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Figure on front: City of Amsterdam (2017). Non-residential functions of city 

center (function map). Retrieved at 10 September 2017 from 

https://maps.amsterdam.nl/functiekaart/?LANG=en.   

https://maps.amsterdam.nl/functiekaart/?LANG=en
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Preface 
 
Dear reader, 

 

In this preface, I would like to share my passion for maps and map-making. 

Historically, maps showed the relative location of landmarks for navigational 

purposes. Around 1500 Europeans started to regularly travel around on voyages 

across oceans. These long voyages demanded more accurate maps. Cartography 

became a science and maps started to have latitude, longitude and a projection. 

At the end of the 20th century, most parts of the world were mapped, and 

software engineering transformed the paper map into a digital map. In the 

digital era maps became accessible to all, 3D (with altitude), 4D (with time), 

crowdsourced and used imagery from satellites, airplanes and drones. Currently 

in 2018 humans still use a (digital) map to navigate through the world. However, 

autonomous vehicles based on artificial intelligence and accurate local sensing 

are being tested on the road. The sensors from these vehicles will generate loads 

of spatial data. In this thesis, streetview images will show what functions are 

located where based on information from cameras on cars. As technology 

evolves, maps and map-making will evolve too. 

 

I would like to thank my supervisors, dr. Devis Tuia and MSc. Shivangi 

Srivastava, lecturers at the master Geo-Information Science, fellow students, 

friends, and family for support during the thesis. 

 

Enjoy reading! 

 

David Swinkels 
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Abstract 
(EN) - More and more information about cities is being captured by satellites, 

planes, drones, smartphones and recently from cameras on cars. Pictures from 

cameras on cars can help to solve automatic urban land use mapping, i.e. to 

detect shops, offices, industrial or residential buildings. Streetview photography 

platforms, such as Google Street View and Mapillary, have large datasets of 

ground-level images available. Advances in machine learning and computer 

vision, i.e. convolutional neural networks, make it possible to classify building 

functions from streetview images. The research in this thesis showed that 

building functions can accurately be predicted with streetview images. Also, it 

was observed that if buildings were more recently built and streetview images 

had a smaller distance from the camera to the building, the prediction accuracy 

of the building functions was significantly higher. 

 

(NL) - Méér en méér informatie van steden wordt verzameld door satellieten, 

vliegtuigen, drones, smartphones en recentelijk ook van camera’s op auto’s. 

Foto’s van camera’s op auto’s helpen om automatisch stedelijk landgebruik te 

bepalen, i.e. het detecteren van winkels, kantoren, industrie of woningen. 

Streetview fotografie platforms, zoals Google Street View of Mapillary, hebben 

grote datasets van grondbeelden beschikbaar. Verbeteringen in machine 

learning en computer vision, i.e. convolutional neural networks, maken het 

mogelijk om gebouwfuncties te voorspellen op basis van streetview beelden. 

Onderzoek in deze thesis toont aan dat gebouwfuncties accuraat voorspeld 

kunnen worden met streetview beelden. Er werd geöbserveerd dat gebouwen 

welke recenter gebouwd waren en streetview beelden welke een kleinere afstand 

hadden van camera naar gebouw, significant geassocieerd waren met een hogere 

accuraatheid van de voorspelde gebouwfunctie. 
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Introduction 

Efforts are increasingly being made to automate urban land use mapping by 

utilizing pictures taken from top views, i.e. by satellite, plane or drone, and 

recently side views, i.e. cars or smartphone. The new side perspective allows for 

many new possibilities. Google has been sensing worldwide where house 

numbers are from cameras on cars (Goodfellow et al., 2013) and are going to 

sense opening times by increasing the resolution of Google Street View images 

(Wired, 2017). One problem that was difficult to solve with a top perspective is 

automatic urban land use mapping (Bechtel et al., 2015). The goal of this 

research will be to characterize building functions in urban areas from 

streetview images.  

 
The mapping of building functions requires knowledge of indoor activities. 

Information about indoor land use, such as a shopping or sports center, often 

come from surveys, which are expensive and subjective (Frias-Martinez et al., 

2012; Jokar et al., 2013). Recently remote sensing was used to predict land use, 

but remote sensing has difficulty predicting indoor land use with its top view 

(Leung & Newsam, 2015). Therefore, Leung and Newsam (2015) argue that 

proximate sensing, which relies on ground level images, could be another source 

of information to map indoor land use. 

   Proximate sensing or image-driven mapping discerns information from big 

datasets of ground-level images. Photo-sharing platforms (e.g. Flickr, 

Instagram, Panoramio) and streetview photography platforms (e.g. Mapillary, 

Google Street View) have large datasets of ground-level images publicly 

available via APIs. An API is the part of a web server that receives requests and 

sends responses. This data is already being used in research to predict land use 

or building functions. For example, Sitthi et al. (2016), Tracewski et al. (2017), 

Workman et al. (2017) and Srivastava et al. (2018a) used images from photo-

sharing platforms to make land use maps. 
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Social media and streetview photography provide a different perspective on the 

ground. Social media images are generated by users, show individual 

perspectives and are often located around tourist hotspots (Leung & Newsam, 

2015). These images are useful to identify landmarks (Chen et al., 2017), safety 

perception (Dubey et al., 2016) or city identity (Zhou et al., 2014). Streetview 

images (e.g. from Google Streetview or Mapillary) are globally available, 

geographically spread out over the city via the street network, often provide a 

fixed 360° ground perspective and have been continuously gathered since 2007. 

Streetview images are used to update place labels on Google Maps (Wired, 

2017), to rectify land use of parcels (Pulighe et al., 2015; Verhoeve et al., 2015), 

to monitor urban appearance over time (Naik et al., 2014) and to map land use 

and building functions (Workman et al., 2017). Streetview images have a good 

perspective on buildings to characterize building functions. 

   Models using machine learning and computer vision can classify objects in 

images. Machine learning uses statistical techniques to learn patterns from given 

data to make correct predictions. Computer vision analyses images to produce 

a high-level understanding of image content. One well-known computer vision 

model that uses deep learning is the CNN (LeCun et al., 1998). The CNN 

[Convolutional Neural Network] is successful in various tasks, like image 

classification, object detection, and object segmentation, and has become the 

most commonly used image classifier in computer vision (Guo et al., 2016). 

These advances in machine learning make it possible to classify building 

functions on an object level from images (see figure 0.1). 

Figure 0.1: Characterizing building functions from streetview images  
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Research questions 

The previous paragraphs about proximate sensing, geo-tagged images, and 

computer vision gave a context for this research. The purpose of this research 

is to gain information about building functions from streetview images. By 

automating the acquisition process of building functions, survey costs can be 

lowered, and map updates can be faster. Insights from this research will extend 

academic knowledge by inspecting the importance of building or streetview 

image characteristics. Furthermore, knowledge is expanded by performing 

research in a new geography, namely Amsterdam (see figure 0.2).  The purpose 

and case study together lead to the main research question: 

How can building functions be characterized by streetview images 

in Amsterdam? 

The main question focuses on the process of streetview image mapping and is 

split into sub-questions. To clarify the questions, some definitions are given. 

Streetview images in this research are defined as images, which have a view on 

streets and buildings. A building function is defined as the functional usage of 

a building, such as a shop, office, meeting, residential or industrial use. Every 

building can have multiple functions. Sub-questions are: 

• How can streetview images and building functions be acquired in 

Amsterdam? 

• How accurately can streetview images sense buildings in Amsterdam? 

• How accurately can convolutional neural networks characterize building 

functions from streetview images in Amsterdam? 

• What building and streetview image characteristics are associated with 

correct predictions of building functions from streetview images? 
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   Figure 0.2: A map with buildings in Amsterdam in 2016 
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Reading guide 

The report has several chapters, which follow the introduction, methodology, results and discussion framework (see table 0.1). 

 

Table 0.1: Reading guide and structure of the report 

Chapter 

name 

Introduction Theory Methodology Experiments  

& Results 

Discussion Conclusion Appendix 

Chapter  1  2  3 4 5  

Content Research 

questions 

Land use maps Software setup Data 

acquisition 

Data 

acquisition 

Research 

answers 

USB Content 

 Reading 

guide 

Streetview 

images 

Data  

acquisition 

Data accuracy Data accuracy Further 

research 

 

  Machine 

learning and 

computer 

vision 

Data accuracy Building 

classification 

Building 

classification 

  

   Building 

classification 
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Chapter 1 - Theory 

Firstly, an academic understanding is needed. The academic literature will be reviewed for 

multiple topics: land use maps, streetview images and machine learning for computer vision. 

 

1.1 Land use maps: accuracy and sources 

Building functions are an integral part of land use maps. Buildings are the blocks 

that define how humans use neighborhoods and cities (Steiniger et al., 2008). If 

there are a lot of shops in a street, the street is a shopping street. If there are 

multiple shopping streets in proximity, the neighborhood is used for shopping. 

Besides buildings, land use maps show more information, such as fields, parks 

or farmland. Land use maps portray all human activities in the environment 

(Erb et al., 2007; Jokar et al., 2013) and are used in environmental studies, spatial 

planning and urban management (Jokar et al., 2013). Currently, in urban areas, 

there is a lack of accurate land use data that is globally available via a consistent 

methodology (Bechtel et al., 2015). Buildings largely determine land use in 

urban areas and land use maps are used to improve spatial planning.  

  Accurate land use maps require accurate data acquisition. Accuracy of land use 

maps is important for several reasons: environmental management should make 

decisions on correct data, the errors or uncertainties from land use maps should 

not propagate in land use models and land use maps as an end product should 

be accurate (Bechtel et al., 2015; Jokar et al., 2013). For example, land use maps 

are used in regression models to predict air pollution based on the industrial, 

residential or infrastructural use of land (Eeftens et al., 2012) or are used as 

input for climate models (Bechtel et al., 2015). The prediction of pollution or 

climate should have errors within acceptable limits due to errors in the land use 

map. Policymakers and researchers depend on the quality of land use data to 

make decisions for improvement of environmental quality and resource 

management. 



Chapter 1 - Theory 

 

16 

 

   There are several potential sources of information for land use maps in urban 

areas: census data, remote sensing or proximate sensing. Each method has its 

advantages and disadvantages. 

   Firstly, census data about building and parcels is gathered by governmental 

organizations in the Netherlands (BAG, 2010) and other countries (Erb et al., 

2007). Advantages are mapping based on domain knowledge of local experts, 

high spatial resolution, homogenous cover and often high accuracy. 

Disadvantages are financial costs and administrative work. 

   Secondly, volunteered information about land use is gathered by volunteers 

to create land use maps. Some examples are GeoWiki, OpenStreetMap or 

Verbeter de kaart (Fritz et al., 2012; Jokar et al., 2013; Kadaster, 2016c). 

Advantages are fast updates, low expenditure, and local knowledge. 

Disadvantages are the subjective source and possible vandalism. 

   Thirdly, satellite images provide information by remotely sensing the 

environment. Advantages of satellite images are the global scale, high accuracy 

and free availability (Bechtel et al., 2015). Some disadvantages of deriving land 

use maps from satellite imagery are clouds (Kovalskyy & Roy, 2013), its top 

view (Leung & Newsam, 2015) and coarse resolution.  

   Fourthly, planes sense the natural and built-up environment (Belgiu et al., 

2014). Advantages are high spatial resolution and high accuracy. Aerial images 

have similar limitations as satellite images, but on top, they are costly and not 

globally available.  

   Fifthly, streetview images are a source for land use maps by sensing on the 

ground level what activities happen where in the built-up and natural 

environment (Kovalskyy & Roy, 2013; Leung & Newsam, 2015). Streetview 

images have the advantage of ground perspective, notable global availability, 

high spatial resolution, and high accuracy. 

Land use maps can be based on census data, remote sensing, and proximate 

sensing. Streetview images are a new potential source for land use mapping. 
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1.2 Streetview images: geo-tagged images, panoramas, and privacy 

Streetview images are images, taken from the street, that have a view on streets 

and buildings. Generally, two types can be distinguished: geo-tagged images 

from photo-sharing platforms and images from mapping platforms. 

   Geo-tagged images from photo-sharing platforms (e.g. Flickr, Panoramio or 

Instagram) are used in academic research to find the perspective of the 

individual. These platforms have large user bases and provide access to 

geotagged photos through APIs (Dubey et al., 2016). The geo-tagged images 

can help determine what human activities are done where. Not everywhere 

though; photos from photo-sharing platforms are limited to interesting places, 

such as cities, touristic places, and events (Leung & Newsam, 2015). 

Supplementary there are more limitations to images from photo-sharing 

platforms: privacy issues due to visible faces or license plates, no data quality 

check, non-standardized image quality, and non-standardized GPS. Advantages 

of images from photo-sharing platforms are individual perspective, high 

temporal resolution, and potential view inside the building. 

   Images from mapping platforms, such as Google Street View, are available 

through large global streetview image archives (Dubey et al., 2016). These image 

archives keep expanding and have both geo-tagged panoramas and images. 

Google Street View cars drive around the world every day with cameras and a 

GPS with a horizontal position accuracy of 2.5 meters  (Google, 2018c; Khosla 

et al., 2014; Zhou et al., 2014). Google combined the data from the gyroscope, 

magnetometer, and cameras to make 360º panoramas, where the pitch (up-

down) and compass heading can be changed. At every streetview location, the 

camera can be pointed towards an object. Via an API the image can be retrieved. 

Before Google provided 25,000 free streetview images per day, but Google 

changed policy and only allows roughly 28,000 free images per month (Google, 

2018b). Google shares high-quality Google Street View images via an API. 
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Another mapping platform, Mapillary, stores and distributes streetview images 

from users for users. The crowdsourced images from Mapillary have similar 

limitations as images from photo-sharing platforms, i.e. Mapillary has non-

standardized data acquisition. However, Mapillary has the benefit of free 

availability, higher temporal resolution, and some users of Mapillary (e.g. 

municipality of Amsterdam) providing high-quality 360º images through 

Mapillary. In the future, more streetview images are expected to come from 

autonomous vehicles, who need to sense the environment for navigation 

(Taneja et al., 2014; Wegner et al., 2016), which could be shared through 

platforms such as Mapillary or Google Street View. 

  Privacy issues are a big concern for streetview images. Persons, license plates 

and home addresses can be identified from images if there are no blurs. Privacy 

risks are addressed in Europe by national law and European law. Germany and 

Austria prohibited Google Street View cars to gather any data. European law 

states in GDPR article 5.1a (EuropeanParliament, 2016): “Personal data shall 

be processed lawfully, fairly and in a transparent manner in relation to the data 

subject (‘lawfulness, fairness and transparency’)”. In this research buildings are 

the data subjects and there is no need to have personal data. Google Street View 

blurs faces and license plates in streetview images, that were gathered by 

Google. User-generated images on Google Street View do not have blurs. 

Other mapping platforms, such as Mapillary, or photo sharing platforms, such 

as Flickr or Instagram with user-generated images, do not have blurs either. The 

processing of streetview images requires ethical practices to stay within the 

national and European law. 
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1.3 Machine learning and computer vision: building classification  

Large image archives can efficiently be analyzed with machine learning 

algorithms and computer vision. Machine learning algorithms are good at 

learning non-linear numerical patterns and computer vision has a tradition in 

identifying objects, edges, gradients or colors in images. A boom in machine 

learning can be attributed to advances in machine learning algorithms, increased 

computational power (e.g. GPU, TPU), lowered cost of computing hardware 

(Bengio et al., 2014; Guo et al., 2016), clustered parallel processing architectures 

and larger training datasets. 

   Deep learning is a branch of machine learning and is becoming a standard. 

Deep learning has multiple layers of information-processing in hierarchical 

architectures (Deng, 2014), is commonly based on artificial neural networks and 

has high accuracy. He et al. (2015) developed and trained a deep learning 

algorithm for a challenging 1000 class image recognition task that beat human 

level performance of 5.1% in image classification with a top-5 test error rate of 

4.94%. With the increasing performance of deep learning models, deep learning 

became more commonly used in image recognition (Guo et al., 2016) and 

geoscience (Ghamisi et al., 2017; Zhu et al., 2017).  

   In deep learning, a non-linear predictive model is trained to fit patterns in the 

data. During training, there are two stages: forward and backward (Guo et al., 

2016; LeCun et al., 2015). In the forward stage, the model predicts the output 

label from the input data. The backward stage checks the misclassification, i.e. 

loss, and changes the weights of the model to minimize the loss by back-

propagation. This process of changing weights is iterated numerous times to 

gradually approach to the optimal answer. Therefore, the performance of deep 

learning models is heavily dependent on the quality of training data. 
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Convolutional neural networks are a specific subtype of deep learning models, 

that focus on image recognition and are based on a 2-dimensional convolution 

with weights shared in the image plane. The CNN architecture has two phases, 

feature learning and classification:  

• Feature learning consists of an input image, convolutional layers, pooling 

layers, Rectified Linear Unit [ReLU] and an output vector (LeCun et al., 

2015)(see figure 2.7). The convolutional layers activate certain features in 

the images. The ReLu function applies a non-linear function on the 

convolved feature images by only selecting positive values. The 

convolution and ReLu function together detect local motifs in colors, 

blobs or features invariant to the location in the image (LeCun et al., 

2015). Pooling layers pass a window over the feature maps and take the 

average or maximum value of this window. After pooling a filter “sees” 

a larger part of the image. 

• In the classification phase, the output vector is turned into a label via a 

fully connected neural layer and softmax for multiple labels or sigmoid 

layer for binary label output (see figure 2.7). 

Both phases are learned in a single optimization, unlike traditional machine 

learning where features are pre-defined. To summarize, feature detection is 

learned invariant of location in the feature learning phase and in the 

classification phase, the outcome of detected features is turned into a label. 

Figure 2.7: Architecture typical convolutional neural network (MathWorks, 

n.d.) 
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The architecture and trained weights of convolutional neural networks in the 

feature learning phase can be re-used. This process is also called re-training or 

fine-tuning (Guo et al., 2016). Training the weights of the feature learning phase 

requires a large amount of training data and computation power. To reduce 

computation time, the feature learning phase of a highly accurate CNN can be 

re-trained on an image dataset that shares similar types of features. Only the 

classification phase, specifically the final fully connected neural layer, must be 

re-trained to link detected features in images to output labels. Some well 

performing CNN models are Inception-v3 and MobileNetV1, which have been 

pre-trained on ImageNet (Howard et al., 2017). ImageNet is a collection of 14 

million images with more than 1,000 diverse object classes (Deng et al., 2009), 

and is a popular dataset to train and benchmark computer vision models. It is 

possible to use CNN architectures trained on ImageNet for building 

characterization from streetview images because both image datasets share 

similar image features: RGB images, similar objects and a similar point of view. 

 

1.4 Summarizing the theory 

The insights from this literature review on land use maps, streetview images, 

and machine learning are summarized. Firstly, buildings are part of land use 

maps, land use maps require accurate information and current land use maps 

are often based on information from surveys or remote sensing. Secondly, big 

datasets of images are available from photo-sharing platforms and mapping 

platforms. Streetview images are a good source, because of the even spread, 

street perspective, 360º images, accurate position, and fewer privacy constraints. 

Lastly, machine learning and convolutional neural networks make it possible to 

characterize what is in streetview images. For all these reasons, this research 

chose to use streetview images to classify buildings as individual objects with 

pre-trained CNN models Inception-v3 and MobileNetV1.   
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Chapter 2 - Methodology 

In this chapter, the methodology will be explained. The first section explains how to set up the 

software environment and three latter sections describe the research methodology. 
 

2.1 Software setup 

Software setup will be discussed: data management, hardware, software, and 

scripting setup. 

 

Data management 

Scripts and models have been run in a workspace structure. Small data, reports, 

scripts, and literature were stored on the M:/Drive (50GB) in a workspace 

structure. Large geographical datasets and images were stored on an external 

hard drive (1TB). Back-ups of reports, small data, scripts, and literature were 

stored on a USB-stick (64GB). Reports, scripts, and workspace were backed up 

weekly. Scripts were saved on a GitHub repository: 

https://github.com/Davidswinkels/BuildingCharacterization. 

 
Hardware 

The computers in the thesis room of Geo-Information Science at Wageningen 

University & Research were used to write reports and to make maps on a 

Windows OS. The re-training of the CNN was performed on a GPU of the 

author (NVIDIA GeForce GTX760 with 2GB of RAM) on a 64-bit Ubuntu 

16.04 OS.  

 

  

https://github.com/Davidswinkels/BuildingCharacterization
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Software 

ArcMap 10.5 was used to select spatial data, to inspect spatial data and to 

visualize maps. Coordinate system during processing was geographic 

coordinate system WGS84 (EPSG: 4326) because streetview images have 

WGS84. Final maps were made with the projected coordinate system RD New 

(EPSG: 28992). 

Python 2.7 was used to download images, to classify images, to train models, to 

characterize land use, to perform statistics and to automate the whole process. 

The following Python packages were used: urllib, TensorFlow, NumPy, Pandas, 

and SciPy. Urllib downloaded Google Street View images. TensorFlow was 

used to do deep learning with a Convolutional Neural Network. TensorFlow 

utilized CUDA to access the GPU and to perform GPU processing. Numpy 

was used in array calculations. Pandas handled data frames and data structures 

in Python. SciPy performed statistics, such as T-test and ANOVA. Python 

scripts were run from bash terminal and debugged in PyCharm IDE. 

R 3.4.0 was used in Rstudio to perform concatenation of building functions. 

 
Scripting setup 

Scripts were set up in Python by using Conda. Conda is a combination of 

virtualenv, which creates virtual environments, and pip, which installs packages. 

TensorFlow with GPU had special requirements: GPU with CUDA Compute 

Capability 3.0 or higher, CUDA 9.0 or higher and cuDNN 7.0 or higher. After 

requirements were done, Bash code created a new virtual environment called 

tf_py2 with Python=2.7, pip, Pandas, Numpy, urllib3, pillow, SciPy, and 

TensorFlow (see snippet 2.1). 
 

Snippet 2.1: Bash – creating an environment with Conda to install packages 

conda create --name tf_py2 python=2.7 pip pandas numpy 

conda install --name tf_py2 --channel anaconda urllib3 pillow scipy 

source activate tf_py2 

pip install tensorflow-gpu 
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2.2 Data acquisition 

Building data 

The research used the building and address dataset (BAG) in Amsterdam of 

2016. The building data was available in 2016, was usable for non-commercial 

purposes and was made by professionals. The BAG dataset stored functional 

usage information of addresses. These functions have been standardized by 

urban planners (Bouwbesluitonline, 2012) and were translated (see table 2.1). 

Table 2.1: Function classes in BAG (Bouwbesluitonline, 2012) 

Function  

(Dutch) 

Function 

(English) 

Description 

Woon Residential A place for residing. 

Bijeenkomst Meeting A meeting place for art, culture, 

religion, communication, catering and 

watching sports. 

Cel Cell Cell/prison – a place for compulsory 

stay. 

Gezondheidszorg Healthcare A place for medical research, nursery, 

care or treatment. 

Industrie Industry A place for professional storing and 

using of materials and goods, or for 

agricultural purposes. 

Kantoor Office A place for administration. 

Logies Accommodation A place for recreational 

accommodation or temporary shelter 

for a person. 

Onderwijs Education A place for education. 

Sport Sport A place to exercise sports. 

Winkel  Shop Place for trading in materials, goods or 

services. 

Overige Other A place where none of the previous 

functions could be appointed and 

where residing of persons is a 

subservient function. 
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The BAG dataset stored the geometry and function of all buildings and 

addresses in the Netherlands. The BAG dataset has buildings with polygon 

geometries and addresses with point geometries (see figure 2.1). Address data 

contained information on the street, house number, municipality, and 

functional usage. Building units, such as apartments, could be stacked on top 

of each other. A building could have multiple addresses and each address could 

have multiple functions. The goal was to give buildings a label related to the 

presence or absence of the function (see figure 2.1). 

Figure 2.1: Top view of two buildings (left) and multi-labels buildings (right) 

 
Before combining addresses and buildings, valid data was selected. Firstly, 

buildings and addresses were selected in the municipality of Amsterdam. 

Secondly, buildings and addresses that were in use (see snippet 2.2 and 2.3) were 

selected. Thirdly, buildings spatially containing an address were selected. An 

example of a building without an address was a storage silo in Amsterdam 

harbor. Fourthly, buildings and addresses on land were selected. Some buildings 

and addresses were located on the water because the building was a boat or 

because the house was built on water. ArcMap was used to select valid buildings 

in Amsterdam. 

Snippet 2.2: SQL query ArcMap - selecting buildings in use 

EindDatum IS NULL AND ( Status = 'Pand in gebruik' OR Status = 'Pand in 

gebruik (niet ingemeten)' ) 
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Snippet 2.3: SQL query ArcMap - selecting addresses in use 

EindDatum IS NULL AND ( Status = 'Verblijfsobject gevormd' OR Status = 

'Verblijfsobject in gebruik' OR Status = 'Verblijfsobject in gebruik (niet 

ingemeten)' ) 

 

Now buildings and addresses were combined. Each building and address got a 

unique BuildingID or unique AddressID based on the unique ID in the 

‘Identificatie’ column. If the building polygon contained the address, then 

addresses were spatially joined to buildings with the join operation 

‘JOIN_ONE_TO_MANY’. A stack of building units (e.g. apartments) was a 

stack of multiple building polygons. An address was joined to these multiple 

building polygons because it was unknown to which specific building polygon 

the address belonged. The downloaded BAG dataset did not have any columns 

with identifiers to link buildings and addresses directly. Buildings and addresses 

were spatially joined. The spatial join created multiple building polygons for 

each address that was added to a building (see table 2.2). 

 

 
  

Table 2.2:  Example address functions joined to buildings 

BuildingID Function AddressID 

363100012069865  office 363010001026079 

363100012069865  office 363010001026080 

363100012069865  office 363010001026081 

363100012069865  office 363010001026082 

363100012070234  office 363010001008860 

363100012073393  meeting 363010012076488 

363100012073393  meeting 363010012076489 

363100012073393  meeting; office 363010012076490 
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The multiple buildings had to be merged whilst keeping information from 

multiple addresses and their respective functions. A script in R aggregated all 

functions per building as one long line of text (see snippet 2.4). 

Snippet 2.4: R – aggregate functions for every building  

buildings_aggr <- aggregate(Function ~ BuildingID, data = Buildings, paste, 

collapse = ",") 

 

The aggregated buildings were assigned with multiple class labels. For every 

function, a new column was created. The values in the column were set to 1 (= 

present) or 0 (= absent) based on the presence or absence of the function in 

the concatenated text (see table 2.3). 

After labeling the buildings with functions, the functions were added to the 

geometry and building polygons were transformed into points. Functions were 

joined from a CSV file to a shapefile in ArcMap based on the unique 

Table 2.3: Concatenated building functions per BuildingID 

BuildingID Function 
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363100012061186 industry, 

meeting  

0 1 0 1 0 0 0 0 0 

363100012061187 residential, 

residential, 

industry 

1 0 0 1 0 0 0 0 0 

363100012061188 residential 

  

1 0 0 0 0 0 0 0 0 

363100012061189 shop, 

residential, 

residential 

1 0 0 0 0 0 0 0 1 

Note: Land use labels are dichotomous present (1) or absent (0) 
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BuildingID. The neighborhoodID was spatially joined to the building and then 

was used to separate the training and testing datasets. Building polygons were 

converted into centroids (see figure 2.2) because the Google Street View camera 

needed to be pointed towards one location. Looking in the direction of the 

centroid gave a good view on the building from any direction. 

 

Figure 2.2: Building polygons and their centers of gravity 

 

Streetview data 

After acquiring the locations of the buildings in Amsterdam, the streetview data 

were downloaded. Out of the multiple sources of streetview data, a choice was 

made for Google Street View images, because the streetview images from 

Google were available on most streets in the Netherlands, had 360° horizontal 

perspective, could be pointed in any direction to look at a building and had 

good quality camera, GPS, accelerometer and gyroscope.  

   Streetview images were downloaded with appropriate camera parameters. 

The heading of the camera was turned towards the building facade (see figure 

2.3 and 2.5). The heading is in compass degrees, where 0° is to the North and 

90° is to the East. Image zoom levels were defined by the field of view [FOV] 

in degrees and images were downloaded at FOV = 90°, FOV = 60° and FOV 

= 30° (see figure 2.4 and 2.5). 
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                    Heading = 0°            Heading = 150° 

Figure 2.3: Streetview images with changed heading near Amsterdam CS. 

FOV = 90°   FOV = 60°     FOV = 30° 

Figure 2.4: Streetview images with changed field of view near Amsterdam CS. 

 
 

 

 

 

 

 

 

 

           Changing heading                                         Changing FOV 

Figure 2.5: Streetview car with changing heading and changing field of view 

from a top perspective. Note: the same streetview location is displayed in all 

figures on this page.  
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Downloading the streetview image had several steps. First, all available 

streetview panoramas were found nearby a location by performing a query to 

the Google API server (see snippet 2.5). Streetview panoramas were selected 

roughly 50 meters around the input location. To avoid downloading user 

images, only panoramas by user “Google” were selected. Then one panorama 

with the closest date to the date of the building dataset of 2016 was selected. 

The preferred year was 2016, 2015, 2014, 2013, 2012, 2011 and 2010 in that 

order. The location of the panoramas was expressed in latitude and longitude 

with WGS84 as the coordinate system. The resulting selection returned one 

unique panorama id, location, and date. 

 

Snippet 2.5: Python – find streetview panoramas nearby location 

url="https://maps.googleapis.com/maps/api/js/GeoPhotoService.SingleI

mageSearch?pb=!1m5!1sapiv3!5sUS!11m2!1m1!1b0!2m4!1m2!3d{0:}!4d{1:}

!2d50!3m10!2m2!1sen!2sGB!9m1!1e2!11m4!1m3!1e2!2b1!3e2!4m10!1e1!1e2!

1e3!1e4!1e8!1e6!5m1!1e2!6m1!1e2&callback=_xdc_._v2mub5 " 

url.format(('51.983535', '5.663232')) 

requests.get(url) 

 

After selecting one panorama, the camera was pointed from panorama towards 

the centroid of the building. First, the heading from panorama to building 

centroid was calculated. Then three streetview images 640 pixels wide and high 

were downloaded at field of view 30, 60 and 90 degrees from one panorama 

(see snippet 2.6). Each image was stored with a unique filename containing the 

neighborhoodID, buildingID, panoramaID, FOV in such a way that they could 

easily be found again manually or automatically with a regular expression. 

Snippet 2.6: Python – download streetview image 

base_url = "https://maps.googleapis.com/maps/api/streetview?size=" 

url = base_url + size + "&pano=" + pan['panoid'] + "&heading=" + 

str(heading) + "&pitch=0&fov=" + str(fov) + "&key=" + api_key 

filepath = save_dir + filename + ".jpg" 

urllib.urlretrieve(url, filepath) 
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During downloading, a CSV file kept track of download availability, panorama 

data, and panorama quality. Sometimes no panoramas were available at a given 

location or given date. The panorama ID, date, latitude, longitude,  heading, 

and distance from panorama to building centroid were all saved to keep track 

of the download process and image quality. The distance between the two 

locations in the WGS84 coordinate system was calculated as the great-circle 

distance with the haversine formula. The download limit of streetview images 

was 25,000 images per day for a free account. The policy has recently changed 

to 28,000 images per month (Google, 2018b). Downloading was performed in 

batches of 24,000 images for 8,000 buildings per day amounting to 325,000 

images. 

 

The quality of streetview images was improved by deselecting invalid images.    

• Some images were taken from a boat on the water. 

• Some images were shot inside buildings, such as the opera hall.  

• Some images had inaccurate locations due to bad GPS (see figure 2.6) or 

the urban canyon effect (Ben-Moshe et al., 2011). Urban canyons block 

line of sight with GPS satellites and contribute to poor GPS accuracy.  

• Some streetview images did not have correct jpg/JFIF format.  

All these incorrect streetview images were removed. Invalid streetview images 

got the value ‘invalid’ in the column ‘valid’.  
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Figure 2.6: Streetview images with correct locations colored green (left) and 

some streetview images with inaccurate locations colored red (right) 
Data selection 

The building data of BAG had 11 land use classes with an imbalanced 

distribution. The residential function was very common; 111,585 buildings out 

of 124,818 total buildings had a residential function. Other common building 

functions were other, shop, industry, office and meeting with respectively 8,202, 

7,663, 6,280, 4,548 and 4,471 buildings out of the 124,818 buildings. Some 

uncommon building functions were education, sport, accommodation, 

healthcare, and cell, with respectively 763, 440, 422, 364 and 8 buildings having 

that function (see table 2.4).  

Table 2.4: Distribution of building functions before invalidation 

(n = 124,818) 

Function Count Percentage 

 n % 

Residential 111,585 89.4 

Other 8,202 6.6 

Shop 7,663 6.1 

Industry 6,280 5.0 

Office 4,548 3.6 

Meeting 4,471 3.6 

Education 763 0.6 

Sport 440 0.4 

Accommodation 422 0.3 

Healthcare 364 0.2 

Cell 8 0.0 

Note: Every building can have multiple functions present 
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Buildings with invalid streetview images were deselected (see table 2.5). 

• No streetview images were available near the building in 16,963 cases. 

• Streetview images were located on water in 50 cases. 

• Streetview images had an invalid location in 1,421 cases. The invalid 

location was mainly due to inaccurate GPS in urban canyons.  

• Sometimes streetview images did not exist after downloading or had a 

wrong jpg format in 37 cases.  

Table 2.5: Buildings with invalid data 

(n = 18,468) 

Reason Count Percentage 

 n % 

No streetview image download available 16,963 91.8 

Streetview image located on water 50 0.3 

Streetview image has invalid location 

(except water) 

1,421 7.7 

Streetview image does not exist after 

download or had wrong jpg format 

37 0.2 

Note: Streetview image can have a wrong location and wrong image format 

 

The buildings with invalid streetview images were mainly located at the fringes 

of Amsterdam (see figure 2.7). Some neighborhoods had low percentages of 

building with valid streetview images because the neighborhoods consisted of 

recently built buildings (e.g. Rieteiland Oost), had no Google Street View car 

coverage after 2008/2009 (e.g. Gein Noordoost or Bijlmermuseum), were 

partly inaccessible by car or had invalid streetview images. Every neighborhood 

in Amsterdam with buildings still had some buildings with valid streetview 

images. 
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Figure 2.7: A map of buildings with valid Street View images per neighborhood in Amsterdam in 2016 
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After selecting valid data and usable building functions, a smaller portion of 

data was left. There were 106,350 buildings left in the dataset. Buildings had 

residential, shop, industry, office and meeting functions in respectively 95,807, 

6,567, 5,394, 3,928, 3,571 out of the 106,350 cases (table 2.6). These five 

building functions were selected because each class had enough samples to 

perform training, validation, and testing. The “other” class had enough samples 

but was deselected. Buildings with “other” function were too varied to be 

consistently classified as “other” building function. The distribution before and 

after the selection was similar.  

 

Table 2.6: Distribution of building functions after selecting valid data 

(n = 106,350) 

Function Count Percentage 

 n % 

Residential  95,807 90.1 

Shop 6,567 6.2 

Industry 5,394 5.1 

Office 3,928 3.7 

Meeting 3,571 3.4 

Note: Every building can have multiple functions present. 
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2.3 Data accuracy 

The data accuracy determines the prediction accuracy of deep learning models. 

Therefore, data quality was checked. 

 
Building data 

The building data from the BAG is created and maintained by professional 

organizations, among them the Kadaster and Dutch municipalities, which strive 

to have very high data quality. The data quality of BAG was found per province 

by consulting the data quality dashboard developed by Kadaster (Kadaster, 

2018a). Amsterdam is in the province of Noord-Holland. The accuracy of the 

BAG in Noord-Holland was 99.8% for the attributes building age, surface size 

and building function, and 99.8% for the geometry (Kadaster, 2018a). 

Furthermore, Kadaster analyzed how building function related to building size 

to find incorrect building functions (see figure 2.8). The province of Noord-

Holland had 99.5% expected correct building functions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8: Expected correct building functions per province in the BAG based 

on the building size in the Netherlands (Kadaster, 2018a) 
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Streetview data 

Google strives for high data quality of Google Street View images by having 

specifications for the Google Street View cameras and reviewing all input 

Google Street View images (Google, 2018a). Some important specifications are: 

• Imagery needs to be ≥8k at 5FPS. 

• Imagery needs to have 360° horizontal FOV. 

• Imagery needs to have ≥135° contiguous vertical FOV. 

• Accelerometer needs to have resolution ≥16 bit. 

• Gyroscope needs to have resolution ≥16 bit. 

• GPS needs to have a horizontal position accuracy of 2.5 meters. 

These specifications show expected data quality and not measured data quality.    

 

Therefore, data quality of downloaded streetview images had to be checked. 

For 100 randomly selected buildings, their three streetview images were 

manually checked qualitatively. This sample of 100 buildings was taken from all 

124,818 buildings minus 16,963 buildings, who had no streetview image 

available. The location was checked in ArcMap. The heading was checked in an 

image viewer by verifying that the middle of the streetview image looks at the 

correct building based on building information in ArcMap and Google Street 

View. Occlusion was checked by determining if the building can be seen for 

each field of view. Some objects, such as vans or greenery, can occlude the view. 

Furthermore, extra info was stored as to why views are blocked or if the 

building function could be determined by the streetview image. A manual 

check-up helped to check data quality of streetview images. 
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2.4 Building function classification 

Building functions were classified by convolutional neural networks with 

supervised classification. Convolutional neural networks extract features from 

images. MobileNetV1 and Inception-v3 are ready-made CNN models, which 

can be fine-tuned to predict new classifications. MobileNetV1 is a shallower 

CNN with fewer layers and Inception-v3 is a deeper CNN with more layers 

(Howard et al., 2017). The models are publicly available via TensorFlow and 

have been pre-trained on ImageNet, which has similar images as streetview 

images (see section 1.4). MobileNetV1 was chosen for its fast computation time 

and Inception-v3 for its high accuracy.  

   Roughly 60% of buildings were used for training, 20% for validating, and 20% 

for testing. The training dataset trained the models. Validation dataset was used 

to check progress during the training phase and to perform 4-fold validation by 

changing training and validation dataset. Each of the five folds was made to 

have a similar distribution of all types of building functions. Cross-validations 

helped to see if variation in training data leads to a different test result. The test 

dataset tested the prediction accuracy of the image classifiers on unseen data. 

The train and test images were spatially separated to overcome spatial 

autocorrelation by appointing all buildings in the same neighborhood to the 

same category (Khosla et al., 2014; Salesses et al., 2013)(see figure 2.9). Invalid 

streetview images or buildings were not used for training, validating or testing. 

 

 

 

Figure 2.9: Separation of training, 

testing and validation buildings 

based on neighborhood  
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By iterating over cross-validation runs, building functions, CNN architectures 

and field of views 160 CNN models were run (see snippet 2.7). Inception-v3 

had input image size of 299 by 299 pixels and MobileNetV1 224 by 224 pixels 

and both architectures used RGB images. Original streetview images with 640 

by 640 pixels were downsized to appropriate image size per architecture. Each 

CNN was fine-tuned on 60% of the streetview images, had 4,000 training steps, 

a learning rate of 0.01, training batch size of 100 images and test batch size of 

one image. The mixed field of view had a random selection of a field of view at 

30°, 60° or 90° degrees. In this way a test was performed to check if it matters 

for the prediction accuracy of the image classifier to have either images with 

same field of view or images with varying field of view. The CNN with mixed 

field of view used all 319,050 streetview images for training, validation and 

testing. The CNNs with single field of view used only 106,350 streetview images 

for training, validation and testing. Each model predicted binary labels, either 

absence or presence of the specific building function. Binary classification of 

multi-labels was used because distribution of building functions was very 

imbalanced. Per CNN model run the outcome metrics were stored.  

Snippet 2.7: Python – loop over cross validations runs, building functions, 

CNN architectures, field of views to run CNN models in TensorFlow 

cross_validations = [0, 1, 2, 3] 

building_functions = ['Residentia', 'Meeting', 'Industry', 'Office', 'Shop'] 

architectures = ['inception_v3', 'mobilenet_1.0_224'] 

fovs = ['F30', 'F60', 'F90', 'F30_60_90'] 

 

for cross_validation in cross_validations: 

  for building_function in building_functions: 

    for architecture in architectures: 

      for fov in fovs: 

          tf.app.run(main=main, argv=[sys.argv[0]] + unparsed) 

Note: tf.app.run() selects cross-validation run, building function, field of 

view and architecture based on the global variable.  
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The accuracy of predictions was checked by outcome metrics. In the used 

dataset, labels were very imbalanced. Roughly 90% of buildings had a residential 

label and 10% had a non-residential label. This imbalance of observations in 

classes with a binary prediction required multiple outcome statistics, such as 

overall accuracy, and average accuracy and F1-score (Ghamisi et al., 2017; 

Powers, 2011; Volpi & Tuia, 2016). Overall accuracy gives an accuracy of all 

data objects and average accuracy gives accuracy over classes. F1-score is the 

harmonic mean of the precision and recall. By taking the harmonic mean a high 

F1-score requires both a high precision and recall to be high itself. Precision is 

the rate of true positives divided by true positives plus false positives. Recall, 

also known as sensitivity, is the rate of true positives divided by true positives 

plus false negatives. As an extra outcome metric, the computation time of the 

CNN models was tracked, to check how much time each model needed. The 

F1-score, overall accuracy and average accuracy were the main outcome metrics 

used to assess the accuracy of the CNN models. 

   Correct building function predictions by the CNN were collectively analyzed. 

The analysis showed which and why building functions were hard to predict. 

Correct predictions were compared for the five building functions: residential, 

shop, industry, office and meeting. Same for the two architectures: Inception-

v3 and MobileNetV1. The association of data characteristics with correct 

predictions was statistically checked. This was done by checking if certain field 

of views, distance from streetview image to the building, streetview image age, 

building age or neighborhood were significantly associated with correct 

predictions by performing an independent t-test or ANOVA. Data analysis of 

outcomes was performed to understand why convolutional neural networks do 

correct predictions. 
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Chapter 3 - Results 

In this chapter, results are shown of data acquisition, data accuracy, and building 

classification.  

 

3.1 Data acquisition 

In figures 3.1–3.13 a selection of streetview images is shown at different fields 

of view with the multi-label depicting multiple functions per building. 

 

FOV = 30°   FOV = 60°     FOV = 90° 
Figure 3.1: Streetview images (id: ej9TGTL6wis9yRUGagTumw) looking with 
field of view of 30, 60 and 90 degrees at building (id: 363100012062354) 

Table 3.1: Building functions of BuildingID 363100012062354 

Function Residential Meeting Industry Office Shop 

Presence Yes No No No No 

 
 

FOV = 30°   FOV = 60°     FOV = 90° 
Figure 3.2: Streetview images (id: oX22-GUAt_IubZRNutYHgg) looking with 
field of view of 30, 60 and 90 degrees at building (id: 363100012148038) 

Table 3.2: Building functions of BuildingID 363100012148038 

Function Residential Meeting Industry Office Shop 

Presence No Yes No No No 
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FOV = 30°   FOV = 60°     FOV = 90° 
Figure 3.3: Streetview images (id: 4pTxSPl6epjxX1iIkHxJJA) looking with 
field of view of 30, 60 and 90 degrees at building (id: 363100012089326) 
 

Table 3.3: Building functions of BuildingID 363100012089326 

Function Residential Meeting Industry Office Shop 

Presence No No Yes No No 

 
 
 

FOV = 30°   FOV = 60°     FOV = 90° 
Figure 3.4: Streetview images (id: MXUz2NUGwQw4MMbSP5SzFg) looking 
with field of view of 30, 60 and 90 degrees at building (id: 363100012079218) 
 

Table 3.4: Building functions of BuildingID 363100012079218 

Function Residential Meeting Industry Office Shop 

Presence No No No Yes No 
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FOV = 30°   FOV = 60°     FOV = 90° 
Figure 3.5: Streetview images (id: v7GP5wMp7GYTuQK0TQEpOw) looking 
with field of view of 30, 60 and 90 degrees at building (id: 363100012165088) 
 

Table 3.5: Building functions of BuildingID 363100012165088 

Function Residential Meeting Industry Office Shop 

Presence No No No No Yes 

 
 
 

FOV = 30°   FOV = 60°     FOV = 90° 
Figure 3.6: Streetview images (id: UqoapBKhfyZYOWMgY_db3w) looking 
with field of view of 30, 60 and 90 degrees at building (id: 363100012141527) 
 

Table 3.6: Building functions of BuildingID 363100012141527 

Function Residential Meeting Industry Office Shop 

Presence Yes Yes No No No 
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FOV = 30°   FOV = 60°     FOV = 90° 
Figure 3.7: Streetview images (id: Z4NlrlM2uD-TIvctKElKuQ) looking with 
field of view of 30, 60 and 90 degrees at building (id: 363100012061289) 
 

Table 3.7: Building functions of BuildingID 363100012061289 

Function Residential Meeting Industry Office Shop 

Presence Yes No Yes No No 

 
 
 

FOV = 30°   FOV = 60°     FOV = 90° 
Figure 3.8: Streetview images (id: QsmLMrc_Xoodmi8UaDwFgw) looking 
with field of view of 30, 60 and 90 degrees at building (id: 363100012090032) 
 

Table 3.8: Building functions of BuildingID 363100012090032 

Function Residential Meeting Industry Office Shop 

Presence Yes No No Yes Yes 
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FOV = 30°   FOV = 60°     FOV = 90° 
Figure 3.9: Streetview images (id: pKOlhlRTtT5njKGvJlWG1A) looking with 
field of view of 30, 60 and 90 degrees at building (id: 363100012170947) 
 

Table 3.9: Building functions of BuildingID 363100012170947 

Function Residential Meeting Industry Office Shop 

Presence Yes No No No Yes 

 
 

FOV = 30°   FOV = 60°     FOV = 90° 
Figure 3.10: Streetview images (id: udeOyjSQyqX7P8zbKxLMSg) looking 
with field of view of 30, 60 and 90 degrees at building (id: 363100012128931) 
 

Table 3.10: Building functions of BuildingID 363100012128931 

Function Residential Meeting Industry Office Shop 

Presence Yes Yes Yes Yes Yes 
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FOV = 30°   FOV = 60°     FOV = 90° 
Figure 3.11: Streetview images (id: mYyPOHi89deVSd8L25KIkg) looking with 
field of view of 30, 60 and 90 degrees at building (id: 363100012137189) 
 

Table 3.11: Building functions of BuildingID 363100012137189 

Function Residential Meeting Industry Office Shop 

Presence No No Yes No No 

 
 

FOV = 30°   FOV = 60°     FOV = 90° 
Figure 3.12: Streetview images (id: p2gu5KLF7GY8YYHb_jME4Q) looking 
with field of view of 30, 60 and 90 degrees at building (id: 363100012150001) 
 

Table 3.12: Building functions of BuildingID 363100012150001 

Function Residential Meeting Industry Office Shop 

Presence Yes No No Yes No 
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FOV = 30°   FOV = 60°     FOV = 90° 
Figure 3.13: Streetview images (id: p2gu5KLF7GY8YYHb_jME4Q) looking 
with field of view of 30, 60 and 90 degrees at building (id: 363100012150001) 
 

Table 3.13: Building functions of BuildingID 363100012150001 

Function Residential Meeting Industry Office Shop 

Presence Yes No No Yes Yes 

 
The streetview images give a good view on buildings and often it is possible to 

guess the building function correctly based on the facade.  

• Residential buildings are often made out bricks, do not have many signs, 

have a simple door and a simple window (see figure 3.1).  

• Hotels, restaurants, and bars (meeting function) often contain tapestry 

and large signs (see figure 3.2).  

• Industrial buildings often have garage doors and metal plates (figure 3.3). 

• Offices often have large glass panes and revolving doors (see figure 3.4).  

• Shops often have colorful goods, people and signs (see figure 3.9). 

Some images show a residential building façade but do have an office or shop 

function (see figure 3.13). Often it is hard to distinguish all functions of a 

building with multiple functions. One example is a building that looks like a 

restaurant but has a residential, meeting, industry, office and shop function (see 

figure 3.10). There is variation in the images. Streetview images vary due to the 

architectural style, heading towards building, illumination, urban context, and 

occlusion. Some images have cars, people, bikes or trees as the urban context.  
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3.2 Data accuracy 

Building data 

The building data accuracy was checked by Kadaster (see section 2.3). 

 
Streetview data 

A small random selection of 100 downloaded streetview panoramas was 

validated by checking location, heading and image quality (see table 3.14). The 

sample was selected directly after downloading and just before invalidating 

images due to their invalid location.  

Table 3.14: Streetview data accuracy 

(n = 100, N = 107,855) 

Function Count Percentage 

 n % 

Correct image location 98 98.0 

Correct image heading 83 83.0 

Image unobstructed at FOV 30° 87 87.0 

Image unobstructed at FOV 60° 88 88.0 

Image unobstructed at FOV 90° 88 88.0 

 

The location was correct for 98 out 100 streetview panorama. One of the two 

erroneous locations is shown in figure 3.14. The Google Street View car was 

driving on a road to the South of some buildings, but the GPS registered a 

position to the North of the buildings. The user was ‘Google’, timestamp was 

October 2016 panoID was ‘ZDvWozrF0Wvxqx7nIxRdpg’, and the location 

was roughly 35 meters off. The erroneous location was part of a series of 

erroneous locations. If the location of the 

streetview image was wrong, the heading also did 

not point correctly to the building centroid. 

Figure 3.14: Erroneous location of streetview 
panorama (light blue point) 
(Pano: ZDvWozrF0Wvxqx7nIxRdpg, 
BuildingID: B363100012109580) 
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The heading was correct for 83 out of 100 streetview panoramas. Correct 

headings pointed straight at the building centroid or had a negligible erroneous 

heading up to roughly 10 degrees. Incorrect headings had an error of 10 or 

more degrees, which would often point the camera away from the targeted 

building. For example, a camera was supposed to look at one building with 

house number 18 but it looked at buildings with house numbers 17 and 18 (see 

figure 3.15). Furthermore, the camera did often not have a perpendicular angle 

towards the facade. This resulted in images that looked at multiple buildings. 

Figure 3.15: Erroneous heading of streetview panorama (light blue point) 
and streetview image with erroneous heading (red line shows boundary) 
(PanoID: LJIINN11HDr6ZqenexywLg, BuildingID: 363100012129306) 
 
 

The labels were checked too. Most 

images showed a predictable building 

function. In one case it was hard to see 

if the building had both the residential 

and office function (see figure 3.16). 

 

Figure 3.16: Arguable building function 
of the streetview image 
(Pano: l4petcWy9cWxjjdQU4hmFQ, 
BuildingID: 363100012140584) 
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Images at a FOV of 30, 60 and 90 degrees had an unobstructed line of sight on 

the building in 263 out of 300 instances. Streetview images that were obstructed 

at one field of view were mostly blocked at the other two field of views too. 

When the view on buildings was obstructed, target buildings were occluded in 

the image by other buildings, trees, large shrubs, busses or caravans (see figure 

3.17 and 3.18). When objects like trees or vehicles were in front of the building, 

often there was still a part of the building that could be seen. When buildings 

were in front of the target building, often the view on the correct target building 

was totally obstructed. 

 

FOV = 30°   FOV = 60°     FOV = 90° 
Figure 3.17: Streetview images (id: Q0b8cyOjOJylpUaNB55myg) looking with 
field of view of 30, 60 and 90 degrees at building (id: 363100012107478)      
totally occluded by trees 
 

FOV = 30°   FOV = 60°     FOV = 90° 

Figure 3.18: Streetview images (id: hifeORCkD4G4bLjz9gQZkQ) looking 
with field of view of 30, 60 and 90 degrees at building (id: 363100012086196) 
partly occluded by a van 
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3.3 Building classification 

The goal was to characterize building functions from streetview images. The 

next paragraphs show results of characterizing building functions from unseen 

streetview images for four different field of views and two different CNN. 

 

Prediction metrics 

Residential; the binary CNN classifier based on Inception-v3 architecture 

predicted residential function with F1-score between 0.90 and 0.92, overall 

accuracy between 83.60 and 86.59, and average accuracy between 80.00 and 

83.01 (see table 3.15). Both Inception-v3 and MobileNetV1 models had slightly 

higher average accuracy when predicting images with larger field of views. 

Models predicting from streetview images with a mixed field of view had lower 

overall and average accuracy than models predicting from images with 90 

degrees field of view. 

 

Table 3.15: Outcome statistics of residential function prediction 
(n = 21,142) 

Residential 

 Inception-v3 MobileNetV1 

 F1-score OA AA F1-score OA AA 

unit - %  %  - %  %  

FOV30 0.90  
(0.01) 

83.60  
(2.05) 

80.00  
(0.14) 

0.84  
(0.20) 

78.00  
(22.52) 

60.74  
(2.60) 

FOV60 0.92  
(0.01) 

85.80  
(1.43) 

82.23  
(0.11) 

0.88  
(0.13) 

81.65  
(16.69) 

63.95  
(8.72) 

FOV90 0.92  
(0.01) 

86.59  
(1.73) 

83.01  
(0.29) 

0.76  
(0.12) 

66.50  
(13.50) 

76.41  
(5.01) 

FOVmix 0.91  
(0.01) 

84.11  
(1.30) 

81.12  
(0.13) 

0.94  
(0.01) 

89.25  
(1.82) 

74.65  
(5.21) 

Note: The first number is an average and the second number between 
brackets is the standard deviation. Both were calculated over four cross-
validation runs. 
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Meeting; the binary CNN classifier based on Inception-v3 architecture 

predicted meeting functions with F1-score between 0.19 and 0.20, overall 

accuracy between 80.12 and 81.34, and average accuracy between 74.13 and 

75.07 (see table 3.16). Models based on Inception-v3 and MobileNetV1 had the 

highest average accuracy with images with 30 degrees field of view. The model 

based on MobileNetV1 with images with 90 degrees field of view had a very 

low overall accuracy of 48.94. 

 

Table 3.16: Outcome statistics of meeting function prediction 
(n = 21,142) 

Meeting 

 Inception-v3 MobileNetV1 

 F1-score OA AA F1-score OA AA 

unit - %  %  - %  %  

FOV30 0.20  
(0.02) 

81.34  
(3.58) 

75.07  
(0.59) 

0.19  
(0.03) 

86.59  
(9.98) 

64.69  
(5.30) 

FOV60 0.20  
(0.01) 

80.38  
(3.18) 

74.69  
(0.99) 

0.17  
(0.07) 

82.43  
(19.50) 

62.55  
(5.87) 

FOV90 0.19  
(0.01) 

80.12  
(1.62) 

74.13  
(0.42) 

0.13  
(0.06) 

48.94  
(27.36) 

63.86  
(4.44) 

FOVmix 0.20  
(0.01) 

81.24  
(0.98) 

74.55  
(0.18) 

0.17  
(0.06) 

71.21  
(25.68) 

64.51  
(4.84) 

Note: The first number is an average and the second number between 
brackets is the standard deviation. Both were calculated over four cross-
validation runs. 
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Industry; the binary CNN classifier based on Inception-v3 architecture 

predicted industry functions with F1-score between 0.25 and 0.28, overall 

accuracy between 76.50 and 80.77, and average accuracy between 72.16 and 

72.83 (see table 3.17). Both Inception-v3 and MobileNetV1 models did have 

slightly higher average accuracy when predicting industry functions with images 

at 60 degrees field of view. The model based on MobileNetV1 and images with 

90 degrees field of view had a very high overall accuracy of 92.10, but a lower 

average accuracy of 65.43.  

 

Table 3.17: Outcome statistics of industry function prediction 
(n = 21,142) 

Industry 

 Inception-v3 MobileNetV1 

 F1-score OA AA F1-score OA AA 

unit - %  %  - %  %  

FOV30 0.25  
(0.03) 

76.50  
(5.63) 

72.16  
(0.51) 

0.25  
(0.06) 

77.06  
(24.58) 

62.84  
(3.27) 

FOV60 0.28  
(0.02) 

80.77  
(3.30) 

72.83  
(0.53) 

0.29  
(0.06) 

83.63  
(13.02) 

66.73  
(2.57) 

FOV90 0.25  
(0.01) 

76.75  
(1.51) 

72.54  
(0.47) 

0.34  
(0.02) 

92.10  
(1.74) 

65.43  
(2.35) 

FOVmix 0.25  
(0.02) 

76.38  
(5.65) 

72.35  
(0.42) 

0.24  
(0.09) 

67.41  
(26.48) 

64.02  
(2.94) 

Note: The first number is an average and the second number between 
brackets is the standard deviation. Both were calculated over four cross-
validation runs. 
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Office; the binary CNN classifier based on Inception-v3 architecture predicted 

office functions with F1-score between 0.14 and 0.17, overall accuracy between 

66.26 and 77.33, and average accuracy between 68.03 and 70.72 (see table 3.18). 

Inception-v3 had the highest average accuracy with a field of view of 60 degrees. 

MobileNetV1 had the highest average accuracy with 90 degrees field of view. 

  

Table 3.18: Outcome statistics of office function prediction 
(n = 21,142) 

Office 

 Inception-v3 MobileNetV1 

 F1-score OA AA F1-score OA AA 

unit - %  %  - %  %  

FOV30 0.14  
(0.01) 

66.26  
(4.62) 

69.23  
(0.19) 

0.13  
(0.03) 

71.45  
(23.28) 

60.90  
(5.95) 

FOV60 0.16  
(0.01) 

69.06  
(5.13) 

70.72  
(0.41) 

0.17  
(0.04) 

75.70  
(19.90) 

63.75  
(3.02) 

FOV90 0.17  
(0.00) 

77.33  
(2.31) 

68.03  
(1.21) 

0.16  
(0.01) 

80.31  
(8.13) 

64.22  
(3.75) 

FOVmix 0.17  
(0.01) 

75.03  
(4.73) 

69.18  
(1.04) 

0.15  
(0.03) 

80.73  
(18.80) 

60.19  
(4.05) 

Note: The first number is an average and the second number between 
brackets is the standard deviation. Both were calculated over four cross-
validation runs. 
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Shop; the binary CNN classifier based on Inception-v3 architecture predicted 

shop functions with F1-score between 0.34 and 0.38, overall accuracy between 

83.19 and 86.54, and average accuracy between 80.59 and 81.48 (see table 3.19). 

Inception-v3 had slightly higher average accuracy with a field of view of 30 

degrees. MobileNetV1 had the highest average accuracy with images with mixed 

field of views. 

 

Table 3.19: Outcome statistics of shop function prediction 
(n = 21,142) 

Shop 

 Inception-v3 MobileNetV1 

 F1-score OA AA F1-score OA AA 

unit - %  %  - %  %  

FOV30 0.37  
(0.02) 

85.68  
(1.76) 

81.48  
(0.32) 

0.20  
(0.06) 

56.96  
(16.00) 

72.21  
(5.54) 

FOV60 0.38  
(0.03) 

86.54  
(2.54) 

81.39  
(0.21) 

0.32  
(0.15) 

71.10  
(22.83) 

72.13  
(2.44) 

FOV90 0.34  
(0.03) 

83.19  
(3.01) 

80.59  
(0.29) 

0.34  
(0.11) 

78.17  
(23.05) 

71.91  
(4.39) 

FOVmix 0.36  
(0.01) 

85.01  
(1.07) 

81.31  
(0.19) 

0.20  
(0.03) 

60.37  
(9.82) 

74.23  
(3.51) 

Note: The first number is an average and the second number between 
brackets is the standard deviation. Both were calculated over four cross-
validation runs. 

 
The general pattern among the five buildings functions is higher average 

accuracy and smaller standard deviation for CNN models with Inception-v3 

architecture compared to CNN models MobileNetV1 architecture. For the 

building functions from best to worst average accuracy the order is residential 

(81.59%), shop (81.19%), meeting (74.61%), industry (72.47%) and office 

(69.29%). For the field of views from best to worst average accuracy the order 

is 60 degrees (76.37%), mixed field of view (75.70%), 90 degrees (75.66%) and 

30 degrees (75.59%).  
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Characteristics interpretation 

This study found that streetview images with a smaller distance to building 

centroid had statistically significantly more correct building function predictions 

(t=-28.54,  p=0.00)(see table 3.20). For mixed field of view, the average distance 

for correct predictions was smallest out of four field of view types. Especially 

for residential, meeting and office functions the distance from panorama to the 

building was smaller for correct predictions than for incorrect predictions. 

Table 3.20: Average distance of correct and incorrect predictions for 

residential, meeting, industry, office and shop functions 

(model = Inception-v3; cross-validation run = 0; n = 21,142) 

 Residential Meeting Industry 

subset Correct 
prediction 

Incorrect 
prediction 

Correct 
prediction 

Incorrect 
prediction 

Correct 
prediction 

Incorrect 
prediction 

unit meter meter meter meter meter meter 
FOV30 16.24 

(6.91) 

19.29 

(9.59) 

16.39 

(7.17) 

18.98 

(9.07) 

16.56 

(7.05) 

17.44 

(8.88) 

FOV60 16.16 

(6.88) 

19.98 

(9.72) 

16.21 

(7.04) 

18.67 

(8.79) 

16.52 

(7.12) 

17.96 

(9.18) 

FOV90 16.23 

(6.93) 

20.72 

(10.21) 

16.22 

(6.99) 

19.43 

(9.33) 

16.5 

(7.02) 

17.78 

(9.16) 

FOVmix 15.94 

(6.69) 

18.78 

(8.95) 

15.92 

(6.71) 

18.68 

(8.84) 

16.32 

(6.82) 

17.58 

(8.63) 

 

 Office Shop Total 

subset Correct 
prediction 

Incorrect 
prediction 

Correct 
prediction 

Incorrect 
prediction 

Total 
prediction 

unit meter meter meter meter meter 
FOV30 16.32 

(7.32) 

17.5  

(7.83) 

16.67 

(7.46) 

17.56  

(8.06) 

16.77 

(7.54) 

FOV60 16.09 

(7.01) 

18.25  

(8.40) 

16.68 

(7.52) 

17.52  

(7.67) 

16.77 

(7.54) 

FOV90 16.26 

(7.14) 

18.33  

(8.46) 

16.70  

(7.65) 

17.08  

(7.06) 

16.77 

(7.54) 

FOVmix 15.92 

(6.96) 

17.81  

(8.08) 

16.68 

(7.58) 

17.09  

(7.41) 

16.77 

(7.54) 

Note: The first number is an average and the second number between 

brackets is the standard deviation. Both were calculated over the subset. 
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This study found that more recently built buildings had statistically significantly 

more correct building function predictions (t=-35.31,  p=0.00)(see table 3.21). 

For the mixed field of view, the building age for correct predictions was smallest 

out of four fields of view types. Especially the correct predictions of office 

function had a low average building age out of all building functions. 

 

Table 3.21: Average building age of correct and incorrect predictions 

for residential, meeting, industry, office and shop functions 

(model = Inception-v3; cross-validation run = 0; n = 21,142) 

 Residential Meeting Industry 

subset Correct 
prediction 

Incorrect 
prediction 

Correct 
prediction 

Incorrect 
prediction 

Correct 
prediction 

Incorrect 
prediction 

unit year year year year year year 
FOV30 115.93 

(208.52) 

165.80 

(302.12) 

105.87 

(194.11) 

232.19 

(349.03) 

95.93 

(168.31) 

215.59 

(341.94) 

FOV60 118.76 

(213.96) 

155.64 

(291.29) 

101.50 

(185.96) 

203.12 

(322.43) 

103.30 

(185.18) 

225.62 

(352.92) 

FOV90 122.18 

(220.68) 

142.91 

(278.55) 

109.42 

(200.86) 

197.77 

(320.41) 

100.13 

(178.24) 

215.92 

(343.07) 

FOVmix 115.38 

(203.42) 

146.94 

(278.38) 

95.94 

(174.53) 

188.99 

(308.12) 

90.31 

(153.33) 

186.4 

(312.84) 

 

 Office Shop Total 

subset Correct 
prediction 

Incorrect 
prediction 

Correct 
prediction 

Incorrect 
prediction 

Total 
prediction 

unit year year year year year 
FOV30 88.15 

(154.18) 

184.04 

(304.59) 

109.68 

(202.63) 

236.40 

(348.20) 

124,67 

(228,51) 

FOV60 96.43 

(173.82) 

185.77 

(307.20) 

109.82 

(203.34) 

238.31 

(347.57) 

124,67 

(228,51) 

FOV90 98.89 

(177.79) 

203.00 

(326.62) 

103.58 

(193.41) 

215.18 

(325.10) 

124,67 

(228,51) 

FOVmix 82.53 

(138.64) 

176.27 

(296.29) 

98.59 

(183.13) 

211.65 

(323.57) 

124,67 

(228,51) 

Note: The first number is an average and the second number between 

brackets is the standard deviation. Both were calculated over the subset. 
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This study found that more recently shot streetview images had statistically 

significantly less correct building function predictions (t=30.11,  p=0.00)(see 

table 3.22). For the meeting, industry, office, and shop function the mixed field 

of view had the oldest average image age. On average streetview images in the 

prediction are less than a year old. 

Table 3.22: Average image age of correct and incorrect predictions for 

residential, meeting, industry, office and shop functions 

(model = Inception-v3; cross-validation run = 0; n = 21,142) 

 Residential Meeting Industry 

subset Correct 
prediction 

Incorrect 
prediction 

Correct 
prediction 

Incorrect 
prediction 

Correct 
prediction 

Incorrect 
prediction 

unit days days days days days days 

FOV30 
337.4 

(350.63) 

353.69 

(428.72) 

362.48 

(365.58) 

213.11 

(338.53) 

365.25 

(362.22) 

261.17 

(364.86) 

FOV60 
335.44 

(348.78) 

365.46 

(442.49) 

372.5 

(360.03) 

231.08 

(363.08) 

358.14 

(358.59) 

255.76 

(385.84) 

FOV90 
331.97 

(346.59) 

400.79 

(477.87) 

361.92 

(357.69) 

236.43 

(384.65) 

359.15 

(352.43) 

269.98 

(403.07) 

FOVmix 
333.02 

(341.34) 

357.59 

(417.47) 

382.42 

(355.38) 

245.87 

(370.4) 

375.26 

(348.77) 

277.36 

(386.07) 

 

 Office Shop Total 

subset 
Correct 

prediction 

Incorrect 

prediction 

Correct 

prediction 

Incorrect 

prediction 

Total 

prediction 

unit days days days days days 

FOV30 
398.32 

(366.44) 

245.86 

(343.83) 

358.96 

(367.85) 

200.81 

(314.86) 

340,25 

(365,56) 

FOV60 
390.68 

(366.19) 

231.15 

(339.49) 

359.31 

(366.26) 

194.48 

(325.18) 

340,25 

(365,56) 

FOV90 
379.07 

(361.25) 

222.34 

(353.13) 

373.79 

(370.12) 

196.29 

(306.16) 

340,25 

(365,56) 

FOVmix 
421.85 

(358.67) 

240.34 

(348.76) 

379.05 

(369.87) 

210.85 

(318.34) 

340,25 

(365,56) 

Note: The image age is determined in days from panorama creation day until 

1st of November 2016. The first number is an average and the second number 

between brackets is the standard deviation. Both were calculated over the 

subset. 
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There was a statistically significant difference in the number of correct building 

function predictions between neighborhoods as determined by one-way 

ANOVA (f=122.89, p=0.00)(see figure 3.19). Only 20% of the neighborhoods 

were used to test the accuracy of correct predictions and these neighborhoods 

have a color. Other 80% of neighborhoods with no color on the map were used 

for either training or validation. In “Elsenhagen Zuid” and “Bijlmermuseum 

Zuid” correct predictions were very low. In the city center of Amsterdam, there 

were some neighborhoods with correct building prediction percentage around 

25-50%. In other neighborhoods, the average percentage of correctly predicted 

building functions was significantly higher around 50 percent up to 95 percent. 
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Figure 3.19: Average percentage correctly predicted building function per neighborhood in Amsterdam in 2016
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Image interpretation 

Buildings with their three streetview images at field of view 30, 60 and 90 

degrees are shown together with ground truth label and predicted labels. The 

predicted labels show how many correct building function predictions the four 

cross-validation runs had for each building function and field of view with 

Inception-v3. 

 

Residential: The image classifiers were able to correctly predict that buildings, 

such as residential houses or flats, had a residential function (see table 3.23-

3.25). Residential buildings often have doors, windows, garage doors, 

pavement, trees, a balcony, and simple architectural style (see figure 3.20-3.23). 

Some streetview images are occluded by a tree, shrubs, cars or a crane. For a 

residential flat, the image classifiers were not able to predict anything correctly 

due to a crane obstructing the view (see table 3.26; see figure 3.24).  

FOV = 30°   FOV = 60°     FOV = 90° 
Figure 3.20: Streetview images (id: _gb8okkq7EtFcW95v1o0bg) looking with 
field of view of 30, 60 and 90 degrees at building (id: 363100012245197) 

Table 3.23: Image ground truth label and predicted label for building 
with ID 363100012245197 (model = Inception-v3) 

  Residential Meeting Industry Office Shop 

Ground truth 
(1 =present; 0=absent) 

1 0 0 0 0 

Correct 
prediction 
(out of 4 
iterations) 

FOV30 4/4 4/4 4/4 4/4 4/4 
FOV60 4/4 4/4 4/4 4/4 4/4 
FOV90 4/4 4/4 4/4 4/4 4/4 
FOVmix 4/4 4/4 4/4 4/4 4/4 
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FOV = 30°   FOV = 60°     FOV = 90° 
Figure 3.21: Streetview images (id: F7lgKE4yR4VnDj5EUZ3Cug) looking 
with field of view of 30, 60 and 90 degrees at building (id: 363100012097872) 

Table 3.24: Image ground truth label and predicted label for building 
with ID 363100012097872 (model = Inception-v3) 

  Residential Meeting Industry Office Shop 

Ground truth 
(1 =present; 0=absent) 

1 0 0 1 0 

Correct 
prediction 
(out of 4 
iterations) 

FOV30 4/4 4/4 4/4 0/4 4/4 
FOV60 4/4 4/4 4/4 1/4 4/4 
FOV90 4/4 4/4 4/4 0/4 4/4 
FOVmix 4/4 4/4 3/4 0/4 4/4 

FOV = 30°   FOV = 60°     FOV = 90° 
Figure 3.22: Streetview images (id: XQDU-gHl6zMKe6feD1faLQ) looking 
with field of view of 30, 60 and 90 degrees at building (id: 363100012242951) 

Table 3.25: Image ground truth label and predicted label for building 
with ID 363100012242951 (model = Inception-v3) 

  Residential Meeting Industry Office Shop 

Ground truth 
(1 =present; 0=absent) 

1 1 0 1 1 

Correct 
prediction
(out of 4 
iterations) 

FOV30 4/4 3/4 4/4 4/4 3/4 
FOV60 4/4 0/4 4/4 0/4 4/4 
FOV90 4/4 4/4 4/4 4/4 4/4 
FOVmix 4/4 1/4 4/4 0/4 4/4 
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FOV = 30°   FOV = 60°     FOV = 90° 
Figure 3.23: Streetview images (id: DmxCFPS2ct9tqIPae6wn8Q) looking with 
field of view of 30, 60 and 90 degrees at building (id: 363100012245239) 

Table 3.26: Image ground truth label and predicted label for building 
with ID 363100012245239 (model = Inception-v3) 

  Residential Meeting Industry Office Shop 

Ground truth 
(1 =present; 0=absent) 

1 0 0 0 0 

Correct 
prediction 
(out of 4 
iterations) 

FOV30 0/4 0/4 0/4 1/4 0/4 
FOV60 0/4 0/4 0/4 0/4 0/4 
FOV90 0/4 0/4 0/4 0/4 0/4 
FOVmix 0/4 0/4 0/4 0/4 0/4 
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Meeting: The image classifiers correctly predicted the presence of meeting 

function for some bars and a restaurant (see table 3.27-3.29). Building with 

meeting functions had chairs, glass panes, benches, a bar sign, sunshades, an ad, 

people, doors, large windows, a restaurant sign, canopies, decorations, and 

multiple stories (see figure 3.24-3.26). For an image of a bar which solely 

showed a white wall at field of view 30 degrees, the image classifiers were not 

able to predict the presence of meeting function (see table 3.29; see figure 3.26). 

When using the zoomed out streetview images, the image classifiers were able 

to see the bar function correctly (see table 3.29). 

 

 

FOV = 30°   FOV = 60°     FOV = 90° 
Figure 3.24: Streetview images (id: tjbbemVaqN1XSKPDgjAl9g) looking with 
field of view of 30, 60 and 90 degrees at building (id: 363100012171127) 
 

Table 3.27: Image ground truth label and predicted label for building 
with ID 363100012171127 (model = Inception-v3) 

  Residential Meeting Industry Office Shop 

Ground truth 
(1 =present; 0=absent) 

0 1 0 1 0 

Correct 
prediction 
(out of 4 
iterations) 

FOV30 4/4 4/4 4/4 4/4 0/4 
FOV60 4/4 4/4 3/4 4/4 0/4 
FOV90 4/4 4/4 4/4 4/4 0/4 
FOVmix 4/4 4/4 3/4 4/4 0/4 
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FOV = 30°   FOV = 60°     FOV = 90° 
  Figure 3.25: Streetview images (id: 8Yt8KWOwIjrYUS5kqdj1oQ) looking 
with field of view of 30, 60 and 90 degrees at building (id: 363100012179633) 

FOV = 30°   FOV = 60°     FOV = 90° 
Figure 3.26: Streetview images (id: UIVt_hP0foI5nBnnSKdQEQ) looking 
with field of view of 30, 60 and 90 degrees at building (id: 363100012182863) 

Table 3.29: Image ground truth label and predicted label for building 
with ID 363100012182863 (model = Inception-v3) 

  Residential Meeting Industry Office Shop 

Ground truth 
(1 =present; 0=absent) 

1 1 0 0 0 

Correct 
prediction 
(out of 4 
iterations) 

FOV30 0/4 1/4 0/4 0/4 0/4 
FOV60 0/4 4/4 0/4 0/4 0/4 
FOV90 0/4 4/4 0/4 0/4 0/4 
FOVmix 0/4 4/4 0/4 0/4 0/4 

Table 3.28: Image ground truth label and predicted label for building 
with ID 363100012179633 (model = Inception-v3) 

  Residential Meeting Industry Office Shop 

Ground truth 
(1 =present; 0=absent) 

1 1 0 0 1 

Correct 
prediction 
(out of 4 
iterations) 

FOV30 4/4 4/4 4/4 4/4 4/4 
FOV60 4/4 4/4 0/4 2/4 4/4 
FOV90 4/4 4/4 0/4 4/4 4/4 
FOVmix 4/4 4/4 0/4 2/4 4/4 
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Industry: For an industrial shed and maintenance corridor, the image classifiers 

were able to correctly predict the presence of industrial function (see table 3.30-

3.31). The images of the industrial building consist of garage doors, corrugated 

plates, dilapidated wood, pavement, a metal balcony, brick wall, small windows, 

a metal plate door, and balconies (see figure 3.27-3.28). For an image of a lunch 

bar, the image classifiers were unable to predict the presence of industrial 

function and predicted meeting, office and shop function (see table 3.32). The 

lunch bar was in front of the targeted industrial building. 

 

FOV = 30°   FOV = 60°     FOV = 90° 
Figure 3.27: Streetview images (id: 5XyO41t3gPWqgZGXV6qIHw) looking 
with field of view of 30, 60 and 90 degrees at building (id: 363100012127675) 
 

Table 3.30: Image ground truth label and predicted label for building 
with ID 363100012127675 (model = Inception-v3) 

  Residential Meeting Industry Office Shop 

Ground truth 
(1 =present; 0=absent) 

0 0 1 0 0 

Correct 
prediction 
(out of 4 
iterations) 

FOV30 4/4 4/4 4/4 4/4 4/4 
FOV60 4/4 4/4 4/4 4/4 4/4 
FOV90 4/4 4/4 4/4 4/4 4/4 
FOVmix 4/4 4/4 4/4 4/4 4/4 
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FOV = 30°   FOV = 60°     FOV = 90° 
Figure 3.28: Streetview images (id: EHWib7ZcQF-yabzmnAPpSA) looking 
with field of view of 30, 60 and 90 degrees at building (id: 363100012099153) 

Table 3.31: Image ground truth label and predicted label for building 
with ID 363100012099153 (model = Inception-v3) 

  Residential Meeting Industry Office Shop 

Ground truth 
(1 =present; 0=absent) 

1 0 1 0 0 

Correct 
prediction 
(out of 4 
iterations) 

FOV30 4/4 3/4 4/4 0/4 4/4 
FOV60 4/4 4/4 4/4 4/4 4/4 
FOV90 4/4 4/4 3/4 4/4 4/4 
FOVmix 4/4 4/4 4/4 1/4 4/4 

 

FOV = 30°   FOV = 60°     FOV = 90° 
Figure 3.29: Streetview images (id: bCcY6oKWoWExbfH9t2Vg8A) looking 
with field of view of 30, 60 and 90 degrees at building (id: 363100012168480) 

Table 3.32: Image ground truth label and predicted label for building 
with ID 363100012168480 (model = Inception-v3) 

  Residential Meeting Industry Office Shop 

Ground truth 
(1 =present; 0=absent) 

1 0 1 0 0 

Correct 
prediction 
(out of 4 
iterations) 

FOV30 0/4 0/4 4/4 0/4 0/4 
FOV60 1/4 0/4 0/4 0/4 0/4 
FOV90 1/4 0/4 0/4 0/4 0/4 
FOVmix 0/4 0/4 0/4 0/4 0/4 
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Office: The image classifiers were able to predict the office function correctly 

most of the time (see table 3.33-3.35). Office images consisted of a lawn, cars, 

trees, multi-story buildings, blinded windows, a road, brick walls, a golden office 

sign, a sign of a shop, a person sitting at a desk, a monumental stair, large high 

windows, a door, a lamp, small balconies and pavement (figure 3.30-3.32). For 

one building residential, shop, meeting, and industry functions were poorly 

predicted (see table 3.35) due to an office in a residential area and the image 

looking at too much context (figure 3.32). 

 

 

 

FOV = 30°   FOV = 60°     FOV = 90° 
Figure 3.30: Streetview images (id: HN21u8xn6T9o4O5YkMiXRA) looking 
with field of view of 30, 60 and 90 degrees at building (id: 363100012133996) 
 

Table 3.33: Image ground truth label and predicted label for building 
with ID 363100012133996 (model = Inception-v3) 

  Residential Meeting Industry Office Shop 

Ground truth 
(1 =present; 0=absent) 

0 0 0 1 0 

Correct 
prediction 
(out of 4 
iterations) 

FOV30 4/4 4/4 2/4 4/4 4/4 
FOV60 2/4 4/4 4/4 4/4 4/4 
FOV90 4/4 4/4 4/4 3/4 4/4 
FOVmix 4/4 4/4 3/4 1/4 4/4 
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FOV = 30°   FOV = 60°     FOV = 90° 

Figure 3.31: Streetview images (id: INkn7TWKbTWgwLPGubK7jw) looking 
with field of view of 30, 60 and 90 degrees at building (id: 363100012171669) 

Table 3.34: Image ground truth label and predicted label for building 
with ID 363100012171669 (model = Inception-v3) 

  Residential Meeting Industry Office Shop 

Ground truth 
(1 =present; 0=absent) 

1 0 0 1 0 

Correct 
prediction 
(out of 4 
iterations) 

FOV30 4/4 4/4 4/4 4/4 4/4 
FOV60 4/4 4/4 4/4 4/4 4/4 
FOV90 0/4 3/4 4/4 4/4 4/4 
FOVmix 3/4 4/4 4/4 3/4 4/4 

FOV = 30°   FOV = 60°     FOV = 90° 
Figure 3.32: Streetview images (id: LsKOXf1Q0fTd6nVcWN_M6g) looking 
with field of view of 30, 60 and 90 degrees at building (id: 363100012074703) 

Table 3.35: Image ground truth label and predicted label for building 
with ID 363100012074703 (model = Inception-v3) 

  Residential Meeting Industry Office Shop 

Ground truth 
(1 =present; 0=absent) 

0 0 0 1 0 

Correct 
prediction 
(out of 4 
iterations) 

FOV30 0/4 0/4 0/4 4/4 0/4 
FOV60 0/4 0/4 0/4 4/4 0/4 
FOV90 0/4 0/4 0/4 2/4 0/4 
FOVmix 0/4 0/4 0/4 3/4 0/4 
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Shop: For a grocery store, the image classifiers were able to correctly predict 

the presence of shopping function (see table 3.36). The grocery store had a 

canopy, shop sign, brick wall, groceries, windows, a car and a 2-story brick 

building (figure 3.33). For other shops, such as a shop in a residential area and 

a closed shop, the image classifiers had a very hard time to distinguish the 

shopping function (see table 3.37-3.38; see figure 3.34-3.35). If the car is far 

from the building and the building parcel is narrow, the streetview image shows 

the targeted building plus a lot of context at field of view 60 or 90 degrees (see 

figure 3.34). 

 

 FOV = 30°   FOV = 60°     FOV = 90° 

Figure 3.33: Streetview images (id: uuSv2M4SgVlE4KasWMt58w) looking 
with field of view of 30, 60 and 90 degrees at building (id: 363100012066068) 
 

 
 

Table 3.36: Image ground truth label and predicted label for building 
with ID 363100012066068 (model = Inception-v3) 

  Residential Meeting Industry Office Shop 

Ground truth 
(1 =present; 0=absent) 

1 0 0 0 1 

Correct 
prediction 
(out of 4 
iterations) 

FOV30 4/4 0/4 4/4 4/4 4/4 
FOV60 4/4 0/4 4/4 4/4 4/4 
FOV90 4/4 0/4 4/4 4/4 4/4 
FOVmix 0/4 0/4 4/4 4/4 4/4 
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FOV = 30°   FOV = 60°     FOV = 90° 
Figure 3.34: Streetview images (id: zYP2p066z-YqpHGuqXEsGw) looking 
with field of view of 30, 60 and 90 degrees at building (id: 363100012166972) 

Table 3.37: Image ground truth label and predicted label for building 
with ID 363100012166972 (model = Inception-v3) 

  Residential Meeting Industry Office Shop 

Ground truth 
(1 =present; 0=absent) 

1 0 0 0 1 

Correct 
prediction 
(out of 4 
iterations) 

FOV30 4/4 4/4 4/4 4/4 0/4 
FOV60 4/4 4/4 4/4 4/4 3/4 
FOV90 4/4 4/4 4/4 4/4 0/4 
FOVmix 4/4 4/4 4/4 4/4 0/4 

 

FOV = 30°   FOV = 60°     FOV = 90° 
Figure 3.35 : Streetview images (id: YkycpnsUo8iqVHtAvSqyog) looking with 
field of view of 30, 60 and 90 degrees at building (id: 363100012091039) 

Table 3.38: Image ground truth label and predicted label for building 
with ID 363100012091039 (model = Inception-v3) 

  Residential Meeting Industry Office Shop 

Ground truth 
(1 =present; 0=absent) 

1 0 0 0 1 

Correct 
prediction 
(out of 4 
iterations) 

FOV30 1/4 4/4 0/4 0/4 0/4 
FOV60 4/4 3/4 0/4 0/4 0/4 
FOV90 0/4 0/4 0/4 1/4 0/4 
FOVmix 0/4 0/4 0/4 0/4 0/4 
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Chapter 4 - Discussion 

This chapter discusses insights from the data acquisition, data accuracy, and building 

classification. It gives practical improvements, theoretical embedding and some indications for 

further research. 

 

4.1 Data acquisition 

Data acquisition took quite some time and it could have gone more efficiently. 

Therefore, these paragraphs on building and streetview data acquisition will 

focus mainly on practical improvements. 

 

Building data 

The BAG dataset is a high-quality dataset that holds different types of data, 

such as buildings and addresses. In this research, the building geometry and 

address information of the BAG needed to be combined. In the downloaded 

geodatabase, accessible via ArcMap, the different building and address data 

were connected based on their unique IDs via a relationship class. However, 

the relationship class functionality did not work in ArcMap. Therefore, a spatial 

join had to be performed and information from all floors was added to a 2D 

representation of the building. Furthermore, the functional usage column in 

address could have multiple usages separated by a semicolon in the same value 

box. Combining the relational data would have been easier in a NoSQL 

database or triple store. Kadaster has been working on an ontology to map their 

building data from relational database management systems [RDBMS] to triples 

(Kadaster, 2016a) and already provides the data via a SPARQL endpoint 

(Kadaster, 2018b). 

   The building data did not contain enough samples of all building functions. 

Few buildings had education, sport, accommodation, healthcare or cell 

functions. Therefore, the image classifier could not be trained on these building 

functions. By having a larger study area, such as a province, the classifier would 
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have enough samples to learn to predict these functions. Another solution 

would be to enlarge the data by applying data augmentation (Taylor & Nitschke, 

2017). Data augmentation is a regularization scheme that artificially inflates the 

data-set by using label preserving transformations to add more invariant 

examples. These extra images are created by varying the original images: 

changing saturation, adding Gaussian noise, flipping, rotating, scaling, cropping 

or translating images. The inflated training data permits prediction of more 

building functions since the sample is larger. Data augmentation helps to inflate 

the data, which enables predicting all types of building functions. 

   Besides the Dutch building dataset, it could be nice to use OpenStreetMap or 

New York building data (PLUTO). Especially, OpenStreetMap is interesting 

since it provides a global dataset and it enables predicting building functions on 

a global scale (Srivastava et al., 2018a). More building datasets are available to 

perform classification on. 
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Streetview data 

Streetview image data are available globally and accessible via an API. The 

downloading of Google Street View images were restricted to 25,000 free 

images per day per key. This took nearly three weeks. The download process 

could be sped up by using multiple keys or having more credits. Recently, 

Google started billing the downloading of Google Street View images and only 

allows roughly 28,000 free Google Street View downloads per month (Google, 

2018b). Therefore, it might be interesting to download user-generated images 

from Mapillary or Flickr and do a comparison of streetview images. 

   Streetview images are positioned mainly in urban environments. They are 

sampled relatively sparse (Taneja et al., 2014) and miss views on inaccessible 

outdoor areas or indoor places (Zhou et al., 2014). For rural areas with low road 

density, streetview images are not the best source to make a complete land use 

map. Combining streetview data with aerial data can improve the coverage and 

accuracy of land use mapping (Workman et al., 2017). 

   The streetview images can be enhanced by looking at the building’s façade 

instead of the building centroid. In this research, the camera was turned towards 

the building centroid with a static field of view with either 30, 60 or 90 degrees. 

It would have been better to dynamically set the heading and field of view to 

look only at the target building’s façade (see figure 4.1). There is no data on 

building façades. The building façade would have to be determined by taking 

the edge of the building polygon closest to the road.  

Figure 4.1: Setting heading to building centroid with a static field of view (left) 

and setting heading and field of view to building façade dynamically (right) 
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The line of sight from panorama to targeted building was often obstructed by 

objects, such as another building, a tree or a truck. In some situations, the 

obstructed line of sight could have been avoided. There are multiple ways to 

get to this solution. The first method would be to filter out obstructed views by 

having an image classifier decide if the panorama is looking at the building or 

at objects that obstruct the view on the building. After checking which image 

views on the target have obstructions (e.g. trees, cars, busses), the image view 

with the least obstruction could be selected. The second method would be to 

avoid looking at incorrect objects by using an accurate topographical map. A 

topographical map shows where certain objects, such as trees and other 

buildings, are located. Then the panorama with the least obstructed view can be 

picked (see figure 4.2). If there is no good view of the building, the building and 

image should simply be discarded from the sample to avoid inaccurate data. 

The approach with the topographical map does not work for mobile objects, 

such as cars, vans, and bikes. Therefore, panoramas with least obstructed view 

could be derived by using both an image classifier to detect occlusion and a 

topographical map to detect objects. 

Figure 4.2: Panorama selection based on the unobstructed view 
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4.2 Data accuracy 

The data accuracy is very important for deep learning models. Therefore, the 

following paragraphs will go into detail how accurate the data is. There are some 

practical tips to improve data accuracy and some theoretical implementations. 

 

Building data 

The label of the building function was quite accurate but did not always reflect 

what was visible in the downloaded streetview image. This is mainly for four 

reasons: wrong heading, occlusion, building information from multiple floors 

and indistinguishable building function. The heading and occlusion were 

discussed in section 4.1. During data acquisition, the building functions of 

multiple addresses over multiple floors were all joined to a 2D representation 

of the building. Unfortunately, the address data does not have information on 

the floor level or any other 3D information yet, but the Kadaster is taking small 

steps to go to 3D building registrations (Kadaster, 2016b). Another issue is the 

indistinguishable building function. Most of the time a human could guess the 

building functions from the image, but sometimes the building function was 

not visible or very hard to distinguish from the image. A solution would be to 

combine data from social media, taxi data (Niu et al., 2017) or the business 

registry, named Kamer van Koophandel, with streetview images to determine 

the building function. Building function data could have improved if building 

functions were available per floor and if building data was combined with data 

from social media, taxi data or business registries. 

  

  



Chapter 4 - Discussion 

 

77 

 

Streetview data 

The positional accuracy of streetview panoramas was affected by the urban 

canyon effect and perhaps other sources. The urban canyon effect can be partly 

resolved by using a dual constellation system GNSS integrated with other low-

cost complementary sensors (Li et al., 2017). To further improve the positional 

accuracy, Google should check if streetview images from cameras on cars are 

correctly located on the street and not on other topographical objects, such as 

buildings, grassland or water.  

   The heading was sometimes inaccurate, but it is unclear exactly why. There 

are several options why the heading towards the building centroid sometimes 

was erroneous: bad aim at building centroid instead of building the facade, 

faulty sensor equipment due to magnetic fields, bad gyroscope, bad heading 

calculation or unbeknownst reasons. Some initial test measurements in 

Amsterdam with a compass did not give closure to this question. It is likely that 

specialized compass equipment is needed to measure headings in urban 

environments. Finding out if the heading is correct of streetview images, why 

sometimes it is faulty and how to improve heading accuracy, can be part of 

another research or thesis. 

   The image view on target building was correct most of the time, but 

sometimes objects obstructed the view, viewpoints were different and building 

images varied. Obstructed views and different viewpoints can be solved by 

earlier solutions mentioned in section 4.1 – streetview data acquisition. The 

streetview images varied a lot due to illumination, weather, the shape of the 

building, the material of the building, and image context (Wegner et al., 2016). 

Image quality could be improved by looking at the building’s façade and using 

data augmentation to overcome variation scarcity. 
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4.3 Building classification 

The architectures Inception-v3 and MobileNetV1 were used to predict building 

functions, but recently better CNN architectures have been developed. The 

priority of choosing the CNN architecture for building function classification 

should be to have high prediction accuracy. Therefore, MobileNetV1 with 

lower prediction accuracy and computation time (Howard et al., 2017) was not 

suitable. Even better feature extraction architectures than Inception-v3 have 

been developed. AmoebaNet, Inception-v4, Inception Resnet v2 and 

MobileNetV2 have been developed by researchers at Google (Real et al., 2018; 

Sandler et al., 2018; Szegedy et al., 2017) and they outperform most other deep 

neural networks while keeping the number of operations reasonably low 

(Canziani et al., 2016; Huang et al., 2017; Wong, 2018)(see figure 4.3). The 

development of these new deep learning architectures is very fast. If one wants 

to have the best performing deep neural network, one needs to keep up to date 

with state-of-the-art deep learning algorithms and be open-minded to switch 

algorithms during longer research or industry projects. 

   The pre-trained CNN architectures, Inception-v3 and MobileNetV1, have 

predefined weights in the feature learning phase. These weights make the CNN 

detect certain features, gradients, and colors based on the 14 million images of 

the thousand generic classes of ImageNet. In this research, the weights of the 

feature learning phase were not changed. By training the weights of the feature 

learning phase, the CNN can adapt the type of features it recognizes. The CNN 

could have trained itself to recognize specific types of building features in the 

streetview image dataset. This has the potential to increase prediction accuracy 

but does require a large training dataset and is very computationally intensive. 

Pre-trained CNN architectures make highly accurate CNN quickly available but 

end-to-end training can offer higher prediction accuracy.  
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Figure 4.3: Top-1 accuracy across 60 different deep convolutional neural 
networks for the ILSVRC 2012 dataset (Wong, 2018) 
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There was a huge imbalance in the building function samples. Most buildings 

had only residential function and none of the other building functions. It was 

very uncommon to have buildings with only of these other functions. The 

imbalance is bad for efficiency and quality of CNN model because the model 

is trained on easy negatives that do not improve or even worsen the model (Lin 

et al., 2018) and the model trains to predict only the dominant class. There are 

several solutions to overcome this imbalanced sample problem: balanced cross 

entropy loss, focal loss, model initialization, two-stage detectors (Lin et al., 

2018), balanced samples and hard negative mining. In this research, the simple 

balanced samples approach was used. During training of the CNN classification 

phase, a batch of 100 images was randomly picked from both the presence and 

absence of the building function. Therefore, the model was able to overcome 

the imbalanced problem of a dominant class, but the model did train on easy 

negatives or easy positives which could worsen the model. A focal loss could 

have improved the model by letting the model learn more from difficult 

predictions. Focal loss reshapes cross entropy loss such that it decreases the 

amount it learns from well-classified examples (Lin et al., 2018). With an 

imbalanced sample, multiple approaches can be tested to overcome imbalance 

and to find optimal balancing strategy during training of the CNN. 

   The image classifiers in this research were using binary classification on a 

multi-label problem. Every building may have any of the five building functions 

present or absent. The building functions are not mutually exclusive. The same 

building can have residential and shop function. Moreover, there is an 

interdependency between the building functions, which can boost accuracy if 

correctly used in prediction. If a building has an industry function, it is less likely 

to have a meeting or residential function too. This interdependency could not 

be predicted by a multi-class approach, because there were not enough samples 

per unique combination of building functions. A multi-label approach would 

solve the multi-attribute classification problem, where a building can have 
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multiple building functions as an attribute and takes interdependency into 

account (Gong et al., 2013; Karalas et al., 2015; Niu et al., 2017; Yu et al., 2017). 

Further research with the acquired data in this thesis, showed that the multi-

label approach increased prediction accuracy (Srivastava et al., 2018b). 

   The image classifiers were using single streetview images with coarse 

resolution as input and could be improved by using a combination of data. 

Firstly, Huang et al. (2017) found out that increasing resolution of images 

increases mean average prediction because both small and large image features 

are considered. This research downloaded images with 640x640 pixels, which 

were resized to images with 299x299 pixels as input for Inception-v3. If the 

CNN and GPU could handle larger image size, the prediction accuracy could 

increase. Secondly, combining information of multiple streetview images, aerial 

images, social media or business registries could help to improve classification 

(Niu et al., 2017; Srivastava et al., 2018b; Wegner et al., 2016; Workman et al., 

2017). In figure 4.4 an end-to-end framework is shown that combines the 

output of three streetview image classifiers in a ground-level feature map 

together with the output of an overhead image classifier to produce a building 

function prediction.  

Figure 4.4: Overview of network architecture to combine multiple streetview 

images and an aerial image (Workman et al., 2017) 
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The deployed methods could drastically be improved, but results show there is 

valuable information visible in streetview images on building functions. 

Inception-v3 with its deep neural network gave high mean average prediction 

accuracies with a small standard deviation when predicting any of the five 

building functions. It had average prediction accuracies of 81% for the shop 

and residential function. For meeting, industry, and office the mean average 

prediction accuracies respectively were around 75%, 72%, and 69% percent. 

MobileNetV1 with its shallower neural network gave relatively low mean 

average prediction accuracy with a larger standard deviation. For residential, 

meeting, industry, office and shop function the mean average prediction 

accuracy respectively was 69%, 64%, 65%, 62%, and 73%. The CNN models 

were able to characterize building functions from the streetview images and 

performed better with a deeper neural network architecture. 

   Convolutional neural networks predicting meeting, industry, office, and shop 

function did have tolerable average accuracy but had low F1-scores. Residential 

function prediction had a high F1-score of around 0.90. Meeting, industry, 

office, and shop function predictions respectively had lower F1-scores of 0.20, 

0.26, 0.16 and 0.36. These low F1-scores can be attributed to very low precision, 

due to a lot of false positives (see table 4.1 and 4.2). The recall was high due to 

a small set of false negatives. The streetview images of false positives were 

difficult to distinguish from streetview images that were true negatives.  

Table 4.2: Statistical outcome 

measures  

Sensitivity 0.764848 

Specificity 0.613230 

Precision 0.074331 

Recall 0.764848 

F1-score 0.135495 

Overall accuracy 0.619147 

Average accuracy 0.689039 

Table 4.1: Confusion matrix office prediction 

FOV = 30; Model = Inception-v3; Cross validation run 0; 
  

Actual 
  

Office Non-

Office 

Total 

Predicted Office 631 7858 8489 

Non-

Office 

194 12459 12653 

Total 825 20317 21142 
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Varying the zoom level of the streetview images lets the image classifier detect 

smaller or larger features of the building better. For residential and industry 

function a larger field of view, i.e. zooming out, gave a slightly higher mean 

average prediction accuracy. An assumption is that for residential and industry 

functions the view on the building block is important to detect the building 

function. For meeting and shop function a small field of view, i.e. zooming in, 

gave a slightly higher mean average prediction accuracy. A meeting and shop 

often have small features, such as labels, signs, chairs, goods, that identify the 

building as a meeting or shop function. Therefore, zooming in on shops and 

meeting places can help to improve performance. The field of view with mixed 

zoom levels did not perform better or worse than the other field of views. This 

is likely due to the training and prediction dataset not always having the same 

field of view. Multiple field of views of streetview images hold information on 

building functions. 

   To understand the model predictions, the streetview characteristics and 

building characteristics of correct and incorrect predictions were compared for 

all building functions and field of views. Firstly, correct predictions had a 

significantly smaller distance from streetview camera to building centroid than 

incorrect predictions for all building functions. Near things are easier to see. 

Secondly, the building age of correct predictions was significantly lower than 

the building age of incorrect predictions for all building functions. Older 

buildings have a very similar archaic architectural style with bricks, windows 

and a door irrespective of building function. Thirdly, the streetview image age 

of correct predictions was significantly lower than that of incorrect predictions 

for residential function. However, for meeting, industry, office and shop 

function the streetview image age was higher for correct predictions. One could 

argue that less time between streetview image measurement and building label 

measurement would lead to more correct predictions, but for some reason, this 

is not the case. Fourthly, there was a significant difference in correct predictions 
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between all neighborhoods. In some neighborhoods with tall residential flats, 

such as “Elsenhagen Zuid” and “Bijlmermuseum Zuid”, the prediction 

accuracy was very bad. It is unbeknownst why. A further understanding of 

CNN predictions is needed (Zeiler & Fergus, 2014), which can be achieved by 

looking at saliency maps, intermediate features or instance segmentations. The 

characteristics of the streetview images and buildings can be used to understand 

predictions and to select high-quality data to train the model. 

 

A brief recap, streetview images were downloaded from Google Street View, 

have good quality and can be used to predict building functions with 

convolutional neural networks. In theory, the results are promising, but for 

practical applications, the prediction accuracy still needs to increase. Various 

data and methodological improvements have been discussed to improve 

prediction accuracy. Ordered by priority the improvements are: applying data 

augmentation, switching to better CNN architecture, solving view obstructions, 

targeting view on the object only, solving class imbalance, predicting multi-

labels, understanding CNN predictions, combining street and aerial views, 

increasing image resolution and comparing multiple data sources.  
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Chapter 5 - Conclusion 

To conclude the research on characterizing building functions from streetview images, the sub-

questions and main questions are answered. Furthermore, recommendations are given how to 

improve prediction of building functions and how to continue research. 

 
5.1 Research answers 

Q1: How can streetview images and building functions be acquired in 

Amsterdam? 

A good way to acquire functions of buildings in Amsterdam is to download the 

high-quality buildings dataset BAG, relate the functions with buildings spatially 

and perform a many to one join. Streetview images of buildings can be acquired 

from Google Street View by pointing the camera from streetview panorama 

location towards the building centroid with a certain zoom level and by 

downloading the streetview images. 

 

Q2: How accurately can streetview images sense buildings in 

Amsterdam? 

The accuracy of the location, heading, and image of streetview images was 

determined by checking streetview images belonging to 100 random buildings 

in Amsterdam. Firstly, the location of streetview images sensing buildings in 

Amsterdam is highly accurate. Validation of 100 random streetview images gave 

98 correct streetview locations out of 100. Secondly, the heading of streetview 

images sensing buildings in Amsterdam is accurate. The heading was correct in 

83 out of 100 images. Thirdly, streetview images sensing buildings in 

Amsterdam had an unobstructed view on the targeted building in 263 out of 

300 images at field of view 30, 60 and 90 degrees. The expected accuracy of the 

location, heading, and image of streetview images sensing buildings in 

Amsterdam respectively are 98%, 83%, and 87.7%. 
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Q3: How accurately can convolutional neural networks characterize 

building functions from streetview images in Amsterdam? 

Convolutional neural networks with Inception-v3 architecture gave high mean 

average prediction accuracies with a small standard deviation when predicting 

any of the five building functions. It had average accuracies of 81% for 

residential and shop function. For meeting, industry, and office function the 

mean average prediction accuracies respectively were 75%, 72%, and 69% 

percent. F1 scores were high for residential function with 0.90 but low for other 

building functions - 0.14-0.38 F1-scores - due to low precision and high recall. 

 

Q4: What building and streetview image characteristics are associated 

with correct predictions of building functions from streetview images? 

Characteristics, such as distance from streetview image to building, building age, 

streetview image age and neighborhood were significantly associated with 

correct predictions. Zooming out was associated with more correct predictions 

for residential and industrial function and zooming in was related to more 

correct predictions for shop and meeting functions. If the building age and 

distance are smaller, then the model can predict more correctly. If the streetview 

image age is larger, then the model can predict more correctly. Certain 

neighborhoods, such as inner urban areas or areas with high residential flats, 

were associated with less correct predictions. 

 

Main question: How can building functions be characterized by 

streetview images in Amsterdam? 

Building functions can be characterized accurately with streetview images by 

downloading streetview images and building data, selecting good quality data 

and using a convolutional neural network to predict building functions. If 

buildings are more recent and streetview images have a smaller distance to a 

building, the prediction accuracy of building functions improves. 
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5.2 Further research 

Further research helps to increase knowledge and improve methods to monitor 

objects in the urban, rural or natural environment with streetview images.  

• Research and industry should focus on improving methods of detecting 

obstructed views on the target object (see section 4.1) 

• Research and industry should focus on improving methods to focus the 

camera on target objects without too much context (see section 4.1). This 

requires very accurate streetview camera position and heading. 

Therefore, quantitative research is required to determine the accuracy of 

position and heading.  

• More research can be done how to undertake the temporal monitoring 

of objects with streetview images. Naik et al. (2017) have an interesting 

approach to monitor scenes through time with streetview images but 

monitoring objects can be more relevant. Google Street View cars only 

drive by once per year and it might be interesting to use Mapillary or 

other sources that have a faster revisit time. 

• More research can be done how to combine top view and side view 

imagery with even more sources and these methods can be shared. Some 

good research has been done on combining top view imagery, side view 

images and social media data (Niu et al., 2017; Wegner et al., 2016; 

Workman et al., 2017), but their methods are not easy to put into practice 

on itself nor to be combined with other data sources.  

 

In industry, there is still a lot of opportunities to improve the use and methods 

of monitoring with streetview images. Platforms, such as Mapillary and Google 

Street View, are great in making volunteered streetview images quickly available. 

This data can be used. If a municipality bans shared bicycle schemes, the 

location of illegal bicycles can be monitored with streetview images. A 

municipality can monitor demand and supply in certain areas for car parking 
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spots, bike stands, benches, pavement et cetera. Then municipalities can adapt 

the physical environment to the needs of the public better. The quality of the 

urban infrastructure, such as roads, can be monitored for holes in the road, 

traffic signs, decaying trees, type of tree or even if trees are pollinating. For 

autonomous vehicles, it is interesting to check with streetview images if roads 

have correct lines on side of the road. These are just some of the opportunities, 

but there will be many more applications as data will become more readily 

available.  



References 

 

89 

 

References 

BAG. (2010). Kwaliteit van de basisregistraties adressen en gebouwen. Den Haag: VROM, 
Ministerie van Volkshuisvesting, Ruimtelijke Ordening en Milieubeheer. 

Bechtel, B., Alexander, P., Böhner, J., Ching, J., Conrad, O., Feddema, J., . . . Stewart, I. (2015). 
Mapping Local Climate Zones for a Worldwide Database of the Form and Function of 
Cities. ISPRS International Journal of Geo-Information, 4(1), 199-219.  

Belgiu, M., Tomljenovic, I., Lampoltshammer, T., Blaschke, T., & Höfle, B. (2014). Ontology-Based 
Classification of Building Types Detected from Airborne Laser Scanning Data. Remote 
Sensing, 6(2), 1347-1366.  

Ben-Moshe, B., Elkin, E., Levi, H., & Weissman, A. (2011). Improving Accuracy of GNSS Devices in 
Urban Canyons. Paper presented at the Canadian Conference on Computational 
Geometry, Toronto.  

Bengio, Y., Courville, A., & Vincent, P. (2014). Representation Learning: A Review and New 
Perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 
1798-1828.  

Bouwbesluitonline. (2012). Bouwbesluit 2012 - 1.1 Algemeen. Retrieved from 
https://www.bouwbesluitonline.nl/Inhoud/docs/wet/bb2012/hfd1/par1-1 

Canziani, A., Paszke, A., & Culurciello, E. (2016). An Analysis of Deep Neural Network Models for 
Practical Implications. CoRR, abs/1605.07678.  

Chen, Y., Parkins, J. R., & Sherren, K. (2017). Using geo-tagged Instagram posts to reveal 
landscape values around current and proposed hydroelectric dams and their reservoirs. 
Landscape and Urban Planning, 170(1), 283-292.  

Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009). ImageNet: A large-scale 
hierarchical image database. Paper presented at the IEEE Conference on Computer 
Vision and Pattern Recognition, Miami.  

Deng, L. (2014). A tutorial survey of architectures, algorithms, and applications for deep learning. 
APSIPA Transactions on Signal and Information Processing, 3, 1-29.  

Dubey, A., Naik, N., Parikh, D., Raskar, R., & Hidalgo, C. (2016). Deep Learning the City: 
Quantifying Urban Perception at a Global Scale. Paper presented at the European 
Conference on Computer Vision, Amsterdam.  

Eeftens, M., Beelen, R., de Hoogh, K., Bellander, T., Cesaroni, G., Cirach, M., . . . Hoek, G. (2012). 
Development of Land Use Regression models for PM(2.5), PM(2.5) absorbance, PM(10) 
and PM(coarse) in 20 European study areas; results of the ESCAPE project. 
Environmental Science and Technology, 46(20), 11195-11205.  

Erb, K.-H., Gaube, V., Krausmann, F., Plutzar, C., Bondeau, A., & Haberl, H. (2007). A 
comprehensive global 5 min resolution land-use data set for the year 2000 consistent 
with national census data. Journal of Land Use Science, 2(3), 191-224.  

ESRI. (2016). FAQ: What do the acronyms EPSG and POSC stand for? Retrieved from 
https://support.esri.com/en/technical-article/000002814 

EuropeanParliament. (2016). REGULATION (EU) 2016/679 OF THE EUROPEAN PARLIAMENT AND 
OF THE COUNCIL of 27 April 2016 on the protection of natural persons with regard to 
the processing of personal data and on the free movement of such data, and repealing 
Directive 95/46/EC (General Data Protection Regulation). Official Journal of the 
European Union, 119(1), 1-88.  

Frias-Martinez, V., Soto, V., Hohwald, H., & Frias-Martinez, E. (2012). Characterizing Urban 
Landscapes using Geolocated Tweets. Paper presented at the Privacy, Security, Risk and 
Trust, Amsterdam.  

Fritz, S., McCallum, I., Schill, C., Perger, C., See, L., Schepaschenko, D., . . . Obersteiner, M. (2012). 
Geo-Wiki: An online platform for improving global land cover. Environmental Modelling 
and Software, 31(1), 110-123.  

Ghamisi, P., Plaza, J., Chen, Y., Li, J., & Plaza, A. J. (2017). Advanced Spectral Classifiers for 
Hyperspectral Images: A review. IEEE Geoscience and Remote Sensing Magazine, 5(1), 
8-32.  

Gong, Y., Jia, Y., Leung, T., Toshev, A., & Ioffe, S. (2013). Deep Convolutional Ranking for 
Multilabel Image Annotation. CoRR, abs/1312.4894.  

https://www.bouwbesluitonline.nl/Inhoud/docs/wet/bb2012/hfd1/par1-1
https://support.esri.com/en/technical-article/000002814


References 

 

90 

 

Goodfellow, I., Bulatov, Y., Arnoud, S., & Shet, V. (2013). Multi-digit Number Recognition from 
Street View Imagery using Deep Convolutional Neural Networks. CoRR, abs/1312.6082.  

Google. (2018a). Installing Tensorflow on Ubuntu. Retrieved from 
https://www.tensorflow.org/install/install_linux 

Google. (2018b). Street View API Usage and Billing. Retrieved from 
https://developers.google.com/maps/documentation/streetview/usage-and-billing 

Google. (2018c). Street View auto ready specifications. Retrieved from 
https://developers.google.com/streetview/ready/specs-prograde 

Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., & Lew, M. S. (2016). Deep learning for visual 
understanding: A review. Neurocomputing, 187(1), 27-48.  

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving Deep into Rectifiers: Surpassing Human-Level 
Performance on ImageNet Classification. Paper presented at the IEEE International 
Conference on Computer Vision, Santiago.  

Howard, A., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., . . . Adam, H. (2017). 
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. 
CoRR, abs/1704.04861.  

Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., . . . Murphy, K. (2017). 
Speed/accuracy trade-offs for modern convolutional object detectors. Paper presented 
at the Computer Vision and Pattern Recognition, Honolulu.  

Jokar, J., Helbich, M., Bakillah, M., Hagenauer, J., & Zipf, A. (2013). Toward mapping land-use 
patterns from volunteered geographic information. International Journal of 
Geographical Information Science, 27(12), 2264-2278.  

Kadaster. (2016a). Primeur: linked open data van het Kadaster. Retrieved from 
https://www.kadaster.nl/primeur-linked-open-data-van-het-kadaster 

Kadaster. (2016b). Spoorzone Delft allereerste akte met 3d-weergave van rechten. Retrieved 
from https://www.kadaster.nl/spoorzone-delft-allereerste-akte-met-3d-weergave-
van-rechten 

Kadaster. (2016c). Verbeter de kaart. Retrieved from https://www.verbeterdekaart.nl 
Kadaster. (2018a). BAG kwaliteitsdashboard voor afnemers. Retrieved from 

https://www.kadaster.nl/bag-kwaliteitsdashboard-voor-
afnemers/dashboard?theme=BAGBOG&category=GOW&view=province&province=&c
ommunity= 

Kadaster. (2018b). SPARQL Endpoint. Retrieved from https://data.pdok.nl/sparql# 
Karalas, K., Tsagkatakis, G., Zervakis, M., & Taskalides, P. (2015). Deep Learning for Multi-Label 

Land Cover Classification. Image and Signal Processing for Remote Sensing XXI, 9463, 1-
14.  

Khosla, A., An, B., Lim, J., & Torralba, A. (2014). Looking Beyond the Visible Scene. Paper 
presented at the IEEE Conference on Computer Vision and Pattern Recognition, 
Columbus.  

Kovalskyy, V., & Roy, D. P. (2013). The global availability of Landsat 5 TM and Landsat 7 ETM+ 
land surface observations and implications for global 30m Landsat data product 
generation. Remote Sensing of Environment, 130(1), 280-293.  

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.  
LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to 

document recognition. Proceeding of the IEEE, 86(11), 2278-2323.  
Leung, D., & Newsam, S. (2015). Land cover classification using geo-referenced photos. 

Multimedia Tools and Applications, 74(24), 11741-11761.  
Li, X., Jiang, R., Song, X., & Li, B. (2017). A Tightly Coupled Positioning Solution for Land Vehicles 

in Urban Canyons. Journal of Sensors, 2017, 1-11.  
Lin, T.-Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2018). Focal Loss for Dense Object Detection. 

Transactions on Pattern Analysis and Machine Intelligence, 1-1.  
MathWorks. (n.d., 16-04-2018). Convolutional Neural Network. Retrieved from 

https://www.mathworks.com/discovery/convolutional-neural-network.html 
Naik, N., Kominers, S. D., Raskar, R., Glaeser, E. L., & Hidalgo, C. A. (2017). Computer vision 

uncovers predictors of physical urban change. Proceedings of the National Academy of 
Sciences of the United States of America, 114(29), 7571-7576.  

https://www.tensorflow.org/install/install_linux
https://developers.google.com/maps/documentation/streetview/usage-and-billing
https://developers.google.com/streetview/ready/specs-prograde
https://www.kadaster.nl/primeur-linked-open-data-van-het-kadaster
https://www.kadaster.nl/spoorzone-delft-allereerste-akte-met-3d-weergave-van-rechten
https://www.kadaster.nl/spoorzone-delft-allereerste-akte-met-3d-weergave-van-rechten
https://www.verbeterdekaart.nl/
https://www.kadaster.nl/bag-kwaliteitsdashboard-voor-afnemers/dashboard?theme=BAGBOG&category=GOW&view=province&province=&community
https://www.kadaster.nl/bag-kwaliteitsdashboard-voor-afnemers/dashboard?theme=BAGBOG&category=GOW&view=province&province=&community
https://www.kadaster.nl/bag-kwaliteitsdashboard-voor-afnemers/dashboard?theme=BAGBOG&category=GOW&view=province&province=&community
https://data.pdok.nl/sparql
https://www.mathworks.com/discovery/convolutional-neural-network.html


References 

 

91 

 

Naik, N., Philipoom, J., Raskar, R., & Hidalgo, C. (2014). Streetscore - Predicting the Perceived 
Safety of One Million Streetscapes. Paper presented at the IEEE Conference on 
Computer Vision and Pattern Recognition Workshops, Columbus.  

Niu, N., Liu, X., Jin, H., Ye, X., Liu, Y., Li, X., . . . Li, S. (2017). Integrating multi-source big data to 
infer building functions. International Journal of Geographical Information Science, 
31(9), 1871-1890.  

Powers, D. M. W. (2011). Evaluation: From Precision, Recall and F-Measure to ROC, 
Informedness, Markedness & Correlation. Journal of Machine Learning Technologies, 
2(1), 37-63.  

Pulighe, G., Baiocchi, V., & Lupia, F. (2015). Horizontal accuracy assessment of very high 
resolution Google Earth images in the city of Rome, Italy. International Journal of Digital 
Earth, 9(4), 342-362.  

Real, E., Aggarwal, A., Huang, Y., & Le, Q. V. (2018). Aging Evolution for Image Classifier 
Architecture Search. CoRR, abs/1802.01548v5, 1-14.  

Salesses, P., Schechtner, K., & Hidalgo, C. A. (2013). The collaborative image of the city: mapping 
the inequality of urban perception. PLoS One, 8(7), 1-22.  

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.-C. (2018). MobileNetV2: Inverted 
Residuals and Linear Bottlenecks. CoRR, abs/1801.04381, 1-14.  

Sitthi, A., Nagai, M., Dailey, M., & Ninsawat, S. (2016). Exploring Land Use and Land Cover of 
Geotagged Social-Sensing Images Using Naive Bayes Classifier. Sustainability, 8(9), 921-
943.  

Srivastava, S., Lobry, S., Tuia, D., & Vargas-Muñoz, J. (2018a). Land-use characterization using 
Google Street View pictures and OpenStreetMap. Paper presented at the Association of 
Geographic Information Laboratories in Europe, Lund.  

Srivastava, S., Vargas-Muñoz, J., Swinkels, D., & Tuia, D. (2018b). Multi-label Building Functions 
Classification from Ground Pictures using Convolutional Neural Networks. Paper 
presented at the GeoAI, Seattle.  

Steiniger, S., Lange, T., Burghardt, D., & Weibel, R. (2008). An Approach for the Classification of 
Urban Building Structures Based on Discriminant Analysis Techniques. Transaction in 
GIS, 12(1), 31-59.  

Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. (2017). Inception-v4, Inception-ResNet and the 
Impact of Residual Connections on Learning. Paper presented at the Artifical 
Intelligence, San Fransisco.  

Taneja, A., Ballan, L., & Pollefeys, M. (2014). Never Get Lost Again: Vision Based Navigation Using 
StreetView Images. Paper presented at the Asian Conference on Computer Vision, 
Singapore.  

Taylor, L., & Nitschke, G. (2017). Improving Deep Learning using Generic Data Augmentation. 
CoRR, abs/1708.06020.  

Tracewski, L., Bastin, L., & Fonte, C. C. (2017). Repurposing a deep learning network to filter and 
classify volunteered photographs for land cover and land use characterization. Geo-
spatial Information Science, 20(3), 252-268.  

Verhoeve, A., Dewaelheyns, V., Kerselaers, E., Rogge, E., & Gulinck, H. (2015). Virtual farmland: 
Grasping the occupation of agricultural land by non-agricultural land uses. Land Use 
Policy, 42(1), 547-556.  

Volpi, M., & Tuia, D. (2016). Semantic labelling of aerial images by learning class-specific object 
proposals. Paper presented at the IEEE International Geoscience and Remote Sensing 
Symposium, Beijing.  

Wegner, J., Branson, S., Hall, D., Schindler, K., & Perona, P. (2016). Cataloging Public Objects 
Using Aerial and Street-Level Images – Urban Trees. Paper presented at the IEEE 
Conference on Computer Vision and Pattern Recognition, Las Vegas.  

Wired. (2017). Google's new street view cameras will help algorithms index the real world. 
Retrieved from https://www.wired.com/story/googles-new-street-view-cameras-will-
help-algorithms-index-the-real-world/ 

Wong, A. (2018). NetScore: Towards Universal Metrics for Large-scale Performance Analysis of 
Deep Neural Networks for Practical On-Device Edge Usage. CoRR, abs/1806.05512, 1-9.  

Workman, S., Zhai, M., Crandall, D., & Jacobs, N. (2017). A Unified Model for Near and Remote 
Sensing. Paper presented at the International Conference on Computer Vision, Venice.  

https://www.wired.com/story/googles-new-street-view-cameras-will-help-algorithms-index-the-real-world/
https://www.wired.com/story/googles-new-street-view-cameras-will-help-algorithms-index-the-real-world/


Appendix 

 

92 

 

Yu, Q., Wang, J., Zhang, S., Gong, Y., & Zhao, J. (2017). Combining local and global hypotheses in 
deep neural network for multi-label image classification. Neurocomputing, 235, 38-45.  

Zeiler, M., & Fergus, R. (2014). Visualizing and Understanding Convolutional Networks. In D. 
Fleet, T. Pajdla, B. Schiele, & T. Tuytelaars (Eds.), Computer Vision - ECCV 2014. (Vol. 
8689). Cham: Springer. 

Zhou, B., Liu, L., Oliva, A., & Torralba, A. (2014). Recognizing City Identity via Attribute Analysis 
of Geo-tagged Images. Paper presented at the European Conference on Computer 
Vision, Zurich.  

Zhu, X., Tuia, D., Mou, L., Xia, G.-S., Zhang, L., Xu, F., & Fraundorfer, F. (2017). Deep Learning in 
Remote Sensing: A Comprehensive Review and List of Resources. IEEE Geoscience and 
Remote Sensing Magazine, 5(4), 8-36.  

 

Appendix 

Appendix 1: table of content of the USB that accompanies the thesis 

report 

- Report (Word, PDF) 

- Midterm & Final presentation (PPTX) 

- Datasets used and created 

- Scripts 

- Literature 

 

 

 

 

 

 
 


