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Abstract 

Precision agriculture (PA) for arable cropping is an application of technologies and principles to manage 

spatial and temporal variability, related with all aspects of agricultural production. These aspects 

include sampling, mapping, analysis and the management of production areas, and have the purpose 

to increase crop yield while keeping constant or improving the quality of the environment. Remote 

and proximal sensing data are often used as input for methods to delineate potential management 

zones (MZs) to support PA practices. The objective of this research was to define and investigate a 

method to determine how soil variation related to crop yield to delineate potentially homogeneous 

management zones for precision agriculture. Remote and proximal sensing data from a potato parcel 

from a farm in Reusel in the south of the Netherlands were obtained for this purpose, which included 

spectral indices of bare soil (NDRG and SUMVIS), apparent electric conductivity (ECa), elevation, soil 

depth of the top horizon, soil organic matter (SOM), Total SOM, potato crop yield, and vegetation 

indices (NDVI and WDVI). Those data were used to define and investigate a stepwise method to 

delineate potentially homogeneous MZs for the potato field. The first step consisted of descriptive and 

visual assessments of data, including a correlation analysis. Moderate to strong correlations were 

found between NDRG, ECa, elevation, soil depth, and Total SOM. Also significant correlations were 

found between these variables and crop yield, although the correlations between soil depth and Total 

SOM on the one hand and crop yield on the other hand were lower. These eight soil and elevation 

variables were selected as input for a MULTISPATI-PCA algorithm. Four spatial principal components 

(sPCs) were derived explaining 94.08% of the total variance in the dataset, which were used as input 

for a k-means clustering algorithm. This algorithm led to four potentially homogeneous MZs, from 

which the classification results were smoothed by means of a non-linear spatial filter. For three 

selected areas in the field, validation of the delineated MZs was performed  by fitting a number of 

statistical models on stratified random samples of crop yield per area, selecting the most optimal 

model, and testing two hypotheses based on that model to examine the differences in expected crop 

yield between the four MZs. For each of the three areas, significant differences (p < 0.05), or at least 

practical differences (9 ton/ha or more) in expected crop yield were found between all MZs, except 

between MZ2 and MZ3, indicating that these two MZs possibly could have been merged into one MZ. 

A method like this could be incorporated in a decision support system (DSS), in order to support 

management practices in precision agriculture for arable cropping. 

 

Keywords: Precision agriculture, management zones, remote sensing, proximal sensing, 

MULTISPATI-PCA, k-means clustering, potato crop yield. 
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1. Introduction 

This introduction starts with a background and problem definition about site-specific field 

management in relation to precision agriculture, followed by the objective and research questions of 

this thesis research and the outline of this report. 

1.1 Background 

During the last centuries, the demand for new and larger amounts of agricultural products has 

increased rapidly, because of a growing wealth and an expanding world population. Hence, efficient 

agricultural production has been developing extensively worldwide. For many years, this has been 

done in a traditional way. One of the persistent assumptions in traditional farming is that agricultural 

fields have homogeneous features, encouraging a farmer to apply whole-field management strategies 

(El Nahry, Ali, and Baroudy 2011). However, it is well known that soils contain heterogeneous spatial 

patterns, which could be relevant information for optimizing the yield of agricultural crops. Therefore, 

during the last couple of decades, traditional farming has increasingly been considered to be less 

efficient, and precision farming (PF) or precision agriculture (PA) has been applied instead (Johnson et 

al. 2003). Precision agriculture is the application of technologies and principles to manage spatial and 

temporal variability, related with all aspects of agricultural production (El Nahry et al. 2011; Pierce and 

Nowak 1999). Those technologies and principles include sampling, mapping, analysis and the 

management of production areas, and have the purpose to increase crop yields while keeping constant 

or even improving the quality of the environment (Weiss 1996). 

An important strategy in precision farming is the application of site-specific field management (SSFM). 

This strategy aims to optimize farmer’s input such as nutrient and fertilizer rates, based on site-specific 

crop requirements (Kooistra et al. 2011). Numerous variable rate technologies (VRTs) have been 

applied to identify and measure spatial variability within a field. An example of a VRT is the 

development of management zone maps for farmers to use for managing their fields in a more efficient 

way (Zhang et al. 2010). A management zone (MZ) is a sub-region in an agricultural field containing 

one or more similar quantitative and yield-limiting soil features, such as ground water level, mineral 

composition, soil organic matter (SOM), various local landscape attributes, and similar crop input 

needs (Haghverdi et al. 2015; Vrindts et al. 2005). These features could be relevant information to 

optimize farmer’s input on an agricultural field, in order to increase crop yields (Fridgen et al. 2004). 

The acquisition and management of soil and crop data, and the development of suitable decision 

criteria are challenging, yet important steps to realizing a VRT program (Kitchen et al. 1996). Remote 

and proximal sensing techniques are increasingly being used to capture data for the delineation of 

management zones, since they are appropriate for collecting information about soil properties and 

crop characteristics (Moran, Inoue, and Barnes 1997). Remote sensing is defined as the recording of 

data from a distant location without physical interaction, with help of platforms such as satellites or 

sensors and cameras on board of (un)manned aerial vehicles that measure reflected electro-magnetic 

radiation (Lillesand, Kiefer, and Chipman 2008). In proximal sensing, ground based sensors are used to 

measure for example spectral reflectance (SR) or electric conductivity (EC) of the soil, which have 

proven to relate closely to many soil properties that often determine a field’s productivity (Lund, 

Christy, and Drummond 1999). Those properties involve among others texture, water holding capacity, 

porosity, salinity, and temperature (Grisso et al. 2009). More about remote and proximal sensing 

techniques will be discussed in section 2.2. 
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1.2 Problem statement 

As stated in the previous section, soil and crop patterns are potential information to use as a basis for 

site-specific field management (SSFM), as a strategy in precision farming (PF). For example, yield maps 

have often been used as a measure of crop productivity to support delineation of management zones 

(MZs) (Whelan and McBratney 2003). To be able to make use of PF techniques effectively, a good 

understanding of soil and crop patterns and other physical and biological factors is vital. However, 

there is no such thing as one universal type of dataset that is applicable as standard information for PF 

practices at any place in the world (Kitchen et al. 2005). Reasons for this are that crop yield, but also 

other variables, are greatly influenced by local variations in soil and landscape, changing weather 

conditions, different approaches to field management, and hazards such as pests and diseases 

(Vitharana et al. 2008). Two papers suggested that crop yield data of at least five years should be used 

for the purpose of delineating stable management zones (Boydell and McBratney 2002; Stoorvogel, 

Kooistra, and Bouma 2015). Besides this, another paper recommended the use of historical remote 

sensing images in combination with real-time remote sensing data in high spectral and spatial 

resolutions for improved delineation of management zones (Mulla 2012). 

Additionally, it is important to define and investigate methods to identify key soil and topographic 

variables (or yield-limiting factors) for specific regions, agricultural crops and systems, especially 

because required soil and crop data are increasingly becoming available for farmers to use in site-

specific field management (SSFM). A number of studies have made attempts to identify these factors 

as a basis to delineate potential management zones for precision farming. For instance, one study 

investigated field in a loess area near Brussels, Belgium by collecting apparent soil electric conductivity 

(ECa) measurements in addition to soil samples, and performing a principal component analysis (PCA) 

on the derived soil variables (Vitharana et al. 2008). It turned out that ECa, elevation, and pH were the 

indicators representing the largest amount of variation responsible for the soil patterns. A few years 

later, a similar study was performed, but in a different study area in Belgium containing sandy soil (Van 

Meirvenne et al. 2012).  In addition, a larger soil sample was drawn, and gamma ray measurements 

were included as well. Surprisingly, the same yield-limiting factors were identified, despite the large 

differences in soil and landscape development between the two areas in Belgium. Regardless of these 

outcomes, each agricultural area is different. Therefore, potentially yield-limiting factors should be 

measured and evaluated effectively for each farm to characterize spatial field variation, and to decide 

which of those factors to include in the creating of potential MZs (Nawar et al. 2017). 

In addition to the wide range of available soil and crop variables, another important question is which 

sources and sensors to use for acquiring these kinds of data. A widely used and accurate approach to 

determining and analysing soil properties is intensive grid sampling, but this is economically not always 

favourable because of the high costs and the time consuming process (El Nahry et al. 2011). For that 

reason, other approaches for delineating management zones have been proposed, such as remote and 

proximal sensing techniques, which have been widely adopted in the fields of precision farming and 

crop monitoring, and for effectively supporting the crop production chain (Johnson et al. 2003; 

Thessler et al. 2011). However, it was argued that challenges existed to develop sensing technology, 

measurement services, and management tools that could be of added value for improving crop yields, 

and decreasing input costs and production risks. Propositions have been made to tackle those 

challenges, such as developing simple protocols for calibrating sensors, standardizing output formats 

for different types of sensor systems, writing more extensive product specifications, and making those 

specifications more widely available to end-users (Kooistra 2011). 
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Because of the large range of soil and landscape properties, using data from one single sensor is not 

always sufficient (Castrignanò et al. 2012), and therefore several multi-sensor based approaches have 

been proposed. For example, one investigated approach was the integrated use of EMI data, gamma-

ray emission, and GPS measurements for improved soil and landscape characterization, by means of 

geostatistical methods and the estimation of relationships between the different sources of data (De 

Benedetto et al. 2013; Castrignanò et al. 2012). In addition, it has also been proposed to develop ways 

for integrating data from both remote and proximal sensing technology, for instance to overcome the 

lack of data availability from satellites caused by cloudy weather conditions (Kooistra 2011). This 

suggestion was implemented in a study that revealed good relations between vegetation indices 

derived from multiple sources of sensing data, and showed significant differences in crop development 

for a number of parcels throughout a growing season (Kooistra et al. 2012). Another proposition to 

overcome the lack of availability from satellite images was to use sensors and multispectral cameras 

on board of (un)manned aerial vehicles to acquire remotely sensed images. Because of the low costs, 

high spatial and temporal resolutions, and high flexibility in image acquisition, data recorded in that 

way could be a good alternative to satellite images (Zhang and Kovacs 2012). 

When an appropriate dataset with different kinds of soil and crop data coming from multiple types of 

sensing platforms has been acquired, the question remains which descriptive and statistical techniques 

are most suitable for deriving stable management zones to support decision making for precision 

agriculture. The most widely applied approach for delineating management zones is cluster analysis, 

which is a collection of unsupervised learning algorithms to classify values of input variables into one 

or more given clusters, based on metrics such as Euclidian distance (James et al. 2013). For instance, 

one study compared the results of cluster analysis based on the correlation of soil and crop parameters 

and cluster analysis based on soil parameters only, and found promising results for the first type of 

clustering, which was considered valuable information for site-specific field management (SSFM) 

(Vrindts et al. 2005). Another research  performed a correlation analysis to select soil variables from a 

dataset that was collected for experiments in Brazil, and normalized the variables as input for a 

clustering algorithm to delineate potential MZs, showing that normalization was required if variables 

were measured in different measurement scales (Schenatto et al. 2017). Principal component analysis 

(PCA) is another widely used approach for multivariate image analysis and as pre-processing step for 

cluster analysis (Ding and He 2004; Geladi et al. 1989). An important purpose of PCA is dimensionality 

reduction, in order to retain only the first few principal components (PCs) that explain the largest 

amount of variation in a dataset (Wold, Esbensen, and Geladi 1987). This could be applied for instance 

to store relevant image information in the first number of components, and background noise in the 

other PCs (Geladi et al. 1989). Several papers have used PCA as a basis for cluster analysis, and showed 

that using PCs as input for classification algorithms significantly improved clustering accuracy, in 

comparison to using the original variables of a dataset (Ben-Hur and Guyon 2003; Ding and He 2004). 

The challenges for this thesis research are to investigate what kinds of soil and crop data from which 

types of sensing platforms are available, and to find out which statistical learning methods are 

appropriate for analysing those data, in order to come up with a potential management zone 

classification and validation. 
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1.3 Objective and research questions 

Consequently, the main objective of this research is to define and investigate a method to determine 

how soil variation relates to crop yield, in order to delineate potentially homogeneous management 

zones for precision agriculture, based on data obtained from remote and proximal sensing technology. 

This leads to the following main research question: 

How does soil variation relate to crop yield, in order to delineate potential management zones for 

precision agriculture in arable cropping? 

This main research question is addressed by the following four sub-research questions: 

1. What kinds of geographical soil and crop datasets and methods are available for delineating 

potential management zones? 

2. Which spatial patterns and relationships are observed, both within and between those 

geographical soil and crop datasets? 

3. What method can provide representative delineation of potential management zones based on 

these spatial patterns and relationships? 

4. What is the validity of those potential management zones? 

1.4 Outline thesis report 

The coming chapter contains a review of literature on developments, data collection, and methods to 

delineate potential management zones for precision agriculture. Chapter three describes the materials 

and methods applied for this thesis project, starting with a description of the study area. Next, it 

explains the methods for pre-processing the used soil and crop datasets, calculating descriptive 

statistics, and for delineating and validating potential management zones. Chapter four gives 

interpretations on the results of these analyses, followed by a discussion of those results in chapter 

five, and chapter six provides conclusions and recommendations for this research. References and 

appendices are included at the end of this report. 
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2. Review of literature 

In past studies, lots of data and methods have been applied to determine soil and yield variation in 

order to delineate potential management zones for precision agriculture (PA). This literature review 

starts with a description of current developments, and continues with an overview of soil and 

vegetation data acquisition techniques for PA. After that, approaches used as a basis for precision 

farming will be discussed, including the investigation of soil patterns, crop patterns, and the 

relationship between soil and crop patterns as a basis for site-specific field management for PA. 

2.1 Developments in precision farming for arable cropping 

As stated in the introduction, precision agriculture (PA) or precision farming (PF) for arable cropping is 

the application of technologies and methods to manage spatial and temporal variability, related with 

all aspects of agricultural production (El Nahry et al. 2011). The main purpose is to optimize crop yields 

without repressing the environment (Weiss 1996). PA emerged in the 1980s, but has only been 

practiced commercially since the 1990s, and approaches and technologies for PA have been developing 

ever since (Mulla 2012). The first step in PA for arable cropping is assessing a field’s spatial variability, 

because crop and soil parameters are subject to both spatial and temporal variation. This variation can 

be assessed in a number of ways, including soil surveying, soil sampling and spatial interpolation of 

samples, high resolution sensing, and (statistical) modelling (Pierce and Nowak 1999). Information 

about spatial soil and crop variability is valuable for site-specific field management (SSFM), which is an 

important approach for arable farm management (Whelan and McBratney 2003). SSFM has been 

developing since the late 1990s and has proven to be useful as a basis for soil sampling and the use of 

variable rate technologies (VRTs) for optimizing nutrient application on agricultural fields (Barnes et al. 

2003; El Nahry et al. 2011). 

Delineation of management zones (MZs) is an important strategy in SSFM, which has been investigated 

since the early 2000s (McBratney et al. 2005; Zhang et al. 2010), and can be achieved in a number of 

ways (Nawar et al. 2017). First of all, creating MZ maps based on farmer knowledge could be an 

effective approach, since farmers have a broad knowledge about an agricultural field’s properties, 

spatial variation, and the past production history of that field. More on this will be described in section 

2.3.1. A second approach is investigating the local geomorphology and using topographical variation 

and landform properties as a basis for delineating MZs. Other ways proposed to create MZ maps are 

based on analysis of soil chemical properties or soil classes and based on yield maps and crop coverage 

(Nawar et al. 2017). Many techniques to obtain information about these properties and spatial 

variation are available, such as soil sampling, remote sensing, and proximal sensing (Kooistra 2011). 

More about these techniques will be discussed in sections 2.2.1 and 2.2.2. 

A relatively new development in precision farming is the adoption of big data technologies, that are 

expected to cause large effects on the directions of smart and precision farming (Wolfert et al. 2017). 

Big data is a concept to describe data with sizes that exceed the capacities of common tools and 

software to store, analyse, visualize and manage data with respect to time and memory, and is often 

explained according to the amount of data (volume), speed of data processing and transaction 

(velocity), different data types and sources (variety), and data reliability (veracity) (Mohanty, Bhuyan, 

and Chenthati 2015). Examples of information technologies in big data are cloud computing, which is 

a technology to generate access to shared resources over a large network (such as the internet) for 

storing and analysing big amounts of data, and the internet of things (IoT), which is a network of 

physical appliances, devices and vehicles provided with electronics, software and sensors to be able to 



 
 
 
Analysis of soil and crop patterns to delineate potential management zones for precision agriculture in arable cropping 

Page 6 

communicate with each other (Mohanty et al. 2015). For instance, devices such as sensors and robots 

are nowadays capable to capture real-time sensing data, in addition to high-resolution images and 

videos that could be used for decision making and to manage arable fields in a fast and concurrent way. 

Besides this, more and more stakeholders start to play a role in big data for precision farming, such as 

technology companies and suppliers to provide farmers with the latest technologies, platforms and 

solutions for efficient monitoring and management of farms (Wolfert et al. 2017). In addition, many 

start-up companies emerge that offer IT solutions for analysing and visualizing data, and for proposing 

decision support to farmers. However, these developments also raise questions about data privacy, 

security and ownership. On the one hand, there is a desire for closed proprietary data architectures, 

but other stakeholders encourage more freely accessible open-source systems on the other hand, so 

the discussion about these issues is expected to be an ongoing business analogous to the 

developments in big data and precision farming  (Mohanty et al. 2015; Wolfert et al. 2017). 

All described technologies are promising for the developments in precision agriculture. However, it is 

not the proposed technologies or data itself, rather the methods to transform these data into useful 

information, the interpretation of that information, and management practices based on those 

interpretations that may lead to profitable economic and environmental outcomes conceding from 

precision farming (Pierce and Nowak 1999; Weiss 1996). Back in 2005, a number of strategies were 

proposed to support developments in precision farming, improvement of management practices, and 

increased awareness about PA, which still apply today (McBratney et al. 2005). First of all, it was 

proposed to develop ongoing new equipment and technologies for farmers to support arable 

management of their fields, such as improved crop and soil sensors, and instruments for seed bed 

preparation and mechanical weed control. Another suggested approach was to develop a decision 

support system (DSS) for setting up standardized ways to produce crop yield and soil maps, to develop 

robust methods for soil and crop data integration, analysis and management zone delineation, and to 

propose tools and software for farmers, researchers and other stakeholders to use in a user-friendly 

way. Third, it was proposed to integrate technologies to support whole-farm SSFM practices, rather 

than investigating each arable field separately, for example by performing cost-benefit analyses for 

the whole farm (Weiss 1996). And lastly, to raise awareness about all aspects related to precision 

farming, consumers should be informed about the environmental impact, quality assurance, and 

product supply chain of production systems that have PA oriented approaches. This can be achieved 

by linking farmers, students and researchers to exchange knowledge about precision farming, by 

organizing information meetings at schools and companies, and by media coverage about PA practices 

and technologies (McBratney et al. 2005). 

2.2 Data acquisition for farm and crop management 

In the problem statement it was suggested that sensor technology and the integration of data from a 

large range of remote and proximal sensors are able to show good relations between different sources 

of data, and that it has a lot of potential for crop monitoring and production over time, related to many 

applications in precision agriculture (Kooistra et al. 2012; Thessler et al. 2011). This section elaborates 

more on those applications and data acquisition by means of remote and proximal sensing techniques. 

2.2.1 Remote sensing 

As stated in the introduction, remote sensing is a set of technologies for collecting data from a remote 

location without physical interaction, by means of platforms such as satellites or sensors and cameras 

on board of (un)manned aerial vehicles that measure reflected electro-magnetic radiation (Lillesand 
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et al. 2008). Besides applications in precision agriculture, remote sensing has also been used in 

research areas such as soil mapping and land use classification (Paul Obade and Lal 2013), detection of 

regional water leakages (Hadjimitsis et al. 2013), obtaining information to support archaeological 

applications (Masini and Lasaponara 2007; Papadopoulos and Sarris 2006; Parcak 2009), and wildlife 

monitoring (McDermid et al. 2009; Raizman et al. 2013). Satellite remote sensing has had applications 

in agriculture since the 1970s, when the first Landsat (Landsat-1) satellite was launched, for example 

to classify agricultural landscapes in the US into maize or soybean fields (Bauer and Cipra 1973; Mulla 

2012). Another research used Landsat images taken from bare soil in addition to soil samples, in order 

to estimate spatial patterns in soil organic matter (SOM), soil organic carbon (SOC), phosphorus, and 

wheat grain yield (Bhatti, Mulla, and Frazier 1991). Data was analysed with the use of classical statistics 

and geostatistics, and results gave strong evidence for non-random spatial patterns in soil properties 

and crop yields. Nowadays, the Landsat-8 is used worldwide for earth observation, and the Landsat-9 

is expected to be launched in 2020 (USGS 2018). Applications of recent Landsat data are for instance 

found in crop monitoring and modelling (Roy and Yan 2018), and accurately estimating cropland 

presence in South America based on time series data (Graesser and Ramankutty 2017). Other widely 

used earth observation devices to acquire data for land cover mapping and agricultural applications 

are MODIS and SPOT satellites. Data from these satellites have for instance been used to quantify 

changes in wetlands by means of landcover classification and creating monthly flood maps (Di Vittorio 

and Georgakakos 2018), crop yield prediction by regressing crop yield against NDVI time series derived 

from MODIS data (Nagy, Fehér, and Tamás 2018), and crop classification based on SPOT-5 

multispectral data and statistical learning techniques, such as maximum likelihood and support vector 

machines (Yang, Everitt, and Murden 2011). 

Another rapidly developing technology in the field of remote sensing and photogrammetry is the use 

of multispectral cameras and sensors on board of remotely piloted aerial systems (RPAS), unmanned 

aerial vehicles (UAVs) or with a popular term drones, which is currently innovated enough to be used 

in the development of GIS products, services and applications (Colomina and Molina 2014). One 

application is to support precision agriculture by capturing information on soil and plant radiation with 

help of UAVs, such as the fixed-wing system of eBee shown in Figure 2.1 (SenseFly 2018). UAVs could 

be a good alternative for data acquisition in comparison to satellites, because of their low cost, high 

spatial and temporal resolution, and high flexibility in image acquisition (Zhang and Kovacs 2012). 

Moreover, satellite images are not always available, could be hindered by cloud cover, or have often 

too coarse resolutions (Kooistra 2011; Zhang and Kovacs 2012). Just as for all types of geospatial 

datasets, paying attention to data quality also applies to UAV-recorded imagery. One way to improving 

the measurement accuracy of UAV imagery is to record images supported by ground control points 

(GPCs), which was for instance applied in the research by Van der Voort (Van der Voort 2016). GPCs 

are large marks on the ground from which the coordinates are measured with a GNSS device, used to 

achieve accurately georeferenced images in relation to the real world (Wang et al. 2012). 

Satellite sensors and multispectral cameras are capable of sensing reflected soil and plant radiation in 

different spectral bands, such as the visible bands red, green and blue (RGB) that have wavelengths 

between approximately 400nm and 700nm, and several infra-red (IR) bands, containing wavelengths 

of 700nm and higher (Mulla 2012). The reflectance values of these bands can further be used as input 

to calculate various spectral indices. For instance, two studies calculated spectral indices of bare soil 

to predict soil properties determined from soil samples. The first research used linear regression on 

indices derived from publicly available aerial photographs from three study areas in the Netherlands 
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with different soil types to assess soil organic carbon (SOC), and concluded that SOC explained most of 

the differences between the indices (Bartholomeus and Kooistra 2012). The second study used UAV-

recorded RGB images in combination with elevation data to estimate soil organic matter content 

(SOM), finding that the largest part of the variation in SOM could be explained by RGB derived soil 

indices (Bartholomeus, Suomalainen, and Kooistra 2014). 

 

 
Figure 2.1 –  eBee for recording 

multispectral aerial images in four bands: 
Green, Red, Red-Edge, NIR (SenseFly 2018) 

Figure 2.2 – Aerialtronics Altura AT8 
Octocopter mounted with Hyperspectral 

Mapping System (Suomalainen et al. 2014) 

Besides spectral indices from bare soil, also many vegetation indices are broadly used, such as the NDVI 

and WDVI. The NDVI (Normalized Difference Vegetation Index) is an index that is used to detect and 

determine diverse vegetation properties. The idea behind it is that vegetation absorbs a large portion 

of visible light (RGB) for photosynthesis, whereas near infrared (NIR) light is mostly reflected, since it 

is hardly used for photosynthesis (Lillesand et al. 2008). The values range between -1 and 1, for which 

a value of for example 0.2 indicates poor vegetation and 0.8 shows healthy, abundant vegetation. 

Hence, the higher the value, the healthier or more developed the vegetation is. The differences in 

reflectance also depend on the amount of available sunlight, which is the reason for dividing 

(normalizing) the difference between NIR and Red by the total incoming light (NIR + Red) (Lillesand et 

al. 2008). In this (and many other) applications, the red band is chosen as visible light band, but the 

blue or green band can be used as well. The WDVI (Weighted Difference Vegetation Index) is another 

index for the assessment of vegetation properties. This index is developed for the estimation of the 

thickness of vegetation’s canopy, or leaf area index (LAI). It is calculated by subtracting the contribution 

of the soil’s reflectance from the vegetation’s reflectance, with the assumption that the ratio between 

infrared and red reflectance of bare soil is constant (Clevers 1991). Since the soil’s reflectance is filtered 

from the signal, the differences between scarce and abundant vegetation are more prominent for the 

WDVI than for the NDVI, which is beneficial to assessing the differences in the development of 

vegetation (Clevers 1991). One example to use the WDVI (among other vegetation indices) was to 

assess the status of potato crops at a study field of Van den Borne potato farm as an application in PA, 

based on Sentinel-2 satellite data (Clevers, Kooistra, and van den Brande 2017). The WDVI and other 

indices proved to be of good predictive power to estimate LAI of the potato crops. In addition to these 

bands and indices, another special spectral band, called the red-edge position (REP), is frequently used 

as well. The wavelengths between the upper limits of the red band (670nm) and the lower limits of the 

NIR band (780 nm) indicate a sudden increase in vegetation’s reflectance, causing the REP’s 

wavelength to be around 720 nm (Clevers et al. 2001). Whereas the NDVI and WDVI focus more on LAI, 
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the REP has also proven to be an important parameter to derive the chlorophyll content of vegetation, 

which is another indicator for the condition of plants (Adamczyk and Osberger 2015). The REP and 

related spectral indices have found their way in several studies monitoring the development of many 

different crops. For instance, one paper used the REP to estimate the LAI from nine different crops on 

a test area in Spain, and discovered a strong correlation between the index and LAI, in comparison to 

a lower correlation between NDVI and LAI (Delegido et al. 2013). Also good correlations were found 

between the normalized difference red edge (NDRE) index and N uptake in a study to estimate nitrogen 

concentration from maize on an experimental field in Quzhou County, China (Li et al. 2014). 

Imaging spectroscopy, or hyperspectral imaging, is another advancing technology in the field of remote 

sensing. Image spectroscopy is the simultaneous acquisition of co-registered images (images with 

exactly the same spatial resolution, extents and coordinate system) in a large range of narrow and 

contiguous spectral bands by means of remote sensing techniques (Schaepman et al. 2009). Because 

of the many available spectral bands, the technology is for instance very suitable for accurately 

measuring soil processes and properties, such as salinity, erosion, soil formation, soil organic matter 

and contamination (Ben-Dor et al. 2009), and the assessment of chlorophyll and nitrogen content in 

vegetation (Clevers and Kooistra 2012). At the Laboratory of Geo-Information Science and Remote 

Sensing at Wageningen University, a hyperspectral mapping system (HYMSY) was developed especially 

to be mounted on an Altura AT8 Octocopter, which is a rotor-based UAV as shown in Figure 2.2. The 

system contains a pushbroom spectrometer and a photogrammetric camera, intended for research 

and applications to support characterization of crop variation and monitoring potato crops on 

agricultural parcels (Suomalainen et al. 2014). During the past years, other research projects have been 

using data from UAV-based hyperspectral systems for investigation various agricultural applications as 

well. First of all, one paper described promising applications in calculating parcel sizes of paddy field 

areas, palm tree mapping, and sugar cane estimation in Indonesia, based on orthophotos and 3D digital 

elevation models (DEMs) collected with UAV-based cameras and sensors (Rokhmana 2015). Similar 

methods were applied in two case studies monitoring the decline of chestnut trees and the 

development of vines in Portugal based on data recorded with and eBee (SenseFly 2018), and it was 

suggested that those methods could be suitable to support decision making in relation to site-specific 

field management (Pádua et al. 2017). Other papers used hyperspectral imagery to predict soil 

properties of agricultural fields in the USA by means of soil sampling and using partial least squares 

(PLS) to predict soil properties based on the image’s spectral bands, stating that high resolution soil 

maps could be a suitable tool to support site-specific field management of farmlands (Hively et al. 

2011), and to derive red-edge vegetation indices for estimating nitrogen (N) uptake of winter wheat in 

China, showing moderate to strong correlations between those indices and N uptake (Feng et al. 2015). 

Besides the use of optical remote sensing, it was argued that UAV-based thermal remote sensing is 

another promising technology, for instance in the fields of drought monitoring, plant disease detection, 

soil mapping, crop monitoring and crop yield estimation, although several limitations such as 

calibration, atmospheric absorption and disruption by changing weather conditions have to be solved 

first before large-scale use of this technology is possible (Khanal, Fulton, and Shearer 2017). 

2.2.2 Proximal sensing 

As a complement to remote sensing, spatial patterns are also measured by means of proximal sensing 

technology as a basis for precision agriculture. Proximal (or close) sensing is a range of techniques to 

measure for instance chemical, physical and biological soil properties and crop yield with help of 
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sensors at no more than about 2 meters above ground level (Bartholomeus et al. 2011; Stoorvogel et 

al. 2015). Soil electric conductivity (EC) is one proximally sensed variable that is able to detect local 

differences and variation in the soil (McNeill 1980), making it potentially suitable information to 

explain other soil properties determining an agricultural field’s productivity, such as texture, water 

holding capacity, porosity, salinity, and temperature (Grisso et al. 2009). For instance, one study 

investigated the potential of apparent soil electric conductivity (ECa) to predict the spatial distribution 

of clay and pH as a basis for lime application, and confirmed that soil ECa was indeed suitable to serve 

as an indicator for other soil properties, such as clay content and pH (Sanches et al. 2018). Moreover, 

EC also proved to be closely correlated with wheat and corn yield as a basis for SSFM (Johnson et al. 

2003). Therefore, electromagnetic induction (EMI) sensors measuring soil EC are increasingly applied 

as potential information to derive soil properties for arable management practices (Corwin and Lesch 

2005). The coming paragraphs discuss the acquisition of soil and crop variables such as EC, soil organic 

matter (SOM), pH, and nitrogen (N) content by means of EMI and other proximal sensing techniques. 

Figure 2.3 shows a schematic view from the principle of measuring soil EC. In general, a sensor contains 

one transmitter and one or more receiver coils. The transmitter sends different magnitudes of currents 

into the soil, generating a primary magnetic field (quadrature (or quad) phase, or 𝐻𝑝) that induces 

current loops as displayed in Figure 2.3 (Corwin and Lesch 2003). Consequently, those current loops 

generate a second magnetic field (in phase or 𝐻𝑖), which is measured by the receiver coil or coils. For 

instance, an EM38-MK2 soil sensor as shown in Figure 2.4 and on the image on the front page (Van 

den Borne 2018a) is equipped with three coils: one transmitter and two receivers that are placed at 

0.5 and 1 meters horizontally from the transmitter. For that reason, an EM38-MK2 is able to measure 

EC at both 0.5 meters and 1.0 meters soil depth, since the horizontal distances of the coils are 

proportional to the vertical soil depths. Similarly, a Veris sensing platform measures EC at 0.3 meters 

and 0.9 meters soil depth. The ratio between the quad phase and in phase is proportional to the 

electric conductivity of the soil (McNeill 1980). From the quad-phase data, the apparent soil electric 

conductivity (ECa) is calculated by multiplying EC by a temperature correction factor (Corwin and Lesch 

2005; Ma et al. 2011). Apparent electric conductivity is expressed as mean conductivity of the soil’s 

volume in mS/m (Saey et al. 2013). However, sensors such as the EM38-MK2 are often calibrated in a 

way that under low induction the quad phase output is directly stored as ECa (Geonics Ltd. 2008). 

In addition to ECa, devices such as Veris sensing platforms are also equipped to measure variables like 

soil organic matter (SOM) and soil pH. These variables are recorded with separate sensors on a mobile 

sensor platform that could for instance be mounted on a tractor. Those sensors measure soil variables 

on-the-go, and link the measurements to spatial coordinates by means of GNSS (Vantage Agrometius 

2018). For instance, SOM is measured by sending light pulses into the soil and measuring the reflection 

of the incoming red and near infrared (NIR) wavebands of light (Schans and Berg 2013). The reflection 

data including geolocation is send to a spectrophotometer and transformed into suitable values to 

create a SOM map. In addition, pH is measured by two ion-selective pH electrodes that are brought 

into contact with the soil particles. Every recording is the average of the two electrodes, in order to 

validate the measurements and to filter out possible measurement errors (Schirrmann et al. 2011). 
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Figure 2.3 –  Operation principle of the electromagnetic 
soil conductivity meter (Corwin and Lesch 2003) 

Figure 2.4 – EM38-MK2 Soil sensor 
(Van den Borne 2018a) 

Similar to hyperspectral imaging in remote sensing, proximal soil spectroscopy has increasingly been 

used in the field of soil science, since those techniques are able to measure multiple soil properties 

from just a single scan in a relatively inexpensive, non-destructive way, and with a minimum amount 

of preparation compared to soil sampling (Viscarra Rossel 2011). In the past decades, various studies 

have been conducted with respect to soil spectroscopy. Back in 1998, the same author evaluated if a 

potential soil sensor could be used for proximal measurements in the field, in order to formulate 

management decisions for precision agriculture, by taking soil samples from the surface horizon of an 

area in New South Wales, Australia, and taking spectral measurements from the samples with a PIMA 

II spectrometer in different wavelengths ranging from 1300 to 2500 nm (Viscarra Rossel and 

McBratney 1998). After performing statistical analysis on the measurements, reflectance values 

showed significant results to clay and water content, but not to organic matter. Therefore, the method 

was considered to be useful for agricultural management practices, although further refinement of the 

sensor for organic matter content would be necessary. A more recent study measured hyperspectral 

reflectance data from various locations across the United States with an on-the-go spectrometer 

pulled behind a tractor, for the purpose of developing partial least square (PLS) models to predict 

chemical properties of the soil (Christy 2008). The models showed significant results and were used to 

calculate prediction maps of the chemical properties of the soil, which were suggested to be a 

substantial source of information for management practices in precision agriculture. 

In addition to collecting soil measurements, proximal sensing also has applications in crop yield data 

acquisition. Two ways to collect crop yield data with ground sensors are by determining the yield 

directly, and by measuring the electromagnetic reflection of crops. Direct crop yield (in ton per hectare) 

is being measured during harvest by a sensing system on board of a tractor, such as the Yield Master 

Pro by Probotiq that combines information of load cells, speed sensors and GNSS measurements to 

produce crop yield maps (Van den Borne 2018b). Optical reflection from crops could for instance be 

measured by two Fritzmeier ISARIA sensors parallelly attached at the front side of a tractor (Figure 2.5 

and Figure 2.6), that are able to measure reflectance values of soil and vegetation in several spectral 

bands (Van den Borne 2018b; Fritzmeier-Umwelttechnik 2016). These values are consecutively used 

to calculate nitrogen (IRM) and biomass (IBI) vegetation indices by means of a black box operation, for 

which the input values of the four bands are not known. Just as for direct crop measurements, GNSS 

information is collected as well and linked to the crop measurements, to be able to produce N and 

biomass maps based on the determined vegetation indices. 
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Figure 2.5 –  Fritzmeier sensors attached on the 
front side of a tractor, measuring crop samples 

Figure 2.6 – Close-up from Fritzmeier sensor, the four 
sensors to measure IBI and IRM are visible 

Another study measured NDVI from growing canola crops with a hand-held optical sensor to use in 

experiments conducted on five agricultural fields across Canada between 2004 to 2007, for the 

purpose of discovering potential relations between the NDVI of the crops and various seed and 

nitrogen (N) rate inputs (Holzapfel et al. 2009). Although some of the experiments were disturbed by 

bad weather conditions, regression analyses between NDVI, seed and N input showed moderate 

correlations, suggesting that optical sensors could be a valuable tool to obtain crop yield information 

as a basis for applying variable N input rates to support site-specific field management for PA. 

2.3 Approaches to delineating potential management zones 

Investigating the spatial patterns of soil and crop variables from arable fields is an important first step 

for potential management zone delineation to support in precision agriculture, because those patterns 

have a significant impact on the modelling and optimization of crop yield (Kuang et al. 2012). Therefore, 

this section discusses approaches that have been used in previous studies for delineating potentially 

homogeneous management zones, such as investigating within-field knowledge of farmers and using 

unsupervised classification techniques on the detected soil and crop yield patterns. 

2.3.1 Farmer’s knowledge about spatial patterns on agricultural fields 

Precision farming is often technology-driven, with a focus on new developments of sensing and 

measuring techniques, but the primary emphasis should be on farmers who are responsible for 

decisions with respect to their farm management (Stoorvogel et al. 2015). In addition, a research 

regarding precision agriculture in cotton farming in the US already suggested that younger, more 

educated cotton farmers exploiting large farms were more likely to implement SSFM techniques than 

other farmers (Roberts et al. 2004). Evaluating spatial within-field knowledge of farmers could be an 

effective approach, since farmer’s expert knowledge is a valuable source of information for precision 

farming (Fleming et al. 2000). For example, one study underpinned this by investigating the spatial 

knowledge of farmers to determine within-field soil variation with the help of aerial photographs 

(Heijting, De Bruin, and Bregt 2011). Semi-structured interviewing techniques were applied together 

with soil sampling to determine and validate the within-field knowledge of farmers. It turned out that 

the farmers had substantial spatial knowledge about their fields, which they used intuitively for the 

site-specific field management of their lands. To make this spatial knowledge more concrete, it could 

for example be formalized into a decision support system (DSS) determining how to apply farm 

management based on local circumstances in the field. In addition, a paper evaluating a combination 

of farmer knowledge, PA tools and crop simulation modelling also concluded that farmers had a good 
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understanding of spatial patterns and poor crop producing regions within their arable fields (Oliver, 

Robertson, and Wong 2010). Another study compared MZs derived from bare soil colour on aerial 

images assessed by farmers with MZs delineated based on spatial patterns from ECa, and concluded 

that both methods indeed seemed to identify homogeneous zones within arable fields, although the 

EC method was slightly more effective for one of the fields than the farmer based method (Fleming, 

Heermann, and Westfall 2004). 

2.3.2 Management zone delineation based on crop yield information 

In order to delineate potential MZs, crop (and soil) variables are often used as input for cluster analysis 

algorithms, which are a collection of unsupervised classification techniques (James et al. 2013). Two 

widely used types of cluster analyses for delineating potential MZs are k-means and fuzzy c-means 

(FCM) clustering (sometimes also referred to as fuzzy k-means or FKM). The aim of k-means clustering 

is to allocate the values of given input variables into one of the k number of clusters, in such a way that 

the sum of squares within each cluster is as low as possible (Hartigan and Wong 1979). The method of 

FCM (or FKM) clustering is very similar, with the adaptation that all values are classified into all clusters, 

provided with a weighting factor that determines the maximum likelihood for a value to belong to a 

certain cluster (Bezdek, Ehrlich, and Full 1984). 

One way to delineate potentially homogeneous MZs with cluster analysis is based on (past) crop yield 

information. As argued before, crop yield data of multiple years were suggested to use for the purpose 

of delineating stable management zones (Boydell and McBratney 2002; Mulla 2012; Stoorvogel et al. 

2015). For instance, one study investigated management zone delineation by applying three different 

clustering techniques on past crop yield data and comparing the results with yield responses to variable 

N rate inputs (Milne et al. 2012). The three clustering algorithms included two ‘hard’ k-means 

techniques based on (dis)similarities between crop yield, and one ‘soft’ classification technique that 

was based on computing membership to fuzzy classes. Figure 2.7 shows the classification results 

containing five crop yield classes, with (a) and (b) being the ‘hard’ means algorithms and (c) the ‘soft’ 

membership classification. The third one is clearly the most practical classification map of the three. 

 

Figure 2.7 – Three different fuzzy classification results (Milne et al. 2012) 

Another paper used estimated cotton yield maps of multiple fields in New South Wales, Australia from 

multiple years ranging from 1988 to 1998 as a basis for FKM cluster analysis to delineate potential MZs 

(Boydell and McBratney 2002). After optimizing the number of clusters and identifying maps of years 

having possibly undesirable influences on the outcomes, the authors concluded that reasonably stable 

yield zones could be derived from multi-year estimates with data from 5 years (± 2 years), that data 

should be distinguished based on proposed water management, and that the used approach could 

allow potential MZ delineation to support field investigations for the Australian cotton industry. A 
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different study used historical crop yield maps from multiple years in addition to the NDVI, the red 

spectral band, and plant surface temperature derived from remotely sensed images from multiple 

fields across the Midwest of the USA, and examined the correlation between these covariates to 

discover the best predictors for within-field crop yield information (Maestrini and Basso 2018). Results 

showed that historical yield maps provide the best prediction for spatial variability over time, while 

the remotely sensed images were better predictors for within-field spatial variability. 

2.3.3 Management zone delineation based on combined soil and crop yield information 

Other methods to support management zone delineation are either based on soil information solely, 

or on a combination of soil and yield information. For instance, one paper studied the relationships 

between soil properties and grain yield on three different farms (representing a high-, medium- and 

low-yielding zone) in Sweden, and evaluated whether hydraulic conductivity of saturated fields could 

be an indicator of variable crop yield for the purpose of site-specific field management (Keller et al. 

2012). Soil properties were derived from soil samples, field saturated hydraulic conductivity was 

measured, and yields were recorded by sensors attached on crop harvesters. Results based on 

regression analysis showed that on average low-yielding zones were characterized by higher bulk 

density and lower hydraulic conductivity than medium and high-yielding zones, indicating that soil 

structure is a valuable source to consider for precision farming practices. 

As input for a FCM cluster analysis to delineate and validate potential MZs, one study conducted a 

correlation analysis for selecting and normalizing soil variables such as elevation, slope, soil 

penetration resistance (SPR), clay content, and soil organic matter (SOM) (Schenatto et al. 2017). The 

study was conducted for three experimental fields in Brazil between 2010 and 2014, and results 

showed that if the clustering algorithm used multiple variables with different measurement scales, 

normalization of the variables was required to get reliable classification results. Another study 

collected soil samples in addition to spectral reflection measurements of winter wheat from an 

agricultural parcel in Belgium to use as input in FCM cluster analysis (Vrindts et al. 2005), and concluded 

that cluster analysis based on the correlation between soil and crop information was a more effective 

way to delineate potential management zones compared to cluster analysis based on soil information 

solely. For another research to an agricultural field in Belgium, apparent electric conductivity (ECa) 

measurements were collected, in addition to soil samples for analysing topsoil and subsoil clay content 

(Vitharana et al. 2006). Good correlations were found between ECa and subsoil clay content, but 

weaker correlations for topsoil clay content. Therefore, subsoil clay content in addition to gravimetric 

water content were chosen to create a potentially homogeneous MZ map from (with k-means cluster 

analysis), and this map was compared to an aerial image of sugar beet crops, resembling the spatial 

patterns and confirming the reliability of the results. 

From a study area in Venice in Italy that mostly contained silt-clay soil (left side of Figure 2.8), EC 

measurements were collected in combination with soil sample data and NDVI values derived from bare 

soil reflectance (Scudiero et al. 2013). Goals were to discover possible correlations between these 

covariates, and to apply this information to delineate potentially homogeneous management zones 

using FCM classification. Results from an analysis of variance (ANOVA) indicated that five management 

zones were most suitable (right side of Figure 2.8), since the least amount of within-unit variance of 

the investigated variables remained for each of the five zones. 
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Figure 2.8 – Study area Italy (left) and classified management zone map of the area (Scudiero et al. 2013) 

For several experimental fields in Colorado, USA, relationships between EC measurements collected 

with a Veris soil sensor, and maize yield measured with a grain yield monitor and a GPS device were 

investigated (Johnson et al. 2003). This study also used EC-based management zone maps and crop 

yield maps to compare with soil properties determined from grid sampling. Correlation and regression 

analyses were conducted, and most of the results showed strong correlations between the different 

soil and crop variables, concluding that EC determination and the use of management zone maps 

provide valuable information for site-specific field management in precision agriculture. Directed soil 

sampling was also used in a paper by (Whelan and McBratney 2003) to validate delineated 

management zones based on differences between wheat yield, soil EC and elevation for a number of 

arable fields in New South Wales, Australia. Significant differences between zones were found for some 

of the derived soil properties, and for the purpose of effective field management suggestions were 

made to take a soil’s water holding capacity in combination with early seasonal indicators into account, 

to discard areas of low yield potential, and to change land use or reduce various farming inputs. 

Another paper combined very high-resolution vegetation images from two years obtained by the 

QuickBird satellite and digital maps derived from soil sampling to derive leaf area index (LAI) maps of 

a commercial maize field in Huesca, Spain (López-Lozano, Casterad, and Herrero 2010). These maps 

included mineral concentrations extracted from soil samples and EMI-measurements, elevation, and 

a grain yield map from 2004. Significant spatial relations were found between these covariates. Based 

on those relations, different site-specific management zones were proposed, see Figure 2.9 for a 

possible management zone solution. A comparable study was done by (Haghverdi et al. 2015) for an 

agricultural field for cultivating cotton in Tennessee, USA, although more than one clustering algorithm 

(including k-means, Gaussian and integer linear programming) was applied and compared to delineate 

potential management zones. Similar to other articles, the authors of both papers suggested that the 

delineation of such management zones is an important step in the application of variable rate 

technologies (VRT) for as a basis for site-specific field management (SSFM). 
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Figure 2.9 – Site-specific management units derived from LAI and soil maps (left) and homogeneous 
rectangular delineated zones for applying variable rate technologies (VRT) (López-Lozano et al. 2010) 

2.3.4 Management zone delineation based on principal component analysis 

Besides using soil and crop variables directly as input for cluster analysis, principal component analysis 

(PCA) is another frequently used approach as a pre-processing step for cluster analysis (Ding and He 

2004). The principle of PCA is to transform a given set of variables into a new uncorrelated set of 

variables, called the principal components or PCs, ordered by a descending amount of explained 

variation from the total dataset (Jolliffe 2014). One purpose of PCA is dimensionality reduction, 

retaining only the first few PCs explaining the largest amount of variation in a dataset (Wold et al. 

1987). A few decades ago, one study performed a multivariate image analysis based on PCA, in order 

to store relevant image information in the first number of components and background noise in the 

other components, and already stated that the method was useful for detecting outliers, and for 

setting up a better strategy for image analysis (Geladi et al. 1989). As described in section 1.2, two 

papers attempted to find key soil and topographic variables for delineating potentially homogeneous 

management zones by collecting apparent soil electric conductivity (ECa) measurements in addition to 

soil samples and gamma ray measurements for study sites across Belgium, and performing principal 

component analyses on the derived soil variables (Van Meirvenne et al. 2012; Vitharana et al. 2008). 

Covariates representing the largest amount of variation in the first PCs (and therefore being the largest 

contributors responsible for the soil patterns in the fields) were soil ECa, elevation, and soil pH. 

In addition, some papers suggested that using PCs as input for classification algorithms significantly 

improved clustering accuracy and stability compared to using the original variables of a dataset as 

input for cluster analysis (Ben-Hur and Guyon 2003; Ding and He 2004). One paper used interpolated 

ECa measurements collected with a Veris 3100 sensor (Vantage Agrometius 2018) from a study field 

in the state of Paraná, Brazil, in addition to eleven other soil parameters derived from soil sampling 

such as pH, SOM, phosphorus, and cation exchange capacity as input for a PCA analysis, and 

consecutively used two PCs explaining 80% of the total variation of the dataset in a FKM cluster 

algorithm (Molin and Castro 2008). This resulted in a management zone map containing three 
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homogeneous zones that were validated using a one-way ANOVA on all variables, indicating that 

significant differences occurred between zones for most of the soil variables. A similar study was 

conducted for an arable field in Badajoz in the southwest of Spain (Moral, Terrón, and Silva 2010), for 

which a management zone map with two clusters was derived based on two PCs explaining about 99% 

of the total variance, and validated by a visual comparison between the spatial distribution from both 

the MZs and the soil properties. Another paper describes the delineation of management zones by 

deriving soil properties such as clay content, pH, CEC, soil organic carbon (SOC), an nitrogen content 

from soil samples collected in an arable region in the north of Iran that contained approximately 24,000 

ha of paddy fields (left side of Figure 2.10) (Davatgar, Neishabouri, and Sepaskhah 2012). After 

interpolation by means of kriging, the variables were used in a PCA, and the first three PCs best 

representing the paddy field properties were used in a fuzzy c-means classification to divide the field 

into four MZs (right side of Figure 2.10) based on the within-group variability of soil fertility. 

 

Figure 2.10 – Study area Iran (left) and classification result of the area with 4 MZs (Davatgar et al. 2012) 

A recently developed extension to PCA, called MULTISPATI-PCA, is aimed at integrating spatial 

information before computing the actual spatial principal components (sPCs), which is achieved by 

calculating a parameter called Moran’s index that determines spatial dependence (or autocorrelation) 

between local observations in relation to their neighbouring observations, and providing those values 

with spatial weighs signifying the magnitude of the spatial dependence (Dray, Saïd, and Débias 2008). 

During the past years, a number of papers have incorporated this approach in their researches. For 

instance, one study compared the performance of ordinary PCA with MULTISPATI PCA on data 

collected from an agricultural field in the southeast of Argentina (Costa 2012), and discovered that the 

extended PCA detected correlations within the data that were not discovered by ordinary PCA, 

suggesting that MULTISPATI-PCA would be a promising tool to map spatial variability within 

agricultural fields to support management zone delineation for precision agriculture. Another study 

that collected data from arable fields in the southeast in Argentina (Cordoba et al. 2013), compared 

management zones delineated by k-means cluster analysis based on the original soil variables, on the 

first PCs of ordinary PCA, and on the first sPCs of MULTISPATI-PCA, and concluded that the latter 

approach notably improved the delineations in comparison to ordinary PCA. A similar study on 

comparing three unsupervised methods was conducted for an experimental field in Brazil (Gili et al. 

2017), and concluded that the methods incorporating spatial structure in soil data in general 

performed better, but that the choice of the method depends on the objectives of crop management, 

the main yield-limiting factors, and the agro-ecological conditions of the field. 
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3. Materials and methods 

The different analysis stages were performed based on the research questions defined in section 1.3. 

The first sub-research question was covered by an extensive literature review included in chapter 2 on 

data and methods that have been applied in past research projects in relation to precision agriculture. 

The second sub-research question was attended by performing descriptive and visual data analyses, 

and the third sub-research question was focused on finding a method to delineate potential 

management zones (MZ) by performing principal component analysis (PCA), and by delineating MZs 

represented by clusters based on the extracted spatial principal components (sPCs). The final sub-

research question aimed at detecting and validating potato crop yield variation, both between and 

within the delineated MZs, by fitting a number of linear models. In addition to a description of the 

study area, this chapter will elaborate on the applied methodology for data pre-processing and data 

analysis, for the purpose of addressing those research questions. 

3.1 Description of the study area 

The study area for this research is focused on the potato farm of Van Den Borne, which is located near 

Reusel, south-west of Eindhoven in the province of Noord Brabant, on the Dutch-Belgian border 

(Figure 3.1). In addition, Van Den Borne farm is very near to the Maatschap Gebroeders Laarakker farm 

in Reusel. For that farm, an investigation to the region’s soil quality and hydrology was conducted in 

1980, from which the results still apply today. The soil consists of poorly loamy sand that is deposited 

by wind, and has grain sizes of about 160 µm (Dekkers 1981). On many locations, the soil structure 

consists of a large A-horizon on top of a shallow B horizon. These horizons are deposited on a C horizon 

consisting of densely packed layers of sand (Stoorvogel et al. 2015). The sand belongs to the Formation 

of Sterksel, a river deposition from the Early and Middle Pleistocene epochs (Naturalis 2018). The soil 

also contains some gravel, larger rocks, and some small layers of humus. However, these layers are 

rather scattered and therefore not easily quantifiable (Dekkers 1981). 

  

Figure 3.1 – Location of Van Den Borne Potato farm 
in the province of Noord Brabant, The Netherlands 

Figure 3.2 – Parcel of Van Den Borne farm used for 
this research 
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Van Den Borne farm is specialized in arable farming, mainly for cultivating potatoes (Solanum 

tuberosum), but also sugar beet (Beta vulgaris) and corn (Zea mays) are produced (Van den Borne 

2018a). On several parcels, many vegetation properties have been measured from different kinds of 

crops. Also soil electric conductivity has been measured regularly, so lots of soil and crop data of 

multiple growing seasons are available, for instance to use as a basis for site-specific field management 

(Kooistra et al. 2011). The focus of this research lies on one of the parcels at the farm, which is located 

across the farm buildings (Figure 3.2). The parcel has a size of approximately 12.7 ha and its mid-field 

coordinates are 51°19’03.4”N and 5°10’23.4”E (WGS84). 

For many parcels on the farm a crop rotation cycle of four years is applied, meaning that one specific 

crop is cultivated once every four years, and during the growing season of 2015 the parcel was used to 

cultivate potatoes (Van den Brande 2015). Topographic maps, such as the one from 1980 extracted 

from the Topotijdreis website (Kadaster 2018c) that was also included in the study by (Dekkers 1981) 

(Figure 3.3), show that the parcel is located along the Postelse Dijk on the Dutch-Belgian border 

(represented by the yellow-black line), and that it contains a ditch for water run-off (indicated with a 

blue line) at the north of the field. This situation has not been changed much; more recent maps and 

images show very similar patterns. 

 

Figure 3.3 – Topographic map from the location of Van Den Borne farm 
from 1980 (Kadaster 2018c) 
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3.2 Description and pre-processing of datasets 

In this section, the datasets used for this research are described, and the data pre-processing are 

explained. Data pre-processing was performed in R, an open-source programming language to perform 

extensive statistical analysis and visualizations on large (geospatial) datasets (Bivand et al. 2008). R was 

accessed via RStudio, an open source integrated development environment (IDE) that interacts with R, 

making it appropriate for data analysis and visualization in a user-friendly way (RStudio 2018). 

3.2.1 Available datasets and terminology 

For this research, a number of initial datasets were available to use for pre-processing and data analysis, 

including aerial images of bare soil and potato crops, apparent electric conductivity (ECa) at four soil 

depths, potato crop yield, elevation, soil depth of the A-horizon, and soil organic matter (SOM). 

Characteristics and specifications of these datasets are included in Appendix 1. The pre-processing 

steps applied on all soil and potato crop datasets are summarized in Figure 3.4, and will be further 

explained in the coming subsections. 

 

Figure 3.4 - Flow chart data pre-processing, describing all the steps to create matching raster layers for all soil 
and crop variables at a spatial resolution of 2m x 2m 
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The following sections and chapters often refer to specific data formats and coordinate systems, from 

which the terminology is briefly explained in this section. Initial datasets were provided either as vector 

data or as raster data. Vector data embody spatial features as points, lines or polygons that are spatially 

related to each other, and are allowed to contain multiple attributes per geometric location (Chang 

2015). On the other hand, raster datasets are gridded spatial datasets with a certain number of rows 

and columns containing cells with a particular size, which determines the dataset’s spatial resolution 

(Chang 2015). In contrast to vector data, raster cells only contain one variable, indicated as the cell 

values of a raster dataset. For this research, vector data were available as data frames stored in CSV 

files and shapefiles, whereas raster datasets were provided as GeoTIFF format. A Comma Separated 

Value (CSV) file is a very basic textual data format in which data is often structured as a data frame 

(DF). A DF is a matrix with rows indicating observations, and columns representing variables that are 

allowed to have different data types such as text, numbers and dates (Shafranovich 2005). Secondly, 

a shapefile is a vector data format to store spatial features, linked to their geometric location by means 

of spatial coordinates (Bivand et al. 2008). One type of shapefile is a spatial points data frame (SPDF), 

which is a DF with two or three columns representing spatial coordinates for each point, and other 

columns containing values of one or more variables associated with those coordinates (Bivand et al. 

2008). Lastly, the Geometric Tagged Image File Format (GeoTIFF) is a file format for storing raster 

images such as aerial photographs that can be embedded with metadata like a coordinate reference 

system or geometric projection (GDAL/OGR contributors 2018). 

For all soil and crop datasets, a general pre-processing step was transforming them (if necessary) into 

another coordinate reference system. On the one hand, a common coordinate system is the World 

Geodetic System (WGS), used worldwide for mapping and navigation (Eurocontrol and IfEN 1998). A 

well-known example that makes use of WGS is the Global Positioning System (GPS). The currently 

applied WGS version is WGS84, and the latitudes and longitudes are expressed in degrees. On the 

other hand, the standard geodetic XY coordinate system for the Netherlands is Rijksdriehoeksstelsel 

(RD). The central point of this system is the steeple of the Onze Lieve Vrouwetoren in Amersfoort (de 

Bruijne et al. 2005). The presently used version of this reference system is RDNew, and longitudes (x) 

and latitudes (y) are expressed in meters. Because of its high accuracy for geospatial data about the 

Netherlands, this reference system was very suitable to use as a basis for the data of this research. In 

addition, some soil datasets were already available in RDNew coordinates. Therefore, the rest of the 

datasets were transformed into RDNew coordinates as well. 

3.2.2 Field and fertilization boundaries 

The Dutch government increasingly encourages a more open geo-information infrastructure, freely 

accessible for stakeholders that are interested in this information. For that purpose, many geo-data 

portals are available on the web, such as the Nationaal Georegister (NGR) (Kadaster 2018a) and its 

linked website Publieke dienstverlening op de Kaart (PDOK) (Kadaster 2018b). These portals provide a 

broad range of geo-information, such as the Basisregistratie Gewaspercelen (BRP). The BRP is a 

database containing boundaries and attributes (in vector data format) about the location of all 

registered agricultural parcels across the Netherlands and Flanders, Belgium. These attributes are 

linked to their corresponding farm and include each farmer’s stocktaking of crop yield per season (De 

Vos et al. 2010). For this research, the main field boundary was extracted as a shapefile from the BRP 

database from 2015. 
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Since a few years, experiments have been conducted on a number of parcels at the farm of Van Den 

Borne, including the parcel that was studied in this research. For an experiment on comparing nitrogen 

(N) input with crop yield in 2011, the parcel was subdivided into four initial fertilization zones 

distributed across the parcel from north to south (Areda 2013). In 2015, a similar experiment was 

conducted based on the same fertilization zones, but with different N inputs. Moreover, additional 

sensor-based N fertilizer was applied on the whole field, except for a narrow strip of land perpendicular 

to the initial fertilization zones (Figure 4.1). (Van den Brande 2015). The shapefiles containing the 

fertilization zones were provided by Jacob Van Den Borne (Van den Borne 2018a). For this research, 

these datasets were used to compare them with the delineated management zones, and to investigate 

whether differences occurred in crop yield between specific fertilization zones. The methods for these 

analysis steps are explained in section 3.5. 

3.2.3 Soil and crop images from UAVs 

Aerial images of the parcel at Van Den Borne were recorded in 2015 as part of the research from Van 

Den Brande (Van den Brande 2015), and were also provided by Lammert Kooistra for the current 

research. The images were taken by means of a multispectral camera on board of an eBee (a UAV used 

by the company Aurea Imaging) at a resolution of 5 cm x 5 cm, and stored as GeoTIFFs that contained 

multiple spectral bands. The coordinate system of both GeoTIFFs was WGS84 UTM zone 31. One 

dataset was recorded on 14 April 2015, showing the field’s bare soil, and other datasets were taken 

during the growing season. The last recording of that season was done on 15 August 2015, which was 

also used in this research in addition to the bare soil image from 14 April. The bare soil image was 

recorded in three spectral bands: Red, Green, Blue (RGB), containing 8-bit grayscale values ranging 

from 0 to 255, and the crop images were taken in four bands: Green, Red, Red-Edge, and NIR, having 

reflectance values ranging from 0 to 1. The value of 0 in both images indicated no reflection of 

electromagnetic radiation, whereas 255 and 1 represented 100% reflection, respectively.  

In order to reduce the amount of pixels, and thus the memory size of the images, the first pre-

processing step was masking the images (‘cutting out’ a piece) according to a rectangular polygon with 

its extents adopted from the field boundary. The next steps were aggregating the images to a 

resolution of 2m x 2m, and transforming them to RDNew coordinates. And finally, the images were 

masked a second time according to the field boundary itself. One study proposed calculating spectral 

indices of aerial images (Bartholomeus and Kooistra 2012), in order to highlight variations in 

reflectance values and to standardize differences in radiometry. For the current research, two spectral 

reflectance indices of bare soil were calculated and stored as two new raster images: the SUMVIS (sum 

of the three spectral bands) and the NDRG (Normalized Difference Red – Green). The equations to 

calculate both indices based on the three spectral bands of the bare soil image are as follows. 

𝑆𝑈𝑀𝑉𝐼𝑆 = Red+Green+Blue (3.1) 

𝑁𝐷𝑅𝐺 =
Red − Green

Red + Green
 (3.2) 

Based on the different spectral bands from the vegetation image that was recorded in August 2015, 

two vegetation indices were calculated and stored as two new images: the NDVI and WDVI (see also 

section 2.2.1). In fact, Aurea Image had already calculated these indices, which were included as two 

additional GeoTIFFs to the rest of the dataset. The equations to calculate both indices are as follows. 
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𝑁𝐷𝑉𝐼 =
NIR − Red

NIR + Red
 (3.3) 

𝑊𝐷𝑉𝐼 = NIRtot −
NIRsoil

Redsoil
× Redtot (3.4) 

In addition to the images containing spectral indices or vegetation indices, two other images were 

created from both GeoTIFFs. The bare soil image from April was used to create an image showing the 

field in True Colour, meaning that the field was depicted in its actual colours covering the RGB colour 

space of the image (Lillesand et al. 2008). On the other hand, the image of August was used to create 

an image showing the field in False Colour, meaning that the image was depicted in colours that 

differed from an actual True colour image, for instance to highlight a specific feature that was present 

in the image (Lillesand et al. 2008). In fact, the green band was depicted in blue, the red band in green 

and the NIR band in red. These images were only used to describe spatial patterns within the field 

(described in section 4.2.2), so they were not included in the procedure to delineate potential MZs. 

3.2.4 Soil and crop measurements from manual sampling and ground sensors 

In contrast to the raster-based aerial images discussed in the previous section, other datasets were 

available in the form of CSV files containing one pair of coordinates and one or more attributes 

representing different soil or crop yield variables. One of the variables was electric conductivity (EC) 

(in mS/m), measured on 20 March 2015 (before the start of cultivation and fertilization) with an EM38-

MK2 sensor at soil depths of 0.5 m, 1.0 m, 1.5 m, and 3.0 m. Another variable was potato crop yield (in 

ton/ha), measured during harvest with a Yield Master Pro system on 4 October 2015. Datasets of both 

variables were provided for this research by Jacob Van Den Borne (Van den Borne 2018a). Three other 

variables were elevation, soil depth of the A-horizon, and soil organic matter, all measured during 

fieldwork at the farm of Van Den Borne on 20 March 2015 as well. Elevation was expressed in NAP, 

which is an abbreviation of Normaal Amsterdams Peil, used to represent the Dutch vertical coordinate 

reference system expressed in m above sea level (de Bruijne et al. 2005). The A-horizon is the top soil 

layer, which typically contains large amounts of humus and other organic matter, and is therefore very 

suitable for cultivating different kinds of crops such as potatoes and maize (Van den Brande 2015; 

Stoorvogel et al. 2015). Soil depth of the A-horizon was measured in m below ground level, and soil 

organic matter in percentages. Just as the aerial images discussed in the previous section, 

measurements of these three variables were acquired as part of the research of Van Den Brande (Van 

den Brande 2015), and were also provided by Lammert Kooistra for this research. 

Except for elevation and soil depth that contained RDNew coordinates, all datasets contained WGS84 

coordinates. Therefore, a first pre-processing step was to transform them into RDNew coordinates as 

well, as described in section 3.2.1. A second step was to check the point datasets for influential points, 

categorized as outliers or inliers. An outlier is an observation that is far outside the general pattern of 

values in a dataset, that potentially has influence on statistical analyses (Osborne and Overbay 2004). 

On the other hand, an inlier is an observation that significantly differs from its neighbouring values, 

but still falls within the general pattern of other values in a (spatial) dataset (Córdoba et al. 2016). One 

way to detect outliers was to calculate the mean of a variable and adding or subtracting three times 

the standard deviation. All values below or above these thresholds were considered as potential 

outliers. However, an important condition to be able to use this method is that data should 

approximately come from a normal distribution (Miller 1991; Osborne and Overbay 2004). Therefore, 

normality of all soil and crop yield variables was checked by creating boxplots. If a variable was 

approximately normally distributed, the method described above was used. However, if the boxplots 
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showed a highly skewed distribution, an alternative method was used. The purpose of this method 

was to detect and remove inliers, based on Moran’s local index Ii checking for spatial autocorrelation 

in a geographic dataset (Anselin 1995). This index was calculated for each observation and determined 

the degree of similarity compared to its neighbouring points. A positive value indicated similarity, 

whereas a negative Ii indicated unusually low or high values compared to its neighbouring points. To 

calculate the degree of autocorrelation based on the index, a spatial weighting matrix had to be 

calculated. Spatial weighs indicate the amount of interaction between observations in a spatial dataset 

(Dray, Legendre, and Peres-Neto 2006). For calculating the index, the pairs of coordinates were 

extracted from each point dataset, after which the neighbouring points per observation were 

identified based on a pre-defined Euclidian distance, and spatial weighs were calculated for each 

neighbouring point per observation. Potential inliers were visualized by creating so-called Moran 

scatterplots, with an x-axis containing observations, and the y-axis indicating the spatial lag of the 

variable (Anselin 1996). For this research, observations having a negative local Moran index, or 

containing statistically significant indices (p < 0.05) were removed from the datasets. Results of this 

procedure are described in section 4.1.2. 

After detection and removal of influential points, the spatial point datasets were interpolated by 

means of ordinary kriging. Kriging is a geostatistical regression-based method to predict unknown 

values at output locations based on known values at input locations (Cressie 1990). The method uses 

(semi-)variograms as input information, which are functions describing the amount of spatial 

dependence of a random variable, and are expressed as relations between the distance and the 

variance of the difference between paired observations of that variable (Calder and Cressie 2009). The 

first pre-processing step with respect to spatial interpolation of the point datasets was to test and fit 

a number of empirical variograms for each variable in an automated way by the AutofitVariogram 

function in R (Hiemstra et al. 2009). This led to estimated variograms with parameters model, nugget, 

sill, and range. Only spherical and exponential models were tested, since those two types of models 

were suggested to be the most suitable for spatial interpolation of datasets used in plant and soil 

science (Gili 2013). The nugget represents all unexplained variance including measurement error, the 

sill indicates the maximum semi-variance between pairs of observations, and the range is the spatial 

distance at which the value of the model variogram reaches the maximum value (or sometimes 95%) 

of the sill (Calder and Cressie 2009). The AutofitVariogram algorithm iterates over all listed variogram 

models and selects the model having the smallest residual sum of squares compared to the sample 

variogram (Hiemstra et al. 2009), which was used in the end as input for the kriging function. Secondly, 

a reference raster dataset (one of the pre-processed aerial images) was transformed into a spatial 

points data frame with its coordinates serving as new prediction locations. Third, a kriging function 

was executed with these locations as input, together with the experimental variogram and the existing 

point locations of the dependent variable. The electric conductivity and crop yield datasets had a huge 

amount of observations, so in order to save processing time and memory, the amount of neighbours 

to include in the kriging predictions was fixed to a maximum value. Lastly, all interpolated points were 

transformed into raster datasets, and masked and projected to match the reference system, extents, 

and spatial resolution of the pre-processed aerial images discussed in section 3.2.3. Potato crop yield 

was only interpolated for assessing descriptive statistics, correlations, and spatial patterns. 

One of the goals in the research of (Van den Brande 2015) was to establish relationships between soil 

properties and nitrogen (N) content in the top soil. Besides soil depth of the A-horizon and soil organic 

matter (SOM), another soil variable was Total SOM, which was also used as a variable in this research. 
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Total SOM was calculated by means of equation 3.5. In this equation, Total SOM is expressed in ton/ha, 

SOM in percentage, soil depth (of the A-horizon) in meters, and soil bulk density in g/cm3 (or ton/m3). 

The bulk density of the sandy soil at the farm of Van Den Borne was 1.13 g/cm3 (Bakker 2014). The last 

number in the equation refers to the fact that one hectare is equal to 10,000 m2. 

𝑇𝑜𝑡𝑎𝑙 𝑆𝑂𝑀 =
𝑆𝑂𝑀

100%
× 𝑠𝑜𝑖𝑙 𝑑𝑒𝑝𝑡ℎ × 𝑠𝑜𝑖𝑙 𝑏𝑢𝑙𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 × 10000 (3.5) 

3.3 Descriptive statistics and mapping of datasets 

Similar to data pre-processing, data analysis was performed in Rstudio as well. The data analysis steps 

applied on all pre-processed soil and potato crop variables are summarized in Figure 3.5, and will be 

further explained in this and the coming sections. First of all, descriptive statistics, scatterplots, and 

raster-based maps were created in order to get a better overview on the value ranges, spatial patterns, 

and interrelations between all covariates. 

 

Figure 3.5 - Flow chart data analysis, describing the steps to create descriptive statistics, maps, and spatial 
principal components, and in the end to delineate and validate potentially homogeneous MZs 
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Before the start of the actual data analysis, all pre-processed raster datasets were transformed into 

one large spatial point data frame (SPDF) with two columns indicating the pairs of RDNew coordinates, 

and the other columns representing the soil and crop variables associated with those coordinates. This 

SPDF was used as a basis to generate descriptive statistics, scatterplots and correlation matrices from 

those variables. For each variable, the sample size, minimum, maximum, mean, standard deviation, 

and coefficient of determination were calculated. For bivariate analysis, a correlation matrix and 

density scatterplots for each pair of variables were created. Two ways of describing correlation is by 

Pearson’s correlation coefficient (r), and by including regression lines in scatterplots. Pearson’s r ranges 

between -1 to 1 and explains how strong two variables correlate (Ott and Longnecker 2015). The closer 

the values approach those extremes, the larger the respective negative or positive association 

between the variables. A regression line depicts the goodness of fit between two variables. The closer 

the points in a scatterplot approach this line, the stronger the correlation between the two variables 

on both axes of the scatterplot (Ott and Longnecker 2015). 

Visualization of all soil and crop datasets, but also from the derived PCs and MZs (explained in section 

3.4) were performed in QGIS Desktop (version 2.18) (QGIS 2018). Among other (commercial) software 

such as ArcGIS (Environmental Systems Research Institute 2018), this open-source geographic 

information system (GIS) is widely used to compile, process, analyse, and visualize geographical data 

and information, to manage those data and information in geographical databases, and share it with 

many applications on the web (Burrough 1986; Chang 2015). For mapping all datasets, an aerial image 

from the study area was downloaded from Google maps (Google 2018) to use as a background layer 

in the maps. However, since the image was downloaded as a plain JPEG image, it lost its metadata 

concerning spatial resolution, coordinate system, and spatial extent, so georeferencing the image was 

necessary. Georeferencing is a procedure to (visually) relate and match the spatial coordinate system 

of one spatial dataset to another dataset with a different reference system, or to a new image without 

a coordinate system (Hackeloeer et al. 2014). This method was performed by deriving the coordinates 

of the location (in WGS84 format) from Google maps (Google 2018), converting them to RDNew 

coordinates, and projecting them on the JPEG image in the form of digital Ground Control Points (GCPs) 

in QGIS. Also the topographic map in Figure 3.3 was obtained and processed in that way. 

3.4 Delineation of potential management zones 

Delineation of potentially homogeneous management zones for the study field at Van Den Borne farm 

was performed in two steps. First of all by a special kind of principal component analysis called 

MULTISPATI-PCA, and secondly by a k-means cluster analysis based on the principal components that 

were derived from that analysis. 

3.4.1 MULTISPATI Principal component analysis 

Before conducting an actual principal component analysis, input variables were selected from the SPDF 

based on a number of assumptions. First, the correlation matrix (included in Appendix 5) was examined 

to check which soil and topographic variables had a noteworthy correlation with crop yield (r ≥ 0.3), 

since crop yield was going to be used for validation of the derived management zones (explained in 

section 3.5). Second, Bartlett’s test of Sphericity was executed to check if the soil variables were 

mutually related or not. This was done by testing the hypothesis that the correlation matrix was an 

identity matrix (a matrix with values of 1 on the diagonal, and other values being zero) or not, indicating 

that the variables were unrelated or related (Snedecor and Cochran 1989). A significant test (p < 0.05) 

would mean some degree of association between the variables, making them useful as input for PCA. 
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Third, a value called the Kaiser-Meyer-Olkin Measure of Sampling Adequacy (KMO-MSA) statistic was 

calculated, both for the complete dataset of soil and topographic variables, and for each of these 

variables separately. This statistic has often been applied in factor analysis, but may be used in PCA as 

well. It is a measure to investigate if the proportion of variance among all variables is caused by 

underlying factors or not (Hutcheson and Sofroniou 1999). A commonly used rule of thumb is that if 

KMO values ≥ 0.5, then variables are suitable as input for factor analysis or PCA, which was used as 

one of the assumptions for variable selection. 

Principal component analysis (PCA) is an unsupervised method to transform possibly correlated 

variables from a dataset into a new set of uncorrelated variables, called principal components (PCs). 

One purpose is dimensionality reduction, achieved by only retaining the PCs that account for the 

largest part of variance from the complete dataset (Jolliffe 2014). The selected soil and topographic 

variables were used as input for MULTISPATI principal component analysis, which is a special kind of 

PCA that takes spatial information into account by calculating Moran’s local index to detect spatial 

autocorrelation between observations, and calculates spatial principal components (sPCs) by 

maximizing the product of variance and spatial autocorrelation (Dray et al. 2008). The procedure to 

obtain sPCs from the soil and topographic variables was as follows. Ordinary PCA was performed on 

all selected soil and topographic variables to create a scree plot, which is a function showing the 

explained variance for each PC in descending order for the purpose of deciding how many components 

to retain in subsequent analysis (Jolliffe 2014). Next, ordinary PCA was performed on the selected 

variables a second time with the chosen number of retained PCs. The spatial coordinates were not 

used in the PCA itself, rather to calculate spatial autocorrelation based on Moran’s index and to store 

those values in a weighing matrix, in the same way as was applied for the method to detect potential 

inliers described in section 3.2.4. Together with the duality diagram obtained from ordinary PCA on 

selected soil and crop variables, the spatial weighs were used as input for the MULTISPATI-PCA 

algorithm to generate spatial principal components (sPCs). Lastly, the sPC scores were linked to the 

pair of RDNew coordinates, after which each sPC was transformed into a raster file. 

3.4.2 K-means clustering and smoothing of classification results 

Management zones (MZs) were created by means of k-means clustering, which is an unsupervised 

classification method that allocates the values of given input variables into one of the k number of 

clusters, in such a way that the sum of squares within each cluster (WSS) is as low as possible (Hartigan 

and Wong 1979). The sPCs created from the MULTISPATI-PCA algorithm served as input variables. 

Similar to the procedure for PCA, the clustering algorithm was first performed to create a scree plot to 

decide how many clusters to retain. However, instead of the explained variance, this scree plot showed 

the total within sum of squares (WSS) for each given number of clusters in descending order. Next, the 

cluster algorithm was performed again based on the retained number of clusters, after which the 

cluster values were attached to the pair of RDNew coordinates and transformed into a raster file. 

In addition, a paper suggested smoothing of classification results by means of non-linear spatial filters 

that respond according to the order of pixels in a particular area of an image (Arce 2005), in order to 

remove isolated pixels, small cluster patches, and sharp edges on boundaries between clusters (or 

MZs). A large range of filters with different matrix sizes ranging from 3 x 3 pixels to 35 x 35 pixels and 

different functions (such as min, max, mean, median, and mode) were explored, and the result that 

appeared most practical for management purposes was selected for further analysis. 
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3.5 Validation of potential management zones 

Section 3.2.2 mentioned that fertilization experiments had taken place on the field, for which the 

parcel was subdivided in four fertilizer zones, and that additional fertilizer (N) had been applied on the 

whole field except for a vertical strip of land perpendicular to these fertilizer zones (Van den Brande 

2015). Based on these fertilizer zones, three areas containing two or more delineated MZs were 

selected for validation of those MZs. The first area covered the whole field excluding the strip without 

additional N input, the second was located in the upper north-west corner of the field, and the third 

in the mid-west of the field (Figure 4.20). For validating the MZs, the spatial points data frame of crop 

yield was used instead of the interpolated raster, and the cluster values were attached to the points 

by means of a spatial overlay. 

Validation of MZs was conducted by fitting a number of linear models representing the relationship 

between MZs and crop yield, in order to investigate whether significant differences occurred in crop 

yield between the delineated MZs. A book chapter by (Corwin and Lesch 2010) suggested that 

geostatistical mixed linear models (MLM) could be an effective way to map soil and plant properties. 

Moreover, (Schabenberger and Pierce 2001) proposed using MLMs for making statistical inferences 

about data in plant and soil sciences, since these types of models allow incorporating dependence and 

non-constant variance among observations, which is not the case for ordinary linear models (Ott and 

Longnecker 2015). The paper of (Córdoba et al. 2016) recommended to draw stratified random 

samples from the response variable to use in MLMs, with MZs serving as strata. Therefore, from each 

MZ a random sample of 100 crop yield point observations was drawn for each of the three validation 

areas to use in the statistical models. Next, four mixed linear models in addition to a one-way ANOVA 

were fitted on the random samples from each of the three described areas, with clusters (MZs) as 

explanatory variable and crop yield as response variable. Similar to the procedure in the paper by 

(Córdoba et al. 2016), the four MLMs were modelled with spatially correlated error terms based on 

spherical and exponential functions, both with and without estimated nugget effect, while the one-

way ANOVA was modelled with independent error terms. Only MLMs with spherical and exponential 

correlations were evaluated, since these were considered most suitable for statistical modelling in 

plant and soil sciences (Gili 2013). For each of the three areas, the total set of five models was 

evaluated by means of Akaike’s information criterion (AIC), which is a method to compare the relative 

qualities for a number of fitted statistical models, in which quality is defined by the inclusiveness of 

information in a given model (Akaike 1981). For each of the three validation areas, the statistical model 

having the lowest AIC was considered to be of best quality, and was selected to make further statistical 

inferences about. For each of the three models, two hypotheses were tested. The first hypothesis 

tested the overall performance of the model to evaluate whether any difference occurred in expected 

crop yield between the delineated MZs, by means of an F-test at a significance level of α = 0.05: 

H0: Expected crop yield is the same among all MZs; 

Ha: At least two of the MZs show significant differences in expected crop yield. 

For pairwise comparisons, the second hypothesis tested whether a significant difference occurred in 

expected crop yield between each pair of MZs, by means of t-tests based on Tukey’s HSD at a 

significance level of α = 0.05: 

H0: No significant difference occurs in expected crop yield between two MZs; 

Ha: The difference in expected crop yield between two MZs is significant. 
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4. Results 

This chapter discusses the results of this research, starting with the data pre-processing results, 

followed by an interpretation of the descriptive statistics, correlations and output maps of all used 

data, the results of the management zone delineation based on PCA and cluster analysis, and the 

validation of the potential management zones. 

4.1 Pre-processed datasets 

This section starts with a description of the designated fertilizer boundaries. Next, the results regarding 

the detection and removal of inliers for the spatial point datasets and spatial interpolation by means 

of kriging are explained. 

4.1.1 Fertilizer boundaries 

For the fertilization experiment that took place in 2015, four zones with different fertilizer (N) levels 

were assigned on the field. As Figure 4.1 indicates, these N inputs were 90 kg/ha, 0 kg/ha, 162 kg/ha, 

and 252 kg/ha ranging from north to south (Van den Brande 2015). These N levels were applied before 

the start of the growing season. Besides this, the field was treated with additional fertilizer during the 

growing season, except for one vertical strip of land perpendicular to the initial fertilizer zones (in 

Figure 4.1 indicated in blue). For this research, these fertilizer zones were used as a basis to select 

areas as input for linear models to validate delineated management zones (explained in section 3.5). 

 

Figure 4.1 – Fertilization map potato field, with the four initial N inputs 90 kg/ha, 0 kg/ha, 162 kg/ha, 
and 252 kg/ha, and a vertical strip without additional fertilizer, adopted from (Van den Brande 2015) 
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4.1.2 Detection and removal of influential points 

As explained in section 3.2.4, some of the data were available as spatial point datasets. After 

transforming these datasets to RDNew coordinates and removing missing values (if present), boxplots 

were examined to check normality of the data and potential influential points (outliers or inliers). 

Elevation, soil depth A-horizon, and soil organic matter (SOM) all appeared to be normally distributed, 

except for one or two potential outliers (Figure 4.2 or Appendix 2), so for those data the method to 

detect and remove outliers was applied based on values outside the range of 3 standard deviations 

away from the mean. Appendix 1 includes the initial number of spatial point observations of these 

datasets. For elevation 1 out of 133 observations was removed, for soil depth 2 out of 133, and for 

SOM none of the 25 observations were removed. 

  

Figure 4.2 – Boxplot elevation. Data looks normally 
distributed, apart from one potential outlier 

Figure 4.3 – Boxplot ECa at 0-0.5 m soil depth. Data 
does not appear to be normally distributed and 

potential outliers are clearly visible 

Electric conductivity at all four soil depths and crop yield did not show normal distributions (Figure 4.3 

or Appendix 2), so for those datasets the procedure to detect and remove inliers was conducted. To 

detect potential inliers based on Moran’s local index, neighbouring points were identified for each 

observation at a Euclidian distance of 2.5 meters for EC and 2 meters for crop yield, and given a spatial 

weight. Potential inliers were visualized by Moran scatterplots, represented as black dots as shown in 

Figure 4.4, Figure 4.5, and Appendix 3. Apart from Moran’s local index, these points were also based 

on a number of other diagnostic statistics, that were not considered for removal of inliers in this 

research. The slope of the line in the scatterplot is equal to Moran’s overall I index, which is similar to 

Moran’s local index, yet based on the sum of all weighted observations (Anselin 1996). The upper-left 

corner of the plot relative to the dashed lines indicates low values surrounded by high values, whereas 

the lower-right corner indicates high values surrounded by low values. Moreover, the more scattered 

the observations are, the greater the potential influence. For instance, Figure 4.4 and Figure 4.5 

indicate that crop yield contained stronger influential points than EC. In the end, about 0.7% of 

observations from the four EC datasets were removed (with almost 30,000 observations remaining), 

and 12% of observations from crop yield (with more than 26,000 observations remaining). 
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Figure 4.4 – Moran plot ECa at 0-0.5 m soil depth. 
Points follow straight line, but many potential 
inliers are visible (represented as black points) 

Figure 4.5 – Moran plot crop yield. Points are 
scattered, and many potential inliers are visible 

(represented as black points) 

4.1.3 Spatial interpolation by means of kriging 

As explained in section 3.2.4, an experimental variogram was fitted for each spatial point variable by 

means of the AutofitVariogram function in R (Hiemstra et al. 2009). Output was generated in the form 

of semi-variograms, in addition to a table containing the parameters model, nugget, sill, and range for 

each variable (Appendix 4). Most of the variograms were fitted as exponential models, except for 

elevation and crop yield that were fitted as spherical models. The minimum nugget was zero (all ECa 

variables), whereas the maximum nugget was 254.3 (crop yield). Regarding the sill, the minimum value 

was 0.006 (soil depth), and the maximum sill was 555.6 (crop yield). Lastly, the minimum range was 

14.8 (soil depth), while the maximum range was 1654.1 (elevation). 

  

Figure 4.6 – Experimental (dots) and fitted 
variogram (line) ECa at 0-0.5 m soil depth 

Figure 4.7 – Experimental (dots) and fitted 
variogram (line) crop yield 
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Two semi-variogram plots are shown in Figure 4.6 (EC at 0-0.5 meter soil depth) and Figure 4.7 (crop 

yield). The range of the EC variogram is relatively large compared to the range of the crop yield 

variogram, which corresponds to the fact that the EC variogram gradually increases, while the crop 

yield variogram has a steep increase in the beginning. In addition, the plots also display the respective 

nuggets of 0 and 254.3 and sills of 1.24 and 555.6 for EC and for crop yield. 

4.2 Descriptive statistics and visual assessment of datasets 

This section includes interpretations on the descriptive statistics, correlations and visualizations of all 

soil and crop variables. Descriptive statistics of these variables are summarized in Table 4.1. The 

number of observations (n) represents the amount of pixels in each raster dataset that were 

transformed into a SPDF. The table shows the same amount for all variables, which is one indication 

that the extents and resolutions of all datasets were properly matched with each other. 

Table 4.1 – Descriptive statistics of all soil and crop variables, including number of observations in SPDF (n), 
minimum, mean, maximum, standard deviation and coefficient of variation 

Variable n min mean max sd cv 

Aerial image bare soil 

Bare soil Red (-) 31790 83.937 142.274 179.077 6.963 0.049 
Bare soil Green (-) 31790 81.899 128.084 169.233 7.938 0.062 

Bare soil Blue (-) 31790 67.430 119.297 156.759 6.623 0.056 

Bare soil NDRG (-) 31790 -0.058 0.053 0.077 0.015 0.276 

Bare soil SUMVIS (-) 31790 244.477 389.655 499.822 19.847 0.051 

Soil parameters and elevation 
Eca 0-0.5 m (mS/m) 31790 0.437 1.592 10.503 1.272 0.799 

Eca 0-1.0 m (mS/m) 31790 1.679 3.369 15.630 1.660 0.493 

Eca 0-1.5 m (mS/m) 31790 3.343 5.191 16.584 1.626 0.313 

Eca 0-3.0 m (mS/m) 31790 4.283 6.861 16.140 1.510 0.220 

Elevation (m + NAP) 31790 30.296 31.584 32.983 0.622 0.020 
Soil depth (m - gr. lev.) 31790 0.274 0.425 0.566 0.042 0.100 

Soil OM (%) 31790 4.095 4.356 4.758 0.170 0.039 

Total soil OM (ton/ha) 31790 129.519 209.611 300.564 24.112 0.115 

Aerial image potato crops 

Crop yield (ton/ha) 31790 0.036 75.858 151.792 18.702 0.247 
Crop NDVI (-) 31790 0.289 0.838 0.919 0.053 0.063 

Crop WDVI (-) 31790 0.013 0.258 0.513 0.067 0.260 

4.2.1 Descriptive statistics and correlations 

The aerial image of the bare field taken in April 2015 is represented by the three individual RGB bands 

and spectral indices NDRG and SUMVIS. Table 4.1 indicates that the RGB values extend between 67.430 

and 179.077, which is right in the middle of the expected range between 0 and 255 (belonging to an 

8-bit colour space) that each band can take. Equation 3.2 specifies that the SUMVIS index is the sum 

of the three RGB bands, from which observed values range between 244.477 and 499.822, which is 

also right in the middle of its expected value range (between 0 and 765). The mean of the Red band is 

a little higher than the means of the two other colour bands. Since the coefficient of variation (CV) is a 

ratio between the standard deviation and the mean, this leads to a lower CV. In addition, because the 

NDRG is a ratio between the Red and Green bands (calculated with equation 3.2), expected values 

could range from -1 to 1. However, the range of NDRG values is very close to zero (with numbers 

between -0.058 and 0.077), which is caused by the fact that the values of the Red and Green bands are 

so near to each other. 
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The correlation matrix in Appendix 5 shows (very) strong mutual correlations ranging from 0.7 to 0.95 

between the three RGB bands and the SUMVIS, so these bands and index appear to be closely related 

to each other. However, the correlations with other indices and variables appear to be (much) lower 

(Appendix 5). For instance, the correlation between the SUMVIS and NDRG index is only -0.355 (Figure 

4.8), while the correlations with soil variables are sometimes even lower, ranging from -0.01 to 0.33. 

Also the correlations with potato crop yield are not that high; the correlation between for instance the 

SUMVIS and crop yield is only -0.16. In general, the NDRG index appears to perform better regarding 

its correlations with other soil and crop variables. For instance, the correlation between NDRG and 

total soil organic matter is -0.341 (Figure 4.9), and the correlation between NDRG and EC at 0.5 m 

depth is 0.3. Also the correlations with crop variables are higher than the ones related to the SUMVIS. 

For example, the correlation between NDRG and crop yield is 0.31. 

  

Figure 4.8 – Density scatterplot bare soil NDRG vs. 
bare soil SUMVIS with a weak negative correlation 

of r = -0.355 

Figure 4.9 – Density scatterplot bare soil NDRG vs. 
total soil organic matter with a weak negative 

correlation of r = -0.341 

In addition to a correlation matrix, density scatterplots such as shown in Figure 4.8 and Figure 4.9 give 

an even more complete overview of the relations between pairs of variables. This is because the 

patterns of the individual observations are visible, and regression lines are included in the plots as well. 

Figure 4.8 shows a decreasing pattern for SUMVIS values for increasing NDRG values. Additionally, the 

point density gets higher for larger values of NDRG, indicating that the NDRG contains many pixel 

values ranging between approximately 0.04 and 0.08 compared to the SUMVIS. A similar pattern is 

visible in Figure 4.9, although this plot contains less isolated observations than the plot in Figure 4.8. 

Moreover, observations of soil organic matter are vertically more spread out than observations of the 

SUMVIS index. 

Apparent electric conductivity (ECa) was measured at soil depths of 0.5m, 1.0m, 1.5m and 3.0m. Table 

4.1 shows ECa values ranging between 0.437 mS/m and 16.584 mS/m across all depths, but appear to 

increase when soil depth increases. For instance, the mean ECa at 0.5m depth is 1.592 mS/m, while 

the mean at 3.0m depth is 6.861 mS/m. These values correspond with expected EC values ranging 

between 0-10 mS/m for sandy soil, and EC larger than 10 mS/m for more loamy soil types (Geonics Ltd. 

1980). Elevation ranges smoothly from 30.296 m to 32.983 m, while the soil depth of the A-horizon 

has values between 0.274 m and 0.566 m. Interpolated values of SOM extend between 4.095% and 
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4.758%. Total soil organic matter was calculated with help of equation 3.5, in which soil depth was 

multiplied by the fraction of SOM and bulk density of the soil. As a result, values of total soil organic 

matter range between 129.519 ton/ha and 300.564 ton/ha. 

A shown in Appendix 5, mutual correlations between the ECa variables at the different soil depths are 

very strong, and extend between 0.91 and 0.96. Also correlations between EC and other soil variables 

are moderate to strong. For instance, the correlation between ECa at 0.5 meters depth and elevation 

equals -0.524 (Figure 4.10), and the correlation with total soil organic matter is 0.555 as shown in 

Figure 4.11. The correlations between ECa and potato crop variables are also moderate, as 

demonstrated for example by a correlation of -0.4 between ECa at 3.0m depth and crop yield. The 

correlations between elevation and other variables (except the WDVI) are also moderate. For instance, 

the correlations with soil depth, soil OM and crop yield are -0.31, 0.3 and 0.33, respectively. Also soil 

depth and total SOM show noteworthy, and sometimes even strong correlations between each other 

and with other variables; the correlation between for example soil depth and total SOM is 0.94, and 

the correlation between soil depth and crop yield is -0.24. 

  

Figure 4.10 – Density scatterplot ECa at 0-0.5 m soil 
depth vs. elevation with a moderate negative 

correlation of r = -0.524 

Figure 4.11 – Density scatterplot ECa at 0-0.5 m soil 
depth vs. total soil organic matter with a moderate 

positive correlation of r = 0.555 

The scatterplots in Figure 4.10 and Figure 4.11 depict the relations between ECa at a soil depth of 0.5 

meters, and elevation and total SOM. The figure on the left shows a negative association, with 

generally speaking lower elevation values for higher ECa values. However, a large point density is 

visible on the left part of the plot, indicating that a relatively small range of ECa values is present at the 

field with a large range of elevation values. A similar pattern is visible in the scatterplot on the right, 

with the difference that it is vertically flipped compared to the other plot, depicting a positive relation 

between ECa and total SOM. 

Three potato crop variables were included in this research: crop yield that was measured during 

harvest in October 2015, and NDVI and WDVI that were two vegetation indices derived from the aerial 

image of the field recorded in August 2015. Table 4.1 indicates that interpolated crop yield values 

range from 0.036 to 151.792 ton/ha, with a mean of 75.858 and standard deviation of 18.702. The 

NDVI and WDVI were calculated with equations 3.3 and 3.4 respectively, and since they are ratios 
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between the NIR and Red bands, their expected values range between -1 and 1. In fact, the NDVI ranges 

from 0.289 to 0.919, with a mean of 0.838 and standard deviation of 0.053, while the WDVI extends 

between 0.013 and 0.513, with a mean of 0.258 and standard deviation of 0.067. However, the WDVI 

has a lower coefficient of variation, because its mean is much lower than the mean of the NDVI. 

As the correlation matrix in Appendix 5 indicates, mutual correlations between crop yield, NDVI and 

WDVI are moderate till good. For example, the correlation between crop yield and WDVI is 0.429 

(Figure 4.12), and the correlation between NDVI and WDVI is 0.66. This plot shows a positive relation, 

but with a very scattered pattern of observations. Density increases towards the center of the plot, so 

many intermediate crop yield values correspond to many intermediate WDVI values. Figure 4.13 shows 

a decreasing relation between ECa at 0.5 meters soil depth and crop yield, with a high point density 

cloud on the left part of the plot, indicating many ECa pixels that are lower than 2 mS/m are present 

for a broader range of crop yield values. 

Finally, as described in the previous sections, correlations between crop yield and other spectral 

indices and soil variables show a varying range of magnitudes. Some correlations are moderate, such 

as the one between ECa at 0.5 m soil depth and crop yield (r = -0.391 as shown in Figure 4.13), while 

others are very weak, such as the correlation between the Red band of the bare soil image and crop 

yield, which equals -0.07. The strength of correlations between potato crop yield and other variables 

is one of the considerations for deciding which variables to include and which ones to exclude in the 

principal component analysis described in section 4.3.1. 

  

Figure 4.12 – Density scatterplot crop yield vs. crop 
WDVI with a moderate positive correlation of r = 

0.429 

Figure 4.13 – Density scatterplot ECa at 0-0.5 m soil 
depth vs. crop yield with a weak negative 

correlation of r = -0.391 
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4.2.2 Visual assessment of soil and potato crop maps 

The True Colour image of the field depicting bare soil (map A in Appendix 10) shows a gradual 

darkening pattern ranging from south to north, with some dark patches of land spread across the field. 

Another notable feature is the green strip of land bordering with the field in the west. Maps of the 

three spectral RGB bands, as well as the map depicting the SUMVIS index (map C in Appendix 10) show 

very low pixel values at the north part of the field, which is also the case for a large patch of land 

ranging from the west to the center of the field. Values of surrounding pixels gradually increase, and 

the south and east parts of the field show relatively high values compared to the other areas. On the 

contrary, the NDRG map (map D in Appendix 10) shows high values in a large part of the field except 

for the areas on the edges of the field. Especially the headland in the north of the field has very low 

NDRG pixel values. In addition, on all of these maps except the map of the Blue band, the same 

deviating vertical strip in the west of the field is visible that was also observed on the True colour image. 

The four maps depicting ECa at different soil depths, such as the one in Figure 4.14 show all a very 

similar pattern, although the values increase with increasing soil depth. The patches of land in the 

south show low EC values, while values increase more to the north of the field. Especially the headland 

in the upper north shows very high EC values. For ECa at 3.0 meters soil depth, the contrast between 

pixels in the south and north parts of the field is even larger. In addition, on all ECa maps, a similar 

seemingly contradicting vertical strip of land is visible in the west of the field, which was also the case 

for the maps of the spectral bands and indices from the aerial image of bare soil. The soil organic 

matter map (map F in Appendix 10) shows high SOM values at the edges of the field, with a gradual 

decrease towards the upper-mid east part of the field containing a patch of land with low SOM values. 

The map depicting the soil depth of the A-horizon shows a very scattered pattern. Patches of land with 

high or low values alternate between each other, although the headland in the north of the field 

contains relatively large soil depths compared to the rest of the field. The calculated total SOM map 

(map G in Appendix 10) shows a combination of patterns visible on both the SOM and soil depth map, 

with slightly lower values on the areas where SOM is also lower. Lastly, the elevation map (map H in 

Appendix 10) shows a smooth pattern with gradually decreasing values towards the headland in the 

north of the field. 

The potato crop yield map (Figure 4.15) shows high yield values in the south, but in the center and 

north parts of the field, some areas with (very) low crop yields are visible, partly due to the fertilization 

experiment that was performed in 2015. Especially the headland in the north suffers from very low 

yield values. This pattern is also visible on the NDVI and WDVI maps (maps I and J in Appendix 10) 

However, the WDVI shows relatively high pixel values in the center of the field where crop yield shows 

lower pixel values. Another notable feature on the WDVI and NDVI maps is the vertical strip of land in 

the mid-east part of the field with relatively low values compared to other parts of the land, which is 

to a lesser extent also visible on the crop yield map (Figure 4.15). The False Colour image (map B in 

Appendix 10) shows a very similar pattern to the NDVI and WDVI maps. Moreover, since vegetation 

reflects a large portion of NIR radiation, and because the NIR band is visualized in Red, pixel values on 

the False Colour map show a dominant red colour. Lastly, the tramlines (or tractor paths) are clearly 

visible in that image and other potato crop maps as well, indicated by contours with low pixel values 

located between vertical strips of land containing high pixel values. 
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Figure 4.14 – Map of electric conductivity (mS/m) at 0-0.5 m soil depth 

 
Figure 4.15 – Map of potato crop yield (ton/ha) 
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4.3 Delineation of potential management zones 

This section describes the results regarding the delineation of potentially homogeneous management 

zones. First the MULTISPATI-PCA output is interpreted, after which the clustering results are explained. 

4.3.1 Principal components obtained from MULTISPATI–PCA 

Soil and topographic variables were selected based on three assumptions. First of all, mutual 

correlations, and correlations with crop yield were evaluated (explained in section 4.2.1). Based on this 

information, bare soil NDRG, the ECa variables at all soil depths, and elevation were initially selected 

as input for PCA, since their absolute correlations with crop yield were higher than 0.3 (which was 

considered moderate or better). Second, Bartlett’s test of Sphericity was performed to check if the 

variables had some degree of association or not. As the output in Appendix 6 indicates, the chi-square 

value of this tests equals 1.875 x 106 and its p-value equals 0.000, which is statistically significant 

meaning that the soil and topographic variables are suitable as input for PCA. Third, Kaiser-Meyer-

Olkin Measure of Sampling Adequacy (KMO-MSA) statistics were calculated, both overall and for each 

variable separately. Initially, the overall KMO was 0.607, but the KMO values of five variables including 

the RGB colour bands of the bare soil image, the SUMVIS, and soil organic matter (SOM) were below 

the critical value of 0.5 (Appendix 6), making them potentially unsuitable for PCA. After eliminating 

these five variables and calculating the KMO values again, the overall KMO increased to 0.766, and all 

individual KMO values above the threshold of 0.5 (Appendix 6). This information led to the same 

variables that were selected from the correlation analysis, in addition to soil depth A-horizon and total 

SOM. In the end, these 8 variables (Table 4.2) were selected as input for the MULTISPATI-PCA algorithm. 

As explained in section 3.4.1, the MULTISPATI-PCA algorithm is a special kind of PCA that incorporates 

spatial information in its calculations (Dray et al. 2008), and was performed with the selected soil and 

topographic variables as input. Spatial principal components (sPCs) were determined by maximizing 

the product of explained variance and spatial autocorrelation that was present across the selected 

variables. Based on the PCA scree plot (Appendix 7), four sPCs were chosen to retain for further analysis, 

explaining 94.08% of the total variance in the dataset with soil and elevation variables. Table 4.2 shows 

the communalities and loadings of these four sPCs. The PCA loadings suggest that the first sPC mostly 

represents the ECa variables at all four soil depths, the second sPC is dominated by soil depth A-horizon 

and total SOM, the third sPC by bare soil NDRG, and the fourth sPC is mostly represented by elevation. 

The communalities range from 0.213 to 0.993. The ECa variables contain such low communalities due 

to very low loadings in sPC2 till sPC4, but relatively high loadings in sPC1, while bare soil NDRG and 

elevation contain high communalities because of very high loadings in sPC3 and sPC4, respectively. 

Table 4.2 – Communalities and PCA loadings of the 4 retained sPCs. The numbers in blue/bold represent 
variables with the highest communalities or variables with the highest loadings for each sPC 

Variable 
Communalities 
of first 4 sPCs 

sPC1 
(64.46%) 

sPC2 
(14.76%) 

sPC3 
(8.24%) 

sPC4 
(6.62%) 

Bare soil NDRG 0.993 0.170 -0.203 0.950 0.139 
Eca 0-0.5 m 0.315 -0.408 -0.135 -0.009 0.361 

Eca 0-1.0 m 0.269 -0.419 -0.157 0.017 0.262 

Eca 0-1.5 m 0.242 -0.423 -0.168 0.010 0.188 

Eca 0-3.0 m 0.213 -0.418 -0.183 0.025 0.061 

Elevation 0.929 0.286 0.435 -0.062 0.809 

Soil depth 0.553 -0.311 0.544 0.274 -0.292 
Total soil OM 0.486 -0.311 0.608 0.129 -0.053 
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PCA biplots as shown in Figure 4.16 and Figure 4.17 give an even better overview about the loadings 

and mutual relationships between variables. Figure 4.16 indicates that all four ECa variables are 

strongly correlated, which is also the case for soil depth and total SOM. It also shows that ECa is 

negatively correlated with elevation, and that soil depth and total SOM are both negatively correlated 

with bare soil NDRG. This was also observed from the correlation matrix in Appendix 5. Moreover, ECa 

is the most important variable to explain spatial variability in the first sPC (negatively correlated) and 

most of the spatial variability in sPC3 is explained by bare soil NDRG (positively correlated), while soil 

depth and total soil OM are the second most important for these two axes, but most important in 

explaining spatial variability in sPC2 (all positively correlated). Lastly, elevation explains most of the 

spatial variability in sPC4. All these patterns were also observed in Table 4.2. A complete overview of 

biplots depicting loadings and correlations between the pairs of all 4 sPCs is included in Appendix 8. 

  

Figure 4.16 – PCA biplot sPC1 (64.46%) 
and sPC2 (14.76%) 

Figure 4.17 – PCA biplot sPC2 (14.76%) 
and sPC3 (8.24%) 

The four sPCs were visualized and depicted as ranges of PC scores distributed across the potato field. 

For instance, the map of sPC1 shown in Figure 4.18 shows very low PC scores in the headland in the 

north of the field in addition to a patch of land with relatively low scores in the east of the field and 

high PC scores in the center and south of the field. This corresponds quite well with the ECa patterns 

observed in Figure 4.14, especially since ECa variables are strongly and negatively correlated with sPC1. 

The spatial distribution of sPC2 is visualized in Figure 4.19, which has patches of land with low scores 

in the north and center of the field, and high sPC scores in the south of the field. This shows very strong 

similarities with the patterns observed for soil depth and Total SOM such as shown in maps E and G of 

Appendix 10. The map of sPC3 (map A in Appendix 11) shows relatively high scores in the center of the 

field, while the edges contain very low sPC scores. This corresponds quite well with the NDRG patterns 

observed in map D of Appendix 10, although soil depth also seems to have a small influence on sPC3. 

Moreover, the seemingly deviating strip of land in the west of the field is also visible in the map of 

sPC3, similar to what was observed in the NDRG map. Lastly, the map of sPC4 (map B in Appendix 11) 

shows very low sPC scores in the north-west of the field, and higher scores towards the south-east of 

the field. This shows a lot of similarities with the distribution of elevation across the field (especially 

because elevation is strongly correlated with sPC4), although also some influence of ECa on sPC4 seems 

to be present in the northern part of the field. 
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Figure 4.18 – Map of spatial principal component 1 including sPC scores 

 

Figure 4.19 – Map of spatial principal component 2 including sPC scores 
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4.3.2 Management zones obtained from cluster analysis 

In order to actually delineate the potentially homogeneous management zones (MZs), the spatial 

principal components (sPCs) derived from the MULTISPAT-PCA algorithm were used as input for k-

means clustering. As explained before, this algorithm is an unsupervised classification method that 

allocates the values of given input variables (potato crop yield points) into one of the predefined k 

number of clusters (MZs), in such a way that the sum of squares within each cluster (WSS) is as low as 

possible (Hartigan and Wong 1979). The clustering scree plot in Appendix 7 shows a steep decline of 

WSS between one and two clusters, but the distinction between larger numbers of clusters is not clear. 

Therefore, the k-means algorithm was performed with two, three, and four clusters and visually 

compared. As suggested by (Arce 2005), smoothing of clustering results was proposed to remove 

isolated pixels, small cluster patches and sharp boundary edges between MZs, which was performed 

by running a number of spatial filters with different matrix sizes and different functions. In the end, 

the map with four MZs smoothed by a modal filter with a size of 35 x 35 pixels was selected for further 

analysis (Figure 4.20), because it showed the most functional classification results to use for 

management practices in precision agriculture. Moreover, the clusters in that map gave a clear 

distinction between the north and the south of the field, which was also observed to a certain degree 

in the patterns of potato crop yield (Figure 4.15). 

 

Figure 4.20 – Cluster map with four management zones, and the indication of 
three areas used for validation by means of linear models (section 4.4) 
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4.4 Validation of potential management zones 

Three areas for validation of MZs were assigned to the potato field, since those areas contained two 

or more MZs (Figure 4.20). Validation area 1 covers the whole field excluding the strip without 

additional N input, validation area 2 is located in the north-west of the field in the zone with 90 kg/ha 

N input, and validation area 3 in the mid-west of the field in the zone with 162 kg/ha N input. For each 

of these three areas, one out of five statistical models was chosen to compare expected crop yield 

between the delineated MZs by means of the two different hypotheses described in section 3.5. 

First of all, for validation area 1, the model with the lowest AIC is a mixed model with error terms 

having a spherical correlation with nugget effect (Appendix 9). The ANOVA table shows an F-value of 

6.043 (for clusters), with a significant p-value of 0.000, so the null hypothesis is rejected and expected 

crop yield between at least two MZs is significantly different. The boxplots in Figure 4.21 and the least 

square (LS) means (Appendix 9) indicate noteworthy mean differences in crop yield between MZ1-2, 

MZ1-3, and MZ1-4, as well as between MZ2-4 and MZ3-4. Pairwise comparisons show that for three 

of these pairs significant differences in expected crop yield occur: between MZ1-2 (25.451), MZ1-3 

(23.195), and MZ2-4 (15.633). However, the mean differences between MZ1-4 (9.818) and MZ3-4 

(13.377) are also remarkable despite the non-significant p-values. Both the boxplots and the pairwise 

comparisons clearly show no difference between MZ2-3. Secondly, for validation area 2 a mixed model 

with exponential correlation without nugget effect is chosen. The ANOVA table shows an F-value of 

7.373 and a significant p-value of 0.001, so the null hypothesis is rejected and expected crop yield 

between at least two MZs is significantly different. The boxplots in Figure 4.22 and the LS means show 

notable mean differences in crop yield between all three MZs, although the pairwise comparisons in 

Appendix 9 reveal that expected crop yield is statistically significant only between MZ1-3. However, 

the mean differences for the other two contrasts (13.544 and 13.603 respectively) are noteworthy as 

well, regardless of the non-significant p-values. Lastly, for validation area 3, a mixed model with 

spherical correlation without nugget effect is selected. Since this area contains only two clusters, just 

one pairwise comparison is made. Therefore, the two hypotheses test the same assertion, namely if 

the difference in crop yield between MZ2-3 is significant. This is not the case, because the p-value for 

both the F-test and the t-test is 0.087 (Appendix 9). Also the boxplot in Figure 4.23 and the LS mean 

(5.329) do not show a large difference in crop yield between the two MZs.  

   

Figure 4.21 – Side-by-side boxplots 
crop yield within the 4 management 

zones in val. area 1. Significant 
differences occur between MZ 1-2, 

MZ 1-3, MZ 2-4 

Figure 4.22 – Side-by-side 
boxplots crop yield within the 3 
management zones in val. area 
2. Significant difference occurs 

between MZ 1-3 

Figure 4.23 – Side-by-side 
boxplots crop yield within the 2 
management zones in val. area 
3. The difference between the 

two zones is not significant 
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5. Discussion 

The main goal of this research was to define and investigate a method to delineate potentially 

homogeneous management zones (MZs), based on soil and crop data obtained by means of remote 

and proximal sensing techniques. As suggested by a number of authors, such a method could be 

incorporated in a decision support system (DSS), which is an information system to support a business 

in decision making, for instance for management practices in precision agriculture (Heijting et al. 2011; 

McBratney et al. 2005). Data become increasingly more abundant and of higher quality, so more and 

more farmers have the potential to use such a DSS in their daily business. Several DSSs have been 

proposed in the past to support management practices in precision agriculture. For instance, one paper 

discussed the applications of a software program called Management Zone Analyst (MZA) (Fridgen et 

al. 2004). This software is able to perform a fuzzy c-means (FCM) clustering algorithm based on 

descriptive statistics such as a variance-covariance matrix, and to evaluate the delineated clusters by 

means of a number of performance indices as a guidance on how many clusters to choose as input for 

management practices. In addition to these kinds of software environments, similar DSSs could also 

be developed to incorporate in freely available farm management apps, for instance to use on 

smartphones for decision making purposes in arable farming. For this research, a potential DSS was 

developed and investigated as well. Guided by the consecutive steps of this system outlined in Figure 

5.1, the coming subsections provide a discussion on the results that were described in chapter 4. 

 

Figure 5.1 – Possible decision support system (DSS) to delineate potentially homogenous zones for an arable 
field as a basis for management practices in precision agriculture 
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5.1 Available datasets and data pre-processing 

A whole range of soil and crop variables are potentially available to use in a DSS to support 

management practices in precision agriculture. Research including a number of soil and landscape 

variables showed that at least three key variables could be identified to form a stable basis for 

delineation of management zones: EC, elevation and pH (Van Meirvenne et al. 2012; Vitharana et al. 

2008). However, pH was not included in this research, because this variable had not been measured 

yet for the potato field of Van den Borne farm at the time of this research. In addition, two papers 

suggested that crop yield data of at least five years should be used for the purpose of delineating stable 

management zones (Boydell and McBratney 2002; Stoorvogel et al. 2015). In addition, a paper by 

(Mulla 2012) recommended the use of historical remote sensing images in combination with real-time 

remote sensing data in high spectral and spatial resolutions for improved delineation of management 

zones. For this thesis research, potato crop data in the form of crop yield and vegetation indices were 

available from only one year (2015), so evaluating the performance and stability of delineated MZs 

could not be achieved by comparing crop data from multiple years. 

Pre-processing for all datasets was performed by a number of steps explained in section 3.2. One such 

pre-processing step was the detection and removal of influential points in spatial point datasets (ECa, 

soil OM, soil depth, elevation, and crop yield). Influential points possibly consisted of outliers that are 

observations falling far outside the general range of values in a dataset (Osborne and Overbay 2004), 

while inliers are observations that do fall within the general range of values, but are significantly 

different from their neighbouring points (Córdoba et al. 2016). Both inlier and outlier detection were 

tried on all point datasets. On the one hand, removal of inliers worked well for ECa and crop yield due 

to a high point density with many near neighbouring points and because of possible sensor-based 

measurement errors, but this did not work well for the low point density datasets obtained by manual 

sampling including SOM, soil depth A-horizon and elevation, because neighbouring points were much 

further apart, and the number of measurement errors was very low. On the other hand, removal of 

outliers worked well for the manually sampled point datasets, since they met the condition required 

for outlier detection to be normally distributed, which was not the case for ECa and crop yield 

(indicated by the boxplots in Appendix 2). Hence, in the end the decision was made to perform inlier 

detection and removal only on the ECa datasets and crop yield, and outlier detection and removal only 

on SOM, soil depth A-horizon and elevation, from which the results were explained in section 4.1.2. 

Moreover, one approach to detecting inliers was to evaluate Moran scatterplots (Appendix 3). Apart 

from Moran’s local index, the points in a Moran scatterplot were also based on a number of other 

diagnostic statistics, that were not taken into account to remove inliers, because this would lead to a 

huge loss of observations. Therefore, inliers were solely removed based on Local Moran’s index and 

statistically significant observations (p < 0.05). These approaches were in contrast with the methods 

by (Córdoba et al. 2016) and (Gili et al. 2017) that performed both outlier and inlier removal on all 

spatial point datasets, and conducted inlier removal by means of both Moran’s local index and all other 

derived diagnostic statistics. 

The next pre-processing step was transforming the spatial point datasets into raster datasets by means 

of ordinary kriging. Variograms and variogram parameters included in Appendix 4 that were used as 

input for kriging functions show a large variety in results between the different datasets. For instance, 

the minimum nugget was zero, which was the case for all EC datasets. One reason could be that (almost) 

no measurement errors had taken place, or that no unexplained variance was left in the model. On the 

other hand, the maximum nugget was 254.3 for potato crop yield. Possible reasons for this large 
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nugget are measurement errors, or unexplained variation at short distances between points, which 

could partly be caused by the tramlines (or tractor paths) within the field that are for instance visible 

in Figure 4.15. Also large differences in both the sills and ranges between the different datasets was 

observed (Appendix 4). the minimum sill was 0.006 (soil depth), and the maximum sill was 555.6 (crop 

yield), whereas the minimum range was 14.8 (soil depth) and the maximum range 1654.1 (elevation). 

The larger ranges could indicate a large spatial dependence over distances that fall far beyond the 

borders of the potato field, causing the variogram function to increase very slowly. On the other hand, 

variograms of crop yield and soil depth have very small ranges that cause steep increases in the 

beginning of the variograms, indicating spatial dependence at very small distances between points. As 

explained before, experimental variograms were fitted in an automated way by means of the 

AutofitVariogram function in R (Hiemstra et al. 2009), since eight point variables had to be interpolated 

by means of ordinary kriging based on those variograms. However, this led to a lack of control on the 

variogram parameters, which could be one reason for the large variety in variogram curves and 

parameters and large differences in nuggets and ranges. As suggested by (Calder and Cressie 2009), 

manually determining the different variogram functions and parameters could have optimized the 

models, which could have given improved variograms and improved interpolation results. 

Two other pre-processing steps were explored. First of all, shadows caused by trees on the edges south 

of the potato field are visible on the False colour image, NDVI, and WDVI (maps B, I, and J in Appendix 

10). Therefore, methods for shadow removal suggested by (Murali and Govindan 2013) and (Qin et al. 

2013) were investigated to normalize pixels. However, because of the relatively small patches of 

shadow present on the maps opposed to the complexity of those methods, it was decided to leave 

these steps out of scope for the current research. In addition, tramlines (or tractor paths) between the  

crop cultivation areas were visible on those maps as well, which were assumed to be of great influence 

on the MZ validation results. For that reason, Otsu’s binary thresholding was tried on these crop images 

(Otsu 1979), in order to remove these patterns. However, this led to a huge loss of data in the form of 

pixels, partly because of a low-yield area in the right-center of the field. In addition, decreasing Otsu’s 

threshold value caused less data to be removed, but also made the tramlines disappear again. Hence, 

in the end it was decided not to perform this pre-processing on the different crop images. 

In the end, raster datasets of all soil and crop variables were resampled to a spatial resolution of 2m x 

2m (Appendix 10). This was a trade-off between spatial resolution and processing efficiency. At this 

spatial resolution, many spatial patterns were still visible in the field, but for coarser resolutions, more 

and more information started to get lost in the maps of all variables. On the other hand, when the 

resolution became too fine (1m x 1m or smaller), the number of pixels would exceed 50,000, which 

started to influence processing time and memory. The number of pixels within the extents of the field 

boundary for a spatial resolution of 2m x 2m was 31790 pixels (in Table 4.1 represented as spatial 

points), which is a good compromise between the detail of spatial patterns visible in the field, and 

processing time and memory. 

In conclusion, for the purpose of developing a proposed DSS for management practices in precision 

agriculture, it is important to evaluate which kinds of soil and crop data are available. Besides this, it is 

advised to investigate soil and landscape features, as well as variations in weather conditions for the 

location where management practices are intended. Based on these kinds of information, decisions 

can be made about which additional data are needed, and which pre-processing steps such as 

detection and removal of influential points, spatial interpolation, and georeferencing are required to 

fulfil the first 2 steps of the DSS presented in Figure 5.1.  
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5.2 Statistical description and visual assessment of datasets 

Section 4.2 described descriptive statistics, correlations between pairs of variables, and visual 

assessment of all variables. This last step was performed in QGIS. QGIS, as well as other GIS software, 

has the possibility to use so-called Open Layers linked with the web containing aerial images or terrain 

maps of a given area, which could be included as background layers in maps of spatial datasets (QGIS 

2018). However, all available layers were available in WGS84 coordinates only, whereas the soil and 

crop datasets for this research were stored or transformed into RDNew coordinates. Normally 

speaking, GIS software has the ability to project datasets with different coordinate systems On The Fly, 

which means that all layers are automatically stacked in accordance to one and the same coordinate 

system. However, this did not work out properly, so as explained in section 3.3, the alternative was to 

download an aerial image of the potato field from Google maps (Google 2018), pre-process this image 

by means of georeferencing, and use it as a background layer in the maps of all spatial datasets. 

One category of soil variables were spectral reflectance indices derived from the aerial image of bare 

soil. Calculation of spectral reflectance indices from aerial photographs of bare soil were suggested by 

(Bartholomeus and Kooistra 2012; Bartholomeus et al. 2014), in order to quantify soil organic matter 

(SOM) and soil organic carbon (SOC). Moderate to strong correlations between these soil parameters 

and spectral reflectance indices were observed, suggesting that higher spectral index values led to 

lower SOC or SOM values. Two spectral indices were used in this research: the sum of the three visible 

RGB colour bands (SUMVIS) and the Normalized Difference Red Green (NDRG), respectively calculated 

by means of equations 3.1 and 3.2 in section 3.2.3. The correlation between SOM and NDRG was 

indeed noteworthy (-0.34), but there was no correlation between SOM and SUMVIS (r = -0.01). 

Additionally, a number of papers found significant correlations between soil moisture and soil spectral 

reflectance (Hadjimitsis et al. 2013; Weidong et al. 2002). In general, lower reflectance values indicated 

larger soil moisture levels, whereas higher values represented dryer soils (Figure 5.2). This information 

suggested that the SUMVIS could also be an effective measure to quantify soil moisture, because as 

equation 3.1 showed, higher reflectance values would lead to higher SUMVIS values. The SUMVIS of 

the potato parcel (map C in Appendix 10) showed smaller pixel values (hence wetter soil) in the west 

of the field than in the north and east parts of the field, which matched very well with the respective 

dark and light patterns observed on the aerial image of bare soil (map A in Appendix 10). Other soil 

variables showed interesting features and significant relations as well. As described before, ECa (Figure 

4.14) had low pixel values in the south of the field, and high values in the north, especially in the 

headland of the field. One reason for the large values in the north is that this is the entrance of the 

field where the soil is disrupted by agricultural vehicles that manoeuvre to enter or leave the field. 

Another reason for those high values could be the descending elevation pattern (map H in Appendix 

10), causing water run-off towards the ditch in the north of the field (also visible in Figure 3.3), 

disposing dissolved minerals and SOM in the soil at that location. In fact, ECa showed very high mutual 

correlations, but also moderate to strong correlations with other soil variables. Papers such as (Fraisse, 

Sudduth, and Kitchen 2001) and (Córdoba et al. 2016) observed significant correlations between ECa 

and soil depth as well. The correlations between EC and SOM were in general lower, which was also 

the case in the paper by (Moral et al. 2010). One possible reason could be that SOM had a very smooth 

pattern with a patch of land in the mid-west of the field containing very low pixel values, which did not 

seem to match very well with the described EC patterns. Lastly, correlations between ECa and crop 

yield were moderate (ranging between -0.39 and -0.42), while in papers such as (Johnson et al. 2003), 

very high correlations between ECa and crop yield were observed (extending between 0.79 and 0.99). 
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Figure 5.2 – Spectral reflectance curves ranging from wet soil to dry soil (Hadjimitsis et al. 2013) 

Spatial patterns observed in other soil and crop images corresponded well with maps created in past 

studies, such as the researches by (Areda 2013) and (Van den Brande 2015). Nevertheless, a number 

of seemingly contradictory patterns were visible between the maps of crop yield (Figure 4.15) and the 

False colour image, NDVI, and WDVI (maps B, I, and J in Appendix 10), although the correlations 

between these three variables were moderate to strong (ranging from 0.43 to 0.66, as Appendix 5 

shows). First of all, on almost all aerial images and maps with indices (for instance in map D of Appendix 

10), a vertical strip of land on the border of the field in the west was observed with atypical pixel values 

compared to neighbouring pixel values. Information from Jacob Van Den Borne revealed that the field 

boundary at that location had not been taken into account very strictly. In other words, some of the 

crops cultivated on the neighbouring field in the west were accidently planted on the potato field as 

well, which is the cause of the deviating strip of land in the west of the field. Second, as expected, the 

vertical strip of land without additional N input (Figure 4.1) showed low values in WDVI and NDVI, and 

a dark shade in the False Colour image. However, these patterns did not neatly follow the boundaries 

of that strip, most likely due to drift (scattering of particles in the air by wind) that occurred when 

spraying fertilizer, causing some of the crops in that strip to receive additional N-input after all. Third, 

as expected, crop yield in the fertilization zone with 0 kg/ha N input in the middle of the field was low 

(Figure 4.15), but the WDVI map (map J in Appendix 10) showed high pixel values on that location. 

Information from Jacob Van Den Borne revealed that late in the growing season of 2015, some 

additional fertilizer had been applied on that location, which positively affected the leaves of the plants 

(visible on the WDVI map), whereas potato crop yield in that area was already low (visible on the crop 

yield map) due to the lack of initial N input before the start of the growing season. Lastly, potato crop 

yield in the headland in the north of the field (Figure 4.15) appeared to have very low values. One 

possible explanation is that this is the entrance of the field where the soil and crops had been disrupted 

by agricultural vehicles regularly manoeuvring to enter or leave the field (which was also observed at 

the EC map). A second reason could be that during the growing season of 2015, a leakage from a water 

hose had taken place that negatively influenced the production of potatoes at that location. 

In conclusion, interpreting descriptive statistics and correlations, and comparing spatial patterns 

between all soil and crop variables are important first steps to get a good overview of the interrelations 

and coherence between variables (partly indicated by step 3 in Figure 5.1) to serve as a basis for further 

analysis such as PCA and cluster analysis, which are discussed in the following sections. 
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5.3 Delineation of potential management zones 

As explained earlier, the first step for delineation of management zones (MZs) was to conduct a special 

type of PCA, called MULTISPATI-PCA that took spatial information into account to generate spatial 

principal components (sPCs) based on selected input variables. Selection of soil and elevation variables 

was based on three criteria. The first one was the correlation matrix (Appendix 5), where initially good 

correlations were found between NDRG, ECa and elevation on the one hand, and crop yield on the 

other hand. Secondly, Bartlett’s test of Sphericity was performed, which was significant, meaning that 

the set of soil and crop variables were suitable to use as input for PCA (Appendix 6). However, a 

disadvantage of such statistical tests is that they always tend to become significant for large sample 

sizes (Snedecor and Cochran 1989), so for 31790 observations (as indicated by Table 4.1), the test was 

definitely going to be significant. The third criterion to detect which variables were suitable, was the 

KMO Measure of Sampling Adequacy statistic (Appendix 6). The procedure to calculate KMO values 

was based on a partial correlation matrix explaining correlations between one variable and all the 

remaining variables together, rather than describing pairwise correlations as shown in the correlation 

matrix in Appendix 5. Based on this information, two other variables (Soil depth A-horizon and Total 

SOM) were selected as input for PCA, in addition to the other soil variables mentioned before. In 

comparison, the paper by (Moral et al. 2010) conducted a correlation analysis to select variables and 

found EC at two soil depths, and soil textures represented by clay, coarse sand, and fine sand to be the 

most representative soil characteristics  to be included in PCA. An alternative for variable selection was 

described by (Schenatto et al. 2017), which determined mutual spatial autocorrelation between soil 

variables, and autocorrelation between these variables and crop yield. Variables that did not show 

significant autocorrelation were eliminated, leading to elevation and soil penetration resistance (SPR) 

at a number of soil depths to be the remaining variables to use as input for PCA. 

Another commonly used approach was to first investigate correlations between soil variables visually, 

and then use PCA itself as a method for variable selection as a basis for MZ delineation. As described 

earlier, researches by (Vitharana et al. 2008) and (Van Meirvenne et al. 2012) found ECa, Elevation and 

pH as output of PCA to the most important features for explaining variability in soils from a number of 

study sites in Belgium. Papers by (Fraisse et al. 2001) and (Molin and Castro 2008) also detected ECa 

and Elevation, and ECa and pH respectively, but the first study additionally found the soil’s slope as 

one of the most important variables for explaining variability in the study fields. These findings were 

merely based on ordinary PCA algorithms, but as described in section 2.3.4, also approaches based on 

MULTISPATI-PCA have been investigated. For example, the procedure described in a paper by 

(Córdoba et al. 2016) found ECa at two soil depths, elevation, and soil depth to be of most importance 

for explaining spatial variability, whereas a study by (Gili et al. 2017) found good correlations between 

the derived sPCs on the one hand, and SOM, clay + silt, pH, EC, and phosphorous on the other hand. 

The results in the current research (Table 4.2) correspond well with the findings from these and other 

past researches, since ECa, Soil depth, Total SOM, NDRG of bare soil, and Elevation were found to 

explain the largest part of spatial variability in the potato field, expressed in four sPCs accounting for 

94.08% of the total variance in the set of selected soil and topographic variables. 

Either the variables accounting for the largest part of variance, or the (spatial) principal components 

themselves could have been used as input for cluster analysis algorithms to delineate potential MZs. 

For instance, (Fraisse et al. 2001) used original variables such as elevation, slope, curvature, and EC as 

input to derive both three and six management zones in an unsupervised classification algorithm in a 

GIS software environment. In addition, (Scudiero et al. 2013) used NDVI and normalized soil variables 
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such as ECa as input for an FCM cluster algorithm, and came up with a five-cluster solution. Besides 

these approaches, researches by (Molin and Castro 2008) and (Moral et al. 2010) used two principal 

components derived from various soil variables as input to generate a map with three MZs for a study 

site in Brazil, and a map with two MZs for a study site in Spain, respectively. Lastly, a paper by (Gili et 

al. 2017) compared a number of methods to delineate potential MZs based on original soil variables 

and based on sPCs derived from the MULTISPATI-PCA algorithm. The study found solutions with two, 

three and four clusters, and concluded that the choices for the method and for the number of clusters 

depended on the objectives of crop management, main yield-limiting factors, and the agro-ecological 

conditions of an arable field. 

Also a number of approaches to determine the optimal number of clusters have been proposed. For 

instance, that number could have been chosen by observing a scree plot, or by calculating a number 

of cluster performance indices. A cluster scree plot as shown in Appendix 7 indicates the total within 

sum of squares (WSS) for each given number of clusters in descending order on a bar plot, and can be 

used to decide how many clusters to retain. However, cluster performance indices are a more exact 

method to decide upon the optimal number of clusters. For instance, the study by (Schenatto et al. 

2017) used the fuzziness performance index (FPI), which is a measure of the degree to which different 

classes share a cluster membership, and the modified partition entropy (MPE), which estimates the 

amount of disorder caused by a specific chosen number of clusters (Boydell and McBratney 2002), to 

come up with an optimal number of four cluster for each of two study fields. In addition to selecting a 

suitable number of clusters, (Arce 2005) proposed statistical models in the form of non-linear spatial 

filters for smoothing classification results. For instance, the procedure by (Córdoba et al. 2016) derived 

a two cluster-solution based on a median filter with a size of 9 x 9 pixels, in addition to FPI and MPE 

performance indices and two spatial principal components as input for the MULTISPATI-PCA algorithm. 

For this research, two, three and four cluster-solutions were evaluated, based on the four sPCs as input 

variables. The number of clusters were merely chosen based on the cluster scree plot on the right side 

in Appendix 7. Cluster performance indices were not calculated, because these methods were found 

in papers only at the very end of my thesis. In addition, a large range of filter sizes and functions were 

tried for smoothing of classification results. In the end, the four cluster-solution was chosen (Figure 

4.20) smoothed with a modal filter of 35 x 35 pixels. This is in contrast with the type and size of filter 

used by (Córdoba et al. 2016), although it showed the most functional classification results to use as a 

basis for management practices in precision agriculture. A map with two MZs (map A in Appendix 12) 

did not seem to cover all the spatial variation within the field, and a map with three MZs (map B in 

Appendix 12) kept showing small cluster patches scattered across the field, regardless of the chosen 

type and size of filter. Moreover, the map with four clusters gave a clear distinction between the north 

and the south of the field, which was also observed to some degree from the potato yield pattern 

shown in Figure 4.15. The four delineated MZs (Figure 4.20) appeared to be influenced by a number of 

sPCs, and hence by a number of original soil variables. Especially MZ1, but also MZ2 seemed to be 

dominated by sPC1 and ECa, although patterns of Total SOM were visible in MZ2 as well. Also some 

influence of ECa was visible in MZ3 and MZ4, although these zones mostly appeared to be dominated 

by Total SOM and bare soil NDRG. It was a bit harder to detect elevation patterns in the clusters though, 

since elevation was mostly correlated with sPC4, which only accounted for a small part of the total 

variance in the dataset (6.62% as indicated by Table 4.2). 

The results discussed in this section can be used as input for step 3 to step 6 of the DSS described in 

Figure 5.1. These steps can be summarized as follows. Variable selection as input for PCA could be 
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achieved by a number of ways, such as correlation analysis and the calculation of KMO variables, or by 

variable selection based on a PCA algorithm itself. It is up to the researcher to choose the most 

appropriate PCA algorithm (such as ordinary PCA or MULTISPATI-PCA). Moreover, a decision should be 

made to use either the original variables, or the (spatial) PCs explaining the largest proportion of 

variance as input for a cluster analysis such as k-means of FCM. Finally, a suitable number of clusters 

should be selected based on either a cluster scree plot, or on performance indices such as FPI or MPE, 

and the classification results could optionally be smoothed for instance by non-linear spatial filters. 

5.4 Validation of potential management zones 

The final stage of this research was to validate the delineated MZs, which was conducted for the three 

validation areas shown in Figure 4.20. For validation area 1, the vertical strip of land was excluded 

since it was expected to negatively influence the validation results. Validation area 2 and 3 were chosen 

based on the fact that they contained two or more MZs. As explained in section 4.4, validation was 

performed by a number of statistical models that were fitted on a stratified random sample of 100 

observations per MZ, as suggested by (Gili 2013) and (Córdoba et al. 2016), for each of the three areas. 

Model selection was performed by Akaike’s Information Criterion (AIC). To potentially improve 

performance of models, other sampling and model selection methods could have been used as well, 

such as bootstrapping and jackknife resampling. Bootstrapping is a resampling method to draw 

random samples of observations with replacement, which could be useful for estimating sampling 

distributions or hypothesis testing. Jackknife resampling is an improved method that systematically 

leaves out one observation of a dataset, calculates a parameter estimate or fits a model on the 

remaining observations, and finally determines the average of those calculations or model fits (James 

et al. 2013). For this research, the model outputs showing expected crop yield means and pairwise 

comparisons between MZs (included in Appendix 9) appeared to match with the distributions of the 

boxplots in Figure 4.21 to Figure 4.23 (which were based on the total number of observations in each 

MZ). Hence, the methods for sampling and model selection seemed to have performed appropriately. 

Many studies used statistical models, such as one-way ANOVA or mixed linear models, and most of 

them found significant differences in soil parameters or crop yield between the different MZs (Córdoba 

et al. 2016; Molin and Castro 2008; Scudiero et al. 2013). The model outputs (Appendix 9) and boxplots 

(Figure 4.21 to Figure 4.23) in this research showed significant, or at least noteworthy pairwise 

differences in expected crop yield between all MZs, expect for the difference between MZ2 and MZ3, 

which was neither statistically significant, nor practically significant. Evaluated by models fitted on 

samples of validation area 1 and area 3, only very small difference in expected crop yield was observed 

between these two zones, indicating that they possibly could have been merged into one MZ. 

Considering the spatial patterns, one reason for this could be that MZ2 and MZ3 were particularly 

delineated based on sPC2 (Figure 4.17), which in turn was dominated by soil depth and Total SOM. 

However, the correlations between these variables and crop yield were relatively low (-0.23 and -0.24, 

respectively), suggesting that these variables probably should have been left out of the PCA. 

Validation of MZs is an important last stage (indicated by step 7 in Figure 5.1) to investigate whether 

MZ delineation had worked out well or not. It is up to the researchers and farmers to choose which 

kinds of models and sampling methods for this purpose, since their performance depend on the 

available data, on the PCA and cluster analysis results, and more broadly speaking on the agro-

ecological conditions of agricultural locations and the varying weather patterns per growing season 

(Gili et al. 2017).  
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6. Conclusions and recommendations 

This chapter describes the conclusions and recommendations of this thesis research. Conclusions are 

based on the research questions in section 1.3, while the recommendations are guided by Figure 5.1. 

6.1 Conclusions 

The main objective of this research was to define and investigate a method to determine how soil 

variation related to crop yield to delineate potentially homogeneous management zones for precision 

agriculture, based on data obtained from remote and proximal sensing technology. This objective was 

addressed by four sub-research questions. 

The first research question was intended to investigate which datasets and methods were available for 

delineating management zones. From the literature review, a broad variety of remote and proximal 

sensing data such as aerial images, ECa, (SOM), and crop yield could be collected for this purpose. In 

addition, a large range of methods were available to delineate MZs, but the most widely used 

approaches were correlation analysis to detect the most strongly associated variables, principal 

component analysis for variable reduction, and cluster analysis to actually delineate the MZs, either 

based on original soil and crop variables, or on (spatial) principal components as input variables. 

The second research question anticipated on detecting spatial patterns and relations among soil and 

crop variables. Electric conductivity showed low values in the south of the field, whereas (very) high 

values were observed in the north and east parts of the field. Elevation as well as SOM showed very 

smooth (descending) patters, whereas other soil variables showed more scattered patterns in the field. 

Mutual correlations between EC were very strong (0.91 and higher), whereas correlations between 

other soil variables were weak to very strong (ranging from 0.20 to 0.94). Bare soil indices, except for 

NDRG, showed very weak or even meaningless correlations with other soil and crop variables. Crop 

yield, NDVI and WDVI showed distinctions between the north and south parts of the field, and clearly 

deviation patterns in the zones with no initial an addition N input. Correlations between these crop 

variables were moderate to strong, ranging from 0.43 to 0.66. 

The third research question was intended on developing and investigating a method to delineate 

potentially homogeneous MZs. This was performed by first pre-processing available soil and crop 

datasets. Second, descriptive and visual assessments of those data were made, and third, variable 

selection was executed based on a correlation analysis, Bartlett’s test of Sphericity, and KMO-MSA 

statistics. Fourth, the selected variables were used as input for MULTISPATI-PCA, from which four sPCs 

explaining 94.08% of the total variance were used as input for k-means cluster analysis, which led to 

four potential MZs. Lastly, classification results were smoothed by means of non-linear spatial filters. 

The last research question aimed at validating the delineated MZs. Validation was performed for three 

areas in the field that were based on designated fertilizer zones. For each of the three areas, a stratified 

random sample of crop yield was drawn as input for a number of statistical models. Significant 

differences (p < 0.05), or at least practical differences (9 ton/ha or more) in expected crop yield were 

found between all MZs, except between MZ2 and MZ3. 

The consecutive data pre-processing and analysis stages investigated in this research could be 

incorporated in a decision support system (DSS) to support management practices in precision 

agriculture. Data become increasingly more abundant and of higher quality, so more and more farmers 

have the potential to use such a DSS in their daily businesses.  
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6.2 Recommendations 

• Collect and include soil pH measurements to serve as an additional variable in future research. 

• Investigate additional pre-processing steps for aerial images and crop yield maps, such as Otsu’s 

binary thresholding to eliminate pixels representing soil, and algorithms to normalize pixels that 

are influenced by shadows of objects such as trees alongside a field. 

• In addition to the AutofitVariogram function, investigate alternative methods for variogram 

estimation in order to optimize variogram parameters and variogram fitting. 

• Explore other kriging methods such as cokriging and regression kriging, which allow additional (soil 

and crop) variables in their models that could improve spatial predictions. 

• Determine performance indices such as FPI and MPE to determine an optimal number of clusters. 

• Explore additional statistical models and sampling methods to validate the delineated MZs. 
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Appendices 

Appendix 1.  Overview initially available datasets 

 

Dataset Format Ref. system Contents Meas. unit Acquis. date Provided by 

Aerial image 
bare soil 

GeoTIFF 
with spatial 
resolution of 
0.035m 

WGS84-
UTM31 

RGB colour 
bands 

- 13-4-2015 Aurea 
imaging 

Aerial image 
potato crops 

GeoTIFF 
with spatial 
resolution of 
0.132m 

WGS84-
UTM31 

Spectral bands 
NIR, Red Edge, 
Red, Green; 
vegetation 
indices WDVI, 
NDVI, NDRE 

- 21-8-2015 Aurea 
imaging 

Apparent 
electric 
conductivity 

CSV with 
54312 
spatial point 
observations 
(for 2 fields) 

WGS84 
standard 

Eca at soil 
depths of 
0.5m, 1.0m, 
1,5m and 
3.0m 

mS/m 20-3-2015 Jacob Van 
den Borne 

Crop yield CSV with 
29987 
spatial point 
observations 

WGS84 
standard 

Potato crop 
yield 

ton/ha 4-10-2015 Jacob Van 
den Borne 

Elevation CSV with 
133 spatial 
point 
observations 

RDNew Elevation m + NAP 20-3-2015 Marnix Van 
den Brande 
via Lammert 
Kooistra 

Soil depth A-
horizon 

CSV with 
133 spatial 
point 
observations 

RDNew Soil depth m - ground 
level 

20-3-2015 Marnix Van 
den Brande 
via Lammert 
Kooistra 

Soil organic 
matter 

CSV with 25 
spatial point 
observations 

RDNew SOM % 20-3-2015 Marnix Van 
den Brande 
via Lammert 
Kooistra 
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Appendix 2. Boxplots spatial point datasets 
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Appendix 3. Moran plots EC and crop yield 

The x-axis represents a spatial point variable and the y-axis indicates the spatial lag (or distance) 

between point pairs for that variable. Black dots represent potential inliers, while blue dots indicate 

observations that do not significantly deviate from their neighbours. 
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Appendix 4. Variograms and variogram parameters spatial point datasets 
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Variogram parameters 
   

Variable model nugget sill range 

crop_yield points Sph 254.335 555.574 15.294 

ECa_0_5m points Exp 0.000 1.241 147.751 

ECa_1_0m points Exp 0.000 2.547 190.446 

ECa_1_5m points Exp 0.000 2.706 222.027 

ECa_3_0m points Exp 0.000 3.203 315.022 

elevation points Sph 0.007 1.009 1654.113 

soil_depth points Exp 0.000 0.006 14.825 

soil_OM points Exp 0.678 1.930 1347.722 

 

 

Appendix 5. Correlation matrix soil and crop variables 
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Appendix 6. Bartlett’s test of Sphericity and KMO MSA tests 

Bartlett's test of Sphericity 
 

bartlett_chi2 1875045.7 p-value 0.000 
    

KMO Measure of Sample Adequacy overall 
 

kmo_full_overall 0.607 kmo_reduced_overall 0.766 
    

KMO Measure of Sample Adequacy per variable 

kmo_full_bare_soil_red 0.468 kmo_reduced_bare_soil_ndrg 0.728 

kmo_full_bare_soil_green 0.457 kmo_reduced_ECa_0_5m 0.775 

kmo_full_bare_soil_blue 0.408 kmo_reduced_ECa_1_0m 0.828 

kmo_full_bare_soil_ndrg 0.966 kmo_reduced_ECa_1_5m 0.830 

kmo_full_bare_soil_sumvis 0.477 kmo_reduced_ECa_3_0m 0.795 

kmo_full_ECa_0_5m 0.805 kmo_reduced_elevation 0.794 

kmo_full_ECa_1_0m 0.838 kmo_reduced_soil_depth 0.653 

kmo_full_ECa_1_5m 0.827 kmo_reduced_soil_om_total 0.644 

kmo_full_ECa_3_0m 0.816 
  

kmo_full_elevation 0.770 
  

kmo_full_soil_depth 0.518 
  

kmo_full_soil_OM 0.264 
  

kmo_full_soil_om_total 0.548 
  

 

 

Appendix 7. Scree plots PCA and cluster analysis 
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Appendix 8. Biplots PCA 
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Appendix 9. Output linear models 

 

Validation area 1: whole field excluding strip without additional fertilizer 
 

Model structure 
 

AIC  
  

exponential correlation with nugget 3832.8  
  

exponential correlation without nugget 3843.4  
  

spherical correlation with nugget 3829.2 selected 
  

spherical correlation without nugget 3858.3  
  

independent errors 3887.8  
  

ANOVA table 
     

 
df F-value p-value 

  

(Intercept) 1 1175.710 0.000 
  

clusters 3 6.043 0.000 
  

LS means 
     

clusters lsmean SE df lower CL upper CL 

1 59.875 5.508 396 49.047 70.703 

2 85.326 3.950 396 77.560 93.092 
3 83.070 3.954 396 75.296 90.844 

4 69.693 4.310 396 61.219 78.166 

Pairwise comparisons 
    

contrast estimate SE df t-ratio p-value 

1 - 2 -25.451 6.777 396 -3.755 0.001 
1 - 3 -23.195 6.755 396 -3.434 0.004 

1 - 4 -9.818 6.451 396 -1.522 0.425 

2 - 3 2.256 5.546 396 0.407 0.977 

2 - 4 15.633 5.843 396 2.676 0.039 

3 - 4 13.377 5.697 396 2.348 0.089 

 

 

Validation area 2: upper north-west corner of the field (in fertilizer zone with 90 kg/ha initial N input) 

Model structure 
 

AIC  
  

exponential correlation with nugget 2879.1  
  

exponential correlation without nugget 2877.1 selected 
  

spherical correlation with nugget 2884.7  
  

spherical correlation without nugget 2984.4  
  

independent errors 2982.4  
  

ANOVA table 
     

 
df F-value p-value 

  

(Intercept) 1 552.734 0.000 
  

clusters 2 7.373 0.001 
  

LS means 
     

clusters lsmean SE df lower CL upper CL 
1 52.991 5.937 297 41.306 64.675 

3 80.138 4.076 297 72.116 88.159 

4 66.534 5.390 297 55.926 77.143 

Pairwise comparisons 
    

contrast estimate SE df t-ratio p-value 
1 - 3 -27.147 7.178 297 -3.782 0.001 

1 - 4 -13.544 7.601 297 -1.782 0.177 

3 - 4 13.603 6.532 297 2.083 0.095 
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Validation area 3: mid-west of the field (in fertilizer zone with 162 kg/ha initial N input) 

Model structure 
 

AIC  
  

exponential correlation with nugget 1707.7  
  

exponential correlation without nugget 1705.7  
  

spherical correlation with nugget 1705.4  
  

spherical correlation without nugget 1703.4 selected 
  

independent errors 1720.1  
  

ANOVA table 
     

 
df F-value p-value 

  

(Intercept) 1 3372.982 0.000 
  

clusters 1 2.949 0.087 
  

LS means 
     

clusters lsmean SE df lower CL upper CL 

2 88.251 2.103 198 84.104 92.399 

3 93.580 2.304 198 89.037 98.123 

Pairwise comparisons 
    

contrast estimate SE df t-ratio p-value 

2 - 3 -5.329 3.103 198 -1.717 0.087 
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Appendix 10. Output maps soil and crop variables 
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Appendix 11. Output maps sPC3 and sPC4 
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Appendix 12. Output maps with 2 MZs and 3 MZs 

 


