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Abstract
Route optimization is an effective way to decrease soil compaction in agricultural fields. Important
factors contributing to soil compaction are number of wheel passes, total weight of the working
unit, and soil moisture content. This research aimed to determine an optimal route for capacitated
agricultural operations over predefined field tracks given local differences in susceptibility to com-
paction (e.g. wet spots). In capacitated operations, the total weight of a working unit is variable,
leading to a variable induced soil compaction. Together with known wet areas in a field, this
creates room for route optimization. Route optimization is approached as a capacitated vehicle
routing problem. Methods for generating weighted graphs representing an agricultural field and for
calculating a (near-)optimal route through this graph were developed. The total cost of a route was
calculated by a weighted sum objective function that expresses soil exposure to compaction in the
unit weightmeters [m*kg]. The optimal route is the one with the lowest value of weightmeters. A
Tabu search algorithm was implemented to heuristically search possible routes. The defined route
optimization method found routes that were more optimal than the routes chosen by farmers, with
far lower costs. Furthermore, in a small test field the Tabu search algorithm consistently found
optimal solutions in 15.2% of the time of an exhaustive search method. In a follow-up study the
suggested methods should be tested in practice, by planning near-optimal routes ahead of capacit-
ated field operations. In the future, the proposed methods could be applied to farming machinery
that work with GPS and predefined field tracks, to plan routes and thereby decrease induced soil
compaction.

Keywords:
Capacitated vehicle routing problem, graph theory, precision agriculture, soil compaction, Tabu
search algorithm.
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List of definitions
These are important words and their definitions, as they are used within this research paper.

Application
operation

An agricultural operation where volume is added to the field (e.g.
planting potatoes).

Capacitated
field operations

Operations that involve the flow of material with capacity constraints to
the load of material in the working units bunker.

Collection
operation

An agricultural operation where volume is subtracted from the field (e.g.
harvesting).

Depot A facility for refilling (application operation) or unloading (collection
operation) of the working units bunker, outside of the main field.

Distance
capacity

The distance a working unit can work in normal field paths, starting with
a full bunker, before reaching the bunker capacity.

Edges Lines in a graph based on an agricultural field, representing the
movement between two nodes.

Field path A cultivated path in an agricultural field that is worked in one go, with a
width equal to the smallest working width.

Headland Part of the field that is left open on one side of the main field, to give
space for turns between field paths.

Main field The main part of an agricultural field, with the highest yield. The field
minus the headlands.

Main field
border

The border of the main field, the division of the main field and the
headlands or field boundaries.

Multiplication
factors

Factors in the objective function that weigh the different costs against
each other.

Nodes Points in a graph based on an agricultural field, representing field path
ends (field nodes) and depot positions (depot nodes).

Route The total route of a working unit during a capacitated agricultural field
operation, starting at a depot, working all the field paths with necessary
depot visits in between, and finishing back at a depot.

Spraypaths Special field paths that are purposefully cultivated less than normal
paths, to leave space for the tires of a spray machine.

Turning radius The distance from the midpoint between the two rear wheels of a working
unit and the center of the curvature, while the steerable wheels are at
their maximum steering angle.

Working unit One agricultural unit (e.g. a tractor with a potato planter), which is able
to perform an agricultural operation on its own.

viii



List of symbols
These are important symbols, with their unit and description, as they are used within this research
paper.

↵UT [�] Total change of direction in a U-turn movement.

↵XT [�] Total change of direction in an X-turn movement.

Cd [cm] Distance capacity, the distance a working unit can work in normal field paths,
starting with a full bunker, before the bunker is empty.

dUT [cm] Distance of a U-turn movement parallel to the main field border.

dXT [cm] Distance of an X-turn movement parallel to the main field border.

fHL [-] Headland multiplication factor.

fUT [cm/�] U-turn multiplication factor.

fSP [-] Spray path multiplication factor.

fW [-] Wet multiplication factor.

fXT [cm/�] X-turn multiplication factor.

HL [cm] Distance costs for headland movements.

HLUT [cm] Distance costs for U-turn movements.

HLXT [cm] Distance costs for X-turn movements.

J [m*kg] Total cost of a route in weightmeters.

k [-] Index for the number of performed depot visits so far in route calculation.

kmax [-] Total number of depot visits in a route.

l [-] Distance driven since the last depot visit.

lmax [-] Total distance driven between the previous and the next depot visit.

MF [cm] Distance costs for main field movements.

NPdry [cm] Distances driven in dry parts of normal paths.

NPwet [cm] Distances driven in wet parts of normal paths.

r [cm] Minimal turning radius of center of working unit.

SPdry [cm] Distances driven in dry parts of spraypaths.

SPwet [cm] Distances driven in wet parts of spraypaths.

W [kg] Total weight of working unit.

Wempty [kg] Empty weight, total weight of working unit with empty bunker.

Wfull [kg] Full weight, total weight of working unit with full bunker.

Wbunker [kg] Bunker weight, total weight capacity of bunker, Wfull - Wempty .

WCM [kg/cm] Weight per centimeter, weight applied or collected from the field per worked
centimeter in a normal field path.

workNP [cm] Worked distance in normal paths since the last depot visit.

workSP [cm] Worked distance in spraypaths since the last depot visit.
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1 Introduction

1.1 Context and background

1.1.1 Soil compaction

The most serious environmental problem caused by conventional agriculture is soil compaction
(McGarry, 2003). Globally, 68 million hectares of soil are degraded due to soil compaction, sealing
and crusting. Almost half of this area, 33 million hectares, is situated in Europe, where the main
reason for soil compaction is the use of heavy machinery (Oldeman, 1992). Since the Oldeman
(1992) report, soil compaction has further increased, owing to a growing world population, growing
pressure on food supplies, and ongoing trends towards larger, more powerful machines (Kutzbach,
2000; McPhee et al., 2015).

Soil compaction in arable fields has an indirect negative effect on nutrient uptake by plants
through changes in root configuration (Gliński et al., 1990; Lipiec and Simota, 1994) and root-
soil contact (Veen et al., 1992) and through decreased nutrient storage and supply (Hamza and
Anderson, 2005). It also has an indirect negative effect on fuel consumption; increased bulk density
through soil compaction requires increased pulling force for soil preparation, which wastes energy
and increases fuel consumption (Gan-Mor and Clark, 2001). Furthermore, soil compaction increases
water logging, water runoff, and soil erosion through decreased porosity, soil water infiltration, and
water holding capacity of the soil, with unfavorable environmental pollutions as a result (Hamza
and Anderson, 2005). The effects of soil compaction often show in the form of reduced crop
establishment, growth, quality and yield (Soane and Van Ouwerkerk, 1994).

Solutions to these problems are often sought in reducing pressure on soils. Soil compaction
can be directly reduced using lighter machines or larger tires (Greene and Stuart, 1985) with low
inflation pressures (Douglas, 1994; Hetz, 2001). Tires with low inflation pressure can significantly
decrease soil compaction (Boguzas et al., 2001; Ridge, 2002), whilst high-pressure tires increase
soil compaction (Soane et al., 1982). However, almost all types of agricultural machines generate
pressures above the recommended maximum limits to avoid soil compaction (Hetz, 2001), and
working with low-pressure tires requires wider tires, enlarging the trafficked area (Tullberg et al.,
2007).

A more effective solution is reducing machine traffic, or the number of wheel passes on a soil
(Greene and Stuart, 1985). Research has shown that all soil properties become less favorable after
the passage of a tractor (Chygarev et al., 2000). Decreasing machine traffic is suggested to be the
most effective way to protect soils from structural soil compaction damage (Aliev, 2001).

Besides heavy machinery, soil moisture content largely affects compaction. Soil deformation
does not only increase with the number of wheel passes, but also with the amount of soil moisture
(Bakker and Davis, 1995). An increase in soil moisture content causes a decreased load support
capacity of the soil (Lipiec et al., 2002). In other words; a constant soil pressure has a larger
negative effect on a soil with a higher soil moisture content. Together, heavy machinery and
soil moisture content form the most important soil compaction factors (Aliev, 2001). Therefore,
heavy traffic in areas with relatively high soil moisture content should be minimized, since resulting
compaction would be largest in these areas. Other soil properties also influence susceptibility to soil
compaction, e.g. soil texture and bulk density (Horn and Fleige (2003); Duttmann et al. (2014)).
These are however considered outside the scope of this research, due to their smaller influence.

1.1.2 Path planning

An increasingly popular way to reduce machine traffic is by controlled traffic farming (CTF). CTF is
a system that separates trafficking lanes and crop beds, thereby providing permanent firmed tracks
ideal for trafficking and permanent loose rooting zones ideal for cropping (Tullberg et al., 2007).
CTF reduces machine traffic within the crop beds to a minimum, and restricts soil compaction to
the trafficking lanes (Braunack et al., 1995). This leads to crop beds with improved soil structures,
improved water infiltration and storage, and increased soil organic carbon content, compared to
conventional crop beds (Li et al., 2009). In a study on the impact of CTF on 15 different crops
in Australia, Tullberg et al. (2018) have found that CTF can decrease soil emissions of N2O and
CH4 by 30 to 50%. A CTF system starts with path planning; it is necessary to define the paths
that will consequently be used for trafficking.
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1.1.3 Route planning

An efficient way to even further decrease trafficking, and thus soil compaction, is route planning.
Route planning is the creation of routes by an algorithm that takes a combination of predefined
costs into account (Spekken and de Bruin, 2013). By planning a route before travel, the efficiency
of arable operations can be increased significantly (Taïx et al., 2003; Oksanen and Visala, 2007;
Spekken and Molin, 2012). Palmer et al. (2003) found that route planning before travel could lead
to an average reduction of 16% of the in-field distance traveled.

This study focuses on capacitated agricultural field operations. Capacitated operations are
operations subject to capacity constraints of the bunker of a working unit. Due to these capacity
constraints, the operation may have to be interrupted to visit a depot to either fill the bunker (in
application operations) or empty the bunker (in collection operations). A depot is a facility for
refilling or unloading of the working units bunker, depending on the operation. Agricultural field
operations are often capacitated, e.g. harvesting, where the harvested crop has to be delivered
to a depot, or fertilizing, where fertilizer has to be collected at a depot. In these capacitated
operations, the non-working distance traveled is relatively high, which indicates a high potential
benefit through route optimization (Jensen et al., 2015b). Furthermore, the total weight of the
working unit depends on the load in the bunker, leading to a dynamic induced soil compaction.

Building on a CTF system with predefined tracks, finding an optimal route corresponds to
a route optimization problem. The route optimization problem for capacitated agricultural field
operations can be described as a capacitated vehicle routing problem (CVRP). Dantzig and Ramser
(1959) introduced this problem for the first time, calling it a truck dispatching problem. The CVRP
is an extended form of the more-common vehicle routing problem (VRP); the VRP is the problem
of finding optimal collection or delivery routes from a depot to a number of places, where each
place should be visited only once (Laporte, 1992). This is very similar to the traveling salesman
problem (TSP), but instead of one salesman the VRP can work with several vehicles, therefore
generating several separate routes. The CVRP extends the RVP by adding a maximum capacity
to the vehicles, forcing them to return to the depot when their capacity is reached.

1.2 Current research
In 2014, de Bruin et al. described an approach to optimize the paths within an arable field,
given only the field boundaries as input. Their path optimization service is called GAOS, and the
objective of optimization is to avoid discontinuous field paths and inefficient turns between field
paths. It also incorporates field margins, that might generate additional income through positive
environmental impact and funding. It is successfully being used by farmers in the Hoeksche Waard,
who plan their field paths and margins using GAOS, and use the planned paths in combination
with auto-steering working units.

Oksanen and Visala (2007) also developed a path planning approach. This approach is focused
on irregular shaped fields. The proposed algorithm divides a field into sub-regions, selects the
sequence of those sub-regions, and generates a path that covers each sub-region. Hence, the
algorithm incorporates route planning.

Zhou et al. (2014) proposed another method that is also based on division of a field into sub-
regions. The focus of this approach is not on irregularly shaped fields, but on fields with obstacles.
They also incorporated a route planning optimization connecting all the sub-regions in a specific
order, though the routes are not optimized within those sub-regions.

Bochtis and Vougioukas (2008) developed an algorithmic approach for computing a route
through parallel field paths. In this algorithm, the non-working distance traveled by a work-
ing unit performing an agricultural field operation is minimized. Non-working distance involves all
distances traveled between two worked field paths or between a field path and a depot. The route
traversing through all the field paths is expressed as a route through a weighted graph. Each node
in this graph corresponds to a single field path, and each edge holds the weight assigned to the
movement between field paths. The shortest tour through this graph resulted in the optimal path
traversal order. In experimental results, they found that their algorithm could create routes that,
when compared to the routes selected by farmers themselves, saved up to 50 % of the non-working
distance traveled.

Jensen et al. (2015a) developed a route optimization algorithm specifically for capacitated field
operations, thus incorporating intermediate visits to a depot. The optimization in their algorithm
is also based on minimizing non-working traveled distance. This route optimization algorithm
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incorporates half worked paths, and turns within the main field. During tests of the algorithm,
they found savings in the non-working traveled distance from 15.7% up to 43.5%.

1.3 Problem definition
So far, we can conclude that heavy traffic in fields should be minimized, particularly in moist
areas, in order to minimize further soil compaction. Path planning and applying a CTF system
is a proper method to decrease soil compaction within the rooting zones. A logical next step to
minimize overall soil compaction is route planning through these paths, especially for capacitated
field operations due to the dynamic weight of the working unit.

In the last decades, numerous researches have been conducted on route planning through field
paths in an agricultural field. However, no research has been found that focuses on soil compaction,
and incorporates areas with higher vulnerability (e.g. wet areas) and the weight of the working unit.
This thesis research has addressed agricultural in-field route planning, with a focus on minimizing
soil compaction, whilst accounting for moist areas with higher vulnerability for soil compaction.
The tackled problem was defined as follows; there is need for routes for capacitated agricultural
field operations that minimize soil compaction by dealing with the two most important compaction
factors, heavy machinery and soil moisture content.

1.4 Research objective and questions
The objective of this research is to determine an optimal route for capacitated agricultural oper-
ations over predefined field tracks given local differences in susceptibility to compaction (e.g. wet
spots).

This objective has been achieved by answering the following research questions:

• What defines an optimal route for capacitated operations under spatially varying field cir-
cumstances?

• What optimization algorithm is best suited for finding such routes?

• Do test-case results of selected fields show an improvement over conventional routing?
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2 Methods
This chapter explains in detail the methods used to tackle the research objective. The methods
will be dealt with per research question.

2.1 Definition of an optimal route
A prerequisite for producing an optimal route is the definition of an optimal route. In this study,
the aim of optimization is to reduce soil compaction in the field. An optimal route is therefore
defined as a route with minimal induced soil compaction. During most agricultural field operations
all paths in the field have to be worked. For capacitated agricultural field operations, this work
may have to be interrupted to visit a depot. In this research the term "route" refers to the total
route of a working unit during such an operation, starting at a depot, working all the field paths
with possible depot visits in between, and finishing back at a depot.

Such a route consists of numerous movements. Every movement within a route is assigned a
cost, related to the induced soil compaction during that movement. The sum of the costs of all
movements in a route is a proxy for the induced soil compaction, and thus the optimality of a
route. The process of planting potatoes is chosen as a proof of concept capacitated agricultural
field operation for this research, although the methods are applicable to all capacitated agricultural
field operations performed by a single working unit.

The considerations and choices made during the process of defining an optimal route are ex-
plained in full detail in the following sections.

2.1.1 Graph presentation of fields

The costs for all possible movements in an agricultural field are stored in a weighted graph. Trans-
lating the movements in a field to a graph gives rise to many opportunities for algorithmic route
calculations, e.g. shortest path calculations. Previous researches on route calculations within ag-
ricultural fields have been successfully performed by analyzing the costs of different routes within
a weighted graph, and are used as sources of inspiration for this approach (e.g. Bochtis and
Vougioukas (2008), Jensen et al. (2012)).

The created graph exists of nodes and edges. The nodes represent field path ends (field nodes)
and depots (depot nodes), and the edges represent the movements of a working unit between those
locations. Nodes store the coordinates of the position they represent, and identifiers for the field
path or depot they represent. Edges store the costs ascribed to the movements they represent and
the amount of work to be done during that movement if the edge represents a movement through
a field path.

All edges are categorized as main field movements or headland movements. The main field is
the main part of an agricultural field, containing the field paths, and delivering the highest yields.
Main field movements are movements through field paths in the main field. Headlands are parts
of the field left open around the main field, to give space for turns between field paths. Due to
the numerous turns performed in headlands, the soil characteristics in headlands are less favorable
than in the main field, instigating lower yields. Typically, a field consists of two separate headlands
on two opposite sides of the field. The methods in this study do not accept fields with more than
two headlands. Headland movements can take place between two path ends on the same side of
the field or between a path end and a depot. The nodes representing field path ends also represent
the border between main field and headland. All movements in the headlands are considered
non-productive in this study, i.e. the working unit does not perform an operation during these
movements. In practice, operations are commonly performed in the headlands after (in application
operations) or before (in collection operations) the operation is performed for the entire main field,
creating new field paths in the headlands. Due to the smaller size and importance of the headlands,
route calculations through field paths in headlands are considered outside the scope of this study.

Necessary input data for the creation of this graph are the exact locations of field paths, depots,
and wet areas within an agricultural field. For the field paths, it is necessary to know which of
the paths are spraypaths. Figure 1a shows a map with these data for a simple agricultural field,
with only seven paths and one depot. A relatively large wet area is defined in the main field. This
hypothesized field, Test field 1, is used for testing purposes in a later stage of this research. Figure
1b shows the graph version of the same field.
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(a) Map of Test field 1. (b) Representation of graph of Test field 1.

Figure 1: A schematic map of Test field 1, a hypothetical agricultural field, and a representation
of the weighted graph based on the same field.

Edges created to represent the main field movements are based directly on the field paths, given
as input data. However, the input data do not contain information on the paths followed during
headland movements. Edges created to represent the movements in the headlands are therefore
based on the node positions. All nodes on one side of the main field are connected to each other
with edges, representing all possible headland movements. This is based on the assumption that
a working unit has to traverse a path in the main field to move from one side of the field to the
other side of the field. In the example shown in Figure 1b. this leads to headland edges between
nodes 0, 2, 4, 6, 8, 10, and 12 on one side, and nodes -1, 1, 3, 5, 7, 9, 11, and 13 on the other side
of the field.

This means that a working unit has three possible movements when it is positioned at a field
node. It can move through the field path towards the other side of the main field, it can move to
a different field node on the same side of the field, or it can move to a depot positioned on that
side of the field. When a working unit leaves a depot it can only move to a field node on the side
of the field where the depot is at.

2.1.2 Soil compaction criterion

Distance traveled and weight of the working unit are the two overarching factors to be minimized
in this research, especially in the wet areas, which are more susceptible to soil compaction. A
larger weight of the working unit, as well as more distance traveled in the field, causes larger soil
compaction.

The costs stored in the graphs edges represent the costs for traveled distance of a movement.
These distance costs are made up of five types of distances. These different types were identified
to give different costs to different types of movements, depending on the induced soil compaction.
The five types of distances are distance in the main field, distance in spraypaths, distance in wet
areas, distance in headlands, and turns. The distance cost for distance in the main field is taken
as starting point; the costs of the other four types of distances are weighed against this cost using
multiplication factors. For every edge these five distance costs are summed and stored.

The costs for the weight of the working unit is incorporated on the fly during the route calcula-
tions. It is not stored in the edges, because it cannot be known in advance since it depends on the
route taken during the operation. It changes during the process of working field paths. During a
collection operation the weight increases, and during an application operation the weight decreases
when working a path. Owing to this change of weight during an operation, the cost for the weight
of a working unit cannot be stored in the edges as a constant value. Planting potatoes, which
is chosen as a proof of concept operation during this research, is an example of an application
operation.

During the route calculations, the costs stored in the graphs edges are multiplied with the
instantaneous weight of the working unit. Summing these values for an entire route leads to a
total soil compaction value, defined in weightmeters [m*kg]. This cost unit is proposed upon
consultation of farmers in the Hoeksche Waard. The weightmeters of a route are used as a soil
compaction criterion, making different routes comparable. The optimal route is the route with the
least weightmeters. The weightmeters of a route are calculated using a weighted sum objective
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function, as will be explained in section 2.1.8. The following sections will first describe how the
distance costs are computed, based on simplifications of actual movements.

2.1.3 Distance in the main field

Most distance is traveled in the main field, as the main field comprises the largest part of a field.
Therefore, the costs for these distances are taken as a starting point. They are simply calculated
as the distance traveled through the main field, or through the field paths. Unfortunately these
costs are most difficult to minimize, since all paths have to be worked exactly once. The distance
driven in the main field is thus at least equal to the sum of the lengths of all paths in the main
field. The main field distance increases if the working unit has to visit a depot, and has to pass
through the main field on its way there, without working. The path passed in such a case will be
traversed at least twice during this route. This demonstrates how minimization of the main field
distance is involved.

The distance driven in the main field is composed of distance in normal paths and distance in
spraypaths, and of distance in dry areas and distance in wet areas. In spraypaths and in wet areas
the costs are multiplied with an appropriate multiplication factor.

2.1.4 Distance in spraypaths

Most field paths are identified as normal paths. Some paths are however spraypaths. These paths
are purposefully cultivated less than normal paths, to leave space for the tires of a spray machine.
In a CTF system, these paths provide easy traffic through the main field. Consequently, these
paths produce lower yields. Costs for distances traveled through spraypaths are therefore lower
than costs for distances through normal paths. This is achieved by multiplying distances through
spraypaths with a spraypath multiplication factor, fSP [-]. The value of this factor is user-defined,
and depends on the amount of work done in spraypaths. It is common use to plant half the amount
of a normal path in a spraypath, as explained by farmers from the Hoeksche Waard. This leaves
more space for the spray machine to traverse the path, whilst still producing yield. In such cases
fSP would be set to 0.5, making costs for distances in spraypaths half as heavy as costs for distances
in normal paths.

2.1.5 Distance in wet areas

Besides normal paths and spraypaths, the distances in the main field are classified as distances
through dry or wet areas. As areas with higher soil moisture content are more susceptible to
soil compaction, the distance costs through wet areas are considered higher than distance costs
through dry areas. This is where the input wet areas are used. These input files come in the form
of shapefiles, indicating areas within the main field that are considered wet, in comparison to the
rest of the field. Field paths, both normal paths and spraypaths, can intersect with these wet areas.
The distance cost for the intersecting part of a field path is multiplied with a wet multiplication
factor, fW [-]. This factor is again user-defined, because the wetness of the wet areas depends
largely on the season, and can be different for each field. However, it should always have a value
higher or equal to one (cost of distances through dry areas).

The costs stored in field edges, representing movements through field paths are calculated using
Equation 1. In this equation, all distances in the main field come together to one total cost value,
MF [cm], calculated for every field edge. NPdry and NPwet are the distances driven in dry and
wet parts of normal paths [cm], respectively, and SPdry and SPwet are the distances driven in dry
and wet parts of spraypaths [cm], respectively. fSP is the spraypath multiplication factor [-], and
fW is the wet multiplication factor [-].

MF =
�
NPdry + fWNPwet

�
| {z }

normal paths

+ fSP

�
SPdry + fW SPwet

�
| {z }

spraypaths

[cm] (1)
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2.1.6 Distance in headlands and turns

Headland movements take place between two field nodes, and between field nodes and depot nodes.
Due to the large number of movements in headlands during field operations, these parts of the route
offer much room for reduction of traffic, and thus reduction of soil compaction. The distance costs
for headland movements are calculated separately from distance costs for main field movements,
because of the lower yield and importance of headlands in agricultural fields. By separating the
costs, the costs for headland movements can be weighed against the costs for main field movements
with a multiplication factor. In most cases in this study the headland movements got a lower cost
than the main field movements.

Almost all headland movements require a turning motion. Movements between two field paths
require a turn of at least 180 degrees. In this research, all edges representing headland movements
are classified as movements that can be made using a single bend, referred to as U-turns, and
movements that require reverse driving, which are known as fishtail turns, or X-turns. Figure
2 illustrates these two types of turns. A U-turn is preferred over an X-turn for minimizing soil
compaction because of the smaller traversed distance and less maneuvering Sabelhaus et al. (2013).
An X-turn is therefore only used when a U-turn is not possible. Other possible turns, such as omega
turns, are left out of this research for sake of simplicity. They could however be implemented in a
similar way as X-turns.

Feasibility of U-turns is restricted by the minimal turning radius of the working unit. If the
length of a headland movement is shorter than twice the turning radius, a U-turn is not possible,
and an X-turn is necessary. Which of the two (U-turn or X-turn) will be executed is thus determined
by the turning radius of the working unit and the length of the headland movement.

(a) U-turn (b) X-turn

Figure 2: Considered head-
land turns between two field
paths.

In this thesis, edges that connect field paths to depots
are always modeled as U-turns. This is because the de-
pots have unknown orientation. It was therefore impossible
to determine what would be the true path between a de-
pot and the main field. For simplicity it is assumed
that the depots can be reached from the field paths in a
straight line, and vice versa, so that X-turns are not neces-
sary.

The costs of headland movements as stored in the headland
edges comprise a distance part and a turn factor. The distance
part is an approximation of the length of the path of the actual
movement. This approximation of the distance uses the distance
of the actual movement parallel to the main field border, the total
change of direction during the actual movement, and the turning

radius of the working unit. The turn factor is added for two reasons. The first is to compensate
for the extra soil compaction caused by turning movements compared to straight movements. The
second is to give a higher preference to one of both types of turns, depending on field characterist-
ics or on future research on differences in impact. The turn factor is based on the approximated
total change of direction of the represented headland movement. In order to calculate the costs for
headland movements it is thus necessary to know the distance parallel to the main field border d

[cm], the total change of direction ↵ [�], and the turning radius of the working unit r [cm]. The
turning radius r is constant throughout a route, whereas d and ↵ are calculated for every movement.

Figure 3: Legend for Figures 4, 5, 6, and 7.

The distance parallel to the main field bor-
der is calculated using the field nodes, repres-
enting the field path ends. During a head-
land movement between two field paths, sev-
eral field paths can be passed. The distance
traversed during this movement parallel to the
main field border is calculated as the sum of the
distances between the path ends of all passed
field paths. This is equal to the sum of the dis-
tances between the passed nodes. For a move-
ment between a field node and a depot node,
the distance d is assumed to correspond to the
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euclidean distance between the two.
Total change of direction is calculated using the original driving direction, the change of dir-

ection within the headland movement, and the final driving direction. For headland movements
between two field paths, the original and final driving directions are parallel, but exactly opposite.
The change of direction is thus at least 180�. It can be larger if the approached main field border is
curved, due to field paths with different lengths, as depicted in Figure 4. For movements between
a field path and a depot, the direction of the working unit at the depot is unknown; for these
movements ↵ is simply the difference between the direction in the field path and the direction of
the edge inserted between the field path and the depot.

Figure 4: Schematic representation of a headland where the total change of direction in a movement
between N1 and N2 is larger than 180�, equal to 2 ⇥ 90 + 4 ⇥ 40 = 340�. See Figure 3 for the
legend.

Figure 5: Schematic representation of a
typical U-turn movement between two
field paths. See Figure 3 for the legend.

U-turns A typical U-turn movement is detailed in
Figure 5. In this example, a working unit leaves a field
path on the left side, makes a turning movement in the
headland (1), followed by a straight movement (2), and
a second turning movement (3), after which it re-enters
the main field in a different field path on the right side.
The distance parallel to the main field border is labeled
d. The approximated changes of direction of the two
turning movements are labeled ↵1 and ↵2 , and are both
equal to 90�.

Equation 2 shows how the distance costs for a head-
land movement classified as U-turn are calculated. In
this equation, dUT is the distance of a U-turn movement
parallel to the main field border [cm], r the turning ra-
dius of the working unit [cm], ↵UT the total change of direction of the U-turn movement [�], and
fUT the U-turn multiplication factor [-].

HLUT = dUT + (⇡ � 2)r
↵UT

180| {z }
distance part

+ fUT ⇤ ↵UT| {z }
turn factor

[cm] (2)

The calculation of the distance part can be explained by means of Figure 5. For the example in
this figure, ↵UT is the sum of ↵1 and ↵2 , which is 180�. The length of both turning movements
(1 and 3) together is calculated with 2⇡r↵UT

360 , or ⇡r
↵UT

180 . For the example, with ↵UT = 180�, this
is simply ⇡r.

The length of the straight movement (2) is equal to d minus the lengths of movements 1 and
3 parallel to the main field border. With ↵1 = ↵2 = 90�, these lengths are equal to the turning
radius r. The length of movement 2 is thus d� 2r.

The total distance traveled in the movement in Figure 5 is therefore d�2r+⇡r, or d+(⇡�2)r.
This formula has been generalized to scale with the total change of direction, by multiplying the
second part of the formula with ↵UT

180 , leading to the distance part as it is in Equation 2. This is
a simplification based on the simple example U-turn in Figure 5. The formula applies to U-turns
with ↵UT close to 180�, or fields with close to straight main field borders. Calculating a more
generically applicable equation was considered beyond the scope of this thesis research.
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Figure 6: Schematic representation of a
typical X-turn movement between two
field paths. See Figure 3 for the legend.

X-turns A typical X-turn movement is detailed in
Figure 6 . In this example, a working unit leaves a field
path on the left side, makes a turning movement in the
headland (1), followed by a straight movement (2), and
a second turning movement (3), after which it re-enters
the main field in a different field path on the right side.
The distance parallel to the main field border is labeled
d. The approximated changes of direction of the two
turning movements are labeled ↵1 and ↵2 , and are both
equal to 90�.

Equation 3 shows how the distance costs for a head-
land movement classified as an X-turn is calculated. In
this equation, dXT is the distance of an X-turn move-
ment parallel to the main field border [cm], r the turning
radius of the working unit [cm], ↵XT the total change of direction of the X-turn movement [�], and
fXT the X-turn multiplication factor [-].

HLXT = 2r � dXT + ⇡r
↵XT

180| {z }
distance part

+ fXT ⇤ ↵XT| {z }
turn factor

[cm] (3)

The movement is very similar to the U-turn movement in Figure 5. The calculation of the distance
part is therefore also very similar to the calculation for the U-turn. The main difference is however
that the two turning movements (1 and 3) in Figure 6 overlap, and that the straight movement (2)
is in the opposite direction, performed in reverse. For the example in this figure, ↵XT is the sum
of ↵1 and ↵2 , which is again 180�. The length of both turning movements (1 and 3) together is
calculated with 2⇡r↵UT

360 , or ⇡r
↵UT

180 . For the example, with ↵UT = 180�, this is simply ⇡r.
The length of the reverse movement (2) is however different. It is not equal to d minus the

lengths of movements 1 and 3 parallel to the main field border, as with the U-turn. Instead, it
is equal to the opposite; the lengths of the movements 1 and 3 parallel to the main field border
minus d. The length of movement 2 in Figure 5 is thus 2r � d.

The total distance traveled in the movement in Figure 6 is therefore 2r� d+ ⇡r. This formula
has been generalized to scale with the total change of direction, by multiplying the third part of
the formula with ↵UT

180 , leading to the distance part as it is in Equation 3. This is a simplification
based on the simple example X-turn in Figure 6. The formula best applies to X-turns with ↵UT

close to 180�, or fields with close to straight main field borders. Calculating a more generically
applicable equation was considered beyond the scope of this thesis research.

Figure 7: Schematic representation of a
typical U-turn movement between two
field paths. See Figure 3 for the legend.

Movements to/from depot A typical headland
movement to visit a depot is shown in Figure 7. In this
example, a working unit leaves a field path on the left
side, makes a small turning movement into the headland
(1), followed by a straight movement (2), after which
it arrives at the depot on the right side. The distance
d does not represent the distance parallel to the main
field border, but rather the euclidean distance between
the path end of the field path and the depot position.
The approximated changes of direction of the turning
movement is labeled ↵.

This movement, as well as all other possible move-
ments between a field path and a depot, is classified as
a U-turn movement. The calculations for the costs of
this movement are exactly the same as with a U-turn
movement, as shown in Equation 2, except for the fact
that dUT in these cases represents the euclidean distance
between the field path end and the depot position, as
explained earlier.

The total costs of headland movements can be calcu-
lated with Equation 4, which combines Equation 3 and Equation 2, and multiplies them with the
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headland multiplication factor fHL[-]. The headland factor is incorporated to make the influence
of headland movements on the total costs of a route variable. Due to the lower yields of headlands,
compared to the main field, the headlands are often regarded as less important than the head-
lands. CTF systems are also focused on decreasing soil compaction in the main field (Bochtis and
Vougioukas, 2008). Therefore, the headland factor is most often set smaller than 1, to make the
influence of headland movements on the total costs of a route smaller than the influence of main
field movements.

HL = fHL

�
HLUT + HLXT

�
[cm] (4)

2.1.7 Weight

A necessity for calculating the weightmeters of a route is to know the total weight of the working
unit at every moment, depicted by W [kg]. Full weight Wfull [kg], empty weight Wempty [kg],
and distance capacity Cd [cm] are input data for the weight calculation. The full and empty
weight are the total weight of the working unit with a full and empty bunker, respectively. The
distance capacity represents the distance that a working unit can work in normal paths before the
bunker is empty, when starting with a full bunker. From these input data, the decrease in weight
per distance worked in normal paths, WCM [kg/cm], is calculated. WCM is an abbreviation of
weight per centimeter, and is calculated using Equation 5. WCM is different for distance worked
in spraypaths, since the amount of work done in spraypaths is different compared to normal paths.
Therefore, the distance worked in spraypaths is first multiplied with the spraypath multiplication
factor, fSP [-]. The the total weight of the working unit at the start of a route and after visiting
a depot is assumed to be equal to the full weight Wfull . This leads to Equation 6, where W is the
total weight of the working unit [kg] and workNP and workSP [cm] are the worked centimeters
since the last depot visit in normal paths and spraypaths respectively.

WCM =
�
Wfull �Wempty

��
Cd [kg/cm] (5)

W = Wfull �WCM
�
workNP + fSPworkSP

�
[kg] (6)

2.1.8 The objective function

The six factors distance in the main field, distance in the headlands, distance in spraypaths,
distance in wet areas, turns, and weight are summarized in the weighted sum objective function
J , where J equals the total weightmeters of a route [m*kg]. J is a combination of Equations 1,
4, and 6. The equation used to calculate J is shown in Equation 7. Figure 8 gives a schematic
overview of this weighted sum objective function.

J =
1

100

k=kmaxX

k=0

 
l=lmaxX

l=0

�
W (MF +HL)

�
!

[m*kg] (7)

In this equation, k is an index for the number of performed depot visits so far, with kmax being
the total number of depot visits in a route. l represents the distance driven since the last depot
visit [cm], with lmax being the total distance driven between the previous and the next depot visit.
When l = 0, the weight W is always equal to Wfull . When l = lmax , the weight W is always
close or equal to Wempty . With every depot visit in a route, k is incremented with 1 and l is reset
to 0. For every centimeter in a route, W (MF +HL) is calculated, and added to the grand total
J . After dividing the total sum through 100, J is equal to the total weightmeters of a route [m*kg].

10



Figure 8: Schematic overview of Equation 7. The multiplication factors weigh the different costs
against each other, and correct for differences in unit. The weight (W ) is a dynamic cost, calculated
on the fly during route calculations.

2.1.9 Implementation

This objective function is implemented in a Python script. Input data consists of two shapefiles;
one with lines of field paths and lines at depot positions, and one with shapes of wet areas within
an agricultural field. For the field paths, it is necessary to know which of the paths are spraypaths.
Figure 1a shows a map with these input data for Test field 1. Other important input data is a path
order, which defines an ordered set of field paths to be worked. The created script automatically
generates a graph from these data, using the Python package NetworkX.

For every path line, two nodes representing the path ends are added to the graph, with stored
coordinates of these path ends (field nodes). For every depot line a node representing the depot
position is added, with stored coordinates of the center of this line (depot nodes).

Edges are created between field nodes representing the same field path, between neighboring
field nodes on the same side of the field, and between field nodes and depot nodes on the same side
of the field, if present. For all of these edges, information is stored on the position (headland or
main field), whether it represents a move through a spraypath (true or false), whether it represents
a move through a wet area (true or false), and the euclidean distance between the two nodes it
connects.

This first graph is used as a starting point for the calculations of the actual cost graph. The
edges represent all possible paths that a working unit can follow. The cost graph is a simpler
graph, stored as a Python dictionary. The cost graph contains the same nodes as the first graph,
but it is a fully connected graph, i.e. all nodes are connected with each other. Furthermore, it is
a directed cost graph, which means that an edge can have different costs for both directions.

The first graph is used to calculate the shortest route between each pair of nodes in the cost
graph. This is why the NetworkX package was used for the first graph; the NetworkX package has
a Dijkstra shortest path calculation built in. For every combination of nodes in the cost graph,
the edges traversed in this shortest path are stored, to present the actual path followed between
two nodes. In these shortest path calculations, the distances through spraypaths get 20% of the
weight of normal field paths. This ensures that spraypaths are chosen when the main field needs
to be traversed without working, e.g. when a depot visit is necessary.
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The information stored in the edges and nodes of the first graph is used to calculate distance
costs for every possible movement, using Equations 1 and 4. This whole process takes place
autonomously; in order to calculate the costs between two nodes in weightmeters, the Python
script identifies which part of the shortest route takes place in a headland, what type of turn is
necessary, what part takes place in the main field, and what the costs are for every part of the
movement. The total distance costs are stored in the edges of the new cost graph.

For edges representing movements through the main field, where work is performed, the cost
graph not only stores the distance costs but also the influence that the performed work has on the
total weight of the working unit.

The combination of changing weight during work done in field edges and the fact that these
edges can intersect with wet areas requires the cost graph to be directed. Due to the changing
weight, the exact location where a field edge intersects with a wet area has a large influence on
the total cost in weightmeters of working an edge. The total costs thus depend on the direction
in which the edge is worked. These total costs of working an edge through a wet area are also
calculated automatically.

The cost graph is used to calculate the weightmeters of an entire route, using Equation 7, by
calculating the weight for every moment within a route and multiplying the stored distance costs
with the weight of the working unit. These costs are calculated instantaneously while the route is
generated.

A total route is stored as an ordered list of visited nodes. A route always starts and finishes
at a depot node. Starting in a depot node, the route is based on the input path order. The paths
defined in the path order, as well as the shortest routes between these paths, are stored in a list of
the total route. A consecutive path in the path order is always added to the list starting with the
path node on the same side of the field as where the previous node in the route was.

A depot visit is always and only added to the route if either the next path in the given order
cannot be incorporated in the route anymore without reaching the distance capacity, Cd, or because
all paths from the path order are already incorporated in the route. When a depot visit is necessary
the number -999 is stored in the total route. This number functions as a label, to distinguish the
working process from the depot visit. A field edge incorporated in the route between the label -999
and a depot node is thus not worked, but simply traversed to reach the depot. After adding this
label, a move to the depot that can be reached with the least costs is added to the route.

An example of a part of a route through the graph of Test field 1, shown in Figure 9, is [ -1,
1, 0, 2, 4, 5, 7, 9, 8, -999, 10, 12, 13, -1 ]. In this example, the route suggests that a working unit
would start at depot node -1, work three paths in the main field, finishing at node 8, and from
there move back to the depot, traversing the main field through the spraypath.

The weightmeters of all moves in the generated route are calculated and summed up on the
fly. The two outputs of the Python script are a route, stored as a list of nodes and labels, and the
costs of the route in weightmeters, stored as an integer value.

2.1.10 Testing

So far, the created Python script takes an agricultural field with or without defined wet areas as
input, together with a number of defined input variables and a given path order, to calculate the
best route and the costs in weightmeters. This Python script was tested on a hypothetically small
test field, called Test field 1, with only seven paths in the main field. Its small size made it possible
to perform an exhaustive search approach to find the true optimal route. Figure 9 shows the graph
created based on Test field 1, with the nodes projected according to the coordinates of the path
ends and the depot positions.
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Figure 9: Graph representation of Test field 1, with labels in field edges representing path order
of test route.

The graph of Test field 1 was used to test the influence of the multiplication factors in the
objective function. The objective function has five multiplication factors incorporated as input
variables; the spraypath multiplication factor fSP [-], the wet multiplication factor fW [-], the
headland multiplication factor fHL [-], the U-turn multiplication factor fUT [cm/�], and the X-
turn multiplication factor fXT [cm/�]. Every multiplication factor is assigned a different weight.
All assigned weights together is called a weighting scheme. These weights are variable, and the
exact weighting scheme should be tailored to represent prevalent field conditions.

Six scenarios with individual weighting schemes were designed, to test the sensitivity of the
objective function to changes in the multiplication factors. Table 1 shows an overview of the six
scenarios and the corresponding weighting schemes.

Scenario 1 is a basic scenario, where the spraypath multiplication factor fSP is equal to the
work done in spraypaths compared to normal paths, where the distances in wet areas get a slightly
higher weight than the distances in dry areas, where fUT and fXT are both equal to 1, adding a
cost of 180 to the distance part of standard 180� turns, and where the headland movements have
80% of the influence of main field movements.

Scenario 2 is a scenario in which U-turns have a strong preference over X-turns, whilst in scen-
ario 3 X-turns have a strong preference over U-turns. These scenarios were set up to represent
personal preferences of farmers; Jacob van den Borne prefers to use mainly X-turns (personal
communication, February 16, 2018), whereas Gert Oudijk strongly prefers U-turns (personal com-
munication, February 9, 2018).

Table 1: The six weighting scheme scenarios set up to test the influence of the five different
multiplication factors in the objective function.

fSP fW fUT fXT fHL

1. Basic 0.5 1.3 1 1 0.8
2. Go UT 0.5 1.3 0.5 6 0.8
3. Go XT 0.5 1.3 6 0.5 0.8
4. Dry 0.5 1 1 1 0.8
5. Wet 0.5 2 1 1 0.8
6. No HL 0.5 1.3 1 1 3

In scenarios 4 and 5 fW is changed; scenario 4 is a dry scenario, where the wet areas are
assumed to have dried and have no added influence compared to dry areas, whilst scenario 5 is a
very wet scenario, in which driving through wet areas has a cost that is twice as high as the costs
in dry areas. These scenarios were set up to represent different field conditions, depending on the
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weather.
Scenario 6 is a scenario in which headland movements are far more important for the objective

function than main field movements; in this scenario the headland movements cost 3 times as much
as the main field movements. This scenario was set up to test the influence of fHL, and to test
whether a higher value of fHL would move the focus of optimization more towards headland turns,
and less on wet areas.

The six defined weighting scheme scenarios in Table 1 are tested on Test field 1 using seven
defined movements and a test route. The movements are defined in Table 2. These movements are
chosen to comprise the most common movements in agricultural fields. For each weighting scheme
scenario the costs of these movements are calculated.

The defined test route was used to calculate the weightmeters of an entire route for each
weighting scheme. The path order is shown in Figure 9, as the edge labels refer to the worked
order. This defined path order generates a route starting in the depot, working the most upper path
(spraypath), the most center path (wet), and the lowest path first, with all U-turns in between.
Then the route leads back up towards the spraypath through the paths it skipped at first, with all
X-turns in between, finishing the work in the path between node 10 and 11, after which it leads
back to the depot. Due to the small size of the test field there is no intermediate depot visit in
this route.

Finally, using an exhaustive search route planning approach, the optimal route was calculated
for each weighting scheme.

The parameters for the objective function, Wempty , Wfull , Wbunker , Cd , WCM , and r, were
based on inputs of farmers Gert Oudijk and Jacob van den Borne to be realistic with true values.
The total weight W at the start of each movement is set to 8,000 kg.

Table 2: Seven common movements defined
to compare the six weighting scheme scen-
arios. Node numbers (From/to) correspond
to numbers in graph representation in Figure
9.

From/to Represents

6 , 12 U-turn
6 , 10 X-turn, long
6 , 8 X-turn, short
1 , -1 Depot visit, long
13 , -1 Depot visit, short
2 , 3 Working a dry path
8 , 9 Working a wet path

Table 3: Input parameters for the objective
function used on Test field 1 and Test field
2 (introduced in section 2.2.2). Parameters
are based on data supplied by farmers.

Test fields 1 & 2

Wempty [kg] 7,150
Wfull [kg] 8,850
Wbunker [kg] 1,700
Cd [cm] 166,500
WCM [kg/cm] - 0.0102
r [cm] 400

2.2 Route optimization algorithm
Finding the optimal route to work all paths in a field is close to impossible for a normally sized
field, since this capacitated vehicle routing problem is an NP-hard problem (Bakhtiari et al., 2012).
An exhaustive search method calculates the objective function for all possible path orders. The
number of possible path orders is equal to n!, with n being the number of paths in a field.

Therefore, the second research question aimed to find an efficient optimizer for the objective
function. A route optimization algorithm should be able to find a near-optimal route within a reas-
onable time, by searching possible path orders in an efficient way. Numerous different optimization
algorithms have been applied to (C)VRP’s in previous researches. Four of them were identified and
compared, in order to find the one that best suits this implementation of the CVRP. These four are
used often in previous researches or seemed promising. The four identified optimization algorithms
are the ant colony optimization algorithm (e.g. Bell and McMullen (2004); Bakhtiari et al. (2012)),
the Tabu search algorithm (e.g.Barbarosoglu and Ozgur (1999); Cordeau and Laporte (2005)), the
Clarke-Wright savings algorithm (e.g. Altınel and Öncan (2005)), and the genetic algorithm (e.g.
Baker and Ayechew (2003)). Table 4 gives an overview of the comparison.

This comparison was based on three points:
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• Scopus search results ’CVRP + name algorithm’

For this comparison, three searches were performed on scientific literature search engine
Scopus. For each of the four chosen optimization algorithm, a search was performed, reading
’capacitated vehicle routing problem’ followed by the full name of the optimization algorithm.
These searches produced different counts of results, used as a measure for the implementab-
ility of the algorithm in the capacitated vehicle routing problem.

• Performance in (C)VRP

Extensive literature gave an idea of the performance of the optimization algorithms in differ-
ent researches on the (capacitated) vehicle routing problem. The Tabu search jumped out as
best performing algorithm, owing to the comparison by Laporte et al. (2000), who performed
benchmark tests on different algorithms for the VRP. They found the best results with the
Tabu search algorithm. They also found that calculations using the Clarke-Wright algorithm
were fast, but results were highly unstable.

• Implementable in Python script

The third point compared on-line available packages and implementations of the different
optimization algorithms in Python. The most implementations were found for the Clarke-
Wright algorithm and the Tabu search algorithm. These implementations were often well
documented, in contrast with the found genetic algorithm implementations, which were ex-
tensive and unclear.

Table 4: Comparison of four optimization algorithms interesting for this research; ant colony
optimization (ACO), Tabu search algorithm (TSA), Clarke-Wright savings algorithm (CWSA),
and genetic algorithms (GA). In the second and third comparison, the range goes from - - (very
bad) to ++ (very good), with 0 as center (normal).

ACO TSA CWSA GA

Scopus search results ’CVRP + name algorithm’ 97 103 36 168
Performance in (C)VRP + ++ - +
Implementable in Python script + ++ ++ 0

From this comparison, the Tabu search algorithm was chosen as the most suitable optimization
algorithm for this research. Tabu search starts with an initial solution, after which it generates
similar candidates, called neighbors, and moves to the best candidate at every iteration. To avoid
getting stuck in a local minimum, candidates that were recently tested are tabu for a number of
iterations, and are stored in a tabu list. (Laporte et al., 2000)

Numerous Python implementations of the Tabu search heuristic are available on-line. One of
these, by Panyam, was a direct python implementation of the Tabu search algorithm presented in
the book ’Clever Algorithms: Nature-Inspired Programming Recipes’, by Brownlee. This made
the script easy to understand and implement in a Python script, and adapt to work with the script
of the objective function.

2.2.1 Implementation

Figure 10 gives a schematic overview of the Tabu search algorithm as it was implemented in the
Python script. The cost graph created from a field with the first Python script is the main input of
this second script. Besides the cost graph, three meta parameters are essential to determine how
the algorithm performs; the number of iterations, the number of candidates, and the maximum
length of the tabu list. The main output is the least cost path order found, with corresponding
route and weightmeters.

The Tabu search algorithm starts by creating an initial path order from the field paths in the
graph. For this initial path order, the objective function calculates the route and the weightmeters.
The resulting route and weightmeters, together with the path order, are stored as the overall best
result. The path order is also stored in the tabu list.

For every iteration, a given number of candidate path orders is created. Every candidate within
an iteration is based on the best candidate of the previous iteration, with the candidates of the first
iteration based on the initial path order. New candidates are created with a stochastic 2-opt local
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Figure 10: Schematic overview of the Tabu search algorithm as implemented in the Python script.

search process. This process takes two randomly chosen paths in a given path order, and reverses
the order of the paths in between these two paths. Figure 11 gives a graphical presentation of this
search process. Using this process, the Tabu search algorithm always searches in the neighborhood
of the best solution of the previous iteration.

Figure 11: Graphical presenta-
tion of stochastic 2-opt local search
process (Panyam).

For every candidate, the objective function is calculated,
using the first Python script. The least cost path order within
an iteration is stored in the tabu list. If the maximum length
of the tabu list is reached, the oldest path order is removed
from the list. The stochastic 2-opt local search process uses
the tabu list as input; new candidate path orders are rejected
if they are already present in the tabu list. This prevents the
algorithm from getting stuck in a local minimum, though it is
possible to return to the same minimum once the path order
is removed from the list again.

The overall best path order, with corresponding route and
weightmeters, is updated once a candidate has a lower cost

than all previous candidates. This is the most important output of the algorithm. The algorithm
also stores a list of weightmeters calculated for the least cost candidate for each iteration. This
list gives insight in the improvement of the search algorithm per iteration.

2.2.2 Testing

To test the performance of the route optimization algorithm, the Python script was tested on five
fields. The first one was Test field 1, the same test field as used in the testing of the objective
function, as shown in Figure 9. The second field was Test field 2, a hypothetic but realistically
sized field, based on the geometry of an existing field. It has 52 field paths with an average length
of 237 meters. The graph created based on Test field 2 is shown in Figure 12. Besides these two
generated test fields, the Python script was presented with three real-life fields, based on data and
parameters supplied by farmers. More details on these three fields will follow in the next section.
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Table 5: The six optimization scenarios (Scn.)
for the route optimization algorithm used on Test
field 1, with different values for the number of
iterations, number of candidates, and the max-
imum length of the tabu list.

Scn. Iterations Candidates Tabu

A 50 2 5
B 50 5 5
C 50 5 10
D 50 10 10
E 50 25 10
F 100 25 10

Test field 1 is used to test the route optim-
ization algorithm in comparison with an ex-
haustive search route planning. Owing to its
small size, and the larger size of the other fields,
this was the only field where exhaustive search
route planning was an option, given the avail-
able computational power. The optimization
algorithm takes three meta parameters as in-
put to manage the search methods of the al-
gorithm; the number of iterations, the number
of candidates per iteration, and the maximum
length of the tabu list. These three paramet-
ers where adjusted in six optimization scenarios
indexed A to F, with increasing computational
demands, to find the parameters for which the
route optimization algorithm consistently finds
the most optimal route for Test field 1. The six scenarios are shown in Table 5. The first scenario,
scenario A, was set up as starting scenario, with very light computational demands. In scenarios B
to F the parameters were incrementally tweaked. The resulting computing times of these route op-
timizations, as well as the costs for the found routes, were compared to the results of the exhaustive
search approach. The computing times are calculated as the average time per run after 50 runs,
for both the optimization algorithm and the exhaustive search route planning. The script had to
be run multiple times due to the stochastic factor; multiple runs of the script gave insight in the
stability of the results. The number 50 was chosen assuming it would give a good representation
of performance of the algorithm on the long run.

The other four fields were used to test the power and limitations of the route optimization
algorithm applied to normally sized fields. For the three meta parameters in the route optimization
algorithm, twelve scenarios were defined, indexed 1 to 12, with increasing computational demands.
The values defined per optimization scenario are shown in Table 6. The different optimization
scenarios were defined from a practical perspective; the first scenario would produce a solution in
a very short time, but the results are expected to have room for improvement, whilst the twelfth
scenario would produce far better results at the expense of an unreasonable amount of time for
its calculations. The intermediate scenarios were set up to test different combinations of meta
parameters, in search for a balance between good results and short computing time.

Optimal routes were calculated 50 times for the four normally sized fields for every optimization
scenario, to come to a sample size of 50 per scenario per field. This number was chosen with total
computing time in mind; n = 50 was assumed to give a good representation of performance of the
algorithm on the long run, without making the total computing time too high.

The results of the 50 calculations per optimization scenario per field were compared in tables
and plots. Furthermore, the average computing times over the 50 computations per optimization
scenario per field were stored and compared.

In all of these tests, the applied weighting scheme for the objective function was the Basic
weighting scheme, as shown in Table 1. The performance of the optimizer is assumed not to be
influenced by the weighting scheme of the objective function. The parameters for the objective
function, Wempty , Wfull , Wbunker , Cd , WCM , and r, were again based on the inputs of farmers
Gert Oudijk and Jacob van den Borne to be realistic with true values, as shown in Tables 3 and
7.
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Figure 12: Graph representation of Test field 2, with the x- and y-axis giving coordinates of the
nodes in RD-new projection [m].

Table 6: The twelve optimization scenarios (Scn.) for the route optimization algorithm used on
fields Test field 2, Gert, Korsendonk, and Cools, with different values for the number of iterations,
number of candidates, and the maximum length of the tabu list.

Scn. Iterations Candidates Tabu

1 50 20 5
2 50 20 15
3 50 20 50
4 200 20 50
5 200 100 50
6 1000 20 50
7 1000 100 5
8 1000 100 50
9 1000 100 250
10 5000 20 50
11 10000 100 50
12 50000 20 250
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2.3 Test-cases
The algorithm defined in the previous research questions was applied to three real-life test-cases.
These test-cases were based on input data received from farmers Jacob van den Borne and Gert
Oudijk. Three fields were selected, and identified by the names field Gert, field Korsendonk, and
field Cools. An overview of each of these fields is shown in Figure 13.

The data of the farmers consisted of point measurements with timestamps, measured during
operations of planting potatoes. The timestamps made it possible to define the worked order of
paths. Shapefiles of the paths in the main field, with spraypaths identified as such, were either
given by the farmer or derived from the point measurements. This resulted in three files of lines
of field paths, with information on spraypaths and worked order. Visual inspection of the fields
with underlying Google satellite imagery revealed signs of variability in soil moisture. Figure 13
shows light and dark areas within the fields and in the surrounding areas of field Korsendonk (b)
and field Cools (c), which is assumed to indicate variability in soil moisture. The satellite imagery
also shows color changes in field Gert (a), but this is an artifact caused by different satellite image
tiles. Therefore, and based on the information provided by the farmer, no wet areas were identified
in Field Gert.

The differences in soil moisture in fields Korsendonk and Cools were supported by electrical
conductivity measurement data from farmer Jacob van den Borne. These were measured with
a DUALEM 21s sensor. Jacob van den Borne uses these electrical conductivity measurements
as proxy measurements for soil moisture, since soil moisture is one of the main factors inducing
differences in electrical conductivity within his fields. Therefore, these data were used to identify
large wet areas within field Korsendonk and field Cools.

The exact locations of the depots were not given by the farmers, because the depots are flexible.
The locations of a depot can vary a lot. Instead, depot locations were chosen based on satellite
imagery. The locations are places where the field can be entered, or other places in the headlands
that seemed ideal for a depot position because they are easily reachable from many field path ends.

The creation of the cost graphs of the test-case fields was in some cases not fully automatic.
After running the script to create the first graph, representing the possible moves within a field,
some edges had to be removed manually because they represented unrealistic movements.
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(a) Field Gert, based on data from farmer Gert Oud-

ijk.

(b) Representation of the graph based on Field Gert.

(c) Field Korsendonk, based on data from farmer

Jacob

van de Borne

(d) Representation of the graph based on Field Korsendonk.

(e) Field Cools, based on data from farmer Jacob van

den Borne

(f) Representation of the graph based on Field Cools.

Figure 13: Maps of main field boundaries, spraypaths, depots, and wet areas in the three fields
used as test cases, with underlying Google satellite imagery. The normal field paths are left out of
these images to give a clearer overview.
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Field Gert Figure 13a shows that Field Gert is close to rectangular, but contains a large gap
where the farmhouse is positioned. Two depots are positioned where the field can be entered from
the road, and one where the field can be entered from the farmhouse, bringing the total number
of depots to three. Figure 13b shows that not all path ends on the northern side of the field are
connected directly to all depots. The path ends of the shorter paths on the right side of the field
are only directly connected to the most right depot, while all path ends on the longer field paths are
only directly connected to the center and left depot. Field Gert contains no wet area, as explained
before. Field Gert is the largest test case field, with 159 field paths.

Field Korsendonk Figure 13c shows that Field Korsendonk is simply rectangular. There-
fore, the graph based on Field Korsendonk, as shown in Figure 13d, is generated automatically,
using the same Python script as applied to the two hypothetical test fields. The depot is positioned
in the center of the headland on the side of the road, and all path ends on the same side of the
field are directly connected to the depot, representing straight moves between the depot and the
path ends.

The wettest area within Field Korsendonk was measured to be on the right side of the field,
close to half way the field paths, covering the ten most right field paths. The field is the smallest
true test field, with only 40 field paths.

Field Cools Figure 13e shows that Field Cools departs most from a rectangular shape. Still
the field was treated the same as the other fields, with only three exceptions; the three shortest
field paths cannot be visited from the depots in one straight movement, and vice versa. This was
mainly due to an impassable stretch in the field, creating two short paths.

These two shortest field paths are positioned in the center of the field. Because these field paths
do not cover the entire main field they can only be reached from one side of the field. The edges
representing movements between these two field paths and the depots were removed manually from
the first graph, along with edges connecting their path ends with other path ends on the depot
side of the field.

The third exception was the field path on the North-Western side of the field. The edges rep-
resenting straight movements between this field path and the depots were replaced by movements
that first visit the neighboring field path end. A straight movement between the field path end
and the depots would intersect with neighboring field paths, which is unrealistic.

The wet area in Field Cools is a large area in the center of the field. Two depots were positioned
in the headland on the side of the farmhouse, at places that seemed logical. The field is relatively
small, with 46 field paths in total.

Besides these field data, the farmers were asked to supply data on working unit weights, distance
capacity, and turning radius of the working units used during operations of planting potatoes.
These data and the derived parameters are shown in Table 7.

Both farmers supplied Wempty and Wbunker , from which Wfull was calculated. For field Gert,
the distance capacity was given as four paths. To translate this to centimeters, the distances of
the four longest paths in field Gert were summed and rounded up to meter level, which gave a
value of 1,665 m. From these values, WCM [kg/cm] was calculated using Equation 5. For the
fields Cools and Korsendonk, weight of planted potatoes per hectare [kg/ha] was given. For both
fields the lengths of all the paths in the main fields were summed, and divided by the total area of
the fields, giving an average value of distance of paths per hectare [cm/ha]. Dividing the weight of
potatoes planted per hectare by the distance of paths per hectare gave the WCM for fields Cools
and Korsendonk. Equation 5 was used to calculate Cd from the WCM , Wempty , and Wfull . Cd

was then again rounded up to meter level, resulting in a value of 2,018 m for fields Korsendonk
and Cools. Turning radius r was provided by both farmers.
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Table 7: Input parameters per field for the test-cases supplied by the farmers or derived from data
supplied by the farmers.

Gert Cools + Korsendonk

Wempty [kg] 7,150 14,000
Wfull [kg] 8,850 16,000
Wbunker [kg] 1,700 2,000
Cd [m] 1,665 2,018
WCM [kg/cm] - 0.0102 - 0.0099
r [cm] 550 400

Using these files and parameters as input, the Python scripts with the objective function and
the Tabu search algorithm were tested to generate near-optimal routes through the given paths.
The values of the objective function of the routes found by the algorithm were compared to those
of the route based on the path orders chosen by the farmers.
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3 Results
In this chapter the results are shown and explained. The results are presented per research question,
in the same order as the methods. These results are discussed in the next chapter.

3.1 Definition of an optimal route
An optimal route is obtained by minimizing the objective function J (Equation 7). This objective
function takes five multiplication factors as input, together forming a weighting scheme. The
influence of different weighting schemes on the costs of different movements and on a test route was
tested in Test field 1. The influence of the weighting schemes was also tested using an exhaustive
search method for finding the optimal route.

Table 8 shows the first results, on the influence of different weighting schemes on different
common movements and a given test route. The resulting costs are given in weightmeters for the
seven tested movements and the total test route per defined weighting scheme scenario.

The table shows that the short movement towards the depot, between nodes 13 and -1, is the
move with the lowest costs in all scenarios. A short X-turn movement costs more than a longer X-
turn movement, in all scenarios, and more than an even longer U-turn in all scenarios but scenario
3. In scenarios 1 to 5 the headland movements have costs lower than the main field or working
movements. The total costs of the test route seems to be very constant, and only changes, within
the given precision, when the influence of wet areas is changed (scenarios 4 and 5). This total cost
is lowest in the dry scenario, and highest in the wet scenario.

Table 8: Costs in weightmeters for seven tested common movements, per weighting scheme scenario, for
W = 8, 000kg at the start of each movement. The costs are shown in the unit 10

4
m ⇤ kg. The pairs

of nodes (From/To) of these movements correspond to the node numbers in Figure 14. See Table 1 for
details on the weighting scheme scenarios.

From/To Movement 1.Basic 2.Go UT 3.Go XT 4.Dry 5.Wet 6.No HL

6, 12 U-turn 9.4 9.3 15.6 9.8 9.8 36.9
6, 10 X-turn, long 10.5 16.2 9.9 10.5 10.5 39.3
6, 8 X-turn, short 12.4 18.2 11.8 12.4 12.4 46.5
1, -1 Depot, long 18.5 18.3 21.1 18.5 18.5 69.5
13, -1 Depot, short 7.1 6.9 9.0 7.09 7.1 26.6
2, 3 Work, dry 35.1 35.1 35.1 35.1 35.1 35.1
8, 9 Work, wet 40.3 40.3 40.3 35.1 52.6 40.3

Test route 260 260 260 248 286 260

Table 9 shows the path orders representing the optimal routes found using an exhaustive search
method for each of the six investigated weighting scheme scenarios. These path orders are also
shown in the graph representation in Figure 14. The path order resulting in the optimal routes
was identical for scenarios 1, 2, 3, 5, and 6, and is shown in Figure 14a. The optimal path order
was only different for the weighting scheme of the dry scenario, scenario 4. That path order is
shown in Figure 14b. In both path orders, the spraypath would be worked first. Figure 14a. shows
that in most scenarios the field paths through the wet area (with nodes 6, 8, and 10) were selected
to be worked last. Note that the sequence of paths crossing wet spots was ordered according to
distance traveled through wet area. The field path with node 8, with the longest distance through
the wet area, would be worked last in all weighting scheme scenarios.

In the dry scenario, Figure 14b, the path order resulting in the optimal route was a path order
with less neighboring field paths worked consecutively. In Figure 14a, the third and fourth path
in the path order are neighboring paths, as well as the sixth and seventh. In Figure 14b, the fifth
and sixth paths are the only neighboring paths that would be worked consecutively. In the dry
scenario, the paths with nodes 12 and 8 would be worked first and last, respectively, the same as
in the other scenarios. The optimal order of the field paths with nodes 4, 0, and 2 was also equal
in all scenarios. The field paths with nodes 6 and 10 would however be worked second and third
in the dry scenario, instead of sixth and seventh in the five other scenarios, respectively.
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Table 9: The path orders defined as optimal through Test field 1 per weighting scheme scenario,
found using an exhaustive search method, and the weightmeters calculated for the total route. The
numbers define a node number of the path to be worked, and correspond to the node numbers in
Figure 14.

Scn. Optimal path order weightmeters [m*kg]

1. Basic [ 12, 4, 0, 2, 10, 6, 8 ] 2594618
2. Go UT [ 12, 4, 0, 2, 10, 6, 8 ] 2594653
3. Go XT [ 12, 4, 0, 2, 10, 6, 8 ] 2594634
4. Dry [ 12, 6, 10, 4, 0, 2, 8 ] 2483833
5. Wet [ 12, 4, 0, 2, 10, 6, 8 ] 2852955
6. No HL [ 12, 4, 0, 2, 10, 6, 8 ] 2594954

(a) (b)

Figure 14: Graph of Test field 1, with field edges labeled according to optimal path order for
weighting scheme scenarios 1,2,3,5, and 6 (a), and for scenario 4 (b), as depicted in Table 9.

3.2 Route optimization algorithm
The developed route optimization algorithm, based on a Tabu search algorithm, was tested on five
different fields. Two hypothetical test fields (Test field 1 and Test field 2) and three fields based
on input data from farmers (Fields Gert, Korsendonk, and Cools).

3.2.1 Optimizer versus exhaustive search

For Test field 1 the computation time as well as the results of the route optimization algorithm
were compared with an exhaustive search route planning. Starting with a computational light
optimization scenario the three meta parameters for the optimization algorithm were incrementally
tweaked until the route optimization algorithm consistently produced the same optimal route as
the exhaustive search method. This resulted in six optimization scenarios indexed A to F.

The average computing times and weightmeters are shown in Table 10 per optimization scenario.
An impression of the distribution of the resulting weightmeters of the 50 runs are shown in Figure
15. Scenarios D, E, and F consistently found the optimal route for Test field 1, with weightmeters
equal to the route found by the exhaustive search method. The average computing times for these
three scenarios lied within a wide range, between 4.64 and 47.24 ms. The three scenarios with
lower computing times (A, B, and C) showed higher costs in weightmeters in several of the 50
runs. The average computing time of the exhaustive search route planning was 65.646 ms, which is
larger than all average computing times from the route optimization algorithm. Scenario D is the
fastest optimization scenario that successfully found the optimal route 50 times, with a computing
time of only 15.2 % of the computing time of the exhaustive search approach.
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Table 10: Average computing times and average weightmeters [m*kg] for route optimization within
Test field 1, for six optimization algorithm scenarios and exhaustive search route planning. Average
computing times given in total (T [ms]) and compared to the exhaustive search(T [%]). Times and
weightmeters averaged over 50 computations.

Scn. Iterations Candidates Tabu T [ms] T [%] weightmeters

A 50 2 5 2.057 3.13 2594714.3
B 50 5 5 4.607 7.02 2594620.2
C 50 5 10 4.641 7.07 2594618.4
D 50 10 10 9.971 15.2 2594618.0
E 50 25 10 24.582 37.5 2594618.0
F 100 25 10 47.235 72.0 2594618.0

Exhaustive search 65.646 100 2594618.0

Figure 15: Comparison of exhaustive search route planning and route optimization algorithm.
Every boxplot represents an optimization scenario, with letters on the x-axis corresponding to
Table 10. The y-axis represents the route costs in weightmeters. The red line represents the costs
found by exhaustive route planning.

3.2.2 Optimization scenarios for normally sized fields

The four other fields were used to further test the influence of the three meta parameters, using
twelve new optimization scenarios. For every optimization scenario, the route optimization al-
gorithm was run 50 times. Figure 16 illustrates the distribution of the 50 results per optimization
scenario. The average computing times as well as the average weightmeters are given in Table 11.

Overall, the resulting distributions are rather wide, with the exception of Test field 2. In the
three real fields scenario 12 resulted in the most narrow distributions of costs. Test field 2 was
an exception; in this field scenario 10 was the only scenario were results show no indication of
outliers. In all four fields, scenario 12 resulted in the lowest average costs in weightmeters, and in
the highest average computing times (Table 11).

Scenarios 1, 2, and 3 as well as 7, 8, and 9 were set up to test the influence of the length of the
tabu list; in these two groups of scenarios the number of iterations and candidates was constant,
while the length of the tabu list changed. The resulting distributions within these two groups were
very similar for all tested fields, on average as well as in the distribution. A longer tabu list did
not have a large influence on the results.

Scenarios 4 and 5 as well as 6 and 8 were set up to test the influence of the number of candidates;
in these two groups of scenarios the number of iterations and length of the tabu list were constant,
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while the number of candidates changed. The resulting distributions show that for fields Test field 2,
Korsendonk, and Cools the optimization algorithm performed better with 20 candidates compared
to 100 candidates. Note that in these fields, the results found with optimization scenario 10 were
also better than the results found with scenario 11, whilst scenario 11 had more candidates and
more iterations. Field Gert is the only field where the results improved for all these three described
cases. Table 11 shows that field Gert has more than three times the number of field paths of the
other three fields.

Scenarios 3, 4, 6, and 10 as well as 5, 8, and 11 were set up to test the influence of the number of
iterations; in these two groups of scenarios the number of candidates and length of the tabu list were
constant, while the number of iterations changed. The resulting distributions show that within the
first group of scenarios a higher number of iterations resulted in lower costs on average for every
field (see Table 11). However, for scenarios 5, 8, and 11 the results only improved noticeably for
field Gert. In the other three fields, the results of these three scenarios were very similar.

Note from Table 11 that computing times were higher when number of iterations multiplied with
number of candidates increased. In scenarios where number of iterations multiplied with number
of candidates was equal (scenarios 1 to 3, scenarios 5 and 6, scenarios 7 to 10, and scenarios 11
and 12), the resulting average computing times within one field were in most cases very similar.
Furthermore, Table 11 shows that for all scenarios the average computing time increased with an
increase of number of paths. Calculations for field Korsendonk (40 field paths) resulted in the
shortest computing times, whilst calculations for field Gert (159 field paths) resulted in the longest
computing times per scenario.

(a) Test field 2 (b) Gert

(c) Korsendonk (d) Cools

Figure 16: Boxplots illustrating the distribution of the costs in weightmeters of 50 route optimiz-
ations per eight optimization scenarios, per field. The scenarios correspond to Table 11.
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3.3 Test-cases
Data of farmers Gert Oudijk and Jacob van den Borne measured during operations of planting
potatoes were used to compare routes chosen by farmers, based on personal experience and know-
ledge, with routes calculated by the route optimization algorithm. The results of these comparisons
are presented in this section.

Table 11 shows the costs in weightmeters for the least cost routes computed by the route
optimization algorithm, per optimization scenario, averaged over 50 runs of the algorithm. The
bottom row lists the costs in weightmeters for the routes based on the path orders chosen by the
farmers. Figure 17 shows a graphical comparison between the costs calculated with 50 runs of the
algorithm, and the costs calculated for the farmers routes. Both the table and the figure show a
large difference between the costs from the optimization algorithm and the costs of the farmers
routes. The costs of the routes based on the input of the farmers were consistently higher.

In Figure 19 the graphs of the three fields are shown, with colors depicting when a path is
(suggested to be) worked between two depot visits. Figure 18 shows the legend corresponding to
these graph representations. For every field the graph is mapped twice; once based on the path
order as chosen by the farmer (left), and once based on the least cost route found per field during
all 12x50 runs of the optimization algorithm (right).

In all optimized figures it stands out that spraypaths are worked soon after depot visits, shown
by the green colors of the thicker field edges. The spraypaths are thus worked with a relatively
high weight in the optimized routes. This is the best observed difference with the routes chosen
by the farmers. In the wet areas in fields Korsendonk and Cools no consistent change is observed;
in field Korsendonk the paths through the wet area are worked sooner after a depot visit, with a
higher weight, whereas in field Korsendonk the paths through the wet area are worked later after
a depot visit, thus with a lower weight. In the least cost route found through Test field 2 (not
shown), the paths through the wet areas are also selected to be worked just before depot visits,
with a relatively low weight.

Though it is not shown in these figures, it is important to know that the three path orders
chosen by the farmers are regularly ordered, working from one side of the field to the other. For
both farmers, regularly ordered routes were preferred due to ease of planning, and because they
did not keep the weight of the working unit in mind during route planning. Farmer Jacob van
den Borne had a personal preference for X-turns (personal communication, February 16, 2018).
Farmer Gert Oudijk mentioned that he believes that the impact of the weight of the bunker on
soil compaction is negligible (personal communication, February 9, 2018). All three path orders
computed by the route optimization algorithm are ordered less regularly, suggesting to work the
field paths in a more scattered order.

The largest improvement in weightmeters after optimization is found in field Cools.
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(a) Field Gert (b) Field Korsendonk

(c) Field Cools

Figure 17: Boxplots of weightmeters calculated using the optimization scenarios per field, as shown
in Figure 16, compared to the weightmeters calculated for the routes chosen by the farmers. The
blue horizontal line represents the costs of the farmers routes.

Figure 18: Legend for Figure 19. Edges are colored for each part of a route between two depot
visits. Thicker edges represent spraypaths. Field nodes are not depicted.
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(a) Field Gert, chosen by farmer,

weightmeters = 47.41 * 10
7

m*kg.

(b) Field Gert, optimized,

weightmeters = 47.39 * 10
7

m*kg.

(c) Field Korsendonk, chosen by farmer,

weightmeters = 11.06 * 10
7

m*kg.

(d) Field Korsendonk, optimized,

weightmeters = 11.01 * 10
7

m*kg.

(e) Field Cools, chosen by farmer,

weightmeters = 17.59 * 10
7

m*kg.

(f) Field Cools, optimized,

weightmeters = 17.45 * 10
7

m*kg.

Figure 19: Maps with path orders per test case field. Left (a, c, e) path orders chosen by farmers,
right (b,d,f) path orders computed by route optimization algorithm. For each part of a route
between two depot visits the color gradient is reset; a greener color thus means a higher weight of
the working unit. Numbers indicate total path order.
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4 Discussion
At the start of this research, the following problem was defined; there is need for routes for
agricultural field operations that minimize soil compaction by dealing with the two most important
compaction factors, heavy machinery and soil moisture content. This lead to the objective to
determine an optimal route for capacitated agricultural operations over predefined field tracks
given local differences in susceptibility to compaction (e.g. wet spots). This objective was reached
by answering the following research questions:

• What defines an optimal route for capacitated operations under spatially varying field cir-
cumstances?

• What optimization algorithm is best suited for finding such routes?

• Do test-case results of selected fields show an improvement over conventional routing?

This chapter will discuss the methods and results per research question.

4.1 Definition of an optimal route
An optimal route is defined as the route with minimal induced soil compaction. The current study
proposed a weighted sum objective function to calculate the costs of a route through an agricultural
field in weightmeters [m*kg], defining the optimality of the route with regard to soil compaction.
Results show that the exact costs depend on the weighting scheme of the multiplication factors.

Tests on the influence of common movements show that an X-turn between two neighboring
field paths has a higher costs than an X-turn between two field paths further apart (Table 9). This
is a logical result when looking back at Equation 3. In this equation, a larger distance of an X-turn
movement parallel to the main field border, dXT , results in a lower cost. Sabelhaus et al. (2013)
found an identical result for omega turns; with a larger distance between consecutive field paths
the length of the turning path decreased.

A change in fUT and fXT , in weighting scheme scenarios 2 and 3, resulted in quite large
differences in costs for the headland movements. However, in the small test field where these tests
were conducted the optimal route did not change, as shown in Figure 14. This is most likely due to
the relatively small distances traveled in headland movements, compared to main field movements,
and the large wet area in the main field. The influence of the large wet area overshadows the
influence of costs of different turns. The costs for headland movements are, apart from scenario 6,
much lower than the costs for working a field path, either wet or dry. This again demonstrates the
relatively small impact of costs for different headland movements. This small test field has very
short field paths; in a normally sized field the field paths are longer, leading to an even smaller
influence of headland costs.

This study focuses mainly on decreasing soil compaction in the main field, as this is the most
important part of a field with the highest yields. The wet areas have a particular importance.
In this light, the routes defined as optimal by the objective function are indeed desirable. They
minimize the weight in the wet area and minimize the number of short X-turns. Small changes of
the wet multiplication factor had a large influence on the resulting costs, as well as on the optimal
route within the small test field (see Table 8). If however a farmer would like to focus on headland
movements, to decrease soil compaction in the most trafficked areas, the headland multiplication
factor fHL should be set considerably higher.

A downside to the used method is that it assumes simple rectangular fields. An input field
should have headlands on two sides of the main field, no more and no less, and the depots should
be reachable in a straight line from every path end on the same side of the field. If one of these
assumptions is not met, the graph based on the field should be manually modified to resemble
plausible movements. This was for instance necessary for the fields Gert and Cools in the test
cases (section 2.3).

The choice when to visit a depot is of major impact for the costs of a route. This is however
based on a very simple condition; whether or not the next field path in the path order can be
worked entirely, before reaching bunker capacity. This might lead to a path being worked after
which it has to visit a depot, whilst the depot is positioned on the other side of the main field,
close to where the working unit was before working the path. The total costs for a route might
in such cases be lower if a depot is visited first, before working the path, before the currently set
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condition is met. However, incorporating this choice whether or not to visit a depot after every
worked path was unfortunately unfeasible, because the number of possible routes would increase
drastically, leading to a too complex problem.

In the current study, wet areas are discrete data; a part of a field is either wet or not (section
2.1.5). This is however a large simplification of the true world. The wetness of a field cannot
be captured in two values, it is rather continuous data. Furthermore, the susceptibility to soil
compaction depends on more soil properties than just soil moisture content, e.g. clay content and
soil organic material (Hamza and Anderson, 2005). The choice to only incorporate discrete wet
areas is made to simplify the input needed from farmers, and because soil moisture content is the
most significant soil property with regard to soil compaction (Hamza and Anderson, 2005). It is
important to keep these simplifications in mind when inspecting the results.

4.2 Route optimization algorithm
To approach the overall optimal route, without exhaustively calculating optimality of all possible
path orders, an optimization algorithm is introduced. The Tabu search algorithm was chosen as
optimization algorithm, based mainly on previous successful researches and ease of implementation
in a Python script (section 2.2). The optimization algorithm was successfully implemented with
the objective function.

On a small test field, the optimization algorithm was compared with an exhaustive search
approach. Six optimization scenarios were set up, with increasing computational demands. Results
are shown in Table 10. The exhaustive search approach found the optimal route 50 times, with
an average computing time of 65.649 ms. Running the optimization algorithm 50 times resulted
in average computing times between 2.057 and 47.235 ms. The lightest optimization scenario that
found the same result as the exhaustive search in all 50 runs of the algorithm, scenario D, did so
in an average time of 9.971 ms. On this small test field, the optimization algorithm consistently
found the optimal route in only 15.2% of the computing time of an exhaustive search approach.

The optimization algorithm takes three parameters as input to manage the search methods.
The influence of these parameters was tested on four larger fields, using 50 runs of the optimization
algorithm for 12 optimization scenarios. Results are shown in section 3.2.2.

In three out of four fields, the distributions of the 50 results are rather wide (Figure 16). The
most demanding optimization scenario, scenario 12, resulted in the narrowest distribution of the
results for these fields. For one field, the narrowest distribution was found in scenario 10. In
all fields the average resulting costs in weightmeters were lowest and the average computing times
were highest in the most demanding optimization scenario, with 50,000 iterations and 20 candidates
(Table 11). However, these settings resulted in computing times from 90 up to 730 seconds, close
to 12 minutes, on average per run. And still the distributions resulting from this scenario showed
much overlap with distributions of scenarios with lower computing demands, which proves that
in numerous cases a scenario with lower computing demands found a better route as result. In
other words, although optimization scenario 12 results in the lowest weightmeters on average, a
combination of parameters that runs with much lower computing times might as well return a
better route.

The influence of the length of the tabu list on the results was unnoticed, both the costs and the
computing times. The number of candidates and iterations had far more influence. Surprisingly,
in the three smallest fields out of four tested fields, optimization scenarios with 20 candidates
returned better results than optimization scenarios with the same number of iterations but with
100 candidates (scenarios 4 and 5, and 6 and 8, in Figure 16). In the same three fields, scenario
10 (5,000 iterations and 20 candidates) returned better results than scenario 11 (10,000 iterations
and 100 candidates). The largest tested field, field Gert, with more than three times the number
of field paths of the other three fields, was the only field where 100 candidates improved the results
compared to 20 candidates. These results suggest that each field size has an optimal number of
candidates, and that this number is larger for larger fields. Unfortunately, no research was found
to support this suggestion.

Furthermore, Table 11 shows interesting results on computing times. The resulting average
computing times are closely related to the number of iterations multiplied with the number of
candidates. For scenarios 1 to 3 this multiplication is constant and equal to 1,000, whereas for
scenario 4 this multiplication is equal to 4,000, thus four times as high. When comparing the
computing times, the table shows that in all fields the average computing time for scenario 4 is

32



close to the four times as high as the computing times for scenarios 1 to 3. The same counts for
scenario 11, where the multiplication of the number of iterations and the number of candidates is
ten times as high as for scenario 10, and the average computing times per field for scenario 11 are
also close to ten times as high as for scenario 10. This can be explained by the methods of the
Tabu search algorithm (Figure 10); for every iteration a number of routes is calculated, equal to
the number of candidates. The total number of routes calculated in one run is thus equal to the
number of iterations multiplied with the number of candidates. Assuming a constant computing
time per route calculation, it makes sense that the total computing time is directly related to this
multiplication. Cordeau et al. (2001) performed a research using the Tabu search algorithm to
solve a specific type of the VRP. They also found that computing times were directly proportional
to the number of calculations performed within a run of the algorithm.

4.3 Test-cases
The objective function and optimization algorithm were tested on three test-case fields, based on
data measured by farmers during capacitated field operations of planting potatoes. Optimized
routes were compared to the routes chosen by the farmers. Results are shown in Table 11 and
section 3.3. For all three test-case fields, the optimization algorithm found numerous routes with
lower costs, measured by the objective function. When studying the resulting routes in detail
(Figure 19), it stands out that with the basic weighting scheme scenario the spraypaths were
suggested to be worked soon after a depot visit. This makes sense, since compaction in the
spraypaths is deemed less important than compaction in normal field paths. Short after a depot
visit, the weight of a working unit is at its highest (that is for application operations), and by
working the spraypaths first the largest impact on soil compaction is found in the least important
paths.

For field Korsendonk (Figure 19 c & d) the paths through the wet area are suggested to be
worked shorter before a next depot visit, compared to the route chosen by the farmer. This counts
in particular for the two paths with the longest distance through the wet area, with the highest
impact on soil compaction. For Test field 2 (not shown) all paths through the wet area were also
selected short before a depot visit, when the weight of the working unit is low. This is a desirable
result, as minimizing compaction in wet areas was one of the main goals of this study, because of
the higher susceptibility to soil compaction. However, in field Cools the field paths through the
wet area were planned to be worked shorter after a depot visit in the optimized route, compared
to the route chosen by the farmer, thus with a higher weight. This unexpected result was thought
to be caused by a fault in the optimization part of the Python scripts. The far lower costs of the
optimized route, compared to the route chosen by the farmer, opposes this assumption. This leaves
only the explanation that the wet area had a very small impact on the route owing to its relatively
small size. Unfortunately, these findings could not be compared to results in other researches, due
to lack of comparable research.

The optimized routes suggested to work the fields in an unordered way, compared to the routes
chosen by the farmers, where the paths were worked in order from one side of the field to the other
side (section 3.3). The farmers thereby worked the fields in a sub-optimal but easy and clear order.
For farmer Jacob van den Borne, the reason behind this was his personal preference for X-turns
(personal communication, February 16, 2018). For farmer Gert Oudijk, the main reason behind
this was that he believes that the impact of the weight of the potato planting machine on soil
compaction is negligible (personal communication, February 9, 2018). In light of these opinions,
regularly ordered routes were preferred, due to ease of planning. However, the results of the carried
out test-cases suggest that routes with a different order would lead to less soil compaction.

A downside to the used methods is that the depot locations were no input data for the test-
cases. This was due to the fact that the farmers moved the depots, and did not know the exact
used locations anymore. Therefore, the depot locations were picked as practical locations, on the
side of a road or farmhouse and easily reachable from numerous field paths. The actual depot
locations might however have been different. These are not fixed but flexible, and might thus have
been on more and different places. When and where depots are visited during a route chosen by
the farmers was unknown. The created depot locations and the rule when to visit a depot might
have negatively influenced the weightmeters of the route chosen by the farmer. It is important to
keep this in mind when inspecting the results.

33



5 Conclusions and recommendations
In conclusion, this study proposed a method to determine an optimal route for capacitated agricul-
tural operations over predefined field tracks given local differences in susceptibility to compaction
(e.g. wet spots). Although the methods are only applicable to normal-shaped fields with two
headlands, and an optimal weighting scheme for the objective function is yet to be researched, the
method successfully incorporates the total weight of a working unit, wet spots in the field, bunker
capacity, and induced soil compaction values for different movements.

• What defines an optimal route?
An optimal route is defined as the route with minimal induced soil compaction. The total
cost of a route is calculated in weightmeters [m*kg], defining the optimality of the route with
regard to soil compaction.

• What optimization algorithm is best suited?
A Tabu search algorithm is selected as best suited optimization algorithm, and is successfully
implemented to optimize the search for a near-optimal route. In a small test field, this
algorithm reached search times of 15.2% of the search time of an exhaustive search approach.

• Do test-case results show an improvement over conventional routing?
In three test-cases, the defined route optimization method found routes that where more
optimal than the routes chosen by farmers for a potato planting operation, with far lower
costs in weightmeters.

Further research should be conducted to identify weighting schemes in accordance with induced
soil compaction, e.g. the influence of turning movements compared to straight movements. The
weighting schemes for the objective function are this far based solely on importance of different
parts of fields and different types of movements, and on assumed relative impact on soil compaction.

In the current study, the only areas considered to have a higher susceptibility to soil compaction
are discrete wet areas. In future research, the proposed algorithm could be improved by incorpor-
ating continuous input data on susceptibility to soil compaction. Studies on trafficability of soils
and soil stress should be investigated for this purpose. Examples are e.g. Horn and Fleige (2003)
and Duttmann et al. (2014).

The choice when to visit a depot is of major impact for the costs of a route. The route
optimization algorithm could be improved by incorporating a decision mechanism on when to visit
a depot. It is recommended to study the implementation of such mechanism in the algorithm in a
following research.

Another recommendation for future research is on field path planning; once areas are known to
be more susceptible to soil compaction, path planning methods could incorporate this by planning
the spraypaths, which are the most trafficked field paths, outside of these areas. This way the
spraypaths could still be used as main trafficking paths, without further deteriorating soil compac-
tion in the susceptible areas. Numerous researches on path planning were analyzed (e.g. Oksanen
and Visala (2007); de Bruin et al. (2014); Zhou et al. (2014)). However, no research was found
that incorporates areas with higher soil vulnerability in path planning.

Results indicated that each field size might have an optimal number of candidates, and that
this number is larger for larger fields. This should be investigated in future research.

In a follow-up study the suggested methods should be tested in practice. Thus far the optimized
paths have only been studied in theory, based mainly on the objective function. Creating a route
for and testing a route on a real-life capacitated field operation would give important insight in the
applicability of the methods in practice. Feedback from farmers on suggested routes could prove
helpful in further implementations of the methods. Once the methods are tested in practice, the
proposed methods could be applied to farming machinery that work with GPS and predefined field
tracks. By planning routes ahead of an agricultural operation, the total costs in weightmeters and
thus the induced soil compaction could be decreased in all tested scenarios.
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