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Abstract

Structure from Motion (SfM) and light detection and ranging (lidar) are widely used techniques to collect topographic
data. Both techniques are perfectly suited to use at remote and hard to reach mountainous areas. A challenging factor
is to determine the outdoor precision of this topographic data. In addition, there is a lack of knowledge about the
e�ect of the sampling strategy on the quality of the data. This study covers, (1) the e�ect of number of photos on
the precision of a DSM; (2) the capability of SfM and a hand-held lidar scanner to create consistent point clouds of an
unchanged area; (3) the cell speci�c limit of detection (LoD) of surface changes without the need of GPS measured
GCPs. The LoD takes deviations among point clouds introduced by di�erent camera positions, alignment in the pre-
and post erosion set of digital surface models (DSMs) and rasterizing into account. Di�erences in rasters decrease
from a range of 3 cm to 0.8 cm when the photo density was increased from 3 to 18 photos m−2. The hand-held lidar
system ZEB1 produced point clouds of an insu�cient point density and quality to determine erosion rates. A photo
density of 8 photos m−2 was used to create 6 unique DSMs, 90% of the di�erences between these 6 DSMs and mean
DSM are within -3 and 3 mm, which shows that SfM is capable of generating consistent point clouds. Only surface
changes larger than the LoD can reliably be detected. The mean LoD of a 2 m2 DSM is 5 mm and increased to a
mean LoD of 1.7 cm for a 120 m2 area. This increase in LoD is mainly caused by non-linear longitudinal deformation
of the point clouds along the x-axis. An afterwards correction for this deformation resulted in a mean LoD of 8.3 mm.
Human induced surface changes were detected, together with regions of small false detected changes. The alignment
deviation between pre- and post erosion set of DSMs is not taken into account by calculating the LoD and is likely
the cause of these false positives. Future work could be done on increasing this precision of the alignment among
DSM sets, determine optimal raster cell sizes and evaluate the suggested sampling strategy to prevent longitudinal
deformation.

keywords: lidar, ZEB1, photogrammetry, structure from motion, point cloud analysis, erosion monitoring
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1 Introduction

Erosion is a signi�cant environmental and agricultural problem on a global scale (Pimentel et al., 1995; De Vente et al.,
2013). One of the assumed impacts of climate change is an increase in the intensity of precipitation (Pachauri et al.,
2014). Studies on erosion showed that more intense precipitation will enhance the amount of erosion (Kundzewicz
et al., 2007). There are several types of erosion: water erosion, wind erosion, gravitational erosion and man-made
erosion (Patel, 2012). Natural erosion is driven by physical, chemical, and biological processes (Turowski and Cook,
2017). High precise rate measurements are needed to understand these processes in more detail. Erosion can happen
very quickly during extreme events (e.g. Lamb and Fonstad, 2010), but is in general a slow process (e.g. Bierman
and Ca�ee, 2001). Therefore, precise measurements are needed to detect slow erosion rates over a short time span.

Erosion rate (E ) can be de�ned as a change in surface elevation (4h) over time (4t):

E =
4h
4t

(1)

There are a number of techniques to measure erosion rates. These techniques can be divided into two classes. One
class is based on dating methods focussed on the 4t component (Geyh and Schleicher, 2012). This class is mostly
used to determine erosion rates over a long time-scale. The other class focusses on the 4h component and the
known 4t between measurements. Measuring erosion rates at short time intervals requires a high precision of 4h,
whereas at long timescales the importance of the 4t precision increases.

For the 4h erosion assessment it is in general easy to accurately determine the 4t component. The challenge lies
in getting precise topographic data at di�erent moments in time. Next to this, it is important to compare exactly
the same areas, i.e. points with the same x and y coordinates. Example techniques of this class are erosion painting
(e.g. Beer et al., 2016), benchmarking (e.g. Vanwalleghem et al., 2010) and point gauging (e.g. Turowski et al., 2013).

A relatively new method to determine the 4h component uses di�erences between high-resolution topographic data.
Subtracting two digital elevation models (DEM) from each other will reveal the order of magnitude and spatial
distribution of surface changes. Further in this report the term Digital Surface Model (DSM) will be used instead of
DEM as vegetation that covers the bare soil will not be removed. In literature the terms DEM and DSM are used
interchangeably (e.g. Zhang and Montgomery, 1994; Guth, 2006; Mukherjee et al., 2013).

The development of Structure from Motion (SfM) provides the opportunity for low cost three dimensional data
acquisition. As in traditional photogrammetry, the principle of SfM is based on the overlap of images acquired from
multiple viewpoints. SfM determines the internal camera geometry, camera position and orientation automatically
and does not need georeferenced ground control points at known three-dimensional positions which are needed for
traditional photogrammetry (Westoby et al., 2012). However, a local reference system is still needed to obtain real
world dimensions. In addition, the need for a high degree of overlap between images taken from di�erent position to
reconstruct the full geometry remains. This gives rise to the name: structure derived from a moving sensor (Micheletti
et al., 2015b).

Another technique to create a DSM is Light Detection and Ranging (lidar). Lidar has been used since the 1980s to
create topographic data (Krabill et al., 1984). A light pulse is sent and the time needed to return back to the sensor
is measured. As the speed of light is known, the distance to an object can be determined. Lidar is already widely
used for creating topographic data over large areas (e.g. Reutebuch et al., 2003; Hladik and Alber, 2012; Aguilar
et al., 2008). Lidar requires professional equipment and user expertise to process data. Both, lidar and SfM do not
require direct contact with the ground to create a DSM, hence the study area is not disturbed.

The limit of detection (LoD) can be calculated with the accuracy of the pre- and post-erosion DSM. Only changes
in DSMs larger than the LoD can be reliably detected. Most studies calculating the LoD were done in a controlled
environment with simulated rainfall. Balaguer-Puig et al. (2017) used the SfM technique to build a DSM of 0.5
m2 soil box in a laboratory. The amount of soil erosion measured was compared to the actual sediment yield which
they used as reference volume. The average camera-object distance was 0.5 m. A raster DSM was built with a
resolution of 0.01 m. They found a LoD value of approximately 1 mm. The amount of estimated soil yield using
DSM of Di�erences (DoDs) overestimated the measured weight by 13%. Processes like compaction were not taken
into account in this study and may explain the overestimation.
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1. Introduction

Prosdocimi et al. (2017) used SfM to measure soil erosion in a vineyard using a digital re�ex camera and a smart
phone. In total twenty photos were taken of each plot, with an object to camera distance of 1 m inside a tarpaulin
covered area, creating homogeneous light conditions. For four plots of 0.25 m2 each, they generated a DSM with a
resolution of 0.01 m. The average error along the z-axis was about 0.01 m and even lower along the y and x-axis.
These results were obtained for both types of cameras.

Hänsel et al. (2016) found a LoD of 3.5 mm on a 3 m2 agricultural plot using SfM and ground control points (GCPs)
as reference points. The authors suggest to reference GCP in the sub-mm range to increase the accuracy. This
study took soil compaction into account and showed that this process cannot be neglected in a rain driven erosion
experiment.

Other studies used lidar to determine the amount of erosion. Eltner and Baumgart (2015) used a terrestrial laser
scanner (TLS) to determine the soil erosion on agricultural �elds of 1000 m2. A much larger area compared to studies
done with SfM. Surface changes larger than 1.5 cm could reliably be detected.

Bechet et al. (2015) used a TLS to identify soil processes at a very small scale in 0.5 m2 black marl soil box during
a natural rain event. The TLS-object distance used was 2 m. Using a trial and error procedure they decided to use
a LoD of 1.5 mm. Swelling of soil particles was observed when the soil went from dry to wet. They concluded that
a TLS is capable of detecting changes at mm scale.

Within the lidar equipment there is a di�erentiation in price. The TLS described in the previous paragraphs is more
expensive and heavier than a hand-held lidar device. Dewez et al. (2016) showed the applicability of a lidar hand-
held device called ZEB1 to map an underground quarry. The precision needed to detect soil erosion is much higher
compared to mapping a quarry. However, especially in complex environments, such as forests where shadow e�ects
occur a hand held lidar scanner could be of more value compared to a stationary TLS (Bauwens et al., 2016). This
could also hold for measuring erosion in complex study areas.

In general rock outcrops have a higher roughness than agriculture �elds and can therefore be seen as complex areas.
Steep areas such as outcrops experience high erosion rates compared to �at areas (Montgomery and Brandon, 2002).
For these reasons rock outcrops are interesting areas to determine erosion using SfM and lidar. Especially, as these
light weight techniques would be perfectly suited to use at remote and hard to reach mountainous areas.

Several studies used SfM and lidar to gain more insights into geological structures. Bistacchi et al. (2015) used SfM
to identify faults at a rock outcrop. Riquelme et al. (2017) used SfM and lidar to extract geometrical information of
rock slopes. At a larger scale SfM has been used to identify micro faults for a better risk assessment (Saputra et al.,
2018). Piras et al. (2017) used drone photos as input for SfM to create a high resolution geological map.
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2 Problem de�nition and research questions

The capability of both techniques to generate topographic data has already been proven. Numerous studies using
SfM and lidar focussed on erosion rates in soil boxes in a laboratory or at agricultural �elds. These �elds were
all homogeneous in texture and elevation. The e�ect of outdoor conditions on the quality of data has not been
evaluated yet. In addition most studied areas were almost horizontal. Steep areas introduce new challenges to
determine surface changes such as di�erent camera-object distances and handling of point clouds under an angle. A
recent study done by Gulam et al. (2018) investigated rock wall retreat and concluded that SfM is the most suitable
measurement technique to explain the e�ect of di�erent lithological components on the denudation rate at a rock out-
crop. However, the e�ect of the sampling procedure on the quality of the point cloud and spatial variations between
DSMs remained unclear. Hence, the limit of detection of surface changes at rock outcrops is still unknown. This
research is urgently needed to enhance the use of these promising techniques at rock outcrops in practical applications.

The objective of this study is:

Determine the uncertainty in detecting surface changes at rock outcrops using Structure from Motion (SfM) or a
hand-held lidar system.

To achieve this objective, the following main research question has been formulated:

� How does SfM or a hand held lidar system perform in detecting surface changes at rock outcrops in an outdoor
environment and which one of these two techniques is the best?

In order to answer the main research question the following sub-questions are identi�ed:

� How does the sampling strategy in�uence the precision of a DSM built with SfM or a hand-held lidar system?

� Which level of precision can be achieved by repeatedly creating DSMs of unchanged area using the SfM or a
hand-held lidar system?

� What is the limit of detection (LoD) of surface changes at rock outcrops using SfM or a hand-held lidar system?

3
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3 Methodology

3.1 Study area

The study was performed on rock outcrops around Manhattan, located in northeastern Kansas, USA (Fig. 1). The
area around Manhattan experienced long-term erosion, so that the super�cial deposits are generally thin and young.
Limestone and shales of Permian age are the main rock types found in this region (Miller and West, 1993). The
layering is composed of mostly horizontal limestone-shale couplets. As the limestone contains high chert concentra-
tion it has a high resistance to erosion (Collins et al., 1998). Chert is a quartz mineral and in the region also known
as �int, this gives rise to the name of the region around Manhattan, the Flint Hills. In general the rocks are poorly
exposed, except in roadcuts.

Figure 1: Map of the United States of America zoomed in on Kansas. The red dot represents the location of the city of
Manhattan, where the research has been conducted.

3.2 Overview work �ow

Several processing steps are needed to obtain rasters that were used to detect surface changes (Fig. 2). All steps are
explained in this chapter.

Images Agisoft Photoscan

Settings, scaling

Point cloud

Remove slope, 
alignment, crop 

study area, 
rasterize

Raster

Lidar

Figure 2: Work �ow of using SfM or lidar to build a DSM raster.
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3. Methodology

3.3 Background SfM and lidar

3.3.1 Principles of SfM

The principle of SfM is similar to this of stereoscopic photogrammetry. A 3D model can be created using a set of
overlapping photos. However, traditional photogrammetry requires known positions of the camera (Fonstad et al.,
2013). SfM does not need prior knowledge of positions to reconstruct a 3D scene (Verhoeven et al., 2012). Auto-
mated image matching is a crucial step in this process.

The scale invariant feature transform (SIFT) descriptors developed by Lowe (1999) is calculated for each photo.
These descriptors are robust to changes in image scale, view point and partly to light changes. They rely on multi
scale image brightness and colour gradient to identify conjugate points in images. Due to the use of gradients instead
of absolute pixel values an object can still be identi�ed from multiple viewpoints. These descriptors are used to detect
correspondences across the set of photos.

Correspondences between photos are re�ned using random sample consensus (RANSAC) (Fischler and Bolles, 1987).
The transformation that maps feature points between images is estimated for every match. If a valid transformation
maps a su�cient numbers of features between photos, the photos are considered geometrically veri�ed (Schonberger
and Frahm, 2016). False matches are detected using this method and only veri�ed pairs are used in the next step.

Bundle adjustment is the last step in the SfM processing chain. Bundle adjustments refers to a process of re�ning
the complete set of camera parameters and 3D point positions by minimizing the error of 2D observations and its 3D
scene points (Triggs et al., 1999; Cao et al., 2017). A point cloud is the end product of all these steps together. The
software Agisoft Photoscan automated all these steps in a user friendly way. For a detailed mathematical background
of all these steps see Carrivick et al. (2016).

3.3.2 DSLR camera settings

A Nikon D5300 Digital Single Lens Re�ex (DSLR) camera was used to acquire photos. This camera can take photos
of 24.2 megapixels with an ISO range between 100 - 12800. The aperture controls the amount of light passing
through the lens and also the depth of �eld.

Although used by many camera manufactures as a designation for unprocessed images, RAW is not a de�ned stan-
dardized format. Therefore, the photos were shot in Nikon's raw format (.NEF). In order to process them in Agisoft
Photoscan there were converted to the more general raw format .DNG using the free Adobe Digital Negative Con-
verter (Adobe Systems Software Ireland Ltd., 2018). DNG �le sizes are in general 20% smaller than .NEF �les and
up to 90% smaller that common used .TIFF �le sizes. The amount of information is equal for all extensions, only
the compression is di�erent. The quality of a point cloud depends on the settings used in the camera. In general
digital photos are a�ected by di�erent types of noise that have an e�ect on 3D modelling.

The ISO number controls the sensitivity of the sensor. A high ISO number results in a high output of the sensor for
a given amount of photons compared to a low ISO. A high ISO adds more digital noise to a photo, which is visible
as grains in a photo. Therefore, to capture as many detail as possible you should use a low ISO. This comes at the
price that the shutter speed increases by using a low ISO.

Mapping an analogue signal into a digital range of values generates quantisation noise. The Nikon D5300 primary
quantisation of RAW photos is 12 bit. This means that the minimum brightness di�erence that can be detected
is 1/4096 of the recorded brightness range. Saving a photo as JPG uses 8 bit, which means the brightness range
decreases to 255 values. Therefore, photos saved as RAW generate better outcomes than JPG. All these settings
have an in�uence on the outcome of the estimated 3D structure. It is known that di�erent camera settings results
in di�erent DSMs (Xiang and Cheong, 2003).

3.3.3 Principles of a handheld lidar scanner

As opposed to SfM, lidar is an active system as the device sends its own signal. The Geoslam Zeb1 hand-held mobile
laser scanner (Fig. 3) combines a time-of-�ight scanner with an inertial measurement unit (IMU). The scanner uses
a wavelength of 905 nm and has a outdoor range of 15 m according to the manufacturer, GeoSlam Ltd.

6



3. Methodology

Figure 3: Handheld lidar device:
GeoSlam ZEB1 connected to the
data logger.

Figure 4: Overview photo of the study area analysed with di�erent number of
photos. Markers act as edges of the study area. The 6 x 100 photo sets were
made at the same rock outcrop, but matched not exactly the same area.

According to Heritage and Large (2009) the distance of the sensor towards a point in space can be de�ned as:

Distance =
Speed of light× Time of Flight

2
(2)

The scanner does not contain a GPS system, hence the point cloud is not georeferenced. The data from both sensors
is put together using a simultaneous localisation and mapping (SLAM) algorithm. The main problem which the
SLAM algorithm solves is to build a consistent map of the environment while simultaneous determine the location
of the device in this map (Durrant-Whyte and Bailey, 2006). In addition a correction is needed for the motion of
the sensor head itself (Bosse et al., 2012). The algorithm that is used to process ZEB1 data converges to the best
solution when the study contains many unique features (Ryding et al., 2015).

3.4 Data acquisition

3.4.1 Structure from motion

Photos used in this research were shot with an ISO of 800 and an aperture of f/14. A focal length of 18 mm was
used for all photos. The settings of the camera were �xed as widely varying zoom settings can cause a decrease in
quality in the created point cloud (Sanz-Ablanedo et al., 2012). Micheletti et al. (2015a) provide further key points
that were taken into account when taking photos:

1. Plan camera survey and registration or scaling method in advance.

2. Capture the whole subject �rst, and then the detail, ensuring that occlusions are captured adequately.

3. Ensure appropriate coverage. Basic principle: every point on the subject must appear on at least three images
acquired from spatially di�erent locations.

4. Static scene.

5. Consistent light.

6. Avoid overexposed and underexposed images.

7. Avoid blurred images - normally arising from slow shutter speed and/or camera movement.

8. Avoid transparent, re�ective or homogeneous surfaces.

The camera survey was executed in a systematic way. The procedure was to �rst capture the whole study area from
di�erent camera locations. Next the object to camera distance became smaller while attempting to take photos
equally distributed. The other key points listed were hard to follow as sun light, wind and occurrence of re�ective
natural rocks cannot be controlled in the �eld. As these variations are part of the research, the weather and properties
of the study area were described every time during the data collection.

Markers were used to give real world dimensions to the arbitrary coordinate system of the point cloud created by
Agisoft Photoscan. The black circle shaped features on white paper can be generated in PhotoScan. The software
can detect these unique numbered markers automatically. Markers were hand made by combining rulers with duct
tape to make sure that markers remained perfectly �at. Markers were placed at bottom, right and left side of the
study area. Using the markers as edges of the study area helped to capture the area of interest (Fig 4).

7



3. Methodology

3.4.1.1 Number of photos

To determine the number of photos needed for a certain precision a study area of 8 m2 was selected (Fig. 4). Sets
of 25, 50, 76, 100, 150 and 200 photos were taken of this study area. It was heavily clouded, creating homogeneous
light conditions during the data acquisition, which took in total 3 hours. Each set followed the procedure earlier
described. It was assumed that no surface changes in the study area occurred during the data acquisition.

3.4.1.2 Level of precision

The variation within DSMs of exactly the same unchanged area was assessed by taking 6 sets of 100 photos. Each
set of photos was used to build a 13 m2 DSM. All the photos were taken within a time span of 2 hours and with
equal camera settings. The area of interest was completely covered in shadow, creating homogeneous light conditions
during the image acquisition. There was some wind, but there was no vegetation, resulting in a static study area.

3.4.1.3 Change detection using Limit of Detection

DSMs from di�erent moment in times were compared to detect and quantify geomorphological changes. A DSM of
di�erences (DoD) is obtained by subtracting two DSMs with the same origin and cell size. As the most recent DSM
is subtracted from the older DSM positive values corresponds to deposition and negative values to erosion.

Subtracting two DSMs introduces the concept of error propagation. For this research there was no validation data
available, hence the accuracy could not be determined. To distinguish real surface changes from noise present in the
DSMs the change should be larger than the LoD (Williams, 2012). As described in Wheaton (2008) the error in a
DSM was calculated from three DSMs of an unchanged surface. Each cell in a raster has a height value Z with an
uncertainty δz, which can be expressed as follows according to Wheaton et al. (2010):

Zactual = ZDSM ± δz (3)

where ZDSM is the mean and δz the standard deviation of the three values of the unchanged surface. This δz
includes all errors caused by Agisoft Photoscan, alignment, sampling di�erences and interpolation methods.
Brasington et al. (2003) showed that errors in DSMs propagated as follows:

δzDoD =
√

(2δz1)2 + (2δz2)2 (4)

where δz1 and δz2 are the standard deviations of the two mean DSMs used to calculate the DoD. δzDoD is the
uncertainty in a DoD and is further in this thesis referred to as the limit of detection (LoD). If the value of a DoD cell
is larger than δzDoD, the certainty that there is a change is 95%. This method assumes that errors in each cell are
random and independent. δzDoD has been calculated on a cell-by-cell basis. A spatially uniform LoD will not detect
small changes in areas whereas the cell uncertainty is low and detect changes in areas where the cell uncertainty is high.

A test area of 2 m2 was used to test the concept of a cell speci�c LoD. In this area several stones were placed. Three
sets of each 30 photos were taken. Before the next three sets of 30 photos were shot the stones were relocated to
represent erosion and deposition. There was no volume added in relocating the stones, except the occurrence of air
spaces underneath rocks.

Next, the size of the area was increased to a nearly vertical road cut of 120 m2 to represent a more practical situation.
In total 6 sets of 600 photos were taken, 3 sets before a self imposed erosion event and 3 sets after. The erosion
event consisted of big blocks falling of the road cut and some rills of a couple of mm thick (Fig. 5). This di�erence
in magnitude in erosion allowed testing the change detection with LoD to the fullest.

3.4.1.4 Smart phone photos

Nowadays, almost every smart phone has a built in camera. Instead of using a relatively large DSLR camera, smart
phones have been used to build DSMs using SfM (e.g. Vinci et al., 2017; Wró»y«ski et al., 2017; Muratov et al.,
2016). A smart phone has the advantage being easy to carry around and being widely available. However, the quality
of photos decreases and the lens could lead to distortion (Micheletti et al., 2015a). To investigate the possible use
of smart phones in erosion monitoring, 1 set of 900 photos of the large post erosion outcrop were taken in the same
time as 600 photos with a DSLR. A Samsung Galaxy S7 with a focal length of 4.2 mm and a resolution of 4032 x
3024 was used. This DSM of the smart phone was compared to the mean of the 3 post erosion DSMs of the DSLR.

8



3. Methodology

Figure 5: An example of the erosion created to observe change detection. The area in the red square has been changed. The
weather conditions changed during the data acquisition, left it was cloudy whereas at the right image it was sunny.

3.4.2 Lidar

Most data acquisition key points for SfM are valid for lidar as well. However, outdoor light conditions are not
important. This makes lidar less dependent on outdoor conditions than SfM. The factor rain will in�uence the mea-
surements a lot, as most of the signal is absorbed or re�ected in another direction at wet areas. Therefore no data
has been acquired during rainy days.

Preferably the study area you are going to measure is static. However, the SLAM algorithm is capable of dealing
with some moving objects who will be removed out of the point cloud (Bailey and Durrant-Whyte, 2006). Windy
conditions are therefore not favourable, as vegetation will move during the data acquisition. Two features with clear
edges were placed in the study area. One box of 30 x 20 x 15 cm and an A4 ring binder (Fig. 4). This to enhances
the working of the algorithm and have distinguishable features in the point cloud that can be used for the alignment.
A metric coordinate system is automatically generated for the point cloud as the speed of light is known.

3.4.2.1 Sampling strategy and level of precision

Scan times of 1, 2, 3, 4, 5 and 8 min were used to determine the e�ect of scan time on the precision of a DSM. The
8 min scan was used as to create the reference DSM. However, during this study the quality and alignment of the
lidar point clouds turned out to be far from su�cient to quantify di�erences in DSMs caused by di�erent scan times.
An attempt of 6 scans of each 5 min resulted in data that could be processed and analysed. This already showed
that the hand held lidar system was not capable detecting surface changes at a small scale. Therefore, lidar was not
further analysed than the repeatability of creating DSMs of an unchanged area.

3.5 Processing

3.5.1 SfM

The computer used for the processing consisted of: Intel Xeon Processor E5 (1620 @ 3.6 GHz, single CPU), 16 GB
ram, 1 tb HDD and a NVIDIA Quadro K2200 4 GB graphics card. PhotoScan o�ers a user friendly interface which
allows users with little experience to produce point clouds from photos. However, throughout the work �ow numerous
parameter settings can be changed by expert users (Agisoft, 2014). The main settings used in Agisoft Photoscan
are shown in Table 1. The in�uence of the setting building a dense point cloud at high or medium did not have
signi�cant in�uence (App. Fig. A.1). Morgan et al. (2017) advised to use photo alignment setting "highest" and
dense point cloud quality set to "medium" to detect surface changes in laboratory �ume. An elaborate sensitivity
analysis for settings in PhotoScan is not part of this research and therefore this advice has been followed. For a
detailed work �ow description see Appendix B.

3.5.2 Lidar

The raw data acquired by the ZEB1 was saved on the connected data logger. The raw laser data must be uploaded
to GeoSLAM online data processing server for conversion to a 3D point cloud using their unique sweep matching
SLAM algorithm. Every conversion requires a payment of tokens. The amount of tokens depends on the length of
the walking path. After the conversion the point cloud can be downloaded with a .laz extension, which directly can
be used for further analysis.
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3. Methodology

Table 1: Photoscan parameter settings.

SfM parameters Setting

Marker tolerance 60
Photo alignment Highest
Pair preselection Generic
Key point limit Default: 40.000
Tie point lmit Default: 1000
Reprojection error 0.5
Dense point cloud quality Medium

Figure 6: Fitted red plane through a point cloud that is under a
certain angle. Scale bar in [m].

3.5.3 Alignment and rasterize point clouds

Point clouds produced with SfM or lidar required processing for further analysis. The study areas in this research
were under a slope. When rasterizing a point cloud under a slope the average height per cell will be dominated
by the height di�erence caused by the slope. Therefore, the point clouds were put horizontal using CloudCompare
v2.6.2 (Girardeau-Montaut et al., 2018). This was achieved by �tting a plane through the point cloud under an angle
(Fig. 6). The obtained transformation matrix was used to put the x and y axes along the normal direction of the plane.

To compare rasters it is important that corresponding cells are compared, i.e. the exactly same area should have
the same x and y coordinates. Therefore, the point clouds should be aligned. Several algorithms align point clouds
automatically (e.g. Tam et al., 2013; Rusu et al., 2008; Makadia et al., 2006). These algorithms will not work for
point clouds of areas that experience a lot of surface changes as point cloud characteristics will become di�erent.
Automatic alignment would probably have worked for cases in this study. However, this has not been done to assess
the added uncertainty when manual alignment is necessary.

At least 3 corresponding static points are required to align two point clouds. In this research markers used for scaling
were also used as static alignment points. It is important to note that the alignment points on markers were picked
manually as no function exists that automatically detects markers in CloudCompare. Two point clouds overlay when
3 corresponding alignment points were picked and aligned (Fig. 7).

Figure 7: Alignment of two point clouds, A and B. Both show a point cloud of the same area only most of the stones have
been moved. The markers are static in time and can therefore be used as alignment points represented by R0, R2 and R3 in
A and A0, A1 and A2 in B. The result of the alignment is shown in C, the two point clouds overlay each other as can be seen
at the merged stones. Scale bar in [m].
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The cropping tool was used to cut out the area of interest in aligned point clouds. The edges of the area of interest
in this research were de�ned by the markers. The last step in CloudCompare is to rasterize the point clouds. Cell
size is the most important variable for this tool as cell size is a trade o� between point support and the scale changes
can be detected. A cell size of 2.5 mm was used for the whole study concluded from analysis with di�erent cell sizes
(App. Fig. C.1). Lu et al. (2017) recommended to use the �nest possible grid size where no big gaps due to lack of
point support occur in the raster.

3.6 Analyze rasters

Rstudio (RStudio, 2018) was used to analyse all DSM rasters. First all rasters of a set needed to be resampled to one
reference raster, as the origin of rasters di�ered in the order of 0.1 mm. This is probably caused by the rasterize tool
of CloudCompare which uses the extent of the points in the cloud. This creates a slightly di�erent origin for rasters of
the same area. The choice of the reference raster to resample is arbitrary and did not in�uence the results. Resampling
to di�erent resolutions introduces di�erent outcomes when rasters are used for calculations (Dixon and Earls, 2009).
As the resolution was not changed together with the origin o� set of 0.1 mm minor e�ects of resampling are expected.

Di�erences between rasters were calculated with subtraction. As reference raster the DSM created with highest num-
ber of photos or the mean of a set of rasters was used. This resulted for each compared raster in a raster containing the
di�erences. These di�erences have been used to create a box plot with a 5th, 25th, median, 75th and 95th percentiles.

A correction was done on a trend in di�erences of the large study area. The �rst pre erosion DSM was used as
a reference to all other DSMs. Through each individual row of the raster of di�erences a second order polynomial
model was �tted. This model was used to apply a correction to the original DSM. All DSMs were corrected to the
reference DSM, the reference DSM itself was not corrected for the doming e�ect.
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4 Results

4.1 Number of photos

DSMs created with a di�erent number of photos resulted in similar height patterns (Fig. 8). An exception is the
bottom right corner of DSM E created with 50 photos which shows low values compared to the other DSMs. The
number of no data cells increases, when the number of photos per area decreases.

Figure 8: 6 DSMs with a cellsize of 2.5 mm each created with a di�erent number of photos. All 6 DSMs cover exactly the
same area. The lowest value of the 6 DSMs has been set as the zero reference level.

The point density depends on the number of photos (Tab. 2). The DSM created with 18 photos m−2 shows the
highest point density, followed by the point cloud created with the highest photo density. The lowest density of
photos results in the lowest point density.

A large number of photos m−2 decreases the range of di�erences between DSMs (Fig. 9). The DSM created with
200 photos was used as reference to the other DSMs. The number of photos were recalculated to a photo density to
present a more generic number. The three DSMs with lowest photo density show a similar spread compared to the
reference DSM, whereas from 12 photos m−2 on the deviations decrease. The 95th percentile of the 6 photos m−2

DSM shows a large deviation.

Table 2: The average point density of the point
clouds used to build the DSMs.

Photo density Point density
[photos m−2] [pts cm−2]

24 265
18 282
12 180
9 203
6 111
3 71
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Figure 9: Boxplot of di�erences between DSMs with reference
DSM. Horizontal line represents 0 di�erence line.
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4. Results

4.2 Hand-held lidar scanner ZEB1

All lidar based DSMs show a large number of no data cells (Fig. 10). The DSMs A, C, E and F show similar height
patterns and values. DSMs B and D show height values up to 0.5 m higher. The rasters have an average point
density of 7 cm−2. The point clouds showed a scan range of 8 m for the ZEB1. The generated point clouds do
not show clear boundaries at distinctive features. An example of a vague boundary is shown in Appendix Figure E.1,
which is a tra�c sign which stood near the scanned outcrop. The RMSE reached by the manual alignment of the
point clouds was on average 0.21 mm, whereas with SfM RMSE in the order of cm was achieved.

Figure 10: 6 DSMs with a cell size of 2.5 mm each created with a point cloud of a 5 min ZEB1 Scan. All 6 DSMs cover
exactly the same area. The lowest value in the set of DSMs was set to zero.

4.3 Level of precision

DSMs created with a constant photo density result in visual similar surface models (Fig. 11). In between the higher
elevated areas lower elevated areas are found. DSM C has some more cells with no data in the bottom right corner
compared to other DSMs. At the top middle a higher situated area is located with a lot of no data cells. According
to PhotoScan, the absolute error of markers is 2 mm, the reprojection error around 0.8 and e�ective overlap around
3.0 on average for the 6 point clouds (App. Tab. D.1).

Figure 11: 6 DSMs with a cell size of 2.5 mm each created with 100 unique photos and same settings in Photoscan. All 6
DSMs cover exactly the same area. The lowest value of all DSMs has been set as the zero reference level.

The range of variation in DSMs created with equal parameters is small. All median di�erences with the mean DSM
are within 1 mm (Fig. 12). The 25th and 75th percentiles are around 0.5 mm located from the median. The
di�erences with the mean DSM are smaller than di�erences observed in Section 4.1 with an equal photo density.
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Figure 12: Box plots of the di�erence between DSMs created with 100 photos shown at the x-axis with the mean DSM in m.
The 95th, 75th, median, 25th and 5th percentiles are shown. The horizontal dashed line represents the 0 line.

4.4 Change detection using Limit of Detection

The LoD in the small area for the procedure ranged from 4.9 10−5 m to 0.153 m with a mean of 5 mm. The spatial
distribution shows especially high values at the edges of the rocks (App. Fig. F.1). When a pixel does not contain a
value in one of the 6 DSMs no LoD or di�erence between the mean DSMs was calculated.

The di�erences between the mean DSMs overlay the relocated rocks on the background represented with the hill-
shade (Fig. 13). The mean DSM of the post erosion situation was subtracted from mean pre erosion situation. Only
di�erences that are greater than the LoD for a cell are plotted. The positive values represent the former locations of
the stones, whereas the negative values overlay the rocks seen in the hillshade in the background. Pixels with minor
changes in the order of 1 mm are found over the whole study area. No other surface changes than the relocation of
rocks were made during photo acquisition.

The total volume remained the same during the replacement of the rocks. The volume for each raster has been
calculated using the cell size and height value. The di�erence in volume between the mean pre and post DSMs is
3.0 dm3 on the total volume of 126.8 dm3 of the pre erosion DSM.

Figure 13: Map of di�erences between the mean pre erosion DSM and the mean of the post erosion DSM. In the background
the hillshade of the mean post erosion DSM. Only di�erences larger that the LoD are plotted.
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The LoD distribution for the large area shows a high spatial variability (Fig. 14). All the 6 DSMs (App. Fig. F.2)
used to calculate the LoD were made with 600 photos each. The average LoD is 1.7 cm. At the top of the study
area more cells with no data occur than at the bottom. The large area shows LoD values of 1 cm with ridges of LoD
of 5 cm, except for two regions with low LoD values between -18 and -15 and between 7 and 10 on the x-axe. These
regions with low LoD values can only be explained by low standard deviations between DSMs.

Di�erences between the mean pre and post erosion DSM along the x-axis a trend can be observed when looking in
detail per row (Fig. 15a). The di�erences are deformed along the x-axe, further referred to as longitudinal defor-
mation. The di�erences are in the range of -1.3 cm to 1 cm and have a parabolic shape opening up. The areas
around -18 and 8 show di�erences close to 0. Most of the points should be on the zero di�erence line, as they did
not experience any change during the data acquisition.

The di�erences come closer to 0 when the trend is removed every individual row (Fig. 15b) . As a result, the large
study area gets a more homogeneous LoD. The new distribution of LoD has a mean of 8.3 mm. The former low LoD
regions still are the most dominant low LoD regions (Fig. 16).

At the major part of the large study area no surface changes are detected (Fig. 17). The big block falling down
the outcrop shown in Figure 5 is detected at location (5,0). Left of this block, several letters have been drawn of a
couple of mm thick. These are not detected as surface change greater than the LoD. A smaller block was removed
around location (-12,-1) and is detected. Equal observations can be done when the non-corrected LoD is used (App.
Fig. F.3). At all other places where changes are detected no surface changes were made. More false changes are
detected when the LoD without deformation has been used, especially at the rows where the big block was removed.

Figure 14: The Limit of Detection of the large area with longitudinal deformation. The legend has a logarithmic scale.

(a) Longitudinal deformation (b) Longitudinal deformation removed

Figure 15: Di�erences between the mean of the pre- and post erosion DSM for the row of pixels at y value -1 m of the large
area. Every point represents the mean di�erence over 2.5 cm along the x-axis. The red signal line is the best second order
polynomial �t. Dashed line is the zero di�erence line. The x-axis shows the values of the arbitrary coordinate system, equal
to x-axes in Figures 16 & 17.
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4. Results

4.5 Smart phone photos

The DSM created with 900 smart phone photos shows large deviations from the mean DSM created with the DSLR
(Fig. 18). The area left of the x-axis value -5 shows alternately positive and negative di�erences. The area between x
values -5 and 8 shows a more homogeneous di�erence of 1 cm, whereas more to the right the pattern of negative and
positive di�erences continues. Overall, the median of the di�erences is 7.7 mm and an absolute mean di�erence of
2.76 cm. Parameters in PhotoScan describing the quality of the point cloud show a large reprojection error compared
to the other point clouds (App. Tab. D.2).

Figure 18: Map of di�erences between the mean of the 3 DSMs created of the post erosion situation minus the 1 DSM created
with the Samsung Galaxy S7. Both DSMs were corrected for the doming e�ect. The absolute mean di�erence is 2.76 cm.

The point density for the DSM of the cell phone is lower than all other point clouds created with the DSLR (Tab.
3). The average point density is highest for point cloud number 1, whereas point cloud 3 to 6 show an equal point
density around 35 points cm−2. The outdoor conditions during the photo acquisition changed from cloudy to sunny
during the acquisition of the 3rd set of photos.

Table 3: The average point density of the point clouds used to build the DSMs of the large areas.

Point cloud number Point density [pts cm−2]

1 68
2 44
3 36
4 37
5 34
6 36
Smartphone 20
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5 Discussion

5.1 Number of photos and sampling procedure

Every survey, even with an equal number of photos will have di�erent camera positions. The position and number
of camera positions in�uences the quality of a point cloud. As every photo will capture an area from a di�erent
orientation or distance, the representation of especially rough surfaces in a point cloud will be di�erent. Building
a point cloud with a low number of photos, the importance of the quality per photo increases. This positioning
uncertainty is one of the main reasons that no point cloud will be exactly the same. The positioning uncertainty is
also seen by the use of lidar (Hodge, 2010). However, at a certain number of photos the point cloud will be only
di�erent at such a small scale that it does not a�ect a raster.

These e�ects are observed in this study as the range of di�erence for low photo densities compared to the high
photo density reference DSM is large. Too little coverage in the right bottom corner caused false photo alignment
for DSM E (Fig. 8) as the bottom right corner shows low values compared to the other 5 DSMs. There is no
false alignment for the DSM created with 3 photos m−2. However, it indicates from 6 photos m−2 and lower the
alignment procedure can be negatively a�ected. This can be explained by the fact that complete covering of the
whole area becomes di�cult. In addition, there are less photos to compensate for photos with a bad orientation.
Manual adjustments in the alignment could repair this, but to objectively judge di�erences in the work �ow all the
steps were kept automated. These �ndings are in agreement with Piermattei et al. (2015), who concluded that more
images resulted in better coverage and quality of the point cloud.

Besides the false photo alignment, the raster DSMs created with 3, 6 and 9 photos m−2 show other di�erences with
the reference DSM. The di�erences of the 12 photos m−2 DSM show a smaller range, despite the fact that the
point density is lower compared to the 9 photos m−2. The DSM created with 18 photos m−2 has a small range of
di�erences and shows that only little detail is added when 24 photos m−2 is used. The point density supports this
�nding as a large increase is found towards 18 photos m−2, but 24 photos m−2 shows a similar density. It can be
concluded that there is no linear relationship between point density and the number of photos.

Creating 6 DSMs without varying the number of photos m−2 results in very small di�erences among the DSMs. All
median values lie between -1 mm and 1 mm of the mean DSM. This can be partly explained as the mean of the
6 DSMs will smooth the di�erences slightly. Moreover, it shows that applying SfM without varying any variables
produces consistent point clouds.

Micheletti et al. (2015a) found a non linear relationship between the number of images used to build a point cloud
and the accuracy. There is too little data to support this �nding. However, an important note for this conclusion is
that increasing a low number of photos will not immediately lead to better precision of a point cloud, as the median,
25th and 75th percentiles do not di�er a lot for 3, 6 and 9 photos m−2. Using the unit photos m−2 does not give
you direct information about the object camera distance, even though it is known that the uncertainty in a point
cloud increases when the camera object distance increases (Eltner et al., 2016).

Micheletti et al. (2015a) used 13 photos of a DSLR to build a point cloud of a 12 m2 area in PhotoModeler software.
They assessed the quality using a distance tool which computes for each point the distance to the nearest point.
These distances are interpreted as errors, which had median error of 0.0038 m compared to a TLS reference point
cloud, using a maximum distance of 0.1 m to isolate outliers. This median is higher than medians found in this
study, which can be caused by the lower photo density used. Analysing geomorphological processes using rasters it
is advised to look at the error in rasters instead of cloud distances.

5.2 PhotoScan

The quality setting in PhotoScan used to create a dense clouds determines the point density. Morgan et al. (2017)
showed that using the highest setting for the alignment of the photos and a medium quality for generating a point
cloud produced the same median and RMS for di�erences between these point clouds when using only the highest
settings. This is in agreement with results of this study. For surface change monitoring the medium density quality
can be used, especially because using the highest setting will increase the processing time from hours to days. In
addition, the size of the point cloud will increase which requires a high processing capacity computer for further
analysis.
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5. Discussion

The automatic marker detection worked easy and fast. This is not in line with �ndings of Morgan et al. (2017). Who
mention that PhotoScan was not capable of detecting markers automatically. This is even more surprising because
they used a photo density an order higher than maximal used in this research. This could be explained by the use
of an extremely low marker tolerance. Instead they manually picked the points, which is time consuming compared
to the automatic detection. The e�ect of the number of markers on the quality of the point cloud has not been
investigated. This could have a�ect the quality in the middle of the point cloud, as Gindraux et al. (2017) found
that the accuracy of a DSM decreases when the distance to a GCP increases. The use of markers as the edge of the
area of interest worked conveniently.

PhotoScan can generate a report which includes uncertainty parameters that are suitable for a �rst quality assessment.
These parameters were constant for the 6 point clouds created with an equal number of photos. This matches with
the small deviations found in the rasters created from these point clouds. The same holds for the parameters of the
point clouds of the large study area, showing similar values among each other. Only the e�ective overlap was lower
for the �rst point cloud, which suggest that accidentally more photos with a small distance to the outcrops have been
taken. This could explain why PhotoScan was able to generate more points compared to the other 5 point clouds,
as more detail could be reconstructed. In general PhotoScan is capable of creating dense point clouds compared to
other photogrammetry software (Chidburee et al., 2016).

The higher reprojection error for the point cloud created with a smart phone indicates a lower quality point cloud.
The e�ective image overlap is higher as 900 photos have been used compared to 600 for the other 6 point clouds.
Unfortunately, this report generation function containing these parameters was found during the research and could
not be applied on the point clouds created with di�erent number of photos for the �rst research question. Only for
the purpose of a �rst quality assessment these parameters are valuable, as Smith and Vericat (2015) concluded that
the measured error is always higher than the theoretical error shown in the software.

5.3 Hand-held lidar scanner vs SfM

The hand-held lidar scanner is not able to produce a point cloud of su�cient quality to detect surface changes. First,
the scanned areas were under a slope which made it di�cult to walk at a constant pace and reach areas further up
the slope. This especially became di�cult when the range turned out to be 8 m instead of the 15 m described by
the manufacturer. In addition the algorithm was not able to reconstruct the area without a lot of noise. This could
be explained by the homogeneous surface texture of the study areas without clear features.

These results are contrary to �ndings of James and Quinton (2014), who found that the ZEB1 was able to scan a
coastal cli� of 150 m2 with a RMSE of 20 mm and 18 mm for SfM point to point di�erences compared to a reference
TLS using automated alignment. They concluded that the ZEB1 should join SfM as a technique to consider when
planning surveys. The use of point to point di�erences to asses the quality suggests a precision that never can be
reached using raster di�erencing for the ZEB1 using small cell cizes.

Sirmacek et al. (2016) found point densities of 1000 to 18000 pts m−2 for the ZEB1 with one walking path through
a building. These point densities were not su�cient to recognize visually �ne features. The scanning time of 5 min
used to create a DSM resulted in a point density of 70000 pts m−2. The point density was heterogeneous in space,
as there are a lot of no data cells. Even despite the higher density, features were hard to distinguish, even more as
the point cloud generated with the ZEB1 is not RGB coloured as opposed to SfM point clouds.

5.4 Alignment of point clouds

The alignment of ZEB1 point cloud was di�cult due to the lack of colouring. As the alignment was done by picking
points manually, it was hard selecting precisely the edge a feature. This is one of the reason why the range of values
in the 6 lidar DSMs is so large. In the future this problem could be partly solved by the new version of the ZEB1,
the REVO1. The REVO1 can be used together with two Go Pro cameras allowing the point cloud to be coloured,
which enhances the manual aligment (Nocerino et al., 2017).

The alignment with markers used for scaling in PhotoScan worked convenient. As the markers have a really small
point to pick in the middle the extra deviation added with the alignment remained small. For future work the use of
the marker detection in PhotoScan and automatic alignment using these markers would speed up the procedure. A
key point to detect changes over time are stationary alignment points when an arbitrary coordinate system is used.
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5. Discussion

Natural features such as big rocks could be used when the monitoring time is limited and the natural alignment
points do not experience signi�cant erosion itself. Another solution could be drilling in big screws at the edges of the
study area. Depending on the accessibility and legislation of the study area one of the two options could be used.

Putting steep areas horizontal is only possible when the slope of the area of interest is constant. When applying
this technique to a bigger area with variation in slopes or slopes alternated with horizontal planes detecting surface
changes using raster DoDs becomes impossible. A raster should always be created along the normal direction of the
surface. Chen et al. (2017) describes di�erent algorithms that are capable of compensating for slope present in a
point cloud, however the quality of these algorithms �rst need to be assessed before it can be applied to point clouds
which consists of �at areas and areas under a slope.

5.5 Limit of detection

The small area has a mean LoD of 5 mm, showing that the max values of 0.153 are mostly outliers. The spatial
distribution of the LoD shows especially high values along the edges of the rocks. These extremes are most likely
caused by the error in alignment. Just a minor shift in point clouds will result in a high standard deviation for
areas with a steep gradient. The no data cells are clustered around the edges of some rocks. Apparently, even for
a small area captured with a high photo density it is hard to capture all the details. This �nding has implications
for the applicability of the use of photo density to reach a certain level of precision (Fig. 9). For areas with a high
roughness it is very likely that a much higher photo density should be used with a lot of di�erent orientations to
reach these precisions. Conversely Mancini et al. (2013) advised at least 10 overlapping images for areas with little
surface texture, as such areas does not contain a lot of distinctive features. This shows that each area has their own
characteristics and it is hard to come up with a generic photo density for a certain precision.

The LoD distribution of the large area shows large variation. At both sides an area with low LoD values is found. This
implies that the pre and post erosion DSMs are closer to each other at these areas than in the middle or edges of the
study area. Otherwise there would be no smaller standard deviation. The large area with longitudinal deformation
has a mean LoD of 1.7 cm, when removing the trend the mean LoD decreased to 8.3 mm. This LoD is higher than
the LoD of the small area. This was expected as the photo density decreased from 15 to 5 photos m−2, but shows
that the LoD is not lineair correlated with photo density.

The LoDs found are in the same order found in literature. Balaguer-Puig et al. (2017) found a spatial uniform 68%
con�dence LoD of 1 mm for a laboratory �ume of 0.5 m2. The lower LoD was reached as the data acquisition was in
a controlled environment and the area of interest had a low roughness. Hänsel et al. (2016) found a spatial uniform
85% con�dence LoD of 3.5 mm for 3 m2 with a low roughness, which is comparable to the LoD of the small area.
Eltner et al. (2015) found a spatial homogeneous LoD with a con�dence interval of 90% of 1 cm for the use of SfM
on a UAV on a plot size of 600 m2. This LoD is 0.2 cm larger than the LoD for the trend adjusted area of 120 m2

in this study.

Morgan et al. (2017) observed a non-linear longitudinal deformation in the SfM models of a 9 m long �ume in a
laboratory. The trend in di�erences between the DSMs along the x-axis found (Fig. 15a) can be explained by this
non-linear longitudinal deformation. This so called doming e�ect in the DSMs could be caused by inaccuracies in the
radial distortion models determined by PhotoScan for each photo.

Every camera adds its own special signature to a photo, PhotoScan corrects for this using camera parameters. The
radial distortion of a lens, part of the signature of a camera, has a signi�cant in�uence on the quality of a point
cloud. Distortion increases with increasing distance from the centre of convergence (Peter Heng et al., 2010) and
is highly correlated to the lens focal length (Mosbrucker et al., 2017). The small focal length used in this research
should be increased to minimize radial distortion. However, the radial distortion still remains the most important
parameter to be corrected for (Luhmann et al., 2013). Camera calibration prior to the capturing of the surface and
�xate the obtained corrections in PhotoScan will decrease the doming e�ect.

Another factor of importance was found by Dietrich (2016), who concluded that having too much photos taken
parallel instead of convergent can cause this doming e�ect (Fig 19). This is therefore frequently observed by the use
of SfM with UAV data (James and Robson, 2014). This could cause the dome e�ect in this study as well, as the
large study area was a vertical outcrop. The used systematic procedure to capture the whole study area in photos
is easiest carried out to step 0.5 m side ways after a photo. This makes it prone for having too less convergent photos.
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5. Discussion

Figure 19: Illustration of parallel versus conver-
gent camera orientations. Reprinted after Dietrich
(2016).

Figure 20: M3C2 algorithm applied on the small
area. Mean distance of -6.6 mm, which includes
the deviations caused by the relocation of rocks.

The doming e�ect is normally found when the SfM point cloud is compared to a reference lidar point cloud. In
this study the doming e�ect is found by comparing two mean DSMs both created with SfM. For this reason can
be concluded that the doming e�ect is not constant for the point clouds. This is partly caused by di�erent camera
locations and orientations of the photos. Another factor of in�uence could be the changing weather conditions.

Gienko and Terry (2014) found big di�erences in number of tie points when objects of interest were in directed
sunlight and had some re�ecting surfaces. This could explain the lower number of tie points found for the point
clouds made of the post erosion situation as the sun broke through during photo acquisition of set 4. This di�erence
in number of tie points in�uences the quality of image alignment and number of points in the �nal point cloud. This
could explain the di�erence of degree in the doming e�ect along point clouds.

The trend removed in the DSMs resulted in a lower LoD. Removing a trend will remove some details and makes
the reliability of the LoD unclear. Especially at the rows where large changes occurred. Pre erosion DSM 1 was the
reference DSM where all the other 5 DSMs were corrected to. This results in a loss of detail in changes with post
erosion DSMs. This can be observed as more false changes are observed along these rows compared to the detected
changes with the doming e�ect (Fig. 17). Therefore the doming e�ect could best be minimized using �xed camera
correction parameters in PhotoScan together with convergent photos. Removing the doming afterwards as done in
this study is not preferable as detail is lost.

The use of cell by cell LoD can only be achieved by having the standard deviation for each cell. Using GCPs based
on GPS coordinates to asses the precision of the DSM and calculate a LoD will result in uniform LoD for the area.
This research showed that LoD is not spatially uniform. A uniform LoD will result in less precise determination of
surface changes and will likely cause area speci�c over or under estimation of surface changes.

5.6 Volume calculation

The experiment with relocating stones showed a volume di�erence of 3.0 dm3. A deviation of this order can be
expected as it is on average 1.5 mm for the area of 2 m2. In Section 4.3 mean deviations of 0.8 mm were found.
Together with the possible addition of air spaces during the relocation of rocks could this explains the di�erence.
According to Lague et al. (2013) the total error budget on change detection is dominated by the point clouds regis-
tration error and the surface roughness. This shows that the quality of a point cloud not only depends on the number
of photos but also roughness of the surface should be considered. The use of a raster for volume calculations has
the drawback of using 2D information instead of 3D data. Overhanging parts are impossible to capture using raster
data.

A closed mesh is needed to calculate the volume including overhanging parts. Frankl et al. (2015) used SfM to
understand gully dynamics in more detail. Using the OPTOCAT software they were able to close the created mesh
and calculate volume di�erences. Kaiser et al. (2014) reconstructed the volume by calculating for every mesh a
three-dimensional box to a prede�ned value in space.
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5. Discussion

When an area is conservative in sediment and the volume remains the same then the volume can be used as an
validation number. This could be valuable as overhanging parts have a higher probability of creating shadow rich
areas, which is known to decrease the quality of a point cloud built with SfM. When the exact changes in elevation
or volume is not important, other methods to show erosion and deposition areas could be used. Lague et al. (2013)
introduced the M3C2 algorithm which is capable of comparing aligned point clouds directly. The algorithm computes
the distance between points along the normal surface direction and is therefore able to handle rough surfaces.

The M3C2 algorithm is included in CloudCompare and requires only a few parameters. Less pre processing is needed
and therefore it is easy and fast in use. The changes in the small study area are well detected by the algorithm (Fig.
20). The mean C2C distance is 0.8 mm and 0.4 mm for the M3C2 distance of two point clouds of the unchanged
situation. This in in agreement with �ndings by Smith and Vericat (2015), using point distances to asses quality
shows lower errors than raster di�erencing. For future work it is advised to apply M3C2, as it easy, fast and shows
areas of surface changes. Moreover, the more recent M3C2-PM is capable to include precision per point to detect
surface changes (James et al., 2017). This new algorithm requires more steps and could therefore not be tested in
this thesis. However, it could be a promising algorithm that includes a form of LoD and is able to handle rough
surfaces.

5.7 Smart phone

The absolute mean di�erence between the DSLR DSMs and smart phone DSM is 3.0 cm. This shows that a smart
phone creates a less similar DSM than DLSR DSMs between each other despite the fact that 900 photos were
used compared to 600 photos of the DSLR. The median of 7.7 mm together with the observation of positive as
negative di�erence indicates that there is no large bias in di�erences. The larger deviation than the DSLR DSMs
could expected beforehand as the reprojection error given by PhotoScan was much higher for the smart phone photos.

Micheletti et al. (2015a) used 13 photos of a smart phone and 13 photos of a DSLR to build a point cloud of a 12
m2 area and reached a median distance error of point to point of 5.3 mm and 3.8 mm compared to TLS reference
data. This di�erence between the smart phone and DLSR is smaller compared to results found in this study. The
comparison between point to point and raster di�erencing errors could explain this. Point to point quality quality
assessment is less a�ected by the di�erence in point density between DSLR and a smart phone point cloud. For
geomorphological analysis errors should be given when point clouds are processed to rasters or meshes to get an
appropriate indication of the error.

Prosdocimi et al. (2017) found that errors in georeferencing calculated by the Agisoft Photoscan software are compa-
rable for DSLR and smart phone for small plots of 0.25 m2. The scaling errors in this study show similar results. This
raises the question of the reliability of these errors generated by PhotoScan, as there is a larger di�erence between
DSMs created with smart phones compared to DSLR.

5.8 Limitations & recommendations

Detecting surface changes at outcrops using SfM is already at a level that it can be put into practice as shown in this
study. An important factor is the temporal frequency of your data acquisition. Old techniques to measure erosion
colours certain areas and follow the colour to know the source area of the sediment. Identi�cation of speci�c source ar-
eas is di�cult with SfM, as in between the photo acquisition a source area could be �lled up with sediment from above.

PhotoScan has been used as a tool to produce point clouds for further analysis. Settings advised in literature have
been used, without an in depth sensitivity analysis. It is likely that the use of other settings in PhotoScan could
improve the quality of the point cloud. The same holds for camera settings used in this research. Above all the
author believes that these changes in settings will result in minor improvements compared to the quality increase that
could be obtained by using more photos.

This research considered errors as a function of the number of photos m−2. This generic approach could suggest
that for each study area these numbers will be equal. However, the quality of SfM also dependent on the weather
conditions, camera-object distance and the number of unique features, colours, texture and roughness of a study
area. Therefore, these numbers should be used as a guideline, but showed that an increasing photo density results in
smaller di�erences between the generated DSMs.
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5. Discussion

The choice of a cell size of 2.5 mm allows surface change detection at a small scale. This research showed that for
areas without a lot of variation in elevation, di�erences between 2.5 mm cells are low. However, it can be hypothe-
sized that for rough areas with a lot of steep gradients a larger cell size should be used considering the uncertainty in
SfM models and alignment procedure seen in this research. The uncertainty in the 2D locations becomes too large,
which will result in di�erences not caused by surface changes but by comparing di�erent locations of the study area.

The uncertainty in change detection can be assessed by the use of 3 DSMs of an unchanged area without the need of
GPS system. This methodology allows for LoD calculation on a cell speci�c level. The use of GPS measured GCPs
in combination of only 1 DSM of the pre and post situation will result in an area uniform LoD. However, the use of
GPS has the big advantage that alignment of di�erent point clouds in time can be done automatically. The presented
method in this research requires static alignment point in space and time to detect surface changes. Screws drilled
in the study area or solid natural features present could be used for this alignment.

The applied formula to calculate the LoD takes into account di�erences in height values caused by PhotoScan and
the alignment. However, only the alignment deviation between the 3 DSMs in a set is taken into account. The
alignment error between the pre- and post DSMs is not taken into account. Consequently the LoD is likely a little
higher than presented in this research.

Longitudinal deformation a�ected the similarity of point clouds. It is advised to use a larger �xed focal length than
f/14 used in this study. Radial distortion is most visible at a small focal length. In addition the camera should be
calibrated to obtain �xed correction parameters that can be used in PhotoScan. Di�erent methods of calibration are
evaluated in Balletti et al. (2014) and could be used as a guideline for further work. Implementation of these two
advices together with enough convergent photos should result in point clouds with no doming e�ect.

During the research ideas popped up to include the factor number of points in a cell to calculate the LoD. This would
not work for the reason that SfM does not produce a homogeneous point distribution as TLS does. Unique features
with a lot of texture will have a higher point density to a �at areas without any colour di�erences. This does not
mean that the uncertainty for the �at area should be lower than for unique features. Lidar systems, such as a TLS
with a homogeneous scanning pattern would be suitable to include the factor point density per cell.
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6 Conclusions

This study was conducted to enhance the understanding of uncertainty when using SfM or a hand-held lidar system
to monitor surface changes at rock outcrops. Several studies conducted comparable experiments, but were mostly in
a controlled environment. Both techniques can be used without the need of GPS control points, which makes them
cheap and easy to carry to remote mountainous area. Three aspects of these techniques were investigated. First,
the e�ect and importance of sampling strategy was assessed. Next, the variation within DSMs when created with an
equal sampling strategy was determined. These two steps came together by determining the ability to detect surface
changes using a cell speci�c Limit of Detection (LoD).

The hand held lidar system ZEB1 produced point clouds of an insu�cient density with a lot of noise. In addition the
manual alignment of the uncoloured point clouds of the ZEB1 introduced variation in DSMs of several dm. For these
reasons the hand-held lidar system was not capable to detect surface changes at a small scale and the uncertainty
could not be determined.

SfM was able to generate similar point clouds of unchanged areas at outcrops. The di�erences among rasters created
from point clouds decreases with the number of photos per area. A low photo density can a�ect the photo alignment
in PhotoScan and as a consequence the coverage of an area. However, even the low photo density of 3 photos m−2

was able to capture the major height patterns. It is important to create a raster along the normal direction of an
outcrop. The processing time increases with the number of photos, but in general it is advised to take as much
photos given the total available time for the best quality. Quality parameters given by PhotoScan should only be
used as a �rst indication.

90% of the di�erences between 6 unique DSMs of an unchanged area created with a photo density of 8 photos
m−2 are within -3 and 3 mm. This proves that SfM is capable of repeatable generating consistent point clouds of
unchanged areas in outdoor conditions. Di�erences are caused by the input of unique sets of photos and manual
alignment of point clouds.

To include the uncertainty in monitoring surface changes 3 unique DSMs were made at each time step. After human
induced erosion again 3 DSMs were made. The standard deviation of these 2 sets of 3 DSMs was used to calculate
the LoD. Only surface changes larger than the LoD can reliably be detected.

A case study of 2 m2 had a mean LoD of 5 mm. The LoD showed large spatial variation, especially at regions with
steep gradients. This was caused by the deviations in alignment of point clouds. It showed that the use of cell
speci�c LoD is more preferred than an area homogeneous LoD. When the area was increased to 120 m2 the mean
LoD increased to 1.7 cm. However, there were clustered regions at both sides of this outcrop with low LoD values.
These spatial di�erence were caused by non-linear longitudinal deformation of the point clouds along the x-axis. This
deformation was not equal for all point clouds, causing structural di�erences. Fixed camera corrections parameters,
larger focal length and more convergent camera orientations could decrease this so called doming e�ect in future work.

An afterwards correction for this deformation resulted in a mean LoD of 8.3 mm. This correction not only removed
the deformation but also some noise caused by the processing chain. Therefore, DSMs without the doming e�ect
could have a higher more realistic LoD than presented in this study. Human induced surface changes were detected,
together with regions of small false detected changes. The alignment deviation between pre- and post erosion set of
DSMs were not taken into account by calculating the LoD and is likely the cause of these false positives.

This study shows that SfM is able to produce consistent point clouds in outdoor conditions at the mm-scale. SfM is
ready to be widely applied to monitor surface changes using a cell speci�c LoD. The hand-held lidar scanner produced
point clouds of insu�cient quality. Future work could be done on increasing the precision of the alignment among
sets of DSMs, determine optimal cell sizes and evaluate the suggested sampling strategy to prevent longitudinal
deformation of large point clouds.
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Appendices

A High vs medium density setting PhotoScan

Figure A.1: Comparison of the in�uence of the setting Build Dense Pointcloud in Photoscan between high and medium. The
di�erence has been calculated as raster high density pointcloud minus the medium dense pointcloud raster. The DSMs are
based on 200 photos. The absolute mean error between the DSM is 1.6 mm. The mean of the di�erence population is -0.9
mm, with a standard deviation of 3.4 mm.

B Work �ow description PhotoScan & CloudCompare

Print markers

�Tools > Markers > Print Markers�
Default settings can be used. Depending on the expected camera-object distances marker sizes could be increased
or decreased.

Add photos
To add photo select �Add Photos...� command from Work�ow menu

Photos are Shown in �Chunk 1�. Chunks can be used as (1) projects on their own or (2) to split up large projects
and align chunks after the processing. It this tutorial it is advised to use only 1 chunk, even for large photo sets as
the quality of the output decreases when splitting a project up in chunks according to online experiences.

Detect Markers (only when markers were used)
�Tools > Markers > Detect Markers�

Align photos
�Work�ow > Align Photos� (Fig. B.1)

Accuracy must be set to highest to use the full resolution of the photos. Medium will use 50% of the resolution and
low 25% of the resolution.

Pair preselection: can be set when using high resolution photos. �Generic� setting will Photoscan make a quick
pre-scan to see which photos share the same view. When photos do not share the same view a detail comparison per
pixel makes no sense. This decreases the processing time a lot and has no impact on the quality when using DSLR
photos.
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Figure B.1: Align photo screen in Agisoft Photo-
Scan.

Figure B.2: Build dense point cloud screen in Ag-
isoft PhotoScan.

Key point limit: the maximum number of points PhotoScan will extract from each photo. For a 36 Megapixel photo
the maximum number of points than can be extracted is usually around 240000. Online experiences showed that
an increase of the default value is not necessary. Using a higher value will result in more points in the Sparse point
cloud. A value 0 will use the maximum number of points.

Tie point limit: determines the number of points that will be used for the alignment detected from the key points.
For example when key point is 40000 and tie point set to 1000, only the 1000 best key points will be used. A value
0 will use the maximum number of points.

Gradual selection & optimize cameras
�Edit > Gradual selection > Reprojection Error > 0.5� (remove points with high error)

Reconstruction uncertainty: An example is when there are only two camera and a point is being triangulated by inter-
section of two rays there is a direction in which the variation for the point position is maximal and another direction
with a minimal variations. Dividing one on another (max to min) results in the reconstruction uncertainty value.
This criterion was designed for visualization and estimating the errors. It can be seen as a value that characterizes
the accuracy of positioning points in clouds.

Reprojection error: characterizes the accuracy of point positioning and has the unit pixels. Before optimizing the
camera point with a huge reprojection error should be removed. A value of 0.5 has been used in this research, but
is case dependent.

�Tools > Optimize Camera� This study applied optimisation to all parameters expect for Skew and Fit aspect as
these are 0 in normal frame cameras.

F: focal length measured in pixels
Cx, cy: principal point coordinates, coordinates of lens optical axis interception with sensor plane.
Skew: skew transformation coe�cient.
k: radial distortion coe�cients.
p: tangential distortion coe�cients.

Build dense point cloud
�Work �ow > Build Dense Cloud� (Fig. B.2)

Quality: Medium (used in this research). Photos are down sampled by a factor 4 compared to high.
Depth �ltering:
Mild (used in this research). Recommend when scene to be reconstructed is complex with small details
Aggressive: sort out most of the outliers, scene does not contain meaningful small details.
Moderate: between mild and aggressive, Agisoft advise to experiment with these settings.
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Figure B.3: Create scale bar of two markers.

Scale point cloud
�Select two markers > Create Scale Bar� (Fig. B.3)
�Reference Tab (bottom left) > Input known distances scale bars > Update�

Estimated errors per scale bar are shown in the third column.

Export point cloud
�File > Export Points > Save as type: .las�

CloudCompare

Load point cloud and put horizontal
�File > Open > Select point cloud of choice�
�Tools > �t > plane�

�Property of the point cloud > Align camera (Fig. B.4) > CTRL C transformation matrix in console (bottom)�
�Edit > Apply transformation > CNTRL V matrix > Apply�

Figure B.4: Align camera on created plane.

Alignment

�Align two point clouds by at least picking three point (Fig. B.5) > Select consistent reference for point clouds >
Pick at least three points > Align > Write down RMSE reached�

Figure B.5: Align camera on created plane.

Crop study area
�Select all aligned point clouds in tree > Segment tool > Select Study area�
Rasterize
�Select point cloud > rasterize > put in parameters�
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C E�ect cell size on number of empty cells

Figure C.1: E�ect of cell size on the number of empty cells in a raster. The same point clouds have been used with di�erent
cell sizes. The y-axis shows the percentage of empty cells of total number of cells.

D Errors scale bars

Table D.1: Errors with the scale bars generated with PhotoScan for the 6 point clouds each generated with 100 pictures.

Errors (cm) pc 1 pc 2 pc 3 pc 4 pc 5 pc 6

target 26 - 28 -0,478 0,094 0,106 0,119 0,093 0,090
target 26 - 29 0,376 0,125 0,110 0,083 0,134 0,124
target 13 - 18 0,006 0,133 0,135 0,115 0,138 0,145
target 13 - 15 -0,479 0,017 0,022 0,042 -0,467 -0,473
target 9 - 10 0,187 -0,463 -0,466 -0,449 0,010 0,007
target 7 - 8 0,073 -0,467 -0,476 -0,468 -0,476 -0,467
target 11 - 12 0,127 0,051 0,066 0,057 0,051 0,059
Average absolute error 0,247 0,193 0,197 0,191 0,195 0,195

Variables from Photoscan
tiepoints 111.735 126.736 117.867 140.729 118.703 126.054
reprojection error (pix) 0,774 0,844 0,769 0,784 0,788 0,763
points 20.327.509 23.403.839 23.060.516 21.361.835 20.276.532 22.608.138
e�ective overlap 3,53337 3,02364 3,28458 2,98977 3,07823 2,90718
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E ZEB1 Point cloud

Figure E.1: Part of the point cloud, showing a tra�c sign just next to the outcrop. The colour of the points represent the
time of acquisition. The tra�c sign shows no clear boundaries around the edges. Scale bar in [m].

F Change detection

Figure F.1: The Limit of Detection of the small test area.

Figure F.2: Set of the 6 DSMs used for the LoD calculation. Left column are the pre erosion DSMs whereas the right column
is after erosion DSMs
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