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Abstract 

 
The objective of the thesis is to develop an approach to combine community-based monitoring 

(CBM) data with SAR (Synthetic Aperture Radar) and optical time series data streams for near 

real-time deforestation detection in Kafa, Ethiopia. Combining CBM and SAR-optical data 

promises to overcome the current limitations of optical-only forest monitoring systems that 

show limited temporal detection accuracies in tropical regions affected by persistent cloud 

cover. The integration-method builds upon an existing probabilistic (Bayesian) approach that 

was initially designed to combine optical and SAR time series (Reiche, de Bruin, Hoekman, 

Verbesselt, & Herold, 2015). Incorporation of CBM observations to this approach is the main core 

of the thesis. The proposed method consists of three parts; first we assess the capabilities of 

optical (Landsat NDVI) and SAR (ALOS PALSAR L-band, Sentinel-1 C-band) to separate forest 

and non-forest in Kafa. Then, the method is tested in a single pixel to evaluate the integration of 

the data streams, before applied in a larger area. Finally, we assess the spatial and temporal 

deforestation detection accuracies using reference data for the method development area. 

Application of the Bayesian approach in a single pixel showed that CBM observations improved 

the detection of deforestation 5 days earlier than with optical data streams. However, the overall 

contribution of CBM observations over the area was minimum (+0.35% overall accuracy, -0.12 

days temporal accuracy) compared to optical data streams; as a result of their low temporal 

density and mostly delayed recording. Overall, CBM observations showed high potential for 

contribution on early deforestation detection, if only, CBM recordings are frequent. 

 

Keywords 
Community-based monitoring; remote sensing; near real-time; deforestation; Bayesian 

approach; Landsat; ALOS PALSAR; Sentinel-1; Kafa; Ethiopia 
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ALOS Advanced Land Observing Satellite 

BFAST Breaks For Additive Season and Trend 

BFM BFAST Monitor  

CBM Community Based Monitoring 

DP Deforestation Probability 

F Forest 

FBD Fine Beam Double 

GPS Global Positioning System 

HH  Horizontal transmit and Horizontal receive 

HV  Horizontal transmit and Vertical receive 

IDW Inverse-Distance Weighting 

JM Jeffries – Matusita distance 

MRV Measuring, Reporting and Verifying 

MTLc Mean Time Lag of confirmed deforestation events 

MTLf  Mean Time Lag of flagged deforestation events 

NDVI Normalized Difference Vegetation Index 

NF Non-Forest 

NFMS National Forest Monitoring System 

NRT Near Real-Time 

OA  Overall Accuracy 

P Probability 

PA Producer’s Accuracy  

PALSAR Phased Array type L-band Synthetic Aperture Radar 

Pdf Probability density function 

PNF Probability of Non-Forest 

REDD+ Reducing Emissions from Deforestation and Degradation 

RS Remote Sensing 

SAR Synthetic Aperture Radar 

SITS Satellite Image Time Series 

UA User’s Accuracy 

UNESCO The United Nations Educational, Scientific and Cultural Organisation 

VH Vertical transmit and Horizontal receive  

VV Vertical transmit and Vertical receive 
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1. Context and Background 

Tropical forests are of fundamental importance to humanity as they provide habitats for 

numerous species, maintain water cycle, stabilize soil, provide wood and other goods and 

regulate the local and global climate (European Parliament (2016); Fagan & DeFries, 2009). 

Deforestation and forest degradation lead to the loss of these important ecosystem services and 

are regarded as one of the major sources of greenhouse gas emissions (Harris et al., 2012; Zarin, 

2012). In order to reverse the increase of global carbon dioxide emissions an international 

initiative on Reducing Emissions from Deforestation and Degradation (REDD+) is currently 

activated to mobilize developing countries under a common strategy of mitigating climate change 

by reducing forest cover loss and forest degradation (Angelsen, 2008; Fagan & DeFries, 2009; 

Gullison et al., 2007).  

One of the basic targets of participating countries in REDD+ program is the development of a 

robust and transparent national forest monitoring system (NFMS) in order to accurately, cost-

effectively and consistently over time, detect forest area changes (UNFCCC, 2009). Under these 

conditions, the combination of remote sensing (RS) and ground based data are officially 

suggested by REDD+ as essential data sources for Measuring, Reporting and Verifying (MRV) 

(UNFCCC, 2009) the four main monitoring objectives of change; location, area, time and driver of 

forest change (Pratihast et al., 2014). Moreover, timely information on deforestation, particularly 

illegal loggings, is essential in order to improve the management and protection of tropical forest 

resources  by mobilizing governmental authorities and local communities and enacting 

immediate law enforcement (Assunção, Gandour, & Rocha, 2014; Lynch, Maslin, Balzter, & 

Sweeting, 2013; Wheeler, Hammer, Kraft, & Steele, 2014).  

Satellite Image Time Series (SITS) are considered as the primary data source for forest change 

detection in near real-time (NRT) (Lynch et al., 2013). SITS can provide a collection of satellite 

images over vast forest areas (Lynch et al., 2013), taken from the same location at different dates. 

The repetitive observations of these data streams is unique and allow the detection of forest cover 

changes over time where vegetation appear more easily discriminable than by analysing single 

images (Guyet & Nicolas, 2016; Hansen et al., 2013; Lynch et al., 2013). In this context, NRT forest 

monitoring is based on the analysis of every image on the time series, as soon it is acquired, with 

the advantage of having dense information of rapid updates and historical dynamic of the target. 

Last years, due to open data policies, medium resolution remote sensing imagery has become 

freely available and has extensively used to detect small-scale forest cover changes, while offering 

regional to global scale products (De Sy et al., 2012; Hansen & Loveland, 2012; Hansen et al., 2013; 

Lu, Li, & Moran, 2014). This sparked considerable development in optical time series based 

monitoring methods, increasing their use over conventional bi-temporal approaches for forest 

change detection (Banskota et al., 2014). Optical time series methods provide an improved NRT 

forest change monitoring over large areas with high temporal resolution and accuracy (DeVries, 

Verbesselt, Kooistra, & Herold, 2015; Dutrieux, Verbesselt, Kooistra, & Herold, 2015; Reiche et al., 

2015; Zhu, Woodcock, & Olofsson, 2012). As a result, they allow rapid detection of forest 

disturbance while offering better descriptions of forest change trajectories than with traditional 

methods (Huang et al., 2010; Kennedy, Yang, & Cohen, 2010). However, persistent cloud cover in 

tropical regions reduces the availability of clear observations from optical sensors (Lehmann et 

al., 2012; Verbesselt, Zeileis, & Herold, 2012; Walker, Stickler, Kellndorfer, Kirsch, & Nepstad, 

2010). This is a common phenomenon in the tropics with some countries experiencing annual 
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average cloud cover rates of more than 80% (Herold, 2009).  As a result, clouds limit the optical 

coverage from remote sensors and often prevent rapid change detection of deforestation and 

forest degradation.  

Synthetic Aperture Radar (SAR) penetrates through clouds and smoke haze, and can acquire data 

day or night under all weather conditions (Achard et al., 2010; Shimada, 2010). This gives a 

considerable advantage over optical satellite data when monitoring tropical forests. SAR systems 

can operate at different wavelengths. Due to its longer wavelength (~25cm), L-band SAR 

penetrate the forest canopy and scattering occurred by the ground, branches and trunks results 

in higher backscatter than non-forest areas like bare land and water. In addition, L-Band SAR 

cross polarisation (HV) has demonstrated to improve further the discrimination between forest 

and non-forest areas than co-polarisation (Rahman & Sumantyo, 2010) while HVHH backscatter 

ratio has shown to be more sensitive to deforestation than HH or HV (Reiche, 2015). L-band SAR 

time series data by ALOS (Advanced Land Observing Satellite) PALSAR (Phased Array type L-band 

Synthetic Aperture Radar) has been successfully used for mapping and monitoring forest change; 

particularly in tropical regions (Almeida‐Filho, Shimabukuro, Rosenqvist, & Sanchez, 2009; 

Motohka, Shimada, Uryu, & Setiabudi, 2014; Rahman & Tetuko Sri Sumantyo, 2012; Ryan et al., 

2012; Shimada et al., 2014; Whittle, Quegan, Uryu, Stüewe, & Yulianto, 2012). On the other hand, 

C-band SAR operates at shorter wavelength (~6cm) interacting mainly with the top layer of the 

forest canopy; leaves and twigs. Reiche (2015) mentions that this returns a lower backscatter 

contrast between forest/non-forest areas than L-band SAR indicating C-band lower sensitivity to 

forest cover changes. Nevertheless, C-band has also been used for mapping and monitoring forest 

change while  the combination of C and L band has shown to increase the distinction between 

woodland and forest areas (Haarpaintner, Davids, Hindberg, Zahabu, & Malimbwi, 2015), and is 

likely to better identify forest degradation. On 2014, Sentinel-1 satellite was launched, providing 

for the first time, dense C-band SAR time-series data over tropical forest areas free and openly 

(Reiche et al., 2016). The significant potential of Sentinel-1 for monitoring forest changes 

however, still needs to be explored (Reiche et al., 2016). At the downsides of SAR systems are the 

false detections mainly occurred by forest degradation activities (Ryan et al., 2012); such in cases 

after clear-forest-cuts where trunks are left on the ground for a long period and result in higher 

backscatter signal (Kellndorfer, Cartus, Bishop, Walker, & Holecz, 2014), and the low density of 

L-band SAR observations per year in tropical countries (Rosenqvist, Shimada, Ito, & Watanabe, 

2007).  

Deforestation monitoring in NRT using a single optical or SAR data stream is limited by the 

relatively low density of valid observations per year that leads to late detection of changes. 

Therefore, integrating SAR and optical data can increase the temporal accuracy and as a result 

decrease the delay of change detection (Hussain, Chen, Cheng, Wei, & Stanley, 2013; Lehmann et 

al., 2012; Reiche, 2015; Zhang, 2010). Fusion of optical and radar imagery has successfully 

demonstrated to increase forest mapping and deforestation detection accuracy (Erasmi & Twele, 

2009; Kuplich, 2006; Laurin et al., 2013; Walker et al., 2010). However, integration of SAR-optical 

time series is limited to date and rather ambiguous as various challenges have to be addressed 

including; co-registration accuracy and image acquisition at different dates (Reiche, 2015). 

Lehmann et al. (2015) used the Bayesian classification framework (Strahler, 1980) and 

successfully applied a multi-temporal approach to integrate Landsat and ALOS PALSAR annual 

data streams for forest change detection (Reiche, 2015). Moreover, Reiche (2015), by using a 

probabilistic approach based on Bayesian framework managed to effectively integrate medium 
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resolution ALOS PALSAR and Landsat NDVI time series for NRT deforestation detection. This 

approach was based on calculating forest probabilities from each newly acquired image at SAR 

and optical data streams to quickly identify deforestation events (Reiche, 2015). Results of 

Bayesian change detection approach have demonstrated higher spatial and temporal accuracies 

than with single sensors approaches (Reiche, 2015). 

In the last few years, community based monitoring (CBM) from local citizens and experts have 

gained much attention as a way to increase local participation and ensure the sustainability of 

REDD+ forest monitoring programmes (Boissière, Beaudoin, Hofstee, & Rafanoharana, 2014; 

Conrad & Hilchey, 2011). Due to its low cost (Pratihast et al., 2012), CBM can be promising in 

applications such as forest carbon estimation and forest change monitoring (Brofeldt et al., 2014; 

Pratihast et al., 2014). Communities local knowledge can greatly enhance the recording of forest 

change activities (deforestation, forest degradation or reforestation) and provide important 

information regarding the location, time, size and driver of forest change on a NRT basis 

(Pratihast et al., 2014; Skutsch, Torres, Mwampamba, Ghilardi, & Herold, 2011). Such information 

is rarely captured comprehensively from remote sensing systems, thus, local participation within 

forest monitoring programs has the potential to advance the REDD+ MRV implementation 

(Pratihast et al., 2014). The recent development of mobile phone technologies has improved the 

quality of data collection procedures and thus, can enhance continuous data acquisition, 

“transforming” local communities to active ground based sensors (Goodchild, 2007; Pratihast et 

al., 2012). However, since data collection is performed independently from local participants’ 

inconsistencies, limitations and reliability issues regarding their accuracy has often been 

addressed (Danielsen, Burgess, Jensen, & Pirhofer‐Walzl, 2010; Fry, 2011; Pratihast et al., 2014). 

These issues include; inconsistencies in monitoring frequency due to weather conditions, limited 

spatial coverage due to inaccessible locations, and unreliable data collection procedures 

(Pratihast et al., 2014). Proper recruitment and training of  local experts can reduce the effect of 

these obstacles and thus, allow the integration of CBM data streams in NFMS (Conrad & Hilchey, 

2011; Skarlatidou, Haklay, & Cheng, 2011).  To this date, CBM data has mostly used as reference 

data for training and validating time series based methods for forest monitoring. 

2. Problem Definition  

Local participation within REDD+ forest monitoring programs can ensure their sustainability and 

has the potential to advance the MRV implementation (Pratihast et al., 2014). Pratihast et al. 

(2014) showed that CBM data collected by local forest experts in southern Ethiopia had 

accurately provided the spatial and temporal details of forest change and in many cases enhanced 

remote sensing-based results for forest cover change. Therefore, integration of CBM observations 

in NFMS may improve NRT forest monitoring as they can provide additional understory 

description of deforestation, increase the number of observations, and improve the spatio-

temporal and thematic quality of deforestation estimates. However, combining CBM observations 

with SAR-optical SITS holds no prior knowledge and further research on developing a functional 

approach is needed.  

 

Prior to data-integration approach, evaluating the F/NF separability of optical and SAR SITS is 

essential. Separability of F/NF classes distribution is related to SITS sensitivity on deforestation 

detection. This allows the identification of the sensor metric with the higher sensitivity capability 

to detect deforestation. It is also important in the case of C-band SAR which is known to have less 
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sensitivity to forest cover changes compared to L-band (Mitchell et al., 2014). As a result, F and 

NF distributions of C-band SAR data-stream are expected to overlap more demonstrating a lesser 

performance on distinguishing the two classes (Reiche, 2015). This may lower the deforestation 

detection performance of the proposed integration approach. Therefore, F/NF separability of C-

band SAR is of particular interest in order to assess its usefulness to the selected integration 

approach. Currently, there is little knowledge on the capabilities of C-band Sentinel-1 for forest 

change monitoring (Reiche, 2015).  

 

Integration of CBM-SITS is the main core of the thesis and lies upon the development of a 

functional approach to fuse local observations with time series data. Latest developments on SITS 

data-integration approaches have indicated the high potential of the probabilistic Bayesian 

change-detection method. This probability-based approach has been successfully used in Reiche 

(2015) study to combine medium resolution SAR and optical time-series and shows potential of 

further development in order to embed additional data streams. The Bayesian approach is 

primary based on deriving and combining F/NF probabilities of each observation at SAR-optical 

SITS (Reiche, 2015). This means that embedment of CBM data into the Bayesian probabilistic 

framework requires similarly the prior conversion of each CBM observation into conditional 

F/NF probabilities. However, each CBM observation consists of a series of attributes regarding 

the location, area and intensity of forest disturbance (among others).  Therefore, proper analysis 

and interpretation of these attributes in order to derive realistic F/NF probabilities is crucial part 

of the method.    

Post-integration results are important to be evaluated; particularly CBM contribution for NRT 

deforestation detection. Therefore, an assessment of spatial and temporal accuracy between 

CBM-SITS and SITS integration-approach is essential.  

3. Research Objective and Research Questions 

The objective of the thesis is to develop an approach to combine CBM and SITS data streams for 

NRT deforestation detection. The following key research questions arise: 

1. What are the capabilities of optical (Landsat NDVI) and SAR (ALOS PALSAR L-band, Sentinel-

1 C-band) to separate forest and non-forest in Kafa Biosphere Reserve? 

2. How can CBM observations and SITS be combined in a probabilistic framework for NRT 

deforestation detection?  

3. How does the spatial and temporal accuracy of deforestation detection improves by 

combining CBM observations and SITS? 

4. Feasibility and Risks 

All software packages required for this study are freely available from Wageningen University. In 

addition, both CBM and SITS data provided pre-processed and co-registered, and ready for 

analysis.  

Aim of this thesis is the development of a novel approach for NRT data-stream based forest 

monitoring. The basic core of the approach has been applied successfully in recent study (Reiche, 

2015); however, the need of integrating additional data sources requires further development of 
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the method and can be challenging. In order to reduce the uncertainty and avoid unknown factors, 

a set of simplifying assumptions is created: 

• The only type of forest change covered is deforestation. Forest degradation is not covered.  

• Areas of steep slopes are not covered as terrain variations can affect radar geometry. 

• Low quality community based data are rejected. 

• Seasonality will be ignored.  

5. Data & Methods 

5.1. Study Area and Data 

The study area is located in the UNESCO Kafa Biosphere Reserve in south-western Ethiopia. It is 

an area over 700,000 ha in size with a variation in altitude ranging from 1400 to 3100 m 

(Pratihast et al., 2016). Kafa is characterized by Afromontane cloud forest vegetation, with forests 

covering approximately half of the land (Schmitt, Denich, Demissew, Friis, & Boehmer, 2010). The 

forest ecosystem consists mostly of highly fragmented moist evergreen forests, forest-cropland 

matrix landscapes and coffee trees (DeVries et al., 2013). Smallholder agriculture and industrial 

coffee and tea plantations are considered as the main drivers of deforestation and forest 

degradation in the reserve (Schmitt, Senbeta, Denich, Preisinger, & Boehmer, 2010).  

The area for method development is located approximately at the north-center of the Kafa 

Biosphere Reserve (fig. 1). It is selected because of its flat terrain and clear signs of forest 

disturbance. The main driver of deforestation and forest degradation is agricultural expansion.  

Figure 1: Area for method development 

CBM data were collected by 30 forest rangers who were recruited to implement forest 

management and monitoring activities within the Kafa reserve (Pratihast et al., 2014). Forest 

rangers were trained primarily in methods and tools to record disturbances (deforestation and 
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degradation) and positive forest changes (afforestation and reforestation), in a consistent 

manner (DeVries, Pratihast, Verbesselt, Kooistra, & Herold, 2016).  Recording tools included 

disturbance forms, Global Positioning System (GPS) devices, and mobile devices with integrated 

GPS and camera functionality (Pratihast et al., 2014).  Each CBM observation contain description 

in a range of attributes regarding forest status and history and is linked with a plot description, 

coordinates and five photos (facing north, east, south, west and upwards) (DeVries et al., 2016). 

Details of these reports have also been described in detail in Pratihast et al. (2014). For this study 

low quality CBM data have been rejected. In the end, a total of 17 CBM observations were proper 

to be used. All CBM observations were acquired in Kafa Biosphere Reserve during March, 2015.  

The SITS data comprises three time-series stacks (i) Landsat NDVI for the years 2010 to 2016, 

(ii) ALOS PALSAR FBD (Fine Beam Double) Polarisation HH/HV for the years 2007 to 2016 and 

(iii) Sentinel-1 VV for the years 2015 to 2016. All RS data streams provided pre-processed and 

co-registered by Johannes Reiche. The number of valid SITS observations for the method 

development area during 2015-2016 is depicted in figure 2.  

 

Figure 2: Number of valid SITS observations for the method development area during 2015-2016 
 

 

5.2. Methods 

The research comprises the (i) F/NF separability analysis of SITS (research question 1), (ii) pixel 

and field based development of a CBM-SITS integration method for NRT deforestation detection 

(research question 2) and (iii) data-integration method validation. The validation assesses the 

spatial and temporal accuracy between CBM-SITS and SITS integration-approach in order to 

evaluate the CBM contribution (research question 3). See Figure 3 for a schematic illustration. 

All developing steps were conducted in R (R Development Core Team, 2013), supported by ArcGIS 

and Google Earth for visualisation. 
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Figure 3: Schematic representation of research method. The steps are described below in more detail. 

 

5.2.1. Forest/Non Forest Separability analysis 

This method assesses the capabilities of SITS (Landsat NDVI, ALOS PALSAR L-band, Sentinel-1 C-

band) to separate forest and non-forest in Kafa Biosphere Reserve. Method applied both for 

original and deseasonalised time series data and consists of a signature and separability analysis.  

SITS have been deseasonalised using spatial context. Spatial context approach involves the spatial 

normalization of each pixel in the time series using the median value of adjacent pixels whose 

values exceed the 90th percentile (Hamunyela, Verbesselt, & Herold, 2016). 

 
Signature Analysis 

Signature analysis is centred on the generation of signatures from forest (F) and non-forest (NF) 

classes. In order to identify the classes, seven training samples were collected for each class by 

visual interpretation of the study area (fig.4). Special consideration was given on selecting 

samples that remain unchanged over the spatial domain of the time series data. To ensure this, a 

mask presenting stable forest areas was used as reference map (provided by J. Reiche). The 

selected forested samples consist mostly of evergreen forest formations while non-forested 

samples from bare soil and at a smaller percent, low vegetation (90% and 10% approx.). After 

selection, the training samples are merged into each class and F/NF signatures, mean and 

standard deviation, are collected for each SITS. 
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Figure 4: Selection of forest and non-forest samples in the method development area using a stable forest mask 

 
Separability analysis 

Separability analysis was based on the Jeffries – Matusita Distance (JM) between the F and NF 

classes and calculated separately for each data stream. JM evaluates the class overlap of F and NF 

distributions and measures their separability on a scale of 0 (inseparable) to 2 (separable).  

 
5.2.2. Integration of CBM-SITS for NRT deforestation detection 

For the combination of CBM observations with SITS we build upon a probabilistic Bayesian 

framework described in Reiche (2015) study. Method is tested in a single pixel to evaluate the 

integration of the data streams, before applied in a larger area. The main steps of the Bayesian 

approach are described here and a schematic illustration is shown in fig.5: 

❖ Step 1 consists of the derivation and combination of F/NF conditional probabilities for 

each individual data steam observation (Reiche, 2015). For SITS observations, conditional 

probabilities derive from the corresponding sensor specific F/NF probability density 

functions (pdfs) (Reiche, 2015). Pdfs are identified using the F/NF training samples from 

separability analysis. For CBM observations, conversion into F/NF probabilities is more 

challenging and is described below.  

❖ In Step 2, observations at time t with NF probability that exceeds 0.5 are flagged to be 

potentially deforested. Then, the deforestation probability for a flagged observation is 

calculated using iterative Bayesian updating which takes into account the previous (t-1), 

the current (t), and the upcoming observations (t+1) (Reiche, 2015). In the end, iterative 

Bayesian updating confirms or rejects a deforestation event at time t (Reiche, 2015). 
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Figure 5: Schematic illustration of the proposed Bayesian approach 

 

Derive F/NF probabilities from CBM observations 

As described before, each CBM observation consists of a series of attributes such as; date, 

coordinates and area of change. Conversion of each observation into F/NF conditional 

probabilities requires proper interpretation of these attributes.  

Coordinates, provided in longitude and latitude, can help us identify the location of the CBM 

observations. Since, every SITS has the same extent and resolution the CBM observations 

correspond to the same point locations for all the time series. These are the standing points at 

which forest rangers recorded deforestation therefore we assume that these points have the 

higher NF probability; 0.95 or 95%.  

The area of change is provided in hectares (ha) and it is assumed to represent the area around 

the CBM observations. Spatial depiction of the disturbed area can be occurred by buffering the 

observation-points at an extent (radius) of equal size to the recorded area of change (fig. 6). This 

circular buffering captures all pixels which centers contact or included within the buffered area. 

At this point, a forest mask is used to extract the stable F part and capture the actual area of 

change.                   

Final step is to assign NF probabilities to the captured pixels. For this we have to take into account 

that deforestation intensity within a disturbed area is distributed differently and it is 

unpredictable. In order to simulate it as possible, we start from the known CBM observation point 

which has the higher NF probability, 0.95, and assume an inverse-distance weighting (IDW) 

interpolation towards the edges of the area of change. In order to apply the IDW interpolation we 



 
16 

 

use a linear function which calculates the NF probability of a pixel-center based on its distance 

from the CBM observation point. At maximum distance, max d, pixel get the minimum PNF value; 

0.5. The function used is shown in figure 6. 

 

 

Figure 6: Schematic illustration of the IDW function used to convert CBM observations to NF probabilities.               
Each pixel gets the NF probability of its center and the date of the CBM recording.  x = the distance between the CBM 

observation point and pixel-center. max d = the longest distance between two points within a disturbed area, 
representing the diameter of the largest recorded CBM area; 2Ha ≈ 160 meters diameter 

 
Pixel-based approach 

Based on the above mentioned, we test the main method in a single pixel to evaluate the 

integration of the data streams.  

Pixel corresponds to a CBM observation and located within the area of change. Test pixel is 

located within an area of 0.5 ha, disturbed by locals for charcoal production and recorded from 

forest rangers on March 2015. Google Earth images available for the area are from 2014 and 2016, 

before and after the monitoring period; 2015 (fig. 7). 

 

 

 

 

 

 

Figure 7: Google Earth images of test pixel (white square) and the corresponding area of change (yellow circle) of 
CBM observation (red points) 

 
Analytically, the steps for the pixel-based approach are the following:  

Firstly, we locate the SITS pixel corresponding to the CBM observation. Then pixel is assigned 

with the corresponding NF probability using the IDW function described previously. SITS data 

are deseasonalised to reduce dry forest seasonality and avoid false detection of deforestation. 

Then we create a CBM data stream of a single observation for the test pixel. Similarly, we create 
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a data stream for each sensor metric; Landsat NDVI, Sentinel-1 and PALSAR, incorporating all 

valid observations of the test pixel. At this point we can optimise the integration of CBM-SITS data 

streams. Final step involves the integration of data streams and detection of change by applying 

the Bayesian approach with the following parameters: 

1. We use sensor specific pdfs of F/NF to calculate the conditional NF probability of each 

SITS observation. F/NF distributions are described using mean and standard deviation.  

2. Set a threshold of deforestation probability at which flagged change is confirmed. 

Threshold identification was based on Reiche, Hamunyela, Verbesselt, Hoekman, and 

Herold (2018) results regarding Landsat, Sentinel-1 and PALSAR-2 spatial and temporal 

accuracy performance using different thresholds. Aiming for high confidence in area 

detection a mean threshold between 0.8 and 0.975 was used; χ ≈ 0.9. 

 

Area-based approach 

Pixel-based results indicate that Landsat NDVI is the only sensor metric that contributes on the 

detection of change. Therefore, area-based approach is applied between SITS (represented by 

Landsat NDVI) and CBM observations. The extent of the selected area covers all 17 CBM 

observations. Analytically, the steps are the following: 

Firstly, we locate the SITS (Landsat NDVI) spatial points corresponding to the CBM observations 

and buffer them at an extent of equal size to the recorded area of change. All captured pixels in 

each area of change are extracted and assigned with NF probabilities using the IDW function 

described previously (fig.8). At this point we create 17 rasters by expanding each area of change 

to the desired extent. CBM rasters of similar recording date are then merged into a single layer. 

Similarly, single layers are finally merged into a CBM raster brick.                                                  

We crop SITS (Landsat NDVI) extent at the extent of CBM raster brick. Then SITS (Landsat NDVI) 

data are deseasonalised to reduce dry forest seasonality and avoid false detection of forest 

changes. 

Using a forest mask derived from reference data from the beginning of the monitoring period, we 

can extract the forested pixels in order to isolate the areas of change. However, in our case there 

were no available reference data at the beginning of the monitoring period therefore forest mask 

derived from digitising a Google Earth image from March 2014. The date of the image is after the 

dry season of 2014 where most changes occur therefore we assume that only few deforestation 

events occurred until the beginning of the monitoring period; 2015.  

Finally, the Bayesian deforestation detection approach is applied separately in all pixels of SITS 

(Landsat NDVI) and fused CBM-SITS data streams with similar parameters as with the pixel based 

approach. This creates the final deforestation maps. 

 

5.2.3. Validation 

The produced deforestation maps are divided into two strata: Change and No Change. Change 

represents the deforested area while No Change represents the remaining stable forest and stable 

non-forest area. The size of each stratum is calculated using pixel units.   
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The probability sampling design used is the stratified random sampling. The sample size is 

determined using the formula (no.13) from Olofsson et al. (2014) and calculation is presented in 

table 1. Based on Olofsson et al. (2014) approach, user accuracy of the No Change class is 0.9 and 

0.95 for forest and non-forest stratum as stable classes are known to be more accurate, while for 

the Change class 0.7. The target standard error for overall accuracy is 0.01.   

As presented in table 1, the number of samples based on the total area is 760. Due to the very 

small proportion of Change class, samples are distributed by allocating a minimum sample size of 

150 to adequately sample this strata. However, in order to ensure the assessment of the CBM data 

streams contribution to the Bayesian approach, from 150 samples of change stratum a minimum 

sample size of 50 is allocated similarly to the CBM areas. The rest are distributed proportionally 

to the No Change class; stable forest and non-forest. Since non-forest stratum was not covered 

during the production of change maps it is excluded and only forest stratum will be compared. 

Therefore, the final number of samples is 291. 

 

 

Table 1: Sample size calculation and allocation per stratum based on Olofsson et al. (2014) 

 

Subsequently, the strata are randomly sampled. The output is a CSV file containing the cell 

number and coordinates of each sample.  

Reference data are created by analysing the time series signal of each sampling pixel both from 

SITS (Landsat NDVI) and CBM-SITS produced deforestation maps. For spatial accuracy 

assessment the analysis involves the confirmation of change or no change at each sampling pixel. 

Subsequently, spatial accuracy measures derive from the error matrix of Change and No Change 

class and include the overall accuracy (OA), user’s accuracy (UA) and producer’s accuracy (PA). 

For temporal accuracy assessment the analysis involves the identification of the reference 

deforestation date.  To avoid imprecision, reference deforestation date is identified as the date 

right in-between the acquisition date of the first image of the deforestation event and the previous 

(Reiche et al., 2018). Temporal accuracy assessment is based on the time-difference between the 

 Change No Change Total 

Stable F Stable NF 

Area in pixels 2992 3099 10757 16848 

Wi (Mapped proportion) 0.18 0.18 0.64  

Ui (Expected user’s accuracy 0.7 0.9 0.95  

Si (Standard deviation) 0.46 0.3 0.22  

Wi*Si 0.08 0.05 0.14 0.27 

  SE overall accuracy 0.01 

  Number of samples 760 

    

 Sample size per stratum  

Allocation 150 141 469 760 

Divide change stratum CBM change areas Rest change areas Stable F Stable NF  
Final allocation 50 100 141 469 760 

Exclude stable NF stratum 50 100 141 - 291 

Final number of samples 291 
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confirmed and reference deforestation date of each sampling pixel; mean-time-lag (MTLc). In 

addition, the mean time lag of the date at which the confirmed deforestation events were initially 

flagged (MTLf) was calculated. 

 

6. Results 

This section comprises the (i) F/NF separability analysis results of SITS (research question 1, 

method 4.2.1), (ii) pixel and field based results of the CBM-SITS deforestation detection approach 

(research question 2, method 4.2.2) and (iii) the spatial and temporal accuracy results of SITS  

and CBM-SITS integration-approach (research question 3, method 4.2.3). 

 

6.1. F/NF Separability analysis   

Signature analysis results for each data stream can be seen at figures 8-10 and include the mean, 

standard deviation and the backscatter or NDVI signal of F and NF class.  

 

 

Figure 8: Annual HH and HV backscatter characteristic of the original and deseasonalised PALSAR time series. Red 
line indicates forested areas - blue line indicates non-forested areas. Vertical lines at each observation depict the 

standard deviation from the mean 
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Figure 9: Monthly VV backscatter characteristic of the original and deseasonalised Sentinel-1 time series. Red line 
indicates forested areas - blue line indicates non-forested areas. Vertical lines at each observation depict the standard 

deviation from the mean. 

 

 

Figure 10: NDVI values of the original and deseasonalised Landsat time series per year. Red line indicates forested 
areas - blue line indicates non-forested areas. Vertical lines at each observation depict the standard deviation from 

the mean 

 

Separability analysis results were based on the JM distance between F and NF classes. A summary 

of the JM results can be seen in table 2 where PALSAR HV indicates the best performance while 

Landsat-NDVI the poorest.   
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Table 2: Separability analysis results based on JM distance between F and NF classes for each satellite image time 
series (SITS); original and deseasonalised. 

 

6.2. Integration of CBM-SITS data streams 

Application of the Bayesian deforestation detection approach requires the prior conversion of 

SITS and CBM observations into conditional F/NF probabilities. Then, the proposed integration 

approach is tested in a single pixel to evaluate the integration of CBM-SITS data streams; before 

applied in all pixels of the study area (area-based approach). 

 
Derive F/NF pdfs 

Derivation of F/NF pdfs for each deseasonalised SITS data stream are presented in fig. 11. F/NF 

distributions of PALSAR and Sentinel-1 appear more separate than Landsat’s NDVI data stream.  

 

 

Figure 11: Forest (F) and non-forest (NF) distributions overlaid with probability density functions (pdfs) fitted 
separately for the deseasonalised SITS data streams 

 

 JM  

SITS Original Deseasonalised Performance 

PALSAR HH 0.88 0.97 3 

PALSAR HV 1.47 1.54 1 (best) 

Sentinel-1 1.36 1.49 2 

Landsat-NDVI 0.55 0.89 4 (poorest) 
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Pixel-based approach 

Method is tested first in a single pixel to evaluate the integration of CBM-SITS data streams; 

results are presented in fig.12. 

 

Figure 12: CBM and SITS data streams covering a deforestation event in early 2015. red circle = CBM observation 

 
Application of the Bayesian deforestation detection approach using a high threshold of 

deforestation probability at which flagged changes are confirmed; χ = 0.9. For better optimization 

of detected deforestation events length of data streams reduced to the range 2014-2016, with 

2015 being the start of the monitoring period (fig. 13 – 15). 

 

 

Figure 13 Landsat NDVI and CBM data streams and detected deforestation events. black line = start of monitoring; 
dotted black line = flagged deforestation event that was not confirmed; red dotted line = flagged deforestation event; 

red line = confirmed deforestation event; Tflagged= day deforestation event flagged; T= day deforestation event 
confirmed 

b a 

c d

d

. 
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Figure 14: Sentinel-1 and CBM data streams and flagged unconfirmed deforestation event. black line = start of 
monitoring; dotted black line = flagged deforestation event that was not confirmed; 

 

 

Figure 15: PALSAR HV and CBM data streams and flagged unconfirmed deforestation event. black line = start of 
monitoring; dotted black line = flagged deforestation event that was not confirmed; 

 

Area-based approach 

Prior to the application of the Bayesian deforestation detection approach in all pixels of the study 

area, we firstly derive NF probabilities (PNF) from CBM observations. An example is depicted in 

fig. 16. 

 

Figure 16: Example of converting a CBM observation (left) into NF probabilities (PNF) (right); red point= CBM 
observation; white square= corresponding raster pixel; yellow circle= recorded area of change 
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The CBM raster data stream consists from all converted observations into PNF (fig. 17). 

 

 

Figure 17: Creation of CBM raster data stream incorporating all converted observations into NF probabilities (PNF) 

 
Stable NF areas are excluded from both SITS (Landsat NDVI) and CBM data streams using stable 

forest mask from reference data (fig. 18).  

 

Figure 18: Masking CBM and SITS (Landsat NDVI) data streams using a stable forest mask 

 

PNF 

SITS (Landsat NDVI) Masked SITS (Landsat NDVI) 

CBM Raster 
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Application of the Bayesian deforestation detection approach for SITS (Landsat NDVI), and CBM-

SITS and production of deforestation maps (fig. 19). 

 

 

 

Figure 19: SITS (Landsat NDVI) and CBM-SITS produced deforestation maps 

 

 

 

 

Time-lag Time-lag 

SITS (Landsat NDVI) 

CBM - SITS 
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6.3. Spatial and temporal accuracy assessment 

Accuracy assessment results are based on the comparison of SITS (Landsat NDVI) and CBM-SITS 

produced deforestation maps with reference data. 

Spatial accuracy assessment results are presented in table 3. 

 

 Reference   SITS 

 Classes Change No Change Total  User’s Accuracy (UA) 
Change: 99.33% ------ CE= 0.66 % 
No Change: 100% ---- CE= 0 % 
Producer’s Accuracy (PA) 
Change: 100% --------- OE= 0 % 
No Change: 99.30% -- OE= 0.6 % 

Overall Accuracy (OA): 99.65 % 

M
ap

 Change 149 0 149 

No Change 1 141 142 

 Total 150 141 291 

 

 

 Reference   CBM - SITS 

 Classes Change No Change Total  User’s Accuracy (UA) 
Change: 100% --------- CE= 0 % 
No Change: 100% ----- CE= 0 % 
Producer’s Accuracy (PA) 
Change: 100% --------- OE= 0 % 
No Change: 100% ----- OE= 0 % 

Overall Accuracy (OA): 100 % 

M
ap

 Change 150 0 150 

No Change 0 141 149 

 Total 150 141 291 

 

Table 3: Spatial accuracy assessment of SITS (Landsat NDVI) and CBM-SITS 

 

Temporal accuracy assessment results are presented in table 4. 

 

 

 

 

 

 

 

 

Table 4: Temporal accuracy assessment of SITS (Landsat NDVI) and CBM-SITS 

Temporal 

accuracy 

assessment  

Change Maps 

SITS CBM-SITS 

flagged confirmed flagged confirmed 

Mean-Time-Lag 

(days) 
0.14 13.17 0.137 13.06 
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7. Discussion 
 

F/NF separability analysis 

In signature analysis results of PALSAR and Sentinel-1, backscatter characteristics of forested 

areas appear relatively stable along the original time series (fig. 8 & 9). This indicates the high 

contribution of forest-canopies structural characteristics in the total backscatter signal. 

Nevertheless, dielectric characteristics of forest canopies and soil appear to have also an impact 

on backscatter as a result of C and L-band sensitivity to vegetation and soil water content. 

Specifically, comparison of climatic data of the region (fig.20) with the backscatter signal (fig. 9 & 

10) indicates that low rainfall in January corresponds with low backscatter while high rainfall in 

August with high backscatter values. In general, seasonal changes correspond roughly with low 

backscatter for dry season (December-February) and high backscatter for the main wet season 

(June-August).  

On the other hand, Landsat-NDVI values due to their relation with the photosynthetic capacity of 

plants are strongly influenced by seasonal variations in climate. Therefore, high photosynthetic 

activity during the growing season (wet season) corresponds with high NDVI values. However, in 

fig. 10 we can observe that NDVI values remain relatively high until the first half of the dry season 

(January).  This shows that photosynthetic activity can be maintained in high levels during the 

dry season, depending on the water storage held from wet season. Guan et al. (2015) has 

calculated that tropical rainforests worldwide with an annual rainfall threshold of approximately 

2,000 mm yr−1, water availability can preserve the evergreen state during dry season. Kafa 

reserve has a mean annual rainfall between 1700 and 1900 mm (Riechmann, 2007), which 

validates that water storage can maintain the photosynthetic activity in high levels for a part of 

the dry season. From the above mentioned, we can also certify the relation between NDVI and 

rainfall. Comparing the original NDVI values (fig. 10) with the average rainfall data from the area 

(fig. 20) we can observe that high rainfall during the wet season (June-August) increases 

photosynthetic activity and therefore the NDVI values, while the opposite occurs during the dry 

season..  

 

Figure 20: Average rainfall data of nearest meteorological station to Kafa reserve (www.worldweatheronline.com ) 

http://www.worldweatheronline.com/
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In order to isolate the influence of seasonality from our independent backscatter and NDVI 

variables, optical and SAR SITS have been deseasonalised using spatial context. Previous study 

has shown that spatial context approach improves the early detection of forest disturbance in 

areas with strong seasonality (Hamunyela et al., 2016). In addition, the reduction of seasonal 

variation from the original data, except of providing a safer path to compare two or more time 

series, has also improved the separability of F and NF classes. 

After time series data being deseasonalised, JM distance between F and NF distributions 

increased significantly (Table 2). PALSAR HV indicates the best performance with JM distance of 

1.54. This is due to volume scattering that generates a contrasting HV backscatter signal, higher 

for forests and lower for non-forests, which improves the detection and separability of the 

classes. The 2014 newly launched Sentinel-1 satellite, gives an almost equal performance with JM 

distance of 1.49. Little research has been done on the significant potential of Sentinel-1 however 

due to the C-band SAR a lesser performance was expected on distinguishing the two classes. The 

combination of Sentinel-1 C-band SAR separability performance and density of observations 

promises to be a particular useful tool for forest change detection. On the other hand, HH time 

series performance depicts more overlap between F/NF classes as indicated by the JM distance 

(0.97).  HH performance is usually less than HV due to its strong interaction with horizontal 

branches and weak double bounce scattering. Finally, Landsat-NDVI shows the poorest results 

(JM=0.89) as it can receive similar signal from evergreen forests and low vegetation such as, grass 

and small bushes. Therefore, it is difficult to distinguish the classes as clear as radar systems.     

 

F/NF pdfs 

Derivation of F/NF pdfs is the first and most important part of the Bayesian approach (fig. 11). 

Based on F/NF distributions data stream observations are converted into deforestation 

probabilities and therefore confirm or reject a deforestation event at the image acquisition days 

(Reiche, 2015). Pdfs are area-specific; different study areas require re-calculation of pdfs. While 

this can be a limitation, on the other hand, area-specific pdfs remain stable over time and no re-

calculation is needed. This allows a long range deforestation detection monitoring over stable 

areas. 

 
Threshold of deforestation probability 

In this research we use a high threshold of deforestation probability at which forest changes are 

confirmed; χ=0.9. This is to avoid false detection of change and low intensity deforestation events; 

forest degradation, which is not covered in this thesis. High thresholds expect to increase SITS 

spatial accuracy, produce quality deforestation maps and provide low area bias (Reiche et al., 

2018). Deforestation maps of high spatial accuracy will ensure the detection of pixels 

corresponding to CBM observations, to properly assess the integration approach and the CBM 

contribution.  
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Pixel-based approach 

Test pixel results indicate the high contribution of Landsat NDVI on deforestation monitoring. 

This is due to the high density of valid observations that provide information in short time 

intervals. However, this was not the case with Sentinel-1 and PALSAR. 

Landsat’s valid observations start from 2010 until the end of the monitoring period providing a 

rich history of NDVI signal . For the test pixel’s monitoring period, optimization of Landsat’s NDVI 

data stream shows a clear deforestation event at the end of March (fig. 12).  After integrating 

Landsat NDVI with CBM data stream CBM observation appears to be recorded during the 

deforestation event (fig. 12). Application of the Bayesian change detection approach confirms the 

previous visual interpretation of data streams. Using a high threshold of deforestation probability 

at which forest changes are confirmed, Landsat single-sensor approach capture change on the 1th 

of April while Landsat-CBM multi-sensor approach capture change on the 27th of March (fig. 13). 

This is a clear indication of the contribution of CBM observations on early deforestation detection. 

In this case, CBM observation improved the deforestation detection 5 days earlier than with 

Landsat single sensor approach.  

On the other hand, Sentinel-1 data stream observations start late, on March, barely covering the 

beginning of the pixel’s deforestation event and doesn’t provide any change detection (fig. 14). 

Integrating Sentinel-1 with CBM, flags a change at the date of CBM observation which cannot be 

confirmed as it is not supported with high PNFs from past and future radar observations (fig. 15). 

Taking into account that test pixel represents the latest detected deforestation event from all CBM 

observations Sentinel-1 contribution on change detection is not expected. For this reason 

Sentinel-1 is excluded from the area-based approach. 

Similarly, PALSAR provides only two observations in the monitoring period, from which none is 

within the period of the pixel’s deforestation event and only one is within the dry season where 

most deforestation events occur (fig. 15). Therefore it is also excluded from the area-based 

approach. 

 
Area-based approach 

Based on pixel-based results, area-based approach applied using SITS (Landsat NDVI) and CBM 

data streams. 

Basic core of the area-based approach is the conversion of CBM observations into NF 

probabilities. Parallel to the conversion, CBM recordings were evaluated and the following 

problematic cases revealed: 

Incomplete CBM recordings: In this research we assume that forest rangers are standing at the 

center of deforested areas therefore applied a circular buffering to capture the areas of change. 

Forest rangers also give an estimation of the area of change based on which we can identify the 

radius of circular buffering. However this was not the case for all observations.  As we can see in 

fig.21, forest ranger is standing at the edge of a deforestation event and not at its center. As a 

consequence, forest ranger’s recording regarding the estimated area of change is directional, 

from his position to the north-east, something that cannot be predicted and does not go along 

with the proposed circular-buffering approach. In this case, almost half of circular buffering 
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captures the stable NF area while the other half a fraction of the actual deforested area. This 

situation along with inaccurate estimations of the area of change was the case for almost half of 

CBM observations decreasing the actual extent of deforestation events. 

 

 

Figure 21: Google Earth images of an incomplete CBM recording; red point= forest ranger’s standing point; yellow 
circle= circular buffering representing ranger’s estimated area of change 

 
Delayed CBM recordings: Application of the Bayesian approach using SITS (Landsat NDVI) dense 

data stream in all pixels corresponding to CBM observations indicated that almost half of them 

were flagged and confirmed right-at-the-beginning of the monitoring period (fig.22). Specifically, 

most deforestation events either occurred at the beginning of the monitoring period, January, or 

even before. On the other hand, CBM observations were recorded on three different dates within 

March. Therefore they have a recording delay of 3 months which is not expected to provide any 

contribution on deforestation detection.  

 

Figure 22: Example of a 3 month delayed CBM recording; black line = start of monitoring; red line = confirmed 
deforestation event; Tflagged= day deforestation event flagged; T= day deforestation event confirmed 

March 2014 November 2016 

SI
TS
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False CBM recordings: Two CBM observations are located at stable NF areas where there is no 

deforestation. However, these CBM observations and recorded areas of change were 

automatically deleted after masking with stable forest reference data. 

Subsequently, converted observations were joined for the creation of CBM raster data stream (fig. 

17). Comparison of CBM raster with produced deforestation maps (fig. 19) shows that converted 

areas represent a tiny part of the total detected deforested area; 6.3%. In greater extent this is 

likely a result of deficient community-based monitoring while in smaller extent a cause of 

incomplete recordings. After masking CBM raster with stable forest mask (fig. 18) converted 

areas are further reduced to just 4.5% of the total deforested area. This drop is a consequence of 

the incomplete and false recordings described previously. The general decrease of pixels reduces 

accordingly the potential contribution of CBM data stream on the deforestation detection 

approach.   

The impact is visible in the produced deforestation maps of SITS (Landsat NDVI) and CBM-SITS 

(fig. 19) which, in first sight, show identical spatial and temporal allocation of changes. However, 

deforestation maps of single and multi-sensor approach use a colour palette of 10 separate 

colours to represent the detected deforestation dates in 10 periods of 36.5 days (1/10 of the total 

annual days). Therefore, the actual time of change within the periods may vary between the 

approaches and a temporal accuracy assessment, along with a spatial, is needed.  

 
Spatial and temporal accuracy 

The spatial and temporal accuracies of the multi-sensor CBM-SITS approach were barely higher 

when compared to those of single sensor SITS (Landsat NDVI) approach (table 3-4). The 

minimum contribution of CBM observations is a result of their low density and mostly, their 

delayed recording compared to the period most deforestation events occur.   

Specifically, CBM contribution presented in just one sampling pixel of a late deforestation event; 

March (fig. 23).  At this sampling pixel CBM-SITS approach confirms a deforestation event based 

on a CBM observation, while SITS (Landsat NDVI) approach does not confirm any change (fig. 23). 

In the latter case sampling pixel is treated as commission error. As a result, the UA of the Change 

class, single to multi-sensor approach, increases from 99.33% to 100% and the OA increases from 

99.65% to 100%. High spatial accuracies from both approaches is a result of SITS (Landsat NDVI) 

observation density and the high threshold used, χ = 0.9, at which forest changes are confirmed, 

significantly limiting false detection of change and degradation events. However, spatial 

accuracies are too high to be realistic. This can be a result of the small sampling size used thus, an 

alternative sampling design should be considered. 

During the temporal accuracy assessment of SITS (Landsat NDVI) approach, sampling pixel was 

excluded from the calculation of MTLc as no change detected (fig. 23).  As a result, the MTLc of 

SITS (Landsat NDVI) approach appears almost equal with the MTLc of CBM-SITS approach (table 

4) while actually has a slightly less performance. However, since there is no scientific way to 

penalize “temporally” the inability of a sampling pixel to detect change, results from both 

approaches appear similar. Such cases may introduce inaccurate information to the assessment 

and should be considered. In general, temporal accuracy results appear higher compared to 

previous study (Reiche et al., 2018) providing an MTLc of approximately 13 days (table 4). CBM 

contribution is barely higher than SITS (Landsat NDVI); -0.12 MTLc. This is a result of SITS 
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(Landsat NDVI) high density of valid observations over the deforestation period which provides 

change-information in short time intervals. However the instability of SITS (Landsat NDVI) to 

provide stable performance over time, due to persistent cloud cover over the tropics, should be 

considered. 

       

         

    

Figure 23: (top to bottom) SITS (Landsat NDVI) and CBM-SITS data streams, and detected deforestation events in a 
single sampling pixel. black line = start of monitoring; dotted black line = flagged deforestation event that was not 

confirmed; red dotted line = flagged deforestation event; red line = confirmed deforestation event 

 
On the other hand, the mean time lag of the dates at which deforestation events were initially 

flagged (MTLf) appears almost identical with the reference dates presenting a time difference of 

approximately 0.14 days for both sensors (table 4). The significantly high temporal accuracy of 

SITS (Landsat NDVI) flagged deforestation events indicate rapid detection of change. This is a 

result of the low threshold used for flagged events, χ =0.5, which is confirmed by previous study 

(Reiche et al., 2018) to present high temporal accuracies. 

SI
TS

  
SI
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8. Conclusions 
 
The objective of the thesis is to build upon an existing probabilistic (Bayesian) approach to 

combine CBM with SITS data streams for NRT deforestation detection in Kafa, Ethiopia.  

Application of the proposed integration method in a single pixel indicated the efficiency of the 

Bayesian approach to incorporate converted CBM observations and correctly derive timely 

information of deforestation events. Particularly, CBM observations improved the detection of 

change 5 days earlier than with SITS (Landsat NDVI) single sensor approach. However, the overall 

contribution of CBM observations over the area was minimum (+0.35% OA, -0.12 days MTLc) as 

a result of their low temporal density and mostly, their delayed recording compared to the period 

most deforestation events occur. Consecutively, CBM data show high potential for contribution 

on early deforestation detection if only the recordings are frequent providing high density of 

observations over the study area. 

Due to the minimum contribution of CBM data, spatial and temporal accuracy results reflected 

mainly SITS (Landsat NDVI) performance. Results indicated that high thresholds of deforestation 

probability at which forest changes are confirmed provide high spatial accuracy and can be used 

to detect deforested pixels. On the other hand, lower thresholds of deforestation probability at 

which forest changes are flagged provide high temporal accuracy and can be used to detect 

deforested dates at corresponding pixels. Simultaneous application of the above thresholds into 

the Bayesian framework promises to increase significantly both the spatial and temporal 

accuracy of SITS data streams.  

For SITS, three factors play determining role on deforestation detection monitoring: F/NF 

separability, observation density and observation coverage over deforestation period. ALOS 

PALSAR shows high F/NF separability, however due to its low temporal density provided just a 

single observation over the deforestation period. Sentinel-1 showed high F/NF separability and 

observation density, however observations did not cover the deforestation period. On the other 

hand, while Landsat NDVI showed the lowest F/NF separability among sensors, it provided high 

density of valid observations over the deforestation period. As a result, Landsat NDVI was the 

dominant sensor for deforestation detection monitoring in this research. Overall, while the 

identification of the sensor metric with the higher sensitivity capability to detect deforestation is 

important (F/NF separability), observation density and observation coverage over deforestation 

period are priority factors. 

9. Recommendations 
 
Based on the findings of this research, for the establishment of an efficient deforestation 

monitoring system that incorporates CBM and SITS observations the following are 

recommended: 

For CBM data: 

• Consistent monitoring over the study area to avoid delayed recordings: This requires a 

strategic planning for i) surveying the area, ii) human resources and iii) training forest 

rangers. Strategic planning should also take into consideration field survey limitations; 
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weather conditions, inaccessible areas etc. Main focus of consistent monitoring should be 

the frequency of data acquisition over the study area. 

• Recording position and area of change estimation: Forest rangers should be aware of the 

methodology and position themselves at the center of deforestation events. Instead of 

estimating the area of change in hectares (ha), which is based on personal perception, a 

better approach could be to estimate the maximum radius of change in meters or feet. 

Deforestation events that extend to NF areas are no problem since masking with stable 

forest reference data will automatically delete them. Deforestation events that extend to 

F areas can be excluded by masking with high quality SITS deforestation maps. 

Deforestation maps of high spatial accuracy can be produced using high thresholds of NF 

probabilities at which forest changes are confirmed; 0.9. Other approaches of area 

estimation involve; mapping the boarders or recording the four corners of deforestation 

events. However, these approaches can be more time consuming. 

For SITS data: 

• High F/NF separability: The sensitivity capability to discriminate F/NF classes is 

important for deforestation detection. 

• High temporal density of observations over the deforestation period: This will provide 

change-information in short time intervals for early deforestation detection. 

• Consideration of optical sensors performance: Optical images are dependent on the 

absence of clouds in the tropics which can decrease significantly the total number of valid 

observations. Moreover, valid observations can be distributed unequally over forest areas 

increasing the uncertainty for a stable deforestation detection performance. These factors 

should be considered and a cloud cover assessment of the monitoring areas can be 

indicative for optical sensors expected level of performance. 

• Consideration of SAR sensors performance: SAR sensors may provide a safer and more 

stable approach than optical sensors as they provide a high number of valid observations 

equally distributed over areas. In particular, Sentinel-1 data streams show high F/NF 

separability while the re-visit time of both constellations, A and B, can provide 

observations every 6 to 12 days. In this case, the cross-polarisation channels of Sentinel-

1 are recommended as they have shown to be more effective in agricultural mapping and 

crop monitoring (Notarnicola et al., 2017). However, there is little knowledge on the 

capabilities of Sentinel-1 for forest change monitoring (Reiche, 2015) and further 

research is needed. 

For reference data: 

• Deriving a reliable stable forest mask: Using a stable forest mask derived from reliable 

reference data, we can extract the forested pixels and isolate the areas of change. Forest 

mask is advised to derive at the beginning of the monitoring period from different and if 

possible higher resolution data from the input data (Olofsson et al., 2014). 

For deforestation detection accuracy: 

• Spatial accuracy: Application of the Bayesian approach using a high threshold of 

deforestation probability at which forest changes are confirmed provide high spatial   
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• accuracy and can be used to detect deforested pixels. Based on this and Reiche et al. 

(2018) study recommended thresholds are between 0.8 and 0.975. 

• Temporal Accuracy: Application of the Bayesian approach using a low threshold of 

deforestation probability at which forest changes are flagged provide high temporal 

accuracy and can be used to detect deforested dates at previously detected deforested 

pixels (spatial accuracy). Based on this and (Reiche et al. (2018)) study recommended 

threshold is 0.5. 
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