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Abstract  
 

Climate change influences the yields of farmers. Yields can be sustained by developing and growing different varieties. The 

Seeds for Needs experiment of Bioversity International, includes on-farm trials in which farmers compare triplets of crop 

varieties from a larger set are compared against local varieties. This thesis is focused on a dataset of ten common bean 

varieties tested in Nicaragua. The experiment comprises 842 instances in which three randomly chosen varieties were 

compared to the local variety of farmers under different environmental circumstances An appropriate method for dealing 

with such incomplete rankings and environmental interaction is the Plackett-Luce model in combination with model based 

recursive partitioning. Environmental conditions were characterised using a simple water balance and temperatures in 

combination with several physiographic descriptors derived from a digital elevation model. The Plackett-Luce model was 

found able to predict the relative performances of the different bean varieties. The partitioning on environmental 

conditions, was found to influence the performance of different bean varieties compared to the local varieties of farmers. 

The results were visualised in maps representing physiographic circumstances, while water availability to and temperature 

influence on the crop is represented in scenarios. 

 
Keywords: Bradley-Terry model, Plackett-Luce model, model-based recursive partitioning, blocked-cross-validation, 
incomplete rankings, grouped rankings  
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1. Introduction 
Long-term changes in the climate have been observed and are assumed to continue in the future. 

Temperatures have been increasing, resulting in sea level rise due to melting ice caps and melting 

of permafrost layers. Increased amounts of precipitation are occurring worldwide, while at the 

same time more extreme droughts occur (Lemke, 2007). Precipitation has always been highly 

variable over space and time but due to the increased frequency and intensity of the events, this 

variability is increasing. These developments have created a new pressure on agriculture (Adams, 

1990). Higher temperatures, more frequent and/or intensive rainfalls and droughts increase 

production risks and decrease agriculture yields (Fischer, 2005). The pressure to sustain or even 

increase yields in agriculture is further increasing due to socio-economic trends. The population is 

growing, which results in a higher demand from agriculture. Additionally, urbanization and dietary 

shifts are driving further pressure on agriculture (Van Etten, 2016).  

Adaptation of farmers is the key for agriculture to cope with climate change and socio-economic 

trends, but this requires investments by both farmers and governments (Lobell, 2008; Muthoni, 

2017). Adapting to the current situation in agriculture can be done with sustainable and relatively 

inexpensive innovative changes, such as switching to more suitable crop varieties. The increase in 

yield after using novel varieties might be proven under design conditions, but this is not the sole 

contributor to adaptation. Soft innovation focusses on the interaction of the technology with the 

users (Silva, 2017). In case of switching to other varieties, this includes introducing the different 

varieties to the farmers in order to make adaptation of the other varieties easier. It is actually a 

prerequisite that farmers are well informed about available varieties and their performance before 

accepting change (Bentley, 1989; Fielding, 1997). Proving the technological improvement of 

different varieties to farmers can be done by introducing farmers to these new varieties by 

providing seeds and knowledge (Mwongera, 2014). The performance of different varieties can be 

demonstrated to farmers by on-farm trials, resulting in lowering the moral decline towards 

accepting change and adaptation (Van de Gevel, 2013).  

One of the soft innovations aiming to help solving the issues surrounding food security may come 

from an initiative introduced by Bioversity International, a global research-for-development 

organization. The program, called Seeds for Needs, aims to reduce the consequences of climate 

change in agriculture by introducing farmers to various varieties of a certain crop using on-farm 

trials (Beza, 2017). The viability of implementing on-farm trials is supported by Atlin (2001), whom 

states maximal gains in local cropping systems are obtained using on-farm trials and the 

experience of farmers themselves to maximize yields. The initiative is a micro-level experiment 

across 14 countries (Beza, 2017), founded on the proposal for crowdsourcing crop improvement by 

Van Etten, (2011) in Africa. According to the latter proposal, farmers receive small packages of 

seeds with different crop varieties for free, which they were asked to evaluate and report their 

findings using mobile phones. An evaluation consists of comparing one variety to another, based on 

the yield, consumption quality and marketability. These aspects of performance are combined into 

an overall performance (Bioversity, 2016). The evaluations are subjective, while they depend on 

each of the farmers’ own evaluation. Additionally, these trials were performed as a blind 

experiment, to reduce the bias of the farmers having prior knowledge on crop varieties, while it 
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simultaneously motivates farmers to complete the experiment. As soon as farmers hand in their 

evaluation of the relative performance of the crop varieties, the name and type of the evaluated 

crop varieties are returned. This idea is also supported by Van Etten (2011) for similar experiments 

in Africa and supports the soft innovation as highlighted by Silva (2017).  

The evaluations made by the farmers are collected using the digital platform ClimMob 

(https://climmob.net) via a web platform or a mobile application. The evaluation is done on a 

series of randomly selected triplets of the to-be-tested crop varieties in a relative scoring of 

performance. To simplify the experiment and also the evaluation, not all of the to-be-tested 

varieties are distributed over all farmers, but a triplet (Bioversity, 2016). For this triplet they had to 

assign the ‘best’ performing variety and the ‘worst’ performing variety. A relative order could be 

made per observation for three varieties, excluding the other varieties. An additional comparison 

between each of the improved varieties from the triplet is made with the local variety of the 

farmer. Each observation provides thus an incomplete categorical ranking (Agresti, 2011). 

Although the accuracy of the trial observations of each farmers’ individual observation may be low, 

Steinke (2015) concluded a sufficient validity is achieved when a large set of  combined 

observations is used.  

The incomplete categorical rankings based on the overall performance, are combined per crop and 

per country. The dataset used in this thesis contains the results of the experiment Seeds for Needs 

regarding the common bean in Nicaragua. The locations of the trial observations were recorded, 

which makes it possible to link the observations to environmental variables. The environmental 

variables might give information as explanatory variables on the evaluated performances of 

different bean varieties. Information about environmental interaction of different varieties is 

extracted, while farmers are directly involved in innovation, using different varieties. Bioversity and 

the contributing farmers of the Seeds for Needs initiative are interested in the relative crop 

performance of different varieties, resulting in the following research question: ‘Which crop variety 

performs best under given environmental conditions?’ 

The goal of this research is to contribute to enhanced statistical analysis of the on-farm trial data of 

the Seeds for Needs experiment. A spatial analysis is part of the result after combining the current 

available statistical methods with environmental data to highlight spatial variation. The Seeds for 

Needs experiment is an on-farm trial, which means the seeds are tested on their performance in 

natural circumstances, which change over space and time. This also makes the experiment non-

repeatable and it is harder to predict the (relative) performance of the different varieties. When an 

experiment is repeatable, the adaptation to certain stresses or production constraints can be 

characterized and will not be limited to the influence of (unique) local environmental conditions 

(Atlin, 2001). Despite the non-repeatability, the analysis is deemed able to characterize the 

performance of certain crop varieties over other varieties based on the relative performance linked 

to environmental conditions. Some environmental factors such as topography can be assumed to 

be fixed, and can help with describing the performance of a crop variety. Other environmental 

conditions, such as the weather, are not fixed over time and space but knowledge on variety 

performance under different weather conditions can help decision making under risk management 

strategies, such as varietal diversification. Varietal diversification is the use of several varieties of 
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the same crop by a farmer and it can reduce the yield reduction caused by climate variability 

(Sukcharoen and Leatham, 2016). The tricot approach can produce important information about 

the actual performances of the crop varieties combined with environmental interactions. 

The statistical methods used in order to deal with incomplete categorical rankings are the Bradley-

Terry model (Strobl, 2011; Caron, 2012; Bioversity, 2016) and the Plackett-Luce model (Caron, 

2012; Turner, 2018). Currently, the experimental approach and the existing data that comes with 

it are not used to their full potential, due to a lack of the spatial component in the analysis. The 

Bradley-Terry model covered the performance of the crop varieties explained by extreme 

precipitation events (Bioversity, 2016) and the Plackett-Luce model explained the performance 

using the planting season and year and the maximum temperature at night during the growing 

period (Turner, 2018). However, the crop in question, the common red bean, also has other 

optimal environmental conditions (Steduto, 2012), which were not taken into account in previous 

research. The environmental conditions, which are defining this optimal environment, are included 

in this research and based on work of Gómez and Blair (2004) describing the interaction of the 

common bean with environmental conditions in Nicaragua. 

In order to answer the main research question ‘Which crop variety performs best under given 

environmental conditions?’, the following sub-research questions were formulated: 

1. What methods are suitable for the statistical analysis of ranked sets of variety trials in 

combination with explanatory environmental variables? 

2. Which environmental conditions influence the crop variety scores, and can these 

conditions be characterised in Central America to support the analysis? 

3. What are the relative scores of tested varieties under different environmental 

conditions? 

4. Which (geo)graphical presentation methods are appropriate for these kinds of analysis? 

 

The methodological background in Chapter 2 is the result of the first sub-question, in which the 

data type and models to deal with this data are discussed. An explorative analysis is done for 

Chapter 3 in order to investigate the environmental conditions influencing crop varieties in general, 

zooming in on the common bean in Nicaragua. The actual methodology, describing the chosen 

model and the inputs (Chapter 4) result in the relative scores of the tested varieties under different 

environmental conditions (Chapter 5). The (geo-)graphical presentation is visualised in Chapter 5. 
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2. Methodological background  
This chapter gives a methodological background on the statistical model used for dealing with 

incomplete ranking datasets. It seeks to explain what incomplete rankings are and how they can be 

analysed using the Bradley-Terry model and the Plackett-Luce model. Additionally, a method for 

analysing incomplete rankings in combination with explanatory variables is explained.  

2.1 Incomplete rankings 
This section tries to define the term ‘incomplete ranking’ using practical situations. A situation with 

so-called complete pairwise comparisons is explained using a chocolate example while a situation 

of an incomplete pairwise ranked evaluations is explained using a soccer pool. 

First, assume two types (A and B) of chocolate given to a test panel of an odd number of randomly 

selected subjects who are asked to give their preference for either type A or type B. In this simple 

example each member of the panel evaluates the same pair of chocolate types. However, since 

chocolate preference depends on personal taste, it is likely that the responses of the panel are non-

uniform. Nevertheless, the winner and the loser of the test can be determined, along with a 

measure about the uncertainty related to the observed outcome.  

This winning-losing principle can also be applied in, for example, a soccer pool. Assume there are 

four teams (A, B, C and D) in a pool, playing games against each other. Each soccer team will face 

the three other teams and will either win, lose or tie. To simplify the example, the teams are either 

winning or losing, excluding the possibility of ties. Team A will for example win against team B and 

C, but lose against team D, creating a matrix as shown in Table 1. Team D wins in total three 

games, team A wins two games, team B wins one game and team C loses all games. In this 

example six games are played, resulting in the order D > A > B > C. This dataset is considered to 

be a complete ranking dataset, because all teams played against all other teams.  

Table 1. Paired comparison matrix: example soccer teams 

 Team A Team B Team C Team D 

Team A 

Team B 

Team C 

Team D 

- 

A > B 

A > C 

A < D 

B < A 

- 

B > C 

B < D 

C < A 

C < B 

- 

C < D 

D > A 

D > B 

D > C 

- 

 

In order to win a soccer game, the rules are very straightforward: the team who made the most 

goals wins and the other team loses. It does not matter who is observing the game: every 

observer would see the same result. Sometimes, there are no straightforward rules and the ‘win’ or 

‘loss’ is based on the observers’ taste. In the case of the chocolate example, each observer can 

make its own preference. The four teams in the matrix in Table 1 can be replaced by four chocolate 

types. This matrix could be different from observer to observer, depending on taste. Each observer 

has its own ranking of the four chocolate types. The resulting dataset is still considered to be a 

complete ranking dataset, because all types are evaluated against all other types, but now for 
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more observations. In order to find out which type is most preferred, the number of ‘wins’ per type 

is simply added and compared to the other amount of ‘wins’ per type.  

In the case of the soccer pool example, a ranking becomes incomplete as soon as not all the games 

between the teams are played. A game on itself is still a paired comparison, because one team is 

playing and compared to another team. As soon as one of the paired comparisons is missing, the 

ranking becomes incomplete. It is possible team A is never compared to team C, because they did 

not play a game against each other. In a soccer pool with an incomplete ranking, it is not possible 

to assign a winner. This is different in the case of the chocolate example. A ranking becomes, in 

the case of the chocolate example, incomplete as soon as an observer is not comparing each type 

against each other type. When a person is comparing two chocolate types out of the four types, it 

is not possible to fill in the whole matrix of Table 1. It is still possible to find out which sample is 

most preferred by adding the ‘wins’ per sample, because there were more observations done by 

different observers. However, it is important to keep in mind the distribution of the paired samples 

over the different observers in order to be able to say something about the result.  

In the case of the triadic crop variety trial in Nicaragua, there are ten different varieties. The 

varieties are evaluated based on their performance. When comparing one variety to another, one 

of them is ‘winning’, while the other is ‘losing’. The same matrix as in Table 1 can be created for all 

varieties, resulting in a 10x10 matrix. In a case of a complete data ranking set, each variety would 

be compared to each other variety and the ‘winner’ or ‘loser’ would be determined per observation. 

If we consider the comparison between one variety to another as a game, there would be 45 

games to compare each variety to each other variety. This variety trial results in a final ranking per 

observer in which the best variety wins against all other varieties based on performance, while the 

worst variety loses to all other varieties. When combining all observations, the varieties can be 

ranked, based on their total preference.  

The chocolate and the soccer pool example are both paired comparisons, while one thing is 

compared to another, resulting in a win or a loss. It is also possible to do comparisons between 

triplets or quartets. The triadic crop variety trial is an example of comparisons between triplets, in 

which per observation three varieties are relatively compared. For each observation are three 

paired comparisons between one of the improved varieties from the triplet and the local variety of 

the farmer added. Combining all observations results in an incomplete ranking dataset, with only 

the relative performance of three varieties compared to each other out of the ten varieties and 

paired comparisons between these three varieties and the local variety of the farmer.   

2.2 Bradley-Terry model 
The Bradley-Terry model (BT-model) (Van Etten, 2016; Firth and Turner, 2012) is suitable for 

dealing with paired comparisons. In the example with the four soccer teams each ‘winner’ or ‘loser’ 

is the result of a paired comparison between two teams. The Bradley-Terry model is an approach to 

assess the probability of a possible team as ‘winner’ based on the outcomes of previously played 

games (Caron, 2012). It is possible to account for influencing factors in combination with the 

outcomes of the previously played games, such as ‘home-field advantage’ (Agresti, 2011). This 

advantage increases the probability a team wins if playing on their home-field. These factors are 
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called covariates that can be taken into account in the Bradley-Terry model. Estimation of the win 

probabilities are obtained by a maximum likelihood approach (Caron, 2012). 

The Bradley-Terry model can be used to assess the probabilities of preferences for a certain variety 

in a triadic variety trial using pairwise comparisons (Caron, 2012; Bioversity, 2016). It is assumed 

that one variety is performing ‘better’ than another variety, leading to multiple paired comparisons 

between two varieties. Since the data ranking consists of three improved varieties and a local 

variety,  a complete single observation consists of six paired comparisons. Within a triplet 

consisting of the varieties A, B and C, all varieties are compared to each other, resulting in a 

‘winner’ and a ‘loser’ per paired comparison. In each observation are also three paired comparisons 

with the local variety of the farmer (local). The six different pairwise comparisons per observation 

are (A-B), (A-C), (B-C), (A-local), (B-local) and (C-local). However, it should be kept in mind that 

because of the paired comparisons, a variety is considered to be more often a ‘winner’ or ‘loser’ 

inside one observation. The paired comparisons taken from the three relative performances are not 

corollary independently. Within a triplet, (A-B-C), the three pairwise comparisons cannot be 

considered independent. For example, if C was by coincidence favoured by some local 

circumstances, that will impact two pairwise comparisons (A-C and B-C) rather than just one.  

Firth and Turner (2012) provide an implementation of the Bradley-Terry model in R, which is 

exemplified using a triadic crop variety trial. 

2.3 Plackett-Luce model 
An extension of the Bradley-Terry model, the Plackett-Luce model (PL-model), is able to deal with 

more objects in a comparison. Like the Bradley-Terry model, the Plackett-Luce model is also based 

on maximum likelihood estimation (Guiver, 2009). The difference between the BT-model and the 

PL-model, is that each incomplete ranking per observation can be seen as a whole, rather than the 

objects in the ranking have to be compared pairwise (Table 2). The BT-model used a contest 

between two objects, resulting in a winner and a loser. The PL-model uses an (incomplete) ranking 

of all objects available within a single comparison (Caron, 2012). For the triadic crop variety trial, 

this means the ranking of a triplet (A-B-C) could be included as one ranking in the PL-model 

compared to the three paired comparisons (A-B), (A-C) and (B-C) in the BT-model. The paired 

comparisons between the improved varieties (A, B or C) to the local variety (local) are by 

themselves equal, but are treated differently in the BT-model and the PL-model.   

Table 2. Partial rankings for Bradley-Terry model compared with the Plackett-Luce model for the 
Bioversity (2016) dataset 

Bradley-Terry model Plackett-Luce model 

     1. (A-B) 

     2. (A-C) 

     3. (B-C) 

     4. (A-local) 

     5. (B-local) 

     6. (C-local) 

      1. (A-B-C) 

      2. (A-local) 

      3. (B-local) 

      4. (C-local) 
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The Bradley-Terry model considers the six different rankings as independent observations, while 

the Plackett-Luce model treats the partial rankings as parts of a single observation (Caron, 2012). 

One observation in the Plackett-Luce model thus consists of four partial rankings, while one 

observation in the Bradley-Terry model consists of one paired comparison. It was decided to 

completely shift to the Plackett-Luce model, as this model is capable of dealing with more varieties 

simultaneously per observation and an incomplete ranking dataset. 

2.3.1 Data inconsistency in observations  
However, the partial rankings used in the Plackett-Luce model are not necessarily correct. It would 

be expected that as soon as a certain ranking exists for a location, based on the three varieties, 

the local variety fits in one location to create a ranking of four. However, it was found in the data 

the partial rankings per observation were inconsistent, for example: 

(A > B > C)  Meaning variety A is preferred most and variety C is preferred least 

When the local variety was included, it was expected all the sub-comparisons would lead to one 

particular order of the varieties, such as: 

(A > B > C > local)  Meaning variety A is preferred most and the local variety is preferred least 

The expected sub-comparisons would be: 

- (A > local) A is preferred over the local variety 

- (B > local) B is preferred over the local variety 

- (C > local) C is preferred over the local variety 

However, the sub-comparisons were not necessarily in line with the ranking as given in (A > B > C 

> local). Therefore, the ranking (A > B > C > local) was not used, but a combination of the four 

rankings: (A > B > C), (A > local), (B > local) and (C > local). The Plackett-Luce model is able to 

deal with the comparisons, even when they were not consistent (Turner, 2018) by listing the four 

rankings in a matrix. The columns in the matrix represent the 10 different bean varieties and a 

local variety. The rows represent the partial rankings, resulting in a length of four times the 

observations. In order to rank different objects from a dataset with incomplete rankings, each 

object in the ranking is given a value representing the place in the relative ranking per observation.  

For the ranking of the three varieties A, B and C, the best performing variety receives value 1, the 

second best value 2, and the worst performing variety value 3. Variety A, B and C get their 

assigned values, and the values not evaluated in that observation, are given the value 0. The 

varieties which were represented with a value 0 were not seen as best or worst, but it was simply a 

way of making clear they were not observed in that observation. In addition were the three 

varieties also all compared to the local variety. For the comparison between one of the tree 

varieties with the local variety, the values for the local variety and the tested variety were either 1 

or 2 (1 for best and 2 for second best) and the other varieties were represented by a 0.  
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As mentioned before is the Plackett-Luce model able to deal with multiple rankings per 

observation, using the ‘grouped_rankings’ from the pltree package in R (Turner, 2018). The four 

different partial rankings are combined in 1 column and 1 row as follows: 

(A > B > C , A > local , B > local , C > local)    1 observation of four partial rankings 

Observations with the format as described above, are the input for the Plackett-Luce model. Hunter 

(2004) elaborates further on algorithms for the generalized Bradley-Terry model from which the 

Plackett-Luce model is one. Warwick University was requested by Bioversity to develop the 

Plackett-Luce model in R (Hunter, 2004; Turner 2017). The Plackett-Luce model in R is still under 

development and the package was introduced in R during the time this thesis was formed. 

2.4 Model-based recursive partitioning with PL-model 
Just like in the example of the soccer pool, there can be advantageous or disadvantageous factors 

influencing the probability of a certain outcome (in a ranking). In the earlier example, the ‘home-

field advantage’ was referred to. In the case of the chocolate example, a distinction could be made 

between preferring one sample over another sample after drinking either coffee or tea. The actual 

chocolate types themselves do not change over the different observers, but the observers 

themselves can be divided into two groups: coffee drinkers and tea drinkers. The preference of one 

chocolate type over another type is no longer only influenced by the taste of the observer, but also 

by the drinking coffee or tea. If a stimulant like drinking coffee or tea might influence the 

preference of the chocolate types, the dataset can be partitioned into two datasets: a set with 

observers who were drinking coffee and a set with observers who were drinking tea. The 

advantages or disadvantages possibly influencing the preference of the samples (such as drinking 

coffee or tea) is called a covariate. In this way it is possible to find out whether there is a 

difference in outcomes when the covariates change.  

In model-based partitioning is the dataset not partitioned beforehand in for example observers 

drinking coffee or tea, but is a model-based partitioning algorithm used as explained by Strobl 

(2011). The dataset will only be partitioned in coffee-drinkers or tea-drinkers if the datasets show a 

significant difference in preference of the chocolate types. The partitions in the dataset can be seen 

as and visualised as a tree. Strobl (2011) described model-based partitioning as part of the BT-

model, but it is also implemented as part of the PL-model using the package psychotree in R 

(Turner, 2018). In Van Etten (2016) the CART algorithm is used (Crawford, 1989), which is based 

on using one tree with the optimal partition threshold for each node using the whole dataset.  

A dataset can contain different groups of observers identified with similar covariates, but with 

differences in their preference on the outcomes (Garge, 2013). The principle of model-based 

recursive partitioning is similar as for classification and regression trees (Breiman, 2017), but 

model-based partitioning differs in its ability to find differences in values in the covariates in order 

to create significantly different models in order to fit the total model, rather than finding differences 

in the preferences of the outcomes (Strobl, 2011). In the PL-model, model-based partitioning aims 

to find significantly different models by stratifying the covariates in order to partition the dataset in 

such a way, the goodness-of-fit is optimised.  
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All covariates are tested whether partitioning of this covariate leads to an improvement in the fit of 

the overall Plackett-Luce model and the covariate with the smallest p-value is chosen to partition 

the dataset. The lowest p-value corresponds to the highest significance that the use of the 

partitioning is improving the overall Plackett-Luce model for each node in the Plackett-Luce tree. All 

the values in the covariates are ordered and subsequent splits are tried. The partition is made 

where the likelihood of the PL-model is at its maximum (Strobl, 2011). 

Upon a binary split, each subset is used in order to fit the Plackett-Luce model again. Both subsets 

are partitioned again, as long as there is significant change in improving the overall fit of the 

Plackett-Luce model, or as long as no stop criteria are reached (Strobl, 2011; Turner, 2018). Stop 

criteria are for example: reaching a significance level (per node), a minimal subsample size per 

leaf, or a maximum depth of partitioning (= maxdepth) (Turner, 2018). The significance level and 

minimal subsample size should be chosen beforehand. A significance level of 5% is deemed 

appropriate, but it should be lower when the sample size is large, otherwise the tree gets too 

complex for the used dataset.  When the model is too complex, it risks induced overfitting: a result 

might only be valid under a very specific set of covariates, which is hard to interpret. The minimal 

subsample size should provide a sufficient basis to be able to draw conclusions and should be 

increased when the number of variables used to get to that subsample size is too high (Strobl, 

2011). 
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3. Explorative Analysis 
The dataset with the results from the Seeds for Needs experiment contains relative evaluations of 

performances of different types of the common bean in Nicaragua (Bioversity, 2016). Since the 

location of the trials was recorded, it is possible to link the trial points to environmental variables. 

An explorative analysis was performed to obtain information about the interaction between crops 

and environmental conditions and the common bean in general. 

3.1 Environmental Conditions 
The performance of a crop variety is highly dependent on the interaction with the environment 

(Atlin, 2001) and therefore it cannot be concluded straight away that one crop variety is better 

than all other crop varieties at every place and time (Patterson, 1995). The influence and impact of 

the presence of certain environmental conditions change over place and over time and interact with 

crop factors that express the performance of crop varieties. Since the experiment was done under 

real field-circumstances instead of designed conditions, the environmental conditions should be 

included in the analysis. The statistical analysis can be adapted to the real field-circumstances by 

including the circumstances important to the performance of the crop. 

The characteristics of a crop influence the interaction between the environmental conditions and 

the crop performance (Allen, 1998). The crop characteristics consist of the growth stages, crop 

factor and the yield response factor. The growth stages can be divided in the initial, crop 

development, mid-season and late season stage. For beans in general, is a growing period between 

95 – 110 days (Brouwer, 1986). The growing period as used in this thesis for the common bean in 

Nicaragua is 110 days, which is close to the range as mentioned by Brouwer (1986) and Gómez 

and Blair (2004). This growing period can be divided into four different growth stages: the initial 

growth stage (20 days), the crop development stage (30 days), the mid-season stage (40 days) 

and the final stage (20 days) (Brouwer, 1986). 

The next crop characteristic is the crop factor; this crop factor is used to calculate the crop water 

requirements of a bean. It is of interest to calculate the crop water requirements, this is a measure 

of the compensation of evapotranspiration of a crop (Todorovic, 2005). It states exactly how much 

water a crop needs from day to day (or over any chosen time span) over the growing period. In 

order to calculate the actual evapotranspiration of the bean, the evapotranspiration from a 

reference crop (green grass, 8 – 15 cm tall) is multiplied by the crop factor for beans. This crop 

factor resembles the relationship of the reference crop to the crop which is calculated. The crop 

factor changes per growth stage, because per growth stage, the canopy of the crop changes and 

thus also the evapotranspiration (Brouwer, 1986). In Table 3 are the length of the growth stages 

and their corresponding crop factor given. The last crop characteristic is the yield response factor, 

which represents the sensitivity to a water deficit for the crop, resulting in a stress for the crop and 

a yield reduction. As soon as the yield response factor is higher than 1, the crop is very sensitive to 

water deficit, especially during the initial and crop development stage. The yield response factor for 

beans is 1.15, which means the crop is sensitive, especially during the initial and crop development 

stage (Steduto, 2012). When the crop is older (in the mid-season and late season stage) it is more 

capable to recover from stress compared to the initial and crop development stage. Therefore, a 
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distinction will be made in the different growth stages to calculate whether the crop has enough, an 

excess or a deficit of water. Both, the crop factor and yield response factor are considered to be 

uniform over Nicaragua.   

Table 3. Length growth stage of bean and the corresponding crop factor (Kc) (source: Brouwer, 
1986) 

Growth stage Length growth stage  

(days) 

Crop factor bean, dry:  

kc (-) 

1. Initial stage 20 days 0.35 

2. Crop development stage 30 days 0.70 

3. Mid-season stage 40 days 1.10 

4. Late season stage 20 days 0.30 

 

Environmental conditions occur spatially clustered rather than randomly spread over space and 

there are data products describing these conditions. The observations in the experiment have 

geographical coordinates. Hence, they can be mapped to environmental conditions. The 

environmental conditions influencing the performance of a crop can be divided into three different 

conditions: management, weather, and environmental variables (Allen, 1998).  

Management conditions consist of the managing from the farmer when it comes to irrigation, 

fertilization and mulching. Irrigation management, the use of fertilizers, mulching and the presence 

of pest and diseases were not taken into account in this thesis, due to the absence of data for the 

study area. It was assumed each farmer treated the tested crop varieties equally. Furthermore, the 

evaluation of the variety performance was relative, and therefore management conditions can be 

excluded from this research.  

Weather variables concern insolation, (air) temperature, humidity and wind speed. These factors all 

influence the evapotranspiration of a crop, and thus the amount of water the crop needs (Allen, 

1998). Temperature in general influences the growth of crops, and for each crop variety optimal 

performance occurs at different temperatures (Hatfield, 2015). Additionally, the maximum night-

time temperature is considered to be important concerning the performance of the beans 

(Bioversity, 2016).  

Based on crop characteristics and weather variables, the crop water requirements of a crop can be 

calculated. Comparing the crop water requirements to the precipitation on the specific locations, 

results in either an excess or deficiency of water, leading to a different performance of the crop. 

Beans need a moderate amount of water (300-600 mm per vegetative cycle), especially early in 

initial, crop development stage and in the mid-season stage. Late rains are bad for the beans, since 

their colour changes and the beans have a lower market value (Gómez, 2004). 

The environmental conditions influencing the adaptation of beans are altitude, slope, soil type, soil 

depth, drainage, pH and aluminium content (Gómez and Blair, 2004).  
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The altitude influences the available water for the crops and the temperature. Generally, the 

temperatures are lower at higher altitudes, compared to lower altitudes (Haverkort, 1990). The 

altitude and slopes in an area can result in a difference on the performance of crops. Altitude has a 

significant influence on the rainfall in an area and subsequently influences the performance of crops 

(Trapnell, 1960). Furthermore, slopes can influence the suitability of land for crop cultivation. 

Steeper slopes cause more runoff compared to areas with (almost) no slope (Audsley, 2006) and 

additional measures to the land need to be taken in order to obtain the same yield as for flat or 

gently sloping areas. Additionally, it is harder for farmers to cultivate the land and to harvest the 

crop, compared to flat areas. The altitude and slope are in this sense, factors influencing the 

performance of the crop varieties.  

The soil type in combination with the soil depth also affect the water potential in the soil. Next to 

precipitation, the soil type and soil depth influence the ability of the crops to actually use the water. 

A soil with a higher water holding capacity is more beneficial compared to a soil with no pores, as 

the plant has more access to water. Furthermore, a plant should also be able to penetrate its roots 

into the soil in order to actually reach the available water. A deeper soil depth also allows the soil 

to store precipitation. A high-water content in the soil is good for a plant but good drainage is 

equally important. In the absence of drainage the roots of a plant are always under water, resulting 

in  oxygen stress. Letey (1958) analysed the crop production as a result of different soil physical 

properties in detail.  

When it comes to the chemical composition of the area, the acidity of the soil and the related 

aluminium content are influencing the performance of crops. A soil is considered too acidic when 

the pH is lower than 4.0, which reduces the growth of roots (Foy, 1992). For beans a pH higher 

than 5.5 is the minimum requirement, but optimal yields are obtained with a pH around 6.5 

(Gómez and Blair, 2004). Aluminium in a soil is toxic for a plant and hinder growth; aluminium 

contents which are too high, reduce the performance of a crop (Foy, 1992). Furthermore have soils 

in Latin America very often a deficit in phosphorus and in combination with a high aluminium 

content in the soil, beans are affected (Gómez and Blair, 2004).  

The altitude, slope, soil type, soil depth, drainage, pH and aluminium influence the performance of 

crop varieties in their own way. Additionally, the different environmental conditions over space, 

possibly influence the other environmental conditions due to reciprocal correlations. When the 

varying influences on the varieties and the spatial variation of the environmental conditions itself 

are combined, the performance of the crop varieties are also assumed to be spatially varying. 

3.2 Covariate Selection – Nicaragua 
The ecology desirable for the cultivation of the common bean in Nicaragua is described by Gómez, 

(2004). The environmental conditions as mentioned in the Table 4 are important for the adaptation 

of the common bean to different zones in Nicaragua and vary over space. These environmental 

conditions can give an insight in the adaptation of varieties to the important environmental 

conditions for the bean in Nicaragua.  
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For the environmental conditions, the altitude, the slope and the soil type were analysed, as 

suggested by Gómez and Blair (2004), see Table 4. Other environmental conditions, such as the 

soil depth, drainage, pH and aluminium content are characteristics influencing the adaptation of 

beans in Nicaragua. The research was limited to altitude, slope and soil type only, simply due to a 

lack of datasets regarding the other characteristics.   

Table 4. Adaptation of the common bean to different zones in Nicaragua based on their climatic and 

edaphic characteristics (source: Gómez & Blair, 2004) 

Adaptation Altitude 

(m.a.s.l) 

Tempe-

rature  

(°C) 

Precipitation Soil 

Accumulated 

(mm) 

Period 

(month) 

Depth  

(cm) 

Slope 

(%) 

Drainage pH Al 

(%) 

Optimal 450-800 17-24 

17-20 

200-450 6 >60 <15 Good 6.5 20 

Intermediate 200-450 23-27 450-700 4 40-60 15-30 Moderate 6.0 50 

Marginal 100 <17 

>27 

>700 

<200 

<4 

>6 

<40 >30 Imperfect 5.5 >50 

 

A literature study resulted in a selection of datasets as mentioned before. Not all above-mentioned 

variables could be used in this thesis, because for some variables no data were available. 

Additionally, some variables are more or less homogeneous over the study area so that they are 

not useful for stratifying crop performance. From the available datasets were the raster-values 

extracted to the locations of the observations in ArcGIS using the tool; ‘Extract Values to Points’ or 

‘Sample’. This resulted in a csv-file, which was used as input for the Plackett-Luce and the tree to 

fit. The covariates used in the model and their origin are clarified below: altitude, slope, season, 

soil types, maximum night-temperature (TNmax) and the water balance.  

Altitude  - The altitude as provided in the Seeds for Needs experiment (Bioversity, 2016) was 

replaced by data extracted from the Digital Elevation Model (Table 4) because of lacking 

information on the source of the altitude as provided by Bioversity.  

Slope -  The Digital Elevation Model was used to create a slope map, using ArcGIS and the ‘slope’ 

tool (percent rise). For each observation in the Bioversity dataset, the slope (in percentage) was 

extracted from this slope map. 

Season - When it comes to seasons, there are three different seasons distinguished in Nicaragua in 

which farmers cultivate their crops: Primera, Prostrera and Apante. Primera is the first season from 

the end of May until the beginning June and is the start of the raining season. The second season is 

called Postrera and the bean cultivation is during this season from September until December. The 

last season is Apante, which is from November until March and most important in Nicaragua 

(Gómez and Blair, 2004). 

Maximum night-temperature (TNmax) - Each observation in the Bioversity dataset has a 

corresponding planting date. This date is the start of the 110 days growing period. The 
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temperature data is available in composites of 8 days, therefore both day and night temperatures 

were linear interpolated, starting from the planting date on.  The maximum night-time temperature 

was important during the implementation of the Plackett-Luce model for the beans dataset in 

Nicaragua (Turner, 2018). The night-temperature is assumed to be the lowest temperature on a 

day and the maximum values of these minimum temperatures over a growth stage  is chosen as 

maximum night-temperature. Beans are mostly growing during dusk and dawn, which results in a 

high influence on the performance of the beans considering the maximum night-temperature. The 

different growth stages were also distinguished, and the maximum night-time temperature for each 

growth stage was added to the dataset as a covariate. ‘TNmax’ represents the temperature during 

the complete 110 days vegetative cycle, the maximum night-time temperatures per initial, crop 

development, mid-season and late season growth stage are represented respectively: ‘TNmax_ini’, 

‘TNmax_cd’, ‘TNmax_ms’, ‘TNmax_ls’. 

Water Balance (WB) - In order to calculate the water balance, the crop water requirements and 

precipitation were needed. For the crop water requirements, daytime temperature data (Table 4) 

was needed. For each location in the Bioversity dataset is the temperature per day extracted to the 

corresponding point.  

The crop water requirements were calculated using the formula for determining the 

evapotranspiration for the reference crop, multiplied by the crop factor for beans for the different 

growth stages. There are at least four different methods to calculate the evapotranspiration of 

crops: FAO Blaney-Criddle, FAO Radiation, FAO Penman and Pan Evaporation (Smith, 1998; Kra, 

2013; Subedi, 2015). Based on the available data the FAO Blaney Criddle method was used, 

because it only requires measured temperature data, while values for humidity, wind speed and 

sunshine can be estimated. This method was suitable, since data on humidity, wind speed, 

sunshine and evaporation for the study area in Nicaragua were not available. The steps to calculate 

the crop water requirements, using Blaney-Criddle are described by Brouwer (1986). 

Step 1: Determination of mean daily temperature: Tmean (°C) 

𝑇𝑚𝑎𝑥 =
sum of all Tmax values during the month

number of days of the month
 

          (1) 

𝑇𝑚𝑖𝑛 =
sum of all Tmin values during the month

number of days of the month
 

           (2) 

𝑇𝑚𝑒𝑎𝑛 =
Tmax + Tmin

2
 

           (3) 

The values for the temperature available, were the mean daily land surface temperatures. To get 

the temperature in degrees Celsius, the temperature values as given in the dataset were multiplied 

with the value 0.02, followed by subtracting 273.15. For each observation, 110 days with 
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temperatures were selected, starting from the given planting date for that observation. Rather than 

using the mean minimum and maximum temperatures per month, the interpolated daily 

temperatures were used in the calculation. Using the mean minimum and maximum temperatures 

is done in order to predict the evapotranspiration from crops for future use. For these calculations 

is the daily temperature used to calculate the evapotranspiration, because later on the 

evapotranspiration is compared to the actual daily precipitation for the specific growing period after 

the planting date.   

Step 2: Determination of the mean daily percentage of annual daytime hours: p-factor (-) 

The mean daily percentage of annual daytime hours is the percentage of hours in a day (24 hours) 

in which the sun is shining and influencing the evapotranspiration. The daily percentage of annual 

daytime was based on the latitude as proposed by Brouwer (1986). The daily percentages were 

divided by 100 and used as p-factor. The latitudes as given in the Bioversity dataset range from 

12.65776 to 13.46576. These values are between the 10 and 15 degrees and therefore the 

corresponding values from Brouwer (1986) were used.  

Step 3: Calculate evapotranspiration reference crop ETo (mm/day) with the Blaney-Criddle Method 

𝐸𝑇𝑜 = 𝑝 (0.46 ∗ 𝑇𝑚𝑒𝑎𝑛 + 8 ) 

           (4) 

ETo  =  Reference crop evapotranspiration (mm/day) as an average for a period of 1 month 

Tmean = Mean daily temperature (°C) 

p  = Mean daily percentage of annual daytime hours 

 

Step 4: Calculate crop evapotranspiration ETcrop (mm/day) (bean) 

𝐸𝑇 𝑐𝑟𝑜𝑝 = 𝐸𝑇𝑜 ∗ 𝐾𝑐 

           (5) 

ET crop  =  Crop evapotranspiration or crop water need (mm/day) 

Kc   = Crop factor  

The crop factor is dependent on the type of the crop, the growth stage but also the climate. Crops 

grow faster in warmer climates, compared to colder climates and strong winds ask for higher Kc 

factors compared to climates with little wind. The difference in crop factors could be 0.05 higher for 

high wind speeds and 0.05 lower for low wind speeds (Brouwer, 1986). 

For every location the actual evapotranspiration per day in millimetres was calculated with a total 

length of 110 days. The sum was taken of the total actual evapotranspiration per growth stage and 

compared to the precipitation (Table 4) of that same time span. This resulted in a water balance 

(an excess or deficit of water availability) per location per growth stage. The values of this water 

balance for each location per growth stage starting from the planting date on were added to the 

Bioversity dataset under the names: ‘Initial’, CropDev’, ‘MidSeason’, and ‘LateSeason’.  
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All precipitation was assumed to be effective precipitation, meaning all the water becomes available 

for the crops. In other words, deep percolation and run-off which are part of the total water 

balance were ignored. This was done because of lack of data about the soil depth. Furthermore, it 

should be noted that irrigation was not taken into account during any of the calculations, because 

the varieties are rainfed (Jacob van Etten (Bioversity), personal communication, April 13 2018). 

Soil types - The soil types were used as provided by Bioversity. The geostatistical wizard in ArcGIS 

was used to perform indicator kriging in order to interpolate the soil types between the known soil 

points. The soil types were divided into two categories, combining Eutric Regosols with Haplix 

Nitisols and Haplic Phaeozems with Humic Nitisols. The result was a raster with the probability 

where which category was expected. The selection of the soil types per category was chosen and 

made sense when the results of the Plackett-Luce model had to be visualised over space [see: 

Chapter 5.1.3].     

Altitude, temperature and precipitation were obtained from additional datasets to complete the 

dataset, see Appendix I.  The environmental variables used as covariates in the Plackett-Luce 

model were season, altitude, slope, soil type and crop water requirements (Table 4): 

Table 5. Environmental variables used as covariates in the Plackett-Luce model 

Covariates Measurement  scale / unit 

Season Categorical:  

{Primera (May – August), 

Postrera (September – October), 

Apante (November – January)} 

Altitude  Meter above sea level 

Slope Percentage slope 

Soil type Categorical: 

{Eutric Regosols, 

Haplic Nitisols, 

Haplic Phaeozems, 

Humic Nitisols} 

Night-time temperature  The maximum night-time temperature (°C/growth stage) 

Water Balance1 mm/growth stage 

 

3.3 Correlations between covariates 
The Plackett-Luce tree will partition the data on thresholds values in a covariate. It is possible 

some environmental conditions are closely correlated, and the partitioning is in that case not only 

representing one environmental condition, but two or even more when correlations are high. In 

order to investigate this, the linear correlations between the different environmental conditions 

were calculated. The season and soil type are not included in the correlation calculations, because 

they are both nominal data. In Figure 1 the correlations between the covariates are shown. Since 

                                                 
1 A negative value indicates a water shortage, while a positive value indicates a water surplus 
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the Plackett-Luce tree uses model-based partitioning, the resulting tree will be optimal. Therefore 

all covariates are given as input for the model. The correlations to the covariates as chosen and 

used to partition in the Plackett-Luce model are used in order to discuss the results.  

 

 

Figure 1. Correlations between covariates used in Plackett-Luce model (Altitude, slope, water 
balance (initial, crop development, mid-season and late season stage), TNmax maximum night-
temperature (whole vegetative cycle, initial, crop development, mid-season and late season stage) 
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4. Materials and methods  

4.1 Dataset Seeds for Needs 
The dataset provided by Bioversity comprises results of an on-farm trials distributed over four 

provinces (Atlantico Norte, Jinotega, Matagalpa and Boaco) in Nicaragua (Figure 2).   

 

Figure 2. Tricot Locations per province in Nicaragua (source: Bioversity, 2016 and National 

Geographic, Esri, Garmin) 

The dataset consists of 842 different locations in Nicaragua, where bean varieties were assessed 

based on their relative quality in performance. The ten bean varieties used in the experiment are: 

ALS 0532-6, BRT 103-182, INTA Centro Sur, INTA Ferroso, INTA Matagalpa, INTA Precoz, INTA 

Rojo, INTA Sequia, PM2 Don Rey and SJC 730-79. Each observation includes the relative 

performance of three randomly chosen crop varieties on a certain location (longitude, latitude). The 

relative performance of the bean varieties are incomplete categorical ranked data. The data is 

categorically ranked, with incomplete rankings, because a crop variety is ranked based on the 

classes: ‘best’, ‘medium’, and ‘worst’. For every location the relative performance of three out of 

the ten bean varieties was evaluated. The three bean varieties in each observation were also 

relatively evaluated to the local bean variety the farmer grew, resulting in classes: ‘better’ and 

‘worse’ performing varieties compared to the local variety. Each farmer is cultivating his/her own 

local bean variety, but the local varieties are not necessarily equal for all farmers.  

Each observation also includes the soil type, the planting date, the season and year on/in which the 

beans were cultivated. To augment the existing dataset, different environmental conditions were 
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added, based on their importance to the adaptation of the beans to the environment and the 

availability of the data.  

4.2 Model-based partitioning with Plackett-Luce model 
In order to fit a tree in the Plackett-Luce model, the different partial rankings were used per 

observation. In the usage of the PlackettLuce model in R were the observations connected to the 

covariates. In summary the following steps were taken in order to fit the Plackett-Luce model, 

combined with the model-based partitioning for different bean varieties in Nicaragua:  

1. A Plackett-Luce model with all observations was fitted, which means the crop varieties were 

ordered per observation and their worth parameter to perform best are the result; 

2. The stability of the worth parameters (relative performance) is assessed with respect to 

each available environmental conditions (covariate); 

3. “If there is significant instability, split the full data by the covariate (environmental 

condition) with the strongest instability and use the cut-point with the highest 

improvement in model fit; 

4. Repeat steps 1-3 until there are no more significant instabilities, or a split produces a sub-

group below a given threshold” (Turner, 2018) 

The following model parameters were chosen: 

- Alpha   : 0.01 

- Minsize  : 100  

- Maxdepth  : 5 

Alpha is the significance level of the instability of the covariates in the Plackett-Luce tree. The 

minimal amount of samples in a leaf of the tree was set at 100, which is more than 10% of the 

total sample size. A minsize of at least 100 observations was assumed to avoid over-fitted models. 

The maximum depth of the model was set on 5 in order to avoid the model to get too complicated 

to interpret. 

4.3 Scoring varieties 
All covariates were used as inputs in order to score all the varieties using model-based recursive 

partitioning in the Plackett-Luce model (Table 5). 

The model resulted in a visualisation of a tree in which the rankings were visualised per leaf based 

on worth parameters. Every node in the tree is a partitioning in the dataset, based on the covariate 

with the strongest instability, resulting in a different outcome of the Plackett-Luce model fit. The 

covariates in the model are environmental conditions used as explanatory variables for the 

preference of the different crop varieties (Turner, 2018). The worth parameters for the crop variety 

dataset (Bioversity, 2016) in the Plackett-Luce model represent the preference of one variety over 

another variety compared to a reference variety, based on their relative performance.  

The reference variety, the local variety, got the value 0.0 and the other varieties perform better 

(>0) or worse (<0) compared to the reference variety. The crop varieties were ordered per 
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observation and the probability of each variety to perform as best was calculated based on the 

probability of other varieties and their performance in other observations (Turner, 2018). Varieties 

with a value higher than 0, perform better than the first tested variety and the variety with the 

highest worth parameter is the ‘winner’. Comparably, every variety with a worth parameter lower 

than 0 represents varieties performing worse than the reference variety, and the variety with the 

lowest worth parameter performs worst. The worth parameters were displayed, as default plot, on 

a log scale. The worth parameters were rescaled until they summoned to 1, giving probabilities 

which were used in order to visualise the relative preferences of varieties per given set of 

environmental conditions.  

4.5 Validation Plackett-Luce model 
The validation of the Plackett-Luce model was done with a variation on the k-fold cross validation 

(Kohavi, 1995). The leave-one-out method was not considered to be of additional value, because 

the model is fit to all data except for one observation. The ranking for the observation left out can 

be predicted, but because the rankings are relative and incomplete per observation, the  leave-

one-out method does not give the goodness-of-fit for the model. The choice was made to validate 

the model using a blocked-cross-validation, in which not one observation, but a set of observations 

is left out.  

In this case, the data is partitioned, based on the different growing seasons (Primera, Postrera and 

Apante) per year resulting in five subsets of seasons. In each cross-validation, a Plackett-Luce tree 

is created based on four out of five subsets of the data, using only the covariates used in the tree. 

The deviance is calculated over the dataset not used for training. This is done five times in order to 

get a deviance for each season. The deviances per season were divided by the square root of 

observations in that season, reducing the bias resulting after dividing the dataset in folds based on 

seasons. The deviances were aggregated by summation per model. This method was discussed 

with and explained by Kaue de Sousa (Consultant Bioversity, personal communication, April 25, 

2018) and Jacob van Etten (Bioversity, personal communication, April 13 2018).   

To investigate whether the Plackett-Luce model with model-based partitioning was sensitive to 

including the rainfall and temperature dependent water balance, the model was firstly run without 

the water balance per growth period. The sensitivity of the model to using the maximum night-time 

temperatures (per growing period) was also investigated this way. A weighted negative log 

likelihood was calculated and used in order to compare the influences of the covariates by leaving 

them out of the model fitting.  

To check whether the results were in line with the results in previous research, the outcomes of the 

model in this thesis was compared with the outcomes of the Bradley-Terry model (Bioversity, 

2016), the Plackett-Luce model (Turner, 2018) and the environmental conditions influencing the 

adaptation of the bean in Nicaragua (Gómez and Blair, 2004). The comparisons between the 

results as found in this thesis and the previously found conclusions are done by comparing the top 

three in the rankings resulting from the different partitioned dataset rankings.  
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4.6 Presentation of outcomes  
The presentation of the outcomes consist of roughly three parts:  

- Recursive model-based partitioned tree from the Plackett-Luce model. 

o Using all covariates [Chapter 5.1.1] 

o Using spatial covariates, season and water balance [Chapter 5.1.2] 

o Using spatial covariates [Chapter 5.1.3] 

o Validation of models [Chapter 5.2] 

- Visualizations of the preferred common bean varieties under certain environmental 

conditions in Nicaragua and the probabilities a variety is preferred per region and/or 

scenario [Chapter 5.3]. 

The result of a Plackett-Luce tree is a tree with nodes, representing partitioning of the dataset, and 

leaves representing graphs showing the worth parameters of the varieties in comparison to a 

reference variety. These worth parameters can be converted into probabilities a variety is preferred 

under a certain set of environmental conditions. The spatial variation can be distinguished and 

visualized in graphs (Bioversity, 2016 and Turner, 2018), but it is either possible to visualize the 

outcomes of the model in a spatial way by creating maps with the specified environmental 

conditions and the corresponding crop variety preference. Some environmental conditions are 

spatially explicit, such as the soil type, the altitude and the slope. These conditions can be mapped, 

because their spatial variation might explain the locations of the preferences for different varieties. 

Some covariates are not spatially explicit, because they change over time rather than over space, 

such as temperature and precipitation. The covariates for the TNmax and water balance per growth 

stage might be dependent on the planting date of the observations, because they cover a different 

growing period, influencing the performance of the varieties.  

When several spatial conditions were used as covariates in the Plackett-Luce model, the different 

spatial conditions were classified in ArcGIS. This resulted in areas with the same spatial 

environmental conditions as represented in a node in the result of the Plackett-Luce model. These 

areas were called regions and connected to a probability pie of preferred varieties. Probability pies 

adjacent to a map make for an easier user read and allow for a better visualization of more data, 

compared to superimposed maps (Luzzi, 2016). The same was done for environmental conditions, 

which could not be represented over space. A region is considered to be spatially explicit, while a 

scenario is considered to be uncertain over time and space and therefore not visualised in a 2D 

map. The spatially explicit regions can be visualised with maps and to each region in the map 

corresponds a probability pie. There are also probability pies for scenario’s in which the conditions 

are met as given by a not meeting or exceeding the threshold value in a node in the Plackett-Luce 

tree. Scenario’s do not necessarily have to be corresponding to a certain region in a map, but can 

be based on covariates changing over space and time only.  
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5. Results  

5.1 Plackett-Luce Model 
The visualization of the model-based partitioning in the Plackett-Luce model resulted in a 

partitioning tree. The worth parameters of different varieties under the environmental conditions 

pertinent to the leaves of the tree are displayed in plots. In the previous chapter, three different 

combinations of environmental conditions were described, which each resulted in a tree. The first 

tree could choose from all covariates, i.e., spatial components (altitude, slope, soil type), season, 

the water balance (per growth stage) and the TNmax (maximum night temperatures). The second 

tree could only use the spatial components, the season and the water balance. The third tree was 

built using only the spatial components.  

5.1.1 Covariates: spatial components, season, water balance and TNmax 
The tree based on all covariates shown in Figure 4 has splits on  the water balance of the initial 

growth stage, altitude and the TNmax (max night temperature) of the initial growth stage. The full 

dataset is first partitioned with a threshold of an excess of 1.64 mm on the water balance in the 

initial growth stage. When this threshold is not exceeded, the dataset is partitioned, based on an 

altitude of 826 meters. Worth parameters for the varieties resulted after the second partitioning on 

the left side in the preference of the local variety (11) over all other varieties. However, at an 

altitude below 826 m.a.s.l., the second-best variety was INTA Matagalpa, closely followed by SJC 

730-79 (10) and INTA Sequia (8). At altitudes above 826 meters, the differences  between the 

varieties were more pronounced. The SJC 730-79 (10) performed second worst, while the INTA 

Sequia (8) performed the second best after the local variety (11).  

 

Figure 3. Worth parameters of overall performance of the ten trial varieties and the local variety of 
common beans in Nicaragua for each node in the Plackett-Luce tree built using all ccovariates. 
(Covariates: Initial (water balance during initial stage in mm), Altitude and TNmax_ini (maximum night 
temperature during initial growth stage in °C), p refers to significance level of the instability of the covariate) 
(Varieties are: 1: ALS 0532-6, 2: BRT 103-182, 3: INTA Centro Sur, 4: INTA Ferroso, 5: INTA Matagalpa, 6: 
INTA Precoz, 7: INTA Rojo, 8: INTA Sequia, 9: OM2 Don Rey, 10: SJC 730-79, 11: Local Variety) 
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On the right side, for observations with more than 1.64 mm on the water balance during the initial 

growth stage, a partitioning was made based on the TNmax during the initial growth stage. When 

the maximum night-temperature dropped beneath 18.38 °C, the INTA Sequia (8) performed best 

and it was very closely followed by the local variety (11) and the BRT 103-182 (2). When the 

maximum night-temperature exceeded 18.38 °C, the INTA Sequia (8) again performed best while 

the local variety (11) performed second worst. 

5.1.2 Covariates: spatial components, season and water balance 
The covariates chosen for the tree in Figure 4 excluded the TNmax for all growth stages. The left 

side of the tree is comparable to the tree in Figure 3, as the first partitioning is again based on the 

water balance during the initial growth stage. Also the second split is again on altitude. The worth 

parameters for the first two nodes in both trees (Figures 3 and 4) are therefore equal. 

 

Figure 4. Worth parameters of overall performance of the ten trial varieties and the local variety of 
common beans in Nicaragua for each node in the Plackett-Luce tree built using spatial components, 
season and water balance. 
(Covariates: Initial (water balance during initial stage in mm), Altitude and CropDev (water balance during the 
crop development stage in mm), p refers to significance level of the instability of the covariate)  
(Varieties are: 1: ALS 0532-6, 2: BRT 103-182, 3: INTA Centro Sur, 4: INTA Ferroso, 5: INTA Matagalpa, 6: 
INTA Precoz, 7: INTA Rojo, 8: INTA Sequia, 9: OM2 Don Rey, 10: SJC 730-79, 11: Local Variety) 

 

On the right side of the tree, the next split is based on the water balance during the crop 

development stage (the second growth stage). In case of less than 4.25 mm on the water balance 

during  that stage, the INTA Sequia (8) performed best, but was closely followed by the INTA 

Centro Sur (3), INTA Ferroso (4) and BRT 103-182 (2). The local variety (11) performed worse 

than most other varieties.  

On the other hand, if the water balance exceeded 4.25 mm during the crop development stage, 

INTA Sequia (8) performed best followed by the local variety (11) and BRT 103-182 (2).  
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5.1.3 Covariates: spatial components 
The covariates of the tree shown in Figure 5 were chosen from the spatial components only. 

Altitude, with a threshold at 526 m.a.s.l., is used as the first split. Cases below the threshold were 

not subdivided: INTA Sequia (8) was most preferred, closely followed by the INTA Centro Sur (3) 

and the local variety of a farmer (11). 

 

Figure 5. Worth parameters of overall performance of the ten trial varieties and the local variety of 
common beans in Nicaragua for each node in the Plackett-Luce tree built using only spatial 
components. 
(Covariates: Altitude and soil type, p refers to significance level of the instability of the covariate)  
(Varieties are: 1: ALS 0532-6, 2: BRT 103-182, 3: INTA Centro Sur, 4: INTA Ferroso, 5: INTA Matagalpa, 6: 
INTA Precoz, 7: INTA Rojo, 8: INTA Sequia, 9: OM2 Don Rey, 10: SJC 730-79, 11: Local Variety) 

 

At altitudes above 526 m.a.s.l., another split  based on the soil type was made. On Haplic 

Phaeozems or Humic Nitisols, the INTA Sequia (8) and the local variety of the farmer (11) were 

most preferred. On Eutric Regosols or Haplic Nitisols below 826 meters the local variety (11) 

performed best, very closely followed by the SJC 730-79 (10) while above 826 meters, the local 

variety (11) outperformed all other varieties and the second best performing variety was ALS 

0532-6 (1).  
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5.2 Validation Plackett-Luce models  
The validation of the Plackett-Luce models was done by a blocked-cross-validation in which a 

weighted negative log likelihood is calculated for each of the different covariate selections (Table 

6). 

Table 6. Negative log likelihood from a blocked-cross-validation for the different inputs in the 
Plackett-Luce models 

Covariates in Plackett-Luce tree model Negative Log Likelihood  

[blocked-cross-validation] 

Water balance (initial), altitude, TNmax (initial) 

[Chapter 5.1.1] 
1009 

Water balance (initial, crop development), altitude 

[Chapter 5.1.2] 
1029 

Altitude and soil type 

[Chapter 5.1.3] 
1026 

 

The model with the lowest negative log likelihood is the Plackett-Luce tree in which all covariates 

were used and the water balance during the initial stage, the altitude and the maximum night-

temperature during the initial stage were selected in the tree for partitioning. The negative log 

likelihood after excluding the maximum night-temperatures is higher, compared to including them. 

Excluding the water balance, leaving only the spatial covariates altitude and soil type, leads to a 

negative log likelihood which is lower than the model including the water balance, but higher than 

the model including the water balance and the maximum night-temperatures.   
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5.3 Probability preference of varieties  
The worth parameters of the varieties resulting from the Plackett-Luce trees were converted into 

probabilities of each variety to be preferred over the other varieties. For each leaf of the trees 

shown in Figures 3-5,  the probability distribution is shown in a pie-chart, in which the probabilities 

are given as percentages.  

5.3.1 Covariates: spatial components, season, water balance and TNmax 
The spatial variation in the split of node 2 in Figure 4 is visualised in regions in a map (Figure 6) 

corresponding to two pie charts (Figure 8 and 9) and the split of node 5 is visualised in two 

different scenarios using pie charts (Figure 10 and 11).  

 

Figure 6. Regions based on altitude relevant to the PLtree of Figure 4.  
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When the result on the water balance during the initial growth stage is below 1.64 mm, the local 

varieties were most probable to be preferred over the other varieties (Figure 8 and 9). 

When the water balance is above 1.64 mm during the initial growth stage, the TNmax during the 

initial growth stage becomes important. This results in the preference of the INTA Sequia (8) in two 

scenarios in which the temperature is either exceeding or not exceeding the TNmax of 18.38 °C 

(Figure 10 and 11). 

 

 

  

Figure 7. Probability pie 
WB initial stage ≤ 1.64 mm 
Altitude ≤ 826 m 

Figure 8. Probability pie 
WB initial stage ≤ 1.64 mm 
Altitude > 826m 

Figure 9. Probability pie 

WB initial stage > 1.64 mm 
TNmax initial stage ≤ 18.38 °C 

Figure 10. Probability pie  
WB initial stage > 1.64 mm 
TNmax initial stage > 18.38 °C 
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5.3.2 Covariates: spatial components, season and water balance  
Excluding the TNmax in the Plackett-Luce resulted in a difference on the right side of the Plackett-

Luce tree (Figure 4 & Figure 5). Therefore, the probability pies resulting from Figure 10 and Figure 

11 apply for Figure 5 as well. In this case is the amount on the water balance during the crop 

development stage used to partition the data. This resulted in two scenarios, either not exceeding 

or exceeding 4.25 mm on the WB during the crop development stage (Figure 12 and 13). In both 

scenarios is the INTA Sequia (8) most preferred and are the probabilities of Figure 12 comparable 

to Figure 11 and Figure 13 is comparable to Figure 10.  

 

  

Figure 11. Probability pie 
WB initial stage > 1.64 mm 
WC crop development stage ≤ 4.25 mm 

Figure 12. Probability pie 
WB initial stage > 1.64 mm 
WC crop development stage > 4.25 mm 
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5.3.3 Covariates: spatial components 
Combinations of the environmental conditions pertinent to the tree of Figure 6 divide the study 

area in four regions as shown in Figure 13 based on altitude and soil types. Region 1 corresponds 

to node 2, region 2 to node 5, region 3 to node 6 and region 4 to node 7 from the Plackett-Luce 

tree (Figure 5). 

 

Figure 13. Physiographic regions relevant to the PLtree of Figure 6.  
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Figures 14 - 17 represent the probabilities of the preferred varieties for the different regions as 

distinguished in Figure 14. The local variety (11) is most preferred with the soil types Eutric 

Regosol or Haplic Nitisol, while the INTA Sequia (8) is most preferred below an altitude of 526 

meter or for the combination altitude above 526 and a Haplic Phaeozem or Humic Nitisol.  

 

 

   

 

 

 

  

Figure 14. Probability pie 
Altitude ≤ 526m 
 

Figure 15. Probability pie 
Altitude > 526 & ≤826 m 
Soil type: Eutric Regosol / Haplic Nitisol 

Figure 17. Probability pie  
Altitude > 826 m 
Soil type: Eutric Regosol / Haplic Nitisol 

Figure 16. Probability pie 
Altitude > 526 m 
Soil type: Haplic Phaeozem / Humic Nitisol 
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5.4 Summary results  
Table 7 shows the summarized top three preferred varieties per given set of environmental 

conditions per model.  

Table 7. Overview top three preferred varieties per given set of environmental conditions per model 

Covariates chosen to partition data Top 3 probability a variety is preferred over others 

1 Covariate 1 Covariate 2 1st  2nd  3rd 

C
h
a
p
te

r 
5
.1

.1
 (

F
ig

u
re

 3
) 

Initial (mm) 
≤ 1,64 

Altitude (m) 
≤ 826 

Local variety 
11 

INTA Matagalpa 
5 

SJC 730-79 
10 

Initial (mm) 
≤ 1,64 

Altitude (m) 
> 826 

Local variety 
11 

INTA Sequia 
8 

ALS 0532-6 
1 

Initial (mm) 
> 1,64 

TNmax_ini (°C) 
≤ 18.38 

INTA Sequia  
8 

Local variety  
11 

BRT 103-182 
2 

Initial (mm) 
> 1.64 

TNmax_ini (°C) 
> 18.38 

INTA Sequia  
8 

INTA Centro Sur 
3 

BRT 103-182 
2 

 

2 Covariate 1 Covariate 2 1st  2nd  3rd 

C
h
a
p
te

r 
5
.1

.2
 (

F
ig

u
re

 4
) 

Initial (mm) 
≤ 1,64 

Altitude (m) 
≤ 826 

Local variety  
11 

INTA Matagalpa 
5 

SJC 730-79 
10 

Initial (mm) 
≤ 1,64 

Altitude (m) 
> 826 

Local variety 
11 

INTA Sequia 
8 

ALS 0532-6 
1 

Initial (mm) 
> 1,64 

CropDev (mm) 
≤ 4,25 

INTA Sequia  
8 

INTA Centro Sur 
3 

INTA Ferroso 
4 

Initial (mm) 
> 1.64 

CropDev (mm) 
> 4,25 

INTA Sequia  
8 

Local variety 
11 

BRT 103-182 
2 

 

3 Covariate 1 Covariate 2 1st  2nd  3rd 

C
h
a
p
te

r 
5
.1

.3
 (

F
ig

u
re

 5
) 

Altitude (m) 
≤ 525 

 INTA Sequia  
8 

INTA Centro Sur 
3 

Local variety 
11 

Altitude (m) 
> 526 & ≤ 826 

Soil Type 
Eutric Regosol / 

Haplic Nitisol 

Local variety  
11 

SJC 730-79 
10 

ALS 0532-6 
1 

Altitude (m) 
> 526 

Soil Type 
Eutric Regosol / 

Haplic Nitisol 

Local variety  
11 

ALS 0532-6 
1 

INTA Sequia  
8 

Altitude (m) 
> 526 

Soil Type 
Haplic Phaeozem / 

Humic Nitisol 

INTA Sequia  
8 

Local variety 
11 

INTA Ferroso  
4 

 

  



36 
 

6. Discussion 

6.1 Analysis of Partial Ranked Variety Scores 
The data used in this thesis were results from the Seeds for Needs experiment in Nicaragua and 

consisted of relative evaluations about the performances of varieties by farmers. Triplets were 

chosen at random, out of a total of ten varieties and then compared to each other and also an 

available local variety. This evaluation was based on the overall performance of the variety, with 

the overall performance being a sum of the yield, consumption quality and marketability 

(Bioversity, 2016). It is unknown how the scores of the partial performances are combined in an 

overall performance keeping in mind the subjectivity of the farmers. The partial relative 

performances can be of additional value when it comes to explaining inexplicable variety 

performances under a given set of environmental conditions.  

The Bradley-Terry (BT) model and Plackett-Luce (PL) model are both suitable for doing statistical 

analysis with incomplete rankings. The PL model is chosen, because the model is designed to deal 

with observations independently, using more partial rankings per observation. Furthermore, the PL 

model is insensitive to inconsistencies the partial ranking inside an observation might have. Model-

based recursive partitioning is used on all covariates corresponding to the locations of the 

observations in the experiment. The parameters used in the model were an alpha of 0.01 and a 

max depth of 5, which are in line with Turner (2018). The minimal amount of observations per leaf 

in the tree is set at 100 (10% of the total amount of observations) but is stated to be optimal at a 

value of 200 in Turner (2018). The influence of using a min size of 200 in the trees of this thesis, 

resulted in a model only using the covariates of the water balance during the initial stage and the 

altitude. The TNmax during the initial growth stage and the water balance of the crop development 

stage, as used to partition the data in Figure 3 and 4, are not explanatory when the minimum 

subsample size is increased to 200. When considering the spatial components only, as in Figure 5, 

the soil type is no longer considered to be an explanatory variable.  

The PL model is still relatively new in R, lacking in sufficient documentation, especially in the 

starting period of this thesis. Therefore, the validation is a variation on the k-fold cross validation 

method (Kohavi, 1995) and based on conversations with Jacob van Etten (personal communication, 

April 13, 2018) and Kaue de Sousa (personal communication, April 25, 2018).  Instead of the 

leave-one-out method, a season is left out in the cross-validation, resulting in a blocked-cross-

validation in order to analyse the goodness-of-fit of the model. The dataset had three different 

seasons over different years, resulting in five different seasons and thus five subsets of data. The 

deviances can be calculated over the season left out and divided by the square root of the number 

of observations in that leaf, in order to reduce the bias, resulting from the folding in seasons (Kaue 

de Sousa, personal communication, April 25, 2018). Furthermore, a forward selection is done 

during the calculations of the deviances, meaning the covariates as chosen in the PL model, are 

input to fit a new PlL model to the four seasons. The results of this validation are given in negative 

log-likelihoods and the lower this value, the better the model is when it comes to the goodness-of-

fit. The PL model in which all covariates were used as input, has a negative log-likelihood of 1009, 

which is lower than the value for including only the spatial components. It was expected that the 

use of more covariates than only the spatial, but less than all covariates would lead to a negative 
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log-likelihood between 1009 and 1029. The negative log-likelihood for using the water balance and 

the spatial components is however 1029, which is close to, but higher than if using spatial 

components only. The reason for this might be that using the spatial components only results in 

two explanatory values (soil type and altitude) (Figure 5), compared to three explanatory values 

(water balance in the first two growth stages and altitude) (Figure 4). Another reason can be the 

response of the varieties during the different seasons, since seasonality can also be seen as 

explanatory variable (Kaue de Sousa, personal communication, April 25, 2018).  

6.2 Environmental data 
A selection of environmental data used as covariates available and accessible with relevance to the 

ecology of beans for the study area were used: altitude, slope, season, soil type, night-

temperature and water balance. The last two covariates were calculated per growth stage. The 

different growth stages were the initial stage (20 days), crop development stage (30 days), the 

mid-season stage (40 days) and the late season stage (20 days) (Brouwer, 1986). It was expected 

that the conditions during the initial growth stage would be influencing the preference of the bean 

varieties, based on the findings for the common bean in Nicaragua by Gómez (2004). Based on the 

PL model (Figure 3 and 4), it can be stated the water balance during the initial growth stage is the 

most important.  

Since this dataset has been used for statistical analysis before, there was some insight towards 

important environmental conditions regarding the Seeds for Needs dataset in Nicaragua. The 

precipitation was considered to be important, because this resulted from research in which soil 

information and extreme precipitation indices were used as covariates (Bioversity, 2016). This 

thesis did not use the number of dry days or the maximum precipitation but rather a water balance 

per growth stage. This water balance was computed from the comparison between the 

evapotranspiration a plant would use during a certain growth stage and the water which was 

available through precipitation in the same growth stage. The evapotranspiration was calculated 

with the relatively simple Blaney-Criddle (Smith, 1998) method. It was expected, the water 

balance in the initial stage would be an important covariate because the yield of beans is sensitive 

to water deficit during the initial growth stage and the crop development stage (Steduto, 2012). 

The water balance in the initial growth stage is positively correlated to the water balance in the 

crop development (0.46), mid-season (0.71) and late season (0.66) stage (Figure 1). For the water 

balance in the crop development stage the strongest correlation can be found with the mid-season 

stage (0.75) and positive correlations between the late season stage (0.33) (Figure 1). Dividing the 

water balance in different growth stages is advisable because the correlations between the different 

stages are varying. Each water balance of a growth stage might have a different impact on the 

performances of different varieties. Since the water balance is such an important factor in the 

partitioning of the dataset, especially for the initial stage, it might be of additional value to 

calculate the evapotranspiration with a more accurate method such as Hargreaves (Kra, 2013), 

since the Blaney-Criddle method underestimates the evapotranspiration in general (Subedi, 2015).  

Furthermore, the maximum night-temperature was assumed to be an important environmental 

condition for comparing the preferences of the different common bean varieties Turner (2018). In 

Turner (2018) the TNmax was only used as an input for the whole vegetative cycle, but in this 
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model the TNmax was additionally calculated per growth stage. In Figure 3 the second partitioning 

is done using the TNmax during the initial growth stage. The additional value of using the TNmax 

per growth stage over using the TNmax for the whole vegetative cycle is not considered to be 

important, since the different TNmax values are closely correlated to each other (0.88 -  0.99) 

(Figure 1). The TNmax from the initial growth stage is  correlates strongly to the maximum night-

time temperature of the crop development stage (0.97), followed by the mid-season stage (0.93) 

and the late season stage (0.85). The TNmax, which was chosen in the PL tree, was from the initial 

stage and it can be concluded the initial stage has most impact on the further development and 

thus the overall performance of the varieties. The maximum night-time temperatures are positively 

correlated with the water balance in the late season, varying from 0.4 – 0.44. The correlations 

between the night-time temperatures and the water balance covariates during the other growth 

stages are varying from 0 – 0.33. 

The covariate altitude is not strongly correlated to any other covariate. The highest correlation for 

altitude is a negative correlation of -0.41, with the water balance in the initial growth stage. There 

is a difference in height from East to West (high to low) (Figure 6). Trapnell (1960) mentioned the 

significant influence of altitude on rainfall in an area and based on the correlations in Figure 1 

higher altitudes might correspond to lower precipitation amounts during the initial growth stage. 

Additionally, the difference in height was also highlighted by Kaue de Sousa (personal 

communication, April 25, 2018), because there was a climatic gradient, which made it of additional 

use to include the longitude and latitude as covariates as well (Haverkort, 1990). The gradient is 

now only captured when the altitude is an explanatory variable, but the influence of including the 

longitude and latitude on the model outcomes is unknown.  

When it comes to the interaction of the crops with the soil there are shortcomings in this thesis, 

that might influence the preferences of the varieties. The precipitation is assumed to be effective 

precipitation, meaning all water becomes available for the crops, but deep percolation and run-off 

were ignored. The soil type is known, but knowledge about the soil depth and the ability of the soil 

to infiltrate water is not included. Especially in combination with unexpected (short) tropical storms 

with large amounts of precipitation (Gómez and Blair, 2004). The amount of precipitation might be 

very high, resulting in a positive water balance, but is not necessarily distributed over the growth 

period. It is not known whether the soil is able to infiltrate some of the water or that all water is 

lost due to surface-runoff in combination with steep slopes. The ability of the soil to keep water is 

important, because for example during the Postrera the precipitation is low and humidity very high, 

yet the soil contains enough moisture to provide for the crops (personal communication, April 25, 

2018). 

6.3 Variety Scores 
Based on the results, it can be concluded the INTA Sequia (8) and the local variety (11) of the 

farmer are the best performing varieties, because either one of them is the most preferred variety 

per set of given environmental conditions (Table 7). One should keep in mind the local variety is 

not one and the same variety for each location, but differs from farmer to farmer. The local variety 

is best seen as reference variety and not as a free-standing variety to prevent biased comparisons. 

For 50% of the given set of variables is the local variety preferred over other varieties or in other 



39 
 

words: is none of the other varieties outperforming the local variety of the farmer. For the other 

50% of the given set of variables is the INTA Sequia (8) preferred over the other varieties. The 

INTA Precoz (6), INTA Rojo (7) and PM2 Don Rey (9) are the only varieties that do not occur in the 

top three preferred varieties under any given set of varieties in this thesis.   

Bioversity (2016) concluded the following, based on a Bradley-Terry model with soil information 

and extreme precipitation indices as covariates: The INTA Sequia (8) had the best overall 

performance when there was low precipitation (less than 57 mm) during the growing period. The 

local variety (11) was not clearly outperformed, even when the number of consecutive dry days 

was greater than 15 days. When there was more than 57 mm of precipitation during the growing 

period, the INTA Sequia (8) had a similar performance to the other varieties. The INTA Matagalpa 

(5) had the best performance with a precipitation higher than 57 mm per growing period.  

This thesis also concludes the best overall performance is of the INTA Sequia (8) and the local 

variety (11) under all the given sets of environmental data. It is interesting to notice the INTA 

Sequia (8), being the drought-resistant variety, is outperforming the other varieties in Figure 9, 10, 

11 and 12, because there is more than 1.64 mm surplus on the WB in the initial growth stage and 

in Figure 12 also more than a surplus of 4.25 mm on the WB during the second growth stage.  

The performance of the INTA Matagalpa (5) was worst when the surplus on the water balance 

exceeded the 4.25 mm during the crop development stage (Figure 12). As resulting from this 

thesis is the INTA Matagalpa (5) able to deal with a surplus of water during the initial stage, but 

during the crop development stage, this surplus should not exceed 4.25 mm. The INTA Matagalpa 

was preferred as second best variety as long as the WB during the initial stage is not exceeding the 

1.64 mm in combination with an altitude below 826 meters (Figure 7).  

The results of the Plackett-Luce model (Turner, 2018) were based on the use of the season, year 

and maximum night-temperature as covariates to partition the data.  The findings of Turner (2018) 

mentioned the preference of the INTA Rojo (7) in the early season (Primera) and where night-time 

temperatures were not exceeding 18.7 °C, closely followed by the local variety (11). During the 

other growing seasons (Postrera and Apante) and night-time temperatures lower than 18.7 °C the 

local variety (11) was most preferred, followed by the INTA Sequia (8). When the night-time 

temperature was exceeding the 18.7 °C, the INTA Sequia (8) was still preferred, closely followed 

by the BRT 103-182 (2) and INTA Centro Sur (3).  

Most findings in this thesis are in line with the conclusions from Turner (2018). The findings 

concerning the INTA Rojo (7) are not in line with this research, because the INTA Rojo (7) is not 

mentioned once in the top three preferences of the varieties. Regardless the night-time 

temperatures in either the findings of Turner (2018) or in this thesis is the INTA Sequia (8) most 

preferred. In Figure 9 and 10 is the top three almost similar to the findings of Turner (2018).  

The common bean adapts differently to environmental characteristics in Nicaragua (Gómez and 

Blair, 2004). The characteristics are for the common bean in general in Nicaragua and were divided 

into different zones: optimal, intermediate and marginal. The altitude, temperature, precipitation, 

soil-depth, the slope, the drainage, pH and aluminium content in the soil were the characteristics 
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important concerning the adaptation of the bean to its environment. This thesis only covers the 

altitude, temperature, precipitation and the slope as covariates for the input of the Plackett-Luce 

model. In all the Plackett-Luce trees, the altitude was an important covariate. The point in 

partitioning this covariate was most of the times 826 meters, and for the spatial variation tree 

(Figure 5) there was a second threshold around 526 meters. The optimal zone is between 450-800 

meters (Gómez and Blair, 2004) , which is in line with the findings of this thesis. The temperature 

is considered to be optimal between 17 and 24°C. It is harder to check whether these 

temperatures are in line with this research, while the maximum night-time temperature is used. 

The threshold is 18.38°C, so the night-time temperatures are going below the 17°C. The daytime 

temperatures are generally higher than the night-time temperatures and included in the water 

balance, but not separately analysed. Gómez (2004) mentioned a lower market value (and thus 

lower overall performance) could be the result of late rains, but this could not be found based on 

the Plackett-Luce models. The slope was not chosen as covariate, and not considered to be instable 

enough, compared to the other covariates.  

6.4 (Geo-)Graphical presentation  
The default visualization of the PL model is a tree with line-graphs representing the leaves. The 

line-graphs represent the worth parameters of the different varieties and are connected with a line. 

This line has no meaning, because the ordering of the varieties on the x-axis is alphabetically fixed 

and a different order would result in a complete different line. Furthermore, a base-line is visible in 

the different graphs, but this line has no meaning, since it is not corresponding to the reference 

variety. To present the data in a rational way, the worth parameters were rescaled until the 

summation was 1 and are now probabilities the varieties are preferred over other varieties under 

the given set of environmental conditions. Visualising the probabilities can be done with either a 

bar graph or a pie chart (Friendly, 2000). A pie chart is considered to be most sufficient because 

the probabilities are adding to one.  
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7. Conclusion  
The goal of this research was to contribute to enhanced statistical analysis of on-farm trials of the 

Seeds for Needs experiment in Nicaragua. A spatial analysis was part of the result after combining 

existing methods with environmental data to highlight spatial variation.  

7.1 Suitable statistical method – incomplete ranking 
The methods suitable for the statistical analysis of ranked sets of variety trials in combination with 

explanatory environmental variables, are the Bradley-Terry (BT) model and the Plackett-Luce (PL) 

model. The Bradley-Terry model uses paired comparisons, while the Plackett-Luce model uses 

partial rankings of multiple items per observation. The Plackett-Luce model was preferred over the 

Bradley-Terry model because the Seeds for Needs data has scored three varieties along with a local 

variety in each experiment. BT would rely on an invalid independence assumption, since one paired 

comparison is seen as one observation, while having six paired comparisons per observation. PL is 

able to group several rankings per observation and is insensitive to inconsistency between these 

rankings.  

7.2 Selection environmental conditions  
The environmental conditions available for the study area and which were considered to be 

influential to crop performance were: altitude, slope, soil type, season, planting date, water 

balance (WB) per growth stage and maximum night-temperature per growth stage (TNmax). The 

environmental conditions were assigned to the locations of the observations and used as possible 

explanatory variables in the PL model in R. The variables most explanatory for different 

performances of the varieties, were the water balance during the initial growth stage, the altitude 

and TNmax during the initial growth stage. The selection of these three covariates resulted in the 

lowest negative log likelihood and therefore in the model with the highest goodness-of-fit. When 

only including spatial varying environmental conditions, the altitude and soil type were considered 

to be most explanatory.  

7.3 Relative scores varieties 
Based on the explanatory variables resulting from the PL-tree, the study area and observations 

could be divided in either regions or scenarios with different rankings of preferences for varieties. 

The probabilities of varieties being preferred over other varieties per region and/or scenario are 

visualized in pie charts.  

Based on the three most important explanatory variables (WB initial, altitude and TNmax initial), 

the study area could be divided into two different regions based on altitude for a WB below a 

threshold of 1.64mm. In both regions the local variety (11) of the farmer was the most preferred 

over all other varieties. A WB exceeding the 1.64mm during the initial growth stage resulted in two 

scenarios in which the INTA Sequia (8) was preferred in both scenarios.  

The study area could be divided into four regions, when using the spatial explanatory variables 

only. For altitudes below 526 meters, the INTA Sequia (8) was most preferred, regardless the soil 

type. The INTA Sequia (8) was also preferred with an altitude above 526 meters and a soil type of 
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either Haplic Phaeozem or Humic Nitisol. In the regions with soil types Eutric Regosol or a Haplic 

Nitisol and an altitude above 526 meters was the local variety most preferred.  

Except for the INTA Precoz (6), INTA Rojo (7) and PM2 Don Rey (9) all varieties occur at least once 

in a top three of preferred varieties under a given set of environmental conditions. The first places 

in the top three under a given set of environmental conditions in this thesis is always either the 

INTA Sequia (8) or the local variety (11) of the farmer.  

7.4 (Geo-)graphical representation 
Visualising the results of the PL tree with the attached plot method in R might be a sufficient way of 

explaining results, but this lacks the visual representation of the spatial variation. Each leaf at the 

end of the PL tree consists of a line-graph in which the varieties are alphabetically ordered on the 

x-axis and plotted against the worth parameters of the varieties. The worth parameter of each 

variety is connected to the next variety with a line, but due to the alphabetically ordered varieties 

this does not explain anything. Another way of visualising this spatial variation, is by converting the 

worth parameters of the varieties compared to a reference crops, into the probability a variety is 

preferred over other varieties. These probabilities are basically rescaled worth parameters 

summoned to 1 and can be visualised in a pie-chart, corresponding to a certain region or scenario 

with environmental conditions.  

7.5 Recommendation   
The main question of this research was, ‘Which variety performs best under given environmental 

conditions?’. Through the statistical analysis shown throughout this research, it was shown that a 

varieties performance depends largely on the discussed environmental conditions and thus an 

overall ‘best’ performing variety was not found. Instead, a ‘best’ performing variety resulted from 

each set of environmental variables. However, the INTA Sequia and local variety of the farmer are 

performing very well under many chosen sets of environmental conditions. The environmental 

conditions which are important explanatory variables regarding the preference of the varieties, are 

considered to be the water balance and the maximum night-temperature during the initial stage 

and the altitude. 

The question now posed is ‘what and how can these findings be applied and implemented into real-

life scenarios?’. One suggestion could be providing in-depth feedback for the farmers with the aim 

to improve their knowledge concerning other varieties than their local variety. When other varieties 

besides their own variety are preferred under given environmental conditions, the performance of 

the variety is proven to the farmer. The results of the Seeds for Needs experiment  though, cannot 

only be feedback for the farmers participating in the experiment, but also for their neighbours. 

Farmers tend to adopt other agricultural technologies when the technology is proven in an area 

with similar (environmental) conditions (Muthoni, 2017). This thesis contributes to a potential 

extrapolation of the findings, by finding the regions spatially similar when it comes to the 

environmental conditions. The spatial environmental conditions as found can be a starting point for 

trying to explain the spatial variation of the preferences for different varieties. The methodology to 

include model-based partitioning on covariates variable over time and space as done in this thesis, 

resulted in significantly different rankings of preferences of varieties. The methodology can be 
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expanded to other datasets resulting from the Seeds for Needs experiments of Bioversity 

(Bioversity, 2016). 

Furthermore, the findings of this thesis can contribute in agro-climate risk management, from 

which varietal diversification is a way to decrease yield reduction as result of climate change 

(Sukcharoen and Leatham, 2016). Next to the spatially explicit regions different scenarios are 

created, focussing on the preference of varieties above or below a certain precipitation and 

temperature threshold. Precipitation and temperatures are highly variable over space and time, 

resulting in uncertainty when it comes to the performance of crops. Some crops are more resilient 

to certain circumstances compared to others but are not necessarily the best for all circumstances. 

In this case varietal diversification is a possibility, in which a set of varieties is chosen to reduce the 

climatic risks for a farmer (Sukcharoen and Leatham, 2016). The uncertainty of using only one 

variety or a certain set of varieties can be compared to different scenarios and analysed. Variety 

Release Committees and/or governments can advise a certain variety or set of varieties to reduce 

the risks on the existing yield because of climate change effects (Lemke, 2007) or to reduce yield 

failures due to the different interaction of varieties with the environment (Sukcharoen and 

Leatham, 2016).  

Finally, this thesis can be seen as valuable for breeders and plant pathologists, since a unique 

combination of field data and the performance of the designed breeds is analysed. The analysis is 

based on the performance as evaluated by the farmers themselves and give an idea of the 

performance of the different varieties when cultivated by farmers rather than under designed, 

controlled, laboratory-like conditions. 
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Appendix I : Additional data sources used  
 

Variable : Altitude 

Dataset SRTM Digital Elevation Data produced by NASA (SRTM_19_10) 

Acquired http://www.cgiar-csi.org/data/srtm-90m-digital-elevation-database-v4-

1 

Resolution 90 meter 

Variable : Temperature  

Dataset Land Surface Temperature (MYD11A2) 

Acquired https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table 

Resolution 1000 meter 

Temporal granularity Composites – 8 days 

110 days starting from the planting date 

Note: The needed data is from 10/09/2015 – 29/04/2017, but due to 

the composites of 8 days, the downloaded data is from 06/09/2015 - 

30/04/2017. The dataset was provided by Kaue de Sousa (consultant of 

Bioversity). 

Variable : Precipitation  

Dataset CHIRPS (Climate Hazards Infrared Precipitation with Stations (Funk, 

2015) 

Acquired http://chg.geog.ucsb.edu/data/index.html 

[CHIRPS > Data > global_daily > tifs > p05 > year] 

Resolution 0.05° 

Temporal granularity Daily (10/09/2015 – 29/04/2017) 

 

 


