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Abstract 

 

There is need for a standardized method for automated tree crown identification. In this study, two 

methods are analysed to identify their best practices and to develop a new, hybrid method. Method one 

is based on a Digital Surface Model (DSM), which determines the presence of trees based on their height 

compared to their neighbouring pixels. Method two is based on Object-Based Image Analysis (OBIA), 

which determines the presence of trees based on pixel characteristics of high resolution aerial images. 

Based on the best practices of both methods the hybrid method is created with the aim to improve tree 

crown identification accuracy. The results of the DSM-, OBIA- and hybrid methods are compared to a 

validation dataset by their correct number of crowns counted and crown area size. This is done for single 

solitary trees, for trees standing in rows and for trees as part of a group. For identifying individual tree 

crowns, the results show that single trees are more easily identified than trees in rows and groups. 

Furthermore, the performances of both the DSM-method and OBIA-method increase when using input 

data of a higher resolution. Based on the results it is not possible to conclude that the hybrid method is 

an overall improvement compared to the DSM- and OBIA-methods. Rather, it depends on what 

somebody wants to achieve with the crown identification method to determine what method is most 

suitable. The hybrid method has proven to be generally more useful for crown area estimation, but is 

relatively less accurate for crown count estimation.  

 

Key words: Tree crown identification, crown delineation, Digital Surface Models, DSM, Airborne Laser 

Scanning, LiDAR, OBIA, Object-Based Image Analysis, Remote Sensing, pointclouds, Boomregister, AHN. 

 

 

  



  

iv 
 

Table of Contents 

Abstract ......................................................................................................................................................... iii 

Table of Figures ............................................................................................................................................. vi 

Table of Tables.............................................................................................................................................. vii 

1. Introduction ................................................................................................................................... 8 

1.1 Background .......................................................................................................................................... 9 

1.1.1 Digital Surface Modelling ............................................................................................................. 9 

1.1.2 Object-Based Image Analysis...................................................................................................... 11 

1.2 Problem definition ............................................................................................................................. 11 

1.3 Research objectives ........................................................................................................................... 12 

1.4 Research questions............................................................................................................................ 12 

2. Methodology ................................................................................................................................ 14 

2.1 Framework ........................................................................................................................................ 14 

2.2 Tree definitions.................................................................................................................................. 17 

2.3 Study area .......................................................................................................................................... 18 

2.4 Input data .......................................................................................................................................... 19 

2.5 Validation method ............................................................................................................................. 21 

2.5.1 Validation criteria ....................................................................................................................... 23 

2.5.2 Den Haag .................................................................................................................................... 23 

3.  DSM-method ............................................................................................................................... 25 

3.1 Filters ................................................................................................................................................. 25 

3.2 Peaks .................................................................................................................................................. 26 

3.3 Delineation ........................................................................................................................................ 27 

4. OBIA-method ............................................................................................................................... 28 

4.1 Pre-processing ................................................................................................................................... 28 

4.2 Segmentation .................................................................................................................................... 30 

4.3 Classification ...................................................................................................................................... 33 

4.4 Peaks .................................................................................................................................................. 34 

4.5 Delineation ........................................................................................................................................ 35 

5. Results ......................................................................................................................................... 36 

5.1 DSM-Parameters ............................................................................................................................... 36 

5.2 Validation results of the DSM-method .............................................................................................. 38 

5.2.1 Single trees ................................................................................................................................. 38 



  

v 
 

5.2.2 Rows of trees .............................................................................................................................. 39 

5.2.3 Groups of trees ........................................................................................................................... 41 

5.3 OBIA-Parameters ............................................................................................................................... 42 

5.4 Validation results of the OBIA-method ............................................................................................. 43 

5.4.1 Single trees ................................................................................................................................. 43 

5.4.2 Rows of trees .............................................................................................................................. 43 

5.4.3 Groups of trees ........................................................................................................................... 45 

5.5 Constructing the Hybrid method ....................................................................................................... 45 

5.5.1 Best practices ............................................................................................................................. 45 

5.5.2 Results of the hybrid method ..................................................................................................... 47 

5.6 Total Comparison .............................................................................................................................. 48 

6. Conclusion & Discussion ............................................................................................................... 50 

6.1 Conclusion ......................................................................................................................................... 50 

6.2 Discussion .......................................................................................................................................... 52 

6.2.1 DSM-method .............................................................................................................................. 52 

6.2.2 OBIA-method .............................................................................................................................. 54 

6.2.3 Hybrid method ........................................................................................................................... 58 

6.2.4 Boombasis .................................................................................................................................. 59 

6.2.5 Validation ................................................................................................................................... 60 

6.3 Recommendations............................................................................................................................. 61 

Literature ..................................................................................................................................................... 63 

Appendix I: Overview of materials .............................................................................................................. 66 

Appendix II: All results ................................................................................................................................. 67 

Appendix III: Overview of all absolute deviations ....................................................................................... 84 

  



  

vi 
 

Table of Figures 
 

Figure 1: Airborne LiDAR classification methods ........................................................................................ 10 

Figure 2: Conceptual workflow ................................................................................................................... 15 

Figure 3: Operational workflow .................................................................................................................. 16 

Figure 4: Example of maximum directions and neighbours for a tree to be classified as a row ................ 17 

Figure 5: Tree compositions ........................................................................................................................ 18 

Figure 6: Study area Zuiderpark, Den Haag ................................................................................................. 19 

Figure 7: Comparison between AHN2 and AHN3 pointclouds .................................................................... 20 

Figure 8: Example of deviation in the CIR-image ........................................................................................ 21 

Figure 9: Example of a count deviation of 1 for a single tree ..................................................................... 22 

Figure 10: Example of a count deviation of 4 for a group of trees ............................................................. 22 

Figure 11: Example of validation delineation for a row of trees ................................................................. 23 

Figure 12: Difference between validation image and CIR image ................................................................ 24 

Figure 13: Example of differences in 2013 and 2015 validation image ...................................................... 24 

Figure 14: Potential trees after applying filters........................................................................................... 26 

Figure 15: Example of Eliminate tool in ArcGIS for a single tree ................................................................. 27 

Figure 16: Misclassification in LAStools ....................................................................................................... 28 

Figure 17: Airborne Laser Scanning ............................................................................................................. 29 

Figure 18: Number of returns from LiDAR image ........................................................................................ 29 

Figure 19: Top-down segmentation methods ............................................................................................. 30 

Figure 20: Bottom-up segmentation methods ............................................................................................ 31 

Figure 21: Multiresolution segmentation concept flow diagram with operational parameters ................ 32 

Figure 22: Example of multiresolution segmentation for a single tree....................................................... 32 

Figure 23: Example of classification results for a single tree ...................................................................... 33 

Figure 24: Example of classification results for larger groups of trees ....................................................... 34 

Figure 25: Example of the growth algorithm for a group of trees .............................................................. 35 

Figure 26: Roughness threshold .................................................................................................................. 38 

Figure 27: The result of multiresolution segmentation for the hybrid method ......................................... 46 

Figure 28: Flowchart of the crown extraction algorithm developed by Alterra ......................................... 52 

Figure 29: Crown validation as used by Alterra........................................................................................... 53 

Figure 30: Example of count deviations caused by low number of identified peaks .................................. 56 

Figure 31: The effects of a higher shape relative to compactness in multiresolution segmentation ......... 57 

Figure 32: Visual comparison between results of ScaleParameter variant and Shape variant .................. 58 

 

  



  

vii 
 

Table of Tables 
 

Table 1: Input parameters for different DSM-method versions ................................................................. 37 

Table 2: Results of the DSM-method for single trees ................................................................................. 39 

Table 3: Results of the DSM-method for rows of trees as individuals ........................................................ 40 

Table 4: Results of the DSM-method for rows of trees total ...................................................................... 40 

Table 5: Results of the DSM-method for groups of trees ........................................................................... 41 

Table 6: Input parameters for different OBIA-method versions ................................................................. 42 

Table 7: Results of the OBIA-method for single trees ................................................................................. 43 

Table 8: Results of the OBIA-method for rows of trees as individuals ........................................................ 44 

Table 9: Results of the OBIA-method for rows of trees total ...................................................................... 44 

Table 10: Results of the OBIA-method for groups of trees ......................................................................... 45 

Table 11: Results of the hybrid method ...................................................................................................... 47 

Table 12: Overview of total similarities for all methods ............................................................................. 48 

Table 13: Results of the Boombasis method ............................................................................................... 60 

 



  

8 
 

1. Introduction 

Trees have many beneficial properties that improve the liveability for humans. They are vital for air 

quality and public health, provide shade and coolness in hot urban areas and are a resource of food and 

shelter for many animals. This makes trees very valuable, however the presence of a tree can also be a 

nuisance. Roots damage underground cables and pipes, roads and railways may be obstructed by falling 

branches and diseased trees could harm their environment (Van Herzele & Wiedemann, 2003). The 

management of trees has to be done carefully to weigh the benefits and risks, making sure that no trees 

constitute dangerous situations, or are chopped down unnecessarily. Reliable and up-to-date 

information on the shape, size and species of a tree will help decision making, reducing mistakes in tree 

management and ultimately improving liveability. 

In the Netherlands, each municipality or other land owning governmental agency is responsible 

for their own public tree management and there is no universally adopted method in place to identify 

the presence of trees (Verhaar, 2016). Currently, most green space managers are working with maps on 

which a point represents a tree, however planning based on point data is insufficient for a lot of 

applications (Verhaar, 2016). Furthermore, because each governmental agency has different priorities, 

the reliability of the mapped tree data has a countrywide variation. One example is the database of the 

Dutch tree safety inspection which is managed locally and has variations in periodicity and completeness 

(Meijer et al., 2015, p. 12). 

To meet the need for an automated and consistent method, there have been several attempts to 

map the countrywide presence of individual trees in the Netherlands. The first method, developed by 

Alterra Wageningen UR (Meijer et al., 2015), is based on the ‘Actueel Hoogtebestand Nederland’ (AHN) 

and uses a Digital Surface Model (DSM) acquired by Airborne Laser Scanning (ALS). A second method 

uses data acquired from high resolution aerial photographs and is developed by Dutch geo-ICT company 

NEO. This method uses an object-oriented algorithm to identify and distinguish different tree crowns. A 

partnership of Alterra, NEO, Geodan and Cobra has taken initiative to create the Boomregister: a 

national tree register based on LiDAR data and Aerial imagery. 

The Boomregister is offered for sale on different administrative levels and is currently used as a 

planning tool for governments (Verhagen, 2015). This tree register model does have its shortcomings. 

Not all trees are identified and if multiple trees are in close proximity, for example in a lane or clump, the 

multiple tree crowns may be identified as one. These shortcomings are determined by comparing the 

results of the Boomregister with data from the BGT (Basisregistratie Grootschalige Topografie or Base 

Registration of Large Scale Topography), which is accepted as true reference. The BGT contains all major 

physical objects in the Netherlands, however it doesn’t require all municipalities to deliver information 

on individual trees. Individual trees need only be included if desired by the provider of the data, which is 

usually in urban areas (Van den Brink et al., 2013). Crown area identification is useful for estimating 

biomass, shade or possible nuisances caused by falling leaves or branches. Furthermore, the crown area 

is used as a variable to indicate the root system of a tree (Verhagen, 2015). Therefore, reliably 

monitoring the crown area will help with policy making and improve tree management. 
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1.1 Background 

The presence of green space is valuable for several reasons. Trees give human environments a natural 

and soothing character, contribute to a pleasant microclimate and improve the quality of life (Meijer et 

al., 2015, p. 5). “The amount and quality of green spaces affect citizens’ patterns of activities, the modes 

and frequencies of every day recreation, the way knowledge about the environment is acquired, the 

opportunities to relax of daily stress” (Van Herzele & Wiedemann, 2003, p. 124). Furthermore, optimally 

arranged green infrastructure in cities can reduce urban temperatures and improve air quality. However, 

tree information inventory, particularly on private properties, is labour intensive and the results are not 

spatially explicit (Alonzo, Bookhagen & Roberts, 2014). 

 In the last twenty-five years the possibilities to use digital media for tree inventory have grown, 

but in practice the use of GIS and remote sensing based solutions are not often used (Nijhuis, 2013, p. 88 

- 90). The tree register methods developed by Alterra and NEO are successful in covering a country wide 

digital tree identification, however they still have limitations when identifying individual tree crowns. The 

NEO-method uses an Object-Based Image Analysis to identify trees on high resolution aerial images. The 

digital surface-method developed by Alterra uses height rasters derived from Airborne Laser Scanning 

(Meijer et al., 2015).  

 

1.1.1 Digital Surface Modelling 

Digital Surface Models (DSMs) are a representation of objects on the earth’s surface. DSMs are a class of 

Digital Elevation Models (DEMs), which are usually obtained from remote sensing data (Priestnall et al., 

2000). Traditionally, it is possible to construct a DEM by digitising existing topographic maps, using Radar 

images, or by photogrammetry using stereoscopic aerial photographs (Priestnall et al., 2000). A more 

recent technique is the use of airborne LiDAR (Light Detection And Ranging) scanning, which is faster and 

cheaper than photogrammetry or digitising topographic maps and is more accurate than Radar 

techniques (Leigh et al., 2009). This makes Airborne LiDAR scanning a powerful technique which can be 

used to acquire reliable elevation surfaces and to classify ground types quickly and efficiently without 

the need for manipulating multispectral image files (Antonarakis et al., 2008).  

Next to the DEM extraction purposes, Airborne Laser Scanning (ALS) techniques can be used for 

monitoring vegetation change through time, forest classification and flood simulation (Antonarakis et al., 

2008). The 3D-pointclouds that are measured from airborne LiDAR scans can be used to classify objects 

in high resolution and in a cost-effective way. In the Netherlands, the AHN (Actueel Hoogtebestand 

Nederland, or Up-to-date Height Model of the Netherlands) is acquired using airborne LiDAR. The AHN is 

a joint initiative from Rijkswaterstaat (Dutch national infrastructure authority), the regional water boards 

and provinces. The AHN offers a complete Digital Surface Model of the Netherlands which can be used 

for tree crown identification.  

An airborne LiDAR system uses three data collection tools: the laser scanner, a GNSS (Global 

Navigation Satellite System) receiver, which measures the position of the aircraft and finally an Inertial 
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Navigation System, which is used to measure the roll, pitch and yaw of the aircraft (Leigh et al., 2009). 

Full-waveform LiDAR technology can record 1D signals representing multiple echoes caused by 

reflections at different targets (Guo et al., 2011). Figure 1 shows how the different objects on the surface 

can be identified by analysing their characteristic reflection intensity signals. Heights can be determined 

by measuring the waveform receival time on objects after the emitted pulse relative to the ground 

waveform receival time.  

 

Figure 1: Airborne LiDAR classification methods (Guo et al., 2011) 

 

 The 3D-pointclouds are used to calculate both the Digital Surface Model, which describes the 

actual heights including objects such as buildings, and trees and the Digital Terrain Model, which only 

includes the ground surface without objects (Meijer et al., 2015, p. 17). In 2003 the first generation of 

the AHN (AHN1) was presented with a density of one height measurement per 1 to 16 square metres 

(Swart, 2010). In 2012 the second version (AHN2) was completed which has an average point density of 6 

to 10 points per square metre and has an interpolated grid size of 0.5m (Van der Zon, 2013). The data 

acquisition for the newest generation (AHN3) is currently taking place and is expected to be finished by 

2019. The tree crown delineation method developed by Alterra uses AHN2 and in urban areas between 

30% and 50% of the trees that are existing are not identified by the model (Meijer et al., 2015, p. 53). 

With the introduction of the more detailed AHN3 it is likely that crown delineation can be more 

complete and more reliable.  
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1.1.2 Object-Based Image Analysis  

“Object-Based Image Analysis (OBIA) is a sub-discipline of GIScience devoted to partitioning remote 

sensing (RS) imagery into meaningful image-objects, and assessing their characteristics through spatial, 

spectral and temporal scale” (Hay & Castilla, 2006). OBIA stands out compared to pixel-based 

approaches, because pixel topology is limited and current remote sensing image analysis largely neglects 

the spatial photo interpretive elements such as texture, context and shape, which results in lower 

classification accuracies (Hay & Castilla, 2006). When using OBIA in practice it is important to keep in 

mind that different resolutions of an image give different results. In low-resolution models, the 

resolution cells are larger than the elements, so there can by many objects per pixel, which makes the 

pixels easy to interpret because the differences are small (Haara & Haarala, 2002, p.557). In high-

resolution models, one object will consist of multiple pixels, which offers more possibilities to observe 

variation. However, these resolutions require more powerful analysis methods and can result in over-

segmentation, because more different textures are identified (Haara & Haarala, 2002, p. 557).  

 When applying OBIA to individual tree crown delineation Jing et al. (2012) state that there are 

two possible methods to deal with the different resolutions in order to prevent over-segmentation and 

under-segmentation. The first is a multi-scape approach, proposed by Thomas Brandtberg & Fredrik 

Walter in which first the tree crown contours were identified for each image scale after which a mean 

circle of curvature could be sketched (Brandtberg & Walter, 1998). The second option is an image pre-

processing approach proposed by Le Wang (2008). In this approach, each band of a multispectral image 

is decomposed to obtain its approximation, horizontal, vertical and diagonal wavelet coefficients at 

multiple scales, after which a crown edge probability is derived for the horizontal and vertical 

coefficients and a multispectral image can be reconstructed (Wang, 2008). These methods however still 

have issues which are due to the various sizes of objects, the image filtering methods and the 

information integration at different scales (Jing et al., 2012).  

 

1.2 Problem definition  

Conventional tree inventory techniques are labour and cost intensive, while most algorithms for digital 

crown delineation methods are developed for specific site conditions (Ke & Quackenbush, 2017). There 

is a need for a standardized method that can deal with different environments and improves the 

monitoring efficiency for tree managers and urban planners (Verhaar, 2016). Tree-crown detection 

methods of deciduous trees are not fully studied and there is currently no standard framework for 

accuracy assessment of crown delineation (Ke & Quackenbush, 2017). The methods that are developed 

in the Netherlands by Alterra and NEO aim to cover all environments and tree species, however they are 

not without limitations.  

The OBIA method by NEO has problems in dealing with the various sizes of trees, the image 

filtering and the different scales of images (Boombasis, n.d.). The DSM-method has problems with 

correctly identifying tree crowns due to the limited point density of AHN2 and therefore the coarse 

resolution of the resulting raster grid (Meijer et al., 2015). The Boomregister (2016) states that their 
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product has a 95% completeness in which less than 5% of the objects is incorrectly identified as tree 

crown, however trees under 9 meters in height with a crown diameter less than 4 meter have less 

completeness. Furthermore, trees smaller than 6 meters are not identified and for trees in rows the 

completeness is down to 80% (Boomregister, 2016). The method by Alterra has a completeness of 62.8% 

(Meijer et al., 2015, p. 44). 

 

1.3 Research objectives 

The general objective of this thesis is to create an improved tree crown identification method. To 

improve the shortcomings of the existing tree identification methods this thesis will analyse the 

characteristics of both the NEO based OBIA-method and Alterra based DSM-method. To identify what 

the strengths and weaknesses of these methods they will be compared at different compositions of trees 

and with different spatial resolutions. The strengths of both methods are then used in a new algorithm 

that aims to improve the results by combining the best practices. The best practices in this study are 

parameter and input based, meaning that the new hybrid method will be using the input datasets and 

tool parameter settings that are most suitable for identifying tree crowns. To determine what settings 

are most suitable, the results of the different methods are compared to a validation dataset. The best 

practices will be based on what input datasets and parameter settings result in the highest similarity to 

this validation set. In the end, the results of all methods will be validated by comparing them with the 

reference data to identify the most suitable tree crown identification method. 

 

1.4 Research questions 

To realize the objective, three main research questions must be answered:  

1. How can the DSM- and OBIA-methods be compared for identifying individual trees? 

2. How should the hybrid method be constructed? 

3. What improvement is realized by the hybrid method? 

 

Each of these research questions consists of several sub-questions that are used to answer the main 

research question. 

How can the DSM- and OBIA-methods be compared for identifying individual trees? 

- What characteristics of the DSM-method specify individual tree crown delineation? 

- What characteristics of the OBIA-method specify individual tree crown delineation? 

- How are these characteristics influenced by input-data and model parameter settings?  
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How should the hybrid method be constructed? 

- What are the best practices of the DSM- and OBIA-method that should be used for an improved 

hybrid method? 

- How can the best practices be combined into a hybrid method? 

 

What improvement is realized by the hybrid method? 

- Are the results of the hybrid method an improvement regarding crown area estimation? 

- Are the results of the hybrid method an improvement regarding individual tree crown count? 

- For what tree composition types are the results of the hybrid method an improvement? 
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2. Methodology 
To obtain the best practices of the DSM- and OBIA-method relative to the validation dataset, the first 

step was to create the models based on Clement (Meijer et al., 2015) and Davids (2013). The second step 

was to compare the results for different input datasets and model parameters. Finally, the models were 

combined to create a new method that includes the best practices of both methods. In this chapter, the 

complete methodology will be explained, starting with an overview of the model framework, workflows 

and materials. The explanation of the steps and operations taken in the DSM-model will be presented in 

chapter 3. Chapter 4 consists of an explanation of the steps and operations of the OBIA model. The 

methodology will conclude with subchapter 2.5 on the validation process. 

 

2.1 Framework 

First the models of the DSM- and OBIA-method were created. The original OBIA-method uses the AHN3 

pointcloud as input and the DSM-method uses AHN2 rasters with a horizontal resolution of 50cm. It is 

possible to extract the 50cm surface models from the pointcloud as well, but since the AHN2 data is from 

2008, while AHN3 is from 2014, it shows a difference in the results. The next step was to change the pre-

processing of the input datasets to create input datasets with the same resolution. The methods were 

compared for AHN2 at a resolution of 50cm and for AHN3 at a resolution of both 50cm and 25cm. The 

other datasets used in the analysis are: buildings from BAG (Dutch register for addresses and buildings), 

an aerial CIR (Colour Infrared) image and derivative NDVI (Normalized Difference Vegetation Index), 

were converted to these resolutions as well.  

The workflow described in Figure 2 shows the inputs and parameters of the operations that were 

changed in the different stages of the analysis. Because the different methods use different 

was not possible to directly compare the differences in input for both models. To determine the best 

practices these inputs were for each model chosen individually based on their impact on the results. 

the DSM-method the parameter variables that were changed from the default are the neighbourhood 

size, the NDVI threshold and the roughness threshold. The neighbourhood size is the area on which 

algorithm searches for the highest pixels compared to their adjacent pixels. The method which 

determines the peaks of the trees will be explained in chapter  

3.2 Peaks. As parameters both a small neighbourhood of 3 meters and a larger neighbourhood of 

5 meters were chosen to compare the results to the default neighbourhood of 4 meters. The NDVI and 

roughness thresholds are the values for which the pixels are defined in the filters that will exclude those 

pixels from the image to reveal the remaining potential tree areas. More on these filters will be 

explained in chapter 3.1 Filters when discussing the DSM-method. 

 The most influential operation for the OBIA-method is the segmentation algorithm that defines 

the different segments of the inputs. The operational variables that are changed in the OBIA-method are 

therefore parameters of the Multiresolution Segmentation, which will be further explained in chapter 

4.2 Segmentation when discussing the OBIA-method. The four parameters that are changed from the 

default are: the weights of the inputs of the multiresolution segmentation tool, the scale parameter that 
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defines the size of the segments, the shape of the segments and the compactness of the segments. 

These parameters define how many segments are covering a tree and what shape and size they take. 

The final phase of the conceptual workflow of Figure 2 shows that the aim is to make an improved 

method based on these models. Based on the best practices of the DSM- and OBIA-method a hybrid 

model has been created which uses the filters that are defined in the original DSM-method and uses 

these to define the input for the OBIA-method on the 25cm resolution AHN3 pointcloud. The filters of 

the DSM-method are compared to the classification-filters that are originally included in the AHN3 

pointcloud dataset.  

 

Figure 2: Conceptual workflow 

 

Next to the conceptual workflow, Figure 3 shows the Operational workflow, which gives an 

overview of how different operational steps were taken in the DSM- and OBIA-method. The operational 

workflow indicates the order of the different processing phases for each method and how they result in 

the best practices, that were used as feedback for the input parameters. The best practices are 

determined by comparing the results to the validation dataset for all different inputs and model 

parameters. Each phase that is visualised in Figure 3 contains different operations, of which the details 

will be further explained in the chapters 3 and 4 on the individual methods. The model also shows that 
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the OBIA-method uses a different approach for the crown delineation. In this method, the individual 

trees are classified as single trees, part of a row or part of a group, which will be defined in chapter 4.4 

Finally, they are merged together to create the final dataset. The DSM-method doesn’t make this 

distinction, so the results don’t indicate the type of the individual tree. 

 

Figure 3: Operational workflow 

Most of the phases in Figure 3 are processed in ArcMap, developed by ESRI, however some of 

the Pre-processing steps of the OBIA-method are done with LAStools, developed by rapidlasso GmbH, 

which was used to create a pointcloud with heights relative to the ground level. LAStools is a software 

package that can be used to unzip and process pointcloud datasets. The AHN data is available as 
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datatype .laz, a compressed pointcloud that can be converted in LAStools to .las, which can be used as 

input in eCognition, developed by Trimble. The eCognition Developer software was used for the 

Segmentation and Classification steps of the OBIA-method. Statistics on the generated individual trees 

for the different methods were calculated in MS Excel. 

 

2.2 Tree definitions 

As indicated in the previous chapter, the OBIA-method divides the individual trees in three composition 

types: single trees, trees part of a row or lane and trees as part of groups.  For the model to work these 

composition types need to be defined. The OBIA-method is based on the thesis of Lucien Davids (2013), 

however the aim of Davids was not to identify individual tree crowns, but to define small green 

landscape elements. Therefore, the trees in a row or group are not treated as individuals but as a part of 

a greater entity. The assumptions from Davids (2013, p. 31) that are used in this thesis as well are that 

the crowns of single trees don’t touch the boundaries of the crowns of other trees. When there are more 

than two single trees that share boundaries, the trees are classified as part of a group. For a row Davids 

(2013, p. 31) assumes that the length of the object is greater than the width and that a lane consists of 

multiple rows. The individual trees within a group or row are not defined by Davids, so these 

assumptions alone are not clear enough to define when a tree is part of a row or part of a group.  

The Boomregister uses a similar definition as Davids, with the addition that a row of trees must 

be in close proximity to a road (BoomBasis, n.d.). The Boombasis is used in this thesis as comparison for 

the final results and as inspiration for the method to distinguish individual trees from a row or group. The 

study area, which will be described in chapter 2.1.3, is largely covered by a park and does have lanes of 

trees that are not in close proximity to a road, but still form a row. Therefore, in this study the following 

rules to indicate whether tree that is part of a row have been used:  

- The difference in length and width of the object is at least 10 meters. 

- The individual tree in a row shares a boundary with neighbours in maximum eight directions as 

indicated in the Moore neighbourhood in Figure 4 (White & Kiester, 2008).   

- The individual tree in a row shares a maximum of one boundary in each direction. 

 

 

Figure 4: Example of maximum directions and neighbours for a tree to be classified as a row 

 

As defined by these rules there is no distinction between a tree in a lane, which is defined by multiple 

rows, and a tree that is within an individual row. Both trees will be classified as part of a row. When the 

definitions of a single tree and a row are clear, the trees that don’t fall into these categories are classified 

as part of a group. An example of each tree composition type is visualized in Figure 5. 



  

18 
 

 

Figure 5: Tree compositions (Google Earth 2013, Den Haag) 

 

2.3 Study area 

The data from AHN3 is not available for the entire Netherlands, so the possible locations to apply the 

model were limited. Furthermore, the study area must have reliable reference data available to make a 

comparison between the results of the methods. Den Haag meets these criteria, because it has a reliable 

database which includes information on tree locations for several years as well as the aerial photographs 

that are necessary for the OBIA. More importantly, Den Haag is willing to share their data so it can be 

used as a reference when validating the different methods. In Figure 6 the study area within Den Haag is 

presented, where the area around the Zuiderpark is chosen as location to focus on. The study area is 

limited to the Zuiderpark area, because it would take too much processing time to apply the models on 

the entire municipality of Den Haag. The area around the Zuiderpark is chosen, because it offers many 

instances of all tree composition types in both the urban environment and the park itself. The different 

environments are interesting, because they cause different challenges, for example the proximity to 

buildings in urban areas, or the different green elements in the park.  
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Figure 6: Study area Zuiderpark, Den Haag (ESRI World Imagery) 

 

2.4 Input data 

The most important data that is used as input for both methods are versions 2 and 3 of the height model 

of the Netherlands AHN2 and AHN3. The AHN2 is used as default input for the DSM-method for the 

AHN3 is used as input for the OBIA-method. For the comparison between the methods, the different 

AHN versions are used to determine their influence on the results. The AHN2 dataset for Den Haag was 

acquired in 2008 and has an average point density within the study area of 17 points per square meter 

(Van der Zon, 2013). The AHN3 dataset for Den Haag was acquired in 2014 and has a measured average 

point density within the study area of 41 points per square meter. In Figure 7 the difference in density is 

visualized for a single tree. The top row shows the view from the side for both AHN2 and AHN3, the 

bottom row shows the view from above for both datasets where the points are coloured according to 

their elevation. The images in Figure 7 show how influential the point density is for the identification of 

the shape of the tree, but also for the accuracy in the determination of height and volume. Therefore, 

trees can be more accurately identified in datasets with a higher point density. 
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Figure 7: Comparison between AHN2 and AHN3 pointclouds 

 

Another input dataset that is used is the buildings register of the Netherlands. This dataset is 

used for the buildings-filter of the DSM-method, which will be further explained in chapter 2.2. This BAG-

dataset, managed by the Dutch national cadastre, has frequent quality checks and updates, which makes 

it very reliable. The BAG provides information on the status and location of buildings in the Netherlands 

and is available as vector-data. For the buildings-filter a selection was made to eliminate demolished 

buildings and buildings that were not under construction at the time of AHN acquisition. This selection 

was made for the versions of AHN2 in 2008 and for the versions that use AHN3 in 2014. In the DSM-

method this building-filter is used to determine the areas that are not covered by trees. The buildings are 

removed from the height models to limit the objects that were incorrectly identified as trees.   

 A Colour Infrared (CIR) image was used as input dataset to calculate the NDVI and for the 

multiresolution segmentation of the OBIA-method as will be explained in chapter 2.3. The dataset is 

from 2016 and is provided by Beeldmateriaal and PDOK. It consists of a RGB and false colour 

orthographic aerial image with a horizontal resolution of 25cm covering the Netherlands (Nationaal 

Georegister, 2017). Orthographic images are constructed in an orthomosaic by combining a large 

number of aerial images, corrected on location and terrain (Mills & McLeod, 2013, p.101). Figure 8 shows 

that the production of these orthographic images is not flawless. In the figure, the left side shows the CIR 

image and the view direction of the same building on Google Street View on the right side of the image. 

It appears on the CIR image that the building is leaning on an angle over the street, while on Google 

Street View this doesn’t seem the case. These deviations are more apparent at higher objects, so higher 
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trees might be more affected than small trees. The CIR orthographic image is used for calculating the 

NDVI, which is used in the DSM-method as a filter to exclude areas below a certain threshold. In the 

OBIA-method both the CIR-image as the derived NDVI are used as input for the multiresolution 

segmentation. The deviations will therefore have an influence in the results of both methods.  

 

 

Figure 8: Example of deviation in the CIR-image (Left: Nationaal Georegister 2016, Right: Google Street View 2014) 

 

2.5 Validation method 

To determine what method and optimal parameter settings deliver the best results, the identified tree 

crowns are compared to a validation dataset. The results of the different tree crown identification 

methods are determined in two ways. The first way is by comparing the identified number of trees to the 

tree locations as determined in a validation dataset. Any difference is summed up in the count deviation 

for the different tree types as shown in Appendix III. The deviations are determined by visually 

comparing the number of polygons that intersect the validation tree. The results are then calculated as 

similarity percentages to the validation set. Using percentages instead of absolute numbers made it 

possible to calculate average similarity scores, which take both the count deviation and area deviation 

into account. For some purposes, the count is more useful, for example for making an inventory of the 

number of trees in an area. For other purposes, the crown area is more useful, for example when 

estimating biomass or shade. The average similarity percentage is used to see what method performs 



  

22 
 

best overall. In Figure 9 an example is shown of a count deviation for a single tree. The example shows a 

count deviation of 1 with the validation dataset. 

 

Figure 9: Example of a count deviation of 1 for a single tree 

 

The second way to determine the performance of the crown identification method is by 

comparing the crown area to the validation method. In the example of Figure 9, the areas of both 

identified crowns have to be combined, because the individual crown areas are not relevant when 

determining variables like for example vegetation mass or tree shadows. When calculating the combined 

crown areas of a group of trees, as shown in Figure 10, it becomes clear that validating the individual 

crowns is impossible. In this example, the same method as in Figure 9 is used, but fewer trees have been 

identified relative to the validation set, resulting in a count deviation of 4. It is impossible to determine 

what part of an identified tree crown belongs to a tree in the validation set; therefore, for all groups, the 

areas are combined to compare the total crown area of the datasets. For the rows of trees, both the 

individual tree crown areas as the total grouped crown areas are calculated.  

 

Figure 10: Example of a count deviation of 4 for a group of trees 
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2.5.1 Validation criteria 

The reliability of the validation data depends on the time of acquirement and on the tree delineation 

method. The comparison between the method results and the validation data would be best if the date 

of acquirement of the validation data is the same as the date of the acquirement of the model input 

dates. Furthermore, the delineation method in the validation dataset would ideally be 100% correct. 

That way the tree crown deviations between the validation dataset and the different method results can 

be fully attributed to the performance of the methods.  To obtain a validation dataset, a high-resolution 

aerial image from the same time period as the input data had to be obtained to manually delineate the 

tree crowns. The resolution needed to be high enough to visually differentiate the different tree crowns.  

The AHN datasets used as input for all methods are acquired between winter and summer and it 

is not clear what the precise dates are for each location. This makes the validation less reliable, because 

it is not clear in what stage of the leaf growth cycle the AHN data was acquired. For the manual 

delineation method, there are different upsides of using an image taken in summer or one taken in 

winter. In summer, it is easier to visually differentiate the different species based on leaf colours. 

However, in winter images the different branches are visible, which makes it easier to differentiate 

between trees of the same species.  

 

2.5.2 Den Haag 

As validation location and therefore study area, the municipality of Den Haag was chosen, because it 

fulfilled all criteria. The Zuiderpark area, as shown in Figure 6, was chosen as location for the study area, 

because it provided a challenging mix of urban space and green space, where different landscape 

elements could influence the model. Most importantly however, the area contains a large variety of 

single trees, rows and groups. It was necessary to have all tree composition types frequently in the same 

area, because otherwise a larger study area, or more study areas, needed to be chosen, which would 

have caused an inconvenient increase in processing time. The delineation of the trees is done manually 

in ArcGIS by visually identifying the tree boundaries on the high resolution (5cm) aerial image as seen in 

Figure 11 for a row of trees.  

 

Figure 11: Example of validation delineation for a row of trees 
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Next to the high-resolution aerial images, the municipality of Den Haag also provided the 

locations of the stems of the trees, which were used to help with the delineation and to exclude trees 

where no stem was present. The aerial images did show some deviation from the AHN and CIR Ortho 

locations. Figure 12 shows an example in which the crown from the CIR ortho image is extending 2 

meters further to the south than the crown in the validation image. Therefore, the validation data is 

used to compare the tree areas of the results of each method is not suited to compare the locations. 

 

Figure 12: Difference between validation image and CIR image 

 

The AHN3 is from 2014, but the aerial images were only available for 2013 and 2015, so both years are 

taken into account. In some cases, like in Figure 13, the tree from 2013 is no longer standing in 2015. 

Those trees are not taken into account in the validation, because it is not clear if it was cut down before 

or after the AHN3 data was obtained. Both images from 2013 and 2015 are from spring, which is the 

same time of year as the AHN2 and AHN3 datasets are obtained in Den Haag (Actueel Hoogtebestand 

Nederland, n.d.). 

 

Figure 13: Example of differences in 2013 and 2015 validation image 
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3.  DSM-method 
In this chapter the characteristics of the DSM-method are analysed in order to determine how individual 

tree crowns are identified using Digital Surface Models as input. The tree crown extraction algorithm 

that is used as the default DSM-method is created by Alterra and uses the AHN2 DSM and DTM as input 

dataset (Meijer et al., 2015). In this thesis, the method is using both AHN2 and AHN3 according to the 

latest version of the description of the extraction algorithm, which uses the BGT and NDVI as filters 

(Meijer et al., 2015, p. 16 – 20). The first step in the algorithm is to create these filters that define the 

area that covers the potential trees. The second step is to determine the peaks of the remaining 

potential tree area. Finally, these peaks are used to delineate the crowns around them.    

 

3.1 Filters 

In the method, there are four filters that define the potential tree area by excluding the areas that fall 

below a certain threshold that defines the presence of trees. The four filters are based on: the presence 

of buildings, roughness, NDVI and height. As explained in chapter 2.4 the BAG is a dataset that provides 

vector data for buildings in the entire Netherlands. For both AHN2 and AHN3, a selection was made to 

exclude buildings that were demolished or not yet finished. After testing the model, it became clear that 

a lot of the edges of buildings were still apparent and classified incorrectly as trees. Therefore, to 

compensate for the flaws in the AHN datasets and in the orthographic image, a buffer of 1 meter was 

created around the buildings to eliminate this issue. Finally, the buildings were dissolved and converted 

to a raster to create the first filter. 

 The roughness filter was created to remove relatively smooth areas, so trees and other 

vegetation that have more variation in height on smaller areas remain. The filter is created by calculating 

the standard deviation of the DSM height values in an area of 3x3 cells and removing the areas that are 

below the threshold (Meijer et al., 2013, p. 17). The NDVI was calculated using the near-infrared and red 

bands from the orthographic CIR image following the equation:  

𝑁𝐷𝑉𝐼 =  
(𝑁𝐼𝑅 − 𝑅)

(𝑁𝐼𝑅 + 𝑅)
  

This results in values varying between -1 and 1 where values close to 1 indicate the presence of 

vegetation and values close to -1 indicate that no vegetation is present.  The threshold for the NDVI filter 

is set to pixel values ≤ 0.2 to filter the pixels that are unlikely to be vegetation (Meijer et al., 2013, p. 19). 

The height filter was created by calculating the Digital Elevation Model from the DSM and the DTM. This 

DEM contains the heights relative to the ground level, so the filter was created by removing heights > 4m 

to filter out objects which have a height below the threshold to be considered trees (Meijer et al., 2013, 

p. 19). Finally, all filters were merged to a new raster to create a combined filter that removes most 

areas where trees aren’t located. The left side of Figure 14 shows the result of the combined filter for a 

part of the study area for AHN3 at 50cm resolution. On this map, it is already possible to visually identify 

different types of tree compositions, however small objects such as lampposts are still present as shown 

on the right side of Figure 14. 
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Figure 14: Potential trees after applying filters 

 

3.2 Peaks 

The combined filter is converted to a mask, used to extract the values from the DEM. This results in a 

height model which only covers the potential tree area. Clement (Meijer et al., 2015, p. 19) used the 

following description of how to determine the peaks: “the raster cells with peak values are determined 

by looking at what cell values differ the most (upward) from the average normalized height”. Based on 

this a focal statistics method was used to determine the maximum value within a certain neighbourhood 

setting. Two different radius neighbourhoods were used, one with a 4-meter radius for small trees and 

one with a 6-meter radius for high trees. The focal statistics tool iterates over all cells in the raster 

dataset and creates a new raster on which the maximum values of the specified neighbourhood are 

assigned to a cell. The DEM height values were subtracted from these maximum values which results in 

all peaks having the value 0. The original DEM height values were assigned to these cells and converted 

to point data to identify the peaks according to their relative height. Finally, a selection was made to 

identify peaks > 15m from the dataset which used a 6-meter radius as neighbourhood and <= 15m from 

the dataset which used a 4-meter radius as neighbourhood. These different settings were used, under 

the assumption that higher trees cover a larger area, so they should have a larger neighbourhood as 

well.  The different selections were merged to create the final peak dataset in point vectors.  
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3.3 Delineation 

To identify the individual tree crowns in a row or group with multiple trees it is necessary to determine 

what part of the potential tree area can be attributed to a single peak. In the report on the DSM-method 

from Alterra, the following method is chosen: “The individual crowns in an area with multiple peaks are 

determined by constructing zones around each peak: the fragmentation. The zone around a peak consists 

of the set of cells that are located closer to the peak in that zone than to another peak. The zone around a 

peak thus contains the cells with the smallest Euclidean distance to the cell with the peak value” (Meijer 

et al., 2015, p. 17). The tool that was used in ArcMap to determine the individual zones around the peaks 

is the Euclidean Allocation tool, which returns a raster of cells that have are grouped by their distance to 

the peaks. The next step was to convert the raster to polygons and to determine their size by adding 

geometry attributes. Clement (Meijer et al., 2015, p. 18) then made corrections on the sizes of these 

zones where smaller clusters are combined to larger zones. The Eliminate tool was used in ArcMap to 

dissolve areas smaller than 30 square meters to the neighbour to which they share their largest border 

as seen in the example from the AHN3 50cm resolution version in Figure 15, in which the different 

colours represent different objects. Finally, the new geometry attributes are calculated to obtain the 

area of the tree crowns.  

 

 

Figure 15: Example of Eliminate tool in ArcGIS for a single tree  
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4. OBIA-method 
In this chapter the characteristics of the OBIA-method are analysed in order to determine how individual 

tree crowns are identified using aerial images as input. The method using the object based image 

analysis is more complicated to recreate than the DSM-method, because it was necessary to use 

different software to process the data and there was no report available like the report from Alterra 

used in the DSM-method. The master thesis of Lucien Davids (2013) describes the segmentation and 

classification phase of the OBIA method. The determination of the peaks is based on the DSM-method 

and the delineation phase is done by using a ‘growth’ algorithm that will be further explained in chapter 

4.5 on the delineation. First, the pre-processing phase of the OBIA processing steps will be explained, 

followed by the segmentation, the classification, the peak determination and finally the delineation.   

 

4.1 Pre-processing 

Before the object based image analysis could start, it was needed to merge the AHN2 DSM and DTM in 

LAStools using LASmerge in order to obtain the complete pointcloud of the area. AHN3 is already 

delivered as the complete dataset so it was not necessary to repeat this process for AHN3. After the 

merging, both datasets were clipped on the study area to reduce the processing time. It is possible to 

classify the pointclouds in LAStools before using the segmentation tool as shown in the method from 

Davids (2013, p. 38). First, the LASground tool is used to classify the ground points by calculating the 

elevation of the last returns of the LiDAR dataset (rapidlasso GmbH, n.d.). These can be used as input for 

the LASheight tool, which is used to calculate the relative heights from the points to the ground. The 

result can be used to convert the pointcloud to a DEM raster. Finally, the LASclassify tool is used to 

determine the four classes: Ground, Buildings, Vegetation and Other/Unclassified (Davids 2013, p. 39). 

LASclassify aims to find neighbouring points that are at least 2 meters above the ground and form roof or 

tree regions (rapidlasso GmbH, n.d.). Figure 16 shows the results of this classification. The green area 

represent vegetation, orange areas represent buildings, brown areas represent bare earth and grey areas 

are unclassified. This method does not seem very accurate, because the misclassification of vegetation as 

buildings is clearly visible. Therefore, in this study a different classification method will be used after the 

segmentation that will be described in chapter 4.3.   

 

Figure 16: Misclassification in LAStools 
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 After the results are pre-processed in LAStools the .las pointcloud files are used as input in 

eCognition Developer. Within eCognition the pointcloud is converted to two raster datasets. The first is a 

DEM, derived from the maximum of all returns of the pointcloud. This means that if there are multiple 

points within a specified raster cell, in 25cm or 50cm resolution, the elevation of the highest point is 

taken as attribute. The second raster converted from the pointcloud is the maximum number of returns 

from all returns of the pointcloud. Figure 17 shows that tree crowns have a relatively high number of 

returns, so the maximum number of returns for each raster cell is likely part of a tree crown. This is true 

for the AHN data as shown in Figure 18 in which the number of returns are visualized in a greyscale, 

where black represents a low number of returns and white represents a high number of returns.  

 

Figure 17: Airborne Laser Scanning (Fernandez-Diaz, 2011) 

 

 

Figure 18: Number of returns from LiDAR image 
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The created rasters now need to be interpolated to remove missing data from the dataset for the 

segmentation to work best (Definiens, 2009). For the interpolation, first a new, temporary raster is 

created which will contain objects, classified with the values for elevation in meter or number of returns. 

Then, a loop is created to identify unclassified objects and assigning them the mean values of their 

neighbours. This loop is carried out until all objects are classified. When there are no unclassified objects 

left, the temporary raster layer is saved to a new layer and deleted from the workspace. These new 

interpolated elevation and number of returns rasters are now ready to be used as input in the 

segmentation algorithm. 

 

4.2 Segmentation 

The segmentation of an image refers to the process of partitioning a digital image into multiple 

segments, where sets of pixels are combined based on certain criteria of homogeneity (Davids, 2013, p. 

35). The segmentation process is the defining part of the Object Based Image Analysis, because these 

multiple segments are the image objects generated from the homogeneity criteria (Darwish et al., 2003). 

There are different segmentation techniques that can be used within the eCognition software package. 

Figure 19 shows examples of different top-down segmentation techniques: chessboard segmentation 

(a), quadtree based segmentation (b), contrast filter segmentation (c) and contrast-split segmentation 

(d) (Davids, 2013, p. 37).  

 

Figure 19: Top-down segmentation methods 
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Chessboard segmentation is the simplest segmentation technique that creates the objects according to a 

defined square size and doesn’t take any information from the image into account. The quadtree based 

segmentation technique uses square objects as well, but the size of the squares is defined by the 

variation of pixel values in the image. The contrast filter segmentation uses a combination of two pixel 

filters to create a thematic raster layer based on the shape criteria and the lower and upper threshold of 

the filters (Landmap, n.d.). Finally, the contrast split segmentation technique can be used to detect edges 

between pixels with high and low values and is based on a threshold that maximizes the contrast 

between these values (Davids, 2013, p. 41).  

Next to the top-down segmentation techniques shown in Figure 19, there are bottom-up 

techniques that perform segmentation of the complete image and group pixels to spatial clusters that 

meet certain criteria of homogeneity or heterogeneity (Yan, 2003, p. 16). In Figure 20: Bottom-up 

segmentation methodsFigure 20 examples of different bottom-up segmentation techniques are shown: 

multiresolution segmentation (a), multi-threshold segmentation (b) and spectral difference 

segmentation (c) (Davids, 2013, p. 37). The difference between the top down and bottom up techniques 

is that top down methods are knowledge driven, where the algorithm tries to find the best processing 

approach to extract the desired objects (Yan, 2003, p. 16). The bottom up methods are data driven and 

object oriented, where the algorithm performs a segmentation of the complete image and the user 

determines what the generated objects represent (Yan, 2003, p. 16). The multiresolution segmentation is 

a region-growing technique that merges pixels together based on their heterogeneity in a pairwise 

clustering process (Yan, 2003, p. 17). The multi-threshold algorithm splits the image object domain and 

classifies resulting image objects based on a defined pixel value threshold (Middleton et al., 2015, p. 

145). The spectral difference method is designed to refine raw segmentation results and merges two 

neighbouring objects if the difference between their average intensity is smaller than a pre-defined 

parameter (Dezsö et al., 2012, p. 111). 

 

 

Figure 20: Bottom-up segmentation methods 

 

In this study, a multiresolution segmentation technique was used to identify the tree objects, 

because it makes it possible to compare the heterogeneity of pixels using different input datasets, 

resulting in a great variety of information that can be derived from each resulting segmented object 

(Yah, 2003, p. 54) The basic principle of multiresolution segmentation is to make use of important 
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information (shape, texture and contextual information) that is present only in meaningful image objects 

and their mutual relationships (Darwish et al., 2003). Figure 21 shows the concept flow diagram of how 

multiresolution segmentation works and how the parameters will influence the results. Multiresolution 

segmentation is very suitable for identifying trees, because it is possible to combine different raster 

layers that each have characteristic features that indicate the presence of trees. The datasets that were 

used as input for the analysis are the red, green, blue and nir bands of the CIR image, the derived NDVI, 

the interpolated elevation raster and the interpolated number of returns. The elevation and number of 

returns were given the biggest weights, followed by the NDVI. The different bands of the CIR image are 

given lower weights for identifying tree crowns, because the most important bands for identifying 

vegetation are already included through the NDVI.  

 

 

Figure 21: Multiresolution segmentation concept flow diagram with operational parameters (Wageningen University, 2014) 

 

Figure 22 shows an example of the multiresolution segmentation technique for a single tree with as 

background the grey-scaled pixel values of the CIR red band. The different image objects are more 

suitable for tree identification, which was done by classifying the individual objects.  
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Figure 22: Example of multiresolution segmentation for a single tree 

4.3 Classification 

For the classification within eCognition, the different segments were identified as trees for the rasters of 

NDVI, elevation and number of return thresholds. The average pixel values of the segments are extracted 

from these rasters and the thresholds were set similarly as the filters from the DSM-method. The 

elevation threshold was set at > 4 meter, the NDVI must be > 0.2 and the mean number of returns, which 

was not used in the DSM-method, was > 2. An example of the classification results for a single tree is 

visible in Figure 23, where the results are shown at grey scaled pixel values of number of returns (a & b) 

and at grey scaled pixel values of NDVI (c & d). In the image a & c show the segmentation results, while 

in b & d the classification is presented.  

 

 

Figure 23: Example of classification results for a single tree 
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In the example in Figure 23 it is possible to visually identify a single tree. In Figure 24 the classification 

results are shown for multiple trees around a football field using a grey scaled NDVI as background. Here 

it is clear that when looking at rows or groups, it is not possible to identify an individual tree from a 

group, based on the different segments. Therefore, the results from the eCognition classification are not 

suitable for determining the results for rows and groups directly. Within ArcMap, all segments were 

merged and recombined to create meaningful objects from the individual segments (Davids, 2013, p. 

38). This merge algorithm makes it possible to identify the single trees, based on the resulting size of the 

polygons and shape of the bounding geometry. 

 

 

Figure 24: Example of classification results for larger groups of trees 

 

4.4 Peaks 

After the single trees were identified, their polygons were separated from the segmentation dataset. For 

the segments that cover rows and groups, the maximum elevation within a segment was calculated using 

the zonal statistics tool on the interpolated elevation raster. The peaks were then determined in a similar 

way to the DSM-method explained in chapter 3.2 using the focal statistic tool. There are however some 

differences in the two methods. For the OBIA-method the same neighbourhood radius of 4 meter was 

used for all peak heights and the resulting peaks were not point vectors but the polygon segments 

resulting from the image analysis. Another difference is that the OBIA-method used four categories of 

tree height instead of using two of trees > 15m and trees <= 15m. For the delineation, the OBIA-method 

used a similar technique as used in the Boombasis, where a growth algorithm is used to identify the 

single trees. Critical to this technique is the assumption that larger trees should have priority in growth 

(Wigger Tims, personal communication, March 7, 2017), so the peaks were divided in categories over 25 
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meter, between 15 and 25 meter, between 10 and 15 meter and between 4 and 10 meter. When the 

peaks were identified, it was possible to execute the delineation algorithm.  

4.5 Delineation 

For the delineation of the individual tree crowns a growth algorithm is created based on the Eliminate 

and Merge tools in ArcMap. The algorithm starts at the peaks and grows until all remaining segments are 

dissolved into a neighbouring peak. In Figure 25 an example of the growth algorithm for a group of 

fourteen peaks is given. The peaks are merged with their neighbours to which they share the largest 

boundary using the elimination tool. This elimination loop runs until there are no changes in number of 

polygons between the new datasets. Using this method, it is possible to make a more reliable estimation 

of the shape and area of the tree crown compared to the Euclidean distance algorithm used in the DSM-

method. The delineation is not just based on the pixel distance to the peaks but includes the segments 

that are based on the variables specified in the multiresolution segmentation. When the delineation loop 

was complete, the groups and rows were identified in the same way as the single trees. Then all different 

types were combined into one dataset and the final step was to add the geometry attributes to 

determine the peak area.  
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Figure 25: Example of the growth algorithm for a group of trees. (a) peaks over 25 meter, (b) new peaks over 20 meter, (c) new peaks over 15 
meter, (d) 1st run all peaks, (e) 2nd run all peaks, (f) 3rd run all peaks, (g) 4th run all peaks, (h) 5th run all peaks, (i) 6th run all peaks  
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5. Results 
In this chapter the results of the DSM-method and OBIA-method are presented. In the previous chapters, 

the default DSM- and OBIA-methods have been recreated according to the models as developed by Jan 

Clement (Meijer et al., 2015) and Lucien Davids (2013). In both these methods different input datasets 

and model parameters will have an influence on the results. To determine how the characteristics of 

both methods are influenced by input-data and model parameters, the results of each method have 

been compared to the validation dataset using different settings. For the DSM-method the chosen 

parameter settings will be explained in chapter 5.1, followed by a comparison to the validation dataset in 

chapter 5.2. The parameters of the OBIA-method are presented in chapter 5.3, after which the 

comparison to the validation dataset is presented in chapter 5.4. The results relative to the validation 

dataset are presented in different subchapters for single trees, rows of trees and groups of trees. 

The second research objective is to determine how the hybrid method should be constructed. 

This is done by identifying the best practices from the DSM- and OBIA-methods. The best practices of the 

methods are defined by the method-variant with the input and parameter settings resulting in the 

highest similarity relative to the validation dataset. The resulting hybrid method will be explained in 

chapter 5.5. The final research question is: What improvement is realized by the hybrid method? Chapter 

5.6 will present a total comparison, in which the results of the hybrid method are compared to the 

results of the DSM- and OBIA-methods. A complete list of the absolute results of all methods relative to 

the validation dataset, with different parameter settings and inputs is presented in Appendix II. All 

deviations from the validation dataset are presented as similarity percentages to show how well each 

method variant performs. In Appendix III all absolute deviations from the validation dataset are 

presented, which are used to calculate the percentages. 

 

5.1 DSM-Parameters 

The DSM-method created by Alterra uses an AHN2 raster with a horizontal resolution of 50cm, so the 

default DSM-method uses that as well. The input AHN3 raster has been set to 50cm and 25cm to make 

the comparison with the OBIA-method that also uses those horizontal resolutions. The input variable is 

the AHN3 25cm for the different model parameters, because that is the most recent data with the 

highest resolution and therefore should return the results closest to the validation dataset. The 

neighbourhood, NDVI threshold and Roughness threshold are changed from the default model 

parameters to determine what their impact is on the results. 

Next to the different input datasets and different resolutions that are tested, the tools that are 

used can use multiple operational parameters that will result in different outcomes for the model. 

Influential parameters that are used in the DSM-method are the NDVI-threshold, the roughness-

threshold and the neighbourhood sizes of the peak determination phase. The model has been executed 

multiple times to compare the results for these different inputs. After comparing AHN2 with AHN3, it 

became clear that the AHN3 input data was more reliable with the best results at 25cm resolution. 

Therefore, the input parameters were tested for AHN3 at 25cm resolution as well. Table 1 shows the 
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different model parameters that were used as input for the different versions of the DSM-method using 

AHN3 at 25cm resolution. As shown, the input parameters were tested for each operation individually, 

while using the default parameters for the other operations. 

 

Table 1: Input parameters for different DSM-method versions 

Model 
Parameters 

Default Large 
neighbourhoods 

Small 
neighbourhoods 

High 
NDVI 

High 
Roughness 

Neighbourhood 4m 5m 3m 4m 4m 

Neighbourhood 6m 7m 5m 6m 6m 

NDVI 0.2 0.2 0.2 0.3 0.2 

Roughness 0.2 0.2 0.2 0.2 250 

 

The default neighbourhood radius setting in the DSM-method has been set at 4m for small trees 

and 6m for large trees. To see what the effects of the neighbourhood setting are the radius has been set 

to 1m larger and 1m smaller for both tree sizes. Clement (Meijer et al., 2015, p. 18) describes the process 

of selecting the neighbourhood settings as: “In an iterative process corrections are made to the size of 

the zones”. Therefore, to find what radius zones work best for the model, both a smaller and a larger 

neighbourhood setting have been executed. The default NDVI threshold is set at 0.2 in the Alterra 

method (Meijer et al., 2015, p. 20). As seen in the example in Figure 14 there are still objects that have 

been incorrectly passed the filtering process. Therefore, the NDVI threshold has been set at 0.3 to see if 

these objects can be filtered out. The threshold is not tested at 0.4 or higher, because then it could filter 

parts of the vegetation areas. The roughness threshold is set at 250, because as shown in Figure 26, the 

roughness at the edge of the tree crowns is around 250 and a higher threshold would exclude those 

pixels.  



  

39 
 

 

Figure 26: Roughness threshold 

 

5.2 Validation results of the DSM-method 

The results relative to the validation dataset are presented as similarity percentages. These are based on 

the deviations of individual trees as identified by each method as shown in chapter 2.5. The deviations 

from the validation set are summed up for the different tree type categories and are given a colour 

scheme ranging from green for the least total deviation from the validation set to red for the most total 

deviation from the validation set. This was done for all composition types and for both count and area 

deviations. 

 

5.2.1 Single trees 

Within the validation dataset there are 7 single trees identified. Therefore, a perfect count similarity 

percentage of 100% requires 7 trees to be identified by the method. If there are two trees identified by 

the method, where there is only 1 in the validation dataset, like in Figure 9, the count deviation is 1. 

When the same method doesn’t identify another single tree, while there is one present in the validation 

dataset, the count deviation will be 2. In this example there will be 7 trees identified by the method, 

which corresponds to the validation data, but because the validation method uses deviations the 

similarity percentage will be 77.8% instead of 100%. The area similarity is calculated in a similar way, for 



  

40 
 

example: the area of the first single tree in the validation dataset is 251.55 m² and the area of the first 

single tree according to the default DSM-method is 189.75 m². This results in a count deviation of 61.80 

m² for this tree. 

 

Table 2: Results of the DSM-method for single trees 

Single trees 

DSM 
Count 
similarity 
(n=7) 

Area 
similarity 
(n=7) 

Average 
similarity 

Default 87.5% 72.2% 79.8% 

AHN3 87.5% 90.2% 88.9% 

AHN3 25cm 87.5% 89.8% 88.7% 

AHN3 large neighbourhood 87.5% 89.8% 88.7% 

AHN3 small neighbourhood 58.3% 89.6% 74.0% 

NDVI 100.0% 73.6% 86.8% 

Roughness 77.8% 85.8% 81.8% 
 

The results in Table 2 show that the Default DSM-method has 87.5% similarity to the validation dataset 

in the tree count, which is relatively close compared to the AHN3 version with the small neighbourhood 

parameter. As shown in Appendix II, a count similarity of 87.5% means that there is 1 tree deviation in 

the default DSM results, compared to the trees counted in the validation dataset. The variant that uses a 

different NDVI threshold has a 100% count similarity, meaning that 7 trees were counted, the same 

number as in the validation dataset. Contrary to the result in the count similarity, the NDVI variant has 

one of the largest deviations in the single tree areas, next to the default method. The variant that uses 

AHN3 at a 50cm resolution has the closest area similarity to the validation dataset. The AHN3 25cm input 

and the variant with the larger neighbourhood settings have the same results. The small neighbourhood 

settings show the largest count deviation from the validation dataset.  

 

5.2.2 Rows of trees 

The results for the rows of trees are divided into two tables. Table 3 shows the similarities to the 

validation dataset when the areas of tree crowns are counted as individual trees. Table 4 shows the 

similarities to the validation dataset when the areas of tree crowns are grouped together and the crown 

areas in the row are considered as one. The count similarities are the same for both tables, because the 

trees in a row are still counted as individuals in Table 4. This is the case in every method. When grouping 

the crowns of a row, the number of trees doesn’t change. However, it is possible that the individual 

crown areas in the row show large deviations from the ones in the validation dataset, while the 

combined crown areas cover roughly the same area. This means that for the count similarity there are 17 

individual trees taken into account. The area similarity that calculates the areas of trees in rows as 
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individually consists of 17 trees as well. These 17 trees are located in 3 different groups, which means 

that the area similarity of the rows in total is determined using 3 groups.  

The results show that this distinction does influence the performance of a model variant. The 

results from the individual tree areas in a row have different variants that are relatively close to the 

validation dataset compared to the results from the total tree areas in a row. When considering the 

individual tree areas, the AHN3 of 50cm resolution is the closest DSM-variant to the validation dataset, 

while when considering the total tree areas, the AHN3 of 25cm resolution is the closest DSM-variant to 

the validation dataset.  

 

Table 3: Results of the DSM-method for rows of trees as individuals 

Rows of trees individual 

DSM 
Count 
similarity 
(n=17) 

Area 
similarity 
(n=17) 

Average 
similarity 

Default 100.0% 77.5% 88.7% 

AHN3 89.5% 80.4% 79.1% 

AHN3 25cm 100.0% 75.8% 87.9% 

AHN3 large neighbourhood 100.0% 72.3% 86.1% 

AHN3 small neighbourhood 100.0% 80.0% 90.0% 

NDVI 89.5% 71.4% 74.6% 

Roughness 100.0% 72.9% 86.5% 
 

 

Table 4: Results of the DSM-method for rows of trees total 

Rows of trees total 

DSM 
Count 
similarity 
(n=17) 

Area 
similarity 
(n=3) 

Average 
similarity 

Default 100.0% 79.6% 89.8% 

AHN3 89.5% 83.2% 80.5% 

AHN3 25cm 100.0% 90.0% 95.0% 

AHN3 large neighbourhood 100.0% 76.4% 88.2% 

AHN3 small neighbourhood 100.0% 84.8% 92.4% 

NDVI 89.5% 79.9% 78.9% 

Roughness 100.0% 82.2% 91.1% 
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The similarities to the validation set are smaller when using the individual tree areas, than when using 

the total area in all DSM variants. When tree crowns in a row are considered as individuals, the AHN3 

with a small neighbourhood has the closest average similarity percentage, while for the total tree crows 

in a row, the variant that uses the AHN3 at 25cm and the default neighbourhood settings has the highest 

average similarity percentage. Both tables have the variant with the higher NDVI threshold as the lowest 

average similarity percentage.  

 

5.2.3 Groups of trees 

For the groups of trees, the crown areas of all trees in a group are considered as part of the group and 

are not considered as individual crowns. As shown in Appendix I there are 4 groups of trees validated, 

with two groups consisting of 3 trees and the other two groups consisting of 6 trees, of which one is 

shown in Figure 10Figure 10: Example of a count deviation of 4 for a group of trees. It was not possible to 

take larger groups into account, because the manual validation method proved to be unreliable when 

many trees were in close proximity. 

 

Table 5: Results of the DSM-method for groups of trees 

Groups of trees 

DSM 
Count 
similarity 
(n=18) 

Area 
similarity 
(n=4) 

Average 
similarity 

Default 75.0% 78.2% 76.6% 

AHN3 78.3% 86.2% 82.2% 

AHN3 25cm 75.0% 90.7% 82.8% 

AHN3 large neighbourhood 69.2% 89.2% 79.2% 

AHN3 small neighbourhood 75.0% 90.3% 82.7% 

NDVI 72.0% 87.7% 79.8% 

Roughness 75.0% 89.6% 82.3% 
 

The results for the groups of trees in Table 5 show that the counts of all variants have a relatively larger 

deviation from the validation dataset compared to the results in the rows. The variant with the closest 

similarity to the validation set is the one that uses the AHN3 at 50cm resolution as input. The areas of 

the datasets using the AHN3 at 25cm resolution as input are the closest to the validation in terms of area 

similarity. For the average similarities, the variant using the AHN3 25cm resolution, combined with either 

the default or small neighbourhood settings, are closest to the validation set. The AHN2 default variant 

shows the largest area deviation from the validation dataset, resulting in the lowest average similarity 

percentage.  
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5.3 OBIA-Parameters 

The default OBIA-method is constructed based on the method developed by Davids (2013). The tool that 

is crucial to the OBIA-method is the multiresolution segmentation algorithm. Small differences in 

parameter settings determine the shape of the individual segments, which influence the results. 

Therefore, the tested variables for the OBIA-method are parameters of the multiresolution segmentation 

tool. To make a comparison with the default DSM-method using AHN2 at 50cm resolution, the OBIA-

method was tested using a 50cm resolution AHN3, as well as a 50cm resolution AHN2. In Table 6 the 

different input parameters are presented. 

 

Table 6: Input parameters for different OBIA-method versions 

Model Parameters Default Weights Scale parameter Shape Compactness 

Weight NDVI 5 10 5 5 5 

Weight returns 10 5 10 10 10 

Weight elevation 10 5 10 10 10 

Scale parameter 5 5 10 5 5 

Shape 0.1 0.1 0.1 0.5 0.1 

Compactness 0.5 0.5 0.5 0.5 1 

 

The default settings of the multiresolution segmentation tool have a scale parameter threshold 

of 5, the shape value of 0.1 and the compactness value of 0.5. As shown in Figure 21, the scale 

parameter sets the maximum standard deviation of the homogeneity criteria (Wageningen University, 

2014). This defines the threshold where the object growth stops if it is exceeded, so a larger scale 

parameter will result in larger objects (Yan, 2003, p. 17). The Shape is the smoothness + compactness 

(Wageningen University, 2014), so if the shape is relatively high and the compactness stays the same, the 

smoothness will be high as well. If the shape stays the same as the default, but the compactness 

increases the smoothness will be relatively low.  

The segmentation is executed with a scale parameter value of 10, to create large homogeneous 

objects, excluding smaller areas from the classification (Yan, 2003, p. 56). A change in scale parameter 

causes a different tree crown shape, because pixels are segmented into relatively larger objects. This 

means that there are more pixels with a NDVI value in a segment, resulting in less extreme differences in 

average NDVI. The segments which now pass or don’t pass the average NDVI classification threshold will 

be bigger. This causes the shape of the tree crown to be different compared to having the scale 

parameter set at the default. The variants of the multiresolution segmentation with a different shape 

value of 0.5 and a compactness value of 1 are used to obtain the parameters most suitable for 

identifying trees. In the default multiresolution segmentation, the number of returns and the elevation 

are given the highest weight. Elevation and number of returns are indicators whether an object is a tree 

or part of other vegetation types, especially in areas with high vegetation variance like parks. The NDVI is 

a better indicator in urban areas, because trees can have similar elevation values as buildings and other 
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human made objects. Therefore, the multiresolution segmentation is executed with NDVI as highest 

weight as well. 

 

5.4 Validation results of the OBIA-method 

The default variant of the OBIA-method uses the AHN3 25cm resolution as input. The AHN3 at 50cm 

resolution and the AHN2 at 50cm resolution inputs are used as well to compare the results to the DSM-

method. The model was executed with different inputs, different weights, with another scale parameter, 

with a different shape parameter and with another compactness parameter. The results of the OBIA-

method with different inputs and parameters are compared to the same validation dataset as the results 

of the DSM-method.  

 

5.4.1 Single trees 

 

Table 7: Results of the OBIA-method for single trees 

Single trees 

OBIA 
Count 
similarity 
(n=7) 

Area 
similarity 
(n=7) 

Average 
similarity 

Default 100.0% 91.6% 95.8% 

CellSize 100.0% 89.4% 94.7% 

AHN2 100.0% 77.1% 88.6% 

Weights 100.0% 93.0% 96.5% 

ScaleParameter 100.0% 89.6% 94.8% 

Shape 100.0% 93.5% 96.7% 

Compactness 100.0% 92.0% 96.0% 
 

The results for the single trees as shown in Table 7 show that none of the variants have a count deviation 

from the validation dataset. Almost all the calculated crown areas look close to the validation dataset as 

well, however the variant that uses AHN2 as input is a clear outlier that has an area similarity more than 

10% lower to the validation dataset than the next lowest variant. 

 

5.4.2 Rows of trees 

As explained in chapter 5.2.2, the count similarity percentage is the same in Table 8, where the individual 

tree areas in the rows are calculated, as in Table 9, where the areas are grouped per row. What stands 

out when looking at the count, is that the variant that uses the AHN2 has a large deviation from the 

validation dataset. When looking at the area similarity of the AHN2 variant, the deviation is also large for 

the individual trees in the row, but the deviation is relatively small when looking at the tree areas 
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grouped together. The default OBIA-method has the closest area similarity when the tree areas are 

merged, while the similarity is average when they are considered as individual areas. For the variant that 

uses a higher compactness parameter, the opposite is true. Overall, all areas are closer to the validation 

dataset when the trees are considered as a group than when they are considered as individuals. 

 

Table 8: Results of the OBIA-method for rows of trees as individuals 

Rows of trees individual 

OBIA 
Count 
similarity 
(n=17) 

Area 
similarity 
(n=17) 

Average 
similarity 

Default 100.0% 72.6% 86.3% 

CellSize 100.0% 68.0% 84.0% 

AHN2 77.3% 63.9% 70.6% 

Weights 94.4% 77.8% 86.1% 

ScaleParameter 89.5% 76.4% 82.9% 

Shape 94.4% 76.2% 85.3% 

Compactness 100.0% 79.1% 89.6% 
 

 

Table 9: Results of the OBIA-method for rows of trees total 

Rows of trees total 

OBIA 
Count 
similarity 
(n=17) 

Area 
similarity 
(n=3) 

Average 
similarity 

Default 100.0% 94.9% 97.5% 

CellSize 100.0% 79.9% 90.0% 

AHN2 77.3% 89.7% 83.5% 

Weights 94.4% 86.6% 90.5% 

ScaleParameter 89.5% 89.6% 89.5% 

Shape 94.4% 90.6% 92.5% 

Compactness 100.0% 87.9% 94.0% 
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5.4.3 Groups of trees 

 

Table 10: Results of the OBIA-method for groups of trees 

Groups of trees 

OBIA 
Count 
similarity 
(n=18) 

Area 
similarity 
(n=4) 

Average 
similarity 

Default 75.0% 90.3% 82.7% 

CellSize 69.2% 93.3% 81.2% 

AHN2 72.0% 87.9% 80.0% 

Weights 66.7% 87.4% 77.0% 

ScaleParameter 72.0% 90.2% 81.1% 

Shape 69.2% 88.6% 78.9% 

Compactness 66.7% 87.1% 76.9% 
 

The results for the groups of trees of the OBIA-method in Table 10 show a low count similarity compared 

to the results of the single trees and to the rows of trees. There are no particularly large outliers 

identified in the count similarities, with the default method having the closest results to the validation 

dataset. The area similarities are relatively high overall, with the variant that uses the AHN3 with a cell 

size of 50cm having the closest total crown area for 93.3% identical to the validation dataset. In all 

previous results for the OBIA-method, the variant using the AHN3 with a resolution of 25cm has a higher 

similarity percentage. Another interesting result is that the variant that uses the higher compactness 

parameter has the lowest average similarity for the groups of trees, while it had the highest average 

similarity for the rows of trees as individuals. The variant that uses the different weights for the 

segmentation has a high deviation from the validation dataset as well. 

 

5.5 Constructing the Hybrid method 

The final research objective of the thesis was to create a new method that is based on the best practices 

of the DSM- and OBIA-methods. The hybrid method is based on the multiresolution segmentation and 

individual tree delineation techniques from the OBIA-method. The new method uses the filters from the 

DSM-method to exclude the pixels that are below a certain NDVI, elevation and roughness threshold to 

be considered trees, such as buildings and water before executing the segmentation analysis.  

 

5.5.1 Best practices 

The best practices are identified by comparing the different results of the input parameters and variables 

in the DSM and OBIA-method. For both methods, the variant that has the highest average similarity 

percentage is the one that has the AHN3 at a resolution of 25cm as input and uses the default parameter 

settings. Therefore, the default parameter settings and AHN3 are used for the combined method as well. 
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From both methods, the operations that were considered most suitable for identifying tree crowns were 

chosen to be used in the new method. The shapes of the individual crowns are decided by the 

delineation operations. The DSM-method uses the Euclidean distance to determine the border of crowns 

between peaks, which results in pixels being assigned to a peak based on the closest distance. The OBIA-

method uses the growth algorithm, which results in segments being assigned to a peak based on the 

largest boundary of the neighbouring segments. In Figure 25 an example of this process is shown. In 

Figure 9 an example is shown of the delineation in the DSM-method based on the Euclidean distance 

between two tree crowns. From this visual comparison, it becomes clear that using the growth algorithm 

results in a more natural border between the different assigned peak areas compared to using the 

Euclidean distance. Therefore, the combined method uses the growth algorithm to delineate the 

individual crowns. 

 The growth algorithm is using the different tree segments and the identified peaks as input. The 

identification of the peaks is done in the same way for both the DSM- as the OBIA-method by comparing 

the highest elevation pixels with their neighbourhood. The DSM-variant that uses the default 

neighbourhood settings have the highest average similarity percentage to the validation dataset, so the 

default settings are used in the combined method as well. For the multiresolution segmentation, the 

OBIA-variant that uses the default parameter settings has the highest average similarity percentage, so 

for this operation the default parameter settings are used as well. To include operations from the DSM-

method and create a new, combined method, the filters of the DSM-method have been applied before 

executing the multiresolution segmentation. The use of filters will lead to a higher correctness of the 

results, where more objects that could be incorrectly classified as trees are excluded from the dataset 

(Meijer et al., 2015, p. 61). The filter is based on the default NDVI and roughness threshold and is applied 

to the AHN3 dataset, in the pre-processing phase to exclude the filtered areas from the pointcloud in 

LAStools. Figure 27 shows the segmentation result for a single tree with a NDVI grey scale background 

after the filters from the DSM-method have been applied. 

 

 

Figure 27: The result of multiresolution segmentation for the hybrid method 
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 As a result of applying the filters on the pointcloud, the pre-processing in eCognition had to be 

changed as well. The default interpolation operation as used in the OBIA-method before the 

multiresolution segmentation, could not be applied on the combined method. The filters were used to 

exclude the areas in the pointcloud and other input datasets that were above the filter thresholds, so as 

seen in the left side of the map in Figure 14, a large part of the study area now doesn’t include any data. 

As a result, the default interpolation algorithm could not be applied, because there were too many pixels 

with no data. Within eCognition, it is not possible to save the intermediate results of the interpolation 

loop, causing the computer memory to overload and crash. Therefore, the interpolation pre-processing 

was only executed in three cycles to fill the gaps in the tree crowns that are a result of a too low point 

density in certain areas.  

 

5.5.2 Results of the hybrid method 

In the hybrid method, only one variant is created, which is based on the filters that are created in the 

DSM-method before applying the multiresolution segmentation technique. This way, elements of both 

methods are used with the aim to create a new and improved method. The results in Table 11 are 

presented differently than the results of the DSM- and OBIA-methods. There is only one variant so it 

wouldn’t make sense to split the results into multiple tables. The results in this table are presented for all 

tree composition types, with the colours scaled from red to green between the different composition 

results instead of the model variants in the DSM- and OBIA-methods. 

 

Table 11: Results of the hybrid method 

Hybrid method 

 

Count 
similarity 

Area 
similarity 

Average 
similarity 

Single trees 100.0% 94.3% 97.2% 

Rows of trees individual 85.0% 78.9% 82.0% 

Rows of trees total 85.0% 95.2% 90.1% 

Groups of trees 72.0% 88.6% 80.3% 
 

The results of the hybrid method show that for single trees, the count similarity is 100% and the area 

similarity is with 94.3% close or the validation dataset as well. In this table, it is also clear to see that 

there is a large difference in area similarity if taking rows as individuals compared to considering the 

crowns of rows as a group. This has been the case in all previous variants for both methods, but because 

in this table all tree composition types are compared, this contrast is more obvious. The relatively low 

count similarity for the groups of trees is also better highlighted in this table, because the count 

similarity is generally lower in the groups compared to the other composition types.   
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5.6 Total Comparison 

In this final subchapter of the results, the the total comparison will be highlighted. In the total comparison, all tree composition types are 
comparison, all tree composition types are combined to see what the overall results are for the methods. The results have been split into two 

The results have been split into two categories, with one taking the rows of trees as individual crown areas into account and the other the 
areas into account and the other the combined crown areas of the rows.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 shows the results of the different tree composition types combined for all tested methods. There are 

two different columns for the sum of all areas, one which includes the trees in rows as individual trees 

and one which includes the trees in rows as a combined area. This was not necessary for the count 

similarities, because these stay the same for both row-area variations. As in the previous tables, the 

results are coloured by columns, where the results that are closest to the validation dataset are green 

and the results that are furthest from the validation dataset are red. 

 

Table 12: Overview of total similarities for all methods 

Total similarities 

 
Count Area Area Average Average 
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Looking at the count similarities, the OBIA-method that uses the AHN2 as input has a similarity of 

77.8% and therefore the largest deviation from the validation set. Interestingly the default DSM- and 

default OBIA-method have the highest similarity for each respective method, with the OBIA default 

having the overall highest count similarity of all variants. In the DSM-method, the AHN3 25cm variant has 

a high count similarity as well, while the variant that uses a small neighbourhood has a low similarity. In 

the OBIA-method, the AHN2 variant has the lowest count similarity compared to the validation dataset. 

The count similarity of the hybrid method is relatively low compared to the other methods. 

 For the area similarity when considering row areas as individuals, the DSM-method with a small 

neighbourhood has the highest percentage, followed by the hybrid method. Both the DSM- and the 

OBIA-method variants that use the AHN2 as input have the lowest similarity percentages. When the 

areas in the rows are grouped, the results of the default OBIA-method have the highest area similarity 

percentage of 92.4%. The hybrid method has a high percentage as well with 92.2%. For both the DSM- 

and OBIA-methods, the variant that uses the AHN2 as input has the lowest similarity. In the DSM-method 

the default parameters with the AHN3 25cm resolution input has the highest similarity percentage.  

similarity 
(n=42) 

similarity 
individuals 
in rows 
(n=28) 

similarity 
grouped 
rows 
(n=14) 

similarity 
individuals 
in rows 

similarity 
grouped 
rows 

DSM Default 85.7% 76.8% 77.6% 81.2% 81.7% 

DSM AHN3 84.0% 84.3% 85.6% 84.1% 84.8% 

DSM AHN3 25cm 85.7% 83.7% 90.3% 84.7% 88.0% 

DSM AHN3 la neighbour 82.4% 81.4% 83.5% 81.9% 82.9% 

DSM AHN3 sm neighbour 79.2% 85.6% 87.8% 82.4% 83.5% 

DSM NDVI 82.4% 77.7% 81.7% 80.0% 82.0% 

DSM roughness 84.0% 81.3% 85.7% 82.6% 84.9% 

      OBIA Default 87.5% 82.2% 92.4% 84.8% 90.0% 

OBIA CellSize 84.0% 80.3% 86.6% 82.1% 85.3% 

OBIA AHN2 77.8% 74.4% 86.5% 76.1% 82.1% 

OBIA Weights 80.8% 84.0% 88.0% 82.4% 84.4% 

OBIA ScaleParameter 82.4% 83.8% 89.8% 83.1% 86.1% 

OBIA Shape 82.4% 83.7% 90.3% 83.0% 86.3% 

OBIA Compactness 82.4% 84.4% 88.3% 83.4% 85.3% 

      Hybrid method 80.8% 85.1% 92.2% 83.0% 86.5% 
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 When averaging the scores, the distinction between the different row-area variations has been 

made as well, resulting in two different average columns. By averaging the scores it can be determined 

what the most suitable method is when count and area of tree crowns are equalliy important. In all 

methods, the average percentages are higher when combining the tree row crowns areas. In both 

columns, the default OBIA-method has the highest average similarity percentage, respectively 84.8% and 

90.0%. Therefore, the default OBIA-method is closest to the validation dataset if both crown count and 

crown area are equally important. For the DSM-method, the variant that uses the AHN3 at 25cm 

resolution and the default parameters has the highest average percentages, respectively 84.7% and 

88.0%. The average similarity results from the hybrid method are with 83.0% and 86.5% close to the 

validation dataset, however the percentages are relatively low compared to the highest similarity results 

in both the DSM- and OBIA-method. 
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6. Conclusion & Discussion 
In this final chapter, the first part will be a conclusion based on the results. The second part is the 

discussion of the results and methods where interesting observations will be highlighted and limitations 

of the methods will be stated. The final part consists of recommendations, based on the discussion and 

conclusion. Furthermore, potential implementations of the crown identification and suggestions for 

future improvements will be presented. 

 

6.1 Conclusion 

The general objective of this thesis was to to develop a new, improved method to identify individual tree 

crowns. To realize the objective, first the DSM- and OBIA-methods were analysed to determine how they 

identify individual tree crowns. The hybrid method is constructed based on the best practices of the 

DSM- and OBIA-method. The first research question is: How can the DSM- and OBIA-methods be 

compared for identifying individual trees? This question is answered by reviewing the processing steps 

that are taken and by comparing the performance for different tree compositions when using different 

input datasets and model parameters. This comparison is used to define the best practices that are used 

to create the hybrid method, which is a combination of the most suitable tools for tree crown 

identification identified from both DSM- and OBIA-methods. The best practices of the DSM- and OBIA-

methods are used to answer the second research question: How should the hybrid method be 

constructed?  

For both methods, it can be concluded that the performance increases when using a 25cm 

resolution elevation model, instead of one that has a resolution of 50cm. For both methods, the results 

of the variant that uses the AHN3 as input are closer to the validation dataset than the variant that uses 

the AHN2. However, this cannot be fully attributed to the difference in point density or between the two 

datasets, because the date when the validation data was acquired is closer to the date of the AHN3 than 

it is to the date of the AHN2. Therefore, it is not possible to conclusively state that the AHN3 is more 

suitable for identifying tree crowns in all scenarios. For both the DSM- and the OBIA method, the variant 

that uses the default parameters is closest to the validation dataset.  

 For identifying individual tree crowns, the results have shown that single trees are more easily 

identified than rows and groups. Especially in groups there is often a larger count deviation. When 

looking at the crown areas, the individual trees within groups with a large count deviation like shown in 

Figure 10 are impossible to calculate. Therefore, these areas are combined to compare the overall group 

area similarities. For trees in rows, both the areas of individual crowns as the combined areas are taken 

into account. All variants that were executed have a higher similarity percentage when comparing the 

crown areas than when they are calculated as individuals. This was expected, because if one tree in the 

row has a larger crown area than the tree in the validation dataset and another tree has a smaller crown 

area, the total deviations are summed up. When using the combined crown areas, these deviations 

disappear if they are between the individual crowns within the row. The average similarity percentage to 

the total validation dataset is the highest for the default OBIA-method. However, the difference in 
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similarity percentage between the DSM- and OBIA method is small, so the OBIA-method is slightly more 

suitable for identifying  individual tree crowns.  

The final research question is: What improvement is realized by the hybrid method? By 

answering this question it is possible to determine if the objective of this thesis is achieved. The total 

area similarity percentages of all trees in Table 12 show that the hybrid method has a high similarity 

percentage relative to the validation dataset. This is the case when trees in rows are viewed as 

individuals as well as when the tree areas in rows are combined. However, when tree areas in rows are 

considered individuals, the DSM-variant that uses a small neighbourhood is closer to the validation 

dataset. When tree areas in rows are combined, the default OBIA-variant is closer to the validation 

dataset. Both of these variants have a  relatively low similarity percentage in the other categorie. This 

means that using one of these variants are best suitable when it is clear whether trees in rows should be 

regarded as individuals or should be combined. When this is not clear beforehand, the hybrid method is 

the best option, because it gives a close result to the validation dataset either way. 

When looking at the count similarity in Table 12, the hybrid method has a relatively low 

similarity to the validation dataset. Therefore, when the objective is to find the number of individual 

trees in an area, the hybrid method is less suitable compared to the default DSM- and OBIA-methods. In 

this case, the default OBIA-method has the best results compared to the validation dataset. Finally, the 

results for the tree composition types will indicate what method is most suitable when only one 

composition type is relevant. For single trees, the hybrid method has the highest average area similarity 

percentage relative to the validation dataset and has a count similarity of 100% as well. Therefore, the 

hybrid method is the best suitable method for identifying single trees. When considering the area of 

trees in rows individually, the hybrid method has a relatively high area similarity percentage, however 

there are several variants of the DSM- and OBIA-methods that perform better. The count similarity of 

the hybrid method is low, so when looking at individual tree crowns within rows, no improvement is 

realized by the hybrid method . 

If the areas of trees in rows are combined, the hybrid method has the highest similarity 

percentage. However, because the count similarity is relatively low, it is more suitable to use the default 

OBIA-method when both area and count should be taken into account. For trees in groups, neither the 

combined area similarity, nor the individual tree count similarity is improved by the hybrid method. In 

this case both the default OBIA-method and the DSM-method that uses the AHN3 with a resolution of 

25cm are best suitable. It depends on what somebody wants to achieve with the crown 

identification method to determine whether the hybrid method is an improvement. It is not 

possible to conclude that the hybrid method is an overall improvement compared to the DSM- 

and OBIA-methods. In most cases, the hybrid method is more suitable for crown area 

estimation, but less suitable for crown count estimation. 
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6.2 Discussion 

The discussion chapter consists of an explanation of the results of all methods, both individually as well 

as in relation to each other. In each subchapter, the limitations of the methods that have influenced the 

results will be discussed as well. Next to the influences of the limitations within the different tree crown 

identification methods, there are flaws in the validation method that also need to be discussed. Overall, 

the discussion will highlight the findings of all methods based on a reflection on the research objectives 

and findings in the literature. 

 

6.2.1 DSM-method 

The first step in reviewing the DSM-method was to identify the processing steps. The model algorithm 

was developed for Alterra by Jan Clement and has a report that describes the general processing 

procedures (Meijer et al., 2015). In Figure 28 the flowchart of the crown extraction algorithm shows an 

overview of this method. However, the report of Alterra is not always clear on how certain operations 

were carried out, and they state that some parameters and operations were chosen based on an 

iterative process where the intermediate results were visualised and rated for their application 

possibilities (Meijer et al., 2015). The final choices of the parameters that were used are not presented in 

the report. 

 

 

Figure 28: Flowchart of the crown extraction algorithm developed by Alterra (Meijer et al., 2015, p.16) 

 

Therefore, it was not possible to fully develop the exact default method as developed by Alterra, which 

means that it is possible that the final parameter settings used for the default algorithm in this study are 

slightly different from the model developed by Jan Clement. Overall the same procedure is taken, which 

first defines the filters, secondly the peaks and thirdly the crown extraction.  
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 In terms of the tree count similarity to the validation dataset, it is interesting that the default 

method performs better at rows of trees than at single trees. The similarity to the groups of trees is the 

lowest, which is expected, because there is usually a less clear transition in height between the different 

crowns in a group than between the trees in a row if the species are the same. The trees in rows are 

more often of the same species, however in this study area the trees in groups are standing closer 

together making it more difficult for the algorithm to distinguish them. Interestingly, this doesn’t show at 

all from the area similarities in the default DSM-method, where the single trees have a lower similarity 

percentage than the rows and groups. This can be explained by the fact that the default method uses the 

AHN2 from 2008 as input, while the only available CIR aerial image that was used to create the NDVI 

filter is from 2016.  

 Due to the temporal differences in the different input datasets it was expected that the method 

performs better using the AHN3. All model variants are using the same NDVI filter from 2016, while 

AHN2 is from 2008 and AHN3 is from 2014. Therefore, the AHN2 results are more likely to be influenced 

by this difference in environmental changes over time than the AHN3 results. The method developed by 

Clement does use an image from 2008 to calculate the NDVI (Meijer et al., 2015, p. 19). The results for 

the default AHN2 image with 0.5m resolution in this thesis were expected to be less accurate than the 

results from Alterra, because Alterra uses a NDVI from the same year as the AHN2. The method 

developed by Clement has a maximum crown area completeness of 77.8% (Meijer et al., 2015, p. 62). In 

this study, the highest total crown area similarity calculated in the variants using the default parameters 

of the DSM-model is 90.3%.  

 

Figure 29: Crown validation as used by Alterra (Meijer et al., 2015, p. 33) 

 

This could be explained by the differences in final parameter settings. In Figure 29 the validation method 

of Alterra is shown, where red delineations represent the reference dataset and green delineations the 

model output (Meijer et al., 2015, p. 33). This validation method clearly differs from the one used in this 

study, which will have influenced the crown similarity results as well.  
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Regarding the performance of the DSM-method in this study when using different input sources, 

the area similarity is closer to the validation dataset when using the AHN3 than it is using the AHN2. 

Interestingly, when looking at tree crowns individually for the single trees and rows, the variant using the 

AHN3 at 50cm resolution as input performs best. When combining the crown areas for the rows and 

groups, the variant using the AHN3 at 25cm resolution as input performs best. The count similarities 

between the three variants are identical for single trees, in the rows the AHN2 and AHN3 at 50cm are 

identical to the validation dataset, but for the groups the AHN3 at 25cm performs best. It is not possible 

to determine what input dataset for the DSM-method is most suitable overall for the crown count 

overall, based on these results. In the overview of the total similarities as shown in Table 12, the variant 

that uses the AHN3 at 25cm resolution as input has the highest average similarity to the reference 

dataset. 

 All variants with different model parameters are using the 25cm resolution AHN3 as input and 

are executed with 1 different parameter setting form the default model. The results show that for none 

of the tree composition types, the variant that uses a larger neighbourhood has a higher count or area 

similarity percentage than the variant using the default parameters. A large neighbourhood means that 

the algorithm uses a larger radius to identify peaks, resulting in fewer peaks in total. This reduces the 

count of the crown areas and increases their size. When using a smaller neighbourhood, the opposite is 

true, so more peaks are identified, leading to a higher count and a smaller crown size.  

 The variant that uses a higher NDVI threshold has a lower area similarity percentage than the 

default inputs in all tree compositions. The high threshold will have caused fewer pixels to be identified 

as part of a crown, making the areas smaller compared to the validation dataset. However, when looking 

at the count, the smaller crown area resulted in a higher similarity percentage for single trees. When 

looking at Figure 9: Example of a count deviation of 1 for a single treeFigure 9, the count deviation 

of 1 can be explained by the peak identification method finding 2 peaks in the area. If the crown area is 

smaller, the algorithm would have only found 1 peak in the area resulting in the better count similarity 

for the variant using the higher NDVI threshold filter. This also explains the low count similarity of the 

variant that uses the small neighbourhood settings, because in that case the area of the crown stays the 

same, but there are more peaks identified within that area, resulting in the scenario of Figure 9 

happening more often. Finally, the variant that uses a higher roughness filter threshold never performs 

better than the method using the default parameter settings. The higher roughness has caused the 

crown sizes to be smaller, resulting in a lower area similarity. A potential benefit of using a higher 

roughness threshold is that it filters out more objects that could incorrectly be classified as trees such as 

roofs on buildings or fields of grass. In this study, both those objects have been filtered out by the NDVI, 

building or elevation filter.  

 

6.2.2 OBIA-method 

Unlike the DSM-method, it was not possible to identify the OBIA-processing steps based on a single 

report. In this study, the segmentation method described by Davids (2013) was used in combination with 

a growth algorithm similar to that from the Boombasis (Wigger Tims, personal communication, March 7, 

2017). A complete description of the method used for the Boombasis was not available, so it was not 
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possible to directly compare the method developed by NEO to the method developed by Alterra. This 

growth algorithm, as explained in Figure 25, merges the objects around the identified peaks based on 

the Eliminate and Merge tools in ArcMap. The peaks are identified in the same way as in the DSM-

method, but instead of being based on single pixels, they are calculated using the resulting segments of 

the multiresolution segmentation technique. 

 Before the results of the different input parameters are discussed, the results of the default 

OBIA-method at different tree compositions will be evaluated, which is using the AHN3 pointcloud as 

input, converted to a raster with a horizontal resolution of 25cm. When looking at the crown count for 

the different compositions, the single trees and trees in a row have a 100% similarity relative to the 

validation dataset. The groups of trees on the other hand only have a 75% similarity percentage. This is 

likely due to the peak identification, of which the neighbourhood settings could have been too large. This 

results in a lower number of individual crowns being identified, like the example in Figure 10. The single 

trees, and usually the trees in rows as well, are standing further apart, so these have been distinguished 

better. The crown area similarity of the default method is the closest to the validation set for the rows of 

which the areas are combined. When the crown areas in rows are calculated as individuals, the similarity 

percentage is by far the lowest for all composition types. This means that the crown areas for rows are 

identified relatively well, however the distinction between the individual trees in rows is problematic. 

The count similarity for the rows is 100%, therefore it is likely that the peak identification went well, 

however the growth algorithm has merged a lot of segments to the wrong peaks. These segments are 

created by the multiresolution segmentation, so either the growth algorithm, or the default parameter 

settings are not ideal for identifying the crown areas of individual trees in a row. 

 In the OBIA-method the different input datasets that are used are the AHN3 and AHN2 

pointclouds. The AHN3 pointcloud is converted to an elevation raster of 25cm and to an elevation raster 

of 50cm. The AHN2 is only used as a 50cm resolution raster, because a 25cm resolution raster is not used 

in the DSM-method. Furthermore, the AHN2 has fewer points per meter, so it is less reliable compared 

to the AHN3. When looking at the results of the crown count, the variant that uses the 50cm AHN3 

raster has a 100% similarity to the validation dataset in the single trees and rows, similar to the default 

that uses the 25cm AHN3. It performs slightly worse for the group of trees. The variant that uses the 

AHN2 as input also has a 100% count similarity for single trees, but performs a lot worse for rows. 

Interestingly, the AHN2 variant does perform slightly better than the version that uses the AHN3 at 50cm 

for groups of trees, but still not as good as the 25cm default. The low count similarity in rows of the 

variant that uses the AHN2 can be caused by the poor area similarity of individual trees. When looking at 

the raw data in Appendix II, there are a lot of trees that are not identified due to the same effect as 

shown in Figure 10, which is caused by a low number of identified peaks. In Figure 30 an example of a 

row with a low count similarity is shown. In this figure, there are 6 validation trees, visualized by a green 

delineation. There are only two trees identified by the OBIA-method using the AHN2 as input, visualized 

in red and blue. The area similarity percentage is highest for the default OBIA-method in single trees and 

rows, but for groups the variant that uses the AHN3 at 50cm performs slightly better.  
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Figure 30: Example of count deviations caused by low number of identified peaks  

  

The different input parameters are all executed using the AHN3 25cm resolution as input, 

because the average similarity percentage is highest in the default variant for all tree composition types. 

The first variant that will be discussed has used different weights for the multiresolution segmentation 

input data. In this variant, the NDVI has a relatively higher weight than the number of returns and the 

elevation. It was expected that the NDVI is a better tree indicator in urban areas compared to the park 

area, because the contrast in NDVI values between trees and their environment is higher. The results of 

this variant show that the different weights are more suitable to identify individual crown areas 

compared to the default dataset, but perform worse when identifying the areas of groups. This was 

expected, because the groups are standing closer together compared to single trees. Therefore, the 

NDVI contrast of a tree with its environment is larger for single trees than it is for groups.  

 The variant that uses a high scale parameter is causing the different segments to be larger in size. 

This results in a different final shape of the trees when applying the growth algorithm. The results show 

that this leads to a lower average similarity percentage compared to the default OBIA-parameters in all 

tree composition types. The large segments are causing a lower count similarity, because more segments 

are covering parts of multiple trees, due to the larger homogeneity threshold narrowing down the 

differences between the trees in the segmentation. The variant that uses a larger shape causes the 

smoothness of the borders of segments to increase and the compactness to decrease relative to the 

smoothness. In Figure 31 the difference is shown in segmentation results between one variant using a 
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shape parameter of 0.1 and a compactness parameter of 0.5 on the left side of the figure and another 

variant using a shape parameter of 0.9 and a compactness parameter of 0.5 on the right side 

(Wageningen University, 2014). In this comparison, it is visible that using a higher shape parameter 

results in a smoother border structure of the segments and the segments being large, because the 

compactness decreases relatively. In this study, the parameter was set to 0.5 instead of 0.9 to make this 

effect less extreme.  

 

 

Figure 31: The effects of a higher shape relative to compactness in multiresolution segmentation (Wageningen University, 2014) 

 

 The results of the variant with the large shape parameter show that when identifying single tree 

crowns the area similarity percentage is very close to the validation dataset. However, when identifying 

the total crown areas for groups, the high shape parameter causes the area similarity percentages to be 

lower than the default. Interestingly, this is the case for the variant that uses the higher compactness 

parameter as well. In Figure 32 the results of the variant that uses the high compactness parameter is 

visually compared to the variant that uses the high shape parameter for a group of trees.  
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Figure 32: Visual comparison between results of ScaleParameter variant and Shape variant 

 

The differences for the individual trees in the group are clearly distinguishable, however if the areas in 

the groups are combined, the images look very similar. From the similarity results this effect is less clear, 

because for all tree composition types, the results are quite close. 

 

6.2.3 Hybrid method 

For the newly created hybrid method only one variant was executed, which is based on the best 

practices of the DSM- and OBIA-methods. The best practices are decided by comparing the similarity 

results of all variants that were executed in this study. The results of both methods show that the best 

results were obtained when using the AHN3 with a resolution of 25cm as input. Therefore, the same 

input data was used in the hybrid method as well. Furthermore, the highest average crown similarity 

percentage relative to the validation dataset is for both DSM- and OBIA-methods in most cases the 

variant that uses the default input parameters. For the hybrid method, the default filter parameters 

were used from the DSM-method and the default multiresolution segmentation parameter settings were 

used from the OBIA-method. The crown growth delineation algorithm from the OBIA-method was very 

suitable for delineating the individual tree crowns resulting in the highest overall count similarity 

percentage.  

 This new, hybrid method is using the multiresolution segmentation technique used in the OBIA-

method, because the growth algorithm uses the different segments as input. The DSM-method is 

included in this hybrid method by using the filters before executing the segmentation. By applying these 

filters beforehand, the segmentation is more accurate, because the overall homogeneity of the CIR 

image will increase. This leads to a larger relative contrast between pixels that are within the tree 

crowns, because most pixels outside the crown areas have been filtered out using the default DSM-filter 

as shown in Figure 14. When looking at the results of the multiresolution segmentation in Figure 27, it 

shows an interesting pattern of segments that are created over the filtered area. In these locations, the 
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homogeneity of the pixels is the same, because all pixels have no data. Therefore, the scale parameter 

threshold should be the only influencing factor that determines the maximum size of these segments. It 

is not clear what causes the different segments in these areas to show differences in shape and size.  

 The final research objective in this study is to develop a new, improved method. The results of 

the hybrid method are compared to the variants of the DSM- and OBIA-method that use the AHN3 at a 

resolution of 25cm as input and the default model parameters. The results of these variants are the 

closest to the validation dataset and the same input is used for the combined method. For the single 

trees, the hybrid method has a 100% count similarity and has the highest area similarity percentage of all 

methods, resulting in the highest average similarity percentage as well. When comparing the rows, the 

hybrid method has a relative low count similarity, but has the highest area similarity percentage when 

crowns are considered as individuals, as well as when crown areas of trees in rows are combined.  

 Finally, for the groups of trees the hybrid method has the lowest count similarity percentage and 

the lowest area similarity percentage. Overall, the results of the hybrid method have the best crown area 

similarity percentage compared to the DSM- and OBIA-methods, but the worst count similarity 

percentage. Therefore, the combined method is not regarded as a clear overall improvement in general. 

It will depend on the goal of the user, whether the combined method is more suitable for identifying tree 

crowns. When for example the goal is to estimate the root system area of trees, the crown area is an 

important indicator, so the combined method will be an improvement (Verhagen, 2015). If the goal is to 

estimate the number of trees in an area, the combined method is less suitable than the DSM- or OBIA-

method. 

 

6.2.4 Boombasis 

It is interesting to see how the hybrid method compares to a method that is currently used in the 

Netherlands for tree identification. Therefore, the Boombasis is compared to the validation dataset in 

Den Haag as well. This makes it possible to determine how well each method performs compared to the 

most up-to-date Boombasis model as developed by NEO (Wigger Tims, personal communication, March 

7, 2017). The Boombasis method uses the AHN3, combined with high resolution aerial images taken in 

the summer of 2014 (Wigger Tims, personal communication, March 7, 2017). NEO has access to high-

resolution aerial images that are taken each year, therefore the results of the Boombasis are expected to 

be close to the validation dataset. 

The version of the Boombasis that is used for the comparison is currently the most up-to-date 

method used in practice in the Netherlands (Wigger Tims, personal communication, March 7, 2017). The 

results from the Boombasis dataset are presented for all tree composition types in one table, similar to 

the results from the combined method.  
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Table 13: Results of the Boombasis method 

Boombasis 

 

Count 
similarity 

Area 
similarity 

Average 
similarity 

Single trees 100.0% 93.8% 96.9% 

Rows of trees individual 85.0% 80.4% 82.7% 

Rows of trees total 85.0% 96.1% 90.5% 

Groups of trees 54.5% 92.2% 73.4% 
 

The results from the Boombasis in Table 13 show that the count similarity of the groups of trees is very 

low, with only 54.5%, which is the lowest similarity percentage of all variants tested. On the other hand, 

the area similarities are overall relatively high. Especially the results for both the tree crowns in rows as 

individuals, as for the crowns in rows combined, are the closest to the validation dataset of all methods. 

The area similarities to the validation dataset of the single trees and the groups of trees are over 90% as 

well, which is relatively high compared to most variants in the other methods. The comparison of the 

results from the tested methods to the results of the final Boombasis is interesting, because it shows 

that in some cases, for example when identifying the number of individual trees, the hybrid method 

would be more suitable to use. This means that for some studies, using the hybrid method will realize 

improvement of the results in practice. 

 

6.2.5 Validation 

Next to the tree crown identification methods that are executed in this study, the validation method that 

was used to compare the results has some limitations that need to be discussed as well. Validation of the 

individual tree crown areas is necessary to compare the results of the methods to the situation in reality 

(Meijer et al., 2015, p. 39). Therefore, it is important that the trees that are used for validation are a 

good representation of reality and ideally it would be a 100% match. That way all deviations from the 

validation dataset can be attributed to the methods. However, in this study no reliable validation dataset 

was available beforehand. Therefore, the validation was done by manually delineating the trees based 

on visually identifying the individual tree crowns on an aerial image with a high resolution of 5 cm. 

Manual delineation is never 100% accurate, because it relies on the identification interpretation of a 

human. If multiple people were to delineate single tree manually, it would probably never result in the 

exact same crown more than once. Especially for groups of trees it is difficult to see the intertwined 

crowns and to determine where one branch ends and another begins. Furthermore, because the crowns 

are intertwined, the crown areas often overlap vertically. It is not possible to visually identify this based 

on the aerial images. Therefore, in this study the validation crowns are not intertwined and are 

delineated based on a shared border. All tree identification methods are unable to identify overlap 

between crowns, so the deviations to the validation dataset because of overlap would have been 

present in all methods if overlap would have been included.  
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 Besides the possible visual interpretation errors, another issue with the validation is the 

temporal difference between the input datasets and the validation dataset. Ideally, all data that was 

used would have been acquired on the same day as the validation data. However, for all datasets the 

exact date is unknown and only the years are available. The AHN2 is from 2008, The AHN3 is from 2014, 

the only available CIR ortho image is from 2016 and the validation data is either from 2013 or 2015. 

Therefore, it is possible that some deviations are caused by the temporal differences in tree crowns, 

rather than as a result of the different identification methods. Especially the variants of the DSM- and 

OBIA method that use the AHN2 as input will have shown larger deviations than if they would have been 

compared to a validation dataset from 2008, using a CIR ortho image from 2008 as well. Therefore, it is 

difficult to say if the poor results from the variants that use the AHN2 datasets are caused by using the 

AHN2, or by the temporal differences between the AHN2 and the validation data. 

 

6.3 Recommendations  

The final chapter of this thesis are the recommendations, based on the results and conclusions. The first 

recommendation is to use the hybrid method or default OBIA-method for identifying tree crown areas. If 

the count of the crown areas is important, the default OBIA method is most suitable. For all methods, 

input data with a horizontal resolution of 25cm will have better results than when using a resolution of 

50cm. One limitation of this study is that the different input datasets are not from the same year. 

Therefore, the second recommendation is to use a CIR aerial image from the same year and season as 

the elevation model. Using the AHN3 as input is suitable for identifying trees and is available as open 

data. However, a downside of using AHN data is that it is not frequently updated, which makes it 

unsuitable for yearly monitoring applications. Furthermore, the AHN3 dataset is still incomplete and not 

available in the entire Netherlands. When it is finished, there can be a five-year difference between the 

periods of data acquirement (Actueel Hoogtebestand Nederland, n.d.). 

Next to the recommendations for potential users of tree crown identification methods, this 

chapter aims to suggest improvements for future research on comparing the identification methods. The 

first step in improving the comparison method would be to compare more model parameters. Based on 

this study, for both the DSM- as the OBIA-method the default parameters were the closest to the 

validation dataset. However, if more possible parameter settings were tested, this might have been not 

the case. A first suggestion for future research is to write a script that automates the methods and 

compares the results of the more different model parameters to determine the best settings. This could 

optimize the method, resulting in higher similarity percentages.  

Another way to improve this study is to compare the different methods to a more reliable 

validation dataset from the same period as the input datasets. In this study, the methods were 

compared in an urban environment and park area. However, it is not tested in different environments, 

like forests or tree nurseries. Comparing the methods in a tree nursery could be interesting for 

monitoring purposes and nurseries could provide validation data as well. Another improvement to the 

comparison could be to add more variables. In this study only the count of the individual tree crowns and 

their area are calculated. More research is needed to develop a method that can identify the position of 
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tree stems from the pointcloud data. This will help for applications such as identifying tree ownership or 

better estimations of tree root systems.  

For further research on tree crown identification it will be interesting to compare more possible 

methods. Especially for yearly monitoring purposes the use of the AHN is not suitable. Both the DSM- 

and OBIA-method use the AHN data as input, but it might be possible to identify individual tree crowns 

without elevation data. By using the stem positions of trees instead of the peaks to separate the 

individual trees the AHN data might not be necessary. However, no standardized method is currently 

used in the Netherlands for identifying the stem positions and not all green space managers provide this 

data (Verhaar, 2016). This option is therefore not suitable for a standardized method of the entire 

Netherlands, but it will be an interesting method for managers who do have data on stem positions and 

want to monitor their tree crown areas more often than possible using the AHN. Monitoring tree crowns 

an annual or seasonal basis requires more frequently acquired input data, such as aerial or satellite 

imagery. As concluded in this thesis, the 25cm input AHN data is more suitable for identifying trees 

compared to the 50cm input AHN data. Furthermore, it will be interesting to see how the multiresolution 

segmentation technique performs when no pointcloud data is used as input. More research is needed to 

determine whether commercially, or even freely, available satellite images are suitable for identifying 

and monitoring individual tree crowns. 
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Appendix I: Overview of materials 
Table of Content of the ZIP file and DVD that accompanies this thesis report. 

- Report  

o Thesis report (in PDF & Word) 

- Presentations  

o Midterm presentation (in PowerPoint) 

o Final presentation (in PowerPoint) 

- Input datasets 

o AHN 2& 3 pointclouds and rasters (link to download page due to size) 

o Beeldmateriaal aerial raster images (link to WMTS due to size) 

o BAG data as polygons (in .shp) 

- Validation datasets 

o Den Haag validation aerial raster images (in .tif) 

o Den Haag stem position points (in .shp) 

- Additional datasets 

o Boombasis polygons (in .shp) 

- Output datasets 

o Identified polygons (in .shp) 

- Literature 

o Used Literature (in PDF) 
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Appendix II: All results 
In this appendix, the results of all parameter variables of all methods are shown. The first table is the 

validation dataset, in which trees or tree groups have an ID. In the other tables, the count and area are 

compared to the trees in the validation dataset with the same ID. The rows have both the instances 

where the trees are considered as individuals and the totals at the top where the individuals are 

summed up.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Validation Set 

 TreeID Count Area 

 ID n m2 

Single ST1 1 251.55 

 ST2 1 99.81 

 ST3 1 146.38 

 ST4 1 106.86 

 ST5 1 24.5 

 ST6 1 103.71 

 ST7 1 63.17 

Rows  RT1 5 897.76 

 RT1_A 1 175.9 

 RT1_B 1 274.02 

 RT1_C 1 77.19 

 RT1_D 1 143.4 

 RT1_E 1 227.25 

 RT2 6 442.06 

 RT2_A 1 89.71 

 RT2_B 1 63.38 

 RT2_C 1 77.64 

 RT2_D 1 60.97 

 RT2_E 1 79.14 

 RT2_F 1 71.22 

 RT3 6 547.54 

 RT3_A 1 107.66 

 RT3_B 1 97.11 

 RT3_C 1 92.24 

 RT3_D 1 66.43 

 RT3_E 1 67.64 

 RT3_F 1 116.46 

Groups  GT1 3 999.63 

 GT2 3 139.09 

 GT3 6 372.53 

 GT5 6 341.29 
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Boombasis 

 TreeID Count Area Count 
difference 

Area 
difference 

 ID n m2 n m2 

Single trees ST1 1 239 0 12.55 

 ST2 1 87.5 0 12.31 

 ST3 1 147.75 0 1.37 

 ST4 1 96 0 10.86 

 ST5 1 20.5 0 4 

 ST6 1 109.5 0 5.79 

 ST7 1 57.75 0 5.42 

Rows of trees RT1 8 882.5 3 15.26 

 RT1_A 2 137.25 1 38.65 

 RT1_B 1 187.75 0 86.27 

 RT1_C 3 192.75 2 115.56 

 RT1_D 1 184.25 0 40.85 

 RT1_E 1 180.5 0 46.75 

 RT2 6 478.5 0 36.44 

 RT2_A 1 98.25 0 8.54 

 RT2_B 1 68 0 4.62 

 RT2_C 1 75.75 0 1.89 

 RT2_D 1 85.75 0 24.78 

 RT2_E 1 92.25 0 13.11 

 RT2_F 1 58.5 0 12.72 

 RT3 6 573.25 0 25.71 

 RT3_A 1 137.75 0 30.09 

 RT3_B 1 100.25 0 3.14 

 RT3_C 1 90.25 0 1.99 

 RT3_D 1 60.5 0 5.93 

 RT3_E 1 80.75 0 13.11 

 RT3_F 1 103.75 0 12.71 

Groups of trees GT1 10 901.25 7 98.38 

 GT2 3 136.5 0 2.59 

 GT3 2 400.25 4 27.72 

 GT5 2 313.5 4 27.79 
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DSM Default 

 TreeID Count Area Count 
difference 

Area 
difference 

 ID n m2 n m2 

Single trees ST1 2 189.75 1 61.8 

 ST2 1 75 0 24.81 

 ST3 1 108.75 0 37.63 

 ST4 1 39.75 0 67.11 

 ST5 1 19 0 5.5 

 ST6 1 181 0 77.29 

 ST7 1 30.25 0 32.92 

Rows of trees RT1 5 645.5 0 252.26 

 RT1_A 1 123.25 0 52.65 

 RT1_B 1 132.5 0 141.52 

 RT1_C 1 106.75 0 29.56 

 RT1_D 1 127.75 0 15.65 

 RT1_E 1 155.25 0 72 

 RT2 6 393 0 49.06 

 RT2_A 1 74.5 0 15.21 

 RT2_B 1 52 0 11.38 

 RT2_C 1 70.75 0 6.89 

 RT2_D 1 49.75 0 11.22 

 RT2_E 1 72 0 7.14 

 RT2_F 1 74 0 2.78 

 RT3 6 364.25 0 183.29 

 RT3_A 1 63 0 44.66 

 RT3_B 1 59.5 0 37.61 

 RT3_C 1 62.75 0 29.49 

 RT3_D 1 44 0 22.43 

 RT3_E 1 61.5 0 6.14 

 RT3_F 1 73.5 0 42.96 

Groups of trees GT1 3 733.25 0 266.38 

 GT2 3 80.5 0 58.59 

 GT3 3 292.75 3 79.78 

 GT5 3 230.5 3 110.79 
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DSM AHN3 

 TreeID Count Area Count 
difference 

Area 
difference 

 ID n m2 n m2 

Single trees ST1 2 218.5 1 33.05 

 ST2 1 99 0 0.81 

 ST3 1 127.25 0 19.13 

 ST4 1 84.75 0 22.11 

 ST5 1 22.75 0 1.75 

 ST6 1 95.25 0 8.46 

 ST7 1 62 0 1.17 

Rows of trees RT1 6 688 1 209.76 

 RT1_A 2 97 1 78.9 

 RT1_B 1 187.5 0 86.52 

 RT1_C 1 95.75 0 18.56 

 RT1_D 1 135.75 0 7.65 

 RT1_E 1 172 0 55.25 

 RT2 6 441.75 0 0.31 

 RT2_A 1 85 0 4.71 

 RT2_B 1 59.75 0 3.63 

 RT2_C 1 72.25 0 5.39 

 RT2_D 1 66.5 0 5.53 

 RT2_E 1 87.75 0 8.61 

 RT2_F 1 70.5 0 0.72 

 RT3 7 718.75 1 171.21 

 RT3_A 1 100.25 0 7.41 

 RT3_B 2 101.75 1 4.64 

 RT3_C 1 107.5 0 15.26 

 RT3_D 1 143.25 0 76.82 

 RT3_E 1 91.5 0 23.86 

 RT3_F 1 174.5 0 58.04 

Groups of trees GT1 3 907.5 0 92.13 

 GT2 3 203.75 0 64.66 

 GT3 4 399.25 2 26.72 

 GT5 3 227 3 114.29 
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DSM AHN3 25cm 

 TreeID Count Area Count 
difference 

Area 
difference 

 ID n m2 n m2 

Single trees ST1 2 202.75 1 48.8 

 ST2 1 95.25 0 4.56 

 ST3 1 121.5 0 24.88 

 ST4 1 101.5 0 5.36 

 ST5 1 20.5 0 4 

 ST6 1 105.75 0 2.04 

 ST7 1 63.5 0 0.33 

Rows of trees RT1 5 762.5 0 135.26 

 RT1_A 1 167.25 0 8.65 

 RT1_B 1 149.5 0 124.52 

 RT1_C 1 139.25 0 62.06 

 RT1_D 1 128.25 0 15.15 

 RT1_E 1 178.25 0 49 

 RT2 6 412.25 0 29.81 

 RT2_A 1 80.5 0 9.21 

 RT2_B 1 55.5 0 7.88 

 RT2_C 1 68.5 0 9.14 

 RT2_D 1 57.5 0 3.47 

 RT2_E 1 87 0 7.86 

 RT2_F 1 63.25 0 7.97 

 RT3 6 504 0 43.54 

 RT3_A 1 25.5 0 82.16 

 RT3_B 1 102.5 0 5.39 

 RT3_C 1 91.5 0 0.74 

 RT3_D 1 100.5 0 34.07 

 RT3_E 1 155.5 0 87.86 

 RT3_F 1 28.5 0 87.96 

Groups of trees GT1 3 941 0 58.63 

 GT2 3 169.25 0 30.16 

 GT3 2 406 4 33.47 

 GT5 4 273 2 68.29 
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DSM AHN3 large neighborhood 

 TreeID Count Area Count 
difference 

Area 
difference 

 ID n m2 n m2 

Single trees ST1 2 202.75 1 48.8 

 ST2 1 95.25 0 4.56 

 ST3 1 121.5 0 24.88 

 ST4 1 101.5 0 5.36 

 ST5 1 20.5 0 4 

 ST6 1 105.75 0 2.04 

 ST7 1 63.5 0 0.33 

Rows of trees RT1 5 762.5 0 135.26 

 RT1_A 1 167.25 0 8.65 

 RT1_B 1 149.5 0 124.52 

 RT1_C 1 139.25 0 62.06 

 RT1_D 1 128.25 0 15.15 

 RT1_E 1 178.25 0 49 

 RT2 6 412.25 0 29.81 

 RT2_A 1 80.5 0 9.21 

 RT2_B 1 55.5 0 7.88 

 RT2_C 1 68.5 0 9.14 

 RT2_D 1 57.5 0 3.47 

 RT2_E 1 87 0 7.86 

 RT2_F 1 63.25 0 7.97 

 RT3 6 967 0 419.46 

 RT3_A 1 118.75 0 11.09 

 RT3_B 1 173.25 0 76.14 

 RT3_C 1 229.5 0 137.26 

 RT3_D 1 165.5 0 99.07 

 RT3_E 1 100.5 0 32.86 

 RT3_F 1 179.5 0 63.04 

Groups of trees GT1 2 940.25 1 59.38 

 GT2 3 199.75 0 60.66 

 GT3 2 406 4 33.47 

 GT5 3 271 3 70.29 
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DSM AHN3 small neighborhood 

 TreeID Count Area Count 
difference 

Area 
difference 

 ID n m2 n m2 

Single trees ST1 4 201.5 3 50.05 

 ST2 1 95 0 4.81 

 ST3 1 121.5 0 24.88 

 ST4 2 100.5 1 6.36 

 ST5 1 20.5 0 4 

 ST6 2 105.25 1 1.54 

 ST7 1 63.5 0 0.33 

Rows of trees RT1 5 699.25 0 198.51 

 RT1_A 1 166 0 9.9 

 RT1_B 1 145 0 129.02 

 RT1_C 1 81.75 0 4.56 

 RT1_D 1 128.25 0 15.15 

 RT1_E 1 178.25 0 49 

 RT2 6 412 0 30.06 

 RT2_A 1 80.5 0 9.21 

 RT2_B 1 55.5 0 7.88 

 RT2_C 1 68.5 0 9.14 

 RT2_D 1 57.5 0 3.47 

 RT2_E 1 87 0 7.86 

 RT2_F 1 63 0 8.22 

 RT3 6 656.5 0 108.96 

 RT3_A 1 102.5 0 5.16 

 RT3_B 1 91.5 0 5.61 

 RT3_C 1 124.75 0 32.51 

 RT3_D 1 164.75 0 98.32 

 RT3_E 1 100.5 0 32.86 

 RT3_F 1 72.5 0 43.96 

Groups of trees GT1 5 939.5 2 60.13 

 GT2 3 103 0 36.09 

 GT3 4 405.5 2 32.97 

 GT5 4 271.75 2 69.54 
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DSM NDVI 

 TreeID Count Area Count 
difference 

Area 
difference 

 ID n m2 n m2 

Single trees ST1 1 152 0 99.55 

 ST2 1 94 0 5.81 

 ST3 1 46.75 0 99.63 

 ST4 1 96.75 0 10.11 

 ST5 1 17.25 0 7.25 

 ST6 1 41.25 0 62.46 

 ST7 1 63.5 0 0.33 

Rows of trees RT1 5 504.5 0 393.26 

 RT1_A 1 114.5 0 61.4 

 RT1_B 1 83.5 0 190.52 

 RT1_C 1 118.25 0 41.06 

 RT1_D 1 62 0 81.4 

 RT1_E 1 126.25 0 101 

 RT2 6 365.5 0 76.56 

 RT2_A 1 80.5 0 9.21 

 RT2_B 1 46.5 0 16.88 

 RT2_C 1 67.25 0 10.39 

 RT2_D 1 35.5 0 25.47 

 RT2_E 1 75 0 4.14 

 RT2_F 1 60.75 0 10.47 

 RT3 8 544 2 3.54 

 RT3_A 1 74.75 0 32.91 

 RT3_B 1 88.5 0 8.61 

 RT3_C 1 112.25 0 20.01 

 RT3_D 2 146 1 79.57 

 RT3_E 2 64 1 3.64 

 RT3_F 1 58.5 0 57.96 

Groups of trees GT1 3 940.25 0 59.38 

 GT2 3 169 0 29.91 

 GT3 2 395.5 4 22.97 

 GT5 3 193 3 148.29 
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DSM Roughness 

 TreeID Count Area Count 
difference 

Area 
difference 

 ID n m2 n m2 

Single trees ST1 2 201 1 50.55 

 ST2 1 77.25 0 22.56 

 ST3 1 119.5 0 26.88 

 ST4 1 94 0 12.86 

 ST5 1 15 0 9.5 

 ST6 2 97.5 1 6.21 

 ST7 1 60.5 0 2.67 

Rows of trees RT1 5 744.5 0 153.26 

 RT1_A 1 165.5 0 10.4 

 RT1_B 1 142.75 0 131.27 

 RT1_C 1 136.5 0 59.31 

 RT1_D 1 127 0 16.4 

 RT1_E 1 172.75 0 54.5 

 RT2 6 406.25 0 35.81 

 RT2_A 1 79 0 10.71 

 RT2_B 1 55 0 8.38 

 RT2_C 1 68.25 0 9.39 

 RT2_D 1 56.25 0 4.72 

 RT2_E 1 85.25 0 6.11 

 RT2_F 1 62.5 0 8.72 

 RT3 6 767.75 0 220.21 

 RT3_A 1 100.5 0 7.16 

 RT3_B 1 84 0 13.11 

 RT3_C 1 123.5 0 31.26 

 RT3_D 1 309.25 0 242.82 

 RT3_E 1 93.75 0 26.11 

 RT3_F 1 56.75 0 59.71 

Groups of trees GT1 3 922.5 0 77.13 

 GT2 3 148.5 0 9.41 

 GT3 2 392 4 19.47 

 GT5 4 232 2 109.29 
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OBIA Default 

 TreeID Count Area Count 
difference 

Area 
difference 

 ID n m2 n m2 

Single trees ST1 1 226 0 25.55 

 ST2 1 100.06 0 0.25 

 ST3 1 130.31 0 16.07 

 ST4 1 86.25 0 20.61 

 ST5 1 22.69 0 1.81 

 ST6 1 108.38 0 4.67 

 ST7 1 59 0 4.17 

Rows of trees RT1 5 944.76 0 47 

 RT1_A 1 273.31 0 97.41 

 RT1_B 1 114.63 0 159.39 

 RT1_C 1 204.69 0 127.5 

 RT1_D 1 182.94 0 39.54 

 RT1_E 1 169.19 0 58.06 

 RT2 6 432.57 0 9.49 

 RT2_A 1 71.94 0 17.77 

 RT2_B 1 62.5 0 0.88 

 RT2_C 1 71.63 0 6.01 

 RT2_D 1 71.5 0 10.53 

 RT2_E 1 88.75 0 9.61 

 RT2_F 1 66.25 0 4.97 

 RT3 6 503.14 0 44.4 

 RT3_A 1 80.63 0 27.03 

 RT3_B 1 70.44 0 26.67 

 RT3_C 1 113.38 0 21.14 

 RT3_D 1 100.25 0 33.82 

 RT3_E 1 81.44 0 13.8 

 RT3_F 1 57 0 59.46 

Groups of trees GT1 4 928.89 1 70.74 

 GT2 3 166.07 0 26.98 

 GT3 3 408.94 3 36.41 

 GT5 4 276.82 2 64.47 
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OBIA 50cm 

 TreeID Count Area Count 
difference 

Area 
difference 

 ID n m2 n m2 

Single trees ST1 1 279.5 0 27.95 

 ST2 1 113.75 0 13.94 

 ST3 1 140.25 0 6.13 

 ST4 1 114.5 0 7.64 

 ST5 1 26.5 0 2 

 ST6 1 131.25 0 27.54 

 ST7 1 72.5 0 9.33 

Rows of trees RT1 5 977.75 0 79.99 

 RT1_A 1 305.5 0 129.6 

 RT1_B 1 170 0 104.02 

 RT1_C 1 158.75 0 81.56 

 RT1_D 1 154.25 0 10.85 

 RT1_E 1 189.25 0 38 

 RT2 6 510.25 0 68.19 

 RT2_A 1 92.25 0 2.54 

 RT2_B 1 68 0 4.62 

 RT2_C 1 72.25 0 5.39 

 RT2_D 1 76.75 0 15.78 

 RT2_E 1 119.75 0 40.61 

 RT2_F 1 81.25 0 10.03 

 RT3 6 873 0 325.46 

 RT3_A 1 193 0 85.34 

 RT3_B 1 80.75 0 16.36 

 RT3_C 1 211.75 0 119.51 

 RT3_D 1 215.5 0 149.07 

 RT3_E 1 98.25 0 30.61 

 RT3_F 1 73.75 0 42.71 

Groups of trees GT1 4 1016.25 1 16.62 

 GT2 3 121.35 0 17.74 

 GT3 2 444.75 4 72.22 

 GT5 3 314 3 27.29 
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OBIA AHN2 50cm 

 TreeID Count Area Count 
difference 

Area 
difference 

 ID n m2 n m2 

Single trees ST1 1 242.75 0 8.8 

 ST2 1 89 0 10.81 

 ST3 1 113.25 0 33.13 

 ST4 1 64.75 0 42.11 

 ST5 1 24.4 0 0.1 

 ST6 1 220 0 116.29 

 ST7 1 38 0 25.17 

Rows of trees RT1 5 806.25 0 91.51 

 RT1_A 1 129.25 0 46.65 

 RT1_B 1 255 0 19.02 

 RT1_C 1 52.75 0 24.44 

 RT1_D 1 194.25 0 50.85 

 RT1_E 1 175 0 52.25 

 RT2 2 503 4 60.94 

 RT2_A 1 224.75 0 135.04 

 RT2_B 0 0 1 63.38 

 RT2_C 1 278.25 0 200.61 

 RT2_D 0 0 1 60.97 

 RT2_E 0 0 1 79.14 

 RT2_F 0 0 1 71.22 

 RT3 5 484 1 63.54 

 RT3_A 1 86.5 0 21.16 

 RT3_B 1 71.75 0 25.36 

 RT3_C 1 137 0 44.76 

 RT3_D 1 87.75 0 21.32 

 RT3_E 1 101 0 33.36 

 RT3_F 0 0 1 116.46 

Groups of trees GT1 6 887.25 3 112.38 

 GT2 2 123.75 1 15.34 

 GT3 4 455 2 82.47 

 GT5 5 385.75 1 44.46 
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OBIA Weights 

 TreeID Count Area Count 
difference 

Area 
difference 

 ID n m2 n m2 

Single trees ST1 1 233.56 0 17.99 

 ST2 1 96.21 0 3.6 

 ST3 1 133.56 0 12.82 

 ST4 1 91.88 0 14.98 

 ST5 1 21.75 0 2.75 

 ST6 1 110 0 6.29 

 ST7 1 61.38 0 1.79 

Rows of trees RT1 5 718.62 0 179.14 

 RT1_A 1 165.06 0 10.84 

 RT1_B 1 160.37 0 113.65 

 RT1_C 1 68.38 0 8.81 

 RT1_D 1 147.5 0 4.1 

 RT1_E 1 177.31 0 49.94 

 RT2 5 483.15 1 41.09 

 RT2_A 1 133.38 0 43.67 

 RT2_B 1 49.69 0 13.69 

 RT2_C 1 109.21 0 31.57 

 RT2_D 0 0 1 60.97 

 RT2_E 1 125.81 0 46.67 

 RT2_F 1 65.06 0 6.16 

 RT3 6 475.25 0 72.29 

 RT3_A 1 75.38 0 32.28 

 RT3_B 1 94.06 0 3.05 

 RT3_C 1 84.81 0 7.43 

 RT3_D 1 84.56 0 18.13 

 RT3_E 1 87.25 0 19.61 

 RT3_F 1 49.19 0 67.27 

Groups of trees GT1 6 936.25 3 63.38 

 GT2 3 184.32 0 45.23 

 GT3 3 470.76 3 98.23 

 GT5 3 280.38 3 60.91 
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OBIA Scale Parameter 

 TreeID Count Area Count 
difference 

Area 
difference 

 ID n m2 n m2 

Single trees ST1 1 216.75 0 34.8 

 ST2 1 106.75 0 6.94 

 ST3 1 133.19 0 13.19 

 ST4 1 92.56 0 14.3 

 ST5 1 27.19 0 2.69 

 ST6 1 120.25 0 16.54 

 ST7 1 67.5 0 4.33 

Rows of trees RT1 5 737.18 0 160.58 

 RT1_A 1 208.81 0 32.91 

 RT1_B 1 144.31 0 129.71 

 RT1_C 1 56.31 0 20.88 

 RT1_D 1 148.81 0 5.41 

 RT1_E 1 178.94 0 48.31 

 RT2 7 481.45 1 39.39 

 RT2_A 1 95.06 0 5.35 

 RT2_B 1 60.88 0 2.5 

 RT2_C 2 79.63 1 1.99 

 RT2_D 1 85.69 0 24.72 

 RT2_E 1 105.25 0 26.11 

 RT2_F 1 54.94 0 16.28 

 RT3 5 567.07 1 19.53 

 RT3_A 1 116.56 0 8.9 

 RT3_B 1 89.19 0 7.92 

 RT3_C 1 173.38 0 81.14 

 RT3_D 1 67.19 0 0.76 

 RT3_E 1 120.75 0 53.11 

 RT3_F 0 0 1 116.46 

Groups of trees GT1 7 938.06 4 61.57 

 GT2 3 175.94 0 36.85 

 GT3 6 405.33 0 32.8 

 GT5 3 272.13 3 69.16 
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OBIA Shape 

 TreeID Count Area Count 
difference 

Area 
difference 

 ID n m2 n m2 

Single trees ST1 1 230.13 0 21.42 

 ST2 1 98.63 0 1.18 

 ST3 1 132.31 0 14.07 

 ST4 1 95.94 0 10.92 

 ST5 1 25.38 0 0.88 

 ST6 1 109.5 0 5.79 

 ST7 1 62 0 1.17 

Rows of trees RT1 5 778.5 0 119.26 

 RT1_A 1 157.94 0 17.96 

 RT1_B 1 171.75 0 102.27 

 RT1_C 1 121.5 0 44.31 

 RT1_D 1 151 0 7.6 

 RT1_E 1 176.31 0 50.94 

 RT2 5 474.75 1 32.69 

 RT2_A 1 118.56 0 28.85 

 RT2_B 1 81.69 0 18.31 

 RT2_C 1 83.13 0 5.49 

 RT2_D 0 0 1 60.97 

 RT2_E 1 129.56 0 50.42 

 RT2_F 1 61.81 0 9.41 

 RT3 6 504.07 0 43.47 

 RT3_A 1 87.94 0 19.72 

 RT3_B 1 63.88 0 33.23 

 RT3_C 1 113.31 0 21.07 

 RT3_D 1 105.06 0 38.63 

 RT3_E 1 82.19 0 14.55 

 RT3_F 1 51.69 0 64.77 

Groups of trees GT1 4 935.06 1 64.57 

 GT2 3 212.06 0 72.97 

 GT3 1 416.25 5 43.72 

 GT5 4 284 2 57.29 
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OBIA Compactness 

 TreeID Count Area Count 
difference 

Area 
difference 

 ID n m2 n m2 

Single trees ST1 1 223.75 0 27.8 

 ST2 1 93 0 6.81 

 ST3 1 132.25 0 14.13 

 ST4 1 92.44 0 14.42 

 ST5 1 23.38 0 1.12 

 ST6 1 105.81 0 2.1 

 ST7 1 60.75 0 2.42 

Rows of trees RT1 5 761.2 0 136.56 

 RT1_A 1 158.88 0 17.02 

 RT1_B 1 128 0 146.02 

 RT1_C 1 133.75 0 56.56 

 RT1_D 1 166.44 0 23.04 

 RT1_E 1 174.13 0 53.12 

 RT2 6 494.57 0 52.51 

 RT2_A 1 89.19 0 0.52 

 RT2_B 1 67.25 0 3.87 

 RT2_C 1 94.94 0 17.3 

 RT2_D 1 55.31 0 5.66 

 RT2_E 1 121.19 0 42.05 

 RT2_F 1 66.69 0 4.53 

 RT3 6 477.31 0 70.23 

 RT3_A 1 78.81 0 28.85 

 RT3_B 1 91.44 0 5.67 

 RT3_C 1 87.87 0 4.37 

 RT3_D 1 89.81 0 23.38 

 RT3_E 1 73.13 0 5.49 

 RT3_F 1 56.25 0 60.21 

Groups of trees GT1 5 927.76 2 71.87 

 GT2 3 192.63 0 53.54 

 GT3 2 468.5 4 95.97 

 GT5 3 287.82 3 53.47 
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Hybrid  

 TreeID Count Area Count 
difference 

Area 
difference 

 ID n m2 n m2 

Single trees ST1 1 236.19 0 15.36 

 ST2 1 106.81 0 7 

 ST3 1 142.88 0 3.5 

 ST4 1 108.38 0 1.52 

 ST5 1 26.75 0 2.25 

 ST6 1 116.06 0 12.35 

 ST7 1 69.38 0 6.21 

Rows of trees RT1 6 860.5 1 37.26 

 RT1_A 1 162 0 13.9 

 RT1_B 1 180.81 0 93.21 

 RT1_C 1 153.81 0 76.62 

 RT1_D 1 130 0 13.4 

 RT1_E 2 233.88 1 6.63 

 RT2 5 479.32 1 37.26 

 RT2_A 1 87.63 0 2.08 

 RT2_B 1 94.38 0 31 

 RT2_C 1 104.5 0 26.86 

 RT2_D 0 0 1 60.97 

 RT2_E 1 128.56 0 49.42 

 RT2_F 1 64.25 0 6.97 

 RT3 7 567.75 1 20.21 

 RT3_A 1 117.37 0 9.71 

 RT3_B 2 97.07 1 0.04 

 RT3_C 1 108.56 0 16.32 

 RT3_D 1 80.94 0 14.51 

 RT3_E 1 99.31 0 31.67 

 RT3_F 1 64.5 0 51.96 

Groups of trees GT1 4 938.5 1 61.13 

 GT2 3 233.93 0 94.84 

 GT3 2 432.94 4 60.41 

 GT5 4 319.12 2 22.17 
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Appendix III: Overview of all absolute deviations  
This overview of the absolute deviations is based on the results in Appendix II. All differences with the 

validation set are summed up to determine how the results of the different methods perform. The 

results that are compared in these tables include all method variants that were used in this study. The 

deviation results are then coloured from green to red in each column for count and area. The similarity 

percentages as presented in the results chapter are based on these absolute deviations from the 

validation dataset. 

 

Single trees 

 

Single trees count Single trees area 

 
sum sum 

Boombasis 0.00 52.30 

   DSM Default 1.00 307.06 

DSM AHN3 1.00 86.48 

DSM AHN3 25cm 1.00 89.97 

DSM AHN3 la neighbor 1.00 89.97 

DSM AHN3 sm neighbor 5.00 91.97 

DSM NDVI 0.00 285.14 

DSM roughness 2.00 131.23 

   OBIA Default 0.00 73.13 

OBIA CellSize 0.00 94.53 

OBIA AHN2 0.00 236.41 

OBIA Weights 0.00 60.22 

OBIA ScaleParameter 0.00 92.79 

OBIA Shape 0.00 55.43 

OBIA Compactness 0.00 68.80 

   Hybrid  0.00 48.19 
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Rows 

 

Rows count Rows individuals area Rows total area 

 
sum sum sum 

Boombasis 3.00 460.71 77.41 

    DSM Default 0.00 549.29 484.61 

DSM AHN3 2.00 461.50 381.28 

DSM AHN3 25cm 0.00 603.09 208.61 

DSM AHN3 la neighbor 0.00 724.37 584.53 

DSM AHN3 sm neighbor 0.00 471.83 337.53 

DSM NDVI 2.00 754.64 473.36 

DSM roughness 0.00 700.08 409.28 

    OBIA Default 0.00 713.59 100.89 

OBIA CellSize 0.00 886.60 473.64 

OBIA AHN2 5.00 1065.99 215.99 

OBIA Weights 1.00 537.84 292.52 

OBIA ScaleParameter 2.00 582.46 219.50 

OBIA Shape 1.00 588.50 195.42 

OBIA Compactness 0.00 497.66 259.30 

    Hybrid  3.00 505.27 94.73 
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Groups 

 

Groups count Groups area 

 
sum sum 

Boombasis 15.00 156.48 

   DSM Default 6.00 515.54 

DSM AHN3 5.00 297.80 

DSM AHN3 25cm 6.00 190.55 

DSM AHN3 la neighbor 8.00 223.80 

DSM AHN3 sm neighbor 6.00 198.73 

DSM NDVI 7.00 260.55 

DSM roughness 6.00 215.30 

   OBIA Default 6.00 198.60 

OBIA CellSize 8.00 133.87 

OBIA AHN2 7.00 254.65 

OBIA Weights 9.00 267.75 

OBIA ScaleParameter 7.00 200.38 

OBIA Shape 8.00 238.55 

OBIA Compactness 9.00 274.85 

   Hybrid  7.00 238.55 
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Total 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Count Area ind rows Area tot rows 

 
sum sum m² sum m² 

Boombasis 18 669.49 286.19 

    DSM Default 7 1371.89 1307.21 

DSM AHN3 8 845.78 765.56 

DSM AHN3 25cm 7 883.61 489.13 

DSM AHN3 la neighbor 9 1038.14 898.30 

DSM AHN3 sm neighbor 11 762.53 628.23 

DSM NDVI 9 1300.33 1019.05 

DSM roughness 8 1046.61 755.81 

    OBIA Default 6 985.32 372.62 

OBIA CellSize 8 1115.00 702.04 

OBIA AHN2 12 1557.05 707.05 

OBIA Weights 10 865.81 620.49 

OBIA ScaleParameter 9 875.63 512.67 

OBIA Shape 9 882.48 489.40 

OBIA Compactness 9 841.31 602.95 

    Hybrid  10 792.01 381.47 


