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Abstract

Urban form or texture can influence transportation choices in cities. In previous
works, it was found that parameters of urban form such as density, connectivity, rough-
ness, and compactness can be linked to transportation choices. Furthermore, types
of urban texture can also influence transportation choices. In Andean cities such as
Cuenca and Quito (Ecuador), data about urban land cover is often incomplete or out-
dated. Therefore, the suitability of mid- and high-resolution remote sensing data, i.e.
Sentinel 2 (ESA) and PlanetScope 2 (Planet Inc.), for the extraction of urban parame-
ters linked to transportation choices was investigated. A method for urban land cover
classification based on multispectral and morphological indices as well as shape met-
rics was developed. The method produced an accuracy of 0.81 with a Cohen’s Kappa
coefficient of 0.67 with PlanetScope 2 data and an accuracy of 0.77 with a Cohen’s
Kappa of 0.57 with Sentinel 2 data, outperforming spectral mixture analysis, random
forest classification, and object-based image analysis. Density, connectivity, and com-
pactness were derived from the land cover classification and roughness from the JAXA
ALOS open DEM. Additionally, the Normalized Difference Vegetation Index (NDVI) and
Morphological Building Index (MB) were derived from remote sensing images. The link
between these urban parameters and types of urban texture was investigated through
a random forest model attempting to predict types of texture from urban parameters.
Types of texture could be predicted with a classification accuracy of 0.79. Density and
connectivity had the greatest influence on model accuracy.
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1 Introduction

1.1 Context and Background

The research group “Llactalab – Sustainable Cities” of the University of Cuenca, Ecuador,
initiated a research project on the relationship between urban form, modes of transporta-
tion, technological innovation, alternative energy and socio-economic development with
the final objective of decreasing traveling and increasing the efficiency of transportation
systems through sustainable urban planning in Quito and Cuenca (Hermida et al., 2017).
To achieve this, Llactalab will investigate the link between urban structure and transporta-
tion choices. An important pre-condition for the project is the identification of types of urban
form in the research areas. In Andean cities such as Quito and Cuenca (s. Figure 1), exact
and current data about urban structures are not always available. Cities change at a high
rate and often in an informal way unregistered by authorities. Mid-resolution open remote
sensing data are an extensive and cost-efficient source of information. Due to their wide
temporal and spatial coverage, they are useful to analyze and compare structures of urban
areas (Balstad-Miller and Small, 2003). According to Weng (2012), the term refers to data
with a spatial resolution of 10-100 m.
Due to their disperse structure and rapid growth (Inostroza et al., 2013), Latin-American
cities induce inhabitants to extensively use individual cars, leading to high consumption
of fossil fuels as well as large emissions. Quito is the capital and second largest city of
Ecuador with a population of about 2.3 million in 2010. Cuenca had about 500,000 inhab-
itants in 2010 (Instituto Nacional de Estadística y Censos, 2010). Quito is located very
close to the equator and Cuenca at about 2.9 ◦ S (s. Figure 1). Both cities are located in
mountainous areas, at altitudes of around 2,800 and 2,400 m, respectively. High altitudes
can increase the effects of air pollution due to a greater frequency of inversion (Brachtl
et al., 2009).

1.2 Problem definition

The starting point of the research is a need to classify urban forms based on parameters
that might influence transportation choices in view of low data availability. Urban form is
often characterized as a combination of parameters or metrics, i.e. quantifiable characteris-
tics (Song et al., 2013). The discipline that attempts a conceptual analysis and description
of urban structures as a human habitat is known as urban morphology (Vernez-Moudon,
1997). Cities are described as an agglomeration of basic structures like buildings, streets
or gardens and exist in a spatial as well as temporal context (ibid). Urban texture can
be defined as recurring patterns in the urban landscape. A comprehensive typology is
proposed by Wheeler (2015) who defines types of built landscapes as "(...) an area of
consistent form at a neighborhood scale, often 1 square km or greater" (Wheeler, 2015).
His urban texture analysis is based mainly on street, block, and parcel patterns which are
extracted visually from high resolution images (ibid).
Researchers identify a number of parameters of urban morphology or texture, depending
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Figure 1: Research area: The cities Quito (red) and Cuenca (blue). Map data c©2015
Google. Projection: WGS 1984. Coordinates: Longitude / latitude.

on the scale and objective of their research. In the following paragraphs, parameters that
can be extracted from remote sensing data and that were found to influence transportation
choices are discussed. These parameters are:

• Degree of urbanization: Density of built structures

• Size and overall structure (mono- or polycentric) of the city

• Connectivity: Number of intersections and street density

• Roughness

• Compactness

Density (or degree of urbanization, urban-rural gradient) can be quantified using the
ratio of impervious surfaces at a pixel or sub-pixel scale (Weng, 2012). The overall shape
of a city also plays a role; Kang et al. (2012) found that residents of large and irregular
shaped cities tend to travel more during their daily routine. Bertaud et al. (2009) come to
the same conclusion, adding that high density and monocentric cities have a lower per-
centage of individual motorized transport. Moreover, minibuses and individual cars are
more effective if both the origins and destinations of commuters are disperse (ibid).
Connectivity describes the amount of reachable areas of a certain type from one area and
originates from spatial ecology (Calabrese and Fagan, 2004; Bierwagen, 2007), but is
also applicable to human movements in urban areas (Kang et al., 2012). The number of
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intersections per area is an important indicator of connectivity. It also has a direct influ-
ence on travel choice behavior; travel speed is lower in areas with many intersections and
the traversed distance can be perceived to be longer (Sadalla and Staplin, 1980). Fur-
thermore, users of more connected streets in New Zealand were found to be more likely
to engage in travel-related physical activity when commuting to their workplace (Badland
et al., 2008). Beside the number of intersections, street density is another indicator of
connectivity (Song et al., 2013). Surface roughness describes the deviation of elevations
from an ideal (smooth) surface. It can have two impacts on transportation choices; on
the one hand, roughness has an important impact on wind speed and ventilation (Ng et
al., 2011), thus influencing the possibilities of physical movement. On the other hand, a
high roughness at the scales of both landscape and streets can make cycling and walking
less attractive for residents and increases the amount of energy needed for all kinds of
transport. Compactness can be an indicator of the development of cities. Residents of
compact cities tend to move less than residents of less compact ones (Kang et al., 2012).
Compactness can be defined as the ratio between the perimeter and the area of a shape,
a circle being the most compact shape possible (ibid). An area is compact if it contains
mostly closed shapes. Compactness of a city implies close proximity of residences and
services, including the workplace.
We assume that types of urban form can be identified through an analysis of the combina-
tions of these and / or similar parameters of urban morphology. To achieve this, parameters
must be (1) extractable from the available data, (2) sufficiently variable and meaningful to
distinguish between areas, (3) applicable to different cities, and (4) not highly correlated
with each other (Song et al., 2013). As few parameters as possible without substantial
information loss should be used (ibid).
The methods used to analyze urban structure using geographic information systems (GIS)
found in recent literature are diverse. Examples based on mid-resolution remote sensing
data include Spectral Mixture Analysis (SMA), Artificial Neural Networks (ANN), Classifi-
cation and Regression Tree (CART), and object-based approaches (Weng, 2012; Sugg
et al., 2014; Small, 2002). Small (2002) found that 90 % of the variation within cities can
be described as linear combinations of three endmembers, i.e. high albedo, dark, and
vegetation based on Landsat 7 data. To adequately characterize infrastructure, spatial
resolutions higher than 10 m were found to be necessary in most cities (Balstad-Miller
and Small, 2003). To quantify roughness at a neighborhood scale, a digital elevation or
building model are required.
Mid-resolution remote sensing data have successfully been used to derive characteristics
of cities at a regional scale. A spatial resolution larger than 10 m is usually not sufficient
to analyze individual built structures or infrastructure at a local scale. Road extraction has
mainly been applied to high resolution data (Wang et al., 2016; Benediktsson et al., 2003;
Peteri and Ranchin, 2004), often in combination with other data sources such as LiDAR
or high resolution elevation data (Haala and Brenner, 1999). However, through spec-
tral unmixing, linear features at a sub-pixel level could be extracted from Sentinel 2 data
(Radoux et al., 2016). Furthermore, transportation choices of commuters in particular are
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also linked to the overall structure of the urban environment (Kang et al., 2012).
Due to a lack of high-resolution remote sensing or up-to-date cadaster data in Andean
cities, the exploration of open mid-resolution remote sensing data is an important step to-
wards the classification of urban morphology and texture as well as the investigation of its
link to transportation choices.

1.3 Research objectives and research questions

The objective of the M.Sc. thesis is to explore the potential of mid-resolution remote sens-
ing data to classify urban textures with regard to parameters of urban morphology at a
district-wide scale for the cities of Cuenca and Quito.

Research questions:

1. Which parameters of urban morphology can be extracted from mid-resolution open
remote sensing data using open software?

2. Which analytic methods and techniques are suitable to classify remote sensing im-
ages according to these parameters?

3. What is the added value of PlanetScope 2 data as an example of commercial high-
resolution remote sensing imagery?

The results of the thesis will be used by the research group Llactalab to investigate the
relationship between urban form and transportation choices in Cuenca and Quito. Thus,
the main output is a classification of both cities with regard to relevant parameters of urban
morphology. To insure reliability, uncertainties were quantified as far as possible at every
step. Furthermore, methods developed during the thesis work may be applied to other
Andean cities in the future. The added value of the thesis work to the research of Llactalab
is (1) comprehensive information about the structure of two current research areas, i.e.
Cuenca and Quito, (2) a reproducible method for the classification of urban areas based
on mid-resolution open remote sensing data, and (3) conclusions about the use of open
remote sensing data for the classification of parameters of urban morphology and texture
in two Latin American cities compared to commercial high-resolution data.

4



2 Methods

2.1 Data

2.1.1 Land Cover Classification and Parameter Extraction

Most of the urban parameters enumerated in chapter 1.2, i.e. density, connectivity,
and compactness, can be computed based on an urban land cover map. Land cover
was classified using mid- and high-resolution remote sensing data. An important source
of mid-resolution open remote sensing data is the Copernicus mission of the European
Space Agency (ESA). Sentinel 2, the Copernicus satellite carrying sensors that cover the
optical and infrared spectra, orbits the earth since 2015 and produces images with a spa-
tial resolution of up to 10 m (s. Table 1). The added value of commercial high-resolution
imagery was explored using an ortho-rectified Top of Atmosphere (level 3B) data product
(s. Table 1) from the company Planet acquired by sensors of the PlanetScope 2 constella-
tion (Planet Lab Inc., 2017). PlanetScope 2 consists of a flock of nano-satellites that orbit
the earth at an altitude of 475 km (ibid). Planet launched the first flock in 2014. Data are
made available for research without cost by the company Planet.
In addition to multispectral remote sensing data, Sentinel 1 RADAR imagery was used
to investigate whether additional information about image texture can improve land cover
classification. Image texture refers to surface characteristics which can be derived from
RADAR images (s. Chapter 2.2.3). Sentinel 1 is a constellation of two satellites with C-
SAR sensors which orbit the earth since 2013. Being active systems, they provide mid-
and high- resolution data regardless of weather conditions, passing over the same area
every 1-3 days (European Space Agency (ESA), 2017b). The data used for image texture
computation are high-resolution ground-range detected (GRD) level 1 products in Interfer-
ometric Wide swath (IW) mode. The resolution is 20x22 m and the equivalent number of
looks (ENL) 4.9 (ibid).
Roughness was computed using the Japan Aerospace Exploration Agency’s ALOS DEM
with a spatial resolution of 30 m based on images acquired between 2006 and 2011 (Japan
Aerospace Exploration Agency, 2017).

2.1.2 Validation and Reference Data

Aerial photography is provided by the Ecuadorian geo-information platform sigtierras (Min-
isterio de Agricultura, Ganadería, Acuacultura y Pesca, 2017). Another validation dataset
is a detailed vector layer showing building blocks in Cuenca which was digitized manually
by volunteers for the Open Street Map (OSM) project. However, these data do not cover
informal settlements and urban sprawl around the cities and are partly outdated. Aerial
imagery of Ecuadorian cities was last acquired in 2011 and is therefore considered to be
outdated, too. Additionally, the developed method should be applicable to other Andean
cities where no aerial photography and OSM data are available. Therefore, OSM data and
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Table 1: Sources for optical and multispectral remote sensing data (European Space
Agency (ESA), 2017a; Planet Lab Inc., 2017)

Data source Spatial resolution Bands Spectral resolu-
tion (µm)

Return time

Sentinel 2 10 m B2 0.448 - 0.546 10 days
B3 0.538 - 0.582
B4 0.646 - 0.684
B8 0.763 - 0.908

20 m B5 0.694 - 0.713
B6 0.731 - 0.749
B7 0.769 - 0.797
B8a 0.848 - 0.881
B11 1.542 - 1.685
B12 2.081 - 2.323

60 m B1 0.430 - 0.457
B9 0.932 - 0.958
B10 1.336 - 1.411

PlanetScope 2 3.125 m Red 0.630 - 0.714 1 day
Green 0.515 - 0.610
Blue 0.424 - 0.478
NIR 0.770 - 0.900

aerial photography were only used for validation.
To investigate the relationship between urban parameters and urban texture, a manual
classification of urban texture according to the methods of Wheeler (2015) in Cuenca im-
plemented by two students of the University of Cuenca was used as a reference (Cobo
and Neira, 2018) (s. Figure 2).
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Figure 2: Urban texture in Cuenca and its area of influence, classified according to Wheeler
(2015). With permission from Carolina Neira and Daniela Cobo.
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2.2 Workflow

2.2.1 Overview

Figure 3: Workflow.

As described above (s. Chapters 1.2, 1.3), the main goal of the research is to gain
understanding about urban form in two Andean cities in Ecuador based on mid- and high-
resolution remote sensing data. To achieve this, several analysis steps were developed
(s. Figure 3). The first step after data acquisition (s. Chapter 2.1) and pre-processing
(s. Chapter 2.2.2) is image classification. To derive urban parameters like density and
connectivity, buildings and roads need to be identified with high certainty. Therefore, dif-
ferent classification techniques were compared with regard to their ability to (1) separate
built-up areas from other land cover types, and (2) separate the main urban classes build-
ings and roads (s. Chapter 2.2.4). The methods tested include pixel, sub-pixel, and object
based image analysis (OBIA) techniques. The assumption of pixel-based classification
techniques is that each pixel can be assigned to a certain class. Sub-pixel classification
techniques, on the other hand, take mixed pixels into account, meaning that the spectral
signature of one pixel can be composed of several classes combined in a linear or non-
linear way. With OBIA, not only individual pixels, but also their spatial context is taken into
account. Thus, two pixels with the same spectral signature may be classified differently
according to the characteristics of the surrounding pixels. Pixel-based image classification
with a random forest model was used as a baseline. After the best classification technique
was identified, urban parameters based on land cover classification, i.e. density, compact-
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ness, and connectivity (s. Chapter 1.2) were derived. Roughness was computed based on
elevation data. To investigate the correlation between these parameters and urban form, a
reference dataset (s. Chapter 2.1 and Figure 2) was used. The analysis was implemented
in open source software, specifically QGIS 5.1, GRASS GIS 7.0, R Studio with R 3.4.1,
the Orfeo Toolbox (OTB) 6.4.0, and the Sentinel 1 and 2 processing toolboxes provided by
ESA with SNAP 5.0.

2.2.2 Pre-Processing

Only images acquired between August 2016 and September 2017 (Cuenca) and between
September and December 2017 (Quito) (s. Table 2) with little atmospheric disturbance
were used. To improve the reliability of analysis results, basic atmospheric correction with
the sen2cor tool (Mueller-Wilm et al., 2018) was applied to Sentinel 2 imagery and clouds
and cloud shadows were masked using IDEPIX in SNAP 5.0 (Brockmann Consult GmbH,
2017). Furthermore, the ’super-resolution’ tool for SNAP 5.0 (Brodu, 2016) was applied
to sharpen all bands to a resolution of 10 m. Different images acquired during the same
year were stitched to minimize cloud cover. First, each of the images was masked and
then, the no-data areas in one image were filled with values from the other images. Pixels
masked in all images were filled with values from the image with least cloud cover as it
was assumed that they represent bright areas misclassified as clouds. Thus, the resulting
image may contain some clouds if areas with continuous cloud cover throughout the year
exist in the area of interest, which applied to the case of Cuenca.
PlanetScope 2 data were combined through the mosaic tool from the R raster library and
cropped to the area of interest. Due to the high temporal resolution, cloud-free images of
both research areas could be acquired.
Sentinel 1 imagery was pre-processed using the respective toolbox in SNAP 5.0. The cal-
ibrate, multilook and terrain correction tools were applied to obtain pixels of equal size and
correct location in the projection system used in this research (WGS 84 / UTM Zone 17 S).
Speckle removal was not applied as it leads to information loss concerning image texture.

2.2.3 Computation of Imagery Indices / Band Reduction

Several indices, i.e. New Built Index (NBI) (Waqar et al., 2012), Normalized Difference
Vegetation Index (NDVI), and Mc Feeters’ Normalized Difference Water Index (NDWI)
(McFeeters, 1996), were calculated to highlight certain types of land cover (s. Equations 1,
2, 3). Buildings were highlighted using the Morphological Building Index (MBI) proposed
by Huang et al. (2014). This index is calculated as the white tophat of the brightness with
brightness being defined as the maximum value in the visible spectrum (red, green, blue
bands) (Huang et al., 2014). The white tophat transform highlights bright areas smaller
than a structuring element. A disk with a radius of eight pixels for PlanetScope 2 images
and two pixels for Sentinel 2 images were used. Another possibility to separate build-
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ings from other built-up areas is the redness index (RI) which highlights red brick roofs (s.
Equation 4). For image segmentation, edges were enhanced with the Touzi filter. The
Touzi filter is an adaptive edge enhancement operation often used for SAR images as it
can deal with speckle or noise by calculating means on both sides of the edge. The filter
is multi-directional as it retains the maximum response of the four main image directions.
The result is similar to a Sobel filtered image, but somewhat smoother.
To compute image texture metrics from pre-processed Sentinel 1 C-SAR imagery, the first
principle component of both polarisation modes - VH and VV - was computed to obtain a
single image for texture computation. Then, the Gray-Level Co-occurrence Matrix (GLCM)
was computed based on this image. Image texture is a description of the relationships
between neighboring pixels. The co-occurrence matrix shows the occurrence of combi-
nations of pixel values in neighboring pixels. On this basis, image texture metrics can be
calculated. The metrics chosen for this research are contrast, correlation, energy, and ho-
mogeneity. Contrast describes the difference within value pairs; correlation the frequency
of occurrrence of each value pair; energy is a measure of orderliness within a window,
high energy meaning a great variety of value pairs; homogeneity describes the inverse of
contrast weights.

Table 2: Overview on input data.

Sensor Acquisition date

Cuenca PlanetScope 2 2017-09-21
Sentinel 2 2016-08-12

2017-03-18
2017-04-27
2017-05-17
2017-06-06
2017-07-16

Sentinel 1 2017-09-08
Quito PlanetScope 2 2017-09-19

2017-09-20
Sentinel 2 2017-12-13

NBI =
Green ∗NIR

Red
(1)

NDV I =
NIR−Red

NIR+Red
(2)

NDWI =
Green−NIR

Green+NIR
(3)

RI =
Red−Green

Red+Green
(4)
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2.2.4 Land Cover Classification

2.2.4.1 Random Forest

Random forest (RF) classification was implemented in R with the ’randomForest’ library.
Random forest is a supervised classification technique based on a decision-tree model
and generally outperforms classic maximum likelihood classification (Kulkarni and Lowe,
2016). 500 trees and five training areas per class were used.

2.2.4.2 Spectral Mixture Analysis

Spectral Mixture Analysis (SMA) with six endmembers (vegetation, soil, buildings with red
brick roofs, buildings with gray / light roofs, asphalt and water) represents sub-pixel clas-
sification. Pure endmember pixels were identified based on aerial photography and high
resolution satellite imagery from Google ( c©2015 Google). Furthermore, endmembers of
the main classes of interest - i.e. buildings and asphalt - were compared to datasets from
the USGS spectral library (U.S. Department of the Interior - U.S. Geological Survey, 2017)
(s. also Appendix A). The points used are located in areas of at least 20x20 metres of the
same class to avoid mixed pixels in both PlanetScope 2 and Sentinel 2 images. Further-
more, the separability of the spectral signatures was verified by checking the location of
each class in a feature space of the first two principal components of the images. For SMA
computation, the respective tool from the Orfeo toolbox was used. Unfortunately, only lin-
ear models appear to be implemented in open software today. SMA is a ’soft’ classification
technique as pixels are not assigned a specific class. However, a definite (’hard’) clas-
sification can be achieved through thresholding or by assigning the class with maximum
probability to each pixel. The second approach was applied as it is more objective and
ensures greater comparability of the results.

2.2.4.3 Object-Based Image Analysis

OBIA consists of two main steps, image segmentation and feature classification. The
following eight datasets comprised of different combinations of the pre-processed input
data and indices were prepared and tested with five segmentation algorithms available in
open source software. Image segmentation using the MBI or a combination of the MBI and
spectral bands was attempted with the region growing and watershed algorithms.

1. Sentinel 2
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2. Sentinel 2 and image texture metrics (contrast, correlation, energy, homogeneity)
derived from Sentinel 1, stacked

3. NDVI, NDBI, NDWI, contrast, correlation, energy, homogeneity (band reduced Sen-
tinel 1 + 2)

4. PlanetScope 2

5. Sentinel 2 pansharpened using PlanetScope 2

6. Band reduced Sentinel 1 + 2 pansharpened using PlanetScope 2

7. Sentinel 2 with Touzi edge enhanced Sentinel 2 and the NDVI as additional bands

8. PlanetScope 2 with Touzi edge enhanced PlanetScope 2 and the NDVI as additional
bands

The segmentation algorithms were chosen to cover the main state-of-the art segmen-
tation algorithms derived from literature. Plus, they all take raster stacks as input, per-
form relatively fast on a machine with intermediate capacities, and can be implemented in
Python.

1. Mean shift segmentation (OTB)

2. Morphological-based segmentation (OTB)

3. Watershed segmentation (OTB)

4. Hierarchical Region Growing (GRASS GIS)

5. Shepherd segmentation (based on k-means clustering) (RSGISLIB)

Mean shift segmentation is a clustering technique which is based on the mean values
within a kernel. It starts by calculating the mean within each of the kernels in a feature
space. With each iteration, the kernel ’shifts’ so that the mean value equals the median
value. Overlapping kernels are merged. This means that the number of resulting clusters
is not predefined, but depends on the original kernel size. Morphological-based segmen-
tation as implemented in the Orfeo Toolbox is based on a series of operations of mathe-
matical morphology according to Pesaresi and Benediktsson (2001). The input image is
classified into three classes: Concave, convex, and flat. Morphological-based segmenta-
tion is especially well suited for very high-resolution images as it does not rely on edge
detection and is therefore more likely to preserve heterogeneous and nested shapes (Pe-
saresi and Benediktsson, 2001). The watershed algorithm, on the other hand, strongly
relies on edge detection. Pixel values are interpreted as elevation in a terrain model and
the watershed algorithm works like a sink filling tool, thus detecting areas between ’value
ridges’. Hierarchical region growing starts by over-segmentation of the image, viewing al-
most each pixel as an object. Then, neighbouring pixels are merged if they do not exceed
a certain similarity threshold. Thus, hierarchical region growing has the advantage that it
segments the image independent of scale. K-means segmentation according to Shepherd
(Clewley et al., 2014) assigns pixels to the nearest cluster centre, then gradually eliminates
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small clusters by merging them with nearest neighbors.
The forty resulting vector layers were visually evaluated to select the best combinations
of data and segmentation techniques. Results were ordered in three categories; results
in which segments do not in any way correspond to the input image (e.g., there is only
one segment in the output); segments correspond to the input image, but no features are
recognizable; and segmentation results where at least some characteristic features are
visually recognizable with basic knowledge of the area of interest.
For feature classification, the vector classification tool based on an artificial neural network
implemented in OTB was then applied to those results which allowed an intuitive visual in-
terpretation of distinctive objects with a basic knowledge of the research area and neither
lacked detail nor presented signs of over-segmentation. Beside spectral information, the
size and circumference of features were taken into account for classification. The polygons
were then dissolved by the resulting class attribute.

2.2.4.4 Thresholding and ANN

The last classification technique used is a workflow based on thresholding with indices
that describe different properties of urban and non-urban features as well as shape met-
rics. First, objects with a high MBI were separated. These are bright, small objects, mainly
buildings. In Cuenca and Quito, roads often consist of a bright material, thus, most road
features could also be selected. To separate buildings from roads, the Redness Index (RI)
(s. Equation 4) was applied as most buildings in Cuenca appear to have a red brick tile
roof. Then, very dark small features were selected by applying a threshold on a black
tophat image derived from the brightness index with a structuring element half the size
of the one used for the white tophat operation. Black tophat transform is the reverse of
white tophat transform and highlights small objects with a low brightness compared to their
surroundings. This step separates small shadowy roads as well as small bodies of water.
The NDVI was used to separate vegetated areas from the other objects, and the NDWI to
separate shadow and water as far as possible. Next, the resulting image was vectorized.
Then, the shape metrics compactness, perforation, elongation (s. Chapter 2.2.6), and
area were calculated. The mean values of NDVI, Redness Index, and NDWI were also
assigned to each polygon. Then, 5-12 training areas representing each of the four classes
building, road, vegetation, and water were selected. The polygons were classified using
the Vector Classifier tool from the Orfeo toolbox based on an ANN.

2.2.5 Validation

The classification results were validated using a random sample approach based on aerial
photography and Google Earth basemaps ( c©2015 Google). To determine the number of
random samples, the following formula according to Foody (2009) and Congalton & Green
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(2009) was applied (s. Equation 5).

n =
z2α/2 ∗ P (1− P )

h2
(5)

where, P is an initial guess for the population proportion (overall accuracy), h the half width
of the desired confidence interval around P and zα/2 the critical value of the normal distri-
bution for the two-tailed significance level α.

In our research, P = 80%, h = 5% and α = 0.05, i.e. (1.962 ∗0.8∗0.2)/0.052 = 246 were
used. The same validation dataset was used to validate all classification results to ensure
comparability.

2.2.6 Urban Parameters

Next, the urban parameters listed in Chapter 1.2 were computed. The average of each
parameter was calculated for cells of 100x100 m. The following terrain roughness metric
was applied to the DTM in a 3x3 pixels window (s. Equation 6).

Roughness = σ(
Meanelevation− Elevation

Range
) (6)

Density was quantified by counting the number of polygons classified as urban, i.e.
buildings or asphalt, which overlap with each cell of the grid, and the urban area per cell.
Compactness was computed as the area of a feature divided by the area of its smallest
enclosing circle. Furthermore, an elongation and perforation index were computed; elon-
gation is the quotient of the area of the intersection of a feature and a circle with the same
area as the feature and the union of this feature and circle, perforation is the area of holes
in a polygon divided by the total area of the polygon (Wentz, 2000). The mean roughness
and compactness were computed for each cell. Mean compactness refers to the sum of
the compactness indices of all features overlapping a cell divided by the number of fea-
tures, i.e. the relative area of features within the cell is not taken into account. Connectivity
was defined as road area per cell. Furthermore, an approximate number of intersections
was computed. Intersections were identified as the centroids of areas with at least five
road pixels in a 3x3 pixels window based on the skeleton (only centerlines) of a raster
containing the road class. Centerlines were computed using the ’skeletonize’ tool from the
’skimage’ package in Python. The number of intersections per cell is a second measure of
connectivity.
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2.2.7 Predictive Modelling and Urban Textures Classification

To investigate the relationship between urban parameters and urban texture, a random
forest model was created based on urban parameters derived from remote sensing data
and a reference dataset (s. Chapter 2.1, Figure 2). The urban parameters derived from
literature (s. Chapter 1.2) as well as the NDVI and MBI were rasterized, resampled to a
pixel size of 10x10 m, and stacked. Then, a random forest model was trained to predict
urban texture using a random sample of 5 % of the pixels and the provided manually
classified texture (s. Figure 2). Accuracy was computed based on the 95 % pixels not
used for training. Beside the overall accuracy and Cohen’s Kappa coefficient, per-class
user’s and producer’s accuracies were calculated. The producer’s accuracy describes how
many of the reference pixels were correctly classified and the user’s accuracy how many
of the pixels classified as a certain class actually belong to that class.
The importance of different parameters was assessed by the mean decrease of accuracy
and the mean decrease of Gini. Gini describes the usefulness of a variable by testing if it is
able to split mixed labeled nodes into pure single-class nodes; it is a measure of purity after
each split. Gini is calculated separately for each input parameter in R; it does not indicate
redundancy of correlated variables. The model was then applied to the entire dataset as
well as the texture metrics calculated for the second area of interest, Quito, for which no
reference classification of types of urban form is available. Furthermore, zonal statistics
for each type of texture were computed with the reference texture and urban parameters
of Cuenca.
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3 Results

3.1 Land Cover Classification

In this section, the results of the four image classification techniques are presented in
detail.

3.1.1 Random Forest

Random forest classification produced an overall accuracy of 0.74 with three classes (build-
ings, roads, background) with a Cohen’s Kappa coefficient of 0.46 with Sentinel 2 imagery
and an overall accuracy of 0.80 with a Kappa coefficient of 0.60 with PlanetScope 2 im-
agery. The result very slightly improved when adding the MBI and NDVI to the input
dataset. For Sentinel 2, the indices could not improve the result. Shadows were often
misclassified as water. This is especially noticeable in the historic centre of Cuenca where
streets between dense buildings are in shadow. Overall, urban areas were rather under-
estimated (s. Table 3, Appendix B).

Table 3: Confusion matrix random forest classification with PlanetScope 2 and Sentinel 2
with NDVI and MBI, Cuenca. Rows: Predicted, columns: Ground truth.

PlanetScope 2 Sentinel 2
Building Road Background Building Road Background

Building 34 0 1 32 2 2
Road 9 18 3 14 3 2
Background 17 18 146 14 31 146

3.1.2 Spectral Mixture Analysis

’Pure’ pixels are mainly located in the corners of a scatterplot of the first two principal
components (Figure 4). However, urban classes are relatively close together. Especially
red bricks, bare soil, and asphalt appear to be similar. Thus, some confusion between
these classes was to be expected. A comparison between urban classes as derived from
the data and spectral profiles derived from the USGS Spectral Library shows similarities,
especially between Sentinel 2 and the spectral library (U.S. Department of the Interior
- U.S. Geological Survey, 2017) (s. Appendix A). The large differences in bands 9 and
10 are due to these bands being used for water vapor and cloud detection; they do not
contain surface information. For PlanetScope 2, reflectance was lower overall since no
atmospheric correction was applied to these images (s. Appendix A).
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(a) Sentinel 2 (b) PlanetScope 2

Figure 4: ’Pure’ pixels’ location in the feature space of the first two principal components,
Cuenca.

With Sentinel 2 imagery, a distinction between buildings, asphalt, and background
yielded an overall accuracy of 0.52 which corresponds to a Kappa of 0.24, the main source
of error being misclassification of background classes as asphalt. This is most likely due
to the similarity of the spectral profiles of asphalt and bare soil (s. Figure 4 (a)). The
classification result based on SMA of PlanetScope 2 imagery had an overall accuracy of
0.56 with a Cohen’s Kappa coefficient of 0.44 with all six classes (red building, gray build-
ing, asphalt, vegetation, bare soil, and water). The distinction between buildings, asphalt,
and background had an overall accuracy of 0.69 and a Cohen’s Kappa coefficient of 0.50.
The main source of error appears to be an over-estimation of the occurrence of the as-
phalt class (s. Table 4). Furthermore, the validation dataset was classified by land cover
classes rather than surface materials. It was assumed that the road class is equivalent to
the surface material asphalt. However, some dirt roads exist in the area of interest so that
validation of roads with SMA is conservative. The occurrence of the building classes was
strongly underestimated (s. Table 4).

3.1.3 Object-Based Image Analysis

Different segmentation algorithms produced very different results (s. Figure 5). Some
results were not valid, i.e. only one or two segments were produced, or there were mem-
ory errors even after adapting all possible parameters. Other results were valid, but did
not meet the requirement that at least large and characteristic structures should be visu-
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Table 4: Confusion matrix SMA with PlanetScope 2 and Sentinel 2, Cuenca. Rows: Pre-
dicted, columns: Ground truth.

PlanetScope 2 Sentinel 2
Building Road Background Building Road Background

Building 43 12 17 17 0 2
Road 17 23 30 30 24 62
Background 0 1 103 13 12 86

ally recognizable (s. Table 5). Out of the valid and visually interpretable results, some
lacked detail or showed signs of oversegmentation. The watershed algorithm in combina-
tion with PlanetScope 2 (dataset no◦4 in Chapter 2.2.4.3) and PlanetScope 2 with Sen-
tinel 2 (dataset no◦5 in Chapter 2.2.4.3) datasets produced segmentation results which
allowed to distinguish between dense urban areas and more homogenous rural parts of
the study area. Edge enhancement and the addition of the MBI and NDVI improved the
result. Segmentation of an image composed only of MBI and NDVI looked similar to seg-
mentation including spectral bands in urban areas. Segmentation results of Sentinel 2 data
alone lacked detail and were therefore discarded.

Table 5: Results of image segmentation with different datasets and segmentation algo-
rithms, Cuenca. +: Certain characteristic features (e.g. the airport landing strip) can be
recognized visually with basic knowledge of the area of interest; o: Valid result, but not
visually interpretable; -: Invalid.

Hierarchical
Region
Growing
(GRASS)

Meanshift
(OTB)

Morphologi-
cal-Based
(OTB)

Shepherd
/ k-means
(RSGISLib)

Watershed
(OTB)

1. Sentinel 2 o - o o o
2. Sentinel 2 +
Sentinel 1

o o o o o

3. Band reduced
Sentinel 1 + 2

o o + + -

4. PlanetScope 2 + o - + +
5. PlanetScope 2 +
Sentinel 2

+ - o o +

6. PlanetScope 2 +
Sentinel 1 + 2

o - o o -

7. Sentinel 2, edge
enhanced, NDVI

o - o o o

8. PlanetScope
2, edge enhanced,
NDVI

+ o o + +
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Figure 5: Different segmentation results based on PlanetScope 2 imagery of Cuenca with
a Touzi edge enhancement band. The maps show the south east of Cuenca, the linear
structure in the north-western corner being the airport.

The best result of feature classification using an ANN was achieved based on Plan-
etScope 2 spectral bands with an NDVI and a Touzi filtered band segmented with the
watershed algorithm. The classification had an overall accuracy of 0.56 with a Kappa of
0.46 with six classes (building - red brick roof, building - light / gray, road, bare soil, veg-
etation, forest, water; s. Appendix C). When summarizing the result to the two classes of
interest - buildings and roads - and a background class, the overall accuracy increased to
0.79 and the Kappa to 0.60 (s. also table 6). Combined PlanetScope 2 and Sentinel 2
data produced an overall accuracy of 0.55 and a Cohen’s Kappa coefficient of 0.45 and
thus qualified as the second best result. The improvement compared to PlanetScope 2
without Sentinel 2 is marginal (Kappa: 0.44). Overall, the technique performed slightly less
well than random forest classification but better than SMA. Sentinel 1 texture metrics did
not improve the result which might be due to the lower spatial resolution of these data (s.
Chapter 2.1). A disadvantage of watershed segmentation is a tendency to oversegment
linear features so that shape metrics cannot be taken into account for classification.

Table 6: Confusion matrix OBIA with PlanetScope 2 with NDVI and Touzi filtered bands,
Cuenca. Rows: Predicted, columns: Ground truth.

Building Road Background

Building 34 1 0
Road 16 19 9
Background 10 16 141
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3.1.4 Thresholding and ANN

Thresholding combined with ANN classification based on indices and shape metrics pro-
duced an overall accuracy of 0.77 and a Cohen’s Kappa coefficient of 0.57 with Sentinel 2
images and three classes (building, road, and background). With PlanetScope 2 data, an
overall accuracy of 0.80 with a Kappa coefficient of 0.66 with four classes (building, road,
vegetation, and water) was achieved (s. Table 7, figure 6). When summarizing vegetation
and water to one background class for more comparability with random forest, the accu-
racy is 0.81 with a Kappa of 0.67. Thus, the technique produces the best classification
results in terms of accuracy. Therefore, the same technique with the same thresholds was
applied to Planet imagery of Quito (s. Figure 7). Due to the different landscape surround-
ing Quito, the water class was replaced by a bare soil class. The result has an overall
accuracy of 0.68 with a Cohen’s Kappa of 0.56. Summarizing vegetation and bare soil to
one background improved the overall accuracy to 0.74 with the same Kappa coefficient.
Many classification errors are due to an overestimation of the road class. About 29% of
validation points of class building and 47% of class bare soil were misclassified as road (s.
Table 8). Unlike in Cuenca, most buildings in Quito have a gray roof so that the RI is not
sufficient to distinguish between buildings and roads. Furthermore, bare soil occurs more
often than in Cuenca so that the NDVI alone is not sufficient to distinguish between back-
ground classes and roads. The MBI only excludes large areas of bare soil. The thresholds
used for the initial classification were:

• Initial building or light road: MBI >= 600 and NDVI < 0.1

• Initial red brick building: MBI >= 600 and NDVI < 0.1 and RI >= 0 (this is a subset of
initial building / light road)

• Initial shadowy road: Black Top Hat >= 1000 and NDVI < 0.1

• Initial vegetation: NDVI >= 0.1

with PlanetScope 2 and:

• Initial building or light road: MBI >= 10 and NDVI < 0.3

• Initial red brick building: MBI >= 10 and NDVI < 0.3 and RI > 0.1 (this is a subset of
initial building / light road)

• Initial shadowy road: Black Top Hat >= 100 and NDVI < 0.3

• Initial vegetation: NDVI >= 0.3

with Sentinel 2 data.

20



Table 7: Confusion matrix Thresholding and ANN with PlanetScope 2 and Sentinel 2,
Cuenca. Rows: Predicted, columns: Ground truth.

PlanetScope 2 Sentinel 2
Building Road Background Building Road Background

Building 46 7 19 41 15 13
Road 11 26 4 10 13 2
Background 3 3 127 9 8 135

Table 8: Confusion matrix of classification based on PlanetScope 2 images with indices
and shape metrics, Quito. Rows: Predicted, columns: Ground truth.

Building Road Vegetation Bare Soil

Building 30 3 1 1
Road 18 34 0 14
Vegetation 3 5 87 15
Bare Soil 12 7 0 16

3.1.5 Comparison

Large differences between the four land cover classification methods were observed. The
highest accuracy was achieved using a classification method based on thresholding with in-
dices followed by feature classification with an artificial neural network (s. Chapters 2.2.4.4
and 3.1.4, figures 6 and 7, table 9).

Table 9: Highest accuracies achieved with different land cover classification techniques,
Cuenca.

PlanetScope 2 Sentinel 2
Classification technique Overall

accuracy
Cohen’s
Kappa

Overall
accuracy

Cohen’s
Kappa

SMA 0.69 0.50 0.52 0.24
Random forest 0.80 0.60 0.74 0.46
OBIA 0.79 0.60 N.A. N.A.
Indices & shape metrics 0.81 0.67 0.77 0.57
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Figure 6: Classification results based on indices and shape metrics classified with thresh-
olds and ANN, Cuenca.
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Figure 7: Classification result based on indices and shape metrics classified with thresh-
olds and ANN, based on PlanetScope 2 images, Quito.
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3.2 Urban Parameters

The best classification result chosen for parameter extraction is adaptive thresholding and
ANN classification with shape metrics and MBI (s. Chapter 3.1.4, Figures 6 and 7).
Density (feature count), density (percentage of urban area), connectivity (road area), con-
nectivity (number of intersections), and compactness were computed based on this result.
Furthermore, the MBI and NDVI were derived from PlanetScope 2 imagery. Roughness
was calculated based on the DEM using equation 6. All eight parameters show a clear
distinction between urban and non-urban areas. Compactness, connectvity and density, in
particular, also show differences between different parts of the city. Differences between
the classification results of both study areas are visible as well (s. Figures 8 and 9). In
Quito, road area was overestimated (s. Table 8). As a result, connectivity is less differen-
tiated than in Cuenca. The distinction of urban area by NDVI is also more difficult in Quito
due to the presence of bare mountainous areas and volcanoes in its surroundings. Overall,
the lower classification accuracy is reflected in the urban parameters (s. Figure 9).

24



Figure 8: Urban parameters related to texture, Cuenca.
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Figure 9: Urban parameters related to texture, Quito.
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3.3 Detecting Urban Textures

Figure 10: Left: Manual classification of urban textures used as reference. Right: Urban
textures detected using Random Forest Classification with the eight urban parameters as
inputs. Cuenca.

(a) Reference (b) Predicted

Figure 11: Frequency of texture classes in Cuenca. 1: Airport, 2: Allotment Gardens, 3:
Apartment Blocks, 4: Campus, 5: Commercial Strip, 6: Country Roads, 7: Degenerate
Grid, 8: Garden Apartments, 9: Garden Suburb, 10: Heavy Industry, 11: Incremental /
Mixed, 12: Loops and Lollipops, 13: Land of the Dead, 14: Malls and Boxes, 15: Organic,
16: Quasi-Grid, 17: Rectangular Block, 18: Rural Sprawl, 19: Upscale Enclave, 20: Urban
Grid, 21: Workplace Boxes.

Texture could be predicted with an overall accuracy of 0.79 and a Cohen’s Kappa co-
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efficient of 0.61 (s. Figure 10) in Cuenca with a random forest model trained on 5 % of
pixels from the parameter stack and reference texture. Urban area was underestimated,
especially the classes ’Country Roads’ and ’Rural Sprawl’ which have the largest spatial
coverage in the reference image. The class ’Organic’ was overestimated (s. Figures 10
and 11, table 10). Density (feature count), density (urban area per cell), and connectivity
(road area) had the greatest influence on classification accuracy whereas roughness, the
MBI and the NDVI had the least influence (s. Table 11). The NDVI had a relatively high
mean decrease of Gini value but a low mean decrease of accuracy value (ibid). This may
indicate redundancy of the variable; according to Figure 12, it might be highly correlated
with density. In spite of its low values, leaving out roughness reduced the accuracy to 0.58
and Cohen’s Kappa coefficient to 0.23. Therefore, all parameters appear to be correlated
with urban texture to some extent.

Table 10: Confusion matrix and per-class accuracies of urban texture prediction, Cuenca.
Rows: Predicted, columns: Reference. Classes: 0: Not urban, 1: Airport, 2: Allotment
Gardens, 3: Apartment Blocks, 4: Campus, 5: Commercial Strip, 6: Country Roads, 7:
Degenerate Grid, 8: Garden Apartments, 9: Garden Suburb, 10: Heavy Industry, 11: In-
cremental / Mixed, 12: Loops and Lollipops, 13: Land of the Dead, 14: Malls and Boxes,
15: Organic, 16: Quasi-Grid, 17: Rectangular Block, 18: Rural Sprawl, 19: Upscale En-
clave, 20: Urban Grid, 21: Workplace Boxes.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0 1261-
133

618 8179 155 9056 2789 67038 432 140 3471 3,576 17038 436 1948 380 9515 2612 1505 191-
096

2337 119 3

1 191 2618 0 0 7 25 1 0 0 0 12 36 3 0 0 252 0 0 0 0 0 0
2 152 0 1800 0 0 0 3 0 0 0 0 44 0 0 0 0 13 0 2 0 0 0
3 63 0 0 301 0 0 0 0 0 20 0 0 0 18 0 12 32 9 6 32 0 0
4 1002 11 0 0 11829 62 77 45 3 39 15 176 0 12 0 295 56 27 115 25 31 0
5 2404 129 3 2 130 8738 18 1 0 44 94 193 1 290 16 711 315 71 26 4 15 0
6 9209 1 63 6 99 15 37784 3 1 138 127 630 0 35 3 317 236 15 2910 116 0 0
7 179 0 1 0 18 0 0 2111 0 0 0 9 0 1 0 2 0 3 0 0 78 0
8 27 0 0 0 4 0 0 0 57 0 0 0 0 0 0 0 25 0 0 0 0 0
9 864 0 4 0 60 12 9 0 0 10375 26 12 0 0 2 80 7 0 13 30 0 0
10 1034 44 2 3 81 357 77 13 0 24 12801 197 0 38 234 160 78 8 79 40 8 0
11 4628 45 60 2 530 294 914 255 10 217 383 53859 40 668 5 1685 1353 258 1470 165 38 0
12 34 0 0 0 0 0 0 0 0 0 0 0 490 0 0 7 1 0 0 0 0 0
13 997 0 4 0 51 675 29 0 0 59 60 102 0 24637 11 405 316 12 53 4 4 0
14 175 0 0 0 0 16 51 0 0 0 2 0 0 39 1657 8 0 4 40 1 0 0
15 8467 132 58 127 1487 2885 753 495 48 1467 658 2699 80 2850 179 84346 4205 1421 970 223 1843 32
16 2233 0 8 32 197 428 94 46 14 13 59 664 23 266 10 742 31145 213 33 97 411 2
17 521 0 1 4 25 21 10 0 0 3 0 2 0 0 9 43 86 5744 38 0 1 0
18 33607 4 1251 11 1320 91 16455 63 6 476 344 5720 173 671 52 2075 326 467 157-

770
647 0 0

19 319 0 0 7 20 1 48 0 0 5 36 0 0 3 0 1 1 0 57 3013 0 0
20 266 0 0 1 37 46 0 68 0 6 57 31 0 22 0 189 339 71 6 1 12067 0
21 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 4
User’s
acc. 0.80 0.83 0.89 0.61 0.86 0.66 0.73 0.88 0.50 0.90 0.84 0.81 0.92 0.90 0.83 0.73 0.85 0.88 0.71 0.86 0.91 0.50
Produ-
cer’s
acc. 0.95 0.73 0.16 0.46 0.47 0.53 0.31 0.60 0.20 0.63 0.70 0.66 0.39 0.78 0.65 0.84 0.76 0.58 0.44 0.45 0.83 0.10
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Table 11: Importance of different input parameters.

Parameter Mean Decrease of Ac-
curacy

Mean Decrease Gini

Compactness 0.06576611 6071.266
Roughness 0.05228191 7992.453
Connectivity; number of intersections 0.05997891 3772.212
Connectivity; road area 0.09905073 8127.111
Density; area 0.11658440 12171.032
Density; count 0.14058516 10468.657
NDVI 0.04013470 8164.336
MBI 0.02374680 7398.652

To further explore the correlation, zonal statistics per texture class and urban parameter
were computed. None of the individual parameters allows separability between classes,
but differences are visible (s. Figure 12). For instance, areas classified as ’Rural Sprawl’
have a high average NDVI and a low density and connectivity whereas ’Urban Grid’ is
especially compact and contains a high number of urban features.

(a) Compactness by class.
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(b) Roughness by class.

(c) Number of intersections by class.
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(d) Road area by class.

(e) Density as percentage of built area per cell by class.
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(f) Density as number of urban features per cell by class.

(g) NDVI by class.
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(h) MBI by class.

Figure 12: Value distribution of urban parameters by reference texture class, Cuenca. 1:
Airport, 2: Allotment Gardens, 3: Apartment Blocks, 4: Campus, 5: Commercial Strip,
6: Country Roads, 7: Degenerate Grid, 8: Garden Apartments, 9: Garden Suburb, 10:
Heavy Industry, 11: Incremental / Mixed, 12: Loops and Lollipops, 13: Land of the Dead,
14: Malls and Boxes, 15: Organic, 16: Quasi-Grid, 17: Rectangular Block, 18: Rural
Sprawl, 19: Upscale Enclave, 20: Urban Grid, 21: Workplace Boxes.
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Figure 13: Predicted urban texture classes, Quito.

Since no reference urban texture classification data was available for Quito, the model
trained with data from Cuenca was applied to detect urban textures in this city (s. Figure
13). The class with the greatest coverage is ’Heavy Industry’. Large streets within the
city were classified as ’Airport’. Another class with large coverage is ’Organic’. ’Rural
Sprawl’ and ’Upscale Enclaves’ appear near the edges of the city. ’Garden Apartments’
and ’Workplace Boxes’ are not present in the prediction in spite of being present in the
manual classification of Cuenca (s. Figure 14). The airport of Quito and rural sprawl were
partly correctly classified.
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Figure 14: Texture in Quito. 1: Airport, 2: Allotment Gardens, 3: Apartment Blocks, 4:
Campus, 5: Commercial Strip, 6: Country Roads, 7: Degenerate Grid, 8: Garden Apart-
ments (count equals zero), 9: Garden Suburb, 10: Heavy Industry, 11: Incremental /
Mixed, 12: Loops and Lollipops, 13: Land of the Dead, 14: Malls and Boxes, 15: Organic,
16: Quasi-Grid, 17: Rectangular Block, 18: Rural Sprawl, 19: Upscale Enclave, 20: Urban
Grid, 21: Workplace Boxes (count equals zero).
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4 Discussion

4.1 Land Cover Classification

In Latin America, a trend of urban expansion combined with a decrease of density in cities
has been observed (Inostroza et al., 2013). This coincides with the analysis of urban form
in Cuenca and Quito which showed that urban sprawl towards rural areas (i.e. the texture
class ’Rural Sprawl’) plays an important role in these cities. This development poses new
challenges for urban planning, specifically with regard to transportation choices. There-
fore, it is important to get a better understanding of urban areas. Extraction of impervious
surfaces has been widely used for the analysis of urban development. Object-based clas-
sification was shown to be suitable for this task (Benítez et al., 2018; Sugg et al., 2014).
However, a more detailed classification is necessary for urban texture analysis. Differ-
ent classification techniques were compared in this research. It was found that object-
based approaches based on open mid-resolution and commercial high-resolution remote
sensing data are too coarse to extract features like individual buildings and roads. This
confirms former findings which imply that OBIA is successful when objects of interest are
considerably larger than the pixel size (Blaschke, 2010). Benítez et al. (2018) found
that OBIA performed better than sub-pixel classification of impervious surfaces based on
mid-resolution remote sensing data. This was confirmed by our research (s. Appendix
A, Appendix C). Pixel based classification with random forest performed better than both
sub-pixel and object-based approaches (s. Chapter 3.1.2). The suggested method com-
bining pixel-based classification based on both spectral and morphological properties with
object-based classification based on shape metrics produced the best results for Cuenca
(s. Chapter 3.1.4). However, the approach is significanty less successful when applied
to Quito. This might be due to buildings and streets being more difficult to separate in
Quito since many buildings have gray roofs. An advantage of the approach is its relatively
high accuracy when applied to mid-resolution data. It is the only technique which could
produce a Cohen’s Kappa coefficient higher than 0.50 with only Sentinel 2 imagery. The
low Kappa coefficient of random forest classification in spite of a similar accuracy is due to
an overestimation of the background class which has the greatest spatial coverage. This
is interpreted as a greater influence of chance by the Kappa calculation. The identification
of individual buildings, smaller roads and intersections is only possible with commercial
high resolution PlanetScope 2 data. All results lack detail in particularly dense urban areas
such as the historic centre of Cuenca.

4.2 Urban Parameters

The urban parameters density, connectivity, and compactness derived from literature (s.
Chapter 1.2) can be computed based on a land cover map. Density as urban area per cell
has the highest certainty as it is directly derived from the land cover. Density as feature
count is less accurate since features of the same class which are next to each other appear
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as one feature. Connectivity as road area is similar to density as percentage of built area,
but it strongly depends on the separability of urban classes. No validation data for the
count of intersections was available, but it can be assumed that accuracy is relatively low
since there were several issues during classification. Firstly, the road class was the least
accurately classified with an error of omission of 0.28 and an error of commission of 0.37
(s. Table 7). Secondly, skeletonization did not alway extract one exact centerline per road.
Especially wide road features with irregular borders led to several centerlines. Finally,
narrow curves were sometimes misclassified as intersections. The compactness index
describes features well and was useful for feature classification. However, it is strictly on a
feature level and cannot be interpreted as compactness of a city as described in chapter
1.2. The addition of NDVI and MBI increased the accuracy of urban texture prediction (s.
Table 11), but these parameters can be considered to be strongly correlated to density
as percentage of urban area per cell since they were used for land cover classification.
Roughness is based on elevation data. Large differences between different parts of the
city could be observed (s. Figures 8 and 9). Furthermore, roughness was found to be
linked directly to transportation choices in former research (Ng et al., 2011). Unfortunately,
available elevation data were considerably older than remote sensing images. This might
explain the low importance of roughness for urban texture prediction (s. Table 11).

4.3 Detecting Urban Texture

Urban parameters derived from the classification results were shown to be correlated
with urban texture according to a visual classification based on the typology proposed
by Wheeler (2015). Density, connectivity and compactness are best suited to predict tex-
ture classes (s. Table 11). However, the prediction model was not transferable to the
second area of interest, Quito. This might be due to the lower quality of the classification
as well as differences between the overall structures of both cities. For instance, very large
roads within the city were classified as airport; this is not unreasonable since the airport in
Cuenca consists of a single broad landing strip surrounded by buildings. ’Heavy Industry’
in Cuenca has a low NDVI, low density in terms of feature count and a low number of in-
tersections, but very high density in terms of urbanized area, especially a high road area
(s. Figure 12). This is true for many parts of Quito. ’Rural sprawl’ was often correctly clas-
sified, but its coverage was underestimated, which was also the case for the prediction of
urban texture in Cuenca (s. Figure 11, table 10). The class ’Organic’ was overestimated
in both cities (s. Figures 11 and 14, table 10) Possibly, a texture prediction model trained
on several cities would be applicable to a new area of interest. However, urban parame-
ters extracted in this study cannot describe urban form in its full complexity. They describe
urban areas at a pixel and object level whereas urban form is often defined by complex
grid and parcel patterns. For instance, road shape, e.g. loops vs. rectangular grid, was
not taken into account. Another aspect is the location of a neighborhood within the city,
which is only partly expressed by the parameters density and connectivity. Furthermore,
socio-economic factors are not always reflected by quantifiable parameters. For instance,
a neighborhood with low density, a high NDVI and low connectivity might be a low-income
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periferic agricultural neighborhood or an upscale residential area. The difficulty of sep-
arating types of urban texture based on urban parameters alone is shown by Figure 12.
Variability within a class is usually larger than between-class variability.
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5 Conclusion and Recommendations

5.1 Conclusion

In the following paragraphs, the research questions posed at the beginning of this report
(s. Chapter 1.3) are discussed in light of our results. All three research questions could
be answered satisfactorily.

5.1.1 Which parameters of urban morphology can be extracted from mid-resolution
open remote sensing data using open software?

All parameters derived from literature (s. Chapter 1.2), i.e. density, connectivity, rough-
ness, and compactness, could be extracted from remote sensing data. Beside these pa-
rameters, the Normalized Difference Vegetation Index (NDVI) and Morphological Building
Index (MBI) were investigated. These parameters can easily be computed and add to
the accuracy of texture prediction (s. Table 11). Overall shape and size of the city were
not quantified, but can be derived from the land cover classification. All parameters were
shown to be correlated with urban texture classes according to the typology of Wheeler
(2015).

5.1.2 Which analytic methods and techniques are suitable to classify remote sens-
ing images according to these parameters?

Parameter extraction strongly depends on the possibility to accurately classify urban land
cover. The best classification result was achieved using initial pixel-based classification
based on thresholding of NDVI, MBI, and RI followed by object-based feature classification
based on shape metrics with an ANN. The second best result was produced by pixel-based
random forest classification.

5.1.3 What is the added value of PlanetScope 2 data as an example of commercial
high-resolution remote sensing imagery?

Spatial resolution appears to play a more important role than spectral resolution. Small
roads, in particular, could only be extracted from high-resolution commercial imagery.
Thus, commercial high resolution imagery significantly improved the quality of urban land
cover classification and of urban parameters extracted from it. The added value of Plan-
etScope 2 compared to Sentinel 2 is an increase in accuracy of 0.04 and a difference
between Cohen’s Kappa coefficients of 0.10 with indices and shape metrics (s. Chap-
ter 3.1.4). The difference was even more significant with regard to random forest clas-
sification (s. Chapter 3.1.1). SMA and OBIA did not produce any usable results with
Sentinel 2 data alone.
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5.2 Recommendations

Urban parameters that can be extracted from remote sensing data are correlated to types
of urban texture. However, this research focused on a limited number of parameters
and two study areas with very different structures in spite of both being Andean cities
in Ecuador. Thus, results from one city cannot immediately be transferred to another. In
future research, different classification approaches such as deep learning should be ap-
plied to remote sensing data to improve the accuracy and explanatory power of urban
parameters. Furthermore, other parameters such as road shape and angles, number of
culs-de-sac, land use and location of neighborhoods within the city could be investigated.
To automatically predict urban texture classes according to Wheeler (2015), several study
areas need to be used to train a prediction model.
If a larger number of urban texture classifications for training was available, it might be
possible to accurately predict types of urban texture, especially if land cover classification
accuracy can be increased. However, it is likely that some human intervention will remain
necessary since complex shapes need to be analyzed and actual land use as well as
socio-economic factors play a role. Another interesting approach could be to investigate
the direct link between urban parameters and transportation choices in Andean cities.
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Appendices
Appendix A

Best classification result, spectral mixture analysis with PlanetScope 2 data, Cuenca.
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(a) Asphalt: Sentinel 2 vs. USGS (b) Asphalt: PlanetScope 2 vs. USGS

(c) Red bricks: Sentinel 2 vs. USGS (d) Red bricks: PlanetScope 2 vs. USGS

(e) Gray bricks: Sentinel 2 vs. USGS (f) Gray bricks: PlanetScope 2 vs. USGS

Comparison between spectral profiles derived from images and USGS spectral library ref-
erence profiles (U.S. Department of the Interior - U.S. Geological Survey, 2017).
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Appendix B

Best classification result, Random forest with PlanetScope 2 including Touzi and NDVI
bands, Cuenca.
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Appendix C

Best classification result, watershed segmentation of combined Sentinel 2 and Plan-
etScope 2 imagery, classified with ANN, Cuenca.
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