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Abstract

A Trophic State Index (TSI) is a widely used classi�cation system to measure
eutrophication levels in surface waters. Besides nitrogen and phosphorous concentra-
tions, chlorophyll-a (chl-a) can be used as the class indicator parameter. Traditionally,
the TSI classes are estimated through in-situ samples. In recent times, the usage of
remote sensors has evolved to complement in-situ measurement e�orts, o�ering spatial
and temporal revisit advantages. Hundreds of chl-a retrieval algorithms exist to calcu-
late the desired chl-a concentrations from multi-spectral space born sensors. The most
popular algorithms either use band-ratios or sophisticated inversion procedures, but
they face several weaknesses as well as regional application limitations. In this study
the Spectral Trophic State Index (STSI) algorithm has been developed. The aim of the
STSI is to directly retrieve the trophic status and index classes without having to com-
pute a chl-a concentration �rst. The core of the STSI algorithm is a gradient boosting
machine classi�cation algorithm (classi�er) trained with synthetic remote-sensing re-
�ectances (Rrs, sr

−1) that are the outcome of a hyperspectral forward simulation using
the �nite-element method. For every simulated Rrs, the chl-a concentration is known
a priori, as it is one of the input parameters for the simulation procedure. Utilising
the classi�er, unseen re�ectances from an ocean-colour sensor can then be classi�ed
into one of the pre-de�ned TSI classes to assign them a class label. As a result of
the algorithm structure, chl-a retrievals using band-ratios or inversion procedures are
circumvented. The STSI classi�er can theoretically be applied to any ocean-colour
sensor and its functionality has been exempli�ed using Rrs from Sentinel-3A OLCI.
For this purpose, the two publicly available processors Idepix and C2RCC of ESA's
Sentinel Application Platform (SNAP) were utilised. OLCI scenes over three di�erent
U.S. water bodies (Lake Pelican, Michigan and Jordan) were matched with in-situ
measurements of in-water chl-a concentrations to validate the STSI class predictions.
The results show that oligo- and eutrophic conditions were accurately predicted, with
accuracy scores ranging from 0.66 to 1.00 for all in-situ stations in Lake Pelican and
Michigan. The advantages of the proposed method are clearly determinable. The
STSI algorithm does not require prior knowledge about local conditions or regional
tuning as well as speci�c band combinations. Moreover, the design of the method
proactively weakens the ocean-colour issue of spectral ambiguities. On the contrary,
hypereutrophic conditions encountered in Lake Jordan are currently not well covered
(accuracy of 0.28), revealing the limitations of the current STSI model. The extreme
optical conditions faced in Lake Jordan indicate optical areas underrepresented in the
simulated database. Optical water types (OWT) can help to constrain and validate
the simulations. Coupled with a quality assurance system of calculated sensor Rrs,
the STSI accuracies can be improved. A prototype of the STSI has been implemented
in SNAP to enable the use as a eutrophication measurement tool for satellite imagery.
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Trophic State Index; Sentinel-3 OLCI; Hyperspectral remote-sensing re�ectances; Gra-
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1 Introduction

1.1 Thematic background

Water eutrophication is a challenging environmental problem across the globe (Ayres et al.,
1997; Yang et al., 2011). Since the 1970s, the worldwide severity of water eutrophication
has increasingly gained attention of both the public and governments (Álvarez et al., 2017;
Yang et al., 2008). The most predominant cause for eutrophication is the anthropogenic
nutrient enrichment through the discharge of domestic wastes, non-point pollution from
agricultural practices and urban development (Mainstone and Parr, 2002). Not only has
increased nutrient loading severe impacts on the rich biological ecosystems found in aquatic
environments, but it is also considered as a major threat to the health of coastal marine
waters (Andersen et al., 2004). Once a water body is eutrophicated, it loses its primary
functions and thus has consequences on wildlife communities, water supply, �shery and
recreation activities (Wilkinson, 2017). To track changes in eutrophication levels of a
water body, several trophic state indices have been formulated (Lambou et al., 1983).
The most commonly used Trophic State Index (TSI) by Carlson (1977) has been adapted
from several government institutions, namely the U.S. Environmental Protection Agency
(USEPA), Brasil's São Paulo State Environment Company (CETESB) and the Chinese
Environmental Protection Agency (CNEPA) (CNEPA, 2002; Novo et al., 2013; Rast and
Lee, 1978).
Besides nitrogen and phosphorus, chlorophyll-a (chl-a) concentrations can be used to derive
the classes of the TSI. Chl-a as the dominant active pigment in phytoplankton, including
algae and bacteria, has a signi�cantly positive relationship to phytoplankton biomass and is
used globally as a simple proxy for phytoplankton in waters (Blanka, 1981). It is routinely
measured by government agencies in water quality monitoring programs in the laboratory
after extraction in an organic solvent or via direct measures based on �uorescence in vivo
or in vitro (Gons et al., 2008; Schalles, 2006; Simis et al., 2007). In particular, chl-a
is the vital indicator in monitoring programs to measure the impacts of eutrophication,
ecological habitat status and health risks arising from harmful cyanobacteria and algal
blooms (Matthews and Odermatt, 2015).
Conventional sampling methods to measure chl-a are labour-intensive and costly. Hence,
they can not provide an extensive spatial and temporal coverage to capture the highly
variable dynamics occurring in inland waters strongly in�uencing the concentrations of
chl-a (Spyrakos et al., 2017). Fortunately, chl-a has a unique optical property measurable
from remote instances allowing to estimate this parameter from remotely sensed data with
wide spatial and temporal coverage.

1.2 Problem de�nition

To derive TSI classes from remote sensing imagery, current chl-a retrieval algorithms are
utilised to calculate the concentrations of the parameter. The retrieved concentrations of
chl-a are then assigned into one of the TSI classes (for application examples see: Novo
et al. 2013; Papoutsa et al. 2014; Wang et al. 2005). For open ocean waters, algorithms
for iteratively retrieving chl-a are well established using re�ectance in the blue and green
spectral regions, because the optical properties are generally controlled by phytoplankton
and associated degradation products (Hu et al., 2012; Lee et al., 1996; O'Reilly et al.,
1998). However, these algorithms fail when applied to inland waters because of highly
di�ering, more complex optical properties (Dall'Olmo and Gitelson, 2005; Lavender et al.,
2004; Le et al., 2011; Li et al., 2012; Sun et al., 2009). The reason for the inland water
optical complexity is mainly due to the highly variable composition of the inherent optical
properties (IOPs) (i.e. absorption, scattering and �uorescence) of chl-a, total suspended
matter (TSM) and coloured dissolved organic matter (CDOM). The mass-speci�c rela-
tionship between chl-a and the other components can not be easily determined as in open
ocean waters and is often lake speci�c (Loisel and Morel, 2001; Morel and Prieur, 1977;
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Riddick et al., 2015; Sathyendranath et al., 1989). IOPs can not be determined by chl-a
alone, but from the composition of all optically active substances leading to di�culties in
precisely estimating chl-a with remote sensors (Gons et al., 2008; Le et al., 2009; Moses
et al., 2012; Yacobi et al., 2011).
Two types of algorithms are most frequently used to retrieve chl-a concentrations: either
based on a band-ratio or on numerical solutions that invert the water-leaving radiative
spectrum. The most commonly applied are based on the di�erence or ratio between two
bands derived from statistical relationships with the measured in-situ concentrations of
chl-a (Dekker et al., 1991; Morel and Prieur, 1977; Stumpf and Tyler, 1988). To this cat-
egory also algorithms belong that focus on the pursuit of particular signal attributes like
the peak position and height of certain chl-a spectral features that seem to be unique,
e.g. the chl-a �uorescence or cyanobacteria occurrences (Esaias et al., 1998; Matthews
et al., 2012; Matthews and Odermatt, 2015). These algorithms are limited as they need
well de�ned features in the water-leaving radiative spectra. This requirement is not al-
ways accomplished, especially in lakes with low chl-a concentrations and poor atmospheric
corrections. Despite some of the limitations, these algorithms are usually comparatively
easy to implement and provide robust concentration measures for regional lakes (Tyler
et al., 2016). Other band-ratio approaches developed over the last decades are based on
re�ectances in the red and the near-infrared spectral regions. The results presented yield
accurate chl-a estimates in local inland waters (Gilerson et al., 2010; Ruddick et al., 2001;
Sun et al., 2009; Xu et al., 2010; Yacobi et al., 2011). Most of the parameters were ob-
tained from relationships between data measured from remote instances and in-situ, both
collected in a speci�c geographical or seasonal regime. These algorithms indeed are suitable
for estimating chl-a of local waters or particular seasons. However, they require site-speci�c
knowledge and training data. Hence, while the estimation of chl-a for one region is already
a challenge, most of the speci�cally developed algorithms lack transferability to optically
di�ering aquatic environments. The design of an algorithm for a local water type makes
them less applicable to lakes outside of their training range and studies show that none
of them is universally applicable (Moore et al., 2001; Kutser et al., 2001; Odermatt et al.,
2012; Shi et al., 2013).
To overcome local con�nement and to account for the prevailing contribution to the light
�eld from inorganic and/or dissolved material, inversion algorithms were developed. These
algorithms are strongly driven by an understanding of the relationships between the IOPs
and the water-leaving signal through the use of physics-based bio-optical models. The
inversion problem is examined as a two step process: �rst, the derivation of IOPs from
measured radiance and second the biogeochemical parameters (such as chl-a) from the
IOPs. Early approaches from Hoogenboom et al. (1998) used matrix inversion for retriev-
ing chl-a and suspended matter. Another example is the adaptive implementation of the
linear matrix inversion (LMI) method which iterates over a number of model parameter
sets to account for the variability in the IOPs in a wide range of optically complex waters
(Brando et al., 2012). Further, neural network inversion approaches have been optimised
speci�cally for lakes or are partly transferable from the coastal zone setting to a range of
inland waters (Brockmann et al., 2016; Doer�er and Schiller, 2007; Hieronymi et al., 2017).
These models usually provide concentration normalized IOPs, so-called speci�c inherent
optical properties (SIOP, i.e. absorption or scattering per unit mass). SIOP coe�cient ap-
proximation is then required to convert the retrieved IOPs to the concentrations of water
constituents like chl-a or TSM.
However, inversion-based algorithms face the major di�culty in solving the inverse problem
of ocean-colour. The issues accompanying the inversion can be described using Equation
1 as an example of the relationships often used as the basis of many inversion algorithms:

Rrs = Lu/Ed = g
bbtot
atot

, (1)
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where Rrs is the sub-surface remote-sensing re�ectance, de�ned by the ratio of absolute
upwelling nadir radiance Lu (in Wm−2sr−1) to downwelling irradiance Ed (in Wm−2)
just beneath the water surface, bbtot is the total backscattering coe�cient (in m−1), atot
is the total absorption coe�cient (in m−1) and g is a proportional factor (sr−1). The
di�culty originates from the fact that the relationship between the Rrs and the IOPs of
each water component is not unique. IOPs have an additive property, meaning that several
combinations of the water components IOPs can lead to the same, thus indistinguishable,
re�ectance spectrum making it di�cult to ultimately retrieve precise concentrations of the
in-water constituents. Further, a given value of the ratio bbtot/atot can be obtained from
di�erent values of btot and atot, resulting in a similar re�ectance value as inferred by Equa-
tion 1. It is even in principle di�cult to answer if two di�erent sets of IOPs and boundary
conditions can lead to the same radiance distribution. Because the solutions are not unique
in practice, the inverse problem of ocean-colour is said to be ill-posed or ambiguous. Con-
sequently, both the numerical part of the inversion (i.e. spectral optimization, linear and
non-linear matrix algorithms) and the presence of ambiguities are sources of error in the
measured IOPs necessary to retrieve the concentrations of the optically active constituents
(Defoin-Platel and Chami, 2007). A further review about the numerical problems related
to the spectral inversion algorithms is given in McCormick, 1992; Mobley, 1994.
To judge the performance of algorithms, it is necessary to distinguish between algorith-
mic performance bias originating from their retrieval techniques used (i.e. inversion or
band-ratio) and the errors resulting from a failure of a proper atmospheric correction (AC)
algorithm applied prior to the retrieval process to gain usable re�ectances. Although the
atmospheric correction is an external algorithm not linked to the retrieval, it is strongly
in�uencing the �nal retrieval result.
The retrieval of the optically active substances in inland waters is a multifaceted task. As
discussed, until now inland water remote sensing products are still facing issues. Neverthe-
less, this speci�c application �eld of ocean-colour remote sensing is rather young compared
to the use of optical measurements from open oceans. Many new developments are emerg-
ing that show the potential for inland surface waters (Ogashawara et al., 2017; Schae�er
et al., 2013; Palmer et al., 2015).
From a methodological point of view, the purpose of chl-a retrieval algorithms is greater
than retrieving eutrophication statements. Nonetheless, they are also currently the only
method available to determine the trophic status of a surface water body using chloro-
phyll as the class indicator parameter. The herein developed Spectral Trophic State Index
(STSI) provides an innovative alternative. To circumvent the aforementioned issues accom-
panying the retrieval process of chl-a, the proposed STSI algorithm avoids the retrieval of
water constituent concentrations explicitly. The idea of the STSI algorithm is to view the
TSI statements not as a retrieval, but rather as a classi�cation problem. This is motivated
by the circumstance that phytoplankton is just one of many lake parameters that have
been used to biologically de�ne the di�erent eutrophication classes. The STSI inherently
takes the perspective that chl-a is a linkage rather than the class de�ning parameter. The
chl-a concentration ranges de�ned for the di�erent trophic state classes are based on �eld
knowledge that take into account the complex interactions in a lake environment, such as
varying nutrient and oxygen levels, thermal strati�cation and light availability. The trophic
state of a lake is de�ned by more than phytoplankton concentrations. Hence, it is simply
necessary to retrieve the TSI classes, using the chl-a as the linkage, rather than as the class
de�ning parameter. This is possible by the use of a supervised classi�cation algorithm
trained with synthetic simulated re�ectances for which the TSI classes are known (based
on the linkage parameter chl-a) a priori, as the chl-a concentration is an input into the
simulation process already. The class boundaries to separate each class from another are
already established for decades and the assumptions made have their reasoning mainly due
to biological relationships found in lakes. The output of the STSI is a discrete TSI class for
each re�ectance of a satellite pixel. The aim is to provide a high-level information product
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similar to the original TSI classes that even a non-remote sensing expert can interpret.

1.3 Research objectives and questions

Within this thesis several research questions are investigated:

1. Can the non-linear classes of the original TSI be adequately found using the STSI?

2. How well does the class assignment based on TSI chlorophyll-a concentrations work?
And under which optical and eutrophic conditions?

3. How e�ectively deals the STSI with the issue of spectral ambiguities?

4. What are the limitations of the STSI and how reliable are the results?

5. Which future improvements can be identi�ed?

Applying the STSI to the latest publicly available satellite imagery from the Sentinel-
3A OLCI sensor will provide preliminary answers. Through the implementation of the
STSI as a processor within the Sentinel Application Toolbox (SNAP), the tool might
support lake managers and environmental policy makers in their use of remote sensing as
a complementary source of information for surface water assessments.

4



2 Spectral Trophic State Index framework

Spectral remote-sensing re�ectance (Rrs, sr
−1) is the fundamental key optical property for

deriving ocean-colour retrievals such as chl-a (Toole et al., 2000). Rrs constitute the main
spectral data source in the STSI, either used to train the classi�er or to predict a TSI class
on from a sensor.
The �rst part of the framework is about the simulated Rrs, calculated through a forward
radiative transfer simulation using the �nite-element method water-atmosphere transfer
(FEMWAT) model (Bulgarelli et al., 1999). A dataset is then created using the simulated
Rrs to train a modi�ed supervised classi�cation algorithm. This trained classi�er is used to
predict TSI classes on atmospherically corrected Rrs of a lake captured by an ocean-colour
sensor. The result is the assignment of every Rrs to a previously de�ned trophic state class.
Figure 1 shows the STSI algorithm structure and modules. These are interlinked through
a framework that can be used to describe the manifold connections between them. The
chain of classi�er �tting, usage of satellite Rrs followed by the prediction and assignment
to a TSI class builds the core of the STSI algorithm. Due to the modular structure of the
framework it is possible to iterate and re-construct several of the entities providing the
possibility to constantly update the algorithm.
The derived STSI includes several information features:

(a) Probabilities
The output values from the classi�er are interpreted as a probability vector. This
vector contains a membership probability of each spectrum belonging to an STSI
class. This is the output of a function included in the supervised classi�er's entity
and discussed in section 4.4.

(b) Class frequency
Derived from the prediction of each pixel belonging to a STSI class, the class fre-
quency can be used to elaborate whether a lake is eutrophically uniform or is actually
consisting of multiple eutrophication classes. This is the relevant information product
for lake managers, departments or policy makers.

(c) Class of unknowns
A class of unknowns as an additional class is created implementing an out-of-range
check, including spectra that are unknown to the classi�er and thus would most likely
be falsely assigned to a class. This class of unkowns is not implemented in the �rst
version of the STSI, but the general approach is outlined in section 3.6.5.

Satellite Rrs
 

Simulated Rrs
Supervised  

classifier

Spectral Trophic
State Index (STSI)

Probabilities Class frequency Class of unknowns

Data product

Operator

Feature

Legendtraining prediction

TSI class assignment

Iteration

Fixed

Optional

Figure 1: STSI framework. Simulated Rrs function as the training database for a classifer
that is used to predict trophic state classes on satelliteRrs, resulting in multiple information
features.
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The STSI framework is applied to selected lakes and used to logically structure the thesis.
First, all required data products within the STSI framework, classi�cation and validation
are described. Second, the classi�cation assumptions and settings are envisioned that
are used to predict the classes for the selected lakes. Third, the STSI results are validated
using in-situ chl-a measurements being one of the �rst activities to proof the STSI concept.
Finally, the results are presented and discussed.
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3 Generation and processing of datasets

Several datasets are used in the STSI framework and the validation. The STSI classi�er
relies on simulated Rrs, thus the radiative transfer simulations are described initially.
The description is followed by the supervised process to gain Rrs from lakes captured by
the Sentinel-3 OLCI sensor (entity "Satellite Rrs" in Fig. 1). Lastly, the in-situ water
constituent measurement data used to validate the STSI predictions are presented.

3.1 Classi�er training data

A major entity within the overall STSI framework (see Fig. 1) are the simulated remote-
sensing re�ectances. These constitute the input training space for the classi�cation al-
gorithm (entity "Supervised classi�er" in Fig. 1). Several processing steps are required
to deduce high quality input training data, so that it can be readily used as the training
database for the classi�er. Within the framework to process the simulated Rrs, several
entities are independent of each other providing the possibility to integrate changes and
improvements without impacts on other entities. Figure 2 shows the entire �ow chart of
the processing steps to obtain the classi�er training dataset. The �rst part consists of the
simulated radiances required to gain the Rrs above the water surface. To simulate the

FEMWAT 
simulations

 
Radiances

Pre-processing

Matrix calculations
 

Rrs (λ,+)

TSI labeling

Resampling
Operator

Data product

Legend

Bio-optical  
model

Carlson, 1977

Auxiliary  
information

Normalization

 
Training data

Figure 2: Processing chart of the classi�er training data. The resulting �uxes from the
FEMWAT simulation necessary to derive Rrs are pre-processed and subsequently used to
calculate Rrs. Those spectra are then labelled based on the TSI from Carlson (1977),
spectrally resampled to the target sensor's spectral response function, normalized and
correctly formatted to �nally constitute the training dataset for the classi�cation algorithm.
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optical complexity found in lakes, a bio-optical model has been created. These and other
settings of the model are then input parameters to the radiative transfer simulations using
the �nite-element method (Bulgarelli et al., 1999). The radiances calculated using the
FEM model are processed to bring them into format so that the required matrix algebra
can be applied to derive Rrs (section 3.2.4).
The aim of the STSI is to assign Rrs satellite spectra into one of the pre-de�ned TSI classes
based on non-linearly increasing chl-a concentrations. Because the chl-a concentrations of
the simulated Rrs are known, a supervised classi�er has been chosen. Prior to the classi�-
cation process all Rrs spectra are labelled based on their chlorophyll-a concentration that
has been used to simulate them (section 3.3). The class assignment is then based on the
TSI classes from Carlson (1977). Additionally it is necessary to spectrally resample the
labelled database to match the spectral response functions (SRF) of the target sensor, in
this case Sentinel-3 OLCI. An algorithm has been developed enabling the resampling to
basically any target sensor SRF (section 3.4). Further, the resulting spectra are normalized
to base the classi�cation on spectral shapes, rather than their amplitude (section 3.5).

3.2 Radiative transfer simulations

Numerical simulations of irradiance and radiance distributions, in water and atmosphere,
have become increasingly important in optical oceanographic remote sensing applications
during the last decades (Bulgarelli and Doyle, 2004). The retrieval of the only indirectly
measureable Rrs from ocean-colour missions strongly relies on the capability of the accu-
rate simulation of the radiative transfer processes in the coupled atmosphere-water system
(AWS). It is necessary to solve the radiative transfer equation (RTE) correctly and model
the propagation media appropriately. The desired, synthetic dataset requires the avail-
ability of (1) an accurate and comprehensive inland water bio-optical model that contains
simultaneous measurements of the atmospheric and water IOPs (i.e. absorption and scat-
tering coe�cients and scattering phase functions), radiometric quantities (e.g. radiances
and irradiances) and environmental parameters (e.g. surface roughness, wind speed) and
(2) accurate codes for solving the RTE. The simulations were executed by Harald Krawczyk
and Helge Witt from the German Aerospace Center (DLR) within the Photogrammetry
and Image Analysis department in Berlin. The code is not publicly available.
The following sections contain the assumptions made using a radiative transfer model
(RTM) with a coupled atmosphere-water system by applying a bio-optical model based on
IOPs.

3.2.1 Radiative transfer in atmosphere & water

A formulation of the terms describing the radiative transfer in scattering and absorbing
media is given by the classic RTE (Bukata, 1995; Gege, 2017; Jerlov, 1976):

dL(λ, z, θ, ϕ)

dr
= −c(λ, z)L(λ, z, θ, ϕ) + L∗(λ, z, θ, ϕ) + L∗S(λ, λ′, z, θ, ϕ). (2)

The RTE describes the change of radiance dL of a light beam of wavelength λ travelling dis-
tance dr in a medium at depth z in the direction (θ, ϕ). The �rst term −c(λ, z)L(λ, z, θ, ϕ)
is the loss by attenuation, the second term L∗(λ, z, θ, ϕ) is the gain by elastic scattering
and the third term L∗S(λ, λ′, z, θ, ϕ) is the gain by luminescence. For further adaptations
(e.g. in the case of a plane parallel medium) and the derivation of the volume scattering
function β, the interested reader is referred to Bukata 1995; Gege 2017.
For this thesis it is relevant to note that the RTE describes the propagation of radiation in
turbid media (i.e. atmosphere, water) phenomenologically (Chandrasekhar, 1960; Mobley,
1994; Rybicki, 1996). Basically, the RTE is a di�erential-integral equation which has no
analytical solution for realistic medium con�gurations and boundary conditions. Thus, it
is necessary to adapt the solving approach to the illumination geometry, the shape, con-
sistency and composition of the considered medium, in this case inland waters. While the
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mathematical formulation of the medium water is already a challenge, also the illumination
geometry is. Unlike in meteorological optics where the incident radiation is given by the
Sun position, for inland waters the illumination is also in�uenced by the sky and possible
clouds that illuminate the surface of the water hemispherically. Additionally, the incident
radiation �eld under water has to be modelled, which is di�cult due to the dynamics of
the water surface (e.g. roughness, foam, waves, ripples) that refracts incoming radiation.
In practice, the atmospheric conditions and water surface geometry are not known, thus
approximate solutions of the RTE are used. Required are coupled models of the atmo-
sphere, water surface and water body. Computational e�cient numerical solutions are
utilised to apply the RTE theory. A non-complete list of several methods to solve the
RTE is given in Zhai et al. (2009). Solving the RTE in an AWS is of particular interest to
simulate re�ectances comparable to those measured with ocean-colour sensors. The numer-
ical simulations were performed using the �nite-element method water atmosphere transfer
(FEMWAT) model solving the RTE for an atmosphere-inland water model (Kisselev et al.,
1994, 1995; Bulgarelli et al., 1999). The FEM model has been extensively benchmarked
with other popular radiative transfer codes that solve the RTE (Bulgarelli and Zibordi,
2018). Additionally, the code has been used to perform radiative transfer simulations in
realistic cases (Bulgarelli, Mélin and Zibordi, 2003; Bulgarelli, Zibordi and Berthon, 2003;
Zibordi and Bulgarelli, 2007).

3.2.2 Simulation procedure

FEWMAT simulates the illumination of the atmosphere by incident radiation from the
Sun. It is modeled as an incoming parallel �ux on the top boundary of the atmosphere
in the ultraviolet, visible and near-infrared regions of the electromagnetic spectrum. The
physical processes included in the algorithm are multiple scattering, bottom boundary
bi-directional re�ectivity, refraction and re�ection at the interface between media with
di�erent refractive properties (i.e. atmosphere-water system). The air-water interface
is assumed to be �at (Bulgarelli, Mélin and Zibordi, 2003; Bulgarelli and Doyle, 2004).
Each propagation medium (atmosphere, water) can be divided into plane-parallel layers
of uniform optical properties. For this study speci�cally, the atmospheric in�uence on
the simulations has been excluded (see "Atmosphere" below for more details). For a
mathematical formulation of the FEM numerical code the reader is referred to Bulgarelli
et al. (1999); Bulgarelli and Doyle (2004). The output of FEWMWAT is the angular
distribution of the di�use radiance and direct and di�use irradiance. A standard simulation
model was designed for the inland water propagation medium with the elements presented
in the next sections.

Spectral and angular resolution

The simulations are performed to reproduce the bands in the visible light range of any
ocean-colour sensor, therefore the according wavelength range λ 400 - 1025 nm has been
selected (in 5 nm steps). The simulations were azimuthally resolved and carried out for
several Sun and viewing zenith angles (Table 1).

Table 1: Illumination geometries used in the FEMWAT simulation

Geometry Values

Sun zenith angle (◦) 20; 30; 40; 50; 60; 70; 80

View zenith angle (◦) 0; 10; 20; 30; 40

Azimuthal di�erence (◦) 0; 30; 60; 90; 120; 150; 180
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Atmosphere

Within FEM, the atmosphere can be divided into plane-parallel layers resolving the aerosol,
gas molecules and ozone vertical distributions. For the STSI, the database is not used as
a look-up table (LUT) for an atmospheric algorithm, but to serve as the training database
for the classi�er that is then used to predict the class assignment of atmospherically cor-
rected re�ectances retrieved from lakes. To compare the simulated and at-sensor radiative
quantities, the simulation of the FEM re�ectance values has been carried out without atmo-
spheric disturbances, thus representing values directly above the water level surface (also
called bottom of atmosphere re�ectances (BOA)). They are comparable to atmospherically
corrected Rrs from OLCI.

Water surface and body

The water is assumed to be in�nitely deep with a refractive index (n = 1.340) and the
surface is assumed to be foam free and �at. The latter assumption is supported by initial
considerations made in the development process of the FEMWAT model. In-situ measure-
ments were taken with a wind speed lower than threshold UB (Beaufort velocity) at which
white-caps �rst appear. Monahan and O'Muircheartaigh (1986) state that UB strongly
depends on various meteorological and oceanographic conditions that in�uence the param-
eters. They related UB (ms−1) to the seawater surface temperature Tw(◦C) with

UB = 3.36× 10−0.00309Tw . (3)

This assumption of a �at water surface (i.e. no surface roughness) could induce signi�cant
di�erences in the comparison between simulated and sensor measured radiometric quanti-
ties (Mobley, 1994; Ronald et al., 2001). They are expected to increase with wind speed
and Sun zenith angle. Other, unaccounted factors occurring in lake environments might
further in�uence the conditions.

Sea water absorption and scattering

The spectral absorption and scattering coe�cients (m−1) for pure seawater are given by

aw = 0.0257, bw = 0.00149. (4)

The absorption and scattering of pure water are also in�uenced by salinity and temperature
in the UV and NIR, and thus could be modelled as a linear expansion with coe�cients for
both (Simis et al., 2017). For this version of the STSI, the in Equation 4 provided static
coe�cients were used. FEMWAT is limited in its simulation capabilities as it does not
account for inelastic scattering, other sources of light within the water body and it makes
the generic assumption that inland water is freshwater with salinities close to zero.

3.2.3 Bio-optical model

The bio-optical model implemented is originally based on the three-component model of
ocean-colour for coastal waters proposed by Prieur and Sathyendranath (1981), but ex-
tended to account for a higher constituent concentration range usually found in inland
waters. The IOPs (i.e. absorption and backscatter) of the model are described separately
and partitioned into the contributions from each optically active constituent.
Besides the absorption by sea water (aw), three groups of substances can be considered
responsible for signi�cant modi�cations of the total absorption coe�cient atot(λ), describ-
ing the absorbing properties of water: phytoplankton aph(λ), modelled using chl-a spe-
ci�c a∗ph,chl(λ), 'non-algal' particles (NAP), i.e. the di�erence between total particulate
and phytoplankton pigment absorption, modelled using TSM speci�c a∗NAP,TSM(λ) and
coloured dissolved organic matter aCDOM modelled using aCDOM(440) and CDOM spe-
ci�c value S = 0.014, the spectral slope of aCDOM(λ). The absorption related to each
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of the constituents chl-a, TSM and CDOM is modelled as a product of its concentration
and the corresponding constituent speci�c absorption coe�cients (SIOPs) a∗ph, a

∗
NAP ,

a∗CDOM (m−1 per unit concentration). The concentrations are given in Table 2 and the
SIOPs are taken from Prieur and Sathyendranath (1981). To describe the (back-) scat-
tering properties, the total backscatter coe�cient bbtot(λ) consists of the coe�cient for
the backscatter of sea water bw(λ) and the backscatter of phytoplankton aφ(λ), modelled
as 0.0002142 × chl0.63. The scatter and backscatter of suspended matter bb,NAP(λ) were
modelled using TSM speci�c b∗NAP,TSM(λ) accounting for all 'non-algal' particles that
scatter. CDOM is generally assumed to be non-scattering (Riddick et al., 2015). The
backscattering-to-scatter ratio has been assumed static (0.016) and non-seasonal speci�c.
Several phase functions are required for water, phytoplankton and TSM. The scattering
phase function of sea water is the Rayleigh phase function given in Bulgarelli et al. (1999),
where the total phase function is modelled as a function of depth. For phytoplankton, the
particulate phase function is the Petzold volume scattering function [pp(cos θ)] as given in
Petzold (1992) and for TSM it is the Two-term-Henyey-Greenstein (TTHG) phase function
(Haltrin, 2002; Henyey and Greenstein, 1941).
By adopting concentration-speci�c IOPs from the literature it is assumed that these mea-
sured SIOPs are valid over the whole concentration range and all combinations of the
constituents for which they were modelled. This is a simpli�cation considered to be ac-
ceptable for the purpose of evaluating initial STSI prototype algorithm performances, but
should not be considered strictly representative of variations in SIOPs that will occur in
nature over such a wide concentration range.
The combined in-water and geometric permutations result in 125.000 Rrs spectra.

Table 2: Constituent scale of the bio-optical model

Constituent Concentration scale Units

Chlorophyll-a (chl-a)

0., 1., 1.1, 1.2, 1.3, 1.5, 1.6, 1.8, 2., 2.2, 2.4, 2.6, 2.9, 3.2,

3.5, 3.8, 4.2, 4.6, 5.1, 5.6, 6.2, 6.8, 7.5, 8.3, 9.1, 10., 11.,

12.1, 13.3, 14.7, 16.2, 17.8, 19.6, 21.5, 23.7, 26.1, 28.7, 31.6

34.8, 38.3, 42.2, 46.4, 51.1, 56.2, 61.9, 68.1, 75., 82.5, 90.9, 100

mg m−3

Coloured dissolved organic matter (CDOM)

0., 0.01, 0.0112, 0.0125, 0.0139, 0.0156, 0.0174, 0.0194, 0.0217,

0.0242, 0.027, 0.0302, 0.0337, 0.0376, 0.042, 0.0469, 0.0524, 0.0585,

0.0653, 0.0729, 0.0814, 0.0909, 0.1016, 0.1134, 0.1266, 0.1414,

0.1579, 0.1764, 0.1969, 0.2199, 0.2456, 0.2742, 0.3063, 0.342,

0.3819, 0.4265, 0.4762, 0.5318, 0.5939, 0.6632, 0.7406, 0.827,

0.9236, 1.0313, 1.1517, 1.2861, 1.4362, 1.6038, 1.791, 2.

m−1

Total suspended matter (TSM)

0., 0.1, 0.115, 0.133, 0.154, 0.178, 0.205, 0.237, 0.274, 0.316,

0.365, 0.422, 0.487, 0.562, 0.649, 0.75, 0.866, 1., 1.155, 1.334,

1.54, 1.778, 2.054, 2.371, 2.738, 3.162, 3.652, 4.217, 4.87, 5.623,

6.494, 7.499, 8.66, 10., 11.548, 13.335, 15.399, 17.783, 20.535,

23.714, 27.384, 31.623, 36.517, 42.17, 48.697, 56.234, 64.938,

74.989, 86.596, 100.

g m−1

3.2.4 Calculation of remote-sensing re�ectance database

The simulated remote-sensing re�ectances Rrs are not a direct model output, but have to
be derived from up- and downwelling radiances and irradiances measured just above the
water surface. The spectral irradiance re�ectance (or irradiance ratio), R(z, λ), is de�ned
as the ratio of spectral upwelling to downwelling plane irradiances (Mobley, 1999):

R(z, λ) =
Eu(z, λ)

Ed(z, λ)
. (5)
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R(z, λ) is the measure of how much radiance travelling in all downward directions is re-
�ected upward back into any direction, that then can be measured by a cosine collector as
existent in an ocean-colour sensor. The depth z is assumed to be in the air just above the
water surface, but can theoretically be also any depth within the water column. FEMWAT
outputs the di�use and direct irradiance as Ed, whereas the di�use part is neglectable, be-
cause the simulation is without atmospheric in�uences.
The spectral remote-sensing re�ectance Rrs of interest is de�ned as

Rrs(θs, φ, λ) =
Lw(0+, θs, φ, λ)

Ed(0+, λ)
(sr−1), (6)

for all viewing directions φ and Sun zenith angle θs, where the depth argument (0+) in-
dicates that Rrs is evaluated using the water-leaving radiance Lw and Ed in the air, just
above the water surface (Lee et al., 1999). Generally speaking, the remote-sensing re-
�ectance is a measure of how much of the downwelling radiance incident onto the water
surface in any direction is eventually returned through the surface into a small solid angle
∆Ω centered on a particular direction (θ, φ). These radiances strongly depend on wave-
length. Lw can not be measured directly and the output of FEMWAT is thus the absolute
upwelling radiance Lu (times π to account for the small solid angle ∆Ω) above the surface,
being the sum of the water-leaving radiance Lw and the downward Sun and sky radiance
that is re�ected upward by the sea surface Lsurf (Lee et al., 1999).
The FEMWAT radiances are subsequently used to compute the Rrs(θs, θv, φ) for all view-
ing directions θv, φ for the given Sun zenith angle θs and the IOPs as well as the boundary
conditions (e.g. wind speed):

Rrs(θs, θv, φ, λ) =
Lu(0+, θs, θv, φ)

Ed(0+, θs)
(sr−1). (7)

Therefore the derived FEMWAT Rrs also incorporate BRDF e�ects for various viewing
directions (see Fan et al. (2016); Lee et al. (2011) for a background on this topic).
It is to note that - either simulated or sensor-retrieved - Rrs are imperfect light �eld mea-
surements. In inversion algorithms these measures are used to retrieve as much information
as possible about the water constituents used to derive a TSI class. However, Rrs is far
o� from being a measure of the full radiance distribution and the measurements we do
have may contain substantial errors due to (but not limited to) inaccurate simulation pro-
cedures, poor atmospheric corrections and inaccurate radiometer calibration. Moreover,
using the Rrs to retrieve the in-water concentrations, it should be expected a priori that
it is not possible to recover a full set of water IOPs, and that even what is recovered may
contain large errors. Avoiding to retrieve the constituent concentrations from Rrs to derive
chl-a concentration values is one of the key considerations that led to the development of
the STSI.

3.3 Trophic State Index labelling

Resulting from the forward simulation that makes use of a bio-optical model for inland
waters, for every simulated Rrs the chlorophyll-a concentration is known a priori. The TSI
classi�cation system by Carlson (1977) de�nes the trophic classes based on non-linearly
increasing chlorophyll-a concentrations (see Table 4). Using the chlorophyll-a ranges of
the TSI, every simulated spectrum in the database has been assigned a class label (1-4).
Basic statistics describing the distribution of the spectra are given in Table 3. The TSM
and CDOM median and mean values are similar for all classes, as the simulation primar-
ily varies TSM and CDOM within smaller concentration changes in the TSI de�ned chl-a
ranges. Consequently, the whole range of TSM and CDOM concentrations is reached in
every TSI class (based on chl-a) resulting in the same statistical values. The overall value
range is 0 to 100 chl-a (mg m−3), de�ning the lower and upper concentrations limits of
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the STSI (see Table 2). This database is then appropriately formatted and resampled (see
next section).
An advantage following this approach is that the original TSI classi�cation itself de�nes
ranges for every class (e.g. oligotrophic 0 - 2.6 mg m−3), allowing for more spectral �ex-
ibility inherently including di�erent concentration combinations. Moreover, it weakens
the issue to perfectly retrieve a chl-a concentration as opted for by the classic retrieval
algorithms: a range itself does not require one speci�c concentration, but allows several
concentrations to count as a correct class assignment. Furthermore, this partly has an
in�uence on the previously described problem of spectral ambiguities (several di�erent
combinations of water constituent concentrations resulting in the same spectrum) that
might not be as predominant using the STSI classi�cation. Classifying spectra based on
their initially de�ned chl-a values takes into account several constituent combinations al-
ready, that might create the same spectrum, but are still correctly classi�ed. Ultimately,
a class range takes into account higher dynamics of the water constituent concentrations
and thus re�ects the natural intermediate states of trophic states more realistically.

Table 3: Simulated remote-sensing re�ectances database statistics

Statistical features Units

Class 1 2 3 4

Chl-a median 1.55 4.60 21.50 78.75 mg m−3

Chl-a mean 1.55 4.8 25.36 79.73 mg m−3

TSM median 2.95 2.95 2.95 2.95 g m−1

TSM mean 14.90 14.90 14.90 14.90 g m−1

CDOM median 0.134 0.134 0.134 0.134 m−1

CDOM mean 0.38 0.38 0.38 0.38 m−1

Number of re�ectances 30.000 27.500 52.500 15.000
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Table 4: Trophic State Index classes based on Carlson, 1977

TSI index CHL (ug/L) Attributes Water supply Fisheries & recreation

<30 <0.95

Oligotrophy:

Clear water, oxygen throughout

the year in the hypolimnion.

Water may be

suitable for an

un�ltered supply.

Salmonid �sheries dominate.

30 - 40 0.95 - 2.6
Hypolimnia of shallower lakes may

become anoxic.

Salmonid �sheries in

deep lakes only.

40 - 50 2.6 - 7.3

Mesotrophy:

Water moderately clear, increasing

probability of hypolimnetic anoxia

during summer.

Iron, manganese,

taste and odor issues

worsen. Raw water

turbidity requires

�ltration.

Hypolimnetic anoxia results

loss of salmnoids. Walleye

may predominate.

50 - 60 7.3 - 20

Eutrophy:

Anoxia hypolimnia, macrophyte

problems possible.

Episodes of severe

taste and odor

possible.

Warm-water �sheries only.

Bass may dominate.

60 - 70 20 - 56
Blue-green algae dominate,

algal scums and macrophyte problems.

Nuisance macrophytes,

algal scums,

and low transparency may

discourage swimming and

boating.

70 - 80 56 - 155

Hypereutrophy:

Light productivity is limited.

Dense algae and macrophytes

>80 >155 Algal scums, few macrophytes

Rough �sh dominate,

summer �sh kills

are possible.
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3.4 Spectral resampling

In the STSI framework, the simulated Rrs represent the training database for the classi-
�er. The aim is to classify the OLCI sensor re�ectances into one of the classes de�ned in
the training database. For this classi�cation, a necessary requirement is a common band
discretization. The simulated Rrs spectra are of full width half maximum (FWHM) 5
nm hyperspectral resolution simulated over the entire visible to near-infrared part of the
electromagnetic spectrum (400 - 1020 nm). The spectral resolution is higher than any
ocean-colour sensor currently available that the STSI classi�cation can be applied to.
Multi-spectral remote sensors represent spectral signals of viewed surfaces in discrete wave-
lengths or spectral channels. Every spectral channel is de�ned through a wavelength depen-
dent course of their relative sensibility, often also called spectral response function (SRF).
The simulated, hyperspectral database has to be convolved to the OLCI SRF to compute
band-integrated Rrs for each OLCI band i. This process is also called spectral resampling
and can be divided into two steps (Pahlevan et al., 2017; Witt, 1998).
The �rst step is to calculate the representative center wavelength of every band (see Table
5):

λi =

λ2∫
λ1

λφi(λ)E0(λ)dλ

λ2∫
λ1

φi(λ)E0(λ)dλ

, (8)

where

λ is the wavelength,

λi is the center wavelength in the i-th spectral band,

φi is the spectral response function in the i-th spectral band,

E0 is the solar irradiance and

λ1, λ2 are the boundary wavelengths of the considered spectral range.

For public sensors, these values are usually also distributed by the respective space agencies.
It is then necessary to calculate the values of the spectral albedo for the bands:

R(λi) =

λ2∫
λ1

R(λ)φi(λ)dλ

λ2∫
λ1

φi(λ)dλ

, (9)

where

R is the spectral albedo,

R(λi) is the mean spectral albedo in the i-th spectral band.

The mean values of the spectral albedo in the spectral bands are used to represent the spec-
tral albedo of a sensor. This is often also called spectral signature of the viewed surface.
The range and values of the spectral response function for each of the spectral bands can
be publicly downloaded from ESA. A comparison of the original and resampled simulated
spectra is illustrated in Fig. 3.
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Band 1 (400 nm) has been omitted for several reasons. First, this wavelength is mostly used
for atmospheric correction (AC) purposes and hence strongly in�uenced by the quality of
an AC algorithm (see section 3.6.3). Second, additionally to the already existent di�culties
arising from AC procedures, OLCI calibration in shorter wavelengths on Sentinel-3A is o�
compared to MERIS, increasing the uncertainty of quality derived re�ectances. It has been
reported that calculated Rrs using the C2RCC processor can result in values too high in
the blue part of the spectrum (Toming et al., 2017). This is not only related to C2RCC,
as the problems with atmospheric correction procedures are generally the highest in the
blue part of the spectrum. Even if another AC module would have been used, the AC
process will remain di�cult anyway, as atmospheric and sun glint e�ects are the highest
in the blue spectral range (Ligi et al., 2017). ESA has ongoing activities to improve the
OLCI calibration in these shorter wavelength ranges and for Sentinel-3B the calibration is
in-line with their sensor requirements.

Table 5: Center wavelength and width of OLCI bands. Yellow band is new on OLCI
compared to MERIS, red band has been omitted in this study.

Center (λi) Band width (nm)

400 10

412 10

442.5 10

490 10

510 10

560 10

620 10

665 10

673.75 7.5

681 7.5

708.75 10

753.75 7.5
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Figure 3: Random subset (n = 50) of the simulated spectra. Left shows the original Rrs,
right the resampled version.
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3.5 Normalization

In the past, optical classi�cation studies aimed at classifying re�ectance spectra based on
raw Rrs (Lee et al., 2010b; Mélin et al., 2011; Moore et al., 2001, 2009). However, the
latest studies shifted towards a prior normalization of the re�ectances (Mélin and Vantre-
potte, 2015; Xi et al., 2015, 2017). It has been recognized that all optically signi�cant
constituents have an e�ect on both amplitude and shape of Rrs and that the relation-
ship between the two is most-likely not unique (Loisel and Morel, 2001; Sathyendranath
et al., 1989). The variance shifts in non-normalized Rrs are associated with back-scattering
and/or to the concentration of (mainly non-chlorophyllus) particles, whereas absorption
by phytoplankton cells, CDOM or detritus predominantly have an impact on the spectral
shape (Mélin and Vantrepotte, 2015). As a consequence, when the Rrs spectra are nor-
malized, a preference is given to the latter in the classi�cation process. This avoids results
of class assignments to be based on a gradient of scattering particle concentrations. For
this application it is highly preferable, as the assignment of the spectra to the pre-de�ned
class ranges is then based on the spectral shapes, primarily in�uenced by chlorophyll and
CDOM concentrations allowing for a more precise class assignment and di�erentiation be-
tween the classes.
In order to reduce the variance of the re�ectances and to focus on the re�ectance spectral
shape, each Rrs spectrum was normalized prior to the classi�cation. Using trapezoidal
integration every spectrum was normalized by its integrated value (i.e. the surface below
the spectrum) between λ1 and λ2, based on the following formula (for each wavelength
(λ)):

rn(λ) =
Rrs

λ2∫
λ1

Rrs(λ)dλ

(10)

3.6 Classi�er test data

As introduced in the description of the STSI framework, quality ocean-colour re�ectances
are a key item of interest. To end up with TSI classes for every pixel of an inland wa-
ter, a combination of several processing steps is required. For the thesis, several of the
processing entities are exercised manually (supervised) using SNAP that has evolved from
its predecessor BEAM (Fomferra and Brockmann, 2005). A future objective is to test the
processing chain on a large amount of tiles. The �nal processing chain will be deployed
on the data processing cluster Calvalus developed and run by Brockmann Consult (BC)
(Fomferra et al., 2012). Figure 4 shows the entities of the processing chain that are applied
to all test sites.

3.6.1 Input datasets

The OLCI sensor has been selected to test the supervised processing chain. Other optical
ocean-colour sensors such as MERIS, SeaWiFis, VIIRS or MODIS can theoretically also
be utilised with the STSI, only requiring a resampling of the simulated database to match
their SRF. It is to note that sensor speci�c band placements play a role, as the resampling
is strongly a�ected by the band positions. Further tests on these di�ering sensors would
be required.
Throughout the processing of the OLCI scenes two di�erent levels occur: level 1 (L1)
consisting of top-of-atmosphere (TOA) signals and level 2 (L2) atmospherically corrected
products including derived geophysical quantities (such as the trophic classes for each
pixel). Level 3 (L3) products representing spatio- and temporally aggregated data are of
long-term interest to showcase trophic state changes overtime, but are not exercised in this
thesis. OLCI FRS L1 images were used as the input to the processing chain.
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Figure 4: Ocean-colour sensor processing scheme used to gain remote-sensing re�ectances
to predict the TSI classes on. First, the selected lakes are processed with the Idepix tool
for a scene classi�cation to �ag invalid pixels. Second, an atmospheric correction processor
(C2RCC) is applied to correct for atmospheric disturbances. Both processing steps are
manually reviewed. The two processing steps enable a valid pixel selection. Subsequently,
the spectra can then be used in a range check to test whether a satellite spectrum is within
the range of the simulated Rrs values. In a future version of the STSI, the spectrum is
then normalized and included in the pool of spectra the classi�er is applied to. Else it is
assigned to a class of unknowns as an additional information feature.

As apparent from Figure 4, the �rst entity in this chain is the lake selection that includes
a user's area of interest (AOI), captured on an OLCI scene. These lakes and test sites
are described in section 3.10. The selected water bodies show varying trophic states, they
di�er in their ecological statuses and are large enough to enable quantitative tests. For the
test chain, a subset of the full scene has been selected, mainly covering the relevant lake
parts. To further avoid erroneous pixels, only visibly cloud-free scenes at L1 RGB level
were selected.

3.6.2 Idepix valid pixel classi�cation

An essential step to correctly classify the pixels into one of the TSI classes is the identi-
�cation of pure water pixels. Pixel contributions of land surfaces can strongly a�ect the
resulting class assignment. The simulated Rrs only account for pure water Rrs, hence it is
even more crucial to only classify pure water pixels. For this procedure the Idepix algorithm
has been selected, as it is an open source SNAP processor and performs the identi�cation
of land, clouds, cloud shadows, cloud bu�ers, snow/ice, Sun glint and ambiguous mixed
pixel areas (Danne, 2016). Idepix is based on molecular scattering corrected bottom-of-
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Rayleigh re�ectances (BRR) and therefore avoids an error-prone aerosol correction over
optically complex waters. BRR already includes the partial correction of atmospheric ef-
fects, as it represents re�ectance at an hypothetical boundary between in�nitesimal-sized
aerosol- and gaseous air layers above. When background re�ectances for the estimation of
aerosol optical thickness (AOT) are highly uncertain, it is the preferred signal. Therefore
BRR intermediate products are also used for the identi�cation of non-optically deep water
areas such as shallow areas in close proximity to land (Odermatt et al., 2018; Santer et al.,
1999). The identi�cation of shallow areas are not implemented in the Idepix version used
to generate the valid pixel expression. With the application of Idepix to a L1B OLCI
scene the �rst part of the valid pixel selection (section 3.6.4) becomes available. Manually
quality checking the results and �ags further improves this part of the valid pixel selection
process.

3.6.3 Atmospheric correction

The signal received by the Sentinel-3 OLCI sensor contains an optical return from the
atmosphere. One of the most crucial steps therefore is to correct the total radiative signal
for atmospheric noise and disturbances (IOCCG, 2000; Saythendranath, 1986). In an AWS,
the TOA radiance LTOA(λ) is calculated from its distinctive physical contributions:

LTOA(λ) = Lr(λ) + La(λ) + Lra(λ) + Tu(λ)Lwc + Tu(λ)Lg+ (11)

Tu(λ)Td(λ) cos θ+s [LW (λ)]N ,

Lpath(λ) = Lr(λ) + La(λ) + Lra(λ), (12)

where

LTOA(λ) is the top-of-atmosphere (TOA) radiance,

Lr is molecular scattered radiance,

Lra is combined molecular aerosol scattered radiance,

Lwc is re�ectance due to white caps on the water surface,

Lg is the specular re�ection of direct sunlight at the water surface (sun glint),

Td denotes the downwelling and

Tu the upwelling di�use atmospheric transmittances from TOA to the

target and back,

[LW (λ)]N is the radiance Lw normalized to nadir direction,

Lpath(λ) de�nes the TOA atmospheric path radiance (including both contributions

from atmospheric scattering and surface re�ection).

Atmospheric correction schemes generally try to estimate Lpath and remove it from LTOA
(IOCCG, 2010).
For the AC in this framework, the neural network of the Case 2 Regional Coast Colour
(C2RCC) processor is used on the L1C (Idepix) product to derive remote-sensing re-
�ectances (Brockmann et al., 2016). The Case 2 Regional (C2R) part originates from
a processor that originally has been developed by Doer�er and Schiller, 2007. Through
the CoastColour (CC) project improvements were implemented. The C2RCC processor
relies on large databases of simulated water-leaving re�ectances and related TOA radi-
ances. Neural networks were trained in order to perform the inversion of spectra for the
atmospheric correction, thus the determination of the water-leaving re�ectances from TOA
radiances as well as the retrieval of IOPs for the respective water body. The IOP retrieval
is not of interest for the STSI, but the AC has been speci�cally designed for complex water
types and thus can be utilised. Similar to Idepix, it is made available as an open source
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processor in SNAP. Within the C2RCC processor settings it is possible to automatically
compute the AC re�ectances as remote-sensing re�ectances. Again, the processing result
is manually checked using the processor inherent �ags.
It is important to note that the atmospheric correction process has a strong in�uence on the
derived spectral shapes of the Rrs possibly leading to erroneous STSI class assignments. As
described in the spectral resampling section (3.4), calibration issues on Sentinel-3A exist
that might in�uence the retrieved Rrs values.

3.6.4 Valid pixel selection

Combining the �ags from both Idepix and C2RCC, the quality �ltered subset can then
be used to manually create a polygon area of the lake areas deemed as pure water pixels.
The raw Rrs of a scene have to be normalized (with the same method described in sec-
tion 3.5) to constitute the test dataset for the classi�er to enable predictions of the TSI
classes. Integrating over a spectrum changes its scaling, making it necessary to apply the
normalization procedure to both datasets. Otherwise similar spectral shapes have an o�set
leading to erroneous class assignments.

3.6.5 Out-of-range check

All bands on OLCI include for every AC corrected subset of the respective lake a re�ectance
value for every valid pixel. This re�ectance value can be checked with previously computed
min and max values of the re�ectance values per band of the simulated Rrs. The out-of-
range check is performed on the non-normalised version of the Rrs. The comparison has
the aim to check whether or not the value of each band of an OLCI scene is within the
value range of the simulated database. If this is not the case, they are assigned to a 5th
class, the class of unknowns. The absolute min/max values of the simulated database are
computed prior to this range check. The range check is not yet implemented in the SNAP
algorithm and operator (Chapter 5).

3.7 In-situ chl-a measurements

Publicly available in-situ data are often di�cult to �nd due the obstructive combination
of license terms and the dedicated use for a user's speci�c purpose. Regarding water
constituent data, the U.S. Environmental Protection Agency (EPA) o�ers freely available
water constituent in-situ data sampled from water bodies throughout the entire USA. The
availability is based on the Clean Water Act (CWA) which is a federal legislation that
established the basic structure for regulating quality standards for surface waters in the
USA. The main aim of the legislation is to restore and maintain the chemical, physical
and biological integrity of the U.S. waters (USEPA, 2002). In addition, all navigable water
bodies in the USA are protected by the CWA from 1988. This federal mandate authorizes
states, tribes and U.S. territories, with guidance and oversight from the EPA, to develop
and implement water quality standards. They include designated use cases, de�ned as
the services that a water body provides, e.g. drinking water, aquatic life, harvestable
species and recreation. These standards are applicable within state waters, de�ned as <
3 nautical miles from shore. Therefore, a majority of water quality management decisions
address near shore coastal waters, estuaries, lakes, reservoirs, rivers and streams where
applicable water quality regulation can be implemented (Schae�er et al., 2013). Both the
EPA and the environmental protection departments at the state level recognize that water
resources can not be managed without monitoring. At the federal level, section 305(b)
of the CWA directs each state to (1) prepare and submit a report every two years that
includes a description of water quality of all of its navigable surface waters to the EPA
and (2) protect balanced indigenous populations (FDEP, 2015). Those reports, referred
to as 305(b) reports, describe surface and groundwater as well as trends of water quality
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and major impacts on them (FDEP, 2012).
Being forced to report periodically on the condition of the nation's waters, the departments
transfer large amounts of water quality data about the majority of the monitored lakes
to a database management system run by the EPA and United States Geological Survey
(USGS). Usually, most of the monitoring is performed through routine samples taken from
observation stations or by state-speci�c projects to carry out water quality monitoring for
speci�c events. Further, in 2007 and 2012 two National Lake Assessments (NLA) were
realized from the EPA to overcome di�erent approaches of collecting and evaluating data
that varies from state to state, making it di�cult to compare the information across states,
on a nationwide basis, or over time (USEPA, 2009, 2012). Simultaneously, every two years
the departments are in charge to hand in a report that lists the general water quality of the
lakes (referred to as the 305 (b) report) in their state. The gathered in-situ water quality
data is available through various databases online (e.g. STORET, Water Quality Portal)
and can be utilized by any public user.
A dataset has been compiled including chl-a measurements from 2002 - 2018 for all inland
water bodies that are resolvable from MERIS and OLCI. In this thesis the focus is on
OLCI, thus a subset of the actual database is used (01/2016 - 04/2018). The raw in-situ
measurements require several processing steps to be compared to the STSI class predictions.
These pre-processing steps are described in the following section.

3.8 Measurement selection for the validation

Several processing steps have been exercised prior to the usage of the in-situ data for the
validation of the STSI predictions:

1 Valid measurement location
The position of the measurement stations used for the validation need to ful�l cer-
tain criteria in order to guarantee a good comparability with the satellite data. They
need to be taken in optically deep water (> 15 m) to avoid in�uences of the bottom
albedo on the retrieved re�ectances utilised for the STSI from the same location (Al-
bert and Mobley, 2003). In addition, it is to recognise that eventual perturbations
from the nearby land areas in�uence the optical signals retrieved. TOA radiance
contamination between neighbouring surfaces with di�erent re�ectances is usually
called adjacency e�ect (AE) (Bulgarelli and Zibordi, 2018). To neglect re�ectances
from the surrounding land and bottom, a �lter grid has been designed.
First, a land/water mask for the U.S. has been created. Second, a 3x3 matrix grid
has been designed and added as a layer. The size of each cell within the 3x3 matrix is
300m, thus matching the spatial resolution of a pixel from OLCI and MERIS. Third,
the in-situ chl-a measurements have been spatially queried with the 3x3 grid to dis-
card every in-situ location that is not surrounded by at least 8 complete neighbouring
pixels. This procedure excludes all shoreline pixels. The assumption is made that in
lakes 300 meters from shoreline the pixels only include optically deep water and that
AE in�uences do not occur due to the distance. In combination with the selected
lakes, all exceeding the optically deep water minimum depth, these are reasonable
assumptions.

2 Quality �ltering of the measurements
The measurements provided by the EPA databases are frequently gathered from
di�erent environmental state departments, entities, private persons, universities, en-
vironmental programmes and require an extensive quality �ltering to ensure only
reliable measurements are used in the validation.

a Chlorophyll
Several types of chlorophyll were included and deselected, as not all are compa-
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rable to chl-a (i.e. chlorophyll-b, c) used in the bio-optical model to generate
the simulated Rrs.

b Analytical measurement identi�er (IDs)
Plenty of di�erent analytical IDs provide information about the respective mea-
surement method used to extract the chl-a concentrations. No single document
exists listing all methods used, but a database covers most that can be queried
online: https://www.nemi.gov/home/. The measurements were �ltered for IDs
for which clear protocols exist.

c Unit harmonisations
Measurement units have been uni�ed to ug/l.

d Measurement depth
Only surface measurements were used, evaluated for each lake individually. Un-
derwater radiometric in-situ measurements were not available measuring the
di�use attenuation. Under ideal conditions, for which the incident light is pro-
vided by the Sun, the various radiances and irradiances all decrease approxi-
mately exponentially with depth, when they are far enough below the surface
to be free of boundary e�ects. Radiometric measurements were not available to
measure the available light in�uencing the measurement of Rrs from the sensor
to precisely account for each possible (or maximum) depth per measurement.

e Time zones
The U.S. mainland has several timezones, but the measurement time of the
European sensors OLCI and MERIS is provided in GMT/UTC. Consequently,
all U.S. dates have been converted.

For most of the chl-a measurements standard �uorometric methods were used. Yet,
several studies report that �uorometric analyses underestimate chl-a values (Kumari,
2005; Pinckney et al., 1994). They recommend to use the more precise high perfor-
mance liquid chromatography (HLPC) methods. However, HLPC samples are more
costly and take longer to process per sample than �uorometric ones. Basically all of
the measurements in the validation database are not based on HLPC methods. Con-
sequently, an uncertainty might also be introduced using these in-situ measurements
to compare the STSI predictions to. It would actually require the extraction tech-
niques and analytical procedures to be water type dependent, which is completely
out of scope regarding the nature and purpose of this publicly available database.

3.9 Match-up generation

The in-situ measurements were used on Calvalus (BC's processing infrastructure) to gen-
erate match-ups with Sentinel-3A OLCI imagery. In-situ data has been acquired from
January 2016 onwards, while the �rst usable OLCI product is from the 23rd of November.
Therefore the time frame of possible match-ups is restricted to 23/11/2016 until 01/04/2018
(end of in-situ data collection). During the winter time in most of the U.S. states in-situ
measurements were not collected, reducing the availability of match-ups e�ectively to the
year 2017 (see Figure 5).
A time range of +- 5 hours between the actual in-situ measurement and the satellite over-
pass has been chosen. This relatively strict time constraint ensures a considerably stable
water column at the match-up location. An identical measurement time between sensor
and in-situ is nearly impossible to �nd in the database, as the original measurement pur-
pose has not been to use them for satellite validations. A macropixel size of 3x3 has been
set.
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Figure 5: Match-up locations of in-situ measurements and Sentinel-3 OLCI imagery be-
tween 23/11/2016 and 01/04/2018. The map does not include the valid pixel expression
applied, as a single �ag can change the overall availability of possible match-up locations.

3.10 Validation sites

The validation lakes and all information products related were selected before the classi�-
cation can be applied. In addition, they are relevant for the water constituent validation
part of the framework. Lake sites were selected following several criteria:

1. Lake selection

• The selected lakes are from di�erent ecological environments to account for
varying optical variability and eutrophication levels. The seasonality is an im-
portant circumstance to consider, as trophic conditions greatly change during
the course of a year.

• To compare the results, also prior studies are included in the analyses in the
ecological state of the lake. They can not be compared to the STSI directly,
but should provide an ecological impression about the lake with speci�c envi-
ronmental conditions related to the aquatic environment, e.g. occurring algal
blooms.

2. In-situ data

• In-situ chl-a measurements have to be existent for the same date as an OLCI
intake and should cover a large spatial extent. This is secured through the
match-up process described in the previous section.

3. L1 products

• OLCI scenes from the match-up process need to be manually reviewed and
checked using the �ags of Idepix and C2RCC. Single �ags can have a major
in�uence on the remaining match-ups, thus it is crucial to review this process.

• Although IdePix is a pixel classi�cation tool that includes the classi�cation of
all sorts of clouds, the scenes should also visually be free of clouds and other
meteorological disturbances such as haze or Sun glint.
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Considering these requirements for a lake to be used as a valid match-up location, three
lakes (amongst many others) were chosen after the match-up processing and manual review:
Lake Pelican in Minnesota, Lake Jordan in North Carolina and Lake Michigan in Wisconsin
(see Figure 6).

0 5 10 15 20 25 30 km

Lake Jordan

Lake
Michigan

Lake Pelican

Figure 6: Overview of the validation sites and selected lakes. Left: Lake Pelican in Min-
nesota, middle: Lake Michigan and the Bay of Milwaukee in Wisconsin, right: Lake Jordan
in North Carolina.

3.10.1 Lake Pelican

Lake Pelican is located in Crow Wing County in the U.S. State Minnesota. Most of the
lakes in this area are important protected habitats that also partly serve as recreational

Figure 7: Lake Pelican OLCI imagery. Left image shows the L1 product as obtained from
ESA, middle the image after processing it with Idepix and C2RCC to derive the required
Rrs. The pins depict the locations of available in-situ measurements. The right image
displays a polygon of the same product indicating the Rrs used in the STSI classi�cation.
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and aesthetic resources (Olmanson et al., 2008). In terms of size, Lake Pelican covers
33.86 km2 placing it in the upper 5% of lakes in Minnesota. The maximum depth is
reported to be over 100 feet at the center of the lake and at least 30 feet in proximity to
shore (MPCA, 2018). Derived from historical data (2008 - 2017), the mean TSI (using
chl-a as the indicator) is within the oligotrophic-mesotrophic range (MPCA, 2018). Three
in-situ measurements were taken across the lake on the 12th of September 2017, under
cloud free conditions enabling to use this lake to compare it with the STSI classi�cation
(see Figure 7). Not all areas of the lake are usable as the North-West area has an island
(Gooseberry Island) that is frequently used in summer to beach boats. Due to its uneven
coastline, patchiness and possible radiative distortion through other adjacency e�ects, Lake
Pelican can be considered as a boundary case for any of the applied algorithms or multi-
spectral ocean-colour imagery in general. Figure 8 displays the Rrs (287 considered valid
water pixels) from the right image of Figure 7 that are subsequently used in the STSI
classi�cation. The gradient in re�ectivity (left image) will most likely be caused by small
amounts of scattering particles for which the normalization originally has been designed.

450 500 550 600 650 700 750
Wavelength (nm)

0.000

0.002

0.004

0.006

0.008

0.010

Rr
s (

sr
1 )

original

n = 287

450 500 550 600 650 700 750
Wavelength (nm)

0.000

0.002

0.004

0.006

0.008

0.010

Rr
s (

sr
1 )

normalized

n = 287

Lake Pelican original and normalized OLCI Rrs spectra

Figure 8: Lake Pelican original (left) and normalized (right) Rrs spectra used in the STSI
classi�cation.

3.10.2 Lake Jordan

Lake Jordan (o�cially B. Everett Jordan Lake) is an arti�cial reservoir in close proximity
to the cities Cary and Durham in North Carolina. It spans a size of 56.41 km2 and
was developed as part of a �ood control project in the late 1940's. Lake Jordan serves
as a drinking-water supply for the towns of Cary, Apex and Morrisville and is listed as
impaired (based on the CWA regulations) due to nutrient over-enrichment and occasionally
experienced algal blooms. Nine di�erent locations all over the lake were available to use
for a match-up with OLCI, however after the manual review step inspecting the OLCI
L1 radiances, the retrieved re�ectances and the valid pixel selection, several stations were
discarded due to poor or insu�cient quality. Seven measurements remained to estimate the
in-situ TSI from the lake. While Lake Pelican is a boundary case for current ocean-colour
methods, Lake Jordan is di�cult due to multiple layers interfering with each other making
this lake an extremely challenging environment to test the STSI in (see Figure 9). The
lake itself has eutrophic-hypereutrophic conditions (based on historical and current in-situ
data used for this study). The C2RCC atmospheric correction has been reported to not
provide realistic re�ectances in cyanobacterial bloom situations, while at the same time it
is uncertain for this lake if surface scums or subsurface blooms exist during the capture of
OLCI (Toming et al., 2017). Unrealistic re�ectances will cause the STSI classi�cation to
fail, as it is highly dependent on the training re�ectances. Even if the re�ectances with
C2RCC are retrieved correctly, the classi�cation might still fail due to insu�cient training
re�ectances not including re�ectances covering this water type. Further, adjacency e�ects
constitute a layer of uncertainty on the retrieved re�ectances, predominantly because of
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Figure 9: Lake Jordan OLCI imagery. Left image shows the L1 product as obtained from
ESA, middle the image after processing it with Idepix and C2RCC to derive the required
Rrs. The pins depict the locations of available in-situ measurements (not all were used).
The right image displays a polygon of the same product that was used to derive the valid
water pixel Rrs for the STSI classi�cation.

the inconsistent shape and close proximity to recreational areas. The in�uence should be
actively weakened through the imposed 3x3 grid to only select in-situ stations surrounded
by at least one water pixel and the precise coastline �ag of Idepix. Still, AE might in�uence
the retrieved re�ectances. Figure 10 displays the Rrs of the 180 considered valid water
pixels that are used in the STSI classi�cation. A strong gradient in scattering particles is
imminent on the left image containing the original Rrs from the L2A OLCI product. In
comparison to Lake Pelican this scattering gradient might not only be caused by suspended
material (TSM), but also due to high concentrations of phytoplankton or submerged algal.
Whether or not these re�ectances are realistic can currently not be judged without reference
measurements or a validation methodology.
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Figure 10: Lake Jordan original (left) and normalized (right) Rrs spectra used in the STSI
classi�cation.
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3.10.3 Lake Michigan

Lake Michigan is one of the largest Great Lakes water basins. Besides other functionalities
it serves as a drinking water reservoir for cities such as Chicago, Milwaukee, Waukegan
and Green Bay. The study area is part of the southern basin whose limnological dynamics
strongly di�er from the central and northern basins of the lake (Yousef et al., 2014). Spring
blooms can occur and in the absence of winter ice cover a counter-clockwise gyre can form
contributing to these blooms (Chen et al., 2004). Horizontal and vertical transfers last until
mid-May or early June when a thermal bar forms that limits spatial transports (Kerfoot
et al., 2008, 2010).
On the 18th of July 2017 ten chl-a measurements were taken close to the harbour and
bay of the city Milwaukee (Figure 11). Similar to Lake Jordan, not all locations of the
in-situ measurements could be utilised. They were either too close to shore showing clear
land in�uences or the measurements were taken in depths too large to compare them with
OLCI re�ectances. For the validation, eight measurements were used.
The trophic status of the bay of Milwaukee rapidly changes with distance to shore. Currents
around the harbour area exist that capture phosphorous-rich discharges and re-suspended
near-shore sediments, transporting the nutrient-rich waters into o�shore regions. Therefore
gradients in chl-a concentrations as well as spatial di�erences are expected in this region
of interest. The present dataset shows three trophic states for this region, most of it being
oligotrophic (o�shore) and meso- or eutrophic closer to shore.
The OLCI scene is cloud free and 1270 Rrs were used in the classi�cation. Opposite to
Lake Jordan it is expected that the calculated C2RCC Rrs are realistic. However, also
here AE can play a role as the closeness to the harbour and coastline can in�uence the
retrieval.

Figure 11: Lake Michigan, bay of Milwaukee OLCI imagery. Left image shows the L1
product as obtained from ESA, middle the image after processing it with Idepix and
C2RCC to derive the required Rrs. The pins depict the locations of available in-situ
measurements (not all were used). The right image displays a polygon of the same product
that was used to derive the valid water pixel Rrs for the STSI classi�cation.
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Figure 12: Lake Michigan original (left) and normalized (right) Rrs spectra used in the
STSI classi�cation.

As for the two other lakes, the �agging of coastline and non-water pixels has been reviewed
manually. Figure 12 shows a large subset (500 re�ectances) of the valid water pixels
covering most of the optical gradient found in this area.
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4 Gradient boosting decision tree classi�cation

Over the last two decades, most optical classi�cation studies were concerned with pattern
�nding in re�ectance data to foster the development and selection of bio-optical retrieval
algorithms (Eleveld et al., 2017; Gonçalves-Araujo et al., 2018; Jackson et al., 2017; Lubac
and Loisel, 2007; Moore et al., 2014; Wang et al., 2010). Originating from the aim to �nd
new patterns in the re�ectances, the majority of studies made use of unsupervised learning
techniques. Mostly hierarchical and fuzzy clustering clustering techniques were used to
�nd the patterns in the studied datasets (Shi et al., 2013; Moore et al., 2001; Vilas et al.,
2011).
Within the STSI framework, the aim is to predict for every valid pixel (and the derived
re�ectance) a trophic state class. Opposed to the mentioned optical classi�cation studies,
unsupervised techniques can not be utilised. Instead, the selected model has to be based
on the process of �nding patterns that generalize well to unseen (or unobserved) measure-
ments. If an algorithm is able to �nd patterns that generalize well, accurate predictions are
possible. This is the goal in supervised learning, which is about the relationship between
a response variable yi and a set of predictor variables xi. In statistical learning, this pro-
cess is called predictive modelling. Applied to the STSI goal, the predicted classes are the
outcome of a supervised classi�cation algorithm trained with the simulated Rrs derived in
section 3.2. After the model selection process the resulting classi�cation model (classi�er)
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Matrix formatting

OLCI L1 transformation

Training dataset
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Learning algorithm 
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Final STSI
classification model
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Operator

Information layer
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Figure 13: STSI classi�cation construction using the XGBoost library. The derived train-
ing data (section 3.1) are brought into the correct XGBoost matrix format and are then
split into a train set (70%) and validation set (30%). To evaluate which hyperparameter
combination is most suited, grid cross-validation is applied to the training data. After
an initial model construction, the predictive capabilities are tested on the validation set
allowing for re�nement of the model. The model with the lowest test error is then exported
and used to predict the TSI classes on OLCI Rrs.
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is then applied to unseen OLCI Rrs derived from the chain of algorithms explained in
section 3.6 to �nally predict for every valid re�ectance a TSI class. Figure 13 displays a
schematic of the steps exercised to derive the STSI classi�cation model. The classi�cation
algorithm utilised is based on gradient boosting, introduced by Friedman (2001). Gradient
boosting has been speci�cally successful when applied to tree models, in which it �ts addi-
tive tree models. For this combination speci�cally, the methods were given names such as
Gradient Boosting Machine (GBM) or Gradient Boosted Decision Trees (GBRT) (Fried-
man, 2002). Moreover, gradient tree boosting has proven itself to be highly suited for all
kinds of regression and classi�cation problems. Extreme Gradient Boosting (XGBoost),
proposed by Chen and Guestrin (2016), is a recent variation of Friedman's GBM, now with
contributions from many developers. It belongs to a broader collection of tools under the
umbrella of the Distributed Machine Learning Community (DMLC). Following, XGBoost
is an open access software library implementing gradient boosting machines. XGBoost is
one of the most popular data science methods used for predictive modelling, but it has
not been used in any ocean-colour related optical classi�cation study. The classi�cation
model of the STSI is constructed using the XGBoost library. Nevertheless, this thesis is not
about advancing the XGBoost library further. The library basically combines the bene�ts
of three machine learning methods:

1. Trees as base learners

2. Boosting to improve predictive capabilities (applied to trees, also named Tree boost-
ing)

3. Numerical optimization via gradient descent

The focus for this thesis is on those parts of the XGBoost framework that provide signi�cant
insight into the algorithm implementation used to construct the STSI model. Therefore,
relevant parts include the tree-method utilised to classify the spectra into the classes and
boosting, a technique to improve the prediction accuracy of the tree. Details about gradient
descent are omitted, as essentially the whole purpose of gradient descent algorithms is to
minimize the loss function used, hence to numerically optimize the classi�cation procedure
to make it computationally feasible even on large datasets. The only requirement to use
gradient descent as the algorithm to minimize loss is that the loss function itself has to be
derivable. To reason about the STSI classi�er, it is required to review the relevant basics
of supervised learning, as they are the building blocks the STSI machine learning model is
based on.

4.1 Supervised learning

The general model in supervised learning refers to the mathematical structure of how to
make a prediction of the response variable yi using a set of covariates X = (x1, ..., xp). At
hand are the simulated data

D = {(y1, x1), (y2, x2), ..., (yn, xn)}, (13)

consisting of 125.000 simulated Rrs. The response yi is also referred to as dependent vari-
able. In the STSI case, yi can only take a �nite number of classes C, i.e. the TSI classes pre-
viously assigned (4), thus the STSI is a classi�cation task. The covariates X = (x1, ..., xp)
are also referred to as the predictors, the attributes, the features, explanatory variables,
the independent variables or the input variables.
Several approaches exist that can be used to construct a predictive model. The approach
followed herein is applying the framework of statistical learning theory, providing the the-
oretical basis for modern machine learning algorithms (von Luxburg and Schölkopf, 2011).
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The STSI model built is consisting of predictive functions designed to make accurate pre-
dictions on the new, unseen OLCI Rrs. To make predictions based on the input variables
xi, a function should be learned (also called hypothesis) such as

f : x→ y, (14)

that maps every input xi to a corresponding prediction yi. Hence, for a given x, the
prediction

ŷ = f(x), (15)

can be made. This model can also be referred to as prediction function, decision function
or a decision rule. Let yx denote the set of all functions mapping from x to y. The problem
of estimating a model f̂ thus can be viewed as a problem of selecting a function f̂ from the
set yx, based on the available data. Consequently, predictive modelling can also be viewed
as a problem of function estimation (Vapnik, 1999).

4.1.1 Loss function

A small amount of theory is necessary to provide a framework for developing models such
as those discussed informally so far. Generally, a function f(x) is searched for to predict yi
given values of the given input. In a machine learning model this requires a loss function
to penalize errors in prediction. The generic loss function

L : Y → R+, (16)

gives a quantitative measure of the loss resulting from a prediction when the true result
ends up being y. The prediction accuracy of the function de�ned is measured using a loss
function. In other words, the training loss measures how predictive the model is (James
et al., 2014).
For the STSI classi�cation, the multi-class logarithmic loss (log loss) is implemented. Log
loss quanti�es the accuracy of the classi�er by penalising false classi�cations. Minimising
the log loss is equivalent to maximising the accuracy of the classi�er.
The reasoning to choose log loss as the STSI loss function originates from the aim of the
overall STSI framework. Instead of receiving a clear TSI classi�cation label for a re�ectance
directly, the interest is to receive the probabilities of a spectrum belonging to each class
(that sum up to 1). Log loss includes the idea of probabilistic prediction con�dence when
predicting a label. It is the cross entropy between the distribution of the true labels and the
predictions made. In other words, cross entropy incorporates the entropy (the measure of
the randomness / unpredictability in the processed sensor Rrs), plus the extra uncertainty
originating from having two distributions (cross), i.e. the simulated re�ectances being a
di�erent distribution than the true distribution (the actual sensor re�ectances). Simpli�ed,
log loss is a measure to gauge (or rate) the noise that accompanies the process of using a
predictor as opposed to the true labels (Bishop, 2006; Nielsen, 2016).
Class probabilities allow for interference into the decision making to control the process.
Application examples and bene�ts are discussed in Chapter 7. In order to calculate log
loss, the classi�er has to assign a probability that a spectrum belongs to each class rather
than simply yielding the most likely class. Log loss is mathematically de�ned as

− 1

N

N∑
i=1

M∑
j=1

yij log pij , (17)

where N is the number of samples (125.000), M is the number of possible labels (4), yij
is a binary indicator of whether or not label j is the correct classi�cation for spectrum
i, and pij is the model probability of assigning the class label j to spectrum i (Bishop,
2006). The perfect classi�er would have a log loss of zero. Minimising this function is the
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objective, thus it is also referred to as objective function. In the XGBoost framework used
to build the STSI model, parameters θ and a regularization term Ω(θ) are also added to
this objective function, discussed in sections 4.1.4 and 4.3.

4.1.2 Parameters

To exemplify how the learning algorithm selects its prediction function with required pa-
rameters, the theory of risk minimization is shortly introduced. Assuming that a joint
probability distribution PY,X exists over X and Y, then the training set of the algorithm
consists of m instances (x1, y1), ..., (xm, ym) drawn from PY,X . As de�ned, any loss func-
tion measures the accuracy of a prediction after the outcome is observed. However, at the
time the prediction is made, the true outcome is still unknown and the loss assigned can
consequently be viewed as a random variable L(Y, ŷ) (Murphy, 2012). The risk associated
with the hypothesis function f(x) can be de�ned as the expectation of the loss function:

R(ŷ) = E[L(Y, ŷ)]. (18)

The risk is important, because the goal of a learning algorithm is to �nd the optimal
hypothesis (f) among a set of functions for which the risk R(ŷ) is minimal. The risk R(ŷ)
can not be directly computed, because the distribution PY,X , i.e. the related instances of
X and Y, are unknown to the learning algorithm (Tewari and Bartlett, 2014). Therefore
an approximation is computed, called empirical risk, by averaging the loss function on the
training set:

R̂(f) =
1

n

n∑
i=1

L(yi, f(xi)). (19)

The empirical risk minimization principle (ERM) by Vapnik (1999) states that the learning
algorithm has to choose a hypothesis f̂ minimizing the empirical risk:

f̂ = arg min R̂(f). (20)

The model de�ned by ERM is the empirical risk minimizer f̂ . It is an empirical approxi-
mation of a de�ned target function that seeks to reduce the risk. ERM is a criterion that
is optimised to select the function f̂ from a set of functions F , whereby the selection is
of major importance. A naive approach would be to allow any function in Equation 14
to be a solution. However, this naive approach would make the function estimation an
ill-posed problem, as it would be an attempt to estimate an in�nite number of parameters
using only a �nite data set (Evgeniou et al., 2000; Rakotomamonjy and Canu, 2005). In
practice, this problem is solved restricting F to be a subset of the total function space,
also known as the hypothesis space. Restricting the function space essentially de�nes a
class of models, thus F is referred to as a model class. One of the most popular model
classes is the class of linear models, where the prediction is given by a linear combination
of weighted input features (Nielsen, 2016):

F = {f : f(ŷ) =
∑
j

θjxj}. (21)

The prediction value ŷ can have di�erent interpretations. A popular example is the logistic
transformation, but many more exist (Evgeniou et al., 2000). In the STSI classi�er, the
prediction value is interpreted as the softmax value (described in section 4.4).
Most important to recognise is that this model simpli�es the function estimation to a
problem of estimating a parameter θ or a full vector of several parameters θ = (θ0, θ1, ..., θp).
These parameters are the undetermined part required to learn from the data.

32



4.1.3 Learning algorithm

Combining the model class with the ERM principle reduces the learning problem of a
supervised classi�er to an optimization problem to estimate the optimal parameters θ. The
optimization problem has two aspects. First, the model class is a set of functions that all are
considered to be candidate solutions, while the ERM is the criterion to select a function
from this set of functions. This approach de�nes the statistical aspect of the problem.
Second, computationally the problem is to solve the optimization problem de�ned by the
ERM. This then is the job of the learning algorithm, which essentially is an optimization
algorithm itself. In the XGBoost implementation, this is the part of the gradient descent
algorithm implemented to numerically optimize the loss incurred, hence to solve the ERM
optimization problem.
More generally, any learning algorithm takes the data set D as input and outputs the
�tted/trained model f̂ . As introduced, the function estimation of the model classes have
some parameters θ that the learning algorithm then iteratively adjusts to �t the data.
Estimating the parameters θ is su�cient to estimate the model

f̂(x) = f(x, θ̂). (22)

Di�erent model classes and loss functions chosen lead to di�erent optimization problems.
Parts of the model class used in XGBoost belong to the class of continuous optimization
problems, i.e. the objective function is continuous with respect to the parameter θ. Many
methods exist for continuous numerical optimization problems, further examples can be
found in Nocedal and Wright (2006). For the XGBoost classi�er the method is gradient
descent. As mentioned initially, the details of the gradient decent algorithm are omitted,
but the interesting reader is referred to Friedman (2001, 2002); Hastie et al. (2009).

4.1.4 Regularization

There is more to machine learning than optimizing an objective (loss) function. Training
the STSI model from the simulated Rrs has the purpose of trying to prepare it for the
unseen re�ectances from an OLCI scene. The preparation of the model does not take into
account the added complexity of the unseen OLCI spectra. Thus, a general training loop
that tries to minimize the objective (loss) function de�ned in Equation 17 may over�t the
OLCI spectra. A model might be capable of capturing the structure of the simulated Rrs,
however due to the already present complexity of capturing these structures, the model
probably has no �exibility left to incorporate new structures inherent to the unseen OLCI
spectra. This process of essentially �tting the model too well on the training data is
called over�tting. A way to combat over�tting is through a regularization function Ω(θ).
Regularization of tree models is achieved by constraining or penalizing the complexity of
the tree (see section 4.3).

4.1.5 Model complexity

The goal of a learning method is to be able to generalize, thus perform well on unseen
observations from PY,X . Therefore the objective is a model f̂ with as low true risk R(f̂) as
possible. For a well-performing model it is necessary to use a �exible model class capable
of �tting all the relevant structures existent in the spectra. However, when the model class
is too �exible, it ends up precisely �tting the structure of the training data, in this case
the simulated Rrs. On the other hand, if the model class is not �exible enough, it will not
be able to �t the relevant structure, thus called under�tting. The tradeo� in selecting an
appropriate model complexity is referred to as bias-variance tradeo� (for more details see
Tewari and Bartlett (2014)). For the STSI, the approach is used splitting the simulated
and OLCI Rrs into the training and test set. The STSI model is �t by minimizing the
empirical risk on the training set, while the generalization error is measured by calculating
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the empirical risk on a validation set. For this, 10 k-fold grid cross-validation is used,
combining all hyperparameters (see section 4.3) with each other to ultimately select the best
parameter settings. More details about model complexity and cross-validation procedures
can be found in Allen 1974; Hastie et al. 2009; James et al. 2014. The hyperparameter
settings can subsequently be selected providing the model on the training data that is
expected to perform best on the unseen test data. After testing the initial model on
the validation set, iterations of the model �tting procedure are manually possible, i.e. to
include empirical knowledge gained by reviewing the initial test results and incorporating
it into the XGBoost model. This procedure is a semi-supervised form of �nding the best
XGBoost model that is then exported and implemented into the SNAP operator described
in Chapter 5.

4.2 Tree-based methods

From several model classes included in XGBoost, trees in combination with boosting are
used to create the model of the STSI. First, the tree-based method used in XGBoost is
explained, which then expanded to tree ensembles is combined with the boosting technique
explained in section 4.2.2. Trees partition the feature space X into a set of rectangles T
and then �t a simple model (called constant c herein) in each one. The node at the top
of the tree can be called root node, this node then has branches below it. Nodes that
have branches below them are internal nodes or splits. The lowest nodes at the bottom of
a tree are called terminal nodes or leaves. Tree models usually exhibit limited predictive
utility. However, there are certain improvements available, like the combination of trees in
bagged trees (Breiman, 1996), Random Forests (Breiman, 2001) or making use of boosting
algorithms. The combination of standard tree model classes with these algorithms results
in high predictive capabilities. To illustrate tree methods, a simple regression problem
with continuous response Y and inputs X1 and X2 is assumed. The top left panel of
Figure 14 shows a partition of the feature space by lines that are parallel to the coordinate
axes. In each partition element the response Y can be modelled with a di�erent constant
c. This would result in a simple description like X1 = c, but for some of the resulting
regions this is complicated to describe. Therefore recursive binary partitions are used.
The top right panel of Figure 14 shows these partitions, as also used in classi�cation trees.
First, the space is split into two regions and the response is modelled by the mean of
Y in each region. The variable and split-point are chosen for the best �t. Then one or
both of these regions are split again into two more regions. This process is repeated until
a de�ned stopping criterion is reached, e.g. a previously de�ned maximum number of
terminal nodes. Restricting the view again on the top right panel of Figure 14, a �rst split
is done at X1 = t1. Then the region X1 ≤ t1 is split at X2 = t2 and the region X1 > t1
is split at X1 = t3. Lastly, the region X1 > t3 is split at X2 = t4. The results of this
binary recursive splitting procedure is a partition into the �ve regions R1, R2, ..., R5. The
corresponding model predicts Y with a constant cm in region Rm, that is,

f̂(X) =

5∑
m=1

cmI{(X1, X2) ∈ Rm}. (23)

The same model can be represented by the binary tree in the bottom left panel of Figure
14. In this case, the measurements that would satisfy the condition at each junction are
then assigned to the left branch, others to the right branch. The terminal nodes or leaves
of the tree correspond to the regions R1, R2, ..., RT . The bottom right panel of Figure 14 is
a perspective plot of the regression surface from the model used to describe tree methods
in its simplest form. With more than two inputs (like in the real STSI case), partitions
like that in the top right panel of Figure 14 are di�cult to draw, but the binary tree
representations just described work in the same way.
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Figure 14: Top left panel shows a partition that can not be obtained from recursive binary
splitting as opposite to the top right panel showing a partition of a two-dimensional feature
space by recursive binary splitting as used in CART (explanation in the next section) and
XGBoost. Bottom left shows the tree corresponding to the partition in the top right panel
and a perspective plot of the prediction surface appears in the bottom right panel (James
et al., 2014).

4.2.1 STSI model structure

For explanatory purposes, the learning part of the classi�cation tree is considered with-
out a regularization function. In the actual STSI model several regularization parameters
Ω(θ) are used, as described in section 4.3. The STSI spectra used to grow the tree con-
sist of p1, p2, ..., pn inputs and yi = y1, y2, ..., y4 qualitative responses (one of k values for
the TSI classes), for each of the N spectra (125.000): that is, (xi, yi) for i = 1, 2, ..., N
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with xi = (xi1, xi2, ..., xip). The algorithm needs to automatically decide on the splitting
variables and split points and also what structure the tree should have. Suppose the �rst
partition is into M regions R1, R2, ..., RT and the modelled response has a constant cm in
each region, the tree model f can be written as:

f(x) =

M∑
m=1

cmI(x ∈ RT ). (24)

One can see that the best ĉm is just the average of yi in region Rm

ĉm = avg(yi|xi ∈ Rm), (25)

implying that the class predicted for each OLCI spectrum originates from the most com-
monly occurring class of training spectra in the region to which an OLCI spectrum has
been assigned to. Mathematically, in a node m, representing region Rm with Nm spectra,
let

p̂mk =
1

Nm

∑
xi∈Rm

I(yi = k), (26)

be the proportion of class k spectra in node m, where I is an indicator function, indicating
spectrum yi is a member of class k. In node m, the spectra are then classi�ed to class k(m)
based on arg maxk p̂mk, the majority class k in node m (James et al., 2014). Finding the
best partition in terms of minimizing the objective function is typically computationally
infeasible, i.e. learning the structure of the tree is hard. In fact, the problem is NP-complete
(Hya�l and Rivest, 1976). Consequently the problem is simpli�ed by instead computing
an approximate solution. For this, XGBoost makes use of a greedy learning algorithm,
so-called CART (Classi�cation and Regression Trees) (Breiman et al., 1984). CART grows
a tree greedily in a top-down fashion using binary splits, starting with the only root node
(see also Figure 14). Then every split parallel to the coordinate axes is considered and the
split minimizing the de�ned objective function is chosen. Next, a certain split parallel to
the coordinate axes within each of the current regions is considered (Hastie et al., 2009).
The mathematical details of greedily selecting the splits which minimize the empirical risk
or training error are skipped here, as they do not provide additional insight necessary to
explain the STSI model.

4.2.2 Tree boosting

Boosting is the approach used in XGBoost to improve the predictions resulting from a
decision tree. It is not only restricted to tree methods, but useful in combination. The
described boosting procedure is not identical to the actual boosting algorithm implemented
in XGBoost, but similar in its approach and hence used to envision the idea and its bene�ts
to be used in combination with trees. For a mathematical derivation of the actual boosting
procedure (so-called Newton Boosting) the interested reader is referred to Nielsen (2016).
The idea of boosting is that unlike �tting a single large decision tree to the data, which is
equal to �tting the data hard and thus potentially over�tting, a boosting approach instead
learns slowly. Boosting grows the tree sequentially: each new tree is grown using infor-
mation from previously grown trees, hence it combines many simple models (Schapire and
Freund, 2012). Boosting can be well-described using the most popular boosting algorithm
called "AdaBoost"(Freund and Schapire, 1996, 1997). The algorithm is explained herein
to clarify the idea behind boosting in a simpli�ed manner.
Considering a multi-class problem like in the STSI framework, with the output variable
coded as Y ∈ {1, 4}. Given a vector of predictor variables xi, a classi�er G(X) produces a
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prediction taking one of the values of yi. The error rate on the training sample is

err =
1

N

N∑
i=1

I(y1 6= G(xi)), (27)

and the expected error rate on the test set is EXY I(Y 6= G(X)). A weak classi�cation
model (or classi�er G(X)) is one whose error rate is only slightly better than random guess-
ing. The purpose of the boosting technique is to sequentially apply the weak classi�cation
algorithm to repeatedly modi�ed versions of the data, thereby producing a sequence of
weak classi�ers Gm(x),m = 1, 2, ...,M . The predictions of all of these weak classi�ers are
then combined through a weighted majority vote to produce a �nal prediction:

G(x) = sign

[∑M

m=1
αmGm(x)

]
. (28)

Here α1, α2, ..., αm are the weight coe�cients computed by the boosting algorithm that
essentially weight the contribution of each respective Gm(x) to the �nal prediction (see
Figure 15). E�ectively, they try to give higher in�uence to the more accurate classi�ers
in the sequence. Figure 15 shows the schematic of the AdaBoost procedure. Linking the
AdaBoost algorithm to the STSI, the application of the weak classi�ers Gm(x) to modi�ed
versions of the spectral dataset at each boosting step is possible due to the application of
weight w1, w2, ..., wN to each of the training spectra (xi, yi), i = 1, 2, ..., N . The �rst step
simply trains the classi�er on the spectra in the usual manner, i.e. the weights are set to
wi = 1/N . Then, for each successive iteration m = 2, 3, ...,M the weights of the spectra
are individually modi�ed and the classi�cation algorithm is re-applied to the weighted
spectra. At step m, those spectra misclassi�ed by the classi�er Gm − 1(x) induced at the
previous step have their weights increased, whereas the weights are decreased for those that
were correctly classi�ed. Proceeding with increasing iterations, spectra that are di�cult
to correctly classify receive ever-increasing in�uence. Thereby each classi�er is forced to

Training
sample

Weighted
sample

Weighted
sample

Weighted
sample

G1(x)

G2(x)

G3(x)

GM (x)

G(x) = sign

[∑M

m=1
αmGm(x)

]Final Classifier

Figure 15: Schematic of AdaBoost. Classi�ers are trained on weighted versions of the
dataset and then combined to produce a �nal prediction. Adapted from James et al.
(2014).
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Algorithm 1 AdaBoost

1. Initialize the spectrum weights wi = 1/N, i = 1, 2, ..., N

2. For m = 1 to M :

(a) Fit a classi�er Gm(x) to the training data using weights wi,

(b) Compute

errm =

∑N
i=1wiI(yi 6= Gm(xi))∑N

i=1wi
,

(c) Compute αm = log((1− errm)/errm),

(d) Set wi ← wi · exp[αm · I(yi 6= Gm(xi))], i = 1, 2, ..., N.

3. Output G(x) = sign

[∑M
m=1 αmGm(x)

]

concentrate on those training spectra that are missed by previous ones in the sequence
(Hastie et al., 2009; James et al., 2014).
Algorithm 1 provides the details of the AdaBoost procedure. A description of the algorithm
is as follows: at the beginning, the current classi�er Gm(x) is induced on the weighted
spectra at line 2a. The resulting weighted error rate is computed at line 2b. Line 2c
calculates the weight αm given to Gm(x) in producing the �nal classi�er G(x) (line 3).
Lastly, the individual weights of each of the spectra are updated for the next iteration at
line 2d. Spectra misclassi�ed by Gm(x) have their weights scaled by a factor exp(αm),
increasing their relative in�uence for inducing the next classi�er Gm+1(x) in the sequence.
The key of boosting lies in Equation 28. De�ned in other words, boosting is a way of �tting
an additive expansion in a set of elementary "basis" functions. Here the basis functions
are the individual classi�ers Gm(x) ∈ {1, 4}. More generally, basis function expansions
take the form

f(x) =
M∑
m=1

βmb(x; θm) (29)

where βm,m = 1, 2, ...,M are the expansion coe�cients and b(x; θ) ∈ R are the simple
functions (or constants in trees) of the set of parameter functions x (instead of a variable,
also called multivariate argument), characterized by a set of parameters θ. For trees θ can
parametrize the nodes, e.g. the split decisions and split points at the internal nodes, and
the predictions made at the terminal nodes. These models are �t as usual by minimizing
the loss function averaged over the training data. For many loss functions this requires
computationally intensive numerical optimization techniques. XGBoost makes use of the
gradient descent algorithm. As mentioned already, details of the gradient descent algorithm
are not further elaborated in this study.

4.3 STSI model hyperparameters

The STSI model is a highly non-linear version including the objective (loss) function to
minimise a set of several additional parameters to either construct the model and/or reg-
ularize the model complexity to prevent over�tting on the unseen OLCI Rrs, that is,

obj(θ) = L(θ) + Ω(θ) (30)

where the loss function L is de�ned as the log loss explained in section 4.1.1 and the
regularization Ω can be embedded using several methods to speci�cally constrain the model
complexity of trees, e.g. the depth of the tree, the number of terminal nodes in a tree, the
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size of local neighbourhoods or the relative di�erence in the constants cm1, ..., cmN . All of
them allow for more theoretical considerations, but the focus is on the applied methods of
penalizing the STSI model complexity. More parameters θ are actually used for the STSI,
so-called hyperparameters. Hyperparameters are a set of parameters that are used in the
training process to manually tune the model before the training process starts, e.g. they
in�uence the rate at which the tree is learnt or the number of estimators used to build the
tree. Those parameters essentially set the boundary conditions of the gradient boosting
machine to learn from the data and to construct an initial model. It can be evaluated using
the log loss and other metrics such as plotting the feature importance or the tree structure
itself. As there is an arbitrary high number of hyperparameters possible (depending on
the amount of parameters used in combination with each other) grid cross-validation is a
useful method to �nd the best hyperparameter combination on the training data. This
method allows to de�ne a list of settings for each hyperparameter and then combines all
hyperparameter settings with each other. Every combination is evaluated on a hold-out
set of the training data and the �nal output is the best combination of these iterations.
This output can then be manually tuned testing the grid cross-validation model on the
initially hold-out validation set (30% of the same data) for which it has to perform well.
Following is the �nal list of the additional hyperparameters θ that were used to build the
STSI model for the classi�cation of all three lakes. The model is the same for all validation
lakes and includes no regional tuning:

• Column sample by tree = 0.3

• Gamma rate = 0.0

• Learning rate = 0.13

• Maximum depth of the tree = 2

• Minimum child weight = 2

• Number of estimators = 3000

• Amount of subsampling = 0.05

4.4 Softmax prediction metric

The XGBoost framework enables to use di�erent evaluation metrics for the predicted out-
put values of the applied STSI model that an OLCI spectrum i belongs to class k. The
prediction values for the STSI are interpreted using the softmax function σ(y), enabling
to interpret the class assignments as probabilities (de Brébisson and Vincent, 2015; Duan
et al., 2003). Before explaining the bene�ts of this interpretation, consider that the STSI
model is not dealing with regression, meaning that the interest is not to have one output
value that takes either 0 or 1. The classi�cation task is about the output layer of the STSI
model, consisting of 4 classes. Each spectrum will belong to a class and an output value
representing the probability of the spectrum belonging to a class is of interest. This is
primarily motivated by the circumstance that the �nally assigned class label is then the
one of the highest weight of the probability vector for each spectrum. An example of the
probability vector can be seen in Table 6, of spectra belonging to a class for Lake Jordan.
In mathematical terms, the STSI classi�cation model with C (4) classes generates y ∈ R4,
a vector of C scores. These scores are arbitrary real numbers in the range from 0 to 1. To
go from these scores y ∈ R4 to probability estimates p ∈ R4 for a spectrum, exponentiation
is used. The softmax function σ(y) takes the model output as a vector y ∈ R4 with 4
values, exponentiates each value and then normalizes them by dividing through the sum
of all exponentiated values:

σ(y)i =
exp yi∑C
c=1 exp yc

, (31)
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where i, c ∈ {1, ..., C} is the range over the classes, and yi, yc refer to class probabilities
and scores for a single spectrum. As described, the vector of C scores add up to 1 for
each spectrum. The �nal target class is the one that has the highest probability, thus
the highest weight of the classi�cation model and its prediction capability. Opposed to
an outcome consisting of only a number between 1-4 for each prediction, probabilities
provide informational insight into the decision making. This has two bene�ts: �rst, when
provided as an additional information band in a L2 STSI product, the probability vector
given for each pixel allows for a user-based judgement, whether the assigned probability
that a pixel/spectrum belongs to a class is high enough to use this pixel for a valid TSI
statement. This provides transparency about the �nal class assignments and enables user
interpretation of the assigned class. Second, the probabilities can be used to constrain
the class assignments using an independent decision tree for further analyses, i.e. if the
classi�er is indecisive, a spectrum can be assigned to the two classes having the highest
probabilities.
Nevertheless, the softmax interpretation of the output does not allow to interpret the
probabilities as uncertainties, as they sum up to 1 for each spectrum and thus are not an
appropriate measurement of the uncertainty propagating through the model included in the
assigned probabilities that a spectrum belongs to a class. In other words, the probabilities
do not showcase how certain the classi�er is in assigning the relative class probability.
Rather they are simply the probabilities of the trained model (with its assumptions made
and included uncertainty in the overall datasets used) that each pixel/spectrum belongs to
a class. The probabilities allow for an assessment of the model itself and for further model
re�nement and building considerations.

Table 6: Probability vector of spectral class assignments. The columns Pc1,..., Pc4 contain
the probability of a spectrum belonging to class k.

Spectrum Pc1 Pc2 Pc3 Pc4 Final class assignment

1 0.244617 0.175018 0.263105 0.317261 4

2 0.254129 0.181823 0.273336 0.290712 4

3 0.267271 0.191227 0.287472 0.254031 3
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5 STSI operator

The structure of the software implementation of the STSI framework is split into two parts.
First, the STSI model resulting from the supervised learning process described in chapter
4 is exported and made available to the processor. It can be loaded as an external input
(see left box "External Input" in Figure 16) simply specifying a path to the model. This
implementation �exibility allows for updates to the model without having to change the
core part of the operator (see right box "STSI SNAP Operator"). In this work C2RCC
has been used, but also other algorithms are possible for retrieving Rrs, as the user has
the option to de�ne a list of the available band names. The core part essentially requires a
L2A processed OLCI product with available Rrs bands from 412 nm to 753.75 (same wave-
length range as de�ned in Table 5). These bands are then processed using the trapezoidal
integration normalization as described in section 3.5. The resulting spectra are converted
into XGBoost matrix format, enabling the usage of the XGBoost prediction function to
assign every pixel of the OLCI product a TSI class. The result of the class assignments
are added to the original L2A product as a new band.
The implementation has been written in Python, requiring the SNAP toolbox to be con-
�gured to use the SNAP Python API (snappy). Furthermore, the code is hosted under
the General Public License (GNU) v3.0 allowing for distribution, modi�cation, private and
commercial use of the software when license and copyrights are granted. The source code
is hosted on https://github.com/bcdev/stsi and will be made publicly available once
version 1.0 is ready to be released. A plug-in for SNAP can also be received from the
author.

XGB model
selection STSI model

XGB prediction

S3 OLCI L2A

External Input

STSI SNAP Operator

STSI band

Normalization

Operation

Remote sensing
product

Legend

Figure 16: Schematic of the STSI SNAP operator implementation to produce L2 STSI
OLCI products of surface water bodies.
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6 Results

The prototype of the STSI has been �nished and it can be used on inland water bodies
for which Rrs of OLCI can be qualitatively derived. To evaluate the �ndings, the result
section is split into two. First, the class assignments of the classi�er are presented and
second the class assignments are compared to the TSI values for the respective locations
allowing for a judgement about the accuracy of the methodology.

6.1 Classi�cation

The results for each lake were achieved using the STSI framework outlined in Chapter 2 that
has been described thoroughly in the preceding sections. The retrieved OLCI re�ectances
provide a holistic view on the lakes' optical variability enabling to use the STSI to provide
a TSI class for every valid pixel.

6.1.1 Lake Pelican

Of the total 287 valid Rrs, 275 have been assigned to the oligotrophic, 1 to the mesotrophic
and 11 to the eutrophic TSI classes (Figure 17). To begin with, the retrieved Rrs display
realistic spectral patterns, supporting the assumption that C2RCC provides accurate Rrs
in low biomass waters. In addition, the valid pixel selection worked well as none of the
re�ectances accounts for a spectral shape showing typical structures originating from land
in�uences. Lake Pelican is a challenging environment for ocean-colour remote sensing, but
the results document the overall robustness of the methodological approach to retrieve the
necessary re�ectances. Regarding the class assignments, the class di�erentiation between
the three eutrophic classes is clearly recognizable (see Figure 18). However, a slightly worse
spectral distinction between the oligotrophic and mesotrophic classes (1 and 2) is apparent
(wavelength region from 500 - 560 nm). While nearly all of those spectra are assigned to
class 1, several spectra could also be class 2 (see Figure 17). In general, spectra seem to be
well distinguished between the oligotrophic and eutrophic classes. Mostly only spectra of
class 3 show an increase in re�ectivity in the red part of the spectrum around the red-edge
between 670 - 720 nm. Figure 19 shows the comparison of the simulated Rrs versus the
Rrs of Lake Pelican classes 1 and 3, respectively. While for class 3 the OLCI spectra are
approximately covered by the simulated spectra, the spectral shapes of class 1 (especially
between 400 - 490 nm) show higher re�ectance values outranging the simulated Rrs.
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Figure 17: STSI class assignments for Lake Pelican. Normalized Rrs (n = 287).
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Figure 18: Lake Pelican single STSI class plots.
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Figure 19: Lake Pelican simulated Rrs (green) vs STSI assignments of the OLCI Rrs (blue).
Both re�ectance datasets are normalized.

6.1.2 Lake Jordan

Lake Jordan has been the most challenging environment to retrieve quality re�ectances
from. Besides the di�cult valid pixel selection, the AC module of C2RCCmight not provide
realistic re�ectances for cyanobacterial bloom situations (as described in section 3.10.2).
Hypereutrophic conditions are dominating Lake Jordan on the day of sampling, possibly
including cyanobacteria events. Due to the lack of in-situ data covering this water type, it
is not possible to judge whether or not algal blooms exist during the OLCI acquisition. An
error might be included in the C2RCC produced re�ectances, but necessary radiometric
validation data are currently lacking to con�rm this hypothesis. Nevertheless, it is to
assume that not all areas of the lake are a�ected by cyanobacteria and that consequently
most of the spectra represent valid re�ectances. The STSI method assigns 19 re�ectances to
the oligotrophic class, 112 to the eutrophic and 49 to hypereutrophic classes (see Figure 20).
All of the re�ectances are similar to another in magnitude, with di�erences only in shape
requiring a high sensibility from the classi�er to recognise class de�ning common features.
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Figure 20: STSI class assignments for Lake Jordan. Normalized Rrs (n = 180).
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Figure 21: Lake Jordan single STSI class plots.

The mean re�ectance vectors depicted in Figure 21 show the clear spectral separation of
the three classes providing insight into the decision making of the classi�er. The spectral
shapes of the classes are all unique and separable from each other, but the class assignment
itself does not provide enough information to resonate about the STSI class predictions
for Lake Jordan. Figure 22 provides an additional view on the class assignments. For
all three classes basically none of the spectral shapes is entirely covered in the simulated
database providing new insight into the limitations of the database. Although 19 spectra
were assigned to the oligotrophic clear water class, the spectral shapes of Lake Jordan do
not indicate clear oligotrophic water states anywhere across the lake where Rrs were used
in the classi�cation. Class 3 is the closest regarding the spectral similarity, but then again
the spectra of class 4 are not covered by the simulated Rrs at all. The class assignments for
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Lake Jordan indicate a degree of arbitrariness whether or not a spectrum is class 1,2, 3 or 4
as those spectral shapes are not covered by the training database the STSI classi�er bases
its class prediction on. This in turn indicates that STSI predictions on similar trophic
conditions might produce completely di�erent results while they could at the same time
be entirely wrong.
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Figure 22: Lake Jordan simulated Rrs (green) vs STSI assignments of the OLCI Rrs (blue).
Both re�ectance datasets are normalized.

6.1.3 Lake Michigan

Comparable to Lake Pelican, the C2RCC calculated re�ectances for Lake Michigan are
realistic both in shape and magnitude. The narrow degree to correctly separate between
valid and invalid pixels has been accurately managed using the Idepix tool.
Nearly all of the Rrs from Lake Michigan are assigned to the oligotrophic class 1, except
for 9 spectra being assigned to class 3, indicating eutrophic conditions (see Figure 23).
Associated therewith, also the shapes strongly di�er from each other (see Figure 24). The
polygon of usable Rrs is greater than the area of the bay where the in-situ measurements
were sampled. The large gradient in trophic conditions can be explained with the close
proximity to the harbour of Milwaukee accounting for the main source of nutrient intake
causing the eutrophic conditions. The nutrient rich waters disperse with greater distance
to shore leading to an oligotrophic state of the main lake basin. The main basin of Lake
Michigan is extraordinary large for an inland water body and plays a major role in the
distribution of nutrients. Another interesting feature is that none of the spectra has been
assigned to class 2, while also the in-situ values do not indicate mesotrophic conditions
(see next section). Especially the mean re�ectance vectors of the OLCI spectra are close
to the simulated dataset, being the reason for the class label assignments (see Figure 25).
Between the two encountered trophic states the intermediate mesotrophic conditions might
still exist in an outer part of the bay, but they are most likely simply not covered by the
in-situ sampling during this day in the studied area.
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Figure 23: STSI class assignments for Michigan. Normalized Rrs (n = 1270).
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Figure 24: Lake Michigan single STSI class plots.
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Figure 25: Lake Michigan simulated Rrs (green) vs STSI assignments of the OLCI Rrs
(blue). Both re�ectance datasets are normalized.
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6.2 Validation

The STSI spectral class assignments presented in the previous section were validated using
the prepared chl-a in-situ measurements of the locations in the lakes. Using the class de�n-
ing chl-a concentrations of Table 4, the TSI class labels were derived for all of the in-situ
stations (see Table 7). Further information about the stations can be found in section
3.10.
Together the lakes cover all trophic states, but mesotrophic conditions are underrepre-
sented in the dataset. Eutrophic conditions are available, but more measurements of this
trophic state are required to test the STSI. The varying trophic states are the result of
the large range of chl-a in-situ concentrations (0.18 - 88 ug/l). The measurement maxi-
mum depths range from surface (Pelican, Jordan) to slightly more deep water (Michigan).
Although radiometric attenuation measurements were not available for the lakes, the in-
situ measurements for Lake Michigan were used despite partly large measurement depths.
The lake is generally oligotrophic allowing for the assumption that light water penetration
can reach larger depths than the standard 0 - 5 m range of usually estimated maximum
measurement depth. For the same location, the resulting TSI class labels of the in-situ
measurements were then compared against the assigned TSI labels from the STSI method.
The results are displayed using a confusion matrix (see Figure 26).
The overall prediction accuracies strongly di�er between the lakes. For Lake Pelican the
accuracy is 0.66 (2/3), as one out of three stations has been misclassi�ed (oligotrophic
instead of mesotrophic). The spectral class plot (Figure 17) also indicates 11 spectra to be
eutrophic, but in-situ data is not available to validate these predictions. The STSI method
has the lowest prediction accuracy for Lake Jordan (0.28) with only two correct predictions
(2/7). All in-situ stations indicate hypereutrophic conditions throughout this lake, while
most of the spectra are assigned to the eutrophic class 3. The STSI class predictions are

Table 7: In-situ measurement sites used for the validation of the STSI class assignments.
The TSI classes are derived from the class de�ning chl-a concentration values listed in
Table 4.

Lake name Station name Chl-a conc. Unit Meas. Depth (m) TSI class

Pelican 18-0308-00-208 3.0 ug/l 0 - 2 Mesotrophic

Pelican 18-0308-00-209 2.0 ug/l 0 - 2 Oligotrophic

Pelican 18-0308-00-207 2.0 ug/l 0 - 2 Oligotrophic

Jordan CPF081A1B 82.0 ug/l 0.2 Hypereutrophic

Jordan CPF086C 60.0 ug/l 0.2 Hypereutrophic

Jordan CPF086F 78.0 ug/l 0.8 Hypereutrophic

Jordan CPF087B3 72.0 ug/l 1.0 Hypereutrophic

Jordan CPF0880A 62.0 ug/l 1.0 Hypereutrophic

Jordan CPF055C 88.0 ug/l 1.2 Hypereutrophic

Jordan CPF055E 72.0 ug/l 1.4 Hypereutrophic

Michigan OH-17S 0.18 mg/m3 1.0 Oligotrophic

Michigan OH-12S 0.2 mg/m3 1.0 Oligotrophic

Michigan OH-05B 0.78 mg/m3 9.1 Oligotrophic

Michigan OH-14S 0.28 mg/m3 1.0 Oligotrophic

Michigan OH-07M 0.46 mg/m3 5.8 Oligotrophic

Michigan OH-03B 8.2 mg/m3 8.2 Eutrophic

Michigan OH-11M 36.0 mg/m3 4.8 Eutrophic

Michigan OH-13B 0.66 mg/m3 14.3 Oligotrophic
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not o� by far from the true TSI label (class 4). However, 19 spectra were assigned to the
oligotrophic class not even slightly re�ecting the actual trophic conditions occurring in the
lake. As described in the previous sections, the spectral class assignments currently are
not reliable and precise for optically extreme conditions like those encountered in Lake
Jordan. Opposite to the low accuracies and instability of results for Lake Jordan, the
prediction of Lake Michigan is extremely accurate (1.00). All TSI classes were correctly
predicted (8/8), even those measured in larger depths that are both oligo- and eutrophic.
The spectral plot of Lake Michigan (see Figure 23) in the previous section provides the
necessary insight: remarkable is the separation of spectra that show similar re�ectance
values around 560 nm, but di�erences in the wavelength range before (450 - 550 nm) that
ultimately led to di�erence class assignments. This con�rms that clearly separable spectra
will be assigned to di�erent classes, if only the mean re�ectance vectors of the simulated
database accurately represent these spectral shapes.
The overall prediction accuracy of the STSI classi�er is 0.66, but it is questionable how re-
liable this value is regarding the poor performance of the current model for hypereutrophic
lakes.
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Figure 26: Confusion matrices of the three validation lakes. The diagonal elements rep-
resent the number of matches for which the predicted STSI label is equal to the true TSI
in-situ label. O�-diagonal elements are those that are misclassi�ed by the STSI model.
Higher values in the diagonal elements of the confusion matrix indicate many correct pre-
dictions.
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7 Discussion

The STSI algorithm depends on quality assured Rrs. The methodology outlined in sec-
tion 3.6 using Idepix and C2RCC represents a robust approach to derive the required
re�ectances. While Idepix performed well for all of the analysed lakes, the AC module
of C2RCC faces limitations that can currently not be investigated due to missing in-situ
re�ectance measurements. Upcoming updates to the neural networks utilised in the atmo-
spheric correction module will certainly improve the weaknesses in the addressed extreme
optical and trophic lake conditions. Nevertheless, the retrieved sensor Rrs are currently not
quality assured. Therefore it is highly desirable to implement a quality assurance system of
the calculated Rrs before a re�ectance is classi�ed into one of the TSI classes. In particular,
the methodological approach designed by Wei et al. (2016) seems promising: every Rrs is
compared to quality controlled hyperspectral in-situ measured Rrs enabling to assure that
artefacts are excluded and only realistic re�ectances are considered in the classi�cation.
The method has been successfully used in recent studies (Shang et al., 2017; Zheng and
DiGiacomo, 2017). Topically related, the herein presented, but not implemented, out-
of-range check (see section 3.6.5) has a closely related intention. The aim is to discard
re�ectances that are not covered by the training database to only base the classi�cation on
those that are known to the trained classi�er to ultimately improve the STSI class assign-
ments. Theoretically this also excludes di�erent re�ectances produced by the AC module
(compared to the simulated spectra). While this approach might work for conventional
retrieval-based methods like inversion algorithms, it is questionable if the approach for the
STSI is appropriate. To illustrate this, it is useful to compare the use of re�ectances in an
inversion algorithm and the STSI method. Inversion-based algorithms can only correctly
invert a re�ectance if it is covered by the IOP combination de�ned in its LUT. Logically,
all unknown or out-of-range (OOR) re�ectances are most likely inverted erroneously, as
the mathematical method (e.g. linear matrix inversion) utilized can not retrieve an IOP
combination that is non-existent in its LUT. On the contrary, the STSI method is not
based on an inversion, but rather classi�es a signal. The IOP combination that led to the
re�ectance shape is not relevant for the assignment process, hence a non-existent spectrum
in the training database can still be assigned to a correct class. This phenomenon inher-
ent to a classi�er is completely separating the STSI method from conventional approaches
trying to retrieve a concentration from a radiative signal. An example are the re�ectances
of class 1 from Lake Pelican. Their shape is not identically covered by the simulation, but
they are still closest to those found in the training class 1 (see Figure 19) and hence receive
the related class label. In return this indicates that a simulated trophic class does not have
to perfectly hold the optical diversity existing for the range of chlorophyll concentrations
de�ning a trophic class, as long as the major optical water types of a class are covered by
the training database. Nonetheless, spectra that strongly di�er in shape to those existent
in the training classes are often assigned to a wrong class, as the predicted class most likely
only remotely matches the spectral pattern of the encountered re�ectances (e.g. classes
3 and 4 of Lake Jordan) resulting in low predictive accuracies. Logically, improving the
simulated database or the atmospheric correction algorithms seem to be the best options
to improve the prediction capabilities of the classi�er.
Furthermore, spectral shapes that are close to either of the classes might be assigned falsely
if the simulated spectra do not cover enough spectral diversity. While spectral diversity
is a key element for correct class assignments, the separation of boundary trophic and
optical cases needs to be viewed in a greater multi-dimensional context, that not only the
STSI but also the classic TSI faces. To illustrate this, a chlorophyll concentration of e.g.
3.0 mg/m3 (e.g. station '18-0308-00-20' of Lake Pelican) is a typical example faced by
anyone using the de�nite TSI classi�cation system. Whether or not a chl-a concentration
of 3.0 mg/m3 is meso- or still oligotrophic is even with in-situ analyses di�cult to judge.
The uncertainties of the measurement and analysis procedures make this concentration a
class candidate for both trophic states. In-situ approaches solve this issue using di�erent
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methods and by the sampling of additional parameters, e.g. with more accurate methods
(HLPC), chemical analyses of the nutrient-levels like nitrogen and phosphorous, strongly
correlated parameters such as transparency or by explicitly de�ning the uncertainty range
included in their analysis. For the STSI classi�cation these measurements are not available,
hence crucial information is lacking that would clarify the class assignment. Nevertheless,
the STSI has to correctly deal with these boundary cases.
Going back to the initially de�ned research objectives, the question for the STSI to answer
is: can trophic states be optically separated using chl-a concentrations as the separating
parameter. In this context, a TSI chl-a boundary concentration like 3.0 mg/m3 entails two
issues: First, the classi�er's internal classi�cation process and second the spectral ambi-
guity of the target spectrum. For the �rst issue, the current STSI methodology o�ers two
approaches. The spectral class assignments allow to resonate about the class assignment
sensitivity of the XGBoost classier that can be controlled and adapted using several hy-
perparameters such as the learning rate, maximum depth of the tree or the minimum child
weight. Adjusting the classi�er to distinguish better between spectral deviations from the
mean re�ectance vectors will lead to a better separation of boundary conditions, i.e. the
one encountered in Lake Pelican whose trophic conditions vary between high oligotrophic
and low mesotrophic conditions. The spectral shapes di�er only slightly, but this small
spectral di�erence can be captured by a well-discriminating classi�er. Further, a feature of
the current STSI method is the interpretation of the classi�cation output. It is interpreted
using the softmax function providing probabilities of the class a�nities for each spectrum.
The probabilities display the class a�liation of a spectrum that is either clear (i.e. high
probabilities for a class) or poor (similar probabilities for all classes). For a well-trained
classi�er, a spectrum with high class assignment probabilities (e.g. those of Lake Michigan)
constitutes no class separation issue (disregarding the spectral ambiguity issue here), while
those with similar probabilities (Lake Jordan) are di�cult for the classi�er to assign to a
class. As mentioned, an improvement of the simulated database would lower the chances of
spectra encountered whose class a�nity is poor, but these boundary cases will eventually
occur anyway. The probabilities allow to use several thresholds instead of simply assigning
the spectrum to a class with the highest probabilities (arg max). For similar probabilities a
threshold can be introduced that requires a class a�nity to be at least 10% larger than the
second highest probability (a selected threshold value has to be tested before its usage).
All spectra not meeting the threshold can be assigned to the two classes with the highest
probabilities, indicating the spectrum is a boundary case and that the STSI method can
not con�dently separate between the classes. In a future STSI version the probabilities
can also be used in a hierarchical tree manner. For example, only spectra with a class
a�nity of e.g. 80% are directly assigned the respective class label. Otherwise the class
a�nities are checked for similarity and a decision is made whether the spectrum is assigned
to the boundary class or another class type. Several cases exist that could be iteratively
considered. The softmax interpretation of the output allows for several controlled class as-
signments that would improve the decision making process and altogether make the STSI
a better and more transparent method.
While the internal class assignment process faces boundary cases, the spectrum itself might
be ambiguous and hence a boundary case for the classi�er. Spectral ambiguity has been
shortly thematised in the �rst chapter and remains an issue for basically all ocean-colour
algorithms. The STSI is not independent of spectral ambiguity, but e�ectively weakens
the issue. The presented normalization procedure stresses the spectral shapes that are
primarily in�uenced by absorbing materials like phytoplankton and CDOM and therefore
weakens magnitude changes caused by scattering particles. The procedure certainly showed
its value for all of the lakes, as the spectral ambiguity became less pronounced bene�ting
the classi�cation to base the assignments on the absorbing materials. In the blue part of
the spectrum, most conventional algorithms try to retrieve low chlorophyll-a concentrations
from the absorption coe�cients of phytoplankton. Ambiguity exists herein, as CDOM ef-
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fectively can make up to 80% of the total absorption (atot in Equation 1), distorting the
retrieval procedure that leads to an overestimation of the chl-a concentration (IOCCG,
2015). This retrieval issue is one of many the STSI avoids, as long as the spectrum is
covered in the database. Lastly, the TSI itself weakens the impact of ambiguity naturally,
as it accounts for a range of valid chlorophyll concentrations. The class ranges already in-
clude room for several di�erent spectral compositions creating the same indistinguishable
spectrum that is known to be an ill-posed problem for inversion algorithms. As the results
of the study indicate, most spectra that strongly di�er from another also fall into separate
TSI classes. Only boundary concentrations of the TSI classes (the mentioned examples)
seem to pose an issue, but they might not only be optically ambiguous, but also biologi-
cally. Still, the amount of test sites needs to be increased to be able to judge the in�uence
of spectral ambiguity on the classi�cation. An increase in test sites would be accompanied
by the use of more in-situ stations providing more statistically profound insight into the
accuracies of the STSI. However, unsolved is the issue of uncertainties inherent to the STSI
predictions caused by the measured in-situ data. Errors in the measured in-situ samples
add up to the uncertainty in the STSI caused by sensor and atmospheric constraints and
the simulation (including the bio-optical model). Ideally an in-situ dataset is used for
the validation that has been compiled for ocean-colour remote sensing purposes such as
SeaBASS from NASA's Ocean Biology Processing Group (OBFG) or UK's LIMNADES
originating from the GloboLakes project. While currently not possible, the use of suited
validation measurements would enable to separate between the uncertainty inherent to the
STSI algorithm and the validation data, both in�uencing the accuracies of the �nal STSI
class predictions.
The STSI classi�cation is based on a hyperspectral simulation. Due to its hyperspectral
nature, the spectral resampling can be applied to other ocean-colour sensors like MERIS,
MODIS, SeaWiFS and VIIRS enabling new application possibilities. If the method is
proven to work on all of these sensors, it would be possible to �ll gaps in long-term Euro-
pean (MERIS and OLCI) monitoring e�orts. Adjoining is the question, if the method is
limited to ocean-colour sensors only. The main argument for a multi-sensor applicability
would be that the STSI does not require a band composition of the usual ocean-colour
multi-spectral sensors like MERIS or OLCI, as it is not based on band-ratios requiring
certain band positions. As long as the spectral shapes of atmospherically corrected re-
�ectances are comparable to those in the simulated database, basically any sensor can be
utilised making the STSI a multi-sensor algorithm. Examples are Sentinel-2 MSI (S2-MSI)
and Landsat-8 (L8). Nevertheless, correct band positions to detect various chlorophyll fea-
tures in water are necessary to distinguish between the spectra. This circumstance probably
excludes some, if not all land sensors. An example is the missing red-edge band on L8.
Consequently, the possibility to di�erentiate between chl-a and CDOM is missing, as both
are already di�cult to distinguish in blue and green areas of the VIS wavelength range.
Certainly this would lead to errors in the STSI classi�cation, because CDOM dominated
waters would then be assigned to TSI classes with high chl-a concentrations. Adjoining is
the issue of atmospheric correction schemes posing a large source of uncertainty that need
to be evaluated for each sensor individually, as the procedures are often sensor speci�c.
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8 Conclusion & outlook

The presented STSI methodology is capable of accurately predicting the non-linear TSI
classes for the oligo- eutrophic lakes Pelican and Michigan, while at the same time the
hypereutrophic conditions of Lake Jordan were not well covered. Using the STSI method-
ology, the validation results show that it is possible to use a simulated dataset to train a
classi�er and predict a trophic state class using only chl-a concentrations as the separating
class parameter. Neither has the algorithm been speci�cally trained with local datasets nor
do the results indicate a regional limitation usually being the limiting factor for band-ratio
algorithms. The STSI classi�er is a generic model not relying on local tuning.
While the three validation lakes were strongly di�ering from each other, the STSI needs to
be applied to a larger time frame and in-situ dataset that covers more meso- and eutrophic
conditions to draw more general conclusions about its functionality and limitations. De-
spite the high prediction accuracies for the two lakes, at the lake level di�culties were
encountered that required an in-depth investigation of the validation datasets, the algo-
rithms used to derive valid water pixels as well as the atmospheric correction procedure.
The STSI strongly depends on correctly derived Rrs and the envisaged quality assurance
system of Wei et al. (2016) can assure the STSI methods also works with other valid pixel
and atmospheric correction algorithms.
Even though the issue of spectral ambiguities also exists for the STSI, the in�uence is
e�ectively weakened and several issues faced by conventional inversion algorithms can be
practically circumvented. More speci�cally, the conclusion can be drawn that clear dis-
tinguishable optical patterns of Rrs between the trophic state classes exist. However, the
large optical variety of water types in each TSI class are currently only partly contained
in the simulated database. Adjoining is the circumstance that adaptation and evolution
of the STSI classi�cation model is necessary to incorporate more optical complexity and
heterogeneity. The current classi�cation model is too strict and does not greatly treat
boundary cases. Both, the improvement of the simulated database and an adaptation of
the classi�er settings are closely linked.
In the last years, optical water types (OWT) became widely popular in the �eld of inland
water remote sensing to characterize the optical diversity found in these optically complex
environments (Mélin and Vantrepotte, 2015; Moore et al., 2014; Spyrakos et al., 2017).
OWTs of inland waters can help to improve the class assignment process of the STSI in
several ways. First, the trophic state classes inherently include all OWTs naturally: even
though most of the OWT clusters are not based on dominating chlorophyll-a concentra-
tions, but the contribution of all optically active constituents, all clusters are existent
throughout the TSI classes. Thereby, whether or not a OWT is chl-a dominated, they
must be dealt with in the STSI classi�cation. To use the gained knowledge about OWTs,
either the STSI simulated database is constrained using measured (S)IOP values of OWTs
to generate realistic spectra for each class or the database is validated against the spectra
dominating the OWT classes to identify spectral gaps in the simulations. Each approach
needs further evaluation but would lead to an improvement of the simulated database
and consequently the classi�cation. Several OWT classes include high chl-a concentra-
tions and/or cyanobacteria abundance (Spyrakos et al., 2017). This optical variability is
certainly underrepresented in the current STSI simulated database. At present, the bio-
optical model that constitutes FEMWAT can not be changed, thus replacing it will be
one of the key future activities. Because of the modular nature of the STSI framework,
it can be replaced by a publicly available database that covers the most trophic extreme
cases encountered in Lake Jordan. One example is the database originating from ESA's
Case2Extreme project that is based on Hydrolight simulations for several di�erent extreme
water types.
The improvement of the STSI prototype will lead to a more precise STSI model. Three
main �elds can be distinguished in which updates would have a large impact on the quality
of the predictions: a simulated database that accounts for higher chlorophyll-a concentra-
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tions and that contains more optical diversity, a Rrs quality assurance system to only use
valid re�ectances in the classi�cation and the use of optical water type frameworks to con-
strain, validate and enhance the simulations overall. Furthermore, a comparison between
valid atmospherically corrected and the simulated re�ectances would enable to learn about
the discrepancies between the spectra and investigate the causes. The comparison can be
enhanced applying di�erent AC algorithms to get a good match between the sensor and
simulated spectra.
The architecture of the STSI would enable to use the method on other ocean-colour, but
possibly also sensors primarily designed for land usage (e.g. S2-MSI, L8). The multi-sensor
application would enable to monitor longer periods of time, as trophic state changes are
important habitat indicators over long-term scales. Together with future hyperspectral
sensors like the German EnMAP and U.S. PACE missions, the STSI can prove to be
a valuable tool to track and monitor eutrophication changes in optically complex water
environments.
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