-pull system based on Desmodium spp. and other 

legume crops in different landscape contexts is not well known (Midega et al., 2014).  
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Rational and objectives of this research  

Natural resources are being degraded and finite resources depleted by current land-

use practices, and smallholder producers are confronted with seasonal food self-

insufficiency. At the same time, there is an increasing societal concern to feed a growing 

global population with larger nutritional needs. The ATTIC project (Trajectories and 

Trade-offs for Intensification of Cereal-based systems), part of the MAIZE Strategic 

Initiative of the Consultative Group for International Agricultural Research (CGIAR), 

aims to provide and implement a generic analytical framework to inform the design of 

more sustainable cereal-based agro-ecosystems by contextualising and assessing the 

potential impact of institutional changes and technological innovations along 

sustainable intensification trajectories and across scales. This research contributes to 

this project, taking the Hawassa area in Southern Ethiopia as a case study with a 

system-level baseline description of agro-ecosystems, and assesses the trajectories of 

smallholder households engaged in maize-based farming systems.  

There is an on-going transformation of farming systems in the Hawassa area, and these 

changes are influenced by institutional and socio-economic drivers, such as land 

tenure regulation, market access and population growth. It is unclear how these drivers 

influence the dynamics of farming systems and ultimately the resulting composition 

and structure of agricultural landscapes. Although agricultural management decisions 

are mainly taken at the field and farm levels, the dynamics of stemborers and their 

natural enemies are likely to be best explained at the landscape level because of their 

potential mobility (Ndjomatchoua et al., 2016). The landscape context can influence 

pest-natural enemy interactions by providing food resources and shelter for pests and 

natural enemies (Tsafack et al., 2013; Schellhorn et al., 2014). Biodiversity at the 

landscape level is also important for the long-term sustainability of ecosystems and the 

wider ecosystem services they provide (Tscharntke et al., 2012; Werling et al., 2014; 

Wood et al., 2015; Brose and Hillebrand, 2016).   

The ultimate goal of this PhD project is to identify management practices at the field, 

farm and landscape levels for a sustainable intensification of maize-based production 

systems that (i) reduce stemborer infestations, (ii) maintain or improve soil fertility, 

and (iii) improve fodder production for livestock. The study included the quantification 

of historic changes in land cover and land use, a participatory approach with farmers 

and farm household surveys, an assessment of stemborer and natural enemy 
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abundance and diversity in farmer’s fields, and on-farm experiments to assess the 

relationship between stemborer abundance and management practices at the field (e.g. 

maize-legume intercropping, push-pull system), farm (e.g. crop diversification) and 

landscape level (e.g. proportion maize in the landscape, landscape diversity).  

The general objective of this thesis is to identify pest management strategies at the 

field, farm and landscape levels for a more sustainable intensification of maize-based 

production systems. The main hypothesis of this research is that the concentration of 

host plants for stemborers B. fusca in the landscape and the reduction of habitats for 

their natural enemies can lead to increased infestation levels. We expect that 

landscapes with high density of maize generate a higher population of stemborers as 

compared to low density maize landscapes, and therefore experience higher pest 

pressure.  

 

Specific objectives 

1- To describe the changes in land cover and land use in the region of Hawassa over the 

last four decades and the consequences for farmers’ livelihood strategies and current 

landscape composition (Chapter 2).  

2- To assess how the changes in farming systems that shaped the current landscape 

composition and structure influence the abundance and diversity of stemborer natural 

enemies (Chapter 3) 

3- To understand the factors at field, farm and landscape scales that influence  

stemborer infestation levels and maize productivity (Chapter 4)  

4- To assess the performance of the push-pull system with varying companion crops 

on stemborer infestation level, predators abundance and maize productivity in 

contrasting complexity landscapes: simple, intermediate and complex landscapes 

(Chapter 5). 
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Outline of this thesis  

Chapter 2 aims at understanding the drivers of change in land cover and land use as 

a result of changes in farming systems and how these changes shaped current 

agricultural landscapes.  

Chapter 3 investigates the implications of the changes in land cover and landscape 

structure for the biocontrol potential of maize stemborers. By assessing the abundance 

of the natural enemies of stemborer in maize fields bordering perennial crops and 

simple and complex hedgerows, we found that the historical changes in land cover and 

landscape structure may have had a positive impact when maize fields are bordered by 

enset (Ensete Ventricosum) or dense hedgerows for the biocontrol potential of 

stemborers in the landscape of the Hawassa region. 

Chapter 4 explores the landscape and management factors at field, farm and 

landscape levels influencing maize stemborer infestation and maize productivity in 

farmers’ fields. Thirty-three farms were monitored during three years and stemborer 

infestation levels, crop management and maize production were assessed.  

In Chapter 5, the performance of the push-pull system in repelling stemborers is 

investigated in a gradient of landscape complexity from maize dominated to perennial 

dominated, as well as the abundance of natural enemies, egg parasitism and maize 

productivity. The traditional push-pull system (maize, Desmodium and Napier grass) 

is compared with an alternative system composed of maize, Napier and common bean, 

which has the additional benefit of providing food. 

In Chapter 6, the different findings of this thesis are integrated. The need for 

integrated management strategies at field, farm and landscape levels for effective 

control of maize stemborers is discussed. Trade-offs and opportunities for sustainable 

pest management strategies against stemborers, conserving soil fertility and increasing 

maize production are discussed.  
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Chapter 2 

 

Drivers, farmers’ responses, and landscape 

consequences of smallholder farming systems changes in 

Southern Ethiopia 
 

 

 

Chapter submitted as: Kebede, Y., Baudron, F, Bianchi, F.J.J.A., Tittonell, P., 2018. 

Drivers, farmers’ responses, and landscape consequences of smallholder farming 

systems changes in Southern Ethiopia, International journal of agricultural 

sustainability.  
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Abstract 

Agricultural landscapes in sub-Saharan Africa are dynamic and are shaped by farmers' 

land use decisions and livelihood strategies over time. Farmers’ decisions are 

influenced by the opportunities and constraints emanating from different socio-

economic, biophysical, and political drivers. Ethiopia is now the second most 

populated country in Africa with more than 100 million people and an annual 

population growth rate of 3%. Here, we assess how the on-going expansion of arable 

land and urban areas is affecting the availability of common resources, such as forest 

and grazing land, and the availability of biomass for food, feed, and energy. Taking the 

Hawassa area in the Rift Valley of Ethiopia as a study case, this study aims at analysing 

the drivers of change of farming systems, assessing farmers’ responses to these drivers 

and appreciating the consequences for the agricultural landscapes’ composition. The 

methodological approach integrates farm household surveys, focus group discussions 

with farmers, statistical typology of trajectories of change in farming systems, remote 

sensing and secondary data analysis.  We found that (i) national level policies, climate 

and soil fertility changes, population increase, and urban expansion were major drivers 

of farming systems change in the Hawassa area, (ii) forests and grasslands have been 

progressively replaced by cropland and urban areas, and (iii) these changes resulted in 

fragmentation and diversification of local agricultural landscapes with potential 

consequences for ecosystem service provision. Farmers responded with the following 

three main livelihood strategies: consolidation (maintaining food crops and livestock), 

diversification (a combination of agricultural and off-farm activities) and specialisation 

(an increase in cash crop production). These changes led to more diverse and 

fragmented agricultural landscapes. These findings suggest that farmers were able to 

compensate the decrease in farm size by a diversification of their food and income 

sources, a specialisation in cash crops, off-farm activities, and transhumance. This 

research contributes to the ongoing debate of the viability of small farms. In addition, 

the social-ecological changes associated with livelihood strategies and household 

trajectories resulted in changes in landscape structure and composition, specifically in 

fragmentation and diversification, which may have implications for the future 

provision of ecosystem services, including food provisioning.   

 

  



18 
 

1. Introduction 

Farming systems are dynamic, complex socio-ecological systems that provide food, 

feed, and cash and result from past farmers’ livelihood strategies and land use 

decisions. Farming system trajectories are the succession of chronological steps 

leading to structural or organisational changes in a population of individual farms 

sharing similar opportunities and constraints (Rueff and Gibon, 2010). Consequently, 

farming system changes and their drivers are heterogeneous and complex, varying 

between households, locations, and time (Carswell, 2000; Tittonell et al., 2011). Two 

main drivers, availability of farmland and access to market, are considered to have 

major effects on farmers’ decision making in terms of production orientation, land 

allocation, livestock densities, and involvement in off/non-farm activities (Mellor, 

2014; Muyanga and Jayne, 2014). However, the dynamics of these drivers, their link to 

regional and national level socio-economic context, and the response of farmers over 

time are poorly understood.  

Farm sizes across sub-Saharan Africa have gradually declined over the past 50 

years (Jayne & Muyanga, 2013). The reduction in cropland is leading to expansion into 

forested areas and cultivation of steep slopes. Continuous cropping without adequate 

crop nutrition is also causing erosion, soil nutrient mining, and increasing risk of pests 

and disease outbreaks due to lack of crop rotations (Van Huis and Meerman, 1997; 

Tittonell et al., 2010; Zhang et al., 2018). The projected population increase is likely to 

lead to further structural and organisational changes in farming systems, and can 

redirect trajectories with uncertain future outcomes in terms of food provision and 

income generation. While many studies analysed typologies of static farming systems 

at a certain point in time (Pacini et al., 2013; Tittonell, 2014), researchers often fail to 

understand how farming systems evolve in different directions by responding to 

historical and current drivers of change and how these changes shape the composition 

of landscapes in which farms are embedded (Carmona et al., 2010). The lack of 

comparable information across intervals of time makes it difficult to assess whether 

rural livelihoods are diversifying or becoming more self-sufficient. Therefore, building 

more sustainable agricultural systems requires an understanding of the historical 

socio-ecological dynamics of farming systems, the drivers of change, and the direction 

of these changes (Valbuena et al., 2015).  
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Analysing trajectories of change of farming systems is particularly important for sub-

Saharan Africa, which is experiencing fast changes in land cover/land use as a 

consequence of urbanisation and population growth. Ethiopia is a good case to study 

the impact of these changes, as it is now the second most populated country in Africa 

with more than 100 million people and a population growth rate of 3% per year (World 

Bank 2018). The ongoing expansion of arable land and urban areas is leading to 

increasing pressure on common resources, such as forests and grazing lands, and 

increasing biomass competition for food, feed, and energy (Kindu et al., 2013; Assefa 

and Bork, 2014). These changes have a direct effect on the composition and structure 

of agricultural landscapes and may affect current and future biodiversity and the 

ecological processes it supports. We analyse the ways in which socio-economic, 

political, and biophysical drivers from national to local scales influenced farmers’ 

livelihood strategies. More specifically, the aims of this study were (i) to describe the 

drivers of farming systems changes in the Hawassa area, (ii) to analyse how farmers 

responded to these changes and the resulting trajectories of farming systems, and (iii) 

to explain how these changes shaped current agricultural landscapes and the possible 

ecological consequences this may have for agricultural production and ecosystem 

services.  

 

2. Materials and methods  

Data were collected in five steps (Table 1). A farm household survey with 173 

respondents was conducted in 2013, followed by focus group discussions which 

consisted of three activities: the assessment of perceived drivers of change, land 

cover/land use changes, and participatory typology of current farming systems. Based 

on the participatory typology, a subsample of 15 farms per type were selected among 

the 173 respondents for a statistical typology of farming system trajectories. A 

quantitative satellite image analysis complemented the farmers’ perceived land 

cover/land use changes. Population and climate information were gathered from 

national statistical data and other secondary data.  
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Table 1: Data collection approach  

 

2.1 Study area    

The study was conducted in the Hawassa area in the Sidama zone, which belongs to 

the ‘Southern Nations, Nationalities, and Peoples’ (SNNPR) province in the Ethiopian 

Rift Valley (7˚03'11" to 7˚08'4" N latitude and 38˚15'17" to 38˚38'47"E longitude; Fig. 

1). The study area is located within one of the most densely populated areas of Ethiopia. 

Hawassa town has been experiencing continuous population growth from 10,000 in 

1978 to more than 300,000 in 2015 (Dessie, 2007). The area is characterised by moist 

to sub-humid, warm subtropical climate with an average temperature of 15 to 20°C. 

Annual precipitation ranges from 1000 to 1800 mm in a bimodal distribution pattern, 

expected in March to April and June to August (Dessie, 2007). Historical rainfall 

patterns show a high variability, with lowest annual precipitation reaching 700 mm in 

some years. Three districts were selected: Wondo Genet, Tula, and Hawassa Zuria. 

Step Data source 
Period covered  

or Year 
Analysis or Outcome 

1 
Household survey 
(173 respondents) 

2013 
Descriptive statistics of current 

farming systems  

2 

Focus group 
discussions 
(20 participants per 

district) 

1965  to 2015 

Drivers of change and land cover 

and land use changes as per 

farmers’ perception 

Participatory typology of current 

farm types  

3 

Household survey 

(15 respondents per 

current farm type (n=60)) 

 

Between the year of farm 

settlement and 2015 

Statistical typology of trajectories 

of change of farming systems 

4 
Landsat satellite images 
classification 

1984 to 1998 and 1998 to 

2014 

Quantitative land cover/land use 

change analysis (area change) 

5 Secondary data 1980 to 2018 

Drivers of change (socio-

economic national statistical data) 

Weather (rainfall and 

temperature) 

Literature  
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Each district is characterised by contrasting farming systems, as illustrated by 

differences in area of perennial and annual crops, field sizes and livelihoods (Table 2). 

The three districts are dominated by mixed crop-livestock farming systems with a 

variable level of integration between the crop and the livestock sub-components.  
 

 

Figure 1: Population density in Ethiopia based on 2007 census (A), location of the study area 

and the selected three districts: Hawassa Zuria, Tula, Wondo Genet (B), annual mean rainfall, 

minimum and maximum temperature in the Hawassa area (C). 

 

2.2 Household survey 

In 2013, a structured farm household survey was conducted in the three districts to 

assess current farming system changes. Households were randomly selected along 

three transects from the lake Hawassa to the inland in each district (i.e. 9 transects in 

total). A total of 173 households were interviewed (55 in Hawassa Zuria, 64 in Tula and 

54 in Wondo Genet). The survey captured general information about the respondent, 

household composition, main constraints in the farming system, area allocated to 
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different crops and total farm size, input use, livestock number, and feed sources. 

Livestock numbers have been converted into tropical livestock units (TLU) (Jahnke, 

1982). This survey provided insight on current farming systems and cash sources 

(Table 2). 

 

Table 2: Selected variables describing current farming systems by district (mean ± SD) 

  Hawassa Zuria      Tula Wondo Genet 

Respondent age 39.45 ± 12.99 47.01 ± 13.82 44.03 ± 13.54 

Household size  6.75 ± 2.42 8.01 ± 3.73 7.49 ± 3.00 

Respondent education level 

(number of years of attendance) 
2.67 ± 3.20 3.09 ± 3.70 4.48 ± 3.72 

Spouse education level 1.54 ± 2.79 1.43 ± 2.78 1.80 ± 2.58 

Area of coffee (ha) 0 0.06 ± 0.09 0.05 ± 0.08 

Area of enset (ha) 0.13 ± 1.14 0.23 ± 1.15 0.12 ± 0.10 

Area of khat (ha) 0.03 ± 0.11 0.14 ± 0.15 0.27 ± 0.25 

Area of maize (ha) 0.74 ± 0.50 0.44 ± 0.35 0.26 ± 0.23 

Area of common bean(ha) 0.03 ± 0.08 0.004 ± 0.031 0.004 ± 0.034 

Area of other crops 0.06 ± 0.09 0.01 ± 0.05 0.04 ± 0.14 

Total area (ha) 1 ± 0.62 0.91 ± 0.57 0.78 ± 0.51 

Livestock (TLU/household) 2.91 ± 2.34 2.09 ± 1.85 2.04 ± 1.88 

Milk production (Litre/cow/day) 0.95 ± 1.31 1.06 ± 1.82 0.94 ± 1.32 

Milk consumption (Litre/cow/day) 0.91 ± 1.21 1.01 ± 1.81 0.86 ± 1.26 

Manure (kg/ha) 526 ± 1061 597 ± 1110 605 ± 1025 

DAP (kg/ha) 74.45 ± 60.16 48.67 ± 125.73 42.62 ± 51.39 

Urea (kg/ha) 77.45 ± 60.92 34.08 ± 26.83 47. 16 ± 51.41 

Use of pesticide (Litre/ha) 0.49 ± 3.36 0.25 ± 0.72 0.08 ± 0.37 

Households having a  

mobile phone (%) 
65 45 68 

Households having a radio (%) 25.45 25 38.88 

Primary source of cash  Maize (76%) Khat (41%) Khat (87%) 

Secondary source of cash  
Common bean 

(33%) 
Coffee (33%) Coffee (46%) 

Tertiary source of cash  Cattle (16%) Cattle (14%) Cattle (26%) 
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2.3 Focus group discussion  

Focus group discussions were conducted with 20 key informants in each district. The 

discussions led to three outputs: (i) a timeline construction to capture the perception 

of historical drivers of change and identify key periods and drivers that have influenced 

farming systems from 1974 until 2015, (ii) participatory mapping and bar graphing to 

assess the changes in land cover and land use changes, and (iii) a participatory farm 

typology of current farm types.  

 

2.4 Survey for trajectories of change of farming systems  

Based on the participatory typology, a subsample of five farms per type and per district 

was selected among the 173 respondents surveyed in 2013. A total of 60 farmers (three 

districts x four types x five farms) were interviewed to assess the trajectories of farming 

systems. A detailed survey was conducted to assess changes in farm size, crop 

allocation, production orientation, livestock number, feed sources, off-farming 

activities, and food purchases during two points in time: the year when the household 

began farming and 2015. The average starting year was 1984 with a standard deviation 

ranging from 1969 to 1999.   

 

2.5 Statistical typology of trajectories of change in farming systems 

In order to assess the typology of trajectories of change in farming systems resulting 

from farmer’s livelihood strategies, we assessed past and current farm structure and 

farm assets in two points in time: the  first year of farming (or settlement) and 2015. A 

statistical typology of trajectories of change was constructed based on the sub-sample 

of 60 farms considering the difference between the variables in the current situation 

(t1) and the year of settlement (t0). To test for correlations between the variables at t0 

and t1, we assessed the Pearson correlation coefficients between the variables resulting 

from the detailed survey and have reduced the final set of variables to eight (Table 3). 

To quantify the change in variables, we used data from the year of settlement (t0) and 

2015 (t1). The rate of change was then calculated as:  

 

ΔV = (V𝑡𝑡1 − V𝑡𝑡0)/(  𝑡𝑡1 − 𝑡𝑡0)  
 

where ΔV is the annual change of the variable Vi between the time t0 and the time t1; 

Vt0 is the value of the variable Vi during the year of settlement; Vt1 is the value of the 
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variable Vi in 2015, and (t1- t0) is the difference in years between the time t1 and the 

time t0.  

 

Table 3 – Selected variables for developing the statistical typology of farming system 

trajectories (mean ± standard deviation).  

Variable Unit 
Year of settlement 

(t0) 
Current situation, 2015 

(t1) 

Land resources 
Household-level land available per 

capita (PerCapitaland) 
ha 0.38 ± 0.24 0.09 ± 0.06 

  
Cropping orientation 
Area dedicated to food crops 

(FoodCropArea) 
ha 0.62 ± 0.38 0.45 ± 0.32 

Area dedicated to cash crops 

(CashCropArea) 
ha 0.07 ± 0.09 0.17 ± 0.15 

  
Livestock management 
Livestock size per household TLUa 6.07 ± 5.24 2.98 ± 4.23 

Proportion of feed purchased 

(FeedPurchased) 
% 2.93 ± 9.36 19.48 ± 17.51 

  
Off-farm activities 
 
 

Proportion of off-farm income 

(InOffFarm) 
%        5.86 ± 13.51                9.13 ± 14.54 

 
Food purchase dependence 

 

Proportion of income used for food  

purchases (RatioExpFood) 
% 11.81  ± 4.16 24.32  ± 6.18 

 
a One Tropical Livestock Unit corresponds to a value of 250 kg live weight for 1 TLU (Le Houérou and 

Hoste, 1977). Sheep and goats were assumed to be equivalent to 0.1 TLU, donkeys to 0.5 TLU, horses 

to 0.8 TLU and all types of cattle to 0.7 TLU (Jahnke, 1982).
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Principal component analysis (PCA) was used to examine the rate of change of the 

selected variables, and the PCA output was used to partition the dataset into clusters 

(Bidogeza et al., 2009; Tittonell et al., 2010; Cortez-Arriola et al., 2015). The number 

of principal components (PCs) was selected based on the Kaiser’s criterion, i.e., all PCs 

with an eigenvalue exceeding 1 were retained (Hervé, 2011). The PCA output was 

further analysed using cluster analysis based on a hierarchical agglomerative clustering 

algorithm using the Ward’s method. This algorithm progressively groups together the 

observations according to their similarity (measured by a dissimilarity index, Ward's 

minimum variance criterion), minimizing the augmentation of the total intra-class 

inertia (Ward Jr, 1963). The resulting clusters were examined in terms of their position 

in two PCs planes defined by PCA1, PCA2, and PCA3 representing 28.1%, 18.3%, and 

15.4% of the variability respectively. Three axes were necessary to explain 61.7% of the 

variability (Eigen-value = 1.07). The resulting clusters represent broad trajectories of 

farming systems between t0 and t1. All analyses were conducted using R software 

(version 3.2.1; R Core team, 2015) with the chart.correlation function from the 

Performance Analytics package for constructing correlation plots (Peterson and Carl, 

2018) and the ade4 package for PCA (Dray et al, 2007).  

 

2.6 Land cover change analysis using satellite images  

A quantitative land cover analysis of the Hawassa area was conducted for 1984, 1998, 

and 2014, using Landsat 8 OLI/TIRS data for 2014 and Landsat 5 TM data for 1984 

and 1998. The choice of years of image acquisition allows for a comparison of the 

current state with the periods preceding and following the Communism period (the 

Derg), identified by farmers as an important political driver of change.  All images had 

a 30×30 m resolution. Following the procedure described in Kebede et al. (2018), an 

object-based classification was conducted for 1984, 1998 and 2014 in which related 

pixels were grouped in objects using eCognition (Blaschke, 2010) and cropped and 

non-cropped areas could be distinguished. Using a phenology-based classification 

approach, cropland was further subdivided into the following classes: annual, 

perennial, perennial dominated mixed crops, and annual dominated mixed crops 

(Wang et al., 2010). Fields were classified as mixed crops when their size was smaller 

than the resolution of the image (30×30 m) and could not be classified as annual or 

perennial crops. Changes in land cover were assessed as the difference in the land cover 
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class (in ha and percentage) through pixel-by-pixel comparisons between 1984 and 

1998 and between 1998 and 2014 using Erdas software (Lu et al., 2004). 

 

3 Results 

3.1 Description of current farming systems 

The farm survey indicated that respondents were mostly male (88%) with a mean  age 

between 40 and 50 years, while the average household member ranged between seven 

and eight members increasing from Hawassa Zuria to Wondo Genet (Table 2). The 

main food crops were maize (Zea mays) and enset (Ensete ventricosum), while the 

main cash crops were khat (Catha edulis) and coffee (Coffea arabica) with areas 

varying between the three districts (Table 2). While the district of Hawassa Zuria is 

oriented toward food crop production (maize, enset, and haricot bean), Tula and 

Wondo Genet have more cash crops, such as khat and coffee. Households owned 

between two to three TLU and the sale of livestock constituted the third source of 

income in the three districts. The average milk production was about one litre/cow/day 

for the three districts and mostly destined to household consumption.  

 

3.2 Drivers of change as perceived by farmers 

The focus group discussions indicated that farmers perceived political regime shifts, 

climatic conditions, and pest and disease outbreaks as the main drivers of change in 

their farming systems. Before 1970, livestock diseases exterminated large numbers of 

cattle. The land use right policy (1974), which marked the end of a feudal system and 

gave landless people access to land, and the end of the communist regime (Derg) in 

1991, were the two major national level political drivers of farming systems changes. 

Extreme weather conditions (hail, flood, and drought) periodically affected maize 

productivity. During dry years, locust and maize stemborer were reported as major 

maize pests. After the year 2000, governmental extension services started a campaign 

to inform the residents of the study area about improved farming practices and have 

provided subsidies for agricultural inputs (fertilisers and seeds). Currently, maize (the 

major staple food) productivity remains very variable and subject to climate hazards 

and input availability. Average number of members per household has been increasing 

due to a combined effect of polygamy and improved health access (Fig. 2).  
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Figure 2: Farmer’s perception of historical changes in maize productivity and livestock 

numbers per household from 1970s to current situation (n = 60).  

 

3.3 Farmers’ responses: typology of farming system trajectories 

Farmers delineated four farm types based on the farm size, the number of livestock, 

the variety of crops in the farm, the capacity of the household to send children to 

school, and the type of housing as criteria for classifying current farming systems and 

livelihoods (Appendix 1). Generally, three main livelihood strategies with three types 

of assets or activities contributing to livelihood strategies have been identified. The 

farmers’ strategy consisting of accumulating assets from existing activities for moving 

into different activities that have higher and/or more stable returns is referred to as 

specialisation or ‘stepping out’ strategy (Dorward et al., 2009). Consolidation or 

‘stepping up’ strategy refers to an expansion of existing activities in order to increase 
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production and income. Livelihood diversification is defined as the process by which 

rural families construct a diverse portfolio of activities and social support capabilities 

in order to survive and to improve their standards of living (Tittonell, 2014). Based on 

the cluster analysis, three main trajectories of farming systems change could be 

distinguished corresponding to three main strategies: ‘consolidation’ (type 1), 

‘diversification’ (type 2), and ‘specialisation’ (type 3) (Appendix 2) representing 

respectively 39, 12, and 9 farmers out of the total of 60. Although these three 

trajectories differ in current production orientation, some trends in farm structural 

changes between the two time periods are common to them: (i) a decline in per capita 

land holding (with highest decrease for the diversification trajectory) and livestock 

numbers (with highest decrease for the specialisation trajectory), (ii) an increase of 

cash crop production (with highest increase for the specialisation trajectory) and in the 

proportion of food purchased by the household, and (iii) a decrease in non-cultivated 

land with a lesser extent for the consolidation trajectory (Fig. 3, Appendix 3). Under 

the consolidation trajectory, the proportion of land dedicated to food crop production 

was maintained or increased, while it has decreased in the two other trajectories (with 

the highest decrease for the diversification trajectory). While many farmers were self-

sufficient in food production at the time they started farming, they are now purchasing 

up to 70% of their food. The consolidation trajectory was found evenly distributed in 

the three districts with 15, 13 and 11 farmers out of the 60 in Hawassa Zuria, Tula, and 

Wondo Genet, respectively. However, the specialisation trajectory was mainly found in 

Wondo Genet and Tula with respectively 9 and 4 farmers and only 1 farmer in Hawassa 

Zuria.   
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Figure 3: Per capita land holding (A), number of livestock (B), cash crop area (C) and food 

crop area (D) per farming system trajectory type, percentage of purchased food (E), area of 

non-cultivated land (F) at two time periods (year of settlement and 2015) per trajectory type (1, 

2, 3). 

 

Trajectory District 

Consolidation SpecialisationDiversificationTrajectory 
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3.4 Current agricultural landscape composition  

During the focus group discussion on land cover changes, farmers indicated that the 

land cover in the three districts was dominated by forest and grassland up to the early 

1970’s. The principal occupation of farmers was livestock rearing and only a limited 

area of the land was used for arable crops. From the late seventies to 2015, the area of 

cropland expanded and has become the main land cover in each district. Maize was the 

dominant crop in the 1980s covering 90%, 55%, and 65% of the arable land in Hawassa 

Zuria, Tula, and Wondo Genet, respectively (Fig. 4D, Fig. 4E, and Fig. 4F). After 1990, 

in Hawassa Zuria, maize was progressively replaced by enset, haricot beans (Phaseolus 

vulgaris) (generally intercropped with maize), and diverse home gardens (Fig. 4D). In 

Tula, khat increased from less than 5% of the cropland in the 1980’s to 30% in 2014, 

and enset decreased by about 10% along the same period (Fig. 4E). In Wondo Genet, 

khat was not grown in the 1980’s and covered 45% of the arable land in 2014, while 

enset decreased from 20% to 10% during the same period (Fig. 4F). The land cover 

change analysis with remote sensing confirmed these changes. The most pronounced 

changes involved an increase in the area of perennial crops and a decrease in the area 

of annual crops (mainly maize), grasslands, and bare soil in the whole study area 

between 1984 and 2014. Mixed croplands, perennial or annual, were relatively stable 

throughout the study period. The built up area tripled over the same period (Fig. 5B).  
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Figure 4: Farmers’ perception of historical land cover changes from 1970’s to the current 

situation for the three districts in Hawassa Zuria (A), Tula (B), Wondo Genet (C). Arrows 

indicate the shift of a land cover class; and farmers’ perception of historical land use changes 

after the land use right reform in 1975 to current situation for the three districts in Hawassa 

Zuria (D), Tula (E), Wondo Genet (F). 
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Figure 5: Quantitative analysis of land cover/land use changes using Landsat satellite images 

for 1984, 1998, and 2014.  
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4 Discussion 

We found that national level policies, extreme climatic events, biotic stress, population 

increase, and urban expansion were major drivers of farming systems changes in the 

Hawassa area. At the local level, population growth, the expansion of urban areas, the 

biophysical conditions found in each district (in particular soil fertility) and the 

distance to markets influenced land cover/land use changes and farming systems. Per 

capita land and livestock numbers decreased for the three districts leading to variable 

responses in farmers’ livelihood strategies. Three trajectories of change of farming 

systems were identified: (1) consolidation and maintenance of farm size for food crop 

production and number of livestock with a slight increase in off-farm income, (2) 

diversification, with a slight increase in cash crop area and livestock, and (3) 

specialisation, with the highest increase in cash crop area combined with reduced 

livestock numbers. These changes led to a more fragmented (a larger number of small 

size farms) and diverse landscape, with a more even distribution of crop types. Such 

fragmentation and diversification of the agricultural landscape has consequences for 

the provision of ecosystem services of local and global importance (Lambin and 

Meyfroidt, 2010; Meshesha et al., 2013; Newbold et al., 2015; Kremen and 

Merenlender, 2018), as discussed in subsequent sections.  

 

4.1 Current farming systems in Hawassa area  

Current farming systems in the three districts of the Hawassa area are mixed crop-

livestock systems with variable integration levels between the crop and livestock 

components. Although similar crop types were found in the three districts (enset, khat, 

maize, and common bean; coffee was only found in Tula and Wondo Genet), the 

average area allocation for those crops varied between the three districts. Hawassa 

Zuria remained predominantly oriented towards maize production, building on the 

historical State farms during the Derg period (cf. Fig. 4D). However, the periodic 

failure in maize production due to the combined effects of poor rainfall, soil quality 

decline, and inadequate soil fertility management (Abebe and Feyisa, 2017) led 

farmers, with the support of local authorities, to reconvert part of their land to enset 

production. Enset, a drought-resistant crop with high cultural value for Southern 

Ethiopia, ensures food for more than 15 million people (Abebe et al., 2009) and an 

essential green feed resource during the dry season. Homegardens in Southern 

Ethiopia are diverse systems where crop and non-crop plants are found (Abebe et al., 
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2006; Lemessa and Legesse, 2018). Although small in extent, vegetables such as 

potatoes, cabbages, tomatoes, sweet potatoes, chilli peppers, and fruit trees (avocado, 

mango, and banana) were found. These crops were mainly managed by women and 

play an important role in the dietary diversity of the household and in filling the food 

gap during the dry season (Calvet-Mir et al., 2016; Gbedomon et al., 2017; Lemessa 

and Legesse, 2018; Mellisse et al., 2018). In terms of livestock management, next to 

free ranging, roadside grazing, and/or zero grazing practices, farmers also practise dry-

season transhumance to Cheleleka wetlands in the northeast of the Hawassa area 

where communal grazing lands are available.  

 

4.2 Drivers of change of farming systems  

Farmers’ perception of drivers of change gave a strong focus on historical political 

regime changes, abiotic constraints (climate variability and extreme weather events, 

such as erratic rainfall, hail, and drought episodes), and biotic constraints (animal 

disease and pest outbreaks). These drivers of land cover/land use change are similar to 

those reported at national or even international level across Africa (Reid et al., 2000). 

Farmers reported an increased household size over the studied period, but they did not 

mention a strong impact on household food security. However, in Tula and Hawassa 

Zuria some farmers indicated that their production did not allow them to meet the 

household’s need. This is confirmed by the national safety need programme running 

in those districts (Sharp et al. 2006), which provide food in exchange for labour for the 

community or the municipality. This is a surprising phenomenon since Tula is the 

closest of the three districts to Hawassa town, an important khat market, implying that 

off-farm opportunities are high. However, only about 10% of farmers in Tula indicated 

off-farm activity as their primary source of cash. The proximity to Hawassa town may 

actually represent a threat for some farmers. Indeed, with an increasing cost of land in 

Hawassa town and an on-going plan to transform Tula into Hawassa’ s sub-city, middle 

men are approaching farmers to convince them to sell all or part of their land with the 

intend of purchasing it at an extremely low price compared to the potential (high) value 

the land would fetch as urban ground (Gebeyehu Admasu, 2015). This is an 

uncontrolled land market even though land in Ethiopia is state-owned and not meant 

to be traded. However, once the land is acquired by a middleman,  whenever any 

infrastructure is built on it, it becomes legally more difficult for governmental 

authorities to reclaim the property. This process is also taking place in the other two 
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districts, thus influencing the land use changes in the overall Hawassa area (Gebeyehu 

Admasu, 2015).  

 

4.3 Typology of household trajectories  

Three trajectories of farmers’ adaptation strategies to decreasing land size and 

livestock numbers were observed: consolidation (65% of households), diversification 

(15% of households) and specialisation (20% of households). A majority of farmers 

followed the consolidation trajectory maintaining food crop production and livestock 

and slightly increasing cash crop area. In the study area, sharing harvest with less-

endowed farmers in exchange for labour is a common practice (‘shared cropping’), 

which might benefit the farmers grouped under the diversification trajectory. Indeed, 

the diversification group has the highest reduction in farmland size with low income 

from cash crops. Farmers who engaged in the specialisation trajectory (mostly in 

Wondo Genet and Tula) were able to take this direction due to a combined effect of  

market proximity (Fig. 6A) and biophysical potential for khat and coffee production 

(Mellisse et al., 2017). In addition, the production of khat has only been tolerated since 

the end of the Derg regime (previously not encouraged). The observed shift in favour 

of this high-profit cash crop has been seen in other regions of Ethiopia that were mostly 

coffee-oriented (Mellisse et al., 2017). Both coffee and khat are important export 

commodities for Ethiopia. In the last 15 years, khat gained popularity among 

smallholders over coffee production due to the high and constant market demand for 

this stimulant produce. In addition, khat can be harvested two to three times per year, 

is relatively quick to establish (one to two years) and is less demanding in management 

or input compared to annual crops. These specificities make khat a very competitive 

cash crop over coffee production, although traditional subsistence food crops, such as 

maize and beans, can still be important sources of income (i.e., in Hawassa Zuria, see 

Table 2). The time to reach the market plays a role on the income from off-farm work 

opportunities (Fig. 6B): the majority of farmers engaged in off-farm activities are 

within an hour of the nearest market.   
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Figure 6: Percentage of cash crop income (A) and ratio of off-farm activity income (B) in 

relation to the time to reach the nearest market per trajectory. 

 

4.4 Consequences for landscapes 

From the 1970’s to the 1980’s the land cover/land use changes in the Hawassa area 

consisted of the replacement of forest and grasslands areas by croplands (Fig. 5) as 

reported by Negash and Niehof (2004) and Reid et al. (2000). Landscape changes 

Time to market (hours) 

Hawassa Zuria Wondo GenetTulaDistrict 

Consolidation SpecialisationDiversificationTrajectory
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included a reduction in field sizes and an increase of perennial crops (khat and enset) 

at the expense of annual crops, grasslands, and bare soil. The main consequences of 

the landscape changes are habitat loss for wildlife and a decrease in water availability 

(Shewangizaw, 2010; Dessie and Kinlund, 2016). In Wondo Genet, the expansion of 

the khat resulted in a decline of natural forests and an associated forest fragmentation 

in major khat producing areas, a decline in food crop production, and soil erosion from 

steep land cultivation (Reynolds et al., 2010). Farmers reported that attacks on their 

maize fields by baboons was one of the reasons they decreased maize production. The 

decrease in water availability has been reported by previous studies which investigated 

the effect of land cover/land use change on the hydraulic regime and water volume of 

Lake Hawassa (Shewangizaw, 2010; Abebe et al., 2018). A remarkable feature on the 

land classification map (Fig. 5A), is the vanishing of what used to be the Lake Cheleleka 

in the northeast of Hawassa area, which is now a wetland. In Hawassa Zuria, the 

decline of forest and current continuous removal of trees and shrubs for firewood is 

leading to major flood and gully erosion (Gebretsadik, 2014). However, the higher 

diversity and complexity of Wondo Genet could have a beneficial effect on the 

biocontrol of major pests (Kebede et al., 2018).  
 

5 Conclusions  

Farming systems in the Hawassa area have been subjected to dynamic and rapid 

changes over the last 30 years. These changes were due to a combined effect of national 

level policies, regional urban expansion, population growth, extreme climatic 

conditions, and households’ livelihood assets. In addition, other drivers, such as the 

informal and lucrative land market associated with the proximity of Hawassa town, 

have had a strong influence on land use changes. Diversification, the intensification of 

current cropland through mixed-cropping and intercropping, and the orientation 

towards high value cash crops are among the strategies adopted by farmers to cope 

with reduced availability of cropland. These socio-ecological changes associated with 

livelihood strategies and household trajectories resulted in changes in landscape 

structure and composition, specifically in fragmentation and diversification, which 

may have implications for the provision of ecosystem services including, food 

provisioning. The decrease in forest and continuous cropping with the associated loss 

of soil fertility is already impacting current productivity and might have a severe 

negative impact on the future agricultural production potential of the area. A better 
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understanding of interlinkages and trade-offs among ecosystem services and the 

spatial scales at which the services are generated, used, and interact is needed in order 

to successfully inform future land use policies. More concretely, one priority should be 

the investment in natural capital in the form of reforestation, whatever the future rural 

or urban land use orientation of the Hawassa area would be. This will require an 

important coordination between the institutions involved in the governance of the 

overall landscape (e.g. agriculture, environment ministries, urban expansion planners, 

and farmer associations). It would be valuable to also engage youth associations in 

these efforts, as the lack of access to land and a general disinterest in farming is already 

pushing many young people towards urban areas.  
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Appendix 1: Self-categorisation criteria obtained from the focus group discussions 

Criteria Description 

Selected by farmers in the three districts 

 

Food security Food self-sufficient family with surplus for market sale (1); Food self-sufficient family 

(2); Partially food self-sufficient family with off-farm activity (3); Food insecure family, 

dependent on external support (4) 

 

Livestock size  More than ten cattle, small ruminants with transporting animals (1); pair of oxen, 

cows, small ruminants (2); single or no oxen, cow with /out small ruminants (3); no 

livestock (4) 

 

Arable land size  > 1ha (1); >0.5 ha (2); <0.5 ha (3); <0.25 (4) ha or landless 

 

Use of agricultural 

technologies  

 

Use of fertilisers and improved seeds regularly (1); using inputs occasionally (2) and 

using inputs very occasionally (3); can’t afford purchasing inputs (4) 

Selected by farmers in two districts (Wondo Genet and Tula) 

 

Home garden crop 

diversity 

Produce diverse food and cash crops (1); produce different crops (2);, focusing on 

food crops (maize, enset) (3)  

 Irrigation  Own water pump or point and produce different crops three times per annum 91); 

hire or borrow water pump and produce different crops 92); use furrow or hand spray, 

have no access to irrigation water (3) 

 

Educating children  Can send children to private schools (1); can send children to public school (2); send 

children to public school but do not fulfil all needs (3); unable to send children to 

school (4)  

Selected by farmers in one of the three districts (Tula) 
Number of coffee 

trees  

300-400-coffee trees (1); 30-40 coffee trees (2); 5-7 coffee trees (3); no coffee tree 

(4) 

 Maize productivity  Can harvest up to 60 quintals per ha (1); up to 15 quintals per ha (2) and (3); up to 10 

quintals per ha (4) 

 Housing type  Can afford housing in urban area to rent out or live in (1); corrugated roof housing (2) 

and (3); thatched roof housing (4) 
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Appendix 2: Principal component analysis of trajectories of change of farming systems: 

three types of trajectories can be observed: consolidation (type 1), diversification (type 2), 

and specialisation (type 3). 
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Appendix 3: Changes in farm structure and production orientation of the three trajectories 

(consolidation, diversification, and specialisation).  
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Chapter 3 
 

Implications of changes in land cover and landscape 

structure for the biocontrol potential of stemborers in 

Ethiopia 
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Abstract 

The land cover and structure of agricultural landscapes may influence the abundance 

and diversity of natural enemies of crop pests. However, these landscapes are 

continuously evolving due to changing land uses and agricultural practices. Here, we 

assess changes in land use and landscape structure in a landscape in the Rift Valley 

region of Ethiopia and explore the impact these changes are likely to have on the 

capacity of the landscape to support communities of natural enemies of maize 

stemborers Busseola fusca (Fuller). Land use and landscape structure were assessed 

in three periods over the last 30 years using focus group discussions with farmers and 

land use analysis through remote sensing. Natural enemies were sampled in maize 

fields adjacent to simple hedgerows, complex hedgerows, enset fields, and khat fields 

at 1, 10, and 30 m using pitfalls and yellow pan traps in 2014 and 2015. The landscape 

analysis indicated that landscapes in the study area changed from maize-dominated to 

more diverse small-scale and fragmented agroecosystems with a higher proportion of 

perennial crops. Maize fields adjacent to enset and complex hedgerows hosted 

significantly more predators (15.1 ± 9.8 and 22.3 ± 5.1 per trap at 1 m from the border, 

respectively) than maize fields adjacent to khat and simple hedgerows (7.2 ± 1.1 and 

7.3 ± 1.7 per trap at 1 m from the border), and the effects of border type decreased with 

distance from the border. The abundance of parasitoids and parasitic flies were not 

influenced by border type. Our findings suggest that the changes in land use and 

landscape structure may have influenced the capacity of the landscape to support 

populations of natural enemies of stemborers in different ways. On the one hand, 

smaller field sizes have resulted in more field borders that may support relatively high 

predator densities; on the other hand, the area of khat increased, and the area of enset 

decreased, both of which may have a negative effect on predator densities. The overall 

outcome will depend on the interplay of these opposing effects.  
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1. Introduction 

Agriculture benefits from biocontrol services provided by natural enemies of crop pests 

(Losey & Vaughan, 2006). Natural enemies require resources, such as food and shelter, 

which may be scattered in space and time across the landscape. The composition and 

spatial arrangement of crop and non-crop habitats in the landscape mosaic may 

therefore influence abundance and diversity of natural enemies and the biocontrol 

function they provide (Bianchi et al., 2006; Landis et al., 2008; O'Rourke et al., 2011; 

Woltz et al., 2012). However, agricultural landscapes are not static but subject to 

continuous changes. For instance, land use dynamics and changing agricultural 

practices may lead to changes in land cover (the biophysical cover of the earth’s 

surface) and landscape structure (the spatial pattern of landscape elements and the 

connections between them). Such changes may influence resource availability for 

natural enemies and the disturbance levels they are subjected to (Rand et al., 2006; 

Tscharntke et al., 2005). Yet little is known about the consequences of land cover 

changes for the natural enemy complex across agricultural landscapes and their 

potential to suppress crop pests (Werling et al., 2014). Such information is even scarcer 

in sub-Saharan Africa than in Europe or North America (Lemessa et al., 2015b; 

Shackelford et al., 2013).  

African agroecosystems are complex socio-ecological systems that are managed 

for multiple outcomes, including food, nutritional security, and income generation. 

They also tend to be diverse; for example, in the Rift Valley region of Ethiopia, 

agroecosystems are generally fine- grained landscape mosaics composed of hedgerows 

(e.g. Euphorbia spp., Lantana spp.), agricultural fields, grasslands, forest patches and 

scattered trees. Dominant crops include maize (Zea mays L.), enset (Enset 

ventricosum (Welw.) Cheesman, a perennial tuber crop), khat (Catha edulis Forsk, a 

perennial stimulant crop), coffee (Coffea arabica L.), common beans (Phaseolus 

vulgaris L.) and teff (Eragrostis tef  Zucc.) Trotter, a small grain cereal). These crops 

are generally produced in small fields of usually less than one hectare, combined with 

multipurpose trees, and grazed by livestock (Abate et al., 2000; Abebe et al., 2006; 

Lemessa et al., 2013).  

In the Hawassa area, in the Rift Valley region of Ethiopia, there has been a trend 

of decreasing maize production and increasing cash crop production, particularly khat 

and sugar cane (Abebe, 2013; Abebe et al., 2009). Because of the doubling of the 

population in the last 30 years (Dira and Hewlett, 2016) and lack of off-farm 
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employment opportunities, farms have been subdivided into ever smaller farms and 

parcels, and non-cropped land has been converted to agriculture. These changes may 

impact the population of natural enemies of crop pests through two concomitant 

effects: (i) different crops and crop border vegetation types may provide different 

resources, microclimates, and disturbance levels for natural enemies, and (ii) field size 

may affect the crop colonisation process by natural enemies.  

Maize is a major food crop in the Rift Valley region of Ethiopia, where yields are 

often low (average of 2.4 t ha−1 in 2013; Kassie et al., 2014) because of low input use, 

erratic rainfall patterns, degraded soils, and pest infestations (Worku et al., 2011). The 

stemborer Busseola fusca (Fuller) (Lepidoptera: Noctuidae) is a major pest of maize in 

the region (Gebre-Amlak, 1989; Getu et al., 2001), where crop losses may be as high as 

26% by the first generation and up to 100% by the second (Gebre-Amlak, 1989). 

Typically, farmers in the Rift Valley do not control B. fusca with insecticides because 

they often cannot afford them, and insecticides are not very efficient against larvae that 

tunnel into maize stems and cobs (Kfir et al., 2002). There is a suite of natural enemies 

that attack different stages of B. fusca, and may provide top-down control (Bonhof et 

al., 1997; Gounou et al., 2009). However, little is known about the impact of the above-

mentioned changes in land use and landscape structure on the natural enemy complex 

and on the biocontrol potential of B. fusca.  

This paper aims to fill this knowledge gap (i) by analysing how agroecosystems 

have changed in the last three decades in terms of land cover and landscape structure 

in a study landscape of the Rift Valley region of Ethiopia and (ii) by assessing how 

adjacent crops and habitats influence the abundance of important natural enemy 

groups of B. fusca in maize fields in the same landscape. We hypothesise that (i) 

changes in social, economic, and political drivers have resulted in changes in land use 

and landscape structure between 1980’s and 2014, and that (ii) maize fields adjacent 

to relatively stable habitats (hedgerows and enset fields) host a larger community of 

natural enemies than maize fields adjacent to more disturbed land uses (maize and 

khat fields).  
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2. Material and methods  

2.1 Study area  

The study area is located in the district of Tula near Hawassa Lake in the Ethiopian Rift 

Valley (latitude 7°0′25′′–6°56′35′′ N and longitude 38°27′58′′–38°29′47′′ E; Fig. 1). 

The area has a moist to sub-humid warm subtropical climate with annual precipitation 

ranging from 750 to 1200 mm in a bimodal distribution pattern from March to April 

and June to August (Dessie and Kleman, 2007). The landscape is heterogeneous and 

the average farm size is below one hectare of arable land (Dessie and Kinlund, 2008; 

Dessie and Kleman, 2007). Farms are dominated by mixed crop-livestock systems with 

maize, bean, enset, and khat as main crops (maize and bean are often intercropped in 

the same field). 

 

2.2 Focus group discussions  

To assess farmers’ knowledge and perceptions about important historical periods of 

land cover change and the nature of these changes, a focus group discussion was 

conducted with 20 key informants from Tula. Participants were asked to draw a 

timeline to identify periods of major changes in land cover and to estimate the 

proportion of each land cover type and major crops. The discussions revealed that the 

years 1984 (the start of the communist Derg regime), and 1998 (the end of the same 

regime, represented key transitions for land cover change. These milestone years were 

used for selecting satellite images for land cover analysis.  

 

2.3 Land cover classification  

A quantitative land cover analysis of the Hawassa area was conducted for 1984, 1998, 

and 2014 using Landsat 8 OLI/TIRS data for 2014 and Landsat 5 TM data for 1984 and 

1998. All images had a 30×30 m resolution. The analysis focused on an area of 5×6 km 

area around Tula, referred to as the study area in the rest of the paper (Fig. 1). After 

radiometric correction, the different bands of each image were stacked into a single 

image. An object-based classification was conducted for 1984, 1998, and 2014 in which 

related pixels were grouped in objects using eCognition (Blaschke, 2010), and cropped 

and non-cropped areas could be distinguished. Using a phenology-based classification 

approach, cropland was further subdivided into the following classes: annual, 

perennial, perennial dominated mixed crops, and annual dominated mixed crops 

(Wang et al., 2011). Fields were classified as mixed crops when their size was smaller 
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than the resolution of the image (30 × 30 m) and could not be classified as annual or 

perennial crops. The accuracy of the classification was assessed for 1984 using aerial 

images from 1972 and a topographic map from 1988; it was 77.1% accurate. For 2014, 

the accuracy was assessed by ground truthing with 30 GPS points per class and was 

75.8%. These accuracy levels fall within the 67–87% range that has been reported in 

other pixel-based classification analyses in Ethiopia (Meshesha et al., 2013). Changes 

in land cover were assessed as the difference in the land cover class (in ha and 

percentage) through pixel-by-pixel comparisons between 1984 and 1998 and between 

1998 and 2014 using Erdas software (Lu et al., 2004).  

 

2.4 Landscape metrics  

To assess changes in landscape structure between 1984, 1998, and 2014, we selected 

landscape sectors of one km radius centred around each of the 16 focal maize fields 

selected for the natural enemies density assessment (see below; Fig. 1). The area of 

perennial crops, mixed crops, and annual crops were assessed within each sector for 

1984, 1998, and 2014. The proximity index between annual and perennial crops, patch 

density, and edge density of each land cover type were calculated using Fragstats 

(McGarigal et al., 2002). The proximity index (without dimension) is a measure of the 

closeness of patches and is derived by dividing the summed patch area by the nearest 

patch to patch distance between annual and perennial crops. High values of the 

proximity index indicate small distances between annual and perennial crops and can 

be considered as a proxy for the potential insect population exchange between annual 

and perennial crops. Patch density is calculated as the number of patches of each land 

cover class per unit area (3.14 km2). Edge density (m ha-1) is a measure of the perimeter 

to area ratio of patches calculated for each land cover class by dividing the total edge 

length of patches by the area of the landscape sector (3.14 km2).  
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Figure. 1. Location of the study area and focal maize fields for natural enemy sampling. The 

study area is located in Tula, south of Lake Hawassa in the Rift Valley of Ethiopia.  

 

 

 

 



49 
 

2.5 Arthropod sampling and identification  

The abundance and diversity of arthropods were assessed in maize fields in Tula in 

2014 and 2015. Farmers’ maize fields that bordered an enset field, a khat field, a 

‘simple’ hedgerow, and a ‘complex’ hedgerow were selected. Four fields were selected 

for each maize field-border combination for a total of 16 maize fields. All enset crops 

were at least 3 m high, while khat crops (also perennial) were at least 0.5 m high. 

Hedgerow-maize interfaces were at least 30 m long, and hedgerows were classified as 

‘simple’ or ‘complex’ based on a visual assessment of vegetation density and diversity 

(Bayley, 2001). Hedgerows with less than 50% vegetation cover and less than eight 

plant species were considered ‘simple’, while hedgerows with vegetation cover of 75% 

or higher, more than 8 plant species and at least 2m wide were considered ‘complex’ 

(Appendix 1). The maize fields were at least 40 × 30 m, and had a minimum density of 

4 plants per m2. Maize was intercropped with bean in 15 fields, and with enset in one 

field. Tilling and weeding are common cultivation practices in maize and khat fields, 

but not in enset.  

Yellow pan traps and pitfall traps were placed in the maize fields at 1, 10 and 30 m from 

the maize field-border interface. Each field had two transects of traps, separated by 10 

m, hence each field had six yellow pan traps and six pitfall traps. The pitfall and pan 

traps were placed at 1 m distance from each other and referred to as sampling station. 

Pitfall traps consisted of a 10 cm diameter plastic cup, filled with 30 ml water and a 

droplet of detergent to break the surface tension. A cover was placed over the trap at 

5–10 cm height to prevent rainwater infiltration, without inhibiting arthropod 

movement. The yellow pan traps consisted of 20 cm diameter yellow plastic dishes 

filled with 30 ml water and a droplet of detergent and placed at an 80 cm height on a 

pole. The traps were emptied after three days and arthropod samples were transferred 

to plastic tubes with 70% ethanol. In 2014, two samplings were conducted in the first 

week of October when maize plants were mature, while in 2015 one sampling was 

conducted in the first week of October when maize plants were mature and a second 

one in the first week of November when maize plants were senescent.  
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Figure 2. Land cover classification based on the analysis of Landsat images of Tula for the 

years 1984, 1998 and 2014.  

 

Arthropod samples were sorted, and natural enemies of stemborers were identified at 

the family level using the identification keys of Polaszek (1998) and Getu et al. (2001), 

and sorted by morphospecies. All other specimens were identified at the order level. 

All specimens were counted and classified as parasitoid wasps, parasitic flies, ants, rove 

beetles, spiders, and other predators (Appendix 3).  
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Figure 3. Proportion of crop types in Tula during three time periods as stated by farmers 

during a focus group discussion.  

 

2.6 Data analysis  

The relationship between the abundance of five stemborer natural enemy groups 

(parasitoids and parasitic flies combined, ants, rove beetles, spiders, and other 

predators) and border types were analysed using generalised linear mixed models. 

Border type (enset, khat, simple hedgerow and complex hedgerow), distance from the 

border (1, 10, and 30 m), year (2014 and 2015), and maize stage (mature and senescing) 

were fixed factors, and the variable “field” was taken as a random factor. The data from 

the traps in the two transects (pseudo-replicates) were pooled. The data from the 

pitfalls and yellow pans were analysed both separately and as pooled samples per 

sampling station. Here, we report the results of the analysis with the pooled pitfall and 

yellow pan samples.  

In all the models, four discrete stochastic distributions were considered for the 

error distribution of the data: Poisson, negative bi-nominal, zero-inflated Poisson and 

zero-inflated negative binominal. The models, with farm as random factor, were fitted 

using glm (for Poisson distribution), glm.nb (for negative binominal distribution), and 

zeroinfl functions (for zero inflated Poisson and negative binominal distributions) 

using the R packages MASS (Venables and Ripley, 2002) and PSCL. Akaike’s 

Information Criterion corrected for finite sample sizes (AICc) was used to rank and 

select models (Burnham and Anderson, 2003). The negative binomial error 
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distribution had the lowest AICc in all analyses. Model selection of explanatory 

variables was conducted using the dredge procedure in R package MuMIN. This 

procedure generates a complete set of sub-models with combinations of the terms of 

the full model and sorts the sub-models on the basis of AICc values and associated 

Akaike weights.  

 

3. Results  

3.1 Land cover change  

The land cover analysis indicated major changes in the study area between 1984 and 

2014. The area of perennial crops increased by 173%, while the area of annual crops, 

grassland, bare soil and mixed crops decreased by 98%, 90%, 53% and 44%, 

respectively (Fig. 2; Appendix 2). The focus group discussion in Tula confirmed these 

trends and indicated that maize was the dominant crop in the 1980’s with an estimated 

cover of 55%, which decreased to 40% in 2014 (Fig. 3). Khat increased from less than 

5% to 30%, homegarden increased from 5% to 10%, and enset decreased from 30% to 

20% (Fig. 3). Maize is mostly intercropped with bean.  

The changes in land cover are also reflected in the structure of the landscape. 

The mean area of perennial crops in the sectors around focal maize fields increased 

(Fig. 4A), while the patch density decreased slightly from 1984 to 2014 (Fig. 4B). This 

indicates that perennial crops cover a larger proportion of the landscape and are 

arranged in larger or more interconnected patches. The area, patch density, and edge 

density of mixed crops remained more or less stable (Figs. 4A–C). In parallel there has 

been a strong decrease of the area, patch density and edge density of annual crops 

(Figs. 4A–C), indicating that maize is grown in smaller fields, which are included in the 

mixed crop category. The proximity index increased three-fold between 1984 and 2014, 

indicating shorter distances between annual and perennial crops. This suggests that 

the landscape of the study area has become increasingly dominated by small-scale 

mosaics of mixed and perennial crops.  



53 
 

 

Figure 4. Area (A), patch density (B), edge density (C) of perennial, mixed, and annual crops, 

and proximity index between annual and perennial crops (D) in Tula in 1984, 1998, and 2014. 

Perennial crops include enset and khat, and annual crops are dominated by maize (and teff in 

the 1980’s). Mixed crops represent adjoining perennial and annual crops with field sizes 

smaller than 30 x 30 m. Error bars indicate SEM, (–) stands for dimensionless.  
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3.2 Abundance of natural enemies of maize stemborers  

In 2014 and 2015 a total of 690 samples were collected, yielding 25,360 specimens 

belonging to 146 morphospecies from nine orders (Diptera, Hymenoptera, Coleoptera, 

Hemiptera, Arachnida, Orthoptera, Neuroptera, Phthiraptera, and Lepidoptera; 

Appendix 3). Out of the total specimens, 35.6% were considered to be potential natural 

enemies of Busseola fusca, which consisted of Formicidae (56%), Staphylinidae (25%), 

parasitoid wasps (14%), spiders (14%), and parasitic flies (10%).  

The outputs of the generalised linear mixed models indicated that (i) maize 

fields adjacent to enset and complex hedgerows had significantly higher abundances 

of predators as compared to maize fields adjacent to khat and simple hedgerows, and 

(ii) there were significant interactions between border type and distance and between 

border type and year (Table 1; Fig. 5). These interactions indicate that the effect of 

border type on predator abundance in maize vary in different years and at different 

locations within the field and can therefore not be generalised. The positive effect of 

enset and complex hedgerow on predator abundance was most pronounced at the crop 

interface, 1 m within the maize field (Fig. 5A). By contrast, border types did not 

influence the abundance of parasitoids and parasitic flies in maize fields, and their 

abundance was only significantly affected by the maize stage, with lower abundances 

in senescing maize (Table 2; Fig. 5D). When focusing on the main predator groups, 

regression analysis indicated that ants were most abundant near complex hedgerow-

maize interfaces (Fig. 6A), rove beetles were most abundant near enset-maize 

interfaces and complex hedgerow-maize interfaces (Fig. 6B), and spiders were not 

influenced by border type and distance from the field edge (Fig. 6C).  
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Table 1 Estimates of the most parsimonious model for the abundance of predators with a 

negative binomial error distribution. The variables are border type (enset, khat, simple 

hedgerow, and complex hedgerow), distance from border (1, 10, and 30 m), and year (2014 

and 2015). “Field” was taken as a random variable, BorderKhat, Distance1m, and Year2014 

were reference variables.  

 

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 

 

 

 

 

 

 

 

 

 

Estimate 
Std. 
Error 

z value 
 
Pr(>|z|) 
 

 

 

Intercept 1.989 0.231 8.597 0.000 *** 

BorderEnset 0.923 0.327 2.820 0.005 ** 
BorderHedge complex 1.121 0.310 3.620 0.000 *** 

BorderHedge simple -0.081 0.314 -0.258 0.796  

Distance10m 0.327 0.261 1.253 0.210  

Distance30m 0.172 0.265 0.650 0.516  

Year2015 0.019 0.222 0.084 0.933  

BorderEnset:Distance10m -0.782 0.365 -2.146 0.032 * 
BorderHedge complex:Distance10m -1.192 0.363 -3.281 0.001 ** 
BorderHedge simple:Distance10m -0.444 0.360 -1.233 0.218  

BorderEnset:Distance30m -0.818 0.368 -2.222 0.026 * 
BorderHedge complex:Distance30m -0.774 0.368 -2.106 0.035 * 

BorderHedge simple:Distance30m -0.204 0.360 -0.566 0.572  

BorderEnset:Year2015 -1.210 0.306 -3.960 0.000 *** 
BorderHedge complex:Year2015 -0.239 0.305 -0.782 0.434  

BorderHedge simple:Year2015 0.167 0.300 0.559 0.576  
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Figure 5. Mean abundance of predators (A and B) and parasitoids and parasitic flies (C and 

D) of maize stemborers in maize fields by border type for 2014 and 2015 (A and B respectively) 

and maize stage (C and D respectively). Error bars indicate SEM. 
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Figure 6. Abundance of Formicidae (A), Staphylinidae (B), and Arachnida (C) in maize fields 

in yellow pans and pitfall traps in 2014 and 2015. Error bars indicate SEM.  
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4. Discussion  

While there is increasing recognition that landscape context can influence natural 

enemy communities, little is known about the influence of changes in landscape 

context on natural enemy populations and the associated potential for biocontrol 

(Chaplin-Kramer et al., 2011). We show that our study area in the Rift Valley region of 

Ethiopia has become more fine-grained due to farm subdivisions, resulting in smaller 

field sizes evidenced by the disappearance of the annual crop class, which includes 

annual crop fields larger than 30×30 m and a strong increase in the proximity index 

for annual and perennial crops (Fig. 4). In addition, the focus group discussion 

revealed that maize monocrop have been progressively replaced by khat. We also show 

that the abundance of some, but not all, stemborer natural enemy groups in maize 

crops are positively influenced by adjoining complex hedgerows and enset fields. This 

effect was more prominent at the border of the maize fields for predators but not for 

parasitoids and parasitic flies.  

Ethiopian agricultural landscapes are continually changing because of social 

and economic drivers, such as population growth (Dira and Hewlett, 2016) and 

changes in farmer livelihood strategies, often resulting in a shift from food crops to 

cash crops (Assefa and Bork, 2014; Meshesha et al., 2013) and the subdivision of fields 

into smaller units. The changes in landscape composition of Tula confirm this trend, 

exemplified by the reduction in the proportion of enset and maize (food crops), an 

increase in the proportion of khat (cash crop) and homegardens (Fig. 3), and a strong 

increase of the proximity index (Fig. 4D). Therefore, the remaining maize fields tend 

to have a higher perimeter-area ratio (because of reduced field sizes) and are more 

likely to be bordered by a perennial element (because of the increase in the area 

perennial crops).  

Our findings indicate that maize fields bordered by an enset field or a complex 

hedgerow are associated with higher predator densities than maize fields bordered by 

a khat field or a simple hedgerow (Fig. 5). Enset vegetation is structurally complex and 

provides a more humid microclimate than maize fields, while complex hedgerows are 

relatively undisturbed habitats that may provide floral resources for natural enemies 

(e.g. Lantana camara L.). While khat is a perennial crop, it has a relatively simple 

vegetation structure and is often treated with chemical insecticides, which may explain 

the relatively low predator density at khat-maize interfaces (Fig. 5). In addition, there 

has been increasing number of homegardens in Tula because of the increase in 
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population density. Homegardens can be very diverse in composition and structure 

(Abebe et al., 2006), providing high quality resources for nesting and foraging for a 

diverse natural enemy community (Lemessa et al., 2015b). The common practice of 

maize-legume intercropping can result in increased parasitism rates (Skovgard and 

Päts, 1996; Chabi-Olaye et al., 2005) and lower stemborer densities than under maize 

monocropping (Songa et al., 2007; Midega et al., 2014). Thus, the changes in crop 

types in Tula during the last three decades have likely influenced predator densities in 

maize agroecosystems, which can be positive (e.g. enset-maize and complex hedgerow-

maize interfaces) or negative (e.g. khat-maize interfaces).  

While predators have been associated with suppression of stemborers, there is 

little quantitative information available on the stemborer life stages they attack 

(Bonhof, 2000; Getu et al., 2001). In our study, ants and rove beetles were the two 

most abundant predator groups, which have been reported to feed on stemborer eggs 

and larvae (Bonhof, 2000). The association of ants with enset fields and complex 

hedgerows is in line with results of Lemessa et al. (2015a), who found that ant 

abundance was positively related to tree cover. Enset fields may also offer favourable 

conditions for rove beetles through the provision of a litter layer of fallen leaves and 

the presence of animal manure which is used as an amendment (Amede and Taboge, 

2007). The influence of neighbouring habitat on spider abundance was not clear, and 

there was no apparent spatial pattern in the fields. This suggests that spiders may have 

colonised these habitats by ballooning, which may involve dispersal at a scale of several 

kilometres (Schmidt and Tscharntke, 2005; Bianchi et al., 2017).  

Parasitoid abundance was relatively low and could be related to the fact that we 

sampled during the maturity and senescence stages of maize when resource levels in 

maize are low (Getu et al., 2001; Yitaferu and Walker, 1997). However, our findings are 

in line with other studies reporting typical parasitism rates in stemborer larvae below 

10% (Kebede, unpublished data; Mailafiya et al., 2011). The abundance of parasitoids 

and parasitic flies was not related to the distance from bordering habitats, which is in 

line with data from mark-recapture studies showing that parasitoids can easily cross 

distances in the order of tens of metres (Schellhorn et al., 2014).  
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5. Conclusions  

Overall, our study shows that the agricultural landscape of Tula is highly dynamic and 

has become more fine-grained with a higher proportion of khat. These findings suggest 

that the changes in land use and landscape structure may have influenced the capacity 

of the landscape to support populations of natural enemies of stemborers in different 

ways. The smaller field sizes have resulted in more field borders that can support 

relatively high predator densities in the case of maize-enset and maize-complex 

hedgerow interfaces. The small maize fields may also foster an effective colonisation 

by predators from adjoining crops and habitats, as the distance from the field edge to 

the field interior is often less than 30 m, well below the colonisation distance of most 

natural enemies (Bianchi and van der Werf, 2003; Tscharntke et al., 2007). On the 

other hand, the area of khat increased and the area of enset decreased, which may have 

a negative effect on predator abundance. The overall outcome of the landscape changes 

for natural enemy abundance and the associated potential for stemborer control will 

depend on the interplay of these opposing effects and merits further research.  
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Appendix 1: Photos of the four border types of maize fields: chat field (A), enset field (B), 

simple hedgerows (C and D) and dense hedgerows (E and F).  

 A  B 

 C  D 

 E  F 
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Appendix 2: Land cover composition (%) of Tula in 1984, 1998 and 2014 based on Landsat 

image analysis.  
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Appendix 3: Abundance (mean ± SE) and diversity of natural enemies of Busseola fusca by 

order, (sub) family, number of morphospecies and sampling method (pitfall and yellow pan) 

in Tula in 2014 and 2015. 

                                                                   2014              2015 

Functional 

trait group 

Order (Sub) 

Family 

Mor

pho 

spe
cies 

 

N  pitfall yellow 

pan 

N pitfall yellow pan 

Predators Hymenopte

ra 

Formicidae 5 241

1 

12.28±1.58 0.28±0.05 1

4

7

7 

9.12±1.10 0.47±0.13 

Coleoptera Staphylinida

e 

8 136

0 

0.48±0.06 6.60±3.29 3

8

0 

1.62±0.45 0.86±0.35 

Arachnida Araneidae 8 564 2.68±0.66 0.26±0.04 3

8

4 

2.16±0.36 0.34±0.05 

Hymenopte

ra 

Vespidae 1 184 0.02±0.01 0.94±0.10 1

1

8 

0.05±0.02 0.73±0.11 

Coleoptera Coccinellida

e 

2 8 0.04±0.02 0.01±0.01 7 0.04±0.03 0.01±0.01 

Dermaptera Forficulidae 2 0 0 0 4 0.01±0.01 0.01±0.01 

Total Predators   26 452

7 

15.48±1.72 13.01±3.28 2

3

7

0 

8.09±1.23 2.43±0.40 

Parasitoid 
flies 

 

Diptera  Tachnidae 2 619 0.01±0.01 3.21±0.30 2

8

4 

0.17±0.05 1.71±0.20 

 
Parasitoids 

wasps  

 

Hymenopte

ra 

Chalcidoidae 15 540 0.91±0.10 1.90±0.17 2

2

0 

0.56±0.08 0.88±0.10 

Hymenopte

ra 

Ichneumonid

ae 

5 115 0.06±0.02 0.54±0.06 1

0

5 

0.10±0.03 0.58±0.08 

Hymenopte

ra 

Unknown 5 128 0.15±0.09 0.52±0.07 7

3 

0.12±0.08 0.36±0.07 

Hymenopte

ra 

Braconidae 2 20 0.01±0.01 0.09±0.03 3

1 

0.02±0.01 0.18±0.05 

Total Parasitoids    29 142

2 

1.14±0.11 6.26±0.38 7

1

3 

0.98±0.12 3.71±0.28 

Other Diptera 36 111

17 

10.48±0.76 47.42±2.91 2

1

6

4 

3.51±0.39 10.74±0.62 

0.62 Orthoptera 5 344 1.74±0.14 0.05±0.03 3

2

5 

1.94±0.17 0.17±0.07 

Coleoptera 17 295 1.10±0.10 0.43±0.05 4

1

5 

2.03±0.19 0.68±0.12 

Hemiptera 10 326 0.20±0.04 1.50±0.16 2

1

6 

0.49±0.10 0.93±0.24 

Hymenoptera 6 60 0.10±0.09 0.21±0.07 7

9 

0.15±0.08 0.37±0.07 

Phthiptera 4 79 0.35±0.07 0.06±0.02 3

5 

0.14±0.03 0.09±0.03 

Neuroptera 4 26 0.01±0.01 0.13±0.04 1

5 

0.03±0.02 0.07±0.02 

Lepidoptera 1 9 0 0.05±0.02 4

7 

0.18±0.03 0.13±0.03 

Other 9 99 0.49±0.07 0.03±0.01 5

6

0 

3.05±0.88 0.13±0.07 

Total Other 
 

92 123

55 

14.49±0.82 50.81±2.97 3

8

5

6 

11.51±1.0

9 

13.33±1.05 
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Chapter 4 

 

Landscape composition overrides field level 

management effects on maize stemborer control in 

Ethiopia 

Chapter submitted as: Kebede, Y., Bianchi, F.J.J.A., Baudron, F, Tittonell, P. 

Landscape composition overrides field level management effects on maize stemborer 

control in Ethiopia. Agriculture, Ecosystems & Environment.  
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Abstract 

Lepidopteran stemborers are an important pest of maize in Africa. While farmers adopt 

cultural control practices at the field scale, it is not clear how these practices affect 

stemborer infestation levels and how their efficacy is influenced by landscape context. 

The aim of this three-year study was to assess the effect of field and landscape factors 

on maize stemborer infestation levels and maize productivity. Maize infestation levels, 

yield and biomass production were assessed in 33 farmer fields managed according to 

local practices. When considering field level factors only, plant density was positively 

related to stemborer infestation level. During high infestation events, length of 

tunnelling was positively associated with planting date and negatively associated with 

the botanical diversity of hedges. However, the proportion of maize crop in the 

surrounding landscape was strongly positively associated with length of tunnelling at 

100, 500, 1000, and 1500 m radii, and overrode field level management factors when 

considered together. Maize grain yield was positively associated with plant density and 

soil phosphorus content and only weakly negatively associated with the length of 

tunnelling. Our findings not only highlight the need to consider a landscape approach 

for stemborer pest management, but they also indicate that maize is tolerant to low 

and medium infestation levels of stemborers. 
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1. Introduction 

In Africa, maize (Zea mays L.) and sorghum (Sorghum bicolor (L.) Moench) are among 

the most important field crops providing food, feed, and fuel (Smale et al., 2011). While 

over 70 million tons of maize were produced in 2016 (FAOSTAT, 2016), maize 

production is constrained by pests, disease, drought, and low soil fertility (Smale et al., 

2011). In East Africa, the most important insect pests associated with maize are 

lepidopteran stemborers, including the noctuid Busseola fusca (Fuller) and the 

crambid Chilo partellus (Swinhoe) (Mwalusepo et al., 2015). Reported average yield 

losses due to stemborers in Ethiopia range from 12% to 40% of the total production 

depending on borer species, as well as agro-climatic zone, maize variety, cropping 

system, and soil fertility level (Kfir et al., 2002; Mgoo et al., 2006). Current stemborer 

pest management in sub-Saharan Africa largely focuses on field scale management 

based on recommendations for fertilisation (Mgoo et al., 2006; Wale et al., 2006), trap 

crops (Pickett et al., 2014), crop rotation, or intercropping (Chabi-Olaye et al., 2005; 

Belay and Foster, 2010) and do not consider management practices at the landscape 

level. While landscape effects on stemborer infestation has been demonstrated 

(Kebede et al. 2018b), little is known about the efficacy of farmer’s agronomic practices 

to control maize stemborer infestation levels and how this is influenced by landscape 

context.  

In Ethiopia, maize is grown by nine million smallholder households under diverse 

agro-ecological and socioeconomic conditions (Abate et al., 2015). Farmers mostly rely 

on cultural pest management practices to manage stemborers because chemical pest 

management is costly and minimally effective. For instance, maize-bean intercropping 

is common and has been associated with reduced stemborer infestation and increased 

abundance of their natural enemies (Belay et al., 2008; Kebede et al., 2018). 

Furthermore, manipulation of the timing of maize planting is common in Ethiopia 

(Gebre‐Amlak et al., 1989). Many farmers plant maize within the same week after the 

first effective rains when the required soil moisture is reached, leading to a 

synchronization of maize crops in the landscape and spreading stemborer infestation 

risk. While early or late planting may reduce infestation (Gebre‐Amlak et al., 1989; 

Getu et al., 2001), maize planting dates tend to vary widely with current erratic rainfall 

patterns, making stemborer control based on planting date very hazardous. Finally, 

soil tillage is recommended to control the remaining larvae or pupae in post-harvest 
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maize stubbles by exposing stubbles to the sun or by burying them in the ground (Päts, 

1996).  

Besides these recommended practices, other management practices and 

agroecosystem properties may influence stemborer infestation as well. Plant density 

may affect the resource concentration for stemborers and therefore promote stemborer 

hosts finding success and oviposition preference (Kfir et al., 2002). Nitrogen 

fertilisation may enhance maize attractiveness and therefore enhance stemborer 

development rates, but it may also increase the tolerance of maize to stemborer attacks 

(Debebe et al., 2008). Hedgerows surrounding maize fields may provide resources and 

shelter for natural enemies of maize stemborers (Kebede et al. 2018) or, depending on 

the species composition of hedgerows, provide alternative host plants for maize 

stemborers. It is likely that management practices aiming to increase maize 

productivity, such as increasing plant density and fertilisation and removing 

hedgerows to free land for crop production, may result in increased stemborer 

infestation levels (Kfir et al., 2002). However, the implications of such trade-offs for 

stemborer population dynamics and maize production are not clear. Besides 

management practices at the field level, pest pressure can be influenced by factors 

operating at the landscape level (Karp et al., 2018). For instance, the availability of 

(alternative) host plants is associated with higher pest densities (O’rourke et al., 2011), 

while habitats that support natural enemies of pests may generate an increased top-

down suppression of pests (Rusch et al., 2016). Therefore, the composition of a 

landscape, in particular host plant availability and habitats for natural enemies, may 

influence crop pests infestation levels (Tscharntke et al., 2005; Schellhorn et al., 

2008). 

While maize stemborer infestation may be affected by factors operating at different 

spatial scales, it is unclear how field and landscape factors interact to moderate 

stemborer infestation levels. The aim of this three year study was to assess the effect 

and interactions of management practices at the field level and landscape factors on 

maize stemborer infestation levels and maize productivity. We expected that 

management practices that increase host plant availability and quality at both the field 

and landscape level would increase stemborer infestation. Furthermore, we expected 

that stemborer infestation would negatively affect maize yield and above-ground 

biomass.  
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2. Materials and methods 

2.1 Study area  

The study was conducted in the Hawassa region in the Ethiopian Rift Valley between 

7˚03'11" to 7˚08'4" N latitude and 38˚15'17" to 38˚38'47"E longitude (Fig. 1). The area 

is characterised by a moist to sub-humid warm subtropical climate. Annual 

precipitation ranges from 750 to 1200 mm in a bimodal distribution pattern, expected 

in March to April and June to August (Dessie and Kleman, 2007). The average land 

holding per household is below one hectare of arable land and the dominant crops are 

maize, enset (Ensete ventricosum), khat (Catha edulis), vegetables, and homegarden 

systems (Mellisse et al., 2017). B. fusca is the dominant maize stemborer species in the 

area (Abate et al., 2012). The landscape is dominated by small-scale annual crops in 

the east and is characterised by more complex mosaics of crop and non-crop patches 

in the west. We selected 33 maize fields which were embedded in landscapes that 

represented the local gradient of landscape complexity (Fig. 1).  

 

2.2  Stemborer infestation and maize yield assessment  

Maize infestation was assessed by destructive sampling of ten randomly selected plants 

per field in 2013 and 20 plants per field in 2014 and 2015 at the senescence stage. The 

same fields were assessed during the three years of this study. From each plant we 

recorded the number of stemborer holes in the stem, the stemborer tunnelling length 

inside the stem, the number of larvae and pupae in the whole plant, and the proportion 

of the cob(s) surface that was damaged. Maize grain moisture content (%) was assessed 

using a Dickey John portable grain moisture tester (http://www.dickey-

john.com/product/m3g/). Maize grain yield was calculated at the plot level by 

multiplying the fresh weight by the dry matter content and was converted into tonnes 

of dry matter per hectare. Maize stems and leaves were weighed in situ, and a sub-

sample was oven dried for 48 hours at 70°C to assess the dry matter content.  

 



69 
 

 

Figure 1: Location of the study landscape and the sampled fields (numbered from 1 to 33) 

around Lake Hawassa in the Rift Valley region of Ethiopia, and overview of the five radii (100 

to 2000 m). 

  

2.3 Factors at the field level 

The owners of each of the 33 maize fields were interviewed on their management 

practices during three consecutive maize growing seasons. We recorded the planting 

date, the variety of maize, and the quantity of fertiliser applied. Since farmers all used 

urea and diammonium phosphate (DAP) as fertilisers, we calculated the total N input 

by summing the amount of N in the urea (46%) and in the DAP (18%). Plant density 

was assessed by counting and averaging the number of plants within a quadrat of 2 m2 

at three locations in each maize field. We assessed the perimeter area ratio of the maize 

fields, recorded the plant species composition of hedgerows surrounding each field in 

2 m sections at 10 m intervals (Miller and Ambrose, 2000), and calculated the 
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Shannon-Wiener diversity index of the plant species was calculated (Shannon and 

Weaver, 1949).  

To assess soil fertility and structure, soil samples (150 cm3) were taken at 0-10 cm, 

10-20 cm and 20-30 cm depths at three points on a diagonal transect across each of 

the 33 fields. Fresh composite samples were weighed and dried at air temperature and 

then sieved (less than 2 mm), and 50 gram sub-samples were collected for chemical 

analysis. The remaining soil was oven-dried for 48 hours at 105˚C (Carter, 1993), and 

bulk density was calculated. For the analysis of total N and P, samples were digested 

with a mixture of H2SO4–Se and salicylic acid, and total N and P was measured 

spectrophotometrically (Novozamsky et al., 1983). The organic matter of the soil was 

assessed gravimetrically by dry combustion of the organic material in a furnace at 500-

550°C. We calculated the total amount of C, N, and P for each 10 cm soil layer by 

dividing the total weight of C, N, and P at each layer by the bulk density. Total C, N, 

and P from 0-30 cm were calculated for each field by summing the amounts of the 

three layers (Kim et al., 2016).     

 

2.4 Factors at the landscape level 

Data on landscape composition were obtained from a quantitative land cover analysis 

using a Landsat 8 OLI/TIRS satellite image from 2014 with a resolution of 30x30 m 

(Kebede et al., 2018). Using a phenology-based classification approach, annual crops 

(mostly maize), perennial crops, grassland, shrubs, water, wetland and built up areas 

were identified (Fig. 1). We calculated the percentage of each land use type from the 

total area within a radius of 100, 500, 1000, 1500, and 2000 m around each focal maize 

field. The percentage of maize within the five radii were considered for further 

statistical analysis. 

 

2.5 Data analysis  

2.5.1 Data exploration and variable reduction  

Stemborer infestation data recorded at the plant level were averaged per field. The 

degree of correlation between variables was assessed through a principal component 

analysis (PCA). This analysis revealed that the number of stemborer holes per plant, 

the proportion of cob damage, the length of tunnelling, and the number of larvae were 

strongly correlated. We selected the length of tunnelling as a response variable of 

infestation for further statistical analysis as this proxy captures information about 
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stemborer infestation and damage throughout the growing season, and has been 

reported as the best predictor of yield loss (Ndemah, 1999). As the proportion of maize 

and perennial crops in the landscape were strongly negatively correlated, we used only 

the proportion of maize for further statistical analysis. The variables so selected were 

used to run a second PCA (Fig. 2).  

 

 
Figure 2: Plot of Principal Component Analysis (PCA) of response and explanatory variables 

at the field and landscape level. Since the proportion of maize at 100, 500, 1000, 1500 and 

2000 m were highly correlated, we only present the proportion of maize at 1000 m because 

this had the highest PCA loading.  

 

2.5.2 Statistical models    

The relationship between the length of tunnelling, maize grain yield, and above-ground 

maize biomass (response variables) and management, soil, and landscape level factors 

(explanatory variables) were assessed using linear mixed models. Length of tunnelling 

was log(x+1)-transformed to meet normality requirements. In a first step, we considered 
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a model with only management factors as explanatory variables, including perimeter 

area ratio, hedge diversity, soil organic matter, soil phosphorus, planting date, plant 

density, nitrogen input, maize variety, and cropping system as fixed factors and year 

and field as random factors. In a second step, we added landscape level factors 

(proportion of maize at 100, 500, 1000, 1500 and 2000 m radii around focal maize 

fields). The interaction between year and planting date, cropping system, plant density, 

N input, and maize variety, and the interaction between the proportion of maize at 100 

to 2000 m and the cropping system and planting date were not significant and not 

considered further. Akaike’s Information Criterion (AIC) was used to compare and 

rank the models at the five spatial scales (Burnham and Anderson, 2003).  

Models for the response variables maize grain yield and above-ground maize 

biomass included soil organic matter, soil nitrogen, soil phosphorus, planting date,  

nitrogen input, plant density, maize variety, cropping system, and the relative length 

of tunnelling as fixed factors. The relative length of tunnelling was calculated as the 

ratio between the length tunnelling and above-ground maize biomass to represent a 

relative measure of stemborer infestation. The variables year and field were included 

in the model as random factors again. Non-significant interactions between year and 

cropping system and between year and planting date were removed.  

As our dataset included records of high and low infestation levels (e.g. between 

years), and the effectiveness of pest management practices may depend on infestation 

level, we used quantile regression to assess the relationship between response and 

explanatory variables in more detail (Cade et al., 1999). Quantile regression is an 

extension of ordinary least squares regression, which typically assumes that 

associations between explanatory and response variables are the same at all quantile 

levels (Thomson et al., 1996). Here we used quantile regression to assess the 

relationship between the response variables length tunnelling and grain yield with 

management variables along the 10%, 25%, 50%, 75% and 90% quantiles.  

All analyses were conducted in R (R Core Team, 2012) using ‘ade4’ package 

(Dray et al., 2007) for the PCA, ‘lmer’ function for fitting linear mixed-effects models 

from the lme4-package (Bates et al., 2014), and ‘quantreg’ for quantile regressions 

(Koenker et al., 2018). 
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3. Results 

A total of 1550 maize plants were sampled in 2013, 2014, and 2015 to assess stemborer 

infestation levels, maize yield, and maize above-ground biomass. A total of 1602 

stemborer holes and 949 larvae were recorded. Stemborer infestation levels differed 

between years and were highest in 2013 (Table 1). The first principal component of the 

PCA captured variables related to landscape features (e.g. proportion of maize and soil 

characteristics) and explained 21.3% of the variation (Fig. 2). The second principal 

component overly reflected management variables (e.g. nitrogen input, planting date, 

plant density, and maize variety) and variability between years, and explained 15.2% 

of the variation. The first five principal components explained 64.8% of the variation 

(Eigenvalue = 1.39).   

 

Table 1: Overview of a selection of response and explanatory variables (mean ± SE) in 2013, 

2014, and 2015.   

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1 Factors influencing stemborer infestation at the field level  

When considering field scale variables only, infestation increased with increasing plant 

density (P = 0.039; Table 2). This effect was most pronounced at high infestation levels 

(Fig. 3A). Other management variables had no significant effect on stemborer 

infestation levels. Yet quantile regressions analysis revealed that stemborer infestation 

was negatively associated with hedge diversity at high infestation levels (Fig. 3B, Table 

3), positively associated with planting date at  high infestation levels (Fig. 3C, Table 3), 

      2013     2014     2015 

        

Length tunnelling (cm) 18.4  ±  2.52 6.05 ± 1.00 7.99 ± 1.94 

Cob damage (%) 4.04 ± 0.82  0.72 ± 0.21 2.36 ± 0.61 

Total holes (count) 2.00 ± 0.23 0.78 ± 0.19 0.74 ± 0.18 

Number of larvae per plant  1.36 ± 0.18  0.30 ± 0.05  0.51 ± 0.16  

Dry grain yield ( t ha-1) 4.96 ± 0.28  4.48 ± 0.30 3.96 ± 0.26 

Crop biomass (t ha-1) 7.21 ± 0.80   6.71 ± 0.61 5.78 ± 0.54 

Nitrogen input (kg ha-1) 70.8 ± 11.6 52.0 ± 6.44 45.8 ± 6.49 

Planting date (week number) 16.5 ± 0.41 17.2 ± 0.35 21.2 ± 0.57 

Plant density per 2 m2  8.99 ± 0.18 8.16 ± 0.33 9.73 ± 0.45 
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and positively associated with nitrogen input at intermediate (75% quantile) 

infestation levels (Fig. 3D, Table 3).  
 

Table 2: Determinants of log(x+1)-transformed length of tunnelling in maize plants using a 

linear mixed model when considering field scale factors. Year and field were random variables. 

Maize variety BH540 and the cropping system maize-bean intercrop were reference variables. 

Significant effects are shown in bold (P < 0.05). 

 
 

  

  Estimate 
Std. 

Error 
p-value 

        

Perimeter area ratio 0.326 0.403 0.424 

Hedge diversity  -0.172 0.149 0.260 

Soil organic matter -0.023 0.023 0.333 

Soil nitrogen -0.061 0.281 0.829 

Soil phosphorus 0.007 0.103 0.945 

Planting date 0.029 0.040 0.471 

Nitrogen input -0.002 0.003 0.539 

Plant density  0.107 0.051 0.039 

Maize variety (Limu) 0.161 0.289 0.579 

Maize variety (Other) 0.192 0.270 0.480 

Cropping system (Sole Maize) 0.190 0.198 0.339 
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Figure 3: Quantile regressions at 10%, 25%, 50%, 75%, and 90% of the length tunnelling for 

the field scale variables plant density (A), hedge diversity (B), planting date (C), and nitrogen 

input (D).   

 

  

 

Le
ng

th
 tu

nn
el

lin
g 

(c
m

) 



76 
 

Table 3: Overview of results of quantile regressions for the length tunnelling and grain yield at 

10%, 25%, 50%, 75%, and 90% quantiles. Significant effects are shown in bold (P < 0.05). 

  
tau Estimate 

Std. 

Error 
t value Pr(>|t|) 

Length tunnelling  

Plant density  

0.10 -0.030 0.196 -0.15 0.880 

0.25 0.412 0.355 1.16 0.249 

0.50 0.726 0.542 1.34 0.184 

0.75 0.670 1.704 0.39 0.695 

0.90 3.283 2.729 1.20 0.232 

Hedge 

diversity 

0.10 -0.478 0.402 -1.190 0.237 

0.25 -1.014 0.678 -1.497 0.138 

0.50 -2.937 1.313 -2.237 0.028 

0.75 -5.897 2.015 -2.927 0.004 

0.90 -9.289 4.006 -2.319 0.023 

Planting week 

0.10 0.029 0.072 0.394 0.694 

0.25 -0.089 0.167 -0.532 0.596 

0.50 -0.300 0.384 -0.781 0.437 

0.75 -0.205 0.889 -0.231 0.818 

0.90 1.055 1.213 0.870 0.387 

Nitrogen input 

0.10 -0.007 0.008 -0.831 0.408 

0.25 -0.002 0.020 -0.082 0.935 

0.50 0.024 0.037 0.636 0.527 

0.75 0.151 0.080 1.883 0.063 

0.90 0.039 0.185 0.210 0.834 

           

Grain yield  

Nitrogen input 

0.10 0.009 0.007 1.273 0.206 

0.25 0.012 0.005 2.630 0.010 

0.50 0.009 0.006 1.350 0.180 

0.75 -0.001 0.006 -0.092 0.927 

0.90 -0.009 0.008 -1.086 0.280 

          

Planting date  

0.10 -0.127 0.057 -2.219 0.029 

0.25 -0.138 0.072 -1.911 0.059 

0.50 -0.086 0.069 -1.245 0.217 

0.75 -0.026 0.071 -0.368 0.713 

0.90 -0.022 0.079 -0.275 0.784 
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3.2 Factors influencing stemborer infestation at the landscape level  

When considering field and landscape level variables together, the length of tunnelling 

was positively related with the proportion of maize at 100 m (P < 0.001), 500 m (P < 

0.05), 1000 m (P < 0.001) and 1500 m (P < 0.001; Table 4) around the focal maize 

fields. At 2000 m, this effect was only marginally significant (P = 0.095). AIC indicated 

that the models with the proportion of maize at 100, 1000, and 1500 m received most 

support from the data.  

 

3.3 Factors influencing maize grain and biomass yield at the field scale 

Maize grain yield was significantly positively associated with plant density (P < 0.001) 

and soil phosphorus content (P < 0.01; Table 5). In addition, grain yield was marginally 

negatively associated with the relative length of tunnelling (P = 0.060). Quantile 

regressions analysis revealed that grain yield was significantly positively associated 

with nitrogen input for the 25% lower yields and was not affected by  planting date (Fig. 

4, Table 3). Crop biomass was positively associated with plant density (P = 0.028).  
 

 

Figure 4: Quantile regressions at 10%, 25%, 50%, 75%, and 90% of the grain yield and 

nitrogen input (A) and the grain yield and planting date (B). 

 

  



78
 

 Ta
bl

e 
4:

 D
et

er
m

in
an

ts
 o

f l
og

(x
+1

)-t
ra

ns
fo

rm
ed

 le
ng

th
 o

f t
un

ne
llin

g 
in

 m
ai

ze
 p

la
nt

s 
us

in
g 

a 
lin

ea
r m

ix
ed

 m
od

el
 a

t f
iv

e 
sp

at
ia

l s
ca

le
s,

 i.
e.

 ra
di

i f
ro

m
 

10
0 

to
 2

00
0 

m
 a

ro
un

d 
th

e 
sa

m
pl

ed
 fi

el
ds

. Y
ea

r 
an

d 
fie

ld
 w

er
e 

ra
nd

om
 v

ar
ia

bl
es

. M
ai

ze
 v

ar
ie

ty
 B

H
54

0 
an

d 
th

e 
cr

op
pi

ng
 s

ys
te

m
 m

ai
ze

-b
ea

n 

in
te

rc
ro

p 
w

er
e 

re
fe

re
nc

e 
va

ria
bl

es
. S

ig
ni

fic
an

t e
ffe

ct
s 

ar
e 

sh
ow

n 
in

 b
ol

d 
(P

 <
 0

.0
5)

, m
ar

gi
na

lly
 s

ig
ni

fic
an

t e
ffe

ct
s 

ar
e 

un
de

rli
ne

d 
(0

.0
5 

< 
P

 <
 0

.1
). 

AI
C

 v
al

ue
s 

th
at

 d
iff

er
 b

y 
le

ss
 th

an
 2

 in
di

ca
te

 li
ttl

e 
di

ffe
re

nc
e 

in
 s

up
po

rt 
fro

m
 th

e 
da

ta
 to

 m
od

el
s.

 

 
10

0m
 

 
 

50
0m

 
 

 
10

00
m

 
 

 
15

00
m

 
 

 
20

00
m

 
 

 

 E
st

im
at

e 
St

d.
  

Er
ro

r 

p-

va
lu

e 

Es
tim

at
e 

St
d.

  

Er
ro

r 

p-

va
lu

e 

Es
tim

at
e 

St
d.

  

Er
ro

r 

p-

va
lu

e 

Es
tim

at
e 

St
d.

  

Er
ro

r 

p-

va
lu

e 

Es
tim

at
e 

St
d.

  

Er
ro

r 

p-

va
lu

e 

Al
tit

ud
e 

-4
.2

30
 

4.
99

8 
0.

40
6 

-1
.9

94
 

5.
76

4 
0.

73
2 

-4
.6

48
 

4.
83

9 
0.

34
7 

-3
.9

31
 

4.
98

7 
0.

43
9 

-5
.5

67
 

5.
39

7 
0.

31
3 

Pe
rim

et
er

 a
re

a 
ra

tio
 

0.
20

8 
0.

38
4 

0.
59

1 
0.

28
3 

0.
41

0 
0.

49
4 

0.
24

3 
0.

37
6 

0.
52

3 
0.

28
7 

0.
38

4 
0.

46
0 

0.
21

7 
0.

41
4 

0.
60

4 

H
ed

ge
 d

iv
er

si
ty

 
-0

.0
87

 
0.

12
9 

0.
50

9 
-0

.1
11

 
0.

13
8 

0.
42

8 
-0

.0
18

 
0.

13
2 

0.
89

4 
-0

.0
11

 
0.

13
7 

0.
93

6 
-0

.0
63

 
0.

15
1 

0.
67

9 

So
il 

or
ga

ni
c 

m
at

te
r 

-0
.0

12
 

0.
02

0 
0.

55
4 

-0
.0

12
 

0.
02

2 
0.

57
5 

-0
.0

10
 

0.
02

0 
0.

63
1 

-0
.0

10
 

0.
02

0 
0.

62
4 

-0
.0

13
 

0.
02

2 
0.

57
5 

So
il 

ni
tro

ge
n 

-0
.0

07
 

0.
24

3 
0.

97
7 

-0
.0

25
 

0.
26

0 
0.

92
4 

-0
.0

13
 

0.
23

6 
0.

95
7 

-0
.0

04
 

0.
24

1 
0.

98
6 

-0
.0

19
 

0.
26

7 
0.

94
5 

So
il 

ph
os

ph
or

us
 

-0
.1

18
 

0.
09

8 
0.

24
2 

-0
.0

66
 

0.
10

3 
0.

52
8 

-0
.0

93
 

0.
09

4 
0.

33
1 

-0
.0

93
 

0.
09

6 
0.

34
0 

-0
.0

59
 

0.
10

5 
0.

57
8 

Pl
an

tin
g 

da
te

 
0.

01
3 

0.
03

8 
0.

73
9 

0.
01

9 
0.

03
9 

0.
62

8 
0.

00
5 

0.
03

8 
0.

89
9 

0.
00

9 
0.

03
8 

0.
81

5 
0.

01
7 

0.
03

9 
0.

65
7 

N
itr

og
en

 in
pu

t 
-0

.0
03

 
0.

00
3 

0.
34

7 
-0

.0
03

 
0.

00
3 

0.
30

1 
-0

.0
04

 
0.

00
3 

0.
16

3 
-0

.0
04

 
0.

00
3 

0.
15

5 
-0

.0
03

 
0.

00
3 

0.
26

7 

Pl
an

t d
en

si
ty

 
0.

06
8 

0.
04

9 
0.

16
8 

0.
07

6 
0.

05
1 

0.
13

7 
0.

05
2 

0.
05

0 
0.

30
0 

0.
06

0 
0.

05
0 

0.
23

1 
0.

08
2 

0.
05

1 
0.

11
3 

M
ai

ze
 v

ar
ie

ty
 (L

im
u)

 
0.

02
5 

0.
29

0 
0.

93
2 

0.
09

8 
0.

29
0 

0.
73

6 
-0

.0
10

 
0.

29
5 

0.
97

4 
-0

.0
25

 
0.

29
7 

0.
93

3 
0.

03
8 

0.
29

9 
0.

90
0 

M
ai

ze
 v

ar
ie

ty
 (O

th
er

) 
0.

23
4 

0.
26

3 
0.

37
5 

0.
21

1 
0.

26
8 

0.
43

3 
0.

11
7 

0.
26

7 
0.

66
1 

0.
09

9 
0.

26
9 

0.
71

2 
0.

13
9 

0.
27

5 
0.

61
5 

C
ro

pp
in

g 
S

ys
te

m
 (S

ol
e 

m
ai

ze
) 

0.
12

7 
0.

19
6 

0.
51

9 
0.

16
7 

0.
20

0 
0.

40
7 

0.
11

7 
0.

19
7 

0.
55

3 
0.

10
6 

0.
19

7 
0.

59
4 

0.
10

3 
0.

20
1 

0.
61

2 

R
at

io
 o

f m
ai

ze
 a

t 1
00

m
 

0.
01

3 
0.

00
5 

0.
00

8 
 

 
 

 
 

 
 

 
 

 
 

 

R
at

io
 o

f m
ai

ze
 a

t 5
00

m
 

 
 

 
0.

01
3 

0.
00

6 
0.

04
8 

 
 

 
 

 
 

 
 

 

R
at

io
 o

f m
ai

ze
 a

t 1
00

0m
 

 
 

 
 

 
 

0.
02

1 
0.

00
7 

0.
00

5 
 

 
 

 
 

 

R
at

io
 o

f m
ai

ze
 a

t 1
50

0m
 

 
 

 
 

 
 

 
 

 
0.

02
4 

0.
00

8 
0.

00
8 

 
 

 

R
at

io
 o

f m
ai

ze
 a

t 2
00

0m
 

 
 

 
 

 
 

 
 

 
 

 
 

0.
01

9 
0.

01
1 

0.
09

5 
A

ka
ik

e 
in

fo
rm

at
io

n 
cr

ite
rio

n 
(A

IC
) 

28
8.

02
 

 
 

29
3.

54
 

 
 

28
9.

92
 

 
 

29
0.

19
 

 
 

29
3.

55
 

 
 



79 
 

Table 5: Determinants of maize grain yield and crop biomass using a linear mixed model with 

explanatory variables at the field level. Year and field were random variables. Maize variety 

BH540, the cropping system maize-bean intercrop were reference variables. Significant effects 

are shown in bold(P < 0.05), marginally significant effects are underlined (0.05 < P < 0.1).  

  

Grain yield 

  

Above-ground biomass 

 

  

Estimate 

 

Std. Error 

 

p-value 

     

Estimate 

 

Std. Error 

 

p-value 

       

Soil organic matter -0.006 0.038 0.869 -0.115 0.086 0.189 

Soil nitrogen  -0.320 0.488 0.516 0.602 1.089 0.585 

Soil phosphorus 0.531 0.184 0.007 0.385 0.402 0.348 

Planting date  -0.067 0.054 0.230 0.250 0.170 0.144 

Nitrogen input 0.001 0.004 0.740 0.004 0.011 0.712 

Plant density 0.333 0.076 0.000 0.493 0.221 0.028 

Maize variety (Limu) 0.388 0.423 0.362 -0.686 1.302 0.600 

Maize variety (Other) -0.008 0.392 0.983 -1.451 1.155 0.213 

Cropping system (Sole maize) -0.011 0.284 0.969 1.209 0.849 0.158 

Relative length tunnelling -0.200 0.104 0.060 -0.423 0.310 0.177 
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4. Discussion  

In this study, we assessed how factors at the field and landscape levels affected maize 

stemborer infestation and how this impacted maize grain yield and biomass 

production. We found that the proportion of maize around the focal maize fields a 

measure of landscape uniformity had a strong positive effect on stemborer infestation 

levels at distances ranging from 100 to 1500 m. When considering field level factors 

only, plant density was the only factor that significantly increased stemborer 

infestation levels. Yet at high infestation levels, late planting was associated with 

increased stemborer infestation levels and hedge diversity with decreased infestation 

levels. While maize productivity was positively associated with plant density and soil 

phosphorus content, it was only weakly affected by stemborer infestation, highlighting 

the capacity of maize to compensate for herbivory.  

 

4.1 Landscape context overrides field management practices for the 

control of maize stemborers  

The proportion of maize in the landscape was the most dominant factor explaining 

maize stemborer infestation levels, overriding the effect of field management practices 

(Table 4). The positive association between maize in the landscape and stemborer 

infestation levels can be explained by the fact that maize is a source habitat with 

positive stemborer population growth rates, resulting in individuals spilling over to 

nearby habitats (Pulliam, 1988; Rand et al, 2006). The population growth rates in 

maize are likely to be high because farmers do not apply chemical insecticides, and 

maize stems are stored in piles near homesteads, constituting a direct source of carry-

over populations of B. fusca (Gebre-Amlak, 1988). While the dispersal capacity of 

stemborers has not been directly measured, records on the geographic range expansion 

of resistance development against Bt toxin suggest that B. fusca can move up to 50 km 

in a year (Kruger et al., 2011; Dupas et al., 2014). This suggests that the B. fusca females 

that laid egg batches in the focal maize fields could have easily crossed 2000 m, which 

was the largest radius considered in our study. Furthermore, the resource 

concentration hypothesis predicts that herbivorous insects are more abundant in large 

patches of host plants because these patches are easier to locate and herbivores stay 

longer in those patches (Root, 1973). Since females of B. fusca do not seem to have a 

strong sensory system to detect preferred host plants at a distance (Calatayud et al., 

2008), host finding success in maize-dominated landscapes is likely to be higher than 
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in landscapes with only few maize fields. Thus, our findings of higher stemborer 

infestations in maize-dominated landscapes are likely be moderated by an enhanced 

reproduction potential and increased host finding success, with a positive feedback 

between these mechanisms.  

 

4.2 Management factors can influence infestation during high infestation 

years    

When considering only factors at the field level, plant density was the only factor that 

was significantly related to stemborer infestation levels (Table 2). However, at high 

infestation levels, plant diversity in hedges was negatively associated with stemborer 

infestation (Fig. 3B). More diverse hedgerows may provide better life-support 

functions for natural enemies of stemborers, such as food resources and shelter, which 

could potentially lead to enhanced natural enemy colonisation of maize fields and 

stemborer suppression (Kebede et al., 2018). Although current recommendations for 

cultural control of maize stemborers promote increasing within-field diversification to 

stimulate natural enemies, the potential contribution of hedgerows has seldom been 

considered (Lawani, 1982; Getu et al., 2001). Therefore, the role of the diversity of 

plants in hedgerows may be a promising area for further research on biological control.  

Farmers are well aware of the importance of the strategic planning of the maize 

planting date at the right moisture content of the soil for stemborer control in the study 

area. Previous research in the same area showed that delaying planting until after 

April/early May can result in serious crop losses (Gebre‐Amlak et al., 1989). Thus, early 

planting as soon as the rain starts is the recommended has been recommended practice 

to reduce crop damage by B. fusca. Our findings suggest that late planting is associated 

with higher infestation rates only at high infestation levels (Fig. 3.C) without 

significantly influencing maize productivity (Table 5). Thus, the efficacy of maize 

planting date as a strategy for the control of stemborers may merit further 

investigation, particularly because current recommendations are based on research 

conducted more than 25 years ago, and major changes in land use have happened in 

this period (Kebede et al., 2018a). 

Nitrogen input did not significantly influence stemborer infestation levels at the 

field (Table 2) and landscape levels (Table 4). This finding contrasts with studies that 

report that NPK fertilisation favours stemborer infestation (Debebe et al., 2008; 

Chabi-Olaye et al., 2008). However, the reported fertilisation rates which increased 
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stemborer infestation were 60 to 120 kg ha-1 of nitrogen and were higher than the rates 

used in our area (yearly averages ranging between 54 and 70 kg ha-1 of nitrogen input); 

they were also below the recommended rates for this region, i.e 92 kg ha-1 of N (Tamene 

et al, 2017).  In addition, the applied fertilisation might not be completely taken up by 

the maize plants due to soil texture which affects the mineralisation rate (Kayser et al., 

2011), phosphorus deficiency (Nziguheba, 2007) suboptimal timing of the application 

or rainfall conditions (rainfall shortage after urea application). While the effect of 

nitrogen fertilisation on stemborer infestation is generally reported as positive (Debebe 

et al., 2008; Chabi-Olaye et al., 2008) it is likely that there are many confounding 

factors, including rainfall, soil moisture, and other soil properties which determine the 

effect.  

Intercropping maize with beans did not significantly reduce stemborer 

infestation. This contrasts with earlier reports of reduced stemborer infestation levels 

in maize-legume intercropping systems (Chabi-Olaye et al., 2002; Belay et al., 2008). 

However, in the intercrops of our study there was only a very low density of common 

bean, which was also reflected in the low bean yields reported by farmers.  Apparently, 

the density of beans was too low to influence host plant finding by stemborer females 

in a meaningful way.  

 

4.3 Limited impact of stemborer infestation on maize grain and biomass 

yields 

Contrary to our initial hypothesis, maize grain yield was only marginally significant 

affected by the relative length tunnelling, and there was no significant negative 

relationship between the relative length tunnelling and maize biomass. These findings 

can be explained by the relatively low stemborer densities observed during the three 

years of the study (less than two larvae per plant on average), which is not expected to 

lead to significant yield losses (Van Rensburg et al., 1988). Moreover, besides pest 

attack, other factors, such as soil fertility, are likely to have a stronger limiting effect on 

yield. Indeed, at low grain yield levels, there was a positive association between N input 

and grain yield (Fig. 4A, Table 3). However, based on this three year study, we conclude 

that maize productivity is tolerant to low and medium infestation levels of stemborers. 
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5. Conclusions 

Our study confirms the findings of a growing body of literature that reports that 

landscape effects can influence pest population dynamics (Karp et al, 2018), and for 

the case of B. fusca in Ethiopia, the proportion of maize in the landscape overrides the 

impact of field level management practices. We also show that the impact of current 

stemborer infestations on maize grain and biomass yield is limited, likely due to low 

infestation levels during the three years of our study. The contrasting historic and 

current findings of the impact of stemborers on maize yield, ranging from up to 

complete crop failure in the 1980’s (Gebre‐Amlak et al., 1989), and the limited impact 

found in our study suggest that the ongoing conversion of maize crops to other crops, 

such as enset and khat during the last decenia, may have reduced stemborer 

populations (Kebede et al. 2018). Such scenario would be in line with findings of 

simulation studies that highlight the potential role of changes in agricultural land uses 

for herbivores and predators (Bianchi et al. 2007) but also show that pest dynamics 

cannot be understood without a much wider perspective on the socio-economic 

context.  
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Chapter 5 

 

Unpacking the push-pull system: Assessing the 

contribution of companion crops along a gradient of 

landscape complexity 

 

 

Chapter published as: Kebede, Y., Baudron, F., Bianchi, F.J.J.A., Tittonell, P., 2018. 

Unpacking the push-pull system: Assessing the contribution of companion crops along 

a gradient of landscape complexity. Agriculture, Ecosystems & Environment 268, 115- 

123. 
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Abstract 

The push-pull system, a stimulo-deterrent cropping strategy consisting of 

intercropping cereals with herbaceous legumes and surrounded by fodder grasses, is 

presented as a promising crop diversification strategy for smallholder farmers in Africa 

as it may contribute to maize stemborer Busseola fusca (Fuller) suppression while 

improving soil fertility and providing feed for livestock. The push-pull system has often 

been assessed at plot level and as a package (e.g. Maize + Desmodium + Napier grass). 

However, it is unclear how the system performs in different landscape settings or when 

companion crops are changed to better meet household needs. Here we evaluate the 

potential of the push-pull system to suppress maize stemborer infestations in three 

landscapes in the Rift Valley region of Ethiopia along a gradient of landscape 

complexity. Within each landscape, experimental plots were established on four 

representative smallholder farms. At each farm we used a split-plot factorial design 

with main plots surrounded or not by Napier grass and subplots consisting of sole 

maize, maize-bean, or maize-Desmodium. We assessed stemborer infestation levels 

and maize grain and stover yields during two years, as well as natural enemies 

abundance and egg predation at two maize development stages in the second year. In 

the simple landscape, which was dominated by maize, all treatments had high 

stemborer infestation levels, irrespective of within-field crop diversity; the presence of 

Napier grass was associated with higher predator abundance, while egg predation rates 

were the highest in the maize-bean intercrop. In the intermediate complexity 

landscape, subplots with sole maize had higher stemborer infestation levels compared 

to maize-bean or maize-Desmodium. In the complex landscape, infestation levels were 

low in all treatments. However, none of these effects led to significant differences in 

maize grain and stover yields among treatments in any of the landscapes. The benefits 

of the push-pull system accrued from the companion crops (bean, Desmodium, and 

Napier) rather than from stemborer suppression per se. Our findings highlight the 

importance of the surrounding landscape in mediating the performance of the push-

pull system, provide new insights on the contribution of the different components of 

push-pull system, and can guide the design of ecologically intensive agroecosystems.  
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1. Introduction  

There is increasing interest in multipurpose cropping systems able to deliver a range 

of products and services to meet the multiple needs of rural smallholder families and 

that capitalise on ecological processes rather than external inputs. In large parts of 

Africa, maize (Zea mays L.) is an important staple crop providing food, feed, and fuel 

(Shiferaw et al., 2011). However, maize production can be severely compromised by 

pests, disease and parasitic weeds in many parts of the region (Reynolds et al., 2015). 

Maize stemborers Busseola fusca and Chilo partellus are considered to be the most 

damaging insect pests, causing variable but sometimes devastating yield losses. 

Stemborer infestation is severe in Southern Ethiopia, where maize production is 

further limited by declining soil fertility (Corral-Nuñez et al., 2014) and un-predictable 

rainfall (Muluneh et al., 2015). These factors, in combination with decreasing farm 

size, threaten food security, as well as household incomes (Mellisse et al., 2018). There 

is a need for affordable strategies that can reduce pest incidence below economic 

thresholds while improving soil fertility and fodder production.  

Crop diversification strategies may offer scope for enhancing natural 

suppression of stemborers (Chabi-Olaye et al., 2008). While the use of chemical 

pesticides is a common control method across the world, it is not effective for 

stemborer control because of the cryptic behaviour of the larvae in the stems. 

Moreover, chemical insecticides are often too expensive for smallholder farmers and 

often have adverse effects on non-target biota (including natural enemies), the 

environment, and human health (Rusch et al., 2010). Crop diversification strategies 

may contribute to reducing crop losses by pests by limiting the pests’ ability to locate 

host plants (Poveda et al., 2008), by repelling pests via plant-mediated semiochemicals 

(Bakthavatsalam, 2016), or by stimulating the abundance and diversity of natural 

enemies that may provide top-down control of pests (Mailafiya et al., 2011; Pickett et 

al., 2014). However, the effectiveness of pest suppression potential depends critically 

on the composition – in terms of species and cultivars – of the cropping system (Zhang 

et al., 2013), while the crop assemblage should meet the requirements of the household 

in terms of food, feed, and/or cash.  

The push-pull system is a crop diversification strategy based on intercropping 

maize with a legume species such as Desmodium spp., whose semiochemicals repel 

stemborers (“push” effect), bordered by a trap crop (e.g. Pennisetum purpureum or 

Brachiaria spp.), which attracts stemborers (“pull” effect) (Cook et al., 2007; Khan et 
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al., 2010; Zhang et al., 2013). This system is also associated with enhanced suppression 

of the parasitic weed Striga, enhanced soil fertility through N-fixation by the legume 

Desmodium spp., and increased food and feed production (Cook et al., 2007; Belay 

and Foster, 2010). Perennial fodder crops alter the attractiveness of the crop habitat 

for potential natural enemies of stemborers in maize fields. For instance, Khan et al 

(2001) demonstrated that the parasitism of stemborers in push-pull systems is 

enhanced through attraction of parasitoids to molasses grass. Similarly, Mammo 

(2012) found that Napier and Sudan grass attracted predators of stemborers, such as 

ants, earwigs and spiders. The adoption of the push-pull system may be further 

stimulated by replacing the Desmodium spp., which can only be used for feed, with a 

multipurpose grain legume such as common bean, which is an important source of 

protein in local diets (Fischler, 2010). Beyond their ability to fix nitrogen, legume crops 

produce secondary metabolites as defence compounds against herbivores (Wink, 

2013). Indeed, traditional maize/bean or maize/cowpea intercropping systems are less 

prone to stemborer infestations (Chabi-Olaye et al., 2002; Belay and Foster, 2010), 

and tend to provide higher maize yield than sole maize (Songa et al., 2007; Seran and 

Brintha, 2010). However, the push-pull system has often been assessed as a package, 

and the contribution of each component is not clear. In addition, the performance of 

the push-pull system based on Desmodium spp. and other legume crops in different 

landscape contexts is not well known.  

Despite the considerable research effort on push-pull systems, most studies 

have focused on assessing the effectiveness of this system at the field scale, often in 

research stations, without considering the effect of the surrounding landscape (Midega 

et al., 2014; Eigenbrode et al., 2016). Landscape context can influence the pest and 

natural enemy interactions by providing resources and shelter (Eigenbrode et al., 

2016). For instance, while maize fields function as reproduction habitats for 

stemborers, perennial crops may support natural enemies in maize-based cropping 

systems (Kebede et al., 2018). Landscape factors that drive stemborer and natural 

enemy population dynamics at relatively large spatial scales may interact with within-

field crop diversity factors that moderate stemborer repelling and attracting effects at 

smaller spatial scales. It is yet unclear how such interactions unfold in African 

smallholder landscape settings. Moreover, the push-pull system based on Napier-

Desmodium may not fulfil the needs of smallholder farmers without livestock. In these 

cases, replacing the feed crop Desmodium by common bean may be beneficial, and 
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Napier, which is also used for feed, may be less desired by farmers. There is a need to 

assess the performance of the different crop combinations and system components in 

the push-pull cropping system to meet the needs of different production situations of 

smallholders while considering the landscape context (Eigenbrode et al., 2016).  

This paper has two objectives. The first objective is to assess the agronomic and 

pest suppression potential of push-pull systems in landscapes of increasing 

complexity, from landscapes dominated by maize to landscapes dominated by 

perennial crops and semi-natural vegetation. For this, we assessed the stemborer 

infestation levels in maize, the abundance of generalist predators, the associated 

predation rates, and maize grain and stover yields. Based on previous studies (Cook et 

al., 2007; Khan et al., 2008b; Pickett et al., 2014), we hypothesised that the push-pull 

system would suppress stemborers and result in higher maize yield, irrespective of the 

landscape setting. The second objective is to assess the performance of the alternative 

push-pull systems by varying or omitting one of the companion crops. We compared 

the performance of the traditional push-pull system based on Napier-maize-

Desmodium (Desmodium uncinatum jacq) to the performance of Napier-maize-

common bean (Phaseolus vulgaris L.) and Napier-maize; we also assessed the 

performance of these three cropping systems without Napier. We expected that 

replacing Desmodium with common bean and omitting the Napier trap crop would 

result in higher stemborer infestation levels and lower maize yields.  

 

2. Materials and methods  

2.1 Study area  

The study area is located in the Hawassa region in the Ethiopian Rift Valley between  

7 ̊03′11′′ to 7 ̊08′4′′ N latitude and 38 ̊15′17′′ to 38 ̊38′47′′ E longitude (Fig. 1). The 

area is characterised by a moist to sub- humid warm subtropical climate. Annual 

precipitation ranges from 750 to 1200 mm in a bimodal distribution pattern and is 

expected in March to April and June to August (Dessie and Kleman, 2007). Busseola 

fusca is the major maize stemborer species found in the area. The average land holding 

per household is below one hectare of arable land (Dessie and Kleman, 2007; Dessie 

and Kinlund, 2016). We selected representative landscapes in three districts: Hawassa 

Zuria, Tula, and Wondo Genet, along a gradient of decreasing annual/perennial crops 

ratio. We refer to these three landscapes as simple, intermediate, and complex 

landscapes, respectively. Hawassa Zuria is dominated by maize, while Wondo Genet 
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contains a substantial proportion of woody semi-natural habitat and the perennial 

crops khat (Catha edulis) and enset (Ensete ventricosum). Tula has an intermediate 

proportion of maize and semi-natural habitat. Data on landscape composition and 

configuration were obtained by combining Landsat satellite images and focus group 

discussions with farmers (Kebede et al., 2018).  

 

Figure 1. Location of the study landscapes around Lake Hawassa in the Rift Valley region of 

Ethiopia: Simple (1), intermediate (2), and complex (3) landscapes. The simple landscape (1) 

is dominated by maize, the diverse landscape (3) by perennial crops and late successional 

non-crop vegetation, and (2) the intermediate landscape has a mixed composition of maize, 

perennial crops, and non-crop vegetation.  
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2.2 Experimental design and plot management  

Prior to the installation of the experimental plots, we evaluated the performance of five 

Napier grass genotypes (four genotypes of Pennisetum purpureum: 16 803, 16 786, 16 

837, and 14 984; and one of Pennisetum riparium: Sodo 88) obtained from the 

International Livestock Research Institute (ILRI) in Ethiopia. In the simple landscape 

we planted three rows of each genotype and replicated the experiment in three sites 

(Kebede, unpublished data). Based on the performance in terms of stemborer larvae 

density, leaf eating by stemborer, and biomass productivity, we selected the genotype 

16 803 for the push-pull experiment (Appendix 1). In each landscape, experimental 

fields were established on four farms for a total of 12 fields. Each field was divided in 

two blocks separated by 5 m and surrounded by Napier grass or not (Fig. 2). Napier 

was planted a month prior to maize planting in 2014 at inter and intra-row spacing of 

75 cm and 50 cm, respectively, using stem cuttings of Pennisetum purpureum 

(Genotype 16 803). Each block was divided in three plots (10x7.5 m) with an inter plot 

distance of two metres, the maximum distance possible given the small size of farmers’ 

fields in the area. Three cropping systems were randomly assigned to each plot: sole 

maize, maize-silverleaf Desmodium uncinatum, and maize-common bean (Fig. 2). The 

commonly used maize variety in the study area BH540 was planted at inter and intra-

row spacing of 75 cm and 30 cm, respectively. We applied 100 kg ha−1 diammonium 

phosphate (DAP) at planting and top-dressed the crop with 100 kg ha−1 of urea, 

following national recommendation rates. In each landscape, the time of planting, 

weeding, and harvest were as per farmers’ practice.  
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Figure. 2. Experimental design of the study. Four farms were selected in each of the three 

landscapes. In each farm a randomized block design was established, with two blocks 

(absence or presence of Napier grass) and three cropping systems randomly assigned within 

blocks (sole-maize, maize common bean, and maize-Desmodium).  

 

2.3 Stemborer infestation and yield assessment  

Maize infestation was assessed by randomly selecting twenty plants per plot at grain 

filling and maturity stages in 2014 and 2015. From each plant we recorded the number 

of holes in the stem, the stemborer tunnel length in the stem, the number of live and 

dead larvae, the number of pupae, and the proportion surface damage of the cob(s). 

Maize grain moisture (%) content was assessed using Dickey John portable grain 

moisture tester (http://www.dickey-john.com/product/ m3g/). Maize grain yield in 

tonnes of dry matter per hectare (t DM ha -1) was calculated at plot level by multiplying 

the fresh weight by the DM content and converted into tonnes per hectare. Maize stems 

and leaves were weighted in situ, and a subsample was oven dried during 48 h at 70 °C 

and maize stover yield (t DM ha -1) calculated. The yield of common bean was assessed 

by destructive harvesting of five sections of one metre of bean plants along the row and 

assessing the fresh and dry weight of grain and crop residues.  
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2.4 Generalist predator abundance and egg predation  

The abundance of natural enemies of maize stemborers and egg predation were 

assessed in each of the 72 plots during grain filling and maturity in 2015. The arthropod 

community was sampled by placing yellow pans and pitfall traps at two locations 

within each sub-plot (Fig. 2) for three days as described in Kebede et al. (2018). 

Arthropod samples were sorted and generalist predators were identified at the order, 

or family level following the identification key of Polaszek et al. (1998) and Bonhof et 

al. (1997). Specimens belonging to the order Araneida, the families Forficulidae, 

Staphylinidae and Formicidae, and the genus Cheilomenes were considered as main 

predators of maize stemborers (Kfir, 1997). Parasitoid abundance was low and was not 

analysed . To assess egg predation, we prepared cards with Ephestia kuehniella eggs 

by sprinkling the eggs uniformly on a standardized sticky area of 28.27 mm2 using a 

hole punch and removed excess eggs that did not touch the sticky surface. Five egg 

cards were placed in each subplot in a Z-shape pattern in the plot interior, at least two 

metres from the plot border (Fig. 2). The egg cards were stapled at the top of maize 

plants in the leaf sheaths, which is the natural place where female stemborer deposit 

egg batches, and were left in the field for three days. The fraction of eggs removed by 

predators was assessed by comparing pictures before and after field exposure using 

ImageJ software (https://imagej.net/Welcome).  

 

2.5 Data analysis  

The number of holes, number of larvae, proportion of cob damage, and length of 

tunnelling were pooled for the 20 plants in each plot. To reduce the number of response 

variables associated with stemborer infestation we assessed the Pearson correlation 

between the number of holes, proportion of cob damage, length of tunnelling, and 

number of larvae. Since the four proxies were significantly correlated (P < 0.001; R = 

0.74 or higher; Appendix 2), we selected length of tunnelling for further analysis 

because this proxy captures information about stemborer infestation and crop damage 

throughout the growing season. The length of tunnelling was log(x+1)-transformed, and 

the relationships between this transformed variable and landscape and crop diversity 

variables were analysed  using a linear mixed model (Eq. (1)):  

 

𝒀𝒀𝒊𝒊𝒊𝒊𝒊𝒊 = 𝜶𝜶 + 𝜷𝜷𝜷𝜷𝜷𝜷𝒊𝒊 +  𝜸𝜸𝑵𝑵𝑵𝑵𝒋𝒋 + 𝝀𝝀𝝀𝝀𝝀𝝀𝒌𝒌 + 𝝉𝝉(𝑳𝑳𝑳𝑳𝒊𝒊 ∗ 𝑵𝑵𝑵𝑵𝒋𝒋) + 𝜹𝜹(𝑳𝑳𝑳𝑳𝒊𝒊 ∗ 𝑪𝑪𝑪𝑪𝒌𝒌) + 𝝁𝝁(𝑵𝑵𝑵𝑵𝒋𝒋 ∗       𝑪𝑪𝑪𝑪𝒌𝒌)
+  𝝆𝝆 (𝑳𝑳𝑳𝑳𝒊𝒊 ∗ 𝑵𝑵𝑵𝑵𝒋𝒋 ∗ 𝑪𝑪𝑪𝑪𝒌𝒌)                                                     (𝟏𝟏) 
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where, Yijk represents the log(x+1)-transformed length of tunnelling, LNi is the 

landscape (simple, intermediate or complex), NPj is Napier grass (presence or 

absence), CRk is the cropping system (sole maize, maize-bean, or maize-Desmodium) 

and where α, β, γ, λ, τ, δ, μ, and ρ represent regression coefficients for the main and 

interaction effects. “Farm” was nested in “landscape” and both “farm” and “year” were 

considered random effects. The same model structure and analysis was applied for the 

response variables maize grain and stover yields.  

The response variables “generalist predator abundance” and “egg predation” 

(fraction of the Ephestia eggs removed) were count and binomially distributed data 

respectively and were analysed  using generalised linear mixed models. For “generalist 

predator abundance” we tested a Poisson and negative binomial error distribution with 

“farm” as random factor and selected the negative binomial error distribution because 

this model had the lowest Akaike Information Criterion (AICc) value. For “egg 

predation”, we used a logit link function. We used a similar model structure as 

presented in Eq. 1, but since these data were collected over a single year (2015) at two 

maize development stages (grain filling and physiological maturity of the maize), we 

adjusted Eq. 1 by removing “year” and adding “maize development stage” as a fixed 

factor. All analyses were conducted in R (R Core Team, 2012) and we used the 

chart.Correlation function from PerformanceAnalytics package for constructing 

correlation plots (Peterson and Carl, 2018), the lmerTest package for linear mixed 

models (Kuznetsova et al., 2017), and the GLMER function in the lme4-package for 

generalised linear mixed models (Bates et al., 2014).  

 

 

 

 

 

 

 

 

 

 

 

 



94 
 

3. Results  

3.1 Stemborer infestation  

The length of stemborer tunnelling in maize stems was significantly influenced by the 

landscape context (P < 0.01; Table 1; Fig. 3) with the highest length of tunnelling in the 

simple landscape. However, there were also significant landscape by cropping system 

interactions in the intermediate landscape where the length of tunnelling was higher 

in sole maize (P < 0.05) compared to maize-bean or maize-Desmodium cropping 

systems. These interactions indicate that the stemborer suppression potential of push-

pull systems may differ in different landscape settings.  
 

 

Table 1. Determinants of log(x+1)-transformed length of tunnelling in maize plants using a linear 

mixed model. Landscape complexity (simple, intermediate, or complex), Napier (presence or 

absence), cropping system (sole maize, maize-bean, or maize-Desmodium) were fixed 

variables, while farm was nested in landscape and year was taken as a random variable. The 

diverse landscape, the maize-Desmodium cropping system, and the presence of Napier were 

reference variables. Significant effects (P < 0.05) are shown in bold.  

 

  

 
Estimate    Std. Error P-value 

Intermediate 0.562 0.403 0.188 

Simple 1.647 0.402 0.001 

Napier absence -0.030 0.099 0.760 

Sole maize -0.166 0.140 0.238 

Maize-bean 0.181 0.142 0.206 

Intermediate *Napier absence 0.119 0.143 0.406 

Simple *Napier absence -0.013 0.141 0.928 

Intermediate *Sole maize 0.512 0.200 0.012 

Simple *Sole maize 0.158 0.197 0.425 

Intermediate *Maize-bean -0.475 0.202 0.020 

Simple *Maize-bean -0.195 0.199 0.329 

Napier absence * Sole maize -0.081 0.140 0.561 

Napier absence * Maize bean 0.140 0.142 0.326 

Intermediate *Napier absence *Sole maize 0.008 0.200 0.967 

Simple *Napier absence * Sole maize 0.029 0.197 0.885 

Intermediate *Napier absence * Maize-bean -0.121 0.202 0.552 

Simple * Napier absence * Maize-bean -0.141 0.199 0.482 



95 
 

Figure 3. Boxplots of length tunnelling per cropping system (sole maize (M), maize-common 

bean (MB), or maize-Desmodium (MD)) and per landscape (simple, intermediate, or 

complex) in the absence or presence of Napier grass.  

 

3.2 Generalist predator abundance and egg predation  

The interaction between landscape and the presence of Napier grass had a significant 

effect on the abundance of generalist predators, with the highest abundance in the 

simple landscape when Napier grass was present (P < 0.01; Table 2; Fig. 4A). In 

general, sole maize supported a low abundance of predators (P < 0.05), however, the 

interaction between cropping system and landscape had a significant effect on predator 

abundance, with higher predator abundance in sole maize plots located in the 

landscape of intermediate complexity. The generalist predator community was 

dominated by ants (Formicidae), followed by spiders (Araneae). The abundance of ants 

was high in the three landscapes but relatively higher in the maize-Desmodium 

cropping system with Napier in the complex landscape (Fig. 5). However, the observed 

differences in predator abundance did not affect egg predation rates. In fact, egg 

predation was mostly affected by maize development stage with higher predation at 

maturity (P < 0.01; Fig. 4B) and was lower in maize-bean cropping system (P < 0.05, 

Table 2). In the landscape of intermediate complexity, egg predation rates were highest 

in the maize-Desmodium cropping system (Fig. 4B), but differences were not 

significant.  
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3.3 Crop productivity   

Maize yield was not significantly influenced by landscape, presence or absence of 

Napier grass, and intercropping (Appendix 3.1). Common bean grain yield in the 

maize-bean cropping system was 0.64 ± 0.10, 1.03 ± 0.10, and 1.15 ± 0.18 t DM ha−1 

in the simple, intermediate, and complex landscape, respectively (Appendix 3.2), with 

significantly higher yield in the complex and intermediate landscape compared to the 

simple landscape (Appendix 3.3). In the maize-bean-Napier cropping system, bean 

grain yield was 0.76 ± 0.09, 1 ± 0.18, and 1.4 ± 0.17 in the simple, intermediate, and 

complex landscape, respectively (Appendix 3.2), with significantly higher bean yield in 

the complex landscape compared to the intermediate landscape (Appendix 3.3).  
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Table 2 Estimates of the model for the abundance of generalist predators with negative 

binomial distribution and egg predation with logit link function. The variables landscape 

diversity (diverse, intermediate or simple), Napier (presence or absence), cropping system 

(sole maize, maize-bean, or maize-Desmodium), and maize development stage (grain filling 

and maturity) were fixed variables. Farm was taken as a random variable nested in landscape. 

the diverse landscape, the maize-Desmodium cropping system, the presence of Napier, and 

the maize development stage maturity were reference variables. (P < 0.05) are shown in bold. 

  

 

 

Generalist predators 
 

Egg predation 
 

 

               Estimate 

 

Std. 

Error 

 

p-value 

 

Estimate 

 

 

Std. 

Error 

         

    

p- value 

 

Intermediate -0.473 0.257 0.066 1.680 5.238 0.7484 

Simple -0.073 0.256 0.775 0.815 0.518 0.1158 

Napier absence 0.094 0.071 0.187 0.395 0.340 0.2445 

Sole maize -0.255 0.102 0.013 0.259 0.469 0.5813 

Maize-bean -0.062 0.101 0.541 -1.067 0.499 0.0325 

Maturity -0.113 0.085 0.185 1.390 0.428 0.0012 

Intermediate * Napier absence -0.175 0.106 0.098 -1.959 5.234 0.7082 

Simple * Napier absence -0.304 0.102 0.003 -0.739 0.476 0.1201 

Intermediate * Sole maize 0.337 0.148 0.023 -1.219 5.254 0.8165 

Simple * Sole maize 0.161 0.145 0.268 -0.318 0.662 0.6311 

Intermediate * Maize-bean -0.106 0.149 0.477 -2.079 5.262 0.6929 

Simple * Maize-bean -0.075 0.145 0.605 0.900 0.679 0.1849 

Napier absence * Sole maize -0.129 0.103 0.209 0.126 0.470 0.7884 

Napier absence * Maize bean 0.037 0.102 0.715 -0.368 0.493 0.4552 

Intermediate * Napier absence * Sole maize 0.148 0.148 0.317 0.894 5.254 0.8649 

Simple * Napier absence * Sole maize 0.025 0.146 0.863 -0.408 0.663 0.5386 

Intermediate * Napier absence * Maize-bean -0.072 0.150 0.633 1.312 5.262 0.8031 

Simple * Napier absence * Maize-bean -0.100 0.145 0.493 0.641 0.678 0.3441 
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4. Discussion  

While the push–pull system is relatively well studied and promoted in East Africa as a 

practice that can suppress stemborer and Striga infestations (Khan et al., 2008a), 

improve soil fertility (Khan et al., 2011), and generate higher economic returns than 

sole maize (Kipkoech et al., 2006; Khan et al., 2008b), this is the first study – to the 

best of our knowledge – that examines the performance of the push-pull system in 

farmers’ field conditions along a gradient of landscape complexity. In addition, we 

assessed the effects of the “push” (Desmodium/bean) and “pull” (Napier) effects 

separately to explore opportunities to adjust the system to farmers’ realities by 

changing companion crop species. Trap crops and repellent crops occupy space that 

many farmers would preferably allocate to food crops. We tested the impact of 

replacing Desmodium with common bean and removing Napier grass on the 

performance of the push-pull system (stemborer and natural enemy abundances). We 

observed that stemborer infestation levels were negatively associated with landscape 

complexity, while crop diversification (including or not a legume intercrop and Napier 

grass) did not influence stemborer infestation in both the simple and the complex 

landscapes. Yet intercropping decreased stemborer infestation in the landscape of 

intermediate complexity. Generalist predator abundance tended to be lower in sole 

maize as compared to maize intercropped with legumes, but this was not the case in 

the landscape of intermediate complexity. Generalist predator abundance was 

positively associated with the presence of Napier grass in the simple, maize-dominated, 

landscape. Although the impact of stemborer infestation on maize yield was not 

significant, the yield of bean, Desmodium, and Napier grass in the push-pull plots 

represented net gains in terms of food and feed production. These findings provide new 

insights on the performance of the different components of push-pull in different 

landscape contexts and can guide the design of ecologically intensive agroecosystems. 

Underlying mechanisms are explored below.  

 

4.1 Stemborer infestation decreases with increasing landscape 

complexity  

Stemborer infestation rates were higher in the simple, maize-dominated landscape of 

Hawassa Zuria than in the intermediate and complex landscapes (Fig. 1 and 3). Midega 

et al (2014) reported that increased grassland ratios within a radius of 400 m around 

push-pull and sole maize fields led to lower stemborer infestation and higher maize 



99 
 

yields. Since grasslands are potential host habitats of stemborers, they may attract 

stemborers that would otherwise infest maize plant and thus may reduce infestation in 

maize crops. However, maize remains the favourite host plant for stemborers, and the 

positive association between the proportion of maize in the landscape and stemborer 

infestation is demonstrated in this study.  

 

4.2 Push-pull is only effective in landscapes of intermediate complexity  

The ‘intermediate complexity landscape hypothesis’ postulated by (Tscharntke et al., 

2005) predicts that biodiversity-based management actions are more effective in 

landscapes of intermediate complexity than in simple or complex ones. In simple 

landscapes, there is too little habitat to support effective natural enemy densities, such 

that management actions are not effective because of the lack of colonisation of natural 

enemies from the surrounding landscapes. In complex landscapes, the densities of 

natural enemies may already be high, such that further improvement by habitat 

management does not lead to further improvement in natural pest regulation. In this 

study, in the simple and complex landscapes, both the trapping and repellent effects 

exerted by Napier grass and legume intercrops were not effective. In the simple 

landscape with a high stemborer abundance, female stemborers were easily able to 

locate maize plants for egg deposition, independent of the presence of legumes or 

Napier grass nearby. In contrast, in the complex landscape with few stemborer host 

plants, stemborer populations and the associated egg deposition were likely to be low, 

masking potential effects of crop diversification strategies. These findings suggest that 

further research and implementation of push-pull system should consider the 

composition of the surrounding landscape for an effective control of stemborer.  

 

4.3 Effect of companion crops on the abundance of generalist predators  

The presence of Napier grass increased the abundance of generalist predators (mostly 

ants) in the simple, maize-dominated landscape. The presence of Napier in the 

landscape of intermediate complexity tended to increase the abundance of generalist 

predators (P = 0.098). Given the limited amount of semi-natural habitats in the simple 

landscape, Napier grass could be acting as a physical trap providing shelter for natural 

enemies (Shelton and Badenes-Perez, 2006). Generalist predators were less abundant 

in sole-maize crops. These findings are corroborated by previous studies, which 

showed higher abundance of generalist predators in a push-pull system compared to 
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sole maize (Midega et al., 2004). Such higher abundance of predators is believed to be 

a result of the presence of associated crops (Midega and Kahn, 2003) and hamper host 

finding in the system (Eigenbrode et al., 2016) and not only a response to high 

stemborer abundance.  

Egg predation rate was influenced by the development stage of maize. Females 

of B. fusca lay eggs in the leaf sheaths where they are less vulnerable to predation. In 

the study area, two to three generations per cropping season can occur (Azerefegne and 

Gebre-Amlak, 1994). The position at which the eggs are found correlates with the 

developmental stage of the plant (Van Rensburg et al., 1987). With increasing plant 

age, leaf sheaths fit more loosely around stems making egg batches more visible and 

accessible to predators, which can explain the higher egg predation rate at maturity 

compared to grain filling maize development stage (Fig. 4B).  

Moreover, in the intermediate complexity landscape the presence of 

Desmodium increased egg predation rates slightly as compared to sole-maize or maize-

bean cropping systems (Fig. 4B). Common bean is harvested about three months after 

simultaneous planting with maize, leaving the ground bare in between maize rows, 

while Desmodium is a perennial plant that covers the maize inter-row throughout the 

season. Thus, at maize maturity, maize-Desmodium cropping systems present a 

comparative advantage for generalist predators due to the stable and undisturbed 

shelter that Desmodium plants offers. In the simple landscape, sole Napier (i.e. trap 

crop only) was effective in reducing stemborer infestation, corroborating the findings 

by Van den Berg and Van Hamburg (2015) who demonstrated that Napier planted 

along two contours of maize fields (in order not to hamper mechanical operations in 

maize fields) was effective in the control of stemborers. These findings show the 

specific effect and contribution of the companion crops in the push-pull system in 

terms of supporting predator abundance and egg predation in contrasting landscapes 

and demonstrate the merit of further context-specific optimisation of the design of 

push-pull systems. 
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Figure 4. Boxplots of total predator abundance in the absence or presence of Napier grass 

(A) and egg predation at two maize stages, grain filling and maturity (B), per cropping system 

(sole maize (M), maize-bean (MB), or maize-Desmodium (MD)) and per landscape (simple, 

intermediate, or diverse).  

 

 

B 

A 
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4.4 Push-pull had no effect on maize yield but generated other benefits  

Maize grain and stover yields were not significantly influenced by stemborer 

infestation. This result contrasts with previous research in Ethiopia which reported 

average yield losses due to B. fusca between 12% to 40% of the total production 

depending on agro-climatic zone, maize variety, cropping system, and soil fertility level 

(Kfir et al., 2002, Mgoo et al., 2006). The limited impact of stemborer on maize yield 

in our study can be explained in two ways. First, in our experiment, all plots received 

the recommended fertilisation for the region (100 kg ha−1 of urea and 100 kg kg−1 of 

DAP), which is higher than typically applied by smallholder farmers. The higher maize 

vigour may have allowed maize plants to compensate for crop injury caused by 

stemborers. Second, 2014 and 2015 were low infestation years with mean stemborer 

densities of less than 0.6 larvae per plant (Kebede et al. in prep). The low infestation 

level has most likely obscured the negative association between stemborer infestation 

level and yield.  

The adoption of the push-pull system by farmers has been limited in Kenya 

(Fischler, 2010), possibly due to farmers’ reluctance to replace food crops, such as 

common bean, with a fodder crop and the reluctance to reduce maize production area 

in favour of a companion trap crops. Our study shows that push-pull systems did not 

reduce maize grain yield but rather increased the overall productivity of the system 

over two years (Appendix C). In the simple landscape, common bean was associated 

with similar or higher generalist predator abundances and egg predation rates than 

Desmodium. However, in contrast to common bean, Desmodium produces highly 

effective inhibitory compounds against Striga (Hassanali et al., 2008). Therefore, a 

push-pull system with Desmodium may be advantageous in areas with Striga 

infestations, which was not the case of the study area.  

Farming systems in Ethiopia and most of Africa are small-scale integrated crop-

livestock systems. However, feed production in these systems is often not sufficient to 

feed the animals throughout the year, and the nutritional quality of the feed is often 

less than optimal (Tripathi et al., 2006). Napier grass can be very productive with 35–

40 t DM ha−1 per year when nitrogen is not a limiting factor (Oliveira et al., 2014). 

Integrating Napier grass and Desmodium in farming systems can increase feed supply 

to support livestock production (Tittonell et al., 2009). This is even more pertinent for 

our study area where farm sizes are small (less than 1 ha) and communal grasslands 

waning (Kebede et al., 2018). Push-pull systems may not only impact stemborer, but 
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also other lepidopteran pests of maize and other cereals (Hassanali et al., 2008). This 

is particularly relevant for the control of the invasive fall armyworm Spodoptera 

frugiperda, which recently invaded Africa and poses a major threat to food security 

and livelihoods in large parts of the continent (Day et al., 2017). Our study suggests 

that Napier grass can potentially stimulate generalist predators, such as ants, but that 

this effect depends on landscape context. Since ants can be predators of fall 

armyworms in Latin America (Perfecto and Sediles, 1992), diversified maize cropping 

systems which support ants may be less prone to fall armyworm infestations.  

 

4.5 Limitation of the study  

While experiments under farmers’ fields aim at reflecting reality, the 5 m distance 

between the two Napier grass sub-treatments in our study (i.e. with or without Napier 

grass) may have been a limitation of the experimental design, since semiochemical 

interferences are plausible in the field within such short distances (Eigenbrode et al., 

2016). However, since farmers’ fields were often smaller than 1 ha, between block 

distances of more than 5 m were unacceptable for farmers as this would compromise 

food production and household income. Napier grass showed different levels of growth 

between the three landscapes due to differences in soil fertility and rainfall 

distribution. While in the diverse and intermediate landscape, Napier grass reached 

three m or higher acting as a physical barrier to flying pests, whereas it seldom 

exceeded 2 m in the simple landscape. In general, farmers were hesitant to provide 

land for the experiment. Farmers perceived the establishment of Napier grass in the 

middle of the field as a constraint due to the reduction of the area for their food crops 

and because Napier grass develops a dense and deep root system that can make 

ploughing more difficult (Van den Berg and Van Hamburg, 2015).  
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Figure 5. Mean abundance of ants (A) and spiders (B) per cropping system (sole maize (MB), 

maize-bean (MB), or maize-Desmodium (MD)) with (black bars) or without (white bars) Napier 

grass along a gradient of decreasing annual/perennial crop ratio represented by the simple, 

intermediate, or complex landscapes. Error bars indicate standard error of the mean.  

 

0

2

4

6

8

10

12

14

16

M MB MD M MB MD M MB MD

Simple Intermediate Complex

M
ea

n 
Ar

an
ea

e

Without Napier With Napier
B

0

5

10

15

20

25

30

M MB MD M MB MD M MB MD

Simple Intermediate Complex

M
ea

n 
Fo

rm
ic

id
ae

Without Napier With Napier
A



105 
 

5. Conclusions  

Our study demonstrates the importance of the landscape context on the effectiveness 

of the push-pull system. Push-pull did not have an effect on decreasing stemborer 

infestation levels in simple or complex landscapes. However, push-pull contributed to 

decreasing stemborer infestation in the landscape of intermediate complexity where 

neither host plants nor perennial plants providing habitat to natural enemies were 

predominant. In addition, we demonstrated that common bean was as efficient as 

Desmodium in repelling stemborer and may replace it in areas where the prevalence 

of Striga infestations is not a constraint. Common bean also offered additional benefits 

in the simple landscape by increasing the abundance of general predators and egg 

predation rate (regardless of the presence or absence of Napier) compared with sole 

maize or maize intercropped with Desmodium. To the best of our knowledge, this is 

the first study demonstrating that landscape complexity can have an overriding effect 

on the different semiochemically-mediated components of the push-pull system, which 

so far has been mainly tested at plot level and as a package.  
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Appendix 1: Evaluation of Napier grass genotypes (4 genotypes of Pennisetum purpureum: 

16 803, 16 786, 16 837, and 14 984; and one of Pennisetum riparium: Sodo 88 ) for use as 

trap crop for the management of African stemborer (Busseola fusca) in a push–pull system. 

Axis units indicates the performance rating of each genotype from low (0) to the best (5).  

     Leaf eating damage 

    Total stemborer larvae 

    Fresh biomass  
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Appendix 2: Correlation matrix of the proxies for infestation assessment: total holes, length 

tunnelling, number of larvae, and cob damage 
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 Appendix 3: Mean maize grain yield in t DM/ha per cropping system (Sole-Maize, Maize-

bean, or Maize-Desmodium) in presence or absence of  or without Napier grass and per 

landscape (Simple, Intermediate, or Complex) (1). Mean bean grain and residue yields and 

mean dry Desmodium productivity in t DM/ha over two years per cropping system (MB: maize-

bean (MB), MBN: maize-bean-Napier (MBN)) (2). SEM are given after the sign ‘±’. 

(1) With Napier   Without Napier  
 
 

 

 M      MB     MD      M     MB     MD 
  

Simple 
 

5.96 ± 0.33 

 

5.45 ± 0.63 

 

4.85 ± 0.34 

 

5.68 ± 0.51 

 

5.05 ± 0.36 

 

5.27 ± 0.52 

 

Intermediate 
 

5.71 ± 0.33 

 

5.30 ± 0.54 

 

5.30 ± 0.33 

 

4.77 ± 0.35 

 

5.00 ± 0.61 

 

5.21 ± 0.50 

 
Complex 

 

6.08 ± 0.61 

 

5.36 ± 0.57 

 

6.51 ± 0.60 

 

5.76 ± 0.96 

 

5.73 ± 0.76 

 

5.45 ± 0.57 

 

  
(2) 

 
Bean grain yield Bean residue Desmodium 

 
 MB   MBN      MB     MBN        MB      MBN 

  
Simple  

 

0.64 ± 0.10 

 

0.76 ± 0.09 

 

0.57  ± 0.10 

 

0.68  ± 0.09 

 

1.94  ± 0.33 

 

1.92  ± 0.14 

Intermediat
e 

1.03  ± 0.10 1  ± 0.18 0.72  ± 0.09 0.65  ± 0.07 2.35  ± 0.31 2.14  ± 0.26 

Complex 1.15  ± 0.18 1.4  ± 0.17 0.8  ± 0.12 1  ± 0.22 1.93  ± 0.39 1.57  ± 0.20 

(3) 
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Chapter 6 

 

General Discussion 
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1. Introduction 

Understanding ecological processes to inform the design of sustainable and resilient 

agricultural production systems is a global priority research area. The main objective 

of this research was to identify pest management strategies at the field, farm, and 

landscape levels for a sustainable intensification of maize-based production systems. 

Taking a socioecological approach with spatial (field, farm, and landscape) and 

temporal (land cover/land use changes over 40 years) components, I assessed which 

factors affected lepidopteran maize stemborer infestation levels in smallholder 

agricultural production systems of southern Ethiopia. Currently, major lepidopteran 

maize pest outbreaks are occurring in sub-Saharan Africa and India, such as the fall 

armyworm (Spodoptera frugiperda); the findings of this study could contribute 

knowledge on ecological management of these pests and inform more affordable 

practices for smallholder farmers with lower negative impacts on human health and 

the environment than chemical treatments.  

In this thesis, I used different methods (i) to identify the drivers of farming 

systems and agricultural landscape changes, (ii) to understand the contribution of 

landscape elements (e.g. perennial crops, hedgerow types) at providing stemborer 

biocontrol services, (iii) to explain the factors affecting maize stemborer infestation 

from field (farmer’s management practice) to the landscape level (percentage of host 

crops), and (iv) to test the impact of landscape composition on the performance of 

push-pull systems in terms of reducing stemborer infestation levels, predators’ 

abundance, and maize productivity. In the following sections, I discuss the direct 

implications of this study for ecological design of pest-suppressive landscapes by 

connecting the findings of the different chapters. First, I capture the lessons learnt 

from this study to inform current and future agricultural pest management in Africa. 

Then, I discuss how current practices can be updated in the light of the findings of this 

research. Third, I discuss whether it is possible to understand and categorise the 

trajectories of farming systems in sub-Saharan Africa and how taking a landscape 

approach to agricultural production can make the current debate on the fate of small 

farms in Africa obsolete. Finally, I conclude and provide suggestions for future 

research. 
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2. Maize stemborer infestation levels cannot be explained by field level 
factors only   

2.1 Maize proportion in the landscape is the main factor explaining 
stemborer infestation levels 

In this thesis, I demonstrated that factors explaining maize stemborer incidence vary 

at field, farm, and landscape levels. Maize stemborer infestation increased with 

increasing proportion of maize from 100 to 1500 m radii from the focal fields (Chapter 

4, Table 4), and that maize proportion within a landscape determined the performance 

of the push-pull system (Chapter 5). These findings were explained by stemborers’ 

preference of maize as a host and by the resource concentration hypothesis, which 

suggests that herbivorous insects are more abundant in large patches of host plants 

because these patches are easier to locate and herbivores stay longer in those patches 

(Root, 1973).  These are the major findings of this thesis, since factors affecting maize 

stemborer infestation have only been studied at field level (Wale et al., 2007; Calatayud 

et al., 2014; Haile, 2015). In the Hawassa area, maize monoculture declined over time 

and has been progressively replaced by perennial crops, such as enset (food crop) or 

khat (cash crop) (Chapter 2). In addition, population growth and urban area expansion 

reduced the availability of land and led to more fragmentation of croplands (Chapter 2 

and 3). This fragmentation was more pronounced in the southern (intermediate 

complexity landscape) and eastern (most complex landscape) parts where, in addition, 

a higher complexity was observed, leading to increased perimeter-area, which was 

favourable for the biocontrol potential of maize stemborers (Chapter 3). In the 

intermediate complexity and complex landscapes, stemborer infestation levels were 

low, probably due to the top-down control mechanism by natural enemy communities 

(Chapter 5). The population of male stemborer moths was monitored during two 

cropping seasons from May 2014 and December 2015. The results show the high 

seasonal variation of the moth population between the two years but relatively small 

differences between the three landscapes (Fig. 1). This result confirms the suggested 

top-down control mechanism ongoing in the intermediate and high complexity 

landscapes where higher abundance of natural enemies support the maintenance of 

low infestation levels (Fig. 2). In addition, although the presence of non-crop habitats 

(e.g. grasslands) in the landscapes of intermediate and high complexity can be 
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alternative oviposition sites for stemborer (Yewhalaw et al., 2008), they are not used 

as refuges by B.fusca and have a low carrying capacity (Van den Berg, 2017).                   

 

Figure 1: Mean number of male moths of B.fusca collected on farmers’ fields using pheromone 

traps during two cropping seasons in the simple (n=13 sites), intermediate complexity (n=12 

sites), and complex landscapes (n=12 sites).  

Figure 2: Maize stemborer infestation levels expressed in length tunnelling (cm) in a 

gradient of landscape complexity, reported here as the proportion of maize at 1000 m 

from focal fields (data of Chapter 4). 
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Moreover, the presence of a higher proportion of shrubs and woodlots within the larger 

landscape context can provide a higher density and diversity of natural enemies 

(Macfadyen and Muller, 2013). This is an additional argument in favour of the top-

down control mechanism provided by the mixed cropping systems of the intermediate 

complexity and complex landscapes. Another potential mechanism is the hindering of 

host finding by stemborer moths in the intermediate and complex landscapes due to 

naturally occurring “trap and repellent” plants or the high diversity between fields and 

within-field (due to smaller field sizes). Diversification at field and farm levels is 

currently encouraged by FAO as the most affordable and sustainable solution to reduce 

the damaging effect of fall armyworms in Africa (FAO, 2018). Khat leaf extracts were 

found to inhibit feeding activity of stemborer larvae and to cause larval mortality 

(Tekle, 2002). The proportion of khat is larger in the intermediate and complex 

landscapes and might have a repellent effect on maize stemborers, but further 

investigation will be needed to test the presence of this effect. 

 

Recent studies show that the push-pull system can reduce fall armyworm infestations 

(Midega et al., 2018), yet the mechanisms behind this decrease in infestation were not 

described. The increased abundance of ants found in the push-pull system (Chapter 5) 

could be one underlying reason, in addition to the crop diversification effect of the 

push-pull system in hindering host finding. Still, these effects will depend on the 

landscape context where the push-pull system is implemented as landscape factors can 

override the plot level diversification strategy in a maize dominated or complex 

landscape (Chapter 4 and 5). In a simple landscape, the presence of companion crops 

increased predator abundance (Chapter 5, Table 2) without reducing the infestation 

level (Chapter 5, Table 1). These results confirm the landscape-dependency effect of 

the plot level diversification strategies and of the top-down control by generalist 

natural enemies (Karp et al., 2018).   

2.2 Yet factors at field and farm levels play a role in high infestation years 

At the field level, the main factor explaining stemborer incidence was maize planting 

density (Chapter 4, Table 2). However, during high infestation years, high plant 

diversity of hedgerows and late maize planting date also influenced stemborer 

infestations (Chapter 4, Fig. 3). At the farm level, I showed that enset fields and dense 

hedgerows supported relatively high predator densities, in particular ants and rove 
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beetles (Chapter 3, Fig. 6). Although the focus of this study was on maize stemborers, 

these generalist predators can control a number of other pests (Philpott and 

Armbrecht, 2006; Offenberg and Firn, 2015), including the fall armyworm which 

recently invaded the African continent (Day et al., 2017). In Chapter 4, I showed that 

the effect of the percentage of the host plant in the landscape was less pronounced at 

500 m than at 100, 1000, and 1500 m from the focal fields. This suggests that the 

diversity of crop and non-crop plants at farm level can contribute to reduced stemborer 

infestation levels. These findings highlight the need to consider the inclusion of 

hedgerows and perennial crops for increasing stemborer natural enemy abundance in 

the maize-based systems. This will enhance the top-down control of stemborers by 

natural enemies and can extend to the control of  other agricultural pests (Chapter 3). 

In Kenya, the presence of hedgerows at the border of maize fields was reported to lower 

the number of stemborers (Girma et al., 2000). Hedgerows can also provide other 

important functions on farmland, including serving as windbreaks, reducing 

evapotranspiration, storing of organic carbon, promoting infiltration and soil moisture 

retention, preventing soil and water runoff, and increasing soil biota (Forman and 

Baudry, 1984).  
 

2.3 Beyond stemborer infestation, soil fertility is the main yield reducing 

factor 

In Chapter 4 and 5, I demonstrated that the proportion of maize in the landscape had 

an overriding effect on field level management factors and soil characteristics in 

explaining maize infestation levels. However, in both chapters the differences in 

infestation observed did not significantly lower maize productivity (Chapter 4, Table 

5). This is a major counterintuitive result of this thesis which touches upon two key 

issues. First, there is a very high variability in the reported yield losses due to 

stemborers in Ethiopia or other African countries (De Groote, 2002; Chabi-Olaye et 

al., 2005; Songa et al., 2007). This variability is due to the seasonality of the severity 

of stemborer attacks, which are perceived by farmers as being more severe in drier 

years (Chapter 2, Fig. 2). In addition, current reference for potential yield losses due to 

stemborers in the Hawassa area is still based on research results from the 1980’s 

(Gebre‐Amlak et al., 1989) when maize monocrop was dominant in the study area. 

Since then, the composition and structure of the landscape has changed tremendously, 

resulting in a different outcome of its potential pest-suppressive capacity. This finding, 
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related to the larger potential landscape effect on pest infestation can directly inform 

current efforts in assessing yield losses due fall armyworm in sub-Saharan Africa. 

Historical records of pest outbreaks and their impact on yield are precious knowledge 

for informing current and future pest incidence, but, with the exception of major 

invasive pests (Locust), these records are rare in sub-Saharan Africa.    

Second, the impact of stemborers infestation in reducing maize yield is 

dependent on the soil fertility status (Vanlauwe et al., 2008) and fertilisation (Chabi-

Olaye et al., 2008). The simple landscape with a higher percentage of maize was also 

the one with the lowest soil nitrogen, phosphorus, and organic matter content, while it 

is also the landscape where higher rates of fertilisation were used to support the annual 

maize production. Farmers indicated that they needed to continuously fertilise maize 

fields to assure some production. However, the use of this input might not even reach 

the expected outcome due to low nitrogen capture and use efficiencies by maize in the 

area. During two cropping seasons (2014 and 2015), leaves and stem of maize were 

subsampled from the 33 sites visited (Chapter 4) and analysed for nitrogen content. 

The result revealed that the N intake variation is low compared to the variation in the 

amount of  fertilisation applied (Fig. 3). Generally, the  nitrogen use efficiency of maize 

production in Ethiopia is reported to be very low, and this is worsened by the bulk 

fertiliser application rates (without prior soil analysis) proposed to farmers (Abebe and 

Feyisa, 2017). This situation is leading to a double loss for the farmers who purchased 

the expensive fertilisers and for the environment. This problem is not unique to 

Ethiopia; it results from the push by many African governments towards input 

packages based intensification of agricultural productions (Tittonell et al., 2012; Cafer 

and Rikoon, 2017). There is a need for a more integrated soil fertility management 

approach which will not only contribute to increased and stable yields but also ensure 

future productivity.  
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Figure 3: Nitrogen intake by maize (leaves and stem) in relation to nitrogen input (kg/ha) per 

landscape complexity  

 

3. Farmers’ “adoption” or researchers’ “adaptation”?  

3.1 Adapting the push-pull system to land-constrained farming systems  

  
Currently, the push-pull system is presented as a promising strategy for the control of 

maize stemborers and parasitic weed Striga and for providing feed for livestock. 

However, the low adoption rate by farmers questions the suitability of this strategy for 

smallholder systems (Chapter 5). Instead of being presented as a “package” to farmers, 

the system may benefit from some adaptation strategies to farmers’ needs and to the 

landscape context. One of the major constraints that impedes the adoption of push-

pull by farmers is the allocation of cropland to non-food plants. I demonstrated that 

Desmodium can be replaced by common bean without altering the repelling effect and 

can even increase egg parasitism. In addition, previous research showed that the area 

of Napier grass can be reduced to two sides of the maize field and still function as a 

trap crop for stemborers. However, further adapting the push-pull system to land-

constrained farming systems and to the landscape context calls for a change of 

perspective. Cropping systems in Africa are very often mixed and diversified, which 

might already support a number of ecological regulation processes (Lemessa and 

Legesse, 2018). Increasing diversity at farm level and promoting managed hedgerows 

composed of multi-functional plants (e.g. feed, medicinal or pesticidal plants) can 

better address the multifunctional nature of small scale subsistence agriculture while 

taking a long-term solution perspective (Grzywacz et al., 2013; Pumariño et al., 2015). 

This entails a shift in mindsets from promoting a technological “package” to co-

creating knowledge between farmers and researchers, as it is proposed by agroecology 
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(Tittonell et al., 2012). Therefore, researchers should not engage in field trials based 

only on knowledge gaps gathered from literature but address farming constraints 

identified together with farmers. However, the way research is currently dogmatised 

and conducted does not provide the flexibility to adapt to farmers’ needs, thus delaying 

the impact of research outcome for farmers’ livelihoods. During the second year of the 

on-farm push-pull system experiment (Chapter 5), I have been confronted by a few 

farmers who wanted to uproot the Napier grass before the end of the experiment. In 

fact, on farms with low soil fertility, the competition between the maize crop and the 

Napier grass was clearly visible. However, the constraints of the research agenda in 

terms of timing and the necessity of field data collection to fulfil the evaluation criteria 

of a research publication did not give me the flexibility to listen to farmers’ needs. 

Current research funding mechanisms need to be revisited to support more 

participatory action-oriented research.  

 

3.2 Adapting the planting date strategy to unpredictable weather events  

Manipulation of planting dates is one of the best known stemborer management 

strategies by farmers. Based on a three year data set, I demonstrated that the planting 

date tended to affect stemborer infestation levels only in high infestation years 

(Chapter 5).  With increasingly erratic rainfalls (Chapter 2, Fig. 1C) and periodic 

occurrence of unpredictable climate events (Chapter 2, Fig. 2) in the study area, as well 

as in other parts of the continent, the planting date strategy is not a long term solution. 

In addition, from a research point of view it is not cost-effective, since to be accurate it 

will need to be determined for different agro-ecological zones and revised regularly in 

order to be representative of the changing weather and landscape context. Current 

planting date recommendation (planting should be no later than end of April) in the 

Hawassa area has been suggested by Gebre‐Amlak et al. (1989) on the basis of data 

from April 1985 to July 1986, just after the most well-known dry period in Ethiopia, 

which was also associated with high stemborer infestation in the Hawassa area 

(Chapter 1, Fig. 2). Although the synchronisation of planting time by farmers in the 

same landscape is a valuable risk sharing strategy, the use of planting date criteria per 

se is not reliable. Instead, improving soil moisture and structure by using cover crops 

can be a more sustainable stemborer control strategy at the field level. In fact, maize 

fields in the study area remain bare in between cropping seasons and thus contribute 

to the degradation and erosion of soils. Intensification of agricultural production in 
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those areas should start by the management of these fields during the dry seasons. 

Drought tolerant cover crops may bring multiple benefits: increasing soil fertility, 

reducing soil erosion, increasing feed availability, and also supporting the habitat for 

beneficial insects (Snapp et al, 2005). This adaptation is even more pertinent in a 

changing climate context, where recurrent droughts and shortening of the long rainy 

season is observed in East Africa (Rowell et al., 2015). In fact, primarily temperature, 

and also rainfall, relative humidity, and soil characteristics were found to affect the 

predicted future geographical distribution of C. partellus and B. fusca (Mwalusepo et 

al., 2018). In particular, relative humidity is predicted to strongly influence B. fusca 

distribution. Research results based on modelling of the impact of future climate 

changes on two main stemborer species in East Africa forecast increased pest activity 

with significant impact on maize yield losses (Mwalusepo et al., 2015).  

4. Agricultural transformation in sub-Saharan Africa: the good, the bad, 

and the ugly   

 
4.1 Southern Ethiopia: a representation of sub-Saharan Africa agricultural 

intensification path?  

Agricultural landscapes around Hawassa went through a major transformation over 

the last 4o years due to the combined effects of national level drivers (e.g. agricultural 

policies, commodity prices, etc.), regional/local level factors (population density, 

urbanisation, and infrastructure development), farmers’ livelihood assets, and 

unpredictable climate events. The main changes in production orientation were the 

shift from food to cash crop production, an increased share of off-farm income, and the 

decrease in available farmland and livestock number (Chapter 2). Farmers still 

maintain two to three TLU per household for providing milk for the family, for land 

preparation, and as financial capital (Chapter 2, Table 2). However, the current 

number of livestock is not enough to assure sufficient manure to maintain soil fertility, 

leading farmers  to rely heavily on inorganic fertilisers in particular for annual crops 

and khat production (Mellisse et al., 2018). Since the 1990’s agricultural policies in 

Ethiopia have been promoting the use of improved seeds and fertiliser as a way of 

intensifying cereal production and achieving food security (Spielman et al., 2012). This 

has led to an increased dependence of farmers on the supply of those inputs. However, 

seed and fertilisers often fail to be delivered timely or are subject to poor quality, 

exacerbating the financial burden that farmers already face for purchasing them (Cafer 
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et al., 2015). In addition, instead of an increased productivity, the low organic carbon 

and nutrient stocks of soils make the response to fertilisers limited and could even 

negatively impact crop productivity (Abdulkadir et al., 2017). The same scenario is 

repeated in other parts of Africa (Tittonell and Giller, 2013) and questions the viability 

of current strategies of African governments that emphasise the use of improved seeds, 

fertilisers, and pesticides as a way of enhancing agricultural productivity in Africa 

(Sheahan and Barrett, 2017). 

4.2 Farm sizes: too small for whom? Too small for what? 

The changes in farming systems observed in Southern Ethiopia are not unique to this 

part on the country or the continent (Kindu et al., 2013; Jayne et al., 2014) nor to other 

parts of world (Wagner et al., 2015). In particular, the increased share of off-farm 

activities and/or cash crop production is a response to decreasing farm sizes due to 

population pressure, infrastructure development, and favourable market prices  

(Chapter 2). Farmers in southern Ethiopia were seen to follow three main trajectories 

of livelihood strategies: diversification, consolidation, and specialisation (Chapter 2). 

Most land-constrained farmers specialised in khat production when infrastructure, 

biophysical context, and irrigation access enabled this orientation, not only in the study 

area but also in other regions of the country (Cafer, 2018).  

Generally speaking, the performance and comparison between farms is done in 

terms of production (yield) and sometimes labour productivity, but other parameters 

like nitrogen use efficiency, biodiversity above and below ground, or biocontrol 

potential are not considered. In this research, I demonstrated that small farms with 

higher perimeter-area ratio and intercropping practices can have a comparative 

advantage from a biological control perspective (Chapter 3). Looking at the maize 

productivity in relation to nitrogen use efficiency (Fig. 4), there seems to be a trend of 

an inverse relationship between farm size and grain yield per unit of nitrogen input.  
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Figure 4: Maize grain yield (in kg ha-1 per kg of nitrogen input) per plot size during three 

cropping seasons : 2013, 2014, and 2015 (data from Chapter 4). 

Although the concern about declining farm sizes and the consequences for food 

security is a relevant one, the way the performance of small farms is measured should 

go further than their productivity per unit area. The current debate on farm sizes and 

on whether a minimum area of land per farm should be guaranteed by law is largely 

informed by arguments that use the yield of staple crops as a main criterion. When 

farms are already as small as less than one hectare, increasing the yield of maize or 

other cereals, even to their potential level, will not be sufficient to address household 

food security. Measures of performance should also embed the contribution of 

smallholder farmland to other important aspects of the system that are evident at the 

farm level and beyond, such as dietary diversity, nutrient use efficiencies, abundance 

and diversity of natural enemies, and the socio-cultural value of the family farm land.   

5. Summary and conclusions 

The ultimate goal of this PhD research was to identify management practices at the 

field, farm, and landscape levels for a sustainable intensification of maize-based 

production systems that (i) reduce stemborer infestations, (ii) maintain or improve soil 

fertility, and (iii) improve fodder production for livestock.  
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The socio-ecological system studied and the relations (positive or negatives) between 

the components of the system are summarised on the figure below (Fig.5).  

 

Figure 5: Overview of the system studied representing the system driving forces (agricultural 

policies, commodity prices, infrastructure, population density), the farm structural components 

(farm size, food crop area, cash crop area, livestock number, use of external input), natural 

variables (grazing area, natural vegetation, biotic stress, crop diversity), economic variables 

(off-farm activities, labor and income), and societal relevant factors (aging, feminisation, dietary 

diversity, food security, milk production, women empowerment).  

 

The effect of the systems’ external driving forces (agricultural policies, commodity 

prices, infrastructure, population density), the farm structural (farm and livestock size) 

and functional components (food and cash crops, milk production, dietary diversity) 

concur to have a direct or indirect effect on the biotic stress (maize stemborer 

infestation incidence). Although, not directly addressed in this study, aging and 

feminisation of agriculture is occurring in the study area. In fact, when possible the 

young generation is leaving the family farms for education or in search for non-

agricultural jobs. Moreover, there is generally a clear distinction of gender roles in 

relation to off-farm activities or seasonal migrations for labour work (Saha et al., 2018).  
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In a nutshell, in this thesis, I showed that land cover/land use changes in the Hawassa 

area were driven by the combined effects of national level drivers (e.g. agricultural 

policies, commodity prices, etc.), regional/local level factors (population density, 

urbanisation, and infrastructure development), farmers’ livelihood assets, and 

unpredictable climate events. The resulting agricultural landscape shows a gradient of 

complexity with varying maize stemborer infestation levels and natural enemy 

abundance. The severity of stemborer infestation is primarily explained by the 

proportion of maize in the landscape, with infestation increasing with increasing maize 

proportion. The field level multipurpose cropping system known as “push-pull system” 

was effective at reducing maize infestation only in the intermediate complexity 

landscape. The push-pull system can be adapted to farmers’ needs and land 

constrained context by replacing the commonly used Desmodium by common beans 

or by using only one of the companion crops. Taking maize stemborer pressure as an 

entry point, I showed that the infestation cannot be explained by field level factors only. 

Tackling maize infestation issues requires a landscape approach for sustainable pest 

management. Landscape composition, in particular, could either impact the pest 

abundance directly by affecting its dispersal, mortality, or reproduction or indirectly 

by affecting its natural enemies. Yet a landscape design which aims not only at the 

ecological control of maize stemborers but also addresses other farming constraints 

(i.e. soil fertility, fodder availability) should also aim at maintaining soil fertility and 

moisture to avoid crop failure (by using cover crops, increasing rainfall infiltration) 

and aim at diverse farming systems to increase nutrition and income diversity for 

smallholder farmers. Diversified farming systems which promote the conservation of 

natural enemies seem to be an ecologically sound solution, but more research is needed 

to understand and maximise the efficiency of existing mixed cropping systems. So far, 

investments in research, policy, and development actions in Africa have not yielded the 

widespread, beneficial impacts expected. This is due to several reasons including: the 

lack of coordination between the actors, the interventions based on addressing specific 

problems without taking a systems approach, the top-down “adoption” approach, and 

research/policy agendas which are not driven by end-users needs. A systems approach 

to agriculture production such as agroecology could be the best option to respond to 

the requirements of the multifunctional small-scale subsistence agriculture in Africa.  

 



124 
 

  



125 
 

References 

Abdulkadir, B., Kassa, S., Desalegn, T., Tadesse, K., Yohalashet, M., Fana, G., Abera, T., Amede, T., 

Degefie, D.T., 2017. Crop response to fertilizer application in Ethiopia: a review.  

Abebe, T., 2013. Determinants of crop diversity and composition in Enset-coffee agroforestry 

homegardens of Southern Ethiopia. J. Agric. Rural Dev. Tropics Subtropics 114, 29–38.  

Abate, T., Shiferaw, B., Menkir, A., Wegary, D., Kebede, Y., Tesfaye, K., Kassie, M., Bogale, G., Tadesse, 

B., Keno, T., 2015. Factors that transformed maize productivity in Ethiopia. Food Security 7, 

965-981. 

Abate, T., Worku, M., Twumasi-Afriyie, S., Wolde, L., Tadesse, B., Demisie, G., Bogale, G., Wegary, D., 

Prasanna, B., 2012. Maize stalk borers of Ethiopia: quantitative data on ecology and 

management. Meeting the challenges of global climate change and food security through 

innovative maize research. Proceedings of the 3rd National Maize Workshop of Ethiopia, Addis 

Ababa, Ethiopia, 18-20 April, 2011. CIMMYT International Maize and Wheat Improvement 

Center, pp. 174-184. 

Abate, T., van Huis, A., Ampofo, J.K., 2000. Pest management strategies in traditional agriculture: an 

African perspective. Annu. Rev. Entomol. 45, 631–659.  

Abebe, T., Wiersum, K., Bongers, F., Sterck, F., 2006. Diversity and dynamics in homegardens of 

southern Ethiopia. Tropical Homegardens. Springer, pp. 123-142 

Abebe, T., Wiersum, K.F., Bongers, F., 2009. Spatial and temporal variation in crop diversity in 

agroforestry homegardens of southern Ethiopia. Agroforestry Systems 78, 309-

322.10.1007/s10457-009-9246-6 

Abebe, Y., Bitew, M., Ayenew, T., Alo, C., Cherinet, A., Dadi, M., 2018. Morphometric Change Detection 

of Lake Hawassa in the Ethiopian Rift Valley. Water 10.10.3390/w10050625 

Abebe, Z., Feyisa, H., 2017. Effects of Nitrogen Rates and Time of Application on Yield of Maize: Rainfall 

Variability Influenced Time of N Application. International Journal of Agronomy 2017, 1-

10.10.1155/2017/1545280 

Amede, T., Taboge, E., 2007. Optimizing soil fertility gradients in the enset (Ensete ventricosum) 

systems of the Ethiopian highlands: trade-offs and local innovations. In: Advances in Integrated 

Soil Fertility Management in Sub-Saharan Africa: Challenges and Opportunities. Springer, pp. 

289–297.  

Amoako-Atta, B., Omolo, E.O., Kidega, E.K., 1983. Influence of maize, cowpea and sorghum 

intercropping systems on stem-/pod-borer infestations. International Journal of Tropical 

Insect Science 4, 47-57,  1742-7592 

Asmare, D., Degaga, E., Azerefegne, F., Amare, A., 2014. Distribution and impact of Busseola fusca 

(Fuller) (Lepidoptera: Noctuidae) and Chilo partellus (Swinhoe) (Lepidoptera: Crambidae) in 

Northeastern Ethiopia.10.5897/jen2013.0078 

Assefa, E., Bork, H.R., 2014. Deforestation and forest management in southern Ethiopia: investigations 

in the Chencha and Arbaminch areas. Environmental management 53, 284-

299.10.1007/s00267-013-0182-x 



126 
 

Azerefegne, F., Gebre-Amlak, A., 1994. Oviposition Pattern and Preference by Busseola Fusca (Fuller) 

Moths to Different Stages of Maize Plants. Insect Science and Its Application 15, 269-273.Doi: 

10.1017/s1742758400017562 

Bates, D., Mächler, M., Bolker, B., Walker, S., 2014. Fitting linear mixed-effects models using lme4. 

arXiv preprint arXiv:1406.5823. 

Bakthavatsalam, N., 2016. Chapter 19 - semiochemicals. Ecofriendly Pest Management for Food 

Security. Academic Press, San Diego, pp. 563–611. https://doi.org/10. 1016/B978-0-12-

803265-7.00019-1.  

Baudron, F., Giller, K.E., 2014. Agriculture and nature: Trouble and strife? Biological Conservation 170, 

232-245.10.1016/j.biocon.2013.12.009 

Bayley, D., 2001. Efficient Weed Management. NSW Agriculture, Paterson. Bianchi, F.J.J.A., Van der 

Werf, W., 2003. The effect of the area and configuration of hibernation sites on the control of 

aphids by Coccinella septempunctata (Coleoptera: Coccinellidae) in agricultural landscapes: a 

simulation study. Environ. Entomol. 32, 1290–1304.  

Belay, D., Foster, J.E., 2010. Efficacies of habitat management techniques in managing maize 

stemborers in Ethiopia. Crop Prot. 29, 422–428. https://doi.org/10.1016/j. 

cropro.2009.09.006.  

Belay, D., Schulthess, F., Omwega, C., 2008. The profitability of maize–haricot bean intercropping 

techniques to control maize stemborers under low pest densities in Ethiopia. Phytoparasitica 

37, 43.10.1007/s12600-008-0002-7 

Bennett, E.M., Cramer, W., Begossi, A., Cundill, G., Díaz, S., Egoh, B.N., Geijzendorffer, I.R., Krug, C.B., 

Lavorel, S., Lazos, E., Lebel, L., Martín-López, B., Meyfroidt, P., Mooney, H.A., Nel, J.L., 

Pascual, U., Payet, K., Harguindeguy, N.P., Peterson, G.D., Prieur-Richard, A.-H., Reyers, B., 

Roebeling, P., Seppelt, R., Solan, M., Tschakert, P., Tscharntke, T., Turner, B.L., Verburg, P.H., 

Viglizzo, E.F., White, P.C.L., Woodward, G., 2015. Linking biodiversity, ecosystem services, 

and human well-being: three challenges for designing research for sustainability. Current 

Opinion in Environmental Sustainability 14, 76-

85.https://doi.org/10.1016/j.cosust.2015.03.007 

Benoît, M., Rizzo, D., Marraccini, E., Moonen, A.C., Galli, M., Lardon, S., Rapey, H., Thenail, C., Bonari, 

E., 2012. Landscape agronomy: a new field for addressing agricultural landscape dynamics. 

Landscape Ecology 27, 1385-1394.10.1007/s10980-012-9802-8 

Berger, A., 1992. Larval movements of Chilo partellus (Lepidoptera: Pyralidae) within and between 

plants: timing, density responses and survival. Bulletin of Entomological Research 82, 441-

448.doi:10.1017/S0007485300042498 

Bianchi, F.J.J.A., Booij, C.J., Tscharntke, T., 2006. Sustainable pest regulation in agricultural 

landscapes: a review on landscape composition, biodiversity and natural pest control. Proc. Biol. 

Sci. 273, 1715–1727.  

Bianchi, F.J.J.A., Honĕk, A.H., van der Werf, W., 2007. Changes in agricultural land use can explain 

population decline in a ladybeetle species in the Czech Republic: evidence from a process-based 

spatially explicit model. Landscape Ecology 22, 1541-1554. 



127 
 

Bianchi, F.J.J.A., Ives, A., Schellhorn, N., 2013. Interactions between conventional and organic farming 

for biocontrol services across the landscape. Ecol Appl 23, 1531-1543 

Bianchi, F.J.J.A., Walters, B.J., Cunningham, S.A., Hemerik, L., Schellhorn, N.A., 2017 Landscape-scale 

mass-action of spiders explains early-season immigration rates in crops. Landscape Ecol.  

Bidogeza, J.C., Berentsen, P.B.M., De Graaff, J., Oude Lansink, A.G.J.M., 2009. A typology of farm 

households for the Umutara Province in Rwanda. Food Security 1, 321-335.10.1007/s12571-

009-0029-8 

Blaschke, T., 2010. Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry 

and Remote Sensing 65, 2-16.10.1016/j.isprsjprs.2009.06.004 

Bonhof, M.J., Overholt, W.A., Van Huis, A., Polaszek, A., 1997. Natural Enemies of cereal stemborers in 

East Africa: a review. Insect Science and Its Application 17, 19-35.10.1017/s1742758400022141 

Bonhof, M., 2000. The impact of predators on maize stemborers in coastal Kenya (PhD thesis). 

Wageningen University, The Netherlands 181 pp.  

Brose, U., Hillebrand, H., 2016. Biodiversity and ecosystem functioning in dynamic landscapes. 

Philosophical transactions of the Royal Society of London. Series B, Biological sciences 

371.10.1098/rstb.2015.0267 

Burnham, K.P., Anderson, D., 2003. Model selection and multi-model inference. A Pratical informatio-

theoric approch Springer.  

Cade, B.S., Terrell, J.W., Schroeder, R.L., 1999. Estimating effects of limiting factors with regression 

quantiles Ecology 80, 311-323. 

Cafer, A., Rikoon, S., 2017. Coerced agricultural modernization: a political ecology perspective of 

agricultural input packages in South Wollo, Ethiopia. Journal of Rural Social Sciences 32 

Cafer, A.M., 2018. Khat: Adaptive Community Resilience Strategy or Short-Sighted Money Maker? 

Rural Sociology.10.1111/ruso.12209 

Cafer, A.M., Willis, M.S., Beyene, S., Mamo, M., 2015. Growing Healthy Families: Household 

Production, Food Security, and Well‐Being in S outh W ollo, E thiopia. Culture, Agriculture, 

Food and Environment 37, 63-73 

Calatayud, P.-A., Guénégo, H., Ahuya, P., Wanjoya, A., Le Rü, B., Silvain, J.-F., Frérot, B., 2008. Flight 

and oviposition behaviour of the African stemborer, Busseola fusca, on various host plant 

species. Entomologia Experimentalis et Applicata 129, 348-355.10.1111/j.1570-

7458.2008.00787.x 

Calatayud, P.A., Le Ru, B.P., van den Berg, J., Schulthess, F., 2014. Ecology of the African Maize Stalk 

Borer, Busseola fusca (Lepidoptera: Noctuidae) with Special Reference to Insect-Plant 

Interactions. Insects 5, 539-563.10.3390/insects5030539 

Calvet-Mir, L., Riu-Bosoms, C., González-Puente, M., Ruiz-Mallén, I., Reyes-García, V., Molina, J.L., 

2016. The Transmission of Home Garden Knowledge: Safeguarding Biocultural Diversity and 

Enhancing Social–Ecological Resilience. Society & Natural Resources 29, 556-

571.10.1080/08941920.2015.1094711 

Carmona, A., Nahuelhual, L., Echeverría, C., Báez, A., 2010. Linking farming systems to landscape 

change: An empirical and spatially explicit study in southern Chile. Agriculture, Ecosystems & 

Environment 139, 40-50.10.1016/j.agee.2010.06.015 



128 
 

Carswell, G., 2000. Agricultural intensification in Ethiopia and Mali. p. 46 pp. 

Carter, M.R., 1993. Soil sampling and methods of analysis. CRC Press 2007. 

Chabi-Olaye, A., Borgemeister, C., Nolte, C., Schulthess, F., Gounou, S., Ndemah, R., Sétamou, M., 2005. 

Role of habitat management technologies in the control of cereal stem and cob borers in sub-

Saharan Africa. Proceedings of the Second International Symposium on the Biological Control 

of Arthropods, pp. 12–16.  

Chabi-Olaye, A., Nolte, C., Schulthess, F., Borgemeister, C., 2002. Effect of maize, cassava, cowpea and 

soybean intercropping on the population dynamics of maize stemborers and their natural 

enemies in the humid forest zones of Cameroon. Entomological Society of American Annual 

Meeting and exhibition. 

Chabi-Olaye, A., Nolte, C., Schulthess, F., Borgemeister, C., 2005. Effects of grain legumes and cover 

crops on maize yield and plant damage by Busseola fusca (Fuller) (Lepidoptera : Noctuidae) 

in the humid forest of southern Cameroon. Agr Ecosyst Environ 108, 17-

28.10.1016/j.agee.2004.12.004 

Chabi-Olaye, A., Schulthess, F., Borgemeister, C., 2008. Effects of nitrogen and potassium combinations 

on yields and infestations of maize by Busseola fusca (Lepidoptera: Noctuidae) in the humid 

forest of Cameroon. J. Econ. Entomol. 101, 90–98.  

Chapin Iii, F.S., Zavaleta, E.S., Eviner, V.T., Naylor, R.L., Vitousek, P.M., Reynolds, H.L., Hooper, D.U., 

Lavorel, S., Sala, O.E., Hobbie, S.E., 2000. Consequences of changing biodiversity. Nature 

405, 234 

Chaplin-Kramer, R., O'Rourke, M.E., Blitzer, E.J., Kremen, C., 2011. A meta-analysis of crop pest and 

natural enemy response to landscape complexity. Ecol. Lett. 14, 922–932.  

Chappell, M.J., LaValle, L.A., 2011. Food security and biodiversity: can we have both? An agroecological 

analysis. Agr Hum Values 28, 3-26 

Chateil, C., Porcher, E., 2015. Landscape features are a better correlate of wild plant pollination than 

agricultural practices in an intensive cropping system. Agriculture, Ecosystems & 

Environment 201, 51-57.10.1016/j.agee.2014.12.008 

Cook, S.M., Khan, Z.R., Pickett, J.A., 2007. The use of push-pull strategies in integrated pest 

management. Annu. Rev. Entomol. 52, 375–400. https://doi.org/10.1146/ 

annurev.ento.52.110405.091407.  

Corral‐Nuñez, G., Opazo‐Salazar, D., GebreSamuel, G., Tittonell, P., Gebretsadik, A., Gebremeskel, Y., 

Tesfay, G., Beek, C.L., 2014. Soil organic matter in Northern Ethiopia, current level and 

predicted trend: a study case of two villages in Tigray. Soil Use Manage. 30, 487–495.  

 

Cortez-Arriola, J., Rossing, W.., Massiotti, R.D.A., Scholberg, J.M., Groot, J.C., Tittonell, P., 2015. 

Leverages for on-farm innovation from farm typologies? An illustration for family-based dairy 

farms in north-west Michoacán, Mexico. Agricultural Systems 135, 66-76 

Crowder, D.W., Harwood, J.D., 2014. Promoting biological control in a rapidly changing world. 

Biological Control 75, 1-7.10.1016/j.biocontrol.2014.04.009 



129 
 

Debebe, A., Jembere, B., Wale, M., 2008. Effect of fertilizer and crop variety on the survival of Busseola 

fusca (Lepidoptera: Noctuidae) in cereals in Ethiopia. International Journal of Tropical Insect 

Science 27, 172-182. 

De Nooy van Tol, J., 2016. Transition to agro-ecology: for a food secure world. AuthorHouse UK, 

Bloomington, IN (USA) 

Day, R., Abrahams, P., Bateman, M., Beale, T., Clottey, V., Cock, M., Colmenarez, Y., Corniani, N., Early, 

R., Godwin, J., 2017. Fall armyworm: impacts and implications for Africa. Outlooks Pest 

Manage. 28, 196–201.  

De Groote, H., 2002. Maize yield losses from stemborers in Kenya.  22, 89-96 

Dessie, G., 2007. Forest decline in south central Ethiopia: Extent, history and process (Doctoral 

dissertation, Institutionen för naturgeografi och kvartärgeologi). 

Dessie, G., Kinlund, P., 2016. Khat expansion and forest decline in wondo genet, ethiopia. Geografiska 

Annaler: Series B, Human Geography 90, 187-203.10.1111/j.1468-0467.2008.00286.x 

Dessie, G., Kleman, J., 2007. Pattern and magnitude of deforestation in the south central rift valley 

region of Ethiopia. Mountain Research and Development 27, 162-168, 

https://doi.org/10.1659/ mrd.0730.  

Dira, S.J., Hewlett, B.S., 2016. Learning to survive ecological risks among the Sidama of South-western 

Ethiopia. J. Ecol. Anthropol. 18, 1.  

Dorward, A., Anderson, S., Bernal, Y.N., Vera, E.S., Rushton, J., Pattison, J., Paz, R., 2009. Hanging in, 

stepping up and stepping out: livelihood aspirations and strategies of the poor. Development 

in Practice 19, 240-247.10.1080/09614520802689535 

Dupas, S., le Ru, B., Branca, A., Faure, N., Gigot, G., Campagne, P., Sezonlin, M., Ndemah, R., Ong'amo, 

G., Calatayud, P.A., Silvain, J.F., 2014. Phylogeography in continuous space: coupling species 

distribution models and circuit theory to assess the effect of contiguous migration at different 

climatic periods on genetic differentiation in Busseola fusca (Lepidoptera: Noctuidae). 

Molecular ecology 23, 2313-2325. 

Ebenebe, A.A., van den Berg, J., van der Linde, T.C., 1999. Effect of planting date of maize on damage 

and yield loss caused by the stalk borer, Busseola fusca (Fuller) (Lepidoptera: Noctuidae) in 

Lesotho. South African Journal of Plant and Soil 16, 180-

185.10.1080/02571862.1999.10635007 

Eigenbrode, S.D., Birch, A.N.E., Lindzey, S., Meadow, R., Snyder, W.E., Pocock, M., 2016. Review: A 

mechanistic framework to improve understanding and applications of push-pull systems in 

pest management. Journal of Applied Ecology 53, 202-212.10.1111/1365-2664.12556 

FAO, 2018. Integrated management of the fall armyworm on maize: a guide for farmer field schools in 

Africa.  

Farooq, M., Jabran, K., Cheema, Z.A., Wahid, A., Siddique, K.H., 2011. The role of allelopathy in 

agricultural pest management. Pest management science 67, 493-506.10.1002/ps.2091 

Fischler, M., 2010. Impact assessment of push–pull technology developed and promoted by icipe and 

partners in eastern Africa. Intercooperation, Switzerland 

Foley, J.A., Defries, R., Asner, G.P., Barford, C., Bonan, G., Carpenter, S.R., Chapin, F.S., Coe, M.T., 

Daily, G.C., Gibbs, H.K., Helkowski, J.H., Holloway, T., Howard, E.A., Kucharik, C.J., 



130 
 

Monfreda, C., Patz, J.A., Prentice, I.C., Ramankutty, N., Snyder, P.K., 2005. Global 

consequences of land use. Science 309, 570-574.10.1126/science.1111772 

Forman, R.T., Baudry, J., 1984. Hedgerows and hedgerow networks in landscape ecology. 

Environmental management 8, 495-510 

Gbedomon, R., Salako, V., Fandohan, A., Idohou, R., Glele Kakaï, R.L., Assogbadjo, A., 2017. Functional 

diversity of home gardens and their agrobiodiversity conservation benefits in Benin, West 

Africa.10.1186/s13002-017-0192-5 

Gebeyehu Admasu, T., 2015. Urban land use dynamics, the nexus between land use pattern and its 

challenges: The case of Hawassa city, Southern Ethiopia. Land Use Policy 45, 159-

175.https://doi.org/10.1016/j.landusepol.2015.01.022 

Gebre-Amlak, A., 1988. Survival of maize stalk borer, Busseola-Fusca (Fuller), in crop residues in 

Ethiopia. Crop Protection 7, 183-185. 

Gebre-Amlak, A., 1989. Phenology and fecundity of maize stalk borer Busseola fusca (Fuller) in Awassa, 

Southern Ethiopia. Insect Sci. Appl. 10, 131–137.  

Gebre‐Amlak, A., Sigvald, R., Pettersson, J., 1989. The relationship between sowing date, infestation and 

damage by the maize stalk borer,Busseola fusca(Noctuidae), on maize in Awassa, Ethiopia. 

Tropical Pest Management 35, 143-145.10.1080/09670878909371343 

Gebretsadik, Z.M., 2014. Watershed degradation and the growing risk of erosion in Hawassa-Zuria 

District, Southern Ethiopia. J. Flood Risk Manage 7, 118-127.10.1111/jfr3.12033 

 

Geertsema, W., Rossing, W.A.H., Landis, D.A., Bianchi, F.J.J.A., van Rijn, P.C.J., Schaminee, J.H.J., 

Tscharntke, T., van der Werf, W., 2016. Actionable knowledge for ecological intensification of 

agriculture. Frontiers in Ecology and the Environment 14, 209-216.10.1002/fee.1258 

Getu, E., Overholt, W., Kairu, E., 2001a. Distribution and species composition of stemborers and their 

natural enemies in maize and sorghum in Ethiopia. International Journal of Tropical Insect 

Science 21, 353-359 

Getu, E., Overholt, W., Kairu, E., 2001b. Ecological management of cereal stemborer in Ethiopia. 

Proceeding of the 7th Eastern and Southern Africa Regional conference, Nairobi, Kenya 

Getu, E., Overholt, W., Kairu, E., Omwega, C., 2002. Status of stemborers and their management in 

Ethiopia. Integrated Pest Management Conference Proceedings, pp. 8-12 

Getu, E., W, A.O., Kairu, E., Omwega, C.O., 2003. Evidence of the establishment of Cotesia flavipes 

(Hymenoptera: Braconidae), a parasitoid of cereal stemborers, and its host range expansion 

in Ethiopia. Bull Entomol Res 93, 125-129.10.1079/BER2003226 

Girma, H., Rao, M., Sithanantham, S., 2000. Insect pests and beneficial arthropods population under 

different hedgerow intercropping systems in semiarid Kenya. Agroforestry Systems 50, 279-

292 

Gounou, S., Jiang, N.Q., Schulthess, F., 2009. Long-term seasonal fluctuations of lepidopteran cereal 

stemborers and their natural enemies on maize and wild host plants in southern Benin. Insect 

Sci. 16, 329–341.  

Guofa, Z., Overholt, W.A., Mochiah, M.B., 2001. Changes in the distribution of lepidopteran maize 

stemborers in kenya from the 1950s to 1990s.  21, 395-402 



131 
 

Grzywacz, D., Stevenson, P.C., Mushobozi, W.L., Belmain, S., Wilson, K., 2013. The use of indigenous 

ecological resources for pest control in Africa. Food Security 6, 71-86.10.1007/s12571-013-

0313-5 

Haile, A., 2015. Management of stemborer Busseola fusca (Lepidoptera: Noctuidae) using sowing date, 

host plant and chemical control in sorghum in the highlands of Eritrea. International Journal 

of Tropical Insect Science 35, 17-26.10.1017/S1742758415000028 

Hassanali, A., Herren, H., Khan, Z.R., Pickett, J.A., Woodcock, C.M., 2008. Integrated pest 

management: the push-pull approach for controlling insect pests and weeds of cereals, and its 

potential for other agricultural systems including animal husbandry. Philosophical 

transactions of the Royal Society of London. Series B, Biological sciences 363, 611-

621.10.1098/rstb.2007.2173 

Hervé, M., 2011. Aide-mémoire de statistique appliquée à la biologie – Construire son étude et analyser 

les résultats à l’aide du logiciel R, 2ème version.  

Jahnke, H.E., Jahnke, H.E., 1982. Livestock production systems and livestock development in tropical 

Africa. Kieler Wissenschaftsverlag Vauk Kiel. 

Jayne, T.S., Chamberlin, J., Headey, D.D., 2014. Land pressures, the evolution of farming systems, and 

development strategies in Africa: A synthesis. Food Policy 48, 1-

17.http://dx.doi.org/10.1016/j.foodpol.2014.05.014 

Karp, D.S., Chaplin-Kramer, R., Meehan, T.D., Martin, E.A., DeClerck, F., Grab, H., Gratton, C., Hunt, 

L., Larsen, A.E., Martínez-Salinas, A., 2018. Crop pests and predators exhibit inconsistent 

responses to surrounding landscape composition. Proceedings of the National Academy of 

Sciences 115, E7863-E7870 

Kankonda, O.M., Akaibe, B.D., Ong’amo, G.O., Le Ru, B.-P., 2017. Diversity of lepidopteran stemborers 

and their parasitoids on maize and wild host plants in the rain forest of Kisangani, DR Congo. 

Phytoparasitica 45, 57-69.10.1007/s12600-017-0561-6 

Kassie, B.T., Van Ittersum, M.K., Hengsdijk, H., Asseng, S., Wolf, J., Rötter, R.P., 2014. Climate-induced 

yield variability and yield gaps of maize (Zea mays L.) in the Central Rift Valley of Ethiopia. Field 

Crops Res. 160, 41–53.  

Kayser, M., Benke, M., Isselstein, J., 2011. Little fertilizer response but high N loss risk of maize on a 

productive organic-sandy soil. Agronomy for Sustainable Development 31, 709-718. 

Kebede, Y., Bianchi, F.J.J.A., Baudron, F., Abraham, K., de Valença, A., Tittonell, P., 2018. Implications 

of changes in land cover and landscape structure for the biocontrol potential of stemborers in 

Ethiopia. Biological Control 122, 1-10.10.1016/j.biocontrol.2018.03.012 

Kebede, Y., Baudron, F., Bianchi, F.J.J.A., Tittonell, P., 2018. Unpacking the push-pull system: 

Assessing the contribution of companion crops along a gradient of landscape complexity. 

Agriculture, Ecosystems & Environment 268, 115-123. 

Kim, D.-G., Terefe, B., Girma, S., Kedir, H., Morkie, N., Woldie, T.M., 2016. Conversion of home garden 

agroforestry to crop fields reduced soil carbon and nitrogen stocks in Southern Ethiopia. 

Agroforestry Systems 90, 251-264. 



132 
 

Kindu, M., Schneider, T., Teketay, D., Knoke, T., 2013. Land Use/Land Cover Change Analysis Using 

Object-Based Classification Approach in Munessa-Shashemene Landscape of the Ethiopian 

Highlands. Remote Sensing 5, 2411-2435.10.3390/rs5052411 

Kipkoech, A.K., Schulthess, F., Yabann, W.K., Maritim, H.K., Mithofer, D., 2006. Biological control of 

cereal stemborers in Kenya: a cost benefit approach. Annales De La Societe Entomologique De 

France 42, 519–528. https://doi.org/10.1080/ 00379271.2006.10697487.  

Kfir, R., 1997. Natural control of the cereal stemborers Busseola fusca and Chilo partellus in South 

Africa. Int. J. Trop. Insect Sci. 17, 61–67.  

Kfir, R., Overholt, W.A., Khan, Z.R., Polaszek, A., 2002b. Biology and management of economically 

important Lepidopteran cereal stemborers. Annual Review of Entomology 47, 701-

731.doi:10.1146/annurev.ento.47.091201.145254 

Khadioli, N., Tonnang, Z.E.H., Ong'amo, G., Achia, T., Kipchirchir, I., Kroschel, J., Le Ru, B., 2014. Effect 

of temperature on the life history parameters of noctuid lepidopteran stemborers, Busseola 

fusca and Sesamia calamistis. Annals of Applied Biology 165, 373-386.doi:10.1111/aab.12157 

Khan, Z., Midega, C., Pittchar, J., Pickett, J., Bruce, T., 2011. Push-pull technology: a conservation 

agriculture approach for integrated management of insect pests, weeds and soil health in 

Africa 10.3763/ijas.2010.0558 

Khan, Z., Midega, C.A., Hooper, A., Pickett, J., 2016. Push-Pull: Chemical Ecology-Based Integrated Pest 

Management Technology. Journal of chemical ecology 42, 689-697.10.1007/s10886-016-

0730-y 

Khan, Z.R., Midega, C.A., Bruce, T.J., Hooper, A.M., Pickett, J.A., 2010. Exploiting phytochemicals for 

developing a 'push-pull' crop protection strategy for cereal farmers in Africa. Journal of 

experimental botany 61, 4185-4196.10.1093/jxb/erq229 

Khan, Z.R., Midega, C.A.O., Amudavi, D.M., Hassanali, A., Pickett, J.A., 2008a. On-farm evaluation of 

the 'push-pull' technology for the control of stemborers and striga weed on maize in western 

Kenya. Field Crops Research 106, 224-233.10.1016/j.fcr.2007.12.002 

Khan, Z.R., Midega, C.A.O., Njuguna, E.M., Amudavi, D.M., Wanyama, J.M., Pickett, J.A., 2008b. 

Economic performance of the ‘push–pull’ technology for stemborer and Striga control in 

smallholder farming systems in western Kenya. Crop Prot. 27, 1084–1097. 

https://doi.org/10.1016/j.cropro.2008.01.005.  

Khan, Z.R., Midega, C.A.O., Wadhams, L.J., Pickett, J.A., Mumuni, A., 2007a. Evaluation of Napier grass 

(Pennisetum purpureum) varieties for use as trap plants for the management of African 

stemborer (Busseola fusca) in a push?pull strategy. Entomologia Experimentalis et Applicata 

124, 201-211.10.1111/j.1570-7458.2007.00569.x 

Khan, Z.R., Muyekho, F.N., Njuguna, E., Pickett, J.A., Wadhams, L.J., Pittchar, J., Ndiege, A., Genga, 

G., Nyagol, D., Lusweti, C., 2007b. A Primer on Planting and Managing ‘Push-Pull’ Fields for 

Stemborer and Striga Control in Maize—A Step-by-Step Guide for Farmers and Extension 

Staff. In: Ng’eny-Mengech, A. (Ed.). ICIPE Science Press, p. 60 

Khan, Z.R., Pickett, J.A., Wadhams, L., Muyekho, F., 2001. Habitat management strategies for the 

control of cereal stemborers and striga in maize in Kenya. International Journal of Tropical 

Insect Science 21, 375-380 



133 
 

Khan, Z.R., Pickett, J.A., Wadhams, L.J., Hassanali, A., Midega, C.A.O., 2006. Combined control of 

Striga hermonthica and stemborers by maize–Desmodium spp. intercrops. Crop Protection 

25, 989-995.10.1016/j.cropro.2006.01.008 

Koenker, R., Portnoy, S., Ng, P.T., Zeileis, A., Grosjean, P., Ripley, B.D., 2018. Package ‘quantreg’. 

Kremen, C., Merenlender, A.M., 2018. Landscapes that work for biodiversity and people. Science 

362.10.1126/science.aau6020 

Kruess, A., Tscharntke, T., 1994. Habitat fragmentation, species loss, and biological control. Science 264, 

1581-1584 

Kruger, M., Van Rensburg, J.B.J., Van Den Berg, J., 2011. Resistance to Bt Maize in Busseola fusca 

(Lepidoptera: Noctuidae) From Vaalharts, South Africa. Environmental entomology 40, 477-

483. 

Kuznetsova, A., Brockhoff, P.B., Christensen, R.H.B., 2017. lmerTest package: tests in linear mixed 

effects models. J. Stat. Softw. 82. https://doi.org/10.18637/jss.v082. i13.  

 

Lambin, E.F., Geist, H.J., Lepers, E., 2003. Dynamics Of land-Use And land-Cove rchange In tropical 

regions. Annual Review of Environment and Resources 28, 205-

241.10.1146/annurev.energy.28.050302.105459 

Lambin, E.F., Meyfroidt, P., 2010. Land use transitions: Socio-ecological feedback versus socio-

economic change. Land Use Policy 27, 108-118.10.1016/j.landusepol.2009.09.003 

Landis, D.A., Gardiner, M.M., van der Werf, W., Swinton, S.M., 2008. Increasing corn for biofuel 

production reduces biocontrol services in agricultural landscapes. Proc. Natl. Acad. Sci. 105, 

20552–20557.  

Lawani, S.M., 1982. A review of the effects of various agronomic practices on cereal stemborer 

populations. Tropical Pest Management 28, 266-276.10.1080/09670878209370720 

Lemessa, D., Hambäck, P.A., Hylander, K., 2015b. The effect of local and landscape level land-use 

composition on predatory arthropods in a tropical agricultural landscape. Landscape Ecol. 30, 

167–180.  

Lemessa, D., Hylander, K., Hambäck, P., 2013. Composition of crops and land-use types in relation to 

crop raiding pattern at different distances from forests. Agric. Ecosyst. Environ. 167, 71–78.  

Lemessa, D., Legesse, A., 2018. Non-crop and crop plant diversity and determinants in homegardens of 

Abay Chomen District, Western Ethiopia. Biodiversity International Journal 2, 433-

439.10.15406/bij.2018.02.00096 

Le Rü, B.P., Ong’amo, G.O., Moyal, P., Muchugu, E., Ngala, L., Musyoka, B., Abdullah, Z., Matama-

Kauma, T., Lada, V.Y., Pallangyo, B., Omwega, C.O., Schulthess, F., Calatayud, P.-A., Silvain, 

J.-F., 2006. Geographic distribution and host plant ranges of East African noctuid stemborers. 

Ann Soc Entomol Fr 42, 353-361.10.1080/00379271.2006.10697467 

Lemessa, D., Hamback, P.A., Hylander, K., 2015. Arthropod but not bird predation in Ethiopian 

homegardens is higher in tree-poor than in tree-rich landscapes. PloS one 10, 

e0126639.10.1371/journal.pone.0126639 

Losey, J.E., Vaughan, M., 2006. The Economic Value of Ecological Services Provided by Insects. 

Bioscience 56, 311-323 



134 
 

Lu, D., Mausel, P., Brondízio, E., Moran, E., 2004. Change detection techniques. International Journal 

of Remote Sensing 25, 2365-2401.10.1080/0143116031000139863 

Macfadyen, S., Muller, W., 2013. Edges in agricultural landscapes: species interactions and movement 

of natural enemies. PloS one 8, e59659.10.1371/journal.pone.0059659 

Mailafiya, D.M., Le Ru, B.P., Kairu, E.W., Dupas, S., Calatayud, P.-A., 2011. Parasitism of Lepidopterous 

StemBorers in Cultivated and Natural Habitats. Journal of Insect Science 11, 1-

19.10.1673/031.011.0115 

Mammo, K., 2012. Push- Pull : A Novel Farming System Against Stemborer And Witches Weed, Internal 

Report. icipe-Ethiopia.  

McGarigal, K., S.A. Cushman, M.C. Neel, and E. Ene. 2002. FRAGSTATS v3: Spatial Pattern Analysis 

Program for Categorical Maps. Computer software program produced by the authors at the 

University of Massachusetts, Amherst. Available at the following website: < 

http://www.umass.edu/landeco/research/fragstats/fragstats.html > .  

Mellisse, B.T., Descheemaeker, K., Giller, K.E., Abebe, T., van de Ven, G.W.J., 2018. Are traditional 

home gardens in southern Ethiopia heading for extinction? Implications for productivity, 

plant species richness and food security. Agriculture, Ecosystems & Environment 252, 1-

13.https://doi.org/10.1016/j.agee.2017.09.026 

Mellisse, B.T., Ven, G.W.J.v.d., Giller, K.E., Descheemaeker, K., 2017. Home garden system dynamics in 

Southern Ethiopia. Agroforestry Systems, 1-17 

Mellor, J.W., 2014. High rural population density Africa – What are the growth requirements and who 

participates? Food Policy 48, 66-75.10.1016/j.foodpol.2014.03.002 

Meshesha, D.T., Tsunekawa, A., Tsubo, M., Ali, S.A., Haregeweyn, N., 2013. Land-use change and its 

socio-environmental impact in Eastern Ethiopia’s highland. Regional Environmental Change 

14, 757-768.10.1007/s10113-013-0535-2 

Mgoo, V.H., Makundi, R.H., Pallangyo, B., Schulthess, F., Jiang, N.Q., Omwega, C.O., 2006. Yield loss 

due to the stemborer Chilo partellus (Swinhoe) (Lepidoptera: Crambidae) at different nitrogen 

application rates to maize. Annales De La Société Entomologique De France 42, 487–494.  

Midega, C.A.O., Jonsson, M., Khan, Z.R., Ekbom, B., 2014. Effects of landscape complexity and habitat 

management on stemborer colonisation, parasitism and damage to maize. Agr Ecosyst 

Environ 188, 289-293.10.1016/j.agee.2014.02.028 

Midega, C.A.O., Kahn, Z.R., 2003. Impact of a habitat management system on diversity and abundance 

of maize stemborer predators in western Kenya. Insect Sci. Appl. 23, 91–100.  

Midega, C.A.O., Ogol, C.K.P.O., Overholt, W.A., 2004. Effect of agroecosystem diversity on natural 

enemies of maize stemborers in coastal Kenya. Int. J. Trop. Insect Sci. 24, 280–286.  

Midega, C.A.O., Pittchar, J.O., Pickett, J.A., Hailu, G.W., Khan, Z.R., 2018. A climate-adapted push-pull 

system effectively controls fall armyworm, Spodoptera frugiperda (J E Smith), in maize in East 

Africa. Crop Protection 105, 10-15.10.1016/j.cropro.2017.11.003 

Miller, A.W., Ambrose, R.F., 2000. Sampling patchy distributions: comparison of sampling designs in 

rocky intertidal habitats. Marine Ecology Progress Series 196, 1-14. 

 



135 
 

Muluneh, A., Biazin, B., Stroosnijder, L., Bewket, W., Keesstra, S., 2015. Impact of predicted changes in 

rainfall and atmospheric carbon dioxide on maize and wheat yields in the Central Rift Valley 

of Ethiopia. Reg. Environ. Change 15, 1105–1119. https:// doi.org/10.1007/s10113-014-0685-

x.  

Muyanga, M., Jayne, T.S., 2014. Effects of rising rural population density on smallholder agriculture in 

Kenya. Food Policy 48, 98-113.http://dx.doi.org/10.1016/j.foodpol.2014.03.001 

Mwalusepo, S., Massawe, E., Johansson, T., Abdel-Rahman, E., Gathara, M., Njuguna, E., Calatayud, 

P.-A., James, O., Landmann, T., Ru, B.L., 2018. Modelling the distributions of maize 

stemborers at local scale in East African mountain gradients using climatic and edaphic 

variables. Afr Entomol 26, 458-470 

Mwalusepo, S., Tonnang, H.E., Massawe, E.S., Okuku, G.O., Khadioli, N., Johansson, T., Calatayud, P.-

A., Le Ru, B.P., 2015. Predicting the impact of temperature change on the future distribution of 

maize stemborers and their natural enemies along East African mountain gradients using 

phenology models. PloS one 10, e0130427. 

Ndemah, R.N., 1999. Towards an integrated crop management strategy for the African stalk borer, 

Busseola fusca (Fuller) (Lepidoptera: Noctuidae) in maize systems in Cameroon. Diss. Verlag 

nicht ermittelbar. 

Ndjomatchoua, F.T., Tonnang, H.E.Z., Plantamp, C., Campagne, P., Tchawoua, C., Le Ru, B.P., 2016. 

Spatial and temporal spread of maize stemborer Busseola fusca (Fuller) (Lepidoptera: 

Noctuidae) damage in smallholder farms. Agriculture, Ecosystems & Environment 235, 105-

118.http://dx.doi.org/10.1016/j.agee.2016.10.013 

Negash, A., Niehof, A., 2004. The significance of enset culture and biodiversity for rural household food 

and livelihood security in southwestern Ethiopia. Agr Hum Values 21, 61-71.Doi 

10.1023/B:Ahum.0000014023.30611.Ad 

Newbold, T., Hudson, L.N., Hill, S.L.L., Contu, S., Lysenko, I., Senior, R.A., Börger, L., Bennett, D.J., 

Choimes, A., Collen, B., Day, J., De Palma, A., Díaz, S., Echeverria-Londoño, S., Edgar, M.J., 

Feldman, A., Garon, M., Harrison, M.L.K., Alhusseini, T., Ingram, D.J., Itescu, Y., Kattge, J., 

Kemp, V., Kirkpatrick, L., Kleyer, M., Correia, D.L.P., Martin, C.D., Meiri, S., Novosolov, M., 

Pan, Y., Phillips, H.R.P., Purves, D.W., Robinson, A., Simpson, J., Tuck, S.L., Weiher, E., 

White, H.J., Ewers, R.M., Mace, G.M., Scharlemann, J.P.W., Purvis, A., 2015. Global effects of 

land use on local terrestrial biodiversity. Nature 520, 45 

Northfield, T.D., Crowder, D.W., Takizawa, T., Snyder, W.E., 2014. Pairwise interactions between 

functional groups improve biological control. Biological Control 78, 49-

54.10.1016/j.biocontrol.2014.07.008 

Novozamsky, I., Houba, V.J.G., Van Eck, R., Van Vark, W., 1983. A novel digestion technique for multi‐
element plant analysis. Communications in soil science and plant analysis 14, 239-248. 

Nziguheba, G., 2007. Overcoming phosphorus deficiency in soils of Eastern Africa: recent advances and 

challenges. Advances in Integrated Soil Fertility Management in sub-Saharan Africa: Challenges 

and Opportunities. Dordrecht: Springer Netherlands, pp. 149-160. 

Offenberg, J., Firn, J., 2015. Review: Ants as tools in sustainable agriculture. Journal of Applied Ecology 

52, 1197-1205.10.1111/1365-2664.12496 



136 
 

Oliveira, M.L.F., Daher, R., Figueiredo, e., de Amara Gravina, G., da Silva, V.B., Rodrigues, E.V., orio, 

Shimoya, A., do Amaral Junior, A.T., da Silva Menezes, B.R., dos Santos Rocha, A., 2014. Pre-

breeding of elephant grass for energy purposes and biomass analysis in Campos dos 

Goytacazes-RJ, Brazil. Afr. J. Agric. Res. 9, 2743–2758.  

Ong'amo, G., Le Ru, B., Dupas, S., Moyal, P., Calatayud, PA ; Silvain, J., 2006. Distribution, pest status 

and agro-dimatic preferences of lepidopteran stemborers of maize in Kenya. Annales De La 

Societe Entomologique De France 42, pp.171-177 

O'Rourke, M.E., Rienzo-Stack, K., Power, A.G., 2011. A multi-scale, landscape approach to predicting 

insect populations in agroecosystems. Ecol. Appl. 21, 1782–1791.  

Pacini, G.C., Colucci, D., Baudron, F., Righi, E., Corbeels, M., Tittonell, P., Stefanini, F.M., 2013. 

Combining Multi-Dimensional Scaling and Cluster Analysis to Describe the Diversity of Rural 

Households. Experimental Agriculture 50, 376-397.10.1017/s0014479713000495 

Päts, P., 1996. Management of crop residues to reduce the aestivating population of stemborers in maize. 

International Journal of Pest Management 42, 151-156. 

Peterson, B.G., Carl, P., 2018. PerformanceAnalytics: Econometric Tools for Performance and Risk 

Analysis. R Package Version 1.5.2. https://CRAN.R-project.org/package= 

PerformanceAnalytics.  

Philpott, S.M., Armbrecht, I., 2006. Biodiversity in tropical agroforests and the ecological role of ants 

and ant diversity in predatory function. Ecological entomology 31, 369-377 

Pickett, J.A., Woodcock, C.M., Midega, C.A., Khan, Z.R., 2014. Push-pull farming systems. Curr. Opin. 

Biotechnol. 26, 125–132. https://doi.org/10.1016/j.copbio.2013.12.006.  

Polaszek, A., Agricultural, T.C.f., Cooperation, R., 1998. African Cereal StemBorers: Economic 

Importance, Taxonomy, Natural Enemies and Control. CAB International, London, Royaume-

Uni.  

Poveda, K., Gomez, M.I., Martinez, E., 2008. Diversification practices: their effect on pest regulation 

and production. Rev. Colomb. Entomol. 34, 131–144. Reynolds, T.W., Waddington, S.R., 

Anderson, C.L., Chew, A., True, Z., Cullen, A., 2015. Environmental impacts and constraints 

associated with the production of major food crops in Sub-Saharan Africa and South Asia. 

Food Security 7, 795–822. https://doi. org/10.1007/s12571-015-0478-1.  

Pretty, J., Bharucha, Z., 2015. Integrated Pest Management for Sustainable Intensification of Agriculture 

in Asia and Africa. Insects 6, 152 

Pumariño, L., Sileshi, G.W., Gripenberg, S., Kaartinen, R., Barrios, E., Muchane, M.N., Midega, C., 

Jonsson, M., 2015. Effects of agroforestry on pest, disease and weed control: A meta-analysis. 

Basic and Applied Ecology 16, 573-582.http://dx.doi.org/10.1016/j.baae.2015.08.006 

Reid, R.S., Kruska, R.L., Muthui, N., Taye, A., Wotton, S., Wilson, C.J., Mulatu, W., 2000. Land-use and 

land-cover dynamics in response to changes in climatic, biological and socio-political forces: 

the case of southwestern Ethiopia. Landscape Ecology 15, 339-355 

Rand, T.A., Tylianakis, J.M., Tscharntke, T., 2006. Spillover edge effects: the dispersal of agriculturally 

subsidized insect natural enemies into adjacent natural habitats. Ecol. Lett. 9, 603–614.  



137 
 

Reynolds, T.W., Farley, J., Huber, C., 2010. Investing in human and natural capital: An alternative 

paradigm for sustainable development in Awassa, Ethiopia. Ecological Economics 69, 2140-

2150.https://doi.org/10.1016/j.ecolecon.2009.03.007 

Root, R.B., 1973. Organization of a plant-arthropod association in simple and diverse habitats: the fauna 

of collards (Brassica Oleracea). Ecological Monographs 43, 95-124. 

Root, R.B., 1973. Organization of a Plant-Arthropod Association in Simple and Diverse Habitats: The 

Fauna of Collards (Brassica Oleracea). Ecological Monographs 43, 95-

124.doi:10.2307/1942161 

Rowell, D.P., Booth, B.B.B., Nicholson, S.E., Good, P., 2015. Reconciling Past and Future Rainfall Trends 

over East Africa. Journal of Climate 28, 9768-9788.10.1175/jcli-d-15-0140.1 

Rueff, C., Gibon, A., 2010. Using a view of livestock farms as social-ecological systems to study the local 

variety in their trajectories of change.  

Rusch, A., Chaplin-Kramer, R., Gardiner, M.M., Hawro, V., Holland, J., Landis, D., Thies, C., 

Tscharntke, T., Weisser, W.W., Winqvist, C., Woltz, M., Bommarco, R., 2016. Agricultural 

landscape simplification reduces natural pest control: A quantitative synthesis. Agr Ecosyst 

Environ 221, 198-204.10.1016/j.agee.2016.01.039 

Rusch, A., Valantin-Morison, M., Sarthou, J.-P., Roger-Estrade, J., 2010. Biological control of insect 

pests in agroecosystems: effects of crop management, farming systems, and seminatural 

habitats at the landscape scale: a review. Adv. Agron. 219–259 Elsevier.  

Schellhorn, N.A., Bianchi, F.J.J.A., Hsu, C.L., 2014. Movement of entomophagous arthropods in 

agricultural landscapes: links to pest suppression. Annual review of entomology 59, 559-

581.10.1146/annurev-ento-011613-161952 

Schellhorn, N.A., Macfadyen, S., Bianchi, F.J.J.A., Williams, D.G., Zalucki, M.P., 2008. Managing 

ecosystem services in broadacre landscapes: what are the appropriate spatial scales? Australian 

Journal of Experimental Agriculture 48, 1549-1559. 

Schmitz, O.J., Barton, B.T., 2014. Climate change effects on behavioral and physiological ecology of 

predator–prey interactions: Implications for conservation biological control. Biological 

Control 75, 87-96.10.1016/j.biocontrol.2013.10.001 

Schmidt, M.H., Tscharntke, T., 2005. Landscape context of sheetweb spider (Araneae: Linyphiidae) 

abundance in cereal fields. J. Biogeogr. 32, 467–473.  

Seran, T.H., Brintha, I., 2010. Review on maize based intercropping. Journal of agronomy 9, 135-145 

Sharp, K., Brown, T., Teshome, A., 2006. Targeting Ethiopia’s Productive Safety Net Programme 

(PSNP). London and Bristol, UK: Overseas Development Institute and the IDL Group. 

Shackelford, G., Steward, P.R., Benton, T.G., Kunin, W.E., Potts, S.G., Biesmeijer, J.C., Sait, S.M., 2013. 

Comparison of pollinators and natural enemies: a meta-analysis of landscape and local effects 

on abundance and richness in crops. Biol. Rev. Cambridge Philos. Soc. 88, 1002–1021.  

Shannon, C., Weaver, W., 1949. The mathematical theory of information, AT&T Tech. J 27, 359-423. 

Sime, G., Aune, J., 2014. Maize response to fertilizer dosing at three sites in the central Rift 

Valley of Ethiopia. Agronomy 4, 436-451. 

Sheahan, M., Barrett, C.B., 2017. Ten striking facts about agricultural input use in Sub-Saharan Africa. 

Food Policy 67, 12-25.https://doi.org/10.1016/j.foodpol.2016.09.010 



138 
 

Shelton, A.M., Badenes-Perez, F.R., 2006. Concepts and applications of trap cropping in pest 

management. Annu. Rev. Entomol. 51, 285–308. https://doi.org/10.1146/ 

annurev.ento.51.110104.150959.  

Shewangizaw, D.M., Yonas 2010. Assessing the Effect of Land Use Change on the Hydraulic Regime of 

Lake Awassa. MSc. Dissertation, Hawassa University.  

Shiferaw, B., Prasanna, B.M., Hellin, J., Bänziger, M., 2011. Crops that feed the world 6. Past successes 

and future challenges to the role played by maize in global food security. Food Security 3, 307. 

https://doi.org/10.1007/s12571-011-0140-5.  

Skovgard, H., Päts, P., 1996. Effects of intercropping on maize stemborers and their natural enemies. 

Bull. Entomol. Res. 86, 599–607.  

Smale, M., Byerlee, D., Jayne, T., 2011. Maize revolutions in sub-Saharan Africa. The World Bank. 

Snapp, S.S., Swinton, S.M., Labarta, R., Mutch, D., Black, J.R., Leep, R., Nyiraneza, J., O'Neil, K., 2005. 

Evaluating Cover Crops for Benefits, Costs and Performance within Cropping System Niches. 

Agronomy Journal 97, 322-332.10.2134/agronj2005.0322 

Songa, J.M., Jiang, N., Schulthess, F., Omwega, C., 2007. The role of intercropping different cereal 

species in controlling lepidopteran stemborers on maize in Kenya. J Appl Entomol 131, 40-

49.10.1111/j.1439-0418.2006.01116.x 

Spielman, D.J., Kelemwork, D., Alemu, D., 2012. Seed, fertilizer, and agricultural extension in Ethiopia. 

Food and agriculture in Ethiopia: Progress and policy challenges 74, 84 

Tamene L; Amede T; Kihara J; Tibebe D; Schulz S. (eds.). 2017. A review of soil fertility management 

and crop response to fertilizer application in Ethiopia: towards development of site- and 

context-specific fertilizer recommendation. CIAT Publication No. 443. International Center for 

Tropical Agriculture (CIAT), Addis Ababa, Ethiopia. 86 p. Available at: 

http://hdl.handle.net/10568/82996 

Tekle, D., 2002. Effect of chat-maize intercropping and chat leaf extract on the incidence and 

development of lepidopterous stemborers of maize in Alemaya, eastern Ethiopia. M.Sc Thesis. 

Haramaya University 

Thomson, L.J., Hoffmann, A.A., 2013. Spatial scale of benefits from adjacent woody vegetation on 

natural enemies within vineyards. Biological control 64, 57-65 

Thomson, J.D., Weiblen, G., Thomson, B.A., Alfaro, S., Legendre, P., 1996. Untangling multiple factors 

in spatial distributions: lilies, gophers, and rocks. Ecology 77, 1698-1715. 

Tittonell, P., 2014. Livelihood strategies, resilience and transformability in African agroecosystems. 

Agricultural Systems 126, 3-14.http://dx.doi.org/10.1016/j.agsy.2013.10.010 

Tittonell, P., Giller, K.E., 2013. When yield gaps are poverty traps: The paradigm of ecological 

intensification in African smallholder agriculture. Field Crops Research 143, 76-

90.10.1016/j.fcr.2012.10.007 

Tittonell, P., Muriuki, A., Shepherd, K.D., Mugendi, D., Kaizzi, K.C., Okeyo, J., Verchot, L., Coe, R., 

Vanlauwe, B., 2010. The diversity of rural livelihoods and their influence on soil fertility in 

agricultural systems of East Africa - A typology of smallholder farms. Agricultural Systems 103, 

83-97.10.1016/j.agsy.2009.10.001 



139 
 

Tittonell, P., Scopel, E., Andrieu, N., Posthumus, H., Mapfumo, P., Corbeels, M., van Halsema, G.E., 

Lahmar, R., Lugandu, S., Rakotoarisoa, J., Mtambanengwe, F., Pound, B., Chikowo, R., 

Naudin, K., Triomphe, B., Mkomwa, S., 2012. Agroecology-based aggradation-conservation 

agriculture (ABACO): Targeting innovations to combat soil degradation and food insecurity in 

semi-arid Africa. Field Crops Research 132, 168-174.https://doi.org/10.1016/j.fcr.2011.12.011 

Tittonell, P., Vanlauwe, B., Misiko, M., Giller, K.E., 2011. Targeting Resources Within Diverse, 

Heterogeneous and Dynamic Farming Systems: Towards a ‘Uniquely African Green 

Revolution’. A. Bationo et al. (eds.), Innovations as Key to the Green Revolution in Africa, 747-

758.10.1007/978-90-481-2543-2_76 

Tittonell, P., van Wijk, M.T., Herrero, M., Rufino, M.C., de Ridder, N., Giller, K.E., 2009. Beyond 

resource constraints – exploring the biophysical feasibility of options for the intensification of 

smallholder crop-livestock systems in Vihiga district, Kenya. Agric. Syst. 101, 1–19. 

https://doi.org/10.1016/j.agsy.2009.02.003.  

Tripathi, M.K., Karim, S.A., Chaturvedi, O.H., Singh, V.K., 2006. Effect of ad libitum tree leaves feeding 

with varying levels of concentrate on intake, microbial protein yield and growth of lambs. 

Livest. Res. For. Rural Dev. 18, 327–338.  

Tsafack, N., Menozzi, P., Brevault, T., Soti, V., Deconchat, M., Ouin, A., 2013. Effects of landscape 

context and agricultural practices on the abundance of cotton bollwormHelicoverpa 

armigerain cotton fields: A case study in northern Benin. International Journal of Pest 

Management 59, 294-302.10.1080/09670874.2013.852270 

Tscharntke, T., Klein, A.M., Kruess, A., Steffan-Dewenter, I., Thies, C., 2005. Landscape perspectives on 

agricultural intensification and biodiversity - ecosystem service management. Ecol. Lett. 8, 

857–874. https://doi.org/10.1111/j.1461-0248.2005. 00782.x.  

Tscharntke, T., Bommarco, R., Clough, Y., Crist, T.O., Kleijn, D., Rand, T.A., Tylianakis, J.M., van 

Nouhuys, S., Vidal, S., 2007. Conservation biological control and enemy diversity on a landscape 

scale. Biol. Control 43, 294–309.  

Tscharntke, T., Tylianakis, J.M., Rand, T.A., Didham, R.K., Fahrig, L., Batary, P., Bengtsson, J., Clough, 

Y., Crist, T.O., Dormann, C.F., Ewers, R.M., Fründ, J., Holt, R.D., Holzschuh, A., Klein, A.M., 

Kleijn, D., Kremen, C., Landis, D.A., Laurance, W., Lindenmayer, D., Scherber, C., Sodhi, N., 

Steffan-Dewenter, I., Thies, C., van der Putten, W.H., Westphal, C., 2012. Landscape 

moderation of biodiversity patterns and processes - eight hypotheses. Biological reviews of the 

Cambridge Philosophical Society 87.10.1111/j.1469-185X.2011.00216.x 

Valbuena, D., Groot, J.C.J., Mukalama, J., Gérard, B., Tittonell, P., 2015. Improving rural livelihoods as 

a “moving target”: trajectories of change in smallholder farming systems of Western Kenya. 

Regional Environmental Change 15, 1395-1407.10.1007/s10113-014-0702-0 

Van den Berg, J., 2017. Insect Resistance Management in Bt Maize: Wild Host Plants of Stemborers Do 

Not Serve as Refuges in Africa. Journal of economic entomology 110, 221-229. 

Van den Berg, J., Van Hamburg, H., 2015. Trap cropping with Napier grass, Pennisetum purpureum 

(Schumach), decreases damage by maize stemborers. Int. J. Pest Manage. 61, 73–79. 

https://doi.org/10.1080/09670874.2014.999733.  



140 
 

Van Huis, A., Meerman, F., 1997. Can we make IPM work for resource-poor farmers in sub-Saharan 

Africa? International Journal of Pest Management 43, 313-320.10.1080/096708797228636 

Vanlauwe, B., Kanampiu, F., Odhiambo, G.D., De Groote, H., Wadhams, L.J., Khan, Z.R., 2008. 

Integrated management of Striga hermonthica, stemborers, and declining soil fertility in 

western Kenya. Field Crops Research 107, 102-115.https://doi.org/10.1016/j.fcr.2008.01.002 

Van Rensburg, J., Giliomee, J., Walters, M., 1988. Aspects of the injuriousness of the maize stalk borer, 

Busseola fusca (Fuller)(Lepidoptera: Noctuidae). Bulletin of entomological research 78, 101-

110 

Van Rensburg, J.B.J., Walters, M.C., Giliomee, J.H., 1987. Ecology of the maize stalk borer, Busseola 

fusca (Fuller)(Lepidoptera: Noctuidae). Bull. Entomol. Res. 77, 255–269.  

Venables, W.N., Ripley, B.D., 2002. Random and mixed effects. In: Modern Applied Statistics with S. 

Springer, pp. 271–300.  

Wagner, A., Yap, D.L.T., Yap, H.T., 2015. Drivers and consequences of land use patterns in a developing 

country rural community. Agriculture, Ecosystems & Environment 214, 78-

85.http://dx.doi.org/10.1016/j.agee.2015.08.016 

Wale, M., Schulthess, F., Kairu, E.W., Omwega, C.O., 2006. Cereal yield losses caused by lepidopterous 

stemborers at different nitrogen fertilizer rates in Ethiopia. Journal of Applied Entomology 130, 

220-229. 

Wale, M., Schulthess, F., Kairu, E.W., Omwega, C.O., 2007. Effect of cropping systems on cereal 

stemborers in the cool-wet and semi-arid ecozones of the Amhara region of Ethiopia. Agr 

Forest Entomol 9, 73-84.10.1111/j.1461-9563.2007.00324.x 

Wang, K., Franklin, S.E., Guo, X., Cattet, M., 2010. Remote sensing of ecology, biodiversity and 

conservation: a review from the perspective of remote sensing specialists. Sensors 10, 9647-

9667.10.3390/s101109647 

Wang, C.Z., Fritschi, F.B., Stacey, G., Yang, Z.W., 2011. Phenology-based assessment of perennial energy 

crops in North American Tallgrass Prairie. Ann. Assoc. Am. Geogr. 101, 742–751.  

Ward Jr, J.H., 1963. Hierarchical grouping to optimize an objective function. Journal of the American 

statistical association 58, 236-244 

Werling, B.P., Dickson, T.L., Isaacs, R., Gaines, H., Gratton, C., Gross, K.L., Liere, H., Malmstrom, C.M., 

Meehan, T.D., Ruan, L., Robertson, B.A., Robertson, G.P., Schmidt, T.M., Schrotenboer, A.C., 

Teal, T.K., Wilson, J.K., Landis, D.A., 2014. Perennial grasslands enhance biodiversity and 

multiple ecosystem services in bioenergy landscapes. Proceedings of the National Academy of 

Sciences of the United States of America 111, 1652-1657.10.1073/pnas.1309492111 

Wink, M., 2013. Evolution of secondary metabolites in legumes (Fabaceae). South African Journal of 

Botany 89, 164-175.https://doi.org/10.1016/j.sajb.2013.06.006 

Woltz, J.M., Isaacs, R., Landis, D.A., 2012. Landscape structure and habitat management differentially 

influence insect natural enemies in an agricultural landscape. Agriculture, Ecosystems & 

Environment 152, 40-49.10.1016/j.agee.2012.02.008 

Wood, S.A., Karp, D.S., DeClerck, F., Kremen, C., Naeem, S., Palm, C.A., 2015. Functional traits in 

agriculture: agrobiodiversity and ecosystem services. Trends in ecology & evolution 30, 531-

539.10.1016/j.tree.2015.06.013 



141 
 

Worku, M., Twumasi Afriyie, S., Wolde, L., Tadesse, B., Demisie, G., Bogale, G., Wegary, D., Prasanna, 

B., 2011. Meeting the challenges of global climate change and food security through innovative 

maize research. In: Worku, M., Twumasi Afriyie, S., Wolde, L., Tadesse, B., Demisie, G., Bogale, 

G., Wegary, D., Prasanna, B. (Eds.), Proceedings of the National Maize Workshop of Ethiopia, 

3; Addis Ababa, Ethiopia; 18-20 April, 2011. National Maize Workshop of Ethiopia. CIMMYT, 

Addis Abeba, Ethiopia.  

Yewhalaw, D., Getu, E., Seyoum, E., 2008. Evaluation on potential of wild hosts as trap plants for 

managing gramineous stemborers in maize based-agroecosystem. Journal of economic 

entomology 101, 50-55.Doi 10.1603/0022-0493(2008)101[50:Eopowh]2.0.Co;2 

Yitaferu, K., Walker, A.K., 1997. Studies on the maize stemborer, Busseola fusca (Lepidoptera: 

Noctuidae) and its major parasitoid, Dolichogenidea fuscivora (Hymenoptera: Braconidae), in 

eastern Ethiopia. Bull. Entomol. Res. 87, 319–324.  

Zhang, W., Kato, E., Bianchi, F.J.J.A., Bhandary, P., Gort, G., van der Werf, W., 2018. Farmers’ 

perceptions of crop pest severity in Nigeria are associated with landscape, agronomic and 

socio-economic factors. Agriculture, Ecosystems & Environment 259, 159-

167.10.1016/j.agee.2018.03.004 

Zhang, Z., Sun, X., Luo, Z., Gao, Y., Chen, Z., 2013. The manipulation mechanism of “push–pull” habitat 

management strategy and advances in its application. Acta Ecologica Sinica 33, 94–101. 

https://doi.org/10.1016/j.chnaes.2013.01.005.  

Zhao, Z.-H., Reddy, G.V.P., Hui, C., Li, B.-L., 2016. Approaches and mechanisms for ecologically based 

pest management across multiple scales. Agriculture, Ecosystems & Environment 230, 199-

209.http://dx.doi.org/10.1016/j.agee.2016.06.010 

 

  



142 
 

  



143 
 

Summary 
  Worldwide land cover and land use change rapidly due to biophysical and complex 

socio-economic and political factors. These changes are directly affecting both local and 

global biodiversity and impeding the ability of agricultural landscapes to provide essential 

ecosystem services. These changes are particularly evident in sub-Saharan Africa, which is 

experiencing a rapid transformation in rural and urban areas as a consequence of 

urbanisation and population growth while simultaneously being the continent in most 

urgent need for increasing agricultural production and most threatened by climate change 

and pest outbreaks. There is growing need for alternative agricultural practices that 

conserve biodiversity and natural regulatory processes in order to meet the rising demands 

for food and dietary diversity, to mitigate climate change, and to restore degraded 

landscapes. To better understand the potential of current agricultural landscapes to 

provide essential ecosystem services, insight is required into the historic trajectories of 

farming systems, their drivers, and how these drivers shaped current landscapes in terms 

of composition and structure, as well as the impact they have on ecosystem services. These 

insights can contribute to informing the design of more sustainable cereal-based 

agroecosystems for the smallholder multifunctional subsistence agriculture. 

Ethiopia is now the second most populated country in Africa with more than 100 

million people and a population growth rate of 3% per year. In Ethiopia, cereals are the 

major staple crops with maize ranking second after teff (Eragrostis tef) in acreage and first 

in total production and productivity. In the Hawassa area, in the Rift Valley of Ethiopia, 

maize (Zea mays) productivity fluctuates widely, and that is caused in part by infestation 

by maize stemborers. Adults stemborer are nocturnal moths which disperse by flight, while 

the larval stages have a wide range of host plants. Current recommended pest management 

practices for stemborers only focus on the plot level and do not take into account the entire 

farming system or the composition of the surrounding landscape context. Yet farming 

systems and the associated management practices and landscape contexts are crucial for 

understanding the population dynamics of stemborers, their natural enemies, and the 

resulting pest pressure. In Hawassa, there is an ongoing transformation of farming 

systems, and these changes are influenced by institutional and socio-economic drivers, 

such as land tenure regulation, market access, and population growth. It is unclear how 

these drivers influence the dynamics of farming systems and ultimately shape agricultural 

landscapes and their potential for the provision of food, feed, and energy. The general 

objective of my work was to identify stemborer management strategies at the field, farm, 

and landscape levels for a more sustainable intensification of maize-based production 
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systems that would (i) limit stemborer incidence, (ii) maintain or improve soil fertility, and 

(iii) improve fodder production for livestock. In particular, I studied how trajectories of 

farming systems have shaped current agricultural landscapes and assessed the 

implications for maize stemborer pest pressure and the potential for biocontrol. I 

quantified the relations between stemborer abundance, farming practices, and maize 

yields at the plot level and analysed the impact of landscape factors on stemborers and the 

abundance of their natural enemy. This brings new insight that can inform effective 

farming practices for increased maize production and stemborer suppression at multiple 

spatial scales.  

In Chapter 2, I assessed how the ongoing expansion of arable land and urban areas 

is affecting the availability of common resources, such as forest and grazing land, and the 

availability of biomass for food, feed, and energy. By combining data from (i) farm 

household surveys, (ii) focus group discussions with farmers, (iii) statistical typology of 

trajectories of change in farming systems, (iv) remote sensing, and (v) secondary data 

analysis,  I showed that the current farming systems in Hawassa result from the combined 

effects of past policies, population growth, access to market, urbanisation, and biophysical 

characteristics. This work has revealed, among other things, that farm sizes declined 

rapidly over the past four decades and that farmers responded to this constraint by 

adopting three main livelihood strategies: consolidation, diversification, and 

specialisation. These trajectories combined with urbanisation led to more fragmented and 

more complex landscapes.  

In Chapter 3, I assessed how the changes in land use and landscape composition 

and structure in the Hawassa region influenced the capacity of the landscape to support 

communities of the natural enemy of maize stemborers: Busseola fusca (Fuller). Natural 

enemies were sampled in maize fields adjacent to simple hedgerows, complex hedgerows, 

enset (Ensete ventricosum) fields, and khat (Catha edulis) fields at 1, 10, and 30 m using 

pitfalls and yellow pan traps in 2014 and 2015. The landscape analysis indicated that 

landscapes in the study area have changed over time from maize-dominated to more 

diverse small-scale and fragmented agroecosystems with a higher proportion of perennial 

crops. In maize fields adjacent to enset and complex hedgerows, I found a higher 

abundance of predators (mostly ants and rove beetles) than in maize fields adjacent to khat 

and simple hedgerows, and the influence of border type decreases with distance from the 

border. The abundance of parasitoids and parasitic flies were not influenced by border 

type. I concluded that in terms of biocontrol service, the changes observed in landscape 

composition and structure may have influenced the capacity of the landscape to support 

populations of natural enemies of stemborers in different ways. On the one hand, smaller 
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field sizes have resulted in more field borders that may support relatively high predator 

densities; on the other hand, the area of khat increased, and the area of enset decreased, 

which may have had a negative effect on predator densities.  

In Chapter 4, I investigated how farmers’ management practices at the field scale 

and landscape context affect maize stemborer infestation levels and maize productivity. 

Maize infestation levels, yield, and biomass production were assessed in 33 farmer fields 

managed according to local practices. When considering field level factors only, plant 

density was positively related to stemborer infestation level. During high infestation 

events, the length of tunnelling, a proxy of infestation and plant damage, was positively 

associated with the date of  planting and negatively associated with the botanical diversity 

of hedges. However, the proportion of maize crops in the surrounding landscape was 

strongly positively associated with the length of tunnelling at 100, 500, 1000, and 1500 m 

radii. The findings reveal that the landscape context overrides farmers’ management 

practices in explaining maize infestation levels but also indicate that maize is tolerant to 

low and medium infestation levels of stemborers. 

The push-pull system, a stimulo-deterrent cropping strategy consisting of 

intercropping cereals with legumes and surrounding by fodder grasses, is considered a 

promising crop diversification strategy for smallholder farmers in Africa as it may 

contribute to maize stemborer Busseola fusca (Fuller) suppression while improving soil 

fertility and providing feed for livestock. In Chapter 5, I investigated the performance of 

different push-pull systems in terms of stemborer suppression, predator abundance, and 

maize productivity in different landscape settings. Within each landscape (simple, 

intermediate, and complex), experimental plots were established on four representative 

smallholder farms. At each farm we used a split-plot factorial design with main plots 

surrounded or not by Napier grass and subplots consisting of sole maize, maize-bean, or 

maize-Desmodium. I assessed stemborer infestation levels and maize grain and stover 

yields for two years; I also assessed natural enemy abundance and egg predation at two 

maize development stages in the second year. I demonstrated that the push-pull system 

was effective in reducing stemborer infestation only in the intermediate complexity 

landscape, where subplots with sole maize had higher stemborer infestation levels 

compared to maize-bean or maize-Desmodium. In the simple landscape, which was 

dominated by maize, all treatments had high stemborer infestation levels irrespective of 

within-field crop diversity; the presence of Napier grass was associated with higher 

predator abundance, while egg predation rates were the highest in the maize-bean 

intercrop. In the complex landscape, infestation levels were low in all treatments. I found 

no significant difference between the two push crops tested - Desmodium or bean - 
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suggesting that beans can be used as push crop in push-pull systems with the additional 

advantage of increasing egg predation rate and being a common maize-bean farmers’ 

practice. However, there was no significant yield differences  between the sub-systems nor 

between the three landscapes. Thus, the benefits of the push-pull system mostly come from 

the companion crops (bean, Desmodium, and Napier) rather than from stemborer 

suppression per se.       

Agricultural landscapes in the Hawassa area went through important 

transformations over the last 40 years due to  the combined effects of national, regional, 

and local level drivers (agricultural policies, commodity prices, and infrastructures), 

regional/local level factors (population density and urbanisation),  farmers’ livelihood 

assets, and unexpected climate events. The area of maize monocultures declined and was 

progressively replaced by perennial crops, such as enset (food crop) and khat (cash crop). 

In addition, population growth and the expansion of urbanised areas have reduced the 

availability of land and led to more fragmentation of the croplands, with a potential 

positive benefit for the biocontrol of maize stemborers. Although the push-pull system is a 

promising crop diversification strategy for smallholder farmers in Africa, its adoption can 

be limited in land-constrained farming systems, most likely due the farmers’ reluctance to 

replace food crops, such as common bean, with fodder crops. In addition, the development 

of Napier grass can be hampered when nitrogen is a limiting factor. Therefore, there is a 

need for developing push-pull systems that use locally available plants. Napier grass could 

be planted as part of hedgerows to avoid hampering mechanical work of fields. In general, 

increasing plant diversity of hedgerows and their density can contribute to increasing 

natural enemy abundance and decreasing maize infestation levels. In addition, the 

intentional management of hedgerows could also consider adding plants and trees that are 

multifunctional (e.g. botanicals, feed for livestock, erosion control, carbon storage, 

beneficials for soil fauna). Above all, given the overriding influence of landscape context 

over field level management practices and the multifunctional nature of smallholder 

farming systems,  the design of sustainable agroecosystems requires a context-specific and 

strongly integrative (social, economic and, environmental objectives) approach. Taking 

maize stemborer pressure as an entry point, I showed that the infestation cannot be 

explained by field level factors only. Tackling maize infestation issues requires a landscape 

approach for sustainable pest management. Landscape composition, in particular, could 

either impact the pest abundance directly by affecting its dispersal, mortality, or 

reproduction or indirectly by affecting its natural enemies. Yet a landscape design which 

aims not only at the ecological control of maize stemborers but also addresses other 

farming constraints (i.e. soil fertility, fodder availability) and aim at maintaining moisture 
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to avoid crop failure (by using cover crops, increasing rainfall infiltration) and diverse 

farming systems to increase nutrition and income diversity for smallholder farmers. 

Diversified farming systems which promote the conservation of natural enemies seem to 

be an ecologically sound solution, but more research is needed to understand and 

maximise the efficiency of existing mixed cropping systems. A systems approach to 

agriculture production such as agroecology could be the best option to respond to the 

requirements of the multifunctional small-scale subsistence agriculture in Africa.  
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Samenvatting 
Wereldwijd veranderen landbedekking en landgebruik snel als gevolg van 

biofysische en complexe sociaaleconomische en politieke factoren. Deze veranderingen 

hebben directe invloed op zowel lokale als mondiale biodiversiteit en belemmeren het 

vermogen van agrarische landschappen om essentiële ecosysteemdiensten te leveren. Deze 

veranderingen zijn duidelijk zichtbaar in Sub-Sahara Afrika, dat een snelle transformatie 

doormaakt in landelijke en stedelijke gebieden als een gevolg van verstedelijking en 

bevolkingsgroei. Tegelijkertijd is er in dit gebied een dringende behoefte aan het verhogen 

van de landbouwproductie, maar dit wordt bedreigd door klimaatverandering en 

insectenplagen. Er is een groeiende behoefte aan alternatieve landbouwmethoden die de 

biodiversiteit beschermen en ecologische processen ondersteunen om te voldoen aan de 

toenemende vraag naar voedsel en nutritionele diversiteit, inperking van de effecten van 

klimaatverandering en herstel van gedegradeerde landschappen. Om een beter inzicht te 

krijgen in de mogelijkheden van de agrarische landschappen om essentiële 

ecosysteemdiensten te leveren, is inzicht nodig in de historische trajecten van 

landbouwsystemen, hun drijfveren, hoe deze drijfveren hebben bijgedragen aan de 

vorming van de huidige landschappen, en de effecten die de veranderingen in het 

landschap hebben op ecosysteemdiensten. Deze inzichten kunnen bijdragen aan het 

informeren van het ontwerp van meer duurzame agro-ecosystemen voor kleinschalige 

multifunctionele zelfvoorzieningslandbouw. 

Ethiopië heeft na Nigeria de grootste bevolking in Afrika met meer dan 100 miljoen 

inwoners en een bevolkingsgroei van 3% per jaar. In Ethiopië zijn graangewassen de 

belangrijkste voedselgewassen met maïs (Zea mays) als tweede na teff (Eragrostis tef) in 

areaal, en als eerste in totale productie en productiviteit. In het Hawassa-gebied, in de 

Riftvallei van Ethiopië, schommelt de productiviteit van maïs sterk, wat onder meer 

veroorzaakt wordt door aantasting door stengelboorders. Volwassen stengelboorders zijn 

nachtvlinders die zich vliegend verspreiden en de larvale stadia hebben een groot aantal 

waardplanten. De huidige aanbevelingen voor de plaagbestrijding van stengelboorders zijn 

alleen gericht op veldschaal en houden geen rekening met het landbouwsysteem of de 

landschapscontext. Landbouwsystemen met bijbehorende beheersmaatregelen en de 

context van het omliggende landschap zijn echter cruciaal voor het begrijpen van de 

populatiedynamiek van stengelboorders, hun natuurlijke vijanden en de resulterende 

plaagdruk. Rondom Hawassa veranderen landbouwsystemen voortdurend, en deze 

veranderingen worden beïnvloed door institutionele en sociaal-economische factoren, 

zoals de regulering van grondbezit, markttoegang en bevolkingsgroei. Het is onduidelijk 
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hoe deze factoren de dynamiek van landbouwsystemen beïnvloeden en het potentieel 

bepalen van agrarische landschappen om voedsel, voer en energie te produceren. De 

algemene doelstelling van mijn werk was het identificeren van strategieën op veld-, 

bedrijfs- en landschapsschaal die bijdragen aan een meer duurzame intensivering van op 

maïs gebaseerde productiesystemen die (i) stengelboorders onderdrukken, (ii) de 

bodemvruchtbaarheid handhaven of verbeteren, en (iii) de veevoederproductie voor vee 

verbeteren. In het bijzonder heb ik onderzocht hoe landbouwsystemen de huidige 

agrarische landschappen mede hebben vormgegeven, en hoe dit de plaagdruk door 

stengelboorders en de mogelijkheden voor biologische bestrijding beïnvloedt heeft. Ik 

kwantificeerde relaties tussen de abundantie van stengelboorders, landbouwmethoden en 

maïsopbrengsten op veldschaal en analyseerde de effecten van landschapsfactoren op 

stengelboorders en hun natuurlijke vijanden. Dit levert nieuwe inzichten op voor effectieve 

beheersmaatregelen voor verhoogde maïsproductie en de onderdrukking van 

stengelboorders op meerdere ruimtelijke schaalniveau’s. 

In hoofdstuk 2 heb ik onderzocht hoe de uitbreiding van bouwland en stedelijke 

gebieden van invloed is op de beschikbaarheid van gemeenschappelijke hulpbronnen, 

zoals bos en weidegrond, en de beschikbaarheid van biomassa voor voedsel, voer en 

energie. Door het combineren van gegevens van (i) enquêtes van agrarische huishoudens, 

(ii) focusgroep discussies met boeren, (iii) een statistische typologie van veranderingen in 

landbouwsystemen, (iv) remote sensing, en (v) een analyse van secundaire data liet ik zien 

dat de huidige landbouwsystemen in Hawassa het gevolg zijn van de gecombineerde 

effecten van beleidsmaatregelen uit het verleden, bevolkingsgroei, markttoegang, 

verstedelijking en biofysische kenmerken van het landschap. Uit dit onderzoek is onder 

meer gebleken dat de gemiddelde grootte van boerenbedrijven de afgelopen veertig jaar 

snel is gedaald en dat boeren hier op drie verschillende manieren hebben gereageerd: 

consolidatie, diversificatie en specialisatie. Deze factoren, in combinatie met 

verstedelijking, leidden tot meer gefragmenteerde en complexe landschappen. 

In hoofdstuk 3 heb ik onderzocht hoe de veranderingen in landgebruik en 

landschapssamenstelling en landschapsstructuur rond Hawassa van invloed waren op de 

capaciteit van het landschap om natuurlijke vijanden van stengelboorders in mais 

(Busseola fusca Fuller) te ondersteunen. Natuurlijke vijanden werden bemonsterd in 

maïsvelden naast eenvoudige heggen, complexe hagen, enset velden (Ensete ventricosum) 

en qatvelden (Catha edulis) op 1, 10 en 30 m van de perceelsrand met potvallen en gele 

panvallen in 2014 en 2015. De analyse van het landschap wees uit dat landschappen in het 

studiegebied in de loop van de tijd zijn veranderd van maïs gedomineerd naar meer 

diverse, kleinschalige en gefragmenteerde agro-ecosystemen met een groter aandeel van 
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meerjarige gewassen. In maïsvelden grenzend aan enset en complexe hagen vond ik een 

hogere abundantie van predatoren (meestal mieren en kevers) dan in maïsvelden grenzend 

aan qat en eenvoudige hagen. De invloed van het grenstype op de abundantie van 

predatoren nam snel af met de afstand tot de perceelsrand. De abundantie van 

parasitoïden en parasitaire vliegen werd niet beïnvloed door het grenstype. Ik 

concludeerde dat de veranderingen in de samenstelling en structuur van het landschap 

mogelijk van invloed zijn geweest op het vermogen van het landschap om de populaties 

van natuurlijke vijanden van stengelboorders te ondersteunen. Enerzijds hebben kleinere 

veldgroottes geresulteerd in langere grenzen tussen aanliggende percelen die relatief hoge 

predatordichtheden kunnen ondersteunen. Anderzijds nam het areaal van qat toe en dat 

van enset af, wat een negatief effect op de abundantie van predatoren kan hebben. 

In hoofdstuk 4 heb ik onderzocht hoe de beheersmaatregelen van boeren op veld- 

en landschapsschaal de plaagdruk en productiviteit van maïs beïnvloeden. De  abundantie 

van stengelboorders, opbrengst en biomassaproductie van maïs werden bepaald in 33 

maïsvelden die volgens de lokale praktijk verbouwd werden. Wanneer alleen rekening 

werd gehouden met factoren op veldschaal was de plantdichtheid positief gerelateerd aan 

de abundantie van stengelboorders. Bij hoge abundanties was de lengte van de tunnels, 

een proxy voor plaagdruk en gewasschade, positief geassocieerd met het tijdstip van 

aanplant en negatief geassocieerd met de plantendiversiteit in hagen. Het aandeel 

maïsgewassen in het omringende landschap had een sterk positief effect op de lengte van 

tunnels in maïs op ruimtelijke schalen van 100, 500, 1000 en 1500 m radius rondom het 

maïsveld. De studie laat zien dat  het effect van landschapscontext op de plaagdruk van 

stengelboorders belangrijker is dan de beheersmaatregelen op veldschaal, maar laat ook 

zien dat maïs tolerant is voor een lage en gemiddelde plaagdruk van stengelboorders. 

Het push-pull-systeem, bestaande uit mengteelten van graangewassen met 

peulvruchten en omgeven door voedergrassen, wordt beschouwd als een veelbelovende 

strategie voor gewasdiversificatie voor kleine boeren in Afrika omdat het kan bijdragen aan 

de onderdrukking van stengelboorders, het verbeteren van de bodemvruchtbaarheid en 

het verschaffen van voer voor vee.  

In Hoofdstuk 5 heb ik de onderdrukking van stengelboorders, abundantie van 

predatoren en maïsproductiviteit in verschillende push-pull-systemen en landschappen 

vergeleken. Binnen elk landschapstype (simpel, intermediair en complex) werden 

experimentele plots opgezet op vier representatieve boerenbedrijven. Op elk bedrijf 

gebruikten we een split-plot factoriele proefopzet met blokken, al dan niet omringd door 

Napiergras, en plots bestaande uit alleen maïs, maïs-boon of maïs-Desmodium. Ik heb de 

abundantie van stengelboorders en de maïsopbrengst en biomassa gedurende twee jaar 
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bepaald. Ook heb ik in het tweede jaar de abundantie van natuurlijke vijanden en predatie 

van meelmot eieren bepaald in twee ontwikkelingsstadia van maïs. Ik toonde aan dat het 

push-pull-systeem alleen effectief was in het verminderen van stengelboorderaantasting 

in het landschap met een intermediaire complexiteit, waar plots met alleen maïs hogere 

aantastingsniveaus van stengelboorders hadden in vergelijking met maïs-boon of maïs-

Desmodium. In het simpele landschap, dat werd gedomineerd door maïs, hadden alle 

behandelingen een hoge aantasting van maïsplanten, ongeacht de gewasdiversificatie 

binnen de plot. De aanwezigheid van Napiergras was geassocieerd met een hogere 

abundantie van predatoren, terwijl de predatie van de eieren het hoogste was in de 

mengteelt van maïs-boon. In het complexe landschap waren de aantastingniveaus van 

stengelboorders laag in alle behandelingen. Ik vond geen significant verschil tussen de 

twee geteste mengteeltgewassen - Desmodium of boon - wat suggereert dat bonen kunnen 

worden gebruikt als begeleidend gewas in push-pull-systemen met als bijkomend voordeel 

dat het de predatie van eieren verhoogt en al een gangbare praktijk is voor boeren. Er 

waren echter geen significante opbrengstverschillen van maïs tussen de subsystemen noch 

tussen de drie landschappen. De voordelen van het push-pull-systeem voor de opbrengst 

komen dus vooral van de begeleidende gewassen (boon, Desmodium en Napier) in plaats 

van de onderdrukking van stengelboorders in maïs. 

Agrarische landschappen rondom Hawassa ondergingen de afgelopen 40 jaar 

belangrijke veranderingen als gevolg van de gecombineerde effecten van landbouwbeleid, 

grondstoffenprijzen, infrastructuur, bevolkingsdichtheid, verstedelijking en 

weersextremen. Het aandeel van maïs in monocultuur nam af en werd geleidelijk 

vervangen door meerjarige gewassen, zoals enset (voedselgewas) en qat (handelsgewas). 

Bovendien hebben de bevolkingsgroei en de uitbreiding van verstedelijkte gebieden de 

beschikbaarheid van land verminderd en geleid tot meer fragmentatie van het agrarisch 

gebied, met een mogelijk positief effect voor de biologische bestrijding van 

maïsstengelboorders. Hoewel het push-pull-systeem een veelbelovende strategie voor 

gewasdiversificatie is voor kleinschalige boeren in Afrika, kan de toepassing in 

kleinschalige landbouwsystemen beperkt zijn vanwege de terughoudendheid van de 

boeren om voedselgewassen, zoals bonen, te vervangen door voedergewassen. Bovendien 

kan de ontwikkeling van Napiergras worden belemmerd wanneer stikstofgehalten in de 

bodem laag zijn. Daarom is er behoefte aan het ontwikkelen van push-pull-systemen die 

afgestemd zijn op de lokale omstandigheden. Het Napiergras zou als onderdeel van hagen 

kunnen worden aangeplant zodat het de mechanische bewerking van het veld niet 

belemmert. Over het algemeen kan een toenemende plantendiversiteit en 

vegetatiedichtheid van heggen bijdragen aan het vergroten van de abundantie van 
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natuurlijke vijanden en mogelijk bijdragen aan een  lagere plaagdruk. Bovendien zou bij 

het beheer van heggen ook overwogen kunnen worden om multifunctionele planten en 

bomen te introduceren (bijvoorbeeld voor de productie van veevoer, erosiebestrijding, 

koolstofopslag, en stimulering van het bodemleven). Gezien de overheersende invloed van 

de landschapscontext ten opzichte van beheersmaatregelen op veldschaal en het 

multifunctionele karakter van landbouwsystemen voor kleinschalige boeren vereist het 

ontwerp van duurzame agro-ecosystemen een context-specifieke en sterk geïntegreerde 

benadering (sociale, economische en milieudoelstellingen). Met de plaagdruk van 

stengelboorders op maïs als startpunt, liet ik zien dat de aantasting niet alleen door 

factoren op veldschaal kan worden verklaard, maar ook door factoren op 

landschapsschaal. Het bestrijden van plagen in maïs vereist daarom een 

landschapsbenadering. Met name compositie van het landschap kan de plaagdruk direct 

beïnvloeden door de verspreiding, mortaliteit of reproductie van stengelboorders te 

beïnvloeden, of indirect door de abundantie van natuurlijke vijanden te beïnvloeden. 

Landschapsontwerpen dienen echter niet alleen gericht te zijn op de biologische 

bestrijding van plagen, maar ook rekening houden met andere factoren, zoals het op peil 

houden van vruchtbaarheid, het vasthouden van vocht in de bodem (bijvoorbeeld door het 

gebruik van cover-crops en het verhogen van infiltratie van regenwater), en het 

waarborgen inkomenszekerheid en nutritionele diversiteit voor kleinschalige boeren. 

Gevarieerde landbouwsystemen die populaties natuurlijke vijanden ondersteunen lijken 

bij te kunnen dragen aan een meer duurzame landbouw, maar er is meer onderzoek nodig 

om de efficiëntie van bestaande gemengde teeltsystemen te begrijpen en verder te 

verhogen. Een systeembenadering voor landbouwproductie, zoals agro-ecologie, biedt 

goed perspectief om multifunctionele kleinschalige landbouw in Afrika verder te 

ontwikkelen. 
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Résumé 

La couverture et l'utilisation des terres dans le monde changent rapidement en 

raison de facteurs biophysiques, socio-économiques et politiques complexes. Ces 

changements affectent directement la biodiversité locale et mondiale et empêchent les 

paysages agricoles de fournir des services écosystémiques essentiels. Ces changements 

sont particulièrement évidents en Afrique Subsaharienne, qui subit une transformation 

rapide des zones rurales et urbaines en raison de l'urbanisation et de la croissance 

démographique, tout en étant le continent qui a le plus grand besoin d'augmenter sa 

production agricole et qui est le plus menacé par le changement climatique et les épidémies 

de ravageurs de culture. Il existe un besoin croissant de pratiques agricoles alternatives 

préservant la biodiversité et les processus de régulation naturels afin de répondre à la 

demande croissante de diversité alimentaire et nutritionnelle, d'atténuer les changements 

climatiques et de restaurer les paysages dégradés. Pour mieux comprendre le potentiel des 

paysages agricoles actuels à fournir des services écosystémiques essentiels, il est nécessaire 

de connaître les trajectoires historiques des systèmes agricoles, leurs moteurs et la manière 

dont ces facteurs ont façonné les paysages actuels en termes de composition et de 

structure, ainsi que leur impact sur les services écosystémiques. Ces informations peuvent 

contribuer à éclairer la conception d’agroécosystèmes plus durables pour l’agriculture de 

subsistance des et multifonctionnelle petits exploitants. 

L’Éthiopie est maintenant le deuxième pays le plus peuplé d’Afrique avec plus de 

100 millions d’habitants et un taux de croissance démographique de 3% par an. En 

Éthiopie, les céréales sont les principales cultures de base. Le maïs occupe la deuxième 

place après le teff (Eragrostis tef) en termes de superficie et le premier en termes de 

production et de productivité. Dans la région de Hawassa, dans la vallée du Rift, la 

productivité du maïs (Zea mays) fluctue considérablement, dû en partie à l’infestation par 

le foreur de la tige du maïs. Les foreurs adultes sont des papillons nocturnes qui se 

dispersent par vol, tandis que les stades larvaires ont un large éventail de plantes hôtes. 

Les pratiques actuelles de control des foreurs recommandées se concentrent uniquement 

à l’échelle de la parcelle et ne prennent pas en compte l'ensemble du système d'exploitation 

agricole ni la composition du contexte du paysage environnant. Cependant, les systèmes 

agricoles, les pratiques de gestion et les contextes paysagers associés sont essentiels pour 

comprendre la dynamique de la population des stemborers, leurs ennemis naturels et la 

pression des ravageurs qui en résulte. À Hawassa, les systèmes agricoles évoluent en 

permanence et ces changements sont influencés par des facteurs institutionnels et socio-

économiques, tels que la réglementation du régime foncier, l'accès aux marchés et la 
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croissance démographique. On ignore comment ces facteurs influent la dynamique des 

systèmes agricoles et, en définitive, les paysages agricoles, ainsi que leur potentiel de 

production d'aliments, de fourrages et d'énergie. L’objectif général de mon travail était 

d’identifier les stratégies de gestion des planteurs à l’’échelle, de la ferme et du paysage en 

vue d’une intensification plus durable des systèmes de production à base de maïs qui (i) 

limiteraient l’incidence des planteurs, (ii) maintiendraient ou amélioreraient la fertilité des 

sols, et (iii) améliorer la production de fourrage pour le bétail. En particulier, j'ai étudié la 

manière dont les trajectoires des systèmes de production ont façonné les paysages 

agricoles actuels, évalué les implications pour la pression des des foreurs de la tige du maïs 

et le potentiel de contrôle biologique. J'ai quantifié les relations entre l'abondance des 

foreurs, les pratiques agricoles et les rendements de maïs à l’échelle de la parcelle et analysé 

l'impact des facteurs paysagers sur les foreurs et l'abondance de leurs ennemis naturels. 

Cela avec l’objectif de produire de de nouvelles connaissances qui permettent d’améliorer 

les pratiques agricoles afin d’ augmenter la production de maïs et supprimer les foreurs à 

plusieurs échelles spatiales. 

Dans le chapitre 2, j’ai évalué l’impact de l’expansion actuelle des terres arables et 

des zones urbaines sur la disponibilité des ressources communes, telles que les forêts et les 

pâturages, et sur la disponibilité de la biomasse pour l’alimentation, les aliments pour 

animaux et l’énergie. En combinant des données provenant (i) d’enquêtes des ménages 

agricoles, (ii) de discussions de groupe avec les agriculteurs, (iii) de la typologie statistique 

des trajectoires de changement des systèmes agricoles, (iv) de la télédétection et (v) de 

l’analyse de données secondaires, j'ai montré que les systèmes agricoles actuels à Hawassa 

résultent des effets combinés des politiques antérieures, de la croissance démographique, 

de l'accès au marché, de l'urbanisation et des caractéristiques biophysiques. Ces travaux 

ont notamment révélé que la taille des exploitations a rapidement diminué et que les 

agriculteurs ont réagi à cette contrainte en adoptant trois stratégies de subsistance 

principales: la consolidation, la diversification et la spécialisation. Ces trajectoires 

combinées à l'urbanisation ont conduit à des paysages plus fragmentés et plus complexes. 

Dans le 3ème chapitre, j’ai évalué l’impact des changements dans l’utilisation des 

sols, la composition et la structure du paysage dans la région de Hawassa, sur la capacité 

du paysage à soutenir les communautés d’ennemi naturels du foreur de maïs: Busseola 

fusca (Fuller). Les ennemis naturels ont été échantillonnés dans des champs de maïs 

adjacents à des haies vives de structure simple, des haies vives de structure complexes, des 

champs d'enset (Ensete ventricosum) et de khat (Catha edulis) à 1, 10 et 30 m de distance 

en utilisant des pièges au niveau du sol et à un mètre du sol (siphons jaunes) en 2014 et 
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2015. L'analyse paysagère a montré que les paysages de la zone d'étude ont évolué au fil du 

temps, passant de paysages dominés par des champs de  maïs  à des agroécosystèmes 

fragmentés, avec une plus grande proportion de cultures pérennes. Dans les champs de 

maïs adjacents aux parcelles d’enset et des haies à structure complexes, j’ai constaté une 

plus grande abondance de prédateurs (principalement des fourmis et des coléoptères) que 

dans les champs de maïs adjacents au khat et aux haies vives de structure simple ; et cette 

abondance diminuait à mesure que l’on s’éloignait de la zone frontalière. L'abondance des 

parasitoïdes et des guêpes parasites n'a pas été influencée par le type de culture ou de haies 

vives adjacentes. J'ai conclu qu'en ce qui concerne le service de control biologique, les 

changements observés dans la composition et la structure du paysage peuvent avoir 

influencé sa capacité à supporter les populations d'ennemis naturels des forestiers de 

différentes manières. D'une part, la taille réduite des champs a eu pour conséquence un 

plus grand nombre de haies vives pouvant supporter des densités de prédateurs 

relativement élevées ; par contre, la superficie du khat a augmenté et celle de l'enset a 

diminué, pouvant avoir  un effet négatif sur la densité des prédateurs. 

Au chapitre 4, j’ai étudié comment les pratiques agricoles à l’échelle de la parcelle, 

et la nature du contexte paysager affectent les niveaux d’infestation par les foreurs de 

maïs ; et quelle est l’impact sur la productivité du maïs. Les niveaux d'infestation de maïs, 

le rendement et la production de biomasse ont été évalués dans 33 champs de maïs des 

producteurs. Lorsqu’on ne tenait compte que des facteurs à l’échelle de la parcelle, il 

existait une corrélation positive entre la densité des plantes de maïs et le niveau 

d’infestation par les foreurs. Dans le cas de fortes infestations, la longueur du tunnels 

formés par les foreurs dans la tige de maïs, un moyen d’estimation du niveau d'infestation 

et de dommages causés aux plantes, était positivement associée à la date de plantation et 

négativement à la diversité botanique des haies. Cependant, la proportion de maïs dans le 

paysage environnant était fortement liée au niveau d’infestation à des échelles allant de  

100, 500, 1 000 et 1 500 m de rayons. Ces résultats révèlent que les effets contexte du 

paysage priment sur les pratiques de gestion des agriculteurs pour expliquer les niveaux 

d’infestation de maïs ; et indique également que le maïs est tolérant aux niveaux 

d’infestation faibles et moyens des stemborers. 

Le système push-pull, appelé aussi système de répulsion-attraction est une stratégie 

de culture biologique consistant à intercaler des céréales avec des légumineuses et 

entourée de graminées fourragères. C’est une stratégie de diversification des cultures 

prometteuse pour les petits exploitants agricoles en Afrique, car il peut contribuer à 

contrôler le niveau d’infestation du maïs par Busseola fusca (Fuller) tout en améliorant la 
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fertilité des sols et en fournissant de l’aliment pour le bétail. Au chapitre 5, j'ai étudié les 

performances de différents systèmes de push-pull en termes de suppression des foreurs, 

d'abondance des prédateurs et de productivité du maïs dans un gradient de complexité du 

paysages. Dans chaque paysage (simple, intermédiaire et complexe), des parcelles 

expérimentales ont été établies sur quatre exploitations agricoles. Dans chaque ferme, 

nous avons eu recours à une conception factorielle en deux blocs et trois parcelles par bloc. 

Les blocs étaient entourés ou non d'herbe de Napier et les parcelles secondaires 

contenaient trois traitement: monoculture de maïs, une culture intercalaire maïs-haricot 

et une culture intercalaire maïs-Desmodium. J'ai évalué les niveaux d'infestation par les 

foreurs et les rendements en grain et en fourrage de maïs pendant deux ans; J'ai aussi 

évalué l’abondance d'ennemi naturel et prédation des œufs à deux stades de 

développement du maïs au cours de la deuxième année. J'ai démontré que le système push-

pull était efficace pour réduire l'infestation par les foreurs uniquement dans le paysage de 

complexité intermédiaire ; en effet les parcelles de monoculture de maïs présentaient des 

niveaux d'infestation plus élevés que ceux des cultures intercalaire maïs-haricot ou maïs-

Desmodium. Dans le paysage simple, dominé par le maïs, tous les traitements présentaient 

des niveaux d’infestation élevés, indépendamment des traitements; la présence de Napier 

était associée à une plus grande abondance de prédateurs, tandis que les taux de prédation 

des œufs étaient les plus élevés dans la culture intercalaire maïs-haricot. Dans le paysage 

complexe, les niveaux d'infestation étaient faibles dans tous les traitements. Je n’ai trouvé 

aucune différence significative entre les deux cultures intercalaires testées - Desmodium 

ou haricot - ce qui suggère que les haricots peuvent être utilisés comme «push » dans les 

systèmes push-pull avec l’avantage supplémentaire d’augmenter le taux de prédation des 

œufs et d’être une pratique courante des producteurs. Cependant, il n'y avait pas de 

différences de rendement significatives entre les sous-systèmes ni entre les trois paysages. 

Ainsi, les avantages du système push-pull proviennent principalement des cultures 

associées (haricot, Desmodium et Napier) plutôt que de la suppression des foreurs en soi. 

Les paysages agricoles de la région de Hawassa ont subi d'importantes 

transformations au cours des 40 dernières années en raison des effets combinés de facteurs 

nationaux, régionaux et locaux (politiques agricoles, prix des produits de base et 

infrastructures) et de facteurs régionaux et locaux (densité de population et urbanisation), 

les moyens de subsistance des agriculteurs et les événements climatiques imprévus. La 

superficie des monocultures de maïs a diminué et a été progressivement remplacée par des 

cultures pérennes, telles que l'enset (culture vivrière) et le khat (culture marchande). En 

outre, la croissance démographique et l'expansion des zones urbanisées ont réduit la 
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disponibilité de terres et conduit à une plus grande fragmentation des terres cultivées, avec 

un bénéfice potentiellement positif pour le contrôle biologique des foreurs de maïs. Bien 

que le système push-pull soit une stratégie de diversification des cultures prometteuse 

pour les petits exploitants agricoles en Afrique, son adoption peut être limitée par le 

manque de terre agricole, probablement en raison de la réticence des agriculteurs à 

remplacer les cultures vivrières, telles que le haricot , par des cultures fourragères. De plus, 

le développement de Napier peut être entravé lorsque l’azote est un facteur limitant. Par 

conséquent, il est nécessaire de développer des systèmes push-pull qui utilisent des plantes 

disponibles localement. Le Napier pourrait être planté dans les haies vives pour ne pas 

gêner le travail mécanique des champs. En général, la diversité végétale croissante des 

haies vives et leur densité peuvent contribuer à accroître l'abondance des ennemis naturels 

et à réduire les niveaux d'infestation par le maïs. 

En outre, la gestion intentionnelle des haies vives pourrait également envisager 

l’ajout de plantes et d’arbres multifonctionnels (plantes médicinales, aliments pour le 

bétail, contrôle de l’érosion des sols, stockage de carbone, bienfaits pour la faune du sol, 

etc.). Avant tout, étant donné l’influence prépondérante du contexte paysager et la nature 

multifonctionnelle des systèmes agricoles de petites exploitations, la conception 

d’agroécosystèmes durables nécessite une approche spécifique au contexte et fortement 

intégrée (objectifs sociaux, économiques et environnementaux). En prenant la pression 

des foreurs de maïs comme point d'entrée de cette étude, j'ai montré que l'infestation ne 

pouvait pas être expliquée uniquement par des facteurs à l’échelle de la parcelle. S'attaquer 

aux problèmes d'infestation du maïs nécessite une approche paysagère pour une gestion 

durable des nuisibles. La composition du paysage, en particulier, pourrait avoir un impact 

direct sur l'abondance de ravageurs de cultures et influencer sa dispersion, sa mortalité ou 

sa reproduction ; ou indirectement en affectant ses ennemis naturels. Cependant, un 

aménagement paysager qui vise non seulement le contrôle écologique des planteurs de 

maïs, mais également d’autres contraintes agricoles (fertilité du sol, disponibilité du 

fourrage) doit également viser à maintenir la fertilité et l’humidité du sol et viser des 

systèmes agricoles diversifiés pour accroître la diversité de la nutrition et des revenus des 

petits exploitants. Les systèmes agricoles diversifiés qui favorisent la conservation des 

ennemis naturels semblent être une solution écologiquement rationnelle, mais des 

recherches supplémentaires sont nécessaires pour comprendre et optimiser l'efficacité des 

systèmes de cultures mixtes existants. Une approche systémique de la production agricole 

telle que l'agroécologie pourrait être la meilleure option pour répondre aux exigences de la 

petite agriculture de subsistance multifonctionnelle en Afrique. 
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Resumen 

En todo el mundo, la cubierta terrestre y el uso de la tierra están cambiando 

rápidamente debido a factores biofísicos y complejos causas socioeconómicos y políticos. 

Estos cambios afectan directamente la biodiversidad local y global y obstaculizan la 

capacidad de los paisajes agrícolas para proporcionar servicios ecosistémicos esenciales. 

Estos cambios son particularmente evidentes en África Subsahariana, que está 

experimentando una transformación rápida en zonas rurales y urbanas como consecuencia 

de la urbanización y el crecimiento de la población y, al mismo tiempo, es el continente 

con mayor necesidad de aumentar su producción agrícola y el más amenazado por el 

cambio climático y los brotes de plagas. Hay una creciente necesidad de prácticas agrícolas 

alternativas que conserven la biodiversidad y los procesos reguladores naturales para 

satisfacer una creciente demanda de diversidad alimentaria y dietética, para mitigar el 

cambio climático, y para restaurar los ecosistemas degradados. Para comprender mejor  el 

potencial de servicios ecosistémicos esenciales en paisajes agrícolas actuales, se requiere 

información sobre las trayectorias históricas de los sistemas agrícolas, sus causas y cómo 

estas causas dieron forma a los paisajes actuales en cuanto a la composición y la estructura, 

así como el impacto que tienen en los servicios ecosistémicos. Estas ideas pueden 

contribuir al diseño informado de agroecosistemas basados en la producción de cereales 

más sostenibles para la agricultura de subsistencia multifuncional de los pequeños 

productores. 

Etiopía es ahora el segundo país más poblado de África con más de 100 millones de 

personas y una tasa de crecimiento poblacional del 3% por año. En Etiopía, los cereales 

son los principales cultivos básicos, con el maíz en segundo lugar después del teff 

(Eragrostis tef) en superficie y primero en producción y productividad total. En el área de 

Hawassa, en el valle del Rift de Etiopía, la productividad del maíz (Zea mays) fluctúa 

ampliamente, y esto se debe en parte a la infestación por barrenadores del tallo del maíz. 

Los adultos barrenadores son polillas nocturnas que se dispersan en vuelo, mientras que 

las etapas larvales tienen una amplia gama de plantas hospedadoras. Las prácticas actuales 

de manejo de plagas recomendadas para los barrenadores del tallo del maíz solo se centran 

en el nivel de la parcela y no tienen en cuenta todo el sistema de cultivo o la composición 

del contexto del paisaje circundante. Sin embargo, los sistemas agrícolas y las prácticas de 

manejo y los contextos de paisaje asociados son cruciales para comprender la dinámica de 

la población de los barrenadores, sus enemigos naturales y la presión de plagas resultante. 

En Hawassa, hay una transformación continua de los sistemas agrícolas, y estos cambios 

están influenciados por factores institucionales y socioeconómicos, como la regulación de 
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la tenencia de la tierra, el acceso a los mercados y el crecimiento de la población. No está 

claro cómo estos factores influyen en la dinámica de los sistemas agrícolas y, en última 

instancia, configuran los paisajes agrícolas y su potencial para la provisión de alimentos, 

piensos y energía. El objetivo general de mi trabajo fue identificar estrategias de manejo 

de los barrenadores del tallo del maíz en los campos, la granja y el paisaje para una 

intensificación más sostenible de los sistemas de producción basados en el maíz que (i) 

limitarían la incidencia del barrenador, (ii) mantendrían o mejorarían la fertilidad del 

suelo, y (iii) mejorarían la producción de forraje para el ganado. En particular, estudié 

cómo las trayectorias de los sistemas agrícolas han dado forma a los paisajes agrícolas 

actuales y evalué las implicaciones en la presión de las plagas del barrenador del tallo del 

maíz y el potencial de control biológico. Cuantifiqué las relaciones entre la abundancia de 

barrenadores, las prácticas agrícolas y los rendimientos de maíz a nivel de parcela y analicé 

el impacto de los factores del paisaje en los barrenadores y la abundancia de su enemigo 

natural. Esto aporta una nueva perspectiva que puede informar las prácticas agrícolas 

efectivas para aumentar la producción de maíz y la supresión del barrenador en múltiples 

escalas espaciales. 

En el Capítulo 2, evalué cómo la expansión en curso de las tierras cultivables y las 

áreas urbanas está afectando la disponibilidad de recursos comunes, como los bosques y 

las tierras de pastoreo, y la disponibilidad de biomasa para alimentos, piensos y energía. 

Al combinar datos de (i) encuestas de hogares agrícolas, (ii) discusiones de grupos focales 

con agricultores, (iii) tipología estadística de las trayectorias de cambio en los sistemas 

agrícolas, (iv) sensores remotos y (v) análisis de datos secundarios, demostré que los 

sistemas agrícolas actuales en Hawassa son el resultado de los efectos combinados de 

políticas pasadas, el crecimiento de la población, el acceso al mercado, la urbanización y 

las características biofísicas. Este trabajo ha revelado, entre otras cosas, que el tamaño de 

las fincas disminuyó rápidamente en las últimas cuatro décadas y que los agricultores 

respondieron a esta restricción mediante la adopción de tres estrategias principales de 

subsistencia: consolidación, diversificación y especialización. Estas trayectorias 

combinadas con la urbanización llevaron a paisajes más fragmentados y complejos. 

En el Capítulo 3, evalué cómo los cambios en el uso de la tierra y la composición y 

estructura del paisaje en la región de Hawassa influyeron en la capacidad del paisaje para 

apoyar a las comunidades del enemigo natural de los barrenadores de maíz. Busseola fusca 

(Fuller). Se tomaron muestras de enemigos naturales en campos de maíz adyacentes a 

setos simples, setos complejos, campos de ensetes (Ensete ventricosum) y campos de khat 

(Catha edulis) a 1, 10 y 30 m con escollos y trampas amarillas en 2014 y 2015. El análisis 
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indicó que los paisajes en el área de estudio han cambiado con el tiempo de a) dominados 

por el maíz a b) agroecosistemas fragmentados a pequeña escala más diversos, con una 

mayor proporción de cultivos perennes. En campos de maíz adyacentes a ensets y en setos 

complejos encontré una mayor abundancia de depredadores (principalmente hormigas y 

escarabajos estafilínidos) que en los campos de maíz adyacentes a khat y setos simples, y 

la influencia del tipo de borde disminuye con la distancia desde el borde. La abundancia 

de parasitoides y moscas parasitarias no fue influenciada por el tipo de borde. Concluí que, 

en términos del servicio de biocontrol, los cambios observados en la composición y 

estructura del paisaje pueden haber influido en la capacidad del paisaje para apoyar a las 

poblaciones de enemigos naturales de los barrenadores de diferentes maneras. Por un 

lado, los tamaños de campo más pequeños han resultado en más bordes de campo que 

pueden soportar densidades de depredadores relativamente altas; por otro lado, el área de 

khat aumentó, y el área de enset disminuyó, lo que pudo haber tenido un efecto negativo 

en las densidades de depredadores. 

En el Capítulo 4, investigué cómo las prácticas de manejo de los agricultores a escala 

de campo y en el contexto del paisaje afectan los niveles de infestación de los sembradores 

de maíz y la productividad del maíz. Los niveles de infestación de maíz, el rendimiento y la 

producción de biomasa se evaluaron en 33 campos de agricultores manejados de acuerdo 

con las prácticas locales. Cuando se consideraron sólo los factores de nivel de campo, la 

densidad de la planta se relacionó positivamente con el nivel de infestación del barrenador. 

Durante los eventos de infestación alta, la duración de la tunelización, un indicador de la 

infestación y el daño a las plantas, se asoció positivamente con la fecha de plantación y se 

asoció negativamente con la diversidad botánica de los setos. Sin embargo, la proporción 

de cultivos de maíz en el paisaje circundante estuvo fuertemente asociada positivamente 

con la longitud de los túneles a 100, 500, 1000 y 1500 m de radio. Los hallazgos revelan 

que el contexto del paisaje anula las prácticas de manejo de los agricultores como 

explicación a los niveles de infestación de maíz. También indican que el maíz es tolerante 

a los niveles de infestación bajos y medios de los barrenadores. 

El sistema push-pull, una estrategia de cultivo de estímulo-disuasión consistente en 

cultivos intercalados de cereales con leguminosas y rodeados de pastos forrajeros, se 

considera una estrategia prometedora para la diversificación de cultivos para los pequeños 

agricultores de África, ya que puede contribuir a la supresión del barrenador del maíz 

Busseola fusca (Fuller), mejorando la fertilidad del suelo y proporcionando alimento para 

el ganado. En el Capítulo 5, investigué el rendimiento de diferentes sistemas push-pull en 

términos de supresión de barrenadores, abundancia de depredadores y productividad de 
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maíz en diferentes entornos paisajísticos. Dentro de cada paisaje (simple, intermedio y 

complejo), se establecieron parcelas experimentales en cuatro granjas representativas de 

pequeños agricultores. En cada granja utilizamos un diseño factorial de parcelas divididas 

con parcelas principales rodeadas o no por pasto de Napier y parcelas consistentes de maíz 

único, maíz-frijol o maíz-Desmodium. Evalué los niveles de infestación del barrenador y 

los rendimientos de grano y rastrojo de maíz durante dos años. También evalué la 

abundancia del enemigo natural y la depredación de huevos en dos etapas de desarrollo 

del maíz en el segundo año. Demostré que el sistema push-pull fue efectivo para reducir la 

infestación del barrenador solo en el paisaje de complejidad intermedia, donde las parcelas 

secundarias con maíz único tenían niveles más altos de infestación del barrenador en 

comparación con maíz-frijol o maíz-Desmodium. En el paisaje simple, que estaba 

dominado por el maíz, todos los tratamientos tenían altos niveles de infestación de 

barrenadores, independientemente de la diversidad de cultivos dentro del campo; la 

presencia de pasto Napier se asoció con una mayor abundancia de depredadores, mientras 

que las tasas de depredación de huevos fueron las más altas en el cultivo de maíz y frijol. 

En el paisaje complejo, los niveles de infestación fueron bajos en todos los tratamientos. 

No encontré una diferencia significativa entre los dos cultivos de empuje probados 

(Desmodium o frijol), lo que sugiere que los frijoles se pueden usar como cultivos de 

empuje en los sistemas de push-pull con la ventaja adicional de aumentar la tasa de 

depredación de huevos y ser una práctica común de los agricultores de maíz y frijol. Sin 

embargo, no hubo diferencias significativas de rendimiento entre los subsistemas ni entre 

los tres paisajes. Por lo tanto, los beneficios del sistema push-pull provienen 

principalmente de los cultivos acompañantes (frijol, Desmodium y Napier) más que de la 

supresión del barrenador en sí. 

 

Los paisajes agrícolas en el área de Hawassa sufrieron importantes transformaciones en 

los últimos 40 años debido a los efectos combinados de los impulsores a nivel nacional, 

regional y local (políticas agrícolas, precios de productos básicos e infraestructura), 

factores a nivel regional/local (densidad de población y urbanización), activos de 

subsistencia de los agricultores y eventos climáticos inesperados. El área de monocultivos 

de maíz disminuyó y fue reemplazada progresivamente por cultivos perennes, tales como 

ensets (cultivos alimentarios) y khat (cultivos comerciales). Además, el crecimiento de la 

población y la expansión de las áreas urbanizadas han reducido la disponibilidad de tierra 

y han llevado a una mayor fragmentación de las tierras de cultivo, con un posible beneficio 

positivo para el control biológico de los cultivadores de maíz. Si bien el sistema push-pull 
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es una estrategia prometedora para la diversificación de cultivos para los pequeños 

agricultores en África, su adopción puede ser limitada en sistemas agrícolas con 

limitaciones de tierras, probablemente debido a la reticencia de los agricultores a 

reemplazar los cultivos alimentarios, como el frijol común, con cultivos forrajeros. 

Además, el desarrollo del pasto Napier puede verse obstaculizado cuando el nitrógeno es 

un factor limitante. Por lo tanto, existe la necesidad de desarrollar sistemas push-pull que 

usen plantas disponibles localmente. El pasto Napier podría plantarse como parte de setos 

para evitar obstaculizar el trabajo mecánico de los campos. En general, el aumento de la 

diversidad de plantas de setos y su densidad puede contribuir a aumentar la abundancia 

del enemigo natural y disminuir los niveles de infestación de maíz. Además, el manejo 

intencional de los setos también podría considerar agregar plantas y árboles que sean 

multifuncionales (por ejemplo, productos botánicos, alimentos para el ganado, control de 

la erosión, almacenamiento de carbono, beneficios para la fauna del suelo). Sobre todo, 

dada la influencia predominante del contexto paisajístico sobre las prácticas de gestión a 

nivel de campo y la naturaleza multifuncional de los sistemas de pequeños agricultores, el 

diseño de agroecosistemas sostenibles requiere un enfoque específico del contexto 

(objetivos sociales, económicos y ambientales). Tomando la presión del barrenador de 

maíz como punto de entrada, mostré que la infestación no se puede explicar sólo por 

factores de nivel de campo. Abordar los problemas de infestación de maíz requiere un 

enfoque de paisaje para el manejo sostenible de plagas. La composición del paisaje, en 

particular, podría impactar la abundancia de la plaga directamente al afectar su dispersión, 

mortalidad o reproducción, o indirectamente al afectar a sus enemigos naturales. Sin 

embargo, un diseño de paisaje que apunte no sólo al control ecológico de los barrenadores 

de maíz, sino que también aborde otras restricciones de la agricultura (es decir, la fertilidad 

del suelo, la disponibilidad de forraje) también debería apuntar a mantener la fertilidad y 

la humedad del suelo para evitar el fracaso de los cultivos (utilizando cultivos de cobertura, 

aumentando la infiltración pluvial) y apuntar a diversos sistemas agrícolas para aumentar 

la nutrición y la diversidad de ingresos para los pequeños agricultores. Los sistemas 

agrícolas diversificados que promueven la conservación de los enemigos naturales parecen 

ser una solución ecológica, pero se necesita más investigación para comprender y 

maximizar la eficiencia de los sistemas de cultivos mixtos existentes. Un enfoque de 

sistemas para la producción agrícola, como la agroecología, podría ser la mejor opción para 

responder a los requisitos de la agricultura de subsistencia multifuncional a pequeña escala 

en África. 
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ማጠቃለያ 
 በአለም አቀፍ ደረጃ የመሬት ሽፋንና መሬት አጠቃቀም በማህበራዊ ኢኮኖሚያዊ እና ፖለቲካዊ ምክንያቶች በፍጥነት 

እየተቀየረ ነው ፡፡ እነዚህ ለውጦች በቀጥታ ለሀገርና ለአለም አቀፍ ስነ-ሕይዎት ላይ ተጽኖ እያሳደሩ ያሉ ለውጦችና በግብርና  የስነ 

መሬት አስተዳደር ላይ አሉታዊ ተጽኖ ያላቸውና ይህም አስፈላጊ የከባቢያዊ አገልግሎት ለማቅረብ ይረዳል፡፡ እነዚህ ለውጦች በተለየ 

ሁኔታ በከፊል ሰብ-ሰሀራ አፍሪካ ውስጥ የሚስተዋሉና በከተማና በገጠር ፈጣን ሽግግር ላይ ከፍተኛ ተጽኖ ያሳደረና የከተማ 

አመሰራረትና የህዝብ ብዛት ከፍተኛ የግብርና ምርት እድገትና በአየር ንብረት የተጎዳና የተለያዩ ፀረ ሰብል ነፍሳት ተጽኖ አድሮበታል፡፡ 
ይህም አማራጭ በግብርና ምርት ዘይቤ በመታገዝ የስነ መሬት ይዘትን መጠበቅና ተፈጥሮአዊ የመቆጣጠሪያ ሂደቶችን በመጠቀም እያደገ 
የመጣው የግብርና ፍላጎት አቅምና የአመጋገብ ስርዓት ልዩነቶች የአየር ንብረት ለውጥ መቋቋምና የታጠበውን የስነ መሬት ገጽታ 
እንዲያንሰራራ ማስቻል ይቻላል፡፡ ወቅታዊ የግብርና ስነ መሬት ገጽታ በተሻለ ሁኔታ አስፈላጊውን የከባቢአዊ ስርዓት አገልግሎት 
እንዲያገግም ለማስቻል የተለመደውን የግብርና ስርዓት መቀየር አስፈላጊ ሆኗል፡፡ እነዚህ ግፊት ፈጣሪዎች ወቅታዊ የስነ መሬት 
አቀማመጥ ከማደራጀትና አደረጃጀት አንፃር እንዴት መቀረጽ እንዳለባቸው እንዲሁም ለከባቢያዊ ስርዓት አገልግሎት ያላቸውን ተጽኖ 
በተሻለ ሁኔታ መገንዘቡ ተገቢ ነው፡፡ እነዚህ ጉዳዮች የተሻለ ቀጣይነት ያለው የሰብል ተኮር የግብርና ስርዐት እንዲኖር ማስቻልና ዲዛይኑ 

ትናንሽ የተቆራረጠ የግብርና መሬት ያላቸው ከእጅ ወደ አፍ አምራች የሆኑ ገበሬዎችን መረጃ ተደራሽነት ማረጋገጥ ያስፈልጋል፡፡  
 ኢትዮጵያ በአሁኑ ሰዓት ሁለተኛዋ ብዙ ህዝብ የሚኖርባት የአፍሪካ ቀንድ ሀገር ነች፡፡ የህዝቦች ብዛት ከአንድ መቶ 
ሚሊዮን በላይ ሲሆን፣ ይህም በየአመቱ ሶስት በመቶ ጭማሪ ያሳያል፡፡ በኢትዮጵያ ውስጥ በዋና የተለመዱ ሰብሎች በቆሎና ጤፍ 

ሲሆኑ፣ በሄክታር ሰፊውን ድርሻ  ሸፍነው የያዙ ናቸው፡፡ ሃዋሳ አካባቢ ባለው ስምጥ ሸለቆ በቆሎ ይዘራል፣ ይህም ሰብል በፀረ ሰብል 

ነፍሳትና የበቆሎ አገዳ ሰርሳሪ ትሎች ጉዳት ይደርስበታል፡፡ ጎልማሳ የአገዳ ትሎች እሾሀማ አፍ ያላቸውና በመብረር የሚሰራጩ፣ 

ሲራቡም (በእንቁላል ደረጃ) መጠጊያቸው ተክሎቹ ናቸው፡፡ በአሁኑ ሰዓት የፀረ እጽዋት ቁጥጥር ተግባራት በአገዳ ሰርሳሪ ትሎች ላይ 

የማሳን ደረጃና እንክብካቤና የመሬት አቀማመጡን ከግንዛቤ ያስገባ አይደለም፡፡ በአሁኑ ሰዓት የግብርና ስርዐትና ተያያዥነት ያላቸው 
ተግባራትና የስነ መሬት አቀማመጥ ይዘቶች ስለ አገዳ ሰርሳሪ ትሎች ግንዛቤ እና ብዛታቸው ስለ አገዳ ሰርሳሪና የፀረ ሰብል ግፊት አካላት 
ሆኖ ይስተዋላሉ፡፡ በሀዋሳ ውስጥ ቀጣይነት ያለው የግብርና ስርዓት ሽግግር አለ፡፡ ይህ ለውጥ በከፍተኛ ደረጃ በተቋማዊ፣ ማህበራዊና 
ኢኮኖሚያዊ አሳላጮች ማለትም የመሬት አስተዳደር መመሪያ ማርኬት፣ የገበያ አቀማምጥና የህዝብ ብዛት እድገት ዋነኞቹ ታሳቢዎች 
ናቸው፡፡ በተጨማሪም የመሬት አቀማመጥ፣ የምግብ አቅርቦት፣ አመጋገብ እና የጉልበት ፍሰት ታሳቢዎች ናቸው፡፡ የስራዬ አጠቃላይ 
አላማ የአገዳ ትሎችና የአገዳ ሰርሳሪ ትሎች ለመለየት የሚያስችል፣ የግብርና እና የመሬት አቀማምጥ ከፍተኛ ሰፊ የበቆሎ ምርት እድገት 
እንዲኖር ማስቻልና ይህ የምርት ስርዓት የበቆሎ አገዳ ሰርሳሪ ትሎች ገጠመኝ፣ የአፈር ለምነትን መጠበቅና ማሻሻል፣ የከብቶች ምርት 
ማሻሻል ነው፡፡ በተለያየ ሁኔታ የግብርና ስርዓት በወቅቱ ያለውን ግብርና የስነ መሬት አቀማምጥ እና ወቅታዊ የበቆሎ አገዳ ትል ቁጥጥርና 
ህይወት የሚያግዝ ይሆናል፡፡ በአገዳ ትሎች እና ሌሎች ተያያዥነት ያላቸው ግንኙነቶች የግብርና ተግባራትና የበቆሎ ምርቶች በማሳ 
ደረጃ እና የስነ መሬት አቀማመጥ ተጽኖ በበቆሎ አገዳ ሰርሳሪ ትሎች ላይ ከፍተኛ እና ቁጥራዊ መገለጫዎች ትስስር ለመፍጠር ያግዛል፡

፡ ይህም ለውጥ ወቅታዊ የምግብ ሰንሰለት እና የጉልበት ፍሰት ለመቆጣጠር የሚያስችል ነው፡፡   

በክፍል ሁለት ውስጥ የሰብል መሬት እና የከተማ መስፋፋት የጋራ የሆነ ሀብት ላይ ተጽኖ እየፈጠረ ይገኛል፡፡ ይህም ማለት 
ጫካና የግጦሽ መሬት የምግብ መጠን አመጋገብና የጉልበት ፍሰት ላይ ተስኖ ያሳድራል፡፡ ከአርሶአደር አባወራዎች ከአርሶአደር 
አባወራዎች ከአርሶ አደር ጋር ያለ ውይይት ሌላም ስታስቲካዊ የአረሶአደር አስተራረስ ስርዐት እና ለውጥ፣ ወደ ፊት ሊያጋጥም 
የሚችለውን አደጋ ማሰብ እና የሁለተኛ ወገን ቋት ምርመራ በመመልከት አሁን ያለው የአስተራረስ ዘይቤ ስመለከት በሀዋሳ ውስጥ 
ቀድሞ የነበሩ ፖሊሲዎች፣ የህዝብ ብዛት እድገት፣ የገበያ ቀረቤታ፣ የከተማ መስፋፋት እና ሌሎች አካላዊ ገጽታዎች ለማየት ችያለሁ፡፡ 

ይህ ስራ እንዳመላከተው ከሌሎች ተደማሪ ጉዳዮች ጋር የአርሶ አደር የእርሻ መሬት ላለፉት አራት ዓመታት በፍጥነት እየቀነሰ የመጣና 
አርሶአደሮችን ለዚህ የሚሰጡት መልስ እና የሚጠቀሙት ዘዴ፤ አዝርእት መቀያየር፣ የተለያዩ አዝዕርቶችን አብሮ መዝራት እና የተለዩ 
ሰብሎችን ማኖር የሚሉት ካሉት ዘይቤዎች የሚጠቀሙበት ነው፡፡ ከከተማ መስፋፋት ጋር ተያይዞ ያለው ችግር የበለጠ የተበጣጠሰ 

የመሬት ይዞታ እና ከፍተኛ ውስብስብ የመሬት አቀማመጥ እንዲኖር ያደርጋል፡፡ በአንቀጽ 3 ውስጥ በሀዋሳ ከተማ ውስጥ የመሬት 

አጠቃቀምና የመሬት ማልማት ተግበራትና አደረጃጀት ስንመለከት የሀዋሳ ክልል ከመሬት አቀማመጡ አንፃር የበቆሎ አገዳ ተፈጥሮአዊ 

ጠላት የሆነው የበቆሎ አገዳ ሰርሳሪ ትል ላይ ተጽኖ ያሳድራል፡፡ ቡሲዎላ ፉስካ (አሟይ) ካሉት የሰብል ዓይነቶች ተፈጥሮአዊ ጠላት 
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ስለመሆናቸው በበቆሎ አገዳ ሰርሳሪዎች ላይ ማስተዋል ተችሏል፡፡ ይህም ክስተት ውስብስብ የእንሰት (ቬንትሪኮዞም) እና የጫት 

(ካታይዱሊስ) የግብርና ቦታዎች ላይ በአንድ አስር እና ሰላሳ ሜትር ርቀት ላይ የተለያዩ ቅጠላቸው የመሸርሸርና ቢጫ የመሆን ችግር 

በ2014 እና 2015 ላይ ተስተውሏል፡፡ የመሬት አቀማመጥ ዳሰሳ እንደሚያመላክተው የመሬቱ አቀማመጥ ከረዥም ጊዜ በኋላ 

እየተቀየረ የመጣና nቆሎ ተኮር ምርት እና የተበጣጠሰ የግብርና ስራ ትስስር እና ወቅታዊ ሰብሎች ብቻ የታገዘ እየሆነ መጥቷል፡፡ 

በበቆሎ ማምረቻ ቦታ ከእንሰት ጎን ለጎን እና ውስብስብ ብዙ ተመጋቢዎችን (አምበጣ ትላትል እና በራሪ ነብሳት) ከጫት ጎን ካለው 

የበለጠ ይስተዋላል፡፡ ከወገብ ወይም ጫፍ እየራቅን በሄድን ቁጥር ይህ ችግር እየሰፋ የሚሄድ ነው፡፡  

የጥገኛ ነፍሳት እና ሌሎች ጸረ ሰብል ከጫፍ ባሉት ላይ ያን ያህል ተጽኖ አላሳደረም፡፡ በማጠቃለያ ልገነዘበው እንደቻልኩት 
የስነመሬት ቁጥጥር አገልግሎት ላይ የተስተዋለው ለውጥ የመሬት አቀማምጥ ይዘት እና አደረጃጀት የመሬቱን አቀማመጥና አቅም 
የህዝብ ብዛት ድጋፍ የጋራ የአገዳ ሰርሳሪ ናቸው፡፡ በአንድ በኩል በሌላው መንገድ ጥቃቅን የተበጣጠሱ የግብርና መሬቶች ብዙ 
ድንበሮችን እንዲኖሩ በማድረግ በአካባቢው ላይ እነዚህ ፀረ ሰብል እንዲኖሩ አስችሏል፡፡ በሌላ በኩል የጫት መኖር የእንሰቱ መጠን 
እንዲቀንስ በማድረግ በአካባቢው ላይ ባሉት ተመጋቢ ነፍሳቶች አሉታዊ ተጽኖ አሳድሯል፡፡ በአንቀጽ አራት ውስጥ የአርሶአደሮች 

የአሰራር ተግባራት እና ማሳዎቻቸው አንደየመሬቱ አቀማመጥ በቆሎ አገዳ ሰርሳሪ ትሎች እና የመራባት ደረጃቸው ላይ ተጽኖ አሳዳሪ 

ነው:: የበቆሎ የምርት ደረጃ እና የስነህይወት ተጽኖ በ33 የአርሶ አደሮች እርሻ ቦታ በአገሪቱ ልማዳዊ ተግባር ቁጥጥር ይደረግ ነበር፡፡ 

የእርሻ ቦታ ደረጃ ሁኔታ ስንመለከት የእጽዋት ብዛት ከአገዳ ትል ብዛት ጋር አውንታዊ ግንኙነት አለው፡፡ በከፍተኛ የአገዳ ትል ክስተት 
ጊዜ የሚወድሙ እጽዋቶች ከመጠን በላይ የመርዘም እና የመሰበር ችግሮች ከእጽዋቱ የመትከያ ቀን እና ከመሬቱ የአቀማመጥ ሁኔታ 

አሉታዊ ትስስር አላቸው፡፡ ይሁን እንጂ የበቆሎ ሰብል መጠን ከአካባቢው የስነ መሬት አቀማማጥ ጋር በከፍተኛ ደረጃ 100፣500፣

1000 እና 1500 ሜትር ከፊል የወገብ መስመር (ራዲ)ድረስ ከፍተኛ አዎንታዊ ትስስር አላቸው፡፡ ግኝቱ እንደሚያመላክተው ከመሬቱ 

አቀማመጥ አንፃር ጠንካራ አዎንታዊ ትስስር አለው፡፡ ግኝቱ እንደሚያሳየው የበቆሎ የጥቃት ደረጃ እና የአርሶአደሮቹ ዘልማዳዊ አሰራርን 
ያካተተ እና በተጨማሪም ዝቅተኛ እና መካከለኛ የአገዳ ትል ተጠቃሾች ናቸው፡፡ 

የፑሽ ፑል ስርዓት /ግፊት/፣ የተለያዩ ሰብሎችን አንድ ላይ መዝራትና በዚህም አዝእርት ውስጥ የቅባት እህሎችና የሳርነት 

ባህሪ ያላቸውን እጽዋቶች አብሮ መዝራት ተስፋ ሰጪ የተለያዩ ሰብሎችን አብሮ መዝራት በአፍሪካ ውስጥ እንደ አንድ ዘዴ ተወስዶ 

በአርሶ አደር አባወራዎች የሚዘወተር ነው፡፡ ይህም ለአገዳ ትል ቡሲዮላ ፉስካ እንዲፈጠር በማድረግ የአፈር ለምነትና ለከብቶች የመኖ 
አቅርቦት እንዲፈጠር ማስቻል ነው፡፡ በአንቀጽ አምስት ውስጥ የተለያዩ የፑሽ ፑል ስርዓት በመጠቀም የአገዳ ትል እንዳይስፋፋ ማድረግ 
እና የተመጋቢዎች መብዛት እና የተለያዩ የበቆሎ ምርት በተለያየ የመሬት አቀማማጥ ላይ ይስተዋል የነበረ ሲሆን በእያንዳንዱ የመሬት 
አቀማመጥ ፣ መጠነኛ መካከለኛና ውስብስብ ፣ የእርሻ ቦታ ቤተ ሙከራ የተመሰረተው በአራት የአርሶአደር አባወራዎች እርሻ ቦታ ላይ 
ተስተውሏል፡፡ በእያንዳንዱ የግብርና ቦታ ማሳውን በተለያዩ ዲዛይኖች በመከፋፈል በአርሶአደሩ የግብርና ቦታ ማእከላዊ ፓርት ላይ 

እንዲኖር ማድረግ እና ናፒል ሳር  እና ከፊል የበቆሎ ማሳ፣ በቆሎ እና አተር ወይም በቆሎ እና ሌሎች ተያያዥነት ያላቸው ስራዎች 

እንዲሰሩ፣ ያስችላል፡፡ ይህንን የአገዳ ሰርሳሪ ትሎች የጥቃት ደረጃና ዋና ሰብል ለሁለት ዓመታት ያሉ የሰብል ውጤቶችን የሚያካትት 

ነው:: በተጨማሪም የተፈጥሮ ጠላት ብዛትና የነዚህ ጸረ ሰብል ነፍሳት በሁለት የበቆሎ ልማት ደረጃ በሁለተኛው ዓመት ላይ የሚከናወን 

ሲሆን በተጨማሪም የፑሽ ቡል ዘይቤ የአገዳ ሰርሳሪ ትል የጥቃት ደረጃ ከፍተኛ የሚሆነው መካከለኛ ውስብስብ የመሬት አቀማመጥ 
ላይ ሲሆን ይህም በቆሎ ብቻ በሚዘራበት ጊዜ ከፍተኛ የአገዳ ትል ጥቃት ደረጃ የሚኖረው አተር በቆሎ ወይም በቆሎ ሌሎች ሰብሎች 
ጋር ሲነፃፀር ከፍተኛ የአገዳ ስር አለው፡፡ በትንሹ በበቆሎ የተዋጠ እርሻ ለከፍተኛ የትል ተጋላጭነት ስላለው ይህ ችግር ሊወገድ 

የሚችለው በእርሻ ቦታው ላይ የተለያዩ ሰብሎችን በመዝራት ነው፤ የናፒር ሳር ብዙ ተመጋቢዎችን እንዲፈጠሩ ሁኔታ ያመቻቻል፡፡ 
የእንቁላል መራባት ደረጃ በበቆሎና አተር እርሻ ላይ ከፍተኛ ነው። ይሁን እንጂ በቂ የምርት ልዩነቶች በንዑስ ስርአቶች ውስጥም ሆነ 
በሶስቱ የስነ መሬት አቀማመጥ ላይ ከፍተኛ ተጽኖ ያለው ነው፡፡ ስለዚህ የፑሽ ፑል ስርዐት ጥቅም በብዛት የሚመጣው ተያያዥነት 

ካላቸው አዝርእቶች (አተር፣ ባቄላ እና የናፒር ሳር/ ተጠቃሾች ናቸው፡፡ የግብርና የስነ መሬት አቀማመጥ በሀዋሳ አካባቢ ባለፉት አርባ 

አመታት ውስጥ በጥምር ብሄራዊ፣ ክልላዊ እና በአካባቢ ደረጃ ያሉ ግፊት ፈጣሪዎች (የግብርና ፖሊሲ) የግባት ዋጋና መሰረተ ልማቶች፣ 

ክልላዊና አካባቢያዊ ሁኔታዎች (የህዝብ ብዛትና የከተማ መሰፋፋት)  የገበሬዎች ሀብትና ያልተጠበቀ የአየር ንብረት ክስተቶች በዋናነት 
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ተጠቃሽ ናቸው፡፡ የበቆሎ አዝእርት ብቻ የሚዘራበት አካባቢ የረዥም ጊዜ ሰብሎች በቀጣይነት እየተተካ የመጣ ሲሆን፣ እነዚህም 

ሰብሎች እንሰትና ጫትን ያካትታል፡፡ በተጨማሪም የህዝብ ብዛት እድገትና የከተማ መስፋፋት የመሬት አቀማመጥና አቅርቦትን 
በማሳነስ የተበጣጠሰ የእርሻ ሰብል እንዲኖር አድርጓል፤ አውንታዊ የሆነ ጥቅም የበቆሎ አደጋ ሰርሳሪ ትል ከፍተኛ ተጽኖ ፈጥሯል፡፡ 
በተጨማሪ የፑሽ ፑል ስርዓት የተለያዩ ስርዓትን በአንድ ቦታ የመዝራአት አካሄድ በአፍሪካ ትናንሽ የእርሻ ቦታ ያላቸው አርሶ አደሮች 
ጋር የተለመደ ነው፡፡  

ይህም የመሬት እጥረት ባለበት የአርሶአደር ስርዓት እና የአርሶደሩ የምግብ ሰብሎችን ለመቀየር ካለው ስጋት አንፃር የተለመደ 

አተር እና ሌሎች ሰብሎችን ባለመተካት ችግሩ ሊባባስ ይችላል:: በተጨማሪም የናፒር ሳር እድገት በመሬት ውስጥ ያለው የናይትሮጅን 

አናሳነትን በከፍተኛ ደረጃ ተጽኖ ያሳድራል፡፡ ስለዚህ ይህንን የፑሽ ፑል ስርዓት ለመዘርጋት በአካባቢው ያሉትን እጽዋቶች የናፒር ሳር 
በእርሻ ቦታው ያሉትን የጉልበት ስራዎች እና አላስፋጊ የሆኑ እንቅፋቶች ያስቀራል፡፡ በአጠቃላይ እጽዋትን ማፈራረቅ እና ብዛታቸው 
በአካባቢው ላይ ሊፈጠሩ ስለሚችሉ ፀረ ሰብል ችግሮች እንዲጨምሩ ማድረግ እና የበቆሎ የጥቃት ደረጃ እንዲቀንስ ይሆናል፡፡ 
በተጨማሪ አለማቀፍ የጸረ እጽዋት አስተዳደር ዘርፈ ብዙ የሆኑ እጽዋቶችን እና ተክሎችን፣ ለምሳሌ ጎታኒካሎች፣የእንስሳት መኖ፣ የጎርፍ 
ቁጥጥር፣ የካርቦን ክምችት፣ የአፈር ውስጥ ነፍሳት ጥቅም የመሳሰሉት ላይ ግንዛቤን ማስጨበጡ አስፈላጊ ነው፡፡ ከሁሉም በላይ የስነ 

መሬት አቀማመጥና ከፍታ ያለውን የመሬት አስተዳደር አተገባበሮችና ዘርፈ ብዙ ተፈጥሮአዊ አገልግሎትና ጥቃቅን የማሳ ባለቤት የሆኑ 
አባወራዎችና የተፈጥሮአዊ የግብርና ስነ አካባቢያዊ ስርዐት ጠንካራና አካባቢውን ያገናዘበ የተናበበ ማህበረሰባዊ ኢኮኖሚያዊና 

አካባቢያዊ አላማዎችና የጥናት ዘዴዎች መኖራቸው ተገቢ ነው፡፡ የበቆሎ አገዳ ሰርሳሪ  ትሎች ተጽኖ እንደመግቢያ ተጠቅሜ ይህ ተጽኖ 

በእርሻ ቦታ ውስጥ የሚገለጽ አይደለም፡፡ የመሬት አቀማመጥ ይዘት በተለይም የጸረ እጽዋት ብዛት እና ቀጥተኛ ተጽኖዋቸው ስርጭት፣ 
የመባዛት ወይም ምርት እና በተዘዋዋሪ የተፈጥሮ ጠላቶቹ ላይ ተጽኖ ያሳድራል፡፡ በአሁኑ ሰዐት የመሬት አቀማመጥ ዲዛይን የበቆሎ 

አገዳ ሰርሳሪ ትሎች የአካባቢያዊ ቁጥጥር ችግር ብቻ ሳይሆን ሌላ የግብርና ቦታ ውስንነቶች /ይህ ማለት የአፈር ለምነት፣ የተለያዩ 

ችግሮች/ የአፈር ለምነት አቅዶ እና ያለውን የውርጭ ደረጃ ለማዘጋጀት የሰብል ችግርን የሚያስገወድ ይሆናል፡፡ መሬት ሊሸፍኑ የሚችሉ 

የዝናብ መጠን ሊቀንሱ የሚችሉ የእጽዋት አይነቶችን መጠቀም፣ በተጨማሪም በተለያዩ የግብርና ስርዓት ላይ የአፈር ለምነት 
እንዲጨምር የሚያስችሉና ለጥቃቅን መሬት ባለቤት የሆኑ የአርሶአደር አባወራዎች ገቢ ምንጭ ለማስፋት እንዲቻል ሆኖ መታሰብ 
ይኖርበታል፡፡ ዘርፈብዙ የግብርና ስርኣት እና የተፈጥሮ የእጽዋት ጠላት የሆኑ ነፍሳትን እንደ ስነ አካባቢያዊ መፍትሄ ማሰቡ ትልቅ 
መፍትሄ ነው፡፡ ነገር ግን በአሁኑ ሰዓት ያለውን ድብልቅ የአዘራር ዘይቤ በመረዳት ከፍተኛ አስተዋጽኦ ያለው ስለመሆኑ የበለጠ ጥናት 
ያስፈልገዋል፡፡ የግብርና ምርት አቀራረብ ዘይቤ ማለትም የግብርና ኢኮሎጂ በአፍሪካ ውስጥ ያለውን ከእጅ ወደ አፍ የሆነ የተበጣጠሰ 
የግብርና የመሬት አጠቃቀም ለማሻሻል እና ከተሻለ ደረጃ ለማድረስ የተሻለ አማራጭ ነው፡፡  
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