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Preface 

Hyperspectral imagery combined with UAV platforms have been extensively explored over the past 

years as a promising approach to acquire large amount of data as a key factor for plant disease 

assessment. In that sense, advanced and complex analysis need to be implemented to generate 

reliable information that could be related to vegetation properties and therefore for the detection, 

identification and prediction of plant health status. Hence, this study gave me the opportunity to 

explore the scope and capability of new technologies, methods and applications such as hyperspectral 

technology, machine learning algorithms, data analysis techniques, programming, among others, to 

handle, explore and analyze high resolution UAV imagery and related it to plant disease assessment. 

Moreover, despite the complexity of the analysis and the challenge of its interpretability, several 

related works, online tutorials, together with online discussion groups, helped me to overcome my 

limitations. 
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Summary 
 

The late blight disease caused by the fungus-like Phytophthora infestans is considered one of the most 

important and devastating diseases, reducing the potato crop production and affecting the 

agricultural economy and food security worldwide. Moreover, one of the main characteristics of the 

late blight disease, is that it spreads extremely quickly during growing season, especially in those 

production systems where no chemicals are applied in the field, such as those organic farming 

systems, where production tend to be lower comparing to conventional practices due the constrains 

on the use of fertilizers and pesticides. The need of real time, location-precise, non-invasive methods 

to assess late blight disease could provide reliable information for the crop management community 

to establish suitable solutions for this agricultural practice. 

 

The extensive exploration and use of remote sensing over the past years to retrieve physical variables 

to estimate vegetation properties, has contributed to the development and improvement of different 

applications of remotely sensed observations to provide spatial, temporal and non-invasive field-

based information relative to plant condition, and consequently the detection, identification, 

quantification and prediction of crop stress, representing one of the major contributions of this 

science to agriculture. However, this progress in the remote sensing domain and sensor technologies 

in combination with UAV platforms, brings together the generation of large amount of data that 

requires of complex analysis to find underlying information that in most cases statistical approaches 

are sometimes limited to reach. 

 

Progress in computer science allowed the development and design of new approaches such as 

machine learning algorithms to analyze in depth the full spectrum offered by the hyperspectral 

technology to retrieve spectral responses related to plant health status. Even though, most of the 

studies related to plant disease assessment were applied under controlled conditions (laboratory or 

greenhouses), some authors have been working intensively to transfer results obtained under 

controlled environmental conditions to experiments performed at field level. Hence, studies for 

monitoring fields and plots could provide new insights to better understand the complex host-

pathogen relation with the disease spread and its spatial distribution. 

      

Therefore, this study focused to explore the potential use of machine learning techniques for the 

assessment of late blight disease in an organic potato production system from high-resolution UAV 

imagery. Moreover, this study explored which discriminant function (linear – non-linear) of a support 

vector machine classifier provided the best solution and performance to predict late blight disease. 

The experiment was conducted over eight experimental plots, where two different production 

systems were evaluated through visual assessments (ground truth), together with the acquisition of 

high-resolution UAV imagery. The combination of both datasets was used as input to train and 

evaluate the selected predictive model. 

 

A support vector machine learning algorithm was used to classify three different disease severity 

classes, which due to the disease evolution over the growing season, labeled classes were represented 

by an unbalanced overall distribution. As expected, a high correlation between the acquired spectral 

features was found, therefore during the model selection procedure, a preprocessing feature 

selection technique such as the PCA was incorporated within the pipeline, to evaluated if the new 
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uncorrelated components contribute for the selection of the best model. Results obtained from the 

grid search procedure, showed that the incorporation of the first five new components contributed to 

the selection of the model with the best classification performance, yielding in a balanced accuracy of 

82%. In addition, both linear and non-linear SVM discriminant function were tested, to explore which 

extension of the classifier was more suitable to predict late blight disease. As most of the researches 

reviewed for this study, among the methods evaluated, a radial basis kernelized SVM algorithm was 

selected during the model selection procedure. 

 

This study concludes, based on the literature reviewed and the results obtained, that the use of 

hyperspectral sensors in combination with machine learning techniques such as the support vector 

machine, has the potential to monitor crop health status. However, it is still necessary to consider 

factors such as environmental conditions during flight acquisition, image preprocessing and the 

selection of well-known specific features for the development of automated systems that can provide 

timely, non-invasive, and reliable information to forecast temporal and spatial disease spread, 

information that can be use by the crop protection community.          
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1 INTRODUCTION  
 

1.1 CONTEXT AND BACKGROUND 
 

Progress within the remote sensing domain along with advances in computer science and sensor 

technologies, have served as basis for the development of tools and methods for the assessment of 

plant diseases (Ashourloo et al., 2016; Mahlein, 2016; Zhang et al., 2003). It is well known, that plant 

diseases reduce crop production affecting the agricultural economy and food security worldwide 

(Rahman et al., 2017). Therefore, researchers, together with the precision crop community, have been 

working intensively to harness the potential of the enormous amount and quality of spectral data that 

has increased over the past years (Behmann et al., 2015). Furthermore, major improvements in crop 

monitoring relay on the potential of remotely sensed observations providing spatial, temporal and 

non-invasive field-based information relative to plant condition and, consequently, detection of crop 

disease stress at early stages which potentially represents one of the major contributions of remote 

sensing to agriculture (Garcia-Ruiz et al., 2013; Mahlein et al., 2012; Zhang et al., 2003). 

 

In addition, the extensive use of remote sensing observations due to its capability to record spectral 

data at different scales to estimate vegetation properties, allowed the implementation of different 

platforms and sensors in the crop monitoring field (Behmann et al., 2015; Sankaran et al., 2010; 

Verrelst et al., 2015). However, even though sensors do not measure the physiological parameters 

directly but records the sum of reflectance attributes of various plant characteristics and 

measurements conditions, it has been proven that specific regions in the electromagnetic spectrum 

from visible to near infrared serve as basis to decision support systems in agriculture (Baranowski et 

al., 2015; Garcia-Ruiz et al., 2013). Therefore, there is a growing tendency to combine Unmanned 

Aerial Vehicles (UAVs) platforms equipped with hyperspectral cameras to generate site-specific, non-

invasive, high spectral, high spatial and temporal information needed for reliable crop disease 

detection and assessment methods (Garcia-Ruiz et al., 2013; Yeh et al., 2013). 

 

Potato (Solanum spp.) constitutes one of the leading non-grain commodities in the global food system 

with a production area of approximately 19 million/ha worldwide in 2014 (Food and Agriculture 

Organization of the United Nations [FAO], 2014). Meanwhile, average potato yields in organic farming 

systems are lower comparing to conventional practices due to the constrains on the use of fertilizers 

and pesticides (Franceschini et al., 2017; Lammerts van Bueren et al., 2008). This year to year variation 

can be caused by the fungal pathogen Phytophthora infestans which causes late blight disease. One 

of the main characteristic of late blight disease is that it spreads quickly during growing season, and 

variations in timing and severity can result in devastating yields losses (Gebru et al., 2017; Lammerts 

van Bueren et al., 2008; Zhang et al., 2003). 

 

According to Franceschini et al. (2017), a limited number of studies have evaluated the benefits from 

continuous monitoring focusing on crop management and stress detection in organic farming systems. 

In that sense, the combination of hyperspectral technology and UAV platforms measurements seems 

to be a promising approach to acquire timely information as a key factor for disease assessment. This 

timely information requires complex analyses to be performed in order to find underlying information 

that traditional statistical approaches are limited to reach (Mucherino et al., 2009). Therefore, many 
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data mining techniques have been developed and designed to offer new opportunities to solve specific 

problems in many research fields (Behmann et al., 2015; Mucherino et al., 2009). For instance, in the 

field of agriculture, different automatic classification and prediction approaches have been utilized for 

vegetation parameter estimation, disease identification, classification, quantification and prediction 

(Ashourloo et al., 2016; Garcia-Ruiz et al., 2013; Mucherino et al., 2009; Zhang et al., 2003). Although, 

the analysis and interpretation of the outputs obtained could be challenging. 

 

1.2 PROBLEM DEFINITION 
 

Spectral vegetation indices (SVIs) constitute one of the most traditional variable estimation 

approaches since their simplicity (Verrelst et al., 2015). On the other hand, it is well known that despite 

all the successful applications of remote sensing technologies, conventional imaging is not always 

suitable for detection or assessment of intrinsic physical or chemical properties (Park & Lu, 2015). 

Thus, hyperspectral images seem to be one of the most common techniques used in the exploration 

of new approaches and methods in the field of plant disease assessment (Dale et al., 2013).  

 

A plant which is infected, reacts to protect itself, and this physiological reaction caused by the disease, 

will lead to a decrease of the spectral reflectance values in the near infrared (NIR) range, due to the 

decreasing chlorophyll content and internal structure changes (Martinelli et al., 2015; Zhang et al., 

2003). This absorption of light variations between diseased and non-diseased plants could allow to 

identify the stress severity of green vegetation with high potential for the evaluation of plant health 

(Franceschini et al., 2017; Martinelli et al., 2015; Zhang et al., 2003). Therefore, spectral responses of 

vegetation are considered to be the basis for remote sensing for a timely data collection of spectral 

information, concerning the assessment of stress factors of an organic potatoes system and their 

impact on the crop development (Franceschini et al., 2017). 

 

Even though multiple approaches are available to extract physical variables to estimate and monitor 

vegetation properties based on remote sensing, there are several intrinsic and extrinsic factors which 

make these methods too error prone (Barbedo, 2016; Thomas et al., 2018; Verrelst et al., 2015). Some 

of the main challenges in the implementation of advanced retrieval methods are related to the 

heterogeneity of elements of the background, capture environmental conditions, disease intrinsic 

characteristics, and the presence of more than one pathogen at the same time, which implies that the 

methods relies on very weak differences to discriminate among them (Barbedo, 2016).  

 

Progress in computer science allows to explore methods to analyze the full potential of hyperspectral 

optical data (Dale et al., 2013). Even though, vegetation indices are still a simple and robust indicators 

for assessment of crop health, advance retrieval methods allows to explore the full spectrum offered 

by hyperspectral imagery (Behmann et al., 2014). Several studies using hyperspectral technology for 

disease detection , identification and classification have been carried out over the past years (Thomas 

et al., 2018). Most of these studies were applied under controlled conditions (laboratory or 

greenhouses) at a leaf scale, which were focused to explored the plant internal changes and its relation 

with spectral information, while others authors started to explore the disease detection and its spatial 

distribution working at canopy scale, combining different platforms to acquired spectral data, 

encountering several technical and external conditions setups that needs to be considered, in order 

to provide reliable information for the crop management community. 
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The need of real time, location-precise, non-invasive methods for predicting late blight disease in 

organic farming systems seems to be an essential research topic that could contribute to the 

establishment of suitable solutions of these agricultural practices (Franceschini et al., 2017; Jiang et 

al., 2012; Lammerts van Bueren et al., 2008). Therefore, this research aims to explore the combination 

of UAV hyperspectral data and advanced data analysis methods to assess plant disease.   

 

1.3 RESEARCH OBJECTIVE AND RESEARCH QUESTIONS 
 

This research aimed to explore machine learning techniques for assessment of late blight disease in 

an organic potato production system from high-resolution UAV imagery. 

 

Based on the overall objective, the following research questions had been designed: 

 

RQ1) Can high-resolution UAV imagery provide information which allows to predict late blight disease 

in organic potato production?  

 

RQ2) Which supervised machine learning (linear- non-linear) technique is suitable to predict late blight 

plant disease? 

 

RQ3) Does the prediction capability of the model increase with increasing disease severity?  

 

1.4 OUTLINE 
 

This thesis consists of 7 chapters. Chapter 1 outlined the content and background of the thesis 

research as well as the research question on which the thesis is build. The following chapter describes 

in detail the late blight disease and its implications in a potato crop, it also reviews the concept of 

remote sensing and its purposes and possibilities in the disease assessment domain, and the use of 

data mining techniques to analyze the data acquired using remote sensing technologies. Chapter 3 

describes the study area and the data acquisition methods used in the growing season of 2016. 

Chapter 4 provides an overview of the process and methods used to prepare the dataset used to d 

develop and implement the selected model. The final outputs are presented in chapter 5 and will be 

discussed based on existing literature in chapter 6. The last chapter 7 summarizes the conclusions of 

this thesis research.
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2 LITERATURE REVIEW 
 

2.1 LATE BLIGHT DISEASE IN POTATO CROPS 
 

The late blight disease is caused by the oomycete Phytophthora infestans (Mont.) de Bary (Olanya et 

al., 2015); it is one the main diseases that affects potato production worldwide (Anderson et al., 2004) 

and the cause of the use of agrochemicals and copper fungicides in organic farming years ago, which 

had been restricted by the European Commission (European Commission, 2002). Besides, there is 

public resistance against the use of ecologically disapproving chemicals, resulting in a pressure for 

prioritization new tools to control this disease (Haverkort et al., 2008). The late blight incidence is 

accentuated in those areas with periods of high relative humidity and low temperatures. In favorable 

environmental conditions for the pathogen it can spread very rapidly and provoke severe crop losses, 

causing the death of leaves, stems and tubers of the plant (Stephan et al., 2005). 

 

The late blight pathogen caused the Irish potato famine in the mid-19th century, which left more than 

a million deaths and generated the migration of more than 1.5 million people from different parts of 

the world, particularly the United States (Ristaino & Johnston, 1999). Late blight disease was first 

reported in the eastern United States just prior to be reported in Europe.  

 

Phytophthora infestans is responsible for yield losses of $6-7 billion annually in potato, and crop losses 

up to 100% in tomato (Nowicki et al., 2012) and has been considered a risk to global food security 

(Cooke et al., 2012). Due to this severe economic impact many efforts have been put into planning 

agronomic strategies to raise potato yields by delaying the infection and decelerating the epidemic, 

implementing new cultural practices, treating seed tubers to improve the crop and growing resistant 

varieties (Haverkort et al., 2008). Yields are usually low when an early attack occurs, therefore national 

measures had been taken (i.e. in the Netherlands), which force to kill the potato vine when more than 

7% of the leaf surface is affected (Lammerts van Bueren et al., 2008).  

 

The factors that contribute to the severity of the damage are varying but the main one is the intensity 

and speed with which this pathogen destroys large areas of the crop and the relationship between 

genetically resistant/susceptible cultivars to the different stages of the infection through which these 

crops are exposed (Fabre et al., 2012). According to Bock et al. (2010),  it is crucial in plant disease 

assessment domain to describe concepts and their interpretation at the time to estimate or measure 

plant disease symptoms. Therefore, within this study disease severity is define as the area of the 

sampling unit (SU) showing symptoms of disease which is expressed as a percentage (Bock et al., 2010; 

European and Mediterranean Plant Protection Organization [EPPO], 2008). 

  

2.2 SYMPTOMS AND LIFE CYCLE OF LATE BLIGHT DISEASE 
 

One of the first symptoms observed in the field are small spots on the lower leaves, which vary in color 

from green light to dark, which may be irregular or circular, soaked with water. Under conditions of 

high humidity, the spots enlarge rapidly and take on a brown color and well-defined edges and the 

growth of the sporangiophores and sporangia of the pathogen is observed. The part closest to the 

ground will wither. The speed with which this oomycete destroys the fields is extremely fast if the 
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humidity conditions are optimal (Fry, 2008). However, in dry conditions the infection rate decreases, 

the existing lesions stop growing, blacken and the sporangiophores are not observed, however if the 

humidity increases the pathogen is reactivated, developing the disease rapidly. It is important to point 

out that the tubers can present infection because of the spores that fall to the ground, these present 

red to violet depressions that can penetrate the tissue and continue to grow even after the harvest, 

leading to a rot of the tubers (Agrios, 2005). 

 

The lifecycle of Phytophthora infestans comprises of three sub-cycles (Figure 1). The first cycle starts 

at the infected plant, which will generate sporangia with spores on the leaf surface and produced 

spores will germinate on another plant. This cycle takes about 5 days to complete if the growing 

conditions are optimal. This optimal condition generate spores that germinate in 2 or 3 hours at 20°C 

and high humidity causing the infection in the potato plant (Skelsey et al., 2009). The second cycle 

occurs in the plant tuber, causing the sporulation in young plants and spores that germinate in another 

plant. 

  

 
Figure 1. Disease cycle of Phytophthora infestans (source: Schumann and D’Arcy 2000) 

 

The third cycle goes from an infected plant to a sexual reproduction where an oospore is generated 

creating a sporangium with a spore that will germinate in another plant, this cycle can occur only if 

both mating type of the pathogen (A1 and A2) are present. This last cycle causes the disease in the 

growing season (Fry, 2008) due to spores remain in good conditions after the winter. Independently 

of the cycle both produce spores and sporangia and infect plants by germination through a leaf 

colonization causing the lesions (Wiik, 2014). 

 

2.3 REMOTE SENSING AND DISEASE ASSESSMENT 
 

Remote sensing is defined as a science of obtaining information through the detection of the physical 

characteristics of an area or object, by measuring its reflected and emitted radiation at a distance from 

it (Campbell, 2002). This characteristic allowed the exploration of the use of remote sensing in many 

domains during the past decades. The importance of spatial and temporal information specially in the 
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agricultural sector was realized when the first aerial photograph was used for mapping soil resources 

(Seelan et al., 2003). 

  

One of the main advantages besides the capability to acquire vast amounts of spectral information 

that can be related to the physical and physiological characteristic of vegetation, is that remote 

sensing imagery nowadays can be acquired through a range of different platforms which makes them 

a perfect tool to timely monitor vast areas of agricultural landscapes (Lillesand et al., 2015; Sankaran 

et al., 2010). 

    

The basic principle behind the use of the spectral information is that plants absorb and reflect light 

based on their structure and plant pigments. The reflectance in the different wavelengths can be 

related to the leaf pigments (visible - VIS), cell structure or biomass (near-infrared - NIR) and water 

content (shortwave infrared - SWIR) (Figure 2) (Clevers & Kooistra, 2012). Therefore each plant has a 

unique spectral signature based on their health status which allows the assessment of stress factors 

and their impacts over vegetation that could cause the reduction of crop production (Muhammed, 

2005; Rahman et al., 2017; Ustin et al., 2004). 

 

 
Figure 2. Typical spectral response characteristics of green vegetation  (Humboldt State, 2017) 

 

As described previously, a plant which is infected, reacts with protection mechanisms, and this 

physiological reaction caused by disease, could lead to suboptimal growth,  producing a decrease of 

the spectral reflectance values in the near infrared (NIR) range, due to the decreasing chlorophyll 

content and internal structure changes (Martinelli et al., 2015; Zhang et al., 2003). Thus, the use of 

remote sensing as a key technology for real-time detection and diagnosis of crop status is being 

implement by the precision crop community and researchers worldwide (Behmann et al., 2014). 

 

Hyperspectral images also known as hypercubes consist in a three-dimensional data sets that holds 

within light intensity measurements (Dale et al., 2013). Hyperspectral imaging in combination with 

UAV platforms offer high potential as a non-invasive, timely, diagnostic tool for disease detection, 

classification, quantification and prediction (Mahlein et al., 2013). This innovative sensor technology 

may allow an objective and automatic assessment of plant disease severity in combination with 
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advance data analysis methods that can process the vast amount of data that can be acquired 

(Mahlein et al., 2012). 

   

In most of the studies where hyperspectral imaging is used, the spectral signature of plants affected 

by a disease is compared to the spectral response of healthy plants. For example, Rumpf et al. (2010) 

discriminated three different disease from non-disease sugar beet leaves using spectral vegetation 

indices and spectral values from a non-imaging spectroradiometer. Wang et al. (2008) were capable 

to predict Phytophthora infestans infections on a tomato plants using regions of hyperspectral 

signatures, and Bravo et al. (2003) used field hyperspectral images for an early detection of yellow 

rust in wheat. 

 

A recent study explored the effects of disease symptoms over automatic prediction methods and 

estimating disease severity. As the disease severity increased, Ashourloo et al. (2016) compared the 

scattering patterns of spectral vegetation indices (SVI) with advanced methods using the full spectrum. 

Their results showed that disease symptoms adversely affected the performance of SVI in estimating 

disease severity, while machine learning techniques applied were less affected by disease symptoms 

(Ashourloo et al., 2016). Zhang et al. (2003) studied late blight in tomatoes and evaluate the capability 

of hyperspectral imagery to monitor crop disease at field scale. Within the research, they found that 

NIR spectral region was much more valuable than VIS range to detect disease. 

 

Therefore, based on the data that can be acquired by hyperspectral sensors, advance techniques to 

analyze data, and the use of geographic information systems (GIS),  reliable and accurate estimates of 

disease can be calculated to generate application maps that can improve the management of 

agricultural fields (Mahlein et al., 2012). 

 

2.4 MACHINE LEARNING AND DISEASE ASSESSMENT 
 

Due the fact that hyperspectral technology provides the capability to acquired large amount of data, 

complex analyzes were explored to find hidden regularities in the growing volumes of data that could 

contribute to the establishment of suitable solutions to the crop management community 

(Franceschini et al., 2017; Jiang et al., 2012).  

 

Machine learning is defined as a multidisciplinary approach to data analysis. This data mining 

technique also known as predictive analysis or statistical learning, is a research field that falls in the 

intersection of statistics, computer science and artificial intelligence (Mitchell, 2006; Mucherino et al., 

2009; Muller & Guido, 2016). Nowadays, the extensive use in real-world problems such as speech 

recognition, computer vision, and many others data-intensive sciences, is due the fact that machine 

learning methods serve as a support for the scientific discovery process (Mitchell, 2006). 

 

In addition, machine learning techniques aim to discover patterns by looking at a combination of 

features instead of analyzing each feature separately (Behmann et al., 2015; Singh et al., 2016).  There 

are two main categories of machine learning which depends on if target variables are labeled or not. 

Unsupervised learning tries to find unknown patterns from unlabeled training data. In contrast, when 

target variables of the training data are labeled, the identification of patterns are related to the label 
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(Behmann et al., 2015).  The key ability of this methods is their capability to generalize patterns from 

available data, which allows to develop robust and flexible prediction models (Singh et al., 2016). 

 

Even though, there are very few reported activities on the use of advance methods for the prediction 

of plant stresses (Singh et al., 2016), many applications of machine learning within plant disease 

assessment domain reviewed for this study involve tasks that can be implement through a supervised 

learning set up, where target variables admit only discrete values (Maglogiannis, 2007). The success 

of classification learning rely on the quality of the data provided as input, the selection of the 

algorithm, and the metric used to evaluate performances among others (Hall, 1999). 

 

Many authors have been explored different machine learning approaches to provide new insights into 

the complex host-pathogen systems using hyperspectral information. For instance, Rahman et al. 

(2017) compared different machine learning algorithms like support vector machines (SVM), random 

forest (RF) and multilayer perceptron (MLP) to classify healthy and non-healthy plant leaves of 

sorghum, citrus and cabbage. They concluded that the use of color-based features, together with the 

use of a non-parametric classifier such as the random forest, provided a good combination of 

procedures to distinguish between healthy and infected plant leaves. Additionally, Garcia-Ruiz et al. 

(2013), compared two different aerial imaging platforms for the identification of Huanglongbing (HLB) 

or citrus disease. Both UAV, and aircraft based spectral features were used with different classification 

algorithms, such as linear discriminant analysis, quadratic discriminant analysis, linear and non-linear 

support vector machines. In this study, authors found accuracies in the range of 67 % - 85%, where a 

kernelized support vector machines outperformed the other classifiers. 

 

Other authors like Zhang et al. (2003), explore the use of several techniques that includes the 

minimum noise fraction, pure pixels endmember selection and spectral angle mapping classifier for 

the identification of late blight disease in a tomato crop. The concluded that the use of spectra-based 

classification approach has the potential to identify crop disease. Moreover, Maldonado et al. (2013) 

explored the use of different feature selection techniques and compared them using a support vector 

machine learning algorithm. Their proposed approach, based on successive holdout steps, reached a 

better performance, in comparison with the conventional recursive feature elimination technique.  

 

Most of the literature reviewed for this study, suggest that the capability of machine learning to 

retrieve information from the full spectrum provided by hyperspectral technology allows to explore 

the effects of disease over vegetation and therefore it implementation to improve plant disease 

assessments strategies that can be use by the precision crop community.
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3 MATERIALS 
 

3.1 STUDY AREA 
 

The dataset used in this study was acquired on eight experimental plots cultivated with potato, during 

the growing season of 2016. These plots were located within a strip cropping experiment (51.9917°N, 

5.66332°E; WGS84) started in 2014, at the Droevendaal experimental farm of the Wageningen 

University, The Netherlands. The annual precipitation in Wageningen ranges from 765 ± 130 mm and 

the annual evapotranspiration is on average 525 ± 50 mm; the average annual air temperature is 

around 11°C (Surmann, 2015). 

 

 
Figure 3. Experimental plots arrangement during 2016 growing season (True color composite). Small 
plots (in pale blue) and large plots (in black). Right image describes Sampling Units (in orange) within 
the first two small plots. 
 

3.2 DATA DESCRIPTION 
 

This section mainly describes all the procedures conducted to acquire the data used to build the final 

dataset. It contains a brief description of the field experimental design, the methodology used to 

assess late blight disease, the sensors used to acquire spectral information, and the selection criteria 

of the ground assessments and UAV flight data used in this study. 

 

3.2.1 Experimental design in growing season 2016 

 

Plots were arranged in strips along the experimental site and measured 3 m x 10 m (small plots) or 6 

m x 10 m (large plots) (Figure 3). Buffer areas, measuring 3 m x 5 m or 6 m x 5 m, were placed before 

and after each plot, in the same strip, to mitigate border effects along the experiment (Figure 3). Two 

different cultivation methods were compared: (a) plots in which a variety mixture of three different 
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cultivars, with different degrees of resistance (from low to high) to late blight, were iterated in each 

crop row, referred as mixed crop system; and (b) plots cultivated with only one potato variety 

considered susceptible to late blight, named non-mixed system. The experiment followed a 

generalized randomized block design, with three blocks and two replicates of each treatment (i.e., 

cultivation methods) in each block (Figure 3), although only the first two blocks of the trial (eight plots) 

were followed over the season. 

 

3.2.2 Ground disease assessment during growing season 2016 

 

Late blight incidence and severity was assessed at a given number of sampling units (SU) per plot (i.e., 

ten SU for smaller plots and only one SU for larger plots), each one measuring 0.75 by 1 m (Figure 3) 

at regular intervals (i.e., from 3 to 5 days between assessments) after the disease was first detected 

in the field (Figure 4). Disease assessments consisted of visual evaluations according to methodology 

described by the European and Mediterranean Plant Protection Organization (European and 

Mediterranean Plant Protection Organization [EPPO], 2008) (Appendix B).  

 

 
Figure 4. Data acquisition during the growing season 2016. Ground and UAV flight assessments used 
within this study (red squares). In circle the UAV-HYMSY acquisition is indicated. 
 

For this study, data available from ground assessments [66,74,78 and 86 days after planting (DAP)] 

were used (Figure 4). These assessments were selected based on the availability of UAV flight 

assessment spectral data from the same date or couple of days before.   

 

3.2.3 UAV-VHR acquisition assessments  

 

A lightweight hyperspectral frame camera (Rikola Ltd., Oulu, Finland) based on a Fabry-Perot 

interferometer (FPI) (Honkavaara et al., 2013; Roosjen et al., 2017) was used to acquire data in the 

study area during the 2016 season. The camera was set to register 16 spectral bands over the interval 

between 600 and 900 nm, with full width at half maximum (FWHM) varying between 10 and 20 nm. 

Due to intrinsic sensor characteristics, images corresponding to different wavelengths were not 

registered at the same time, since changes in the wavelength measured depend on internal 

mechanical adjustment of the system. 
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Along the field experiment on growing season 2016, seven acquisition flights were conducted as 

shown in Figure 4. Only flights acquisitions with ground assessment data available were used 

[64,73,78 and 86 DAP] (Figure 4). Although the Rikola camera, described above, was used in most 

of the flights during the growing season, it is important to mention that on acquisition DAP [86 DAP], 

the Hyperspectral Mapping System (HYMSY) was used instead. 

  

The HYMSY used on acquisition 6 consists of a custom UAV-based pushbroom imaging system. 

Comprises a custom spectrometer with a range 450-950nm, FWHM 9nm (PhotonFocus SM2-D1312 

camera – PhotonFocus AG, Lachen, SZ, Switzerland – with a Specim ImSpector V10 2/3 spectrograph 

– Specim, Spectral Imaging Ltd, Oulu, Finland), a photogrammetric camera (Panasonic GX1 16 MP – 

Panasonic Corp., Osaka, Japan – with 14 mm pancake lens), an integrated GPS and inertial navigation 

system (INS) unit (XSens MTi-G-700 – Xsens Technologies BV, Enschede, Netherlands), together with 

synchronization and data sink elements (Franceschini et al., 2017; Suomalainen et al., 2014). Bands 

wavelength from HYMSY where selected base on the bands wavelengths used with the Rikola camera 

(Table 2).
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4 METHODOLOGY 
 

The proposed methodology for this study is depicted in Figure 5. It can be divided in two main stages: 

a) the data preparation and b) the modelling disease assessment. These stages are described in detail 

in the following sections. 

 

 

 

Figure 5. Flowchart of the research approach to meet the proposed research objectives. 
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4.1 DATA PREPARATION  
 

In most field work experiments data is generally incomplete and is likely to contain redundant 

information or errors (Alpaydin, 2014). Therefore,  preprocessing as an important phase in data mining 

process aims to transform raw data into an understandable format to improve the performance of 

models that can be sensitive to the predictors (Ye, 2015). 

 

Data preparation is commonly described as a cumbersome and tedious process, even though it 

implementation before data analysis is considered a crucial step (Rahman et al., 2017). In this 

research, data preparation consisted mainly of a group of pre-processing steps together with some 

data exploration techniques that aimed to prepare, build and understand the final dataset used as 

input for the development and analysis of the selected model.  

 

This stage is divided in two main activities. The first one so-called preprocessing consisted in a series 

of procedures that aimed to prepare and combine different datasets acquired along the field 

experiment into a single dataset which was used as input of the selected disease model. Within 

preprocessing phase image pre-processing, spectral information extraction at SU scale, background 

signal exclusion, disease severity calculation at sampling unit (SU) and labeling of different disease 

classes are considered as the main activities performed to generate the desired dataset. 

 

Once the desired dataset was obtained from the preprocessing stage, data exploration analysis (EDA) 

took place. This phase aimed to gain the necessary confidence in the dataset before deploying 

machine learning algorithms. EDA techniques used in this study helped to maximize insight into the 

dataset, therefore is considered a key activity of this study.   

 

Finally, sampling of the final dataset was carried out. This stage is considered as a crucial step that 

allowed to evaluate the generalization capability and performance of the machine learning model. 

Spatial location of experimental plots was considered in the proposed sampling method used within 

this study.   

  

4.1.1 Preprocessing  

 

Hyperspectral image preprocessing was already conducted before this research (Appendix A). Two 

spectral bands (B5= 682.31nm, B7= 696.66nm) were excluded due to technical problems during flight 

acquisition. Therefore, a total of 14 bands acquired with the Rikola camera (Table 1)  were selected as 

features to build the input dataset for the analysis. As described in section 3.2.3, assessment 6 [86 

DAP ] (Figure 4) used the HYMSY system, where the selection of bands was based on bands acquired 

with the Rikola camera (Table 2). After the band selection procedure, sampling unit polygon layers 

were used to extract pixels for each acquisition image since SU was used as the scale at which this 

study focused on. 
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Table 1. Rikola spectral band definitions selected for this study 

Band Wavelength (nm) Band Wavelength (nm) 

B0 609.08 B9 735.17 

B1 615.42 B10 764.28 

B2 624.96 B11 793.58 

B3 631.33 B12 832.95 

B4 663.35 B13 862.71 

B6 692.27 B14 872.67 

B8 715.87 B15 887.65 

 

 

The availability of ground assessment data allowed to calculate disease severity relating the counting 

and area of lesions per plant caused by late blight disease with the percentage of disease severity at 

SU scale accordingly to the key assessment of (European and Mediterranean Plant Protection 

Organization [EPPO], 2008) (Appendix B). Hence, sampling units were labeled according to ranges of 

disease severities selected for this study as shown in Table 3. These ranges were selected based on 

Dutch late blight regulations which forces every potato grower to kill the haulm when 7% of leaf 

surface is visually affected (Hoofdproductschap Akkerbouw, 2003; Lammerts van Bueren et al., 2008). 

 

Table 2. HYMSY spectral bands selected based on Rikola camera acquisitions 

Band Wavelength (nm) Band Wavelength (nm) 

B32 610 B57 735 

B33 615 B63 765 

B35 625 B69 795 

B36 630 B77 835 

B43 665 B82 860 

B48 690 B84 870 

B53 715 B88 890 

                                                                                           

Table 3. Disease severity range and class label 

% Disease Severity Class Name Class Label 

0 None Disease 0 

0 – 7 Up to 7% 1 

> 7 Above 7% 2 

                                                                                          

Once the datasets of disease severity and spectral information at SU were obtained from previous 

steps, both datasets were merged based on the assessment date, plot number, plot size and sampling 

unit information of each observation. As a result, a total of 336 sampling units distributed in plots 

along the selected assessments dates were obtained (Table 4) 
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Table 4. Total of sampling units (SU) per assessment 
 

 

 

 

 

 

 

 

 

 

 

 

 

To include in the analysis pixels covering vegetation regions, a simple NDVI (Normalized difference 

vegetation index) based segmentation approach was used, where a NDVI threshold for each 

assessment was selected as optimal to exclude soil (non-vegetation) and excessive unwanted non-

canopy pixels from each SU evaluated for this study. 

 

As the first step of the NDVI based segmentation approach proposed to exclude background signal, 

calculation of the NDVI (Equation 1) for each assessment date was performed, followed by a manual 

selection of a NDVI threshold derived from histogram of NDVI values and visual assessment. 

 

NDVI = 
𝑁𝑖𝑟793.586nm− 𝑅663.353nm

𝑁𝑖𝑟793.586nm+ 𝑅663.353nm
  (Equation 1) 

 

 
Figure 6. Normalized difference vegetation index (NDVI) histogram for Assessment 1. Figure (a) depict 
NDVI distribution and threshold selected (red line). Figure (b) NDVI-threshold selected values 
distribution (vegetation). 
 

After calculation of the NDVI (Equation 1), histograms of NDVI distribution together with NDVI 

percentiles calculation for each assessment were used to select an optimal threshold to exclude 

background signal as described above. As an example of the outputs obtained within this stage, 

distribution of NDVI values for all sampling units (SU) evaluated on assessment 1 can be observed in 

Figure 6a. After the selection of the NDVI threshold, a new distribution of NDVI values is shown in 

Figure 6b, where pixels related to non-vegetation regions were removed. 

  
Plot 
size 

Number of 
Plots  

Number of SU 
evaluated per Plot 

Total of 
SU 

Assessment 1 
small 8 10 80 

large 8 1 8 

Assessment 3 
small 8 10 80 

large 0 1 0 

Assessment 4 
small 8 10 80 

large 8 1 8 

Assessment 6 
small 8 10 80 

large 0 1 0 

Total    48   336 
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The NDVI threshold was then evaluated with a visual assessment of images to determine if exclusion 

of soil and unwanted pixels was successfully accomplished (Figure 7).  The threshold value selected 

for this example was (NDVI > 0.81) (Table 5).  

 

 
Figure 7.Background removal visual evaluation for Assessment 1. Figure (a) False color composite 
image. Figure (b) NDVI grey-scale image. Figure (c) NDVI- Assessment 1 threshold mask. Yellow 
squares depict sampling units (SU). 
 

The background removal procedure was applied for each assessment, and as a result Table 5 shows 

the NDVI threshold used for each one. It can also be observed that NDVI thresholds decrease over 

time, this can be attributed to both physiological impact of late blight disease over crop health status 

and natural vegetation senescence, indicating a possible reduction in canopy structure. 

 

Table 5. NDVI thresholds selected per assessment 

Assessment NDVI threshold 

Assessment 1 – DAP 66 > 0.81 

Assessment 3 – DAP 74 > 0.80 

Assessment 4 – DAP 78 > 0.76 

Assessment 6 – DAP 86 > 0.69 

 

As mentioned previously, this study was focused to work at sampling unit scale described in section 

3.2.2. Therefore, after background exclusion an average of all pixels within each SU for all features 

were calculated and related to the disease severity label. In addition, it was proposed to calculate and 

add as features the standard deviation, maximum and minimum value of features to capture variation 

of spectral information of each sample unit. 

 

Finally, after each step of this stage was performed a total of 320 sampling units (SU) with 17 features 

constituted the final dataset (Appendix D). This dataset was the one explored and used as input for 

the selected predictive model. 

  

4.1.2 Exploratory data analysis 

 

As part of data preparation, exploratory data analysis (EDA) described as an approach to summarize 

the main characteristics of the data through visualization was performed (Morgenthaler, 2009). This 

stage aimed to gain the necessary confidence in the dataset before deploying machine learning 
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algorithms, maximize insight into the dataset, identify the most important features, determine 

relationships among features, inspect class balance distribution of target variables among others (Cox, 

2017; Muller & Guido, 2016). 

 

In this study, the exploratory data analysis of the disease dataset started with the inspection of the 

disease severity evolution along ground disease assessments. Distribution of disease severity per 

assessment, disease class balance distribution and the number of sampling per treatment system 

affected are considered as the main outputs that helped to understand the data structure of the 

disease dataset. 

 

In addition, as part of EDA spectral features acquired were also explored. Spectral responses of mixed 

and non-mixed affected crops were analyzed to observed if variation of spectral signatures could be 

related to disease severity and crop susceptibility, which could provide discriminatory information. As 

part of the spectral feature analysis, a correlation matrix of features was elaborated to visualize the 

presence of highly correlated features that can have a negative impact on the model performance.  

 

4.1.3 Sampling 

 

As mentioned in section 2.4, one of the main requirements of machine learning is to build models with 

high generalization capabilities (Reitermanová, 2010). Using the same data to build and evaluate the 

model has been recognized as generating over optimistic outcomes, mainly because the model can 

remember the training dataset, therefore always predict the correct target in the training dataset 

(Faraway, 2016; Muller & Guido, 2016). 

 

There are several sampling methods which were developed for various types of datasets (Picard & 

Berk, 2017). These sampling methods aims to contribute in the development of models with a high 

ability to generalize the extracted knowledge from the learning process into new unseen data (May et 

al., 2010; Reitermanová, 2010). 

 

Due the size of the disease dataset, part of the data was used to train and validate the supervised 

machine learning model, called training data or training set, while the rest of the data was used to 

evaluate the performance of the selected model, called test data or test set. In addition, spatial 

context of experimental plots (Figure 8) was considered to split the dataset, this criterion was 

proposed to ensure that the model could be evaluated with a complete unseen data avoiding 

collinearity of feature information between training and test set. 
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Figure 8. Map of sampling method used to split dataset 

 

As a result, around 60% of the dataset (194 SU) were used as training dataset corresponding to all 

sampling units evaluated along the experiment within plots 1 through 5 , this includes small and large 

plots (Figure 8), while the remaining 126 SU constituted the test set used to evaluate the model 

performance. 

   

4.2 MODELLING DISEASE ASSESSMENT  
 

This stage was mainly focused in the selection, implementation and evaluation of the model. 

Therefore, it included steps like, scaling of data, dimensionality reduction, hyper-parameter 

optimization, training and evaluation of the performance of the model. 

 

4.2.1 Support Vector Machines (SVM) 

 

Support Vector Machine learning algorithm (SVM) is one of the most powerful classification technique 

based on a structural risk minimization derived from the statistical learning theory developed by 

Vapnik and collaborators (Härdle, 2011). SVMs were first successfully applied to classification tasks 

where the main objective was focused to find hidden patterns within data with regard to label classes 

(Behmann et al., 2015; Härdle, 2011; Rumpf et al., 2010). This algorithm can be effective with both 

linear and non-linear discrimination function to separate different classes (Sathyanarayana & 

Amarappa, 2014). In this section, a linear and non-linear extension of SVM which were implemented 

and evaluated in this study, is described in detail.  

 

4.2.1.1 Linear SVM 

 

To describe the linear SVMs, an assumption that the data is linearly separable is needed. The model 

of an SVM basically consist on a subset of samples called support vectors, together they define a 
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hyperplane that separates the classes in the feature space, while it position is defined by the principle 

of maximum margin (Sathyanarayana & Amarappa, 2014). 

  

To describe a linear function, it is better to start with a binary classification task. Let for example 

denote 𝑋 as the input variables and 𝑌 be the space of output variables. The basic idea here is to find 

a linear function of the inputs 𝑥 ∈ 𝑋  such that 𝑓(𝑥) < 0  whenever label 𝑌 = −1 and 𝑓(𝑥)  ≥ 0 

otherwise. This can be expressed by the decision function in the space 𝑋 as: 

 

𝑓 (𝑥) =  𝑠𝑔𝑛 (𝑤𝑇 𝑥) + 𝑏   (Equation 2) 

 

Where 𝑤⃗⃗  is the normal vector and the bias 𝑏 (Equation 2) (Figure 9). Depending on the side of the 

hyperplane where the sample falls in, the sign of the Equation 2 will be assigned. As explained by 

Rumpf et al. (2010), the optimal hyperplane is the one that maximizes the distance between the 

hyperplane and the margins, where margin is defined as the minimal Euclidean distance between any 

training sample and the separating hyperplane (Figure 9). The training samples with the minimal 

distance to the hyperplane are called support vector which define the hyperplane (Abe, 2010; Härdle, 

2011; Rumpf et al., 2010). 

 
Figure 9. Linear SVM classifier is defined by the normal vector w of a hyperplane (solid line) and an 
offset b. Margins (dashed lines) of a linear classifier is the minimal distance of any training point to the 
hyperplane. Circles with red outline are the support vectors for each class. 
 

Since the samples are assumed to be linearly separable, any 𝑓 can be used to split the data into a 

canonical hyperplane, requiring the scaling of 𝑤 and adjusting the threshold 𝑏 to be such that the 

closest points to the hyperplane satisfy Equation 3. Here the norm of 𝑤⃗⃗   is equal to the inverse of 

the distance of the closest samples of each class to the hyperplane. 

 

|〈𝑤⃗⃗ , 𝑥 𝑖〉 + 𝑏| = 1  (Equation 3) 
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Hence, the optimal hyperplane can be formulated as a quadratic optimization problem as can be 

observed in Equation 4: 

 

𝑚𝑖𝑛
𝑤 ∈  𝑅𝑚 , 𝑏 ∈  ℝ 

      𝜏(𝑤⃗⃗ ) =  
1

2
   |𝑤⃗⃗ | 2 (Equation 4) 

 

Constrained to                            𝑦𝑖  . (〈𝑤⃗⃗ , 𝑥 〉 + 𝑏)  ≥ 1     ∀𝑖= 1,…… , 𝑛 

 

This constraint guarantees that the function 𝑓(𝑥 𝑖) obtain 1 for each 𝑦𝑖  ∈  {+1} and -1 for each  𝑦𝑖  ∈

 {−1} , so both classes can be separate (Rumpf et al., 2010; Sathyanarayana & Amarappa, 2014). 

Instead of the optimization problem described above, SVM can be formulated to learn a linear 

classifier by solving an optimization problem introducing the Lagrange multipliers. 

 

4.2.1.2 Non-linear SVM 

 

In contrast to linear SVM assumptions, most real-world dataset will not be linearly separable. Thus, a 

kernel function is used to extend the linear SVM to handle overlapping classes and non-linear 

discriminant functions (Härdle, 2011; Mukherjee & Pal, 2005). 

  

The idea behind this so-called kernel methods is to preprocess the data by some non-linear mapping, 

which constructs hyperplanes in a high dimensional space. The main constraint with explicitly using 

the mapping to construct a feature space is that the resulting space can be extremely high-dimensional 

(Härdle, 2011). 

  

Therefore, the kernel trick which maps inputs into a high dimensional space, can be applied since all 

feature vectors only occurs in dot products (Equation 5) (Rumpf et al., 2010). The kernel trick contains 

an implicit mapping in the feature space without explicitly computing the mapping space, represented 

by 𝜑 , and can still solve the problem in a huge feature space (Härdle, 2011; Mukherjee & Pal, 2005; 

Rumpf et al., 2010). The (𝑥 , 𝑥 𝑖) so called dot product, can then substitute by the kernel, as shown in 

the Equation 5. 

 

𝑘(𝑥 , 𝑥 𝑖) = (𝜑(𝑥 ). 𝜑(𝑥 𝑖))(Equation 5) 

 

Radial Basis Function Kernel (RBF) 

 

Even though the most appropriate kernel depends mainly on the problem at hand for this study the 

Gaussian kernel as an example of Radial basis function kernel was selected. 

 

𝑘(𝑥 , 𝑥 𝑖) = 𝑒𝑥𝑝(−
 |𝑥 +𝑥 𝑖|

2

2𝜎2
)(Equation 6) 

The support vector 𝑥   (Equation 6) will be the center of the RBF and 𝜎 will determine the area of 

influence this support vector has over the data space. A larger value of  𝜎  will give a smoother decision 

surface and more regular decision boundary (Girma, 2009; Rumpf et al., 2010). A large 𝜎 will also allow 

a support vector to have a strong influence over a larger area (Girma, 2009).  
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4.2.1.3 Multi-class classification 

 

Most of the supervised classification methods were developed mainly for binary classification tasks, 

but some of them can be extended to handle multi-class classification effectively. For this study the 

one-versus-rest (OVR) technique was selected. For this extension, a binary model is trained for each 

class which tries to separate that class from all the other classes, resulting in as many binary models 

as there are classes (Muller & Guido, 2016). The binary classifier that has the highest score on its class 

on a test point is the class label that is returned as the prediction. 

 

4.2.2 Data transformation - Scaling of data 

 

Many machine learning algorithms works properly when the range of features are scaled. Scaling the 

input data before applying SVM is considered a common practice as a preprocessing step, because 

this algorithm tries to find the best separating hyperplane that maximizes between the hyperplane 

and the margins, therefore, if one of the features has greater numerical ranges, the distance could be 

influenced by this specific feature (Hsu & Chang, 2008; Muller & Guido, 2016). 

 

Feature standardization ensures that values of each feature have zero mean and the variance is 1, 

bringing all features to the same magnitude, hence it refers to centering the distribution of the data 

(Muller & Guido, 2016). It is important to consider, that it is crucial to apply the same transformation 

method to scale both the training and test set, in order to have the desired effect of scaling the data 

(Hsu & Chang, 2008; Muller & Guido, 2016). 

 

In this study, the StandardScaler tool from the scikit-learn package was used for this procedure. 

According to Muller and Guido (2016), this function ensures that for each feature the mean is 0 and 

unit-variance. 

  

4.2.3 Dimensionality reduction  

 

The amount of information provided by hyperspectral imagery enhance the ability to classify and 

recognize materials (Muller & Guido, 2016; Preet et al., 2015). On the other hand, high dimensionality 

has several obstacles that need to be considered. For example, it has been observed that highly 

correlated features have a negative impact on classification performance (Preet et al., 2015). 

 

The principal component analysis (PCA) is an unsupervised algorithm, described as one of the most 

common feature selection techniques which involves linear transformation of the original data. This 

method rotates the data such that the generated features so-called components are statistically 

uncorrelated keeping the maximum amount of information (Gilbertson & van Niekerk, 2017; Muller 

& Guido, 2016; Preet et al., 2015). 

 

Even though the idea to explore the full potential of spectral information acquired during UAV flights 

on 2016 season is proposed in this study, the spectral information along the spectrum regions used 

from RED to NIR are highly correlated, feature correlation will be covered in section 5.1.2.2. Therefore, 

as a preprocessing step before training the models, it was tested if applying a principal component 
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analysis (PCA) as a feature selection technique, improved the performance of the selected models. 

Scikit-learn package has the PCA tool that was used in this study. 

 

4.2.4 Cross-validation 

 

Due the amount of labeled data used to feed the selected models, a cross-validation technique was 

used to tune the parameters to achieve the best performance. Cross-validation is defined as a 

statistical method of evaluating and comparing learning algorithms generalization performance by 

splitting data into a training and test set (Muller & Guido, 2016). 

  

In cross-validation, the dataset is divided repeatedly, therefore several models need to be trained. 

This technique ensures that training and validation sets cross-over such that each sample is validated 

against (Refaeilzadeh et al., 2009). Stratified k-Fold cross-validation is implemented in scikit-learn for 

classification task by default, where the data is divided in such way that the proportions between 

classes remains the same in each fold as they are in the whole dataset (Muller & Guido, 2016; 

Refaeilzadeh et al., 2009). 

 

4.2.5 Hyper parameter optimization 

 

Often in machine learning, hyperparameter optimization also known as model selection, is described 

as a step that aims to improve model’s generalization performance by choosing a set of parameters 

with the objective of optimizing a measure of the algorithm on a validation dataset (Bergstra & Yoshua, 

2012). For this stage cross validation described in section 4.2.4, was used to estimate the 

generalization performance. 

 

The use of hyperparameter optimization to configure learning algorithms can have varying effects on 

the resulting model and its performance (Claesen & De Moor, 2015). Therefore, several approaches 

are being tested in the research community specially when the number of hyperparameters is large 

(Bergstra & Yoshua, 2012; Claesen & De Moor, 2015). 

 

Finding values of the important parameters is commonly performed manually , via rules-of-thumb or 

by testing of hyperparameters on a grid (Bergstra & Yoshua, 2012; Muller & Guido, 2016). Grid search 

requires to select a set of values for each parameter, then it will test all possible combination of these 

values until the best combination is achieved and one model reaches the best performance according 

to the performance metric selected  (Muller & Guido, 2016). Because it considered as a common task, 

scikit-learn package provides a GridSearchCV class that was used in this study. 

 

Since this study was focused to explore which type of SVM was more suitable to classify and generalize 

late blight disease, several parameters (Table 6) were combined and evaluated to find the best 

combination, based on the balanced accuracy metric to test the performance of each trained model. 

This procedure allowed to evaluate which kernel (linear-non-linear) was able to better classify and 

generalize the target classes. As mentioned in section 4.2.3, a PCA preprocessing step was also 

included, to evaluate if its inclusion contributed to the performance of the best model. 
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Table 6 . Grid of parameters used for hyper parameter tuning 

Preprocessing 
N˚ of 

components 
Algorithm Kernel 

Decision 
function 

Class 
Weight 

C [range] 
Gamma 
[range] 

PCA 

Yes [1-6] 

SVM 

Linear 

OVR 

Balanced [0.001-1000] --- 

None [0.001-1000] --- 

RBF 

Balanced [0.001-1000] [0.001-1000] 

None [0.001-1000] [0.001-1000] 

No --- 

Linear 

Balanced [0.001-1000] --- 

None [0.001-1000] --- 

RBF 

Balanced [0.001-1000] [0.001-1000] 

None [0.001-1000] [0.001-1000] 

--- Not applicable 

 

4.2.6 Evaluation metrics 

 

The choice of an appropriate evaluation metric is highly task-specific, hence selection should be based 

on the problem domain and objectives (Mokhtarian, 2017). Performance metric plays a fundamental 

role in assessing the quality of learning techniques and  to achieve the optimal algorithm during 

selection and implementation of the model either for classification or prediction tasks (Ferri et al., 

2009; Hossin & Sulaiman, 2015). 

 

Hossin & Sulaiman (2015), states that “evaluation metrics are mainly employed in three different 

evaluation applications during the modeling process”. Firstly, as an evaluator for the selection of the 

model. Secondly, commonly used to measure the performance of the trained classifier when tested 

with unseen data. And thirdly, to identify and select the best solution among all generate solutions 

during training. In that sense, a series of metrics were used within this study along different stages of 

model development and implementation that will be explained below. 
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4.2.6.1 Confusion matrix 

 

In machine learning, one of the most comprehensive ways to evaluate a classification task is by using 

a confusion matrix (Bekkar et al., 2013; Muller & Guido, 2016). As an example, for a binary 

classification task, the output of confusion matrix is a two-by-two matrix as shown in Table 7 , where 

rows correspond to the true classes and the columns to the predicted classes. Performance of 

classification algorithms is evaluated using data within this matrix, where entries on the main diagonal 

correspond to correct classifications, while off-diagonal entries correspond to mistakenly 

classifications (Muller & Guido, 2016).  

 

Table 7. Confusion matrix for binary classification task 

 Predicted Positive Predicted Negative 

Actual Positive TP (number of True Positive) FN (number of False Negative) 

Actual Negative FP (number of False Negative) TN (number of True Negatives) 

 

4.2.6.2 Overall accuracy metric 

 

The accuracy metric is known as the most common and simplest performance metric for a classifier 

evaluation, it basically evaluates the overall effectiveness of an algorithm (Bekkar et al., 2013). This 

metric is defined as the degree of correct classification of a model and it is calculated from the principal 

diagonal entries of the confusion matrix as observed in Equation 5, where the overall accuracy is the 

proportion of correctly classified observations divided by the total number of observations (Ferri et 

al., 2009; Mosley, 2013). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (Equation 5) 

 

4.2.6.3 Precision and Recall 

 

The sensitivity, true positive rate or recall, is a metric that measures the proportion of positives 

examples that were correctly identified as such, quantifying the capability of the model to avoid the 

false negative (Equation 6). 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
   (Equation 6) 

 

The precision or positive predicted value metric, measures how many of the samples predicted as 

positives are correctly predicted (Equation 7). It is commonly use when the main objective is to limit 

the number of false positives. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃 
  (Equation 7) 
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4.2.6.4 Balanced accuracy 

 

Even though there is not yet a consensus on the implementation of the balanced accuracy for multi 

class tasks, authors like Brodersen et al. (2010) and Mosley (2013) describe the balanced accuracy as 

the recall for each class, averaged over the number of classes (Equation 8).  

   

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
∑

𝑇𝑃

𝑇𝑃+𝐹𝑁𝑙 𝜖 𝐿

𝐿
   (Equation 8) 

 

As a performance metric, the balanced accuracy evaluates the quality of the model performance, 

which it is first measured for each class independently and then aggregated. In an unbalanced case 

scenario, if the overall accuracy described above is high because it is biased due the good performance 

of the model on the majority class, the use of the balanced accuracy metric will balance the score 

(Brodersen et al., 2010). In the Equation 8, ‘l’ is the label, while ‘L’ is the set of labels.   

  

4.2.6.5 ROC curve and AUC 

 

Receiver operating characteristic (ROC) have been used over the past years within machine learning 

community to visualize and evaluate the tradeoff between the true positive rate and the false positive 

rate algorithms performance (Fawcett, 2006). Therefore, the ROC curve is defined as a  graphs plotted 

with the true positive rate on the y-axis against the specificity or false positive rate to create the curve,  

where the goal of a good model is to be at the upper left corner, which indicates low false positives , 

with a high recall (Cortes & Mohri, 2003; Fawcett, 2006).  

 

To compare classifiers ROC can be reduce to a single scalar value called the area under the curve(AUC), 

which is defined as the area under the ROC curve that is related as a measure of the quality of the 

classification (Cortes & Mohri, 2003). According to Mosley (2013) “at perfect accuracy both ROC axis 

is maximized suggesting that larger areas are superior”. 

 

4.2.7 Software  

 

This study required the use of different software along the methodology process. Table 8 shows the 

list of the main software applied and the process in which they were used. 

 

Table 8. Software used: name and actions 

Software  Process 

Spyder 3.2.4 (Python 2.7.14) Data preparation. Exploratory data analysis. Model 

selection. Model Evaluation. Sckit-learn v0.19.1 

Package (Machine Learning in python library) 

Erdas Imagine 2015 Background exclusion. NDVI thresholds visual 

assessment 

ArcGis 10.5 Visualization maps.  
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Scikit-learn v0.19.1 library for python 

 

Scikit-learn is an open source project which contains many state-of-the-art machine learning 

algorithms (documentation can be found in [http://scikit-learn.org/stable/documentation.html].  It 

provides a range of supervised and unsupervised learning algorithms via a consistent interface in 

Python (Muller & Guido, 2016). 

 

All the tools available and needed within scikit-learn library were used to analyze, pre-process, prepare 

and process the available data, on the other hand it was also used to select and evaluate the model 

used to assess late blight disease in an organic potato field. 
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5 RESULTS 
 

This chapter presents the main results obtained in this study. The outcomes are presented in the same 

order of the procedures performed and described in chapter 4. Firstly, results obtained from data 

preparation phase are reported, beginning with the preprocessed dataset that was explored and then 

used as input of the selected prediction model. Finally, major findings obtained during model 

selection, development and implementation are discussed. 

 

5.1 DATA PREPARATION 
 

In this section, key results obtained during the data preparation stage (Figure 5) are presented due to 

their importance and contribution in the generation of the disease dataset, development and 

deployment of the disease assessment predictive model.  

 

5.1.1 Preprocessing  

 

The number of sampling units that remained after the preprocessing procedures was reduced in 

comparison with the total of sampling units presented in Table 4. A total of 16 sampling units of the 

assessment 6 (86 DAP) that belonged to the first and third of the small plots were excluded from the 

preprocessed dataset so-called disease dataset, because pixels within these sampling units presented 

lower values of NDVI than the selected threshold for this assessment date. As a result of this 

preprocessing procedures, a total of 320 samples constituted the disease dataset (Table 9) that served 

as input to the model (Appendix D).   

      

Table 9. Number of sampling units (SU) per assessment -  as part of the field observed disease dataset 

5.1.2 Exploratory data Analysis (EDA) 

 

Once the disease dataset was generated, exploratory data analysis took place. Within this section, 

major findings are presented that helped to better understand data structure, target distribution, and 

feature characteristics for the field disease evaluations and the flight acquisitions.  

  
Plot size Number of Plots 

Number of SU 

evaluated per Plot 
Total of SU 

Assessment 1 
small 8 10 80 

large 8 1 8 

Assessment 3 
small 8 10 80 

large 0 0 0 

Assessment 4 
small 8 10 80 

large 8 1 8 

Assessment 6 
small 8 10 64 

large 0 0 0 

Total    48 
 

320 
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5.1.2.1 Disease severity evolution along growing season  

 

Ground assessment of late blight disease symptoms along the field evaluations allowed the estimation 

of disease severity at sampling unit scale. From this estimation, the evolution of disease severity and 

the distribution of severity within each assessment can be observed (Figure 10). 

 

 
Figure 10. Disease severity at sampling unit (SU) level along the field assessments (plot 1 to plot 8 – 
small and large plots). In blue circles, are the sampling units within assessments dates selected for this 
study. In red circles, sampling units not used in this study. 
  

It can be noticed how disease severity starts out with a low (0% - 0.8%) severity indicated by leaf area 

affected and progressively increases over time reaching almost 100% of disease severity in some of 

the SU evaluated on the last assessment. Thus, disease severity, which is strongly related with the 

development of disease symptoms over affected crops, had an unbalanced distribution of disease 

classes along the field experiment (Figure 10). For example, during the first assessment, sampling units 

evaluated were assigned mainly to the ‘non-disease’ class, without any sampling unit belonging to the 

‘above 7%’ class. On the other hand, all sampling units evaluated on the last assessment date were 

assigned to the class ‘above 7%’, with no samples of ‘non-disease’ class captured on that date.     

 

As disease severity levels increased over time, especially between the fourth (78 DAP) and the last 

assessment (86 DAP), a consistently decrease of canopy structure together with ground cover was 

detected after the fifth acquisition (78 DAP) towards the end of the growing season (Figure 11). Even 

though these changes can be attributed to both physiological impact of late blight disease over crop 

health status and natural vegetation senescence. Figure 11 shows differences on crop structure 

between mixed and non-mixed system, especially for the last acquisition (86 DAP) in which treatments 

had more differences in comparison with other dates. As an example, it can be observed from Figure 

11 how the non-mixed system in which susceptible plant varieties were used, presented major 

changes in crop structure and ground coverage. In that sense, it is expected that non-disease and 
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infected SU within different treatment systems present variable reflectance pattern of the signal 

response, which is explored in the next section.   

 

 
Figure 11. RGB of flight acquisitions of the first two experimental plots (located on west part of 
experiment) with non-mixed (Plot 1) and mixed system (Plot 2). Small rectangles indicate the 
evaluated sampling units. 
 

Out of the total number of SUs evaluated in the first assessment, more than 70% of them were 

assigned as SU without disease, meanwhile only a small fraction of SUs evaluated in other assessments 

belonged to this class, consequently most of the SU related to this label were obtained during the first 

evaluation. On the other hand, the total (100%) of SU assessed on the last date were assigned as class 

‘more than 7%’, hence this label was gathered mainly on the last evaluation performed. In addition, 

class ‘up to 7%’ was the only label collected from most of the assessments (Figure 12).   

 

 
Figure 12. Percentage of disease classes per assessment 
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Due to disease severity distribution along the field experiment, as most of real-world datasets, labeled 

classes are represented by an unbalanced overall distribution. For example, a majority class can be 

observed in Figure 13, where almost half of the entire dataset is represented by the class named ‘up 

to 7%’. Since most traditional learning techniques are usually biased to the majority class showing a 

poor prediction power for minority classes (Ortigosa-Hernández et al., 2017), overall class distribution 

within the disease dataset was taken into consideration especially for the selection of a suitable 

performance metric designed for unbalanced case scenarios as the one described in section 4.2.6.4, 

the so-called balanced accuracy.  

 

 
Figure 13. Disease dataset overall class distribution 

 

Distribution of disease severity within each treatment system used in the experimental setup is shown 

in Figure 14. Around 80% of the SU evaluated along the experiment were affected by late blight 

disease. Out of this total, half of the SU affected corresponded to those with mixed varieties, 

meanwhile the remaining (124 SU) belonged to those cultivated with the non-mixed treatment (Figure 

14). Even though the mixed system is composed of three different varieties concerning resistance to 

the pathogen, 41% of the total SU with disease severity above 7% are represented by SU with a mixed 

cultivation method. The crop treatment system has been taken into consideration in the next section, 

to explore if there were spectral features that could be distinguished and that could serve as 

discriminator between diseases classes. 
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Figure 14. Number of sampling units per treatment type and disease class 

 

5.1.2.2 Description of spectral response, crop treatment and disease evolution during growing season  

 

Spectral measurements acquired at plot level during crop growth are summarized in Figure 15. Since 

each plant has a unique spectral signature based on their health status and intrinsic characteristics of 

each potato variety included within each cultivation method, it seemed important to explore and 

understand spectral responses of vegetation. 

 

 
Figure 15. Description of the spectra acquired using the Rikola camera (66-78 DAP) and HYMSY camera 
(86 DAP) both under a UAV for each cultivation method (a) Non-Mix and b) Mix varieties) and 
acquisition date. Maximum and minimum spectral values in (red lines), standard deviation (blue lines), 
and mean spectra values in (black). 
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During the third acquisition date (64 DAP) which was related to the first assessment (66 DAP) as 

described in section 3.2.2, mean reflectance values in wavelengths affected by absorption from leaf 

pigments between (600 nm – 700 nm) has similar responses for both treatment types in the range of 

(0.035 – 0.047) reflectance values. On the other hand, mean reflectance values placed in the NIR range 

shows that the mixed system (Figure 15b) has higher values along this spectral region than non-mixed 

system. This difference could be mainly related to the canopy structure that was still developing, and 

the intrinsic characteristic of the different potato varieties used in each cultivation method.  

 

The same differences between treatment systems were observed on the fourth acquisition (73 DAP), 

although mean spectral values on NIR range were higher than previous acquisition (Figure 15) mainly 

because vegetation cover reached its maximum as observed in (Figure 11).  It is important to mention 

that even though this acquisition provided higher reflectance values in comparison with other dates, 

more than 80% of SU evaluated on the third assessment (74 DAP), which was related to this 

acquisition, were assigned as class ‘up to 7%’ of disease severity (Figure 12). 

      

From the fourth assessment (78 DAP) towards the end of the growing season, ground coverage 

together with mean spectral reflectance experienced a consistently decrease in comparison with 

previous dates, which can be related with the physiological impact of late blight disease and its 

evolution over time together with natural and intrinsic characteristics of different crop systems (Figure 

15).  

 

Comparison between spectral responses at SU scale per disease class and assessment is presented in 

Figure 16. No obvious differences were found between disease classes concerning spectral responses 

on the red region of the spectrum (609 nm - 692 nm). Furthermore, it is in the NIR range where 

differences between classes can be distinguished, especially among classes that represent SU without 

disease and those with disease severity over 7 % acquired of the last date (Figure 16 c). Therefore, 

spectral data acquired along acquisitions date seems to provide spectral information that could serve 

to discriminate disease severity classes. 

  

 
Figure 16. Mean spectral values per assessment and disease class. Figure (a) mean spectra of Non-
disease class. In figure (b) mean spectra values of ‘Up to 7%’ disease class. Figure (c) depict mean 
spectral values for disease severity above 7% class. 
 

It has been noted that highly correlated features have a negative impact on classification accuracy 

(Preet et al., 2015), therefore, a correlation matrix was calculated for all features within the spectral 
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range used (600nm – 900nm) in this study (Figure 17). As expected, high correlation was found 

between features specially in bands within NIR range. This collinearity was considered to test if 

applying preprocessing procedures like dimensionality reduction, could help to improve classification 

and generalization capabilities of the selected model.  

 

 
Figure 17. Disease dataset spectral features correlation matrix. Definition of bands used in the analysis 
can be observed in Table 2. 
 

As part of the data exploratory analysis, the first two principal components were calculated to visualize 

in a 2-dimensional scatter plot feature space distribution of observations of the disease dataset (Figure 

18). It can be observed that there is a clear relation between the assessments date on which features 

were acquired, and their location within feature space, with some overlapping between the last two 

acquisitions where most of the SU affected by disease were gathered.  

 

 
Figure 18. First two principal components of the disease dataset. Right image present features 
distribution over feature space with disease labels. Left image present features distribution with the 
assessment date as label. 
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5.2 MODELLING DISEASE ASSESSMENT 
 

This section is intended to present main results obtained during the development and implementation 

of a support vector machine (SVM) learning algorithm which was built to predict late blight disease 

severity on an experimental organic potato crop. As described in section 2.4, the SVM learning 

algorithm has been successfully applied in various applications especially under controlled 

experimental setups. In that sense, this chapter tries to present obtained outcomes to verify whether 

the selected model can be applied with the dataset acquired during a field experiment and has a 

satisfying predictive performance.    

 

5.2.1 Description of SVM model development and model selection  

 

For many machine learning algorithms, representation of the data within model development is a 

crucial step. For instance, classifiers as SVM are known to be sensitive to the way features are scaled, 

hence preprocessing procedures as data transformation and dimensionality reduction already 

described, were tested to verify if they contributed to improve the model performance (Ben-Hur & 

Weston, 2010). Within this study, scaling of data, described in section 4.2.2, was performed. Even 

though the main idea was to use all features acquired during flights acquisitions to explore if the 

selected algorithm has the capability to find patterns within data to predict disease severity, PCA 

technique was tested as a dimensionality reduction preprocessing procedure due to high correlations 

of features discussed earlier. 

 

Therefore, the development of the model required not only the application of the SVM, but the 

chaining together of the PCA and the selected machine learning algorithm, hence a pipeline was 

constructed together with the grid of parameters (Table 6), which was used to test all possible 

combination of parameters values using the GridSearchCV tool together with the balanced accuracy 

metric, as the performance metric to find the best model as described in section 4.2.5. As a result, it 

was found that a kernelized SVM was able to better classify disease labels with the highest balanced 

accuracy of 82%, hereinafter model A (Table 10). An overview of trained models during the grid search 

procedure and associated performances can be observed in Appendix C.   

 

Table 10. Best parameters set found on development set. Model A 

Preprocessing 
N˚ of 

components 
Algorithm Kernel 

Decision 
function 

Class 
Weight 

C [range] 
Gamma 
[range] 

PCA Yes 5 SVM* RBF OVR Balanced 45 0.01 

*Model A 

 

Once the best parameters were obtained according to the performance metric used to reach the best 

score, a SVM model was re-built and trained on the full training dataset, based on the best parameters 

shown in Table 10. Moreover, it was also explored if the performance could be improved with a 

manual inspection and combination of those parameters, and for this step, overall accuracy was used 

to evaluate improvements. Results presented in Table 11 indicate that it was possible to improve the 

overall accuracy in both training and test set, by reducing the number of components and decreasing 

the C and gamma parameter, hereinafter model B. Furthermore, the receiver operating characteristic 
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curve and area under the curve described in section 4.2.6, were calculated to visualize the quality of 

both models to discriminate each class from the others. 

  

Table 11. Overall training and test accuracy performance of best parameters found for Model A and 
Model B 

Preprocessing 
N˚ of 

components 
Algorithm Kernel 

Decision 

function 

Class 

Weight 

C 

[range] 

Gamma 

[range] 

OA 

Train 

OA 

Test 

PCA Yes 5 SVM* RBF OVR Balanced 45 0.01 0.80 0.77 

PCA Yes 4 SVM** RBF OVR Balanced 35 0.02 0.81 0.81 

*Model A; **Model B 

 

Multiclass extension of SVM described in section 4.2.1.3, basically creates a binary model for each 

class which tries to separate one class from all the other classes. This allowed to calculate both the 

receiver operating characteristic and area under the curve per disease class, to visualize the quality of 

the models to classify each class from others. As described in section 4.2.6.5, the roc curve is defined 

by the true positive rate or recall on the X axis, and the false positive rate or false alarm ratio on the Y 

axis, representing relative trade-offs between true positives and false positives along different 

thresholds. It can be observed from Figure 19, that both models seem to achieve a good performance 

to discriminate both ‘non-disease’ class and disease class ‘above 7 %’. On the other hand, they could 

not reach the same performance to correctly classify the class ‘up to 7 %’ from the other classes.  

 

 
Figure 19. Receiver operating characteristic and area under the curve (Roc-auc) per disease label 
classification. Roc-auc curves of the best model based on the grid search cross validation (right), on 
the left Roc-auc curves of the manually improved model based on overall accuracy performance 
metric. 
 
The quality of a model can be estimated from the roc space, in such a way that the closer the model 

to the upper left corner, the better it performs, representing a high sensitivity (low false negatives) 

and high specificity (low false positives). From Table 12 it can be observed that both models have 

similar values of true positive rate (TPR) and false positive rate (FPR) for both disease classes, ‘non-
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disease’ and ‘above 7%’, while Model B  shows a higher value of true positive rate on the disease class 

‘up to 7%’ than Model A. From these results it can be inferred that Model B has better capabilities to 

discriminate disease class ‘up to 7%’ than Model A.  

  

Table 12.True positive rate and false positive rate per disease class of SVM models 
 

SVM* (C=45; gamma=0.01) SVM** (C=35; gamma=0.02) 

Disease Class  TPR FPR  TPR FPR 

Non-Disease  0.97 0.05  0.97 0.06 

Up to 7%  0.65 0.12  0.74 0.12 

Above 7%  0.83 0.17  0.83 0.10 

Avg/total  0.81 0.11  0.84 0.09 

TPR = True positive rate; FPR = False positive rate 

*Model A; **Model B 

 

A learning curve aims to visualize the training and validation score as a function of the number of 

training samples. This curve provides a quantitative view into how beneficial it will be to add training 

samples to the learning algorithm. Firstly, looking at the performance over the training dataset when 

there are a few observations, the model can fit them with high accuracy, but as new instances are 

added to the training set, the accuracy start to decrease until it reaches a plateau, approximately when 

the model is trained with 100 samples, at which point adding new instances to the training set does 

not make the accuracy much better or worse. Looking at the model performance on the validation 

data, it can be observed that when the model is trained with very few instances, it is incapable to 

generalize properly. Moreover, as more training samples are included in the model, the accuracy 

slowly increases, but it also reaches to a plateau very close to the training score curve. These learning 

curves could indicate an underfitting of the model reaching around 80% of overall accuracy in both 

curves (Figure 20). 

  

 
Figure 20. Learning curves of the selected SVM model B (RBF kernel, C= 35, gamma = 0,02). 
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5.2.2 Description of SVM predictive performance  

 

The trained SVM model was then used to predict disease severity classes over the unseen dataset (126 

SU) that was hold during the sampling phase, described in section 4.1.3. One of the most 

comprehensive ways to evaluate a classification and prediction task is by using a confusion matrix. 

Below, the confusion matrix is used to summarize the performance capability of the model in which 

predicted values are compared with actual labels (Figure 21).  

 

 
Figure 21. Model B SVM confusion matrix metric 

  

As expected from previous analysis, Model B confusion matrix shows the capability of the model to 

correctly identify positives samples especially for those SUs without disease. In contrast, it seems 

difficult for the model to identify SUs labeled as ‘up to 7%’ as such, having SUs assigned to this class 

that were classified as other classes, for instance out of the 57 sampling units labeled as the class ‘up 

to 7%’, 15 of them were assigned to other classes. Regarding to the capability of the model to avoid 

false positives, it is clear to notice that none of the SU that were predicted as SU without disease were 

assigned to the class ‘above 7%’, while none of the SU predicted as ‘above 7%’ class were assigned as 

the class ‘non-disease’ (Figure 21). The predicted overall accuracy reached with the Model B was 81%, 

while the predicted balanced accuracy was 84% (Table 12). 

 

Table 13. SVM classification report 

Classes precision recall f1-score support 

Non-disease 0.82 0.97 0.89 29 

Up to 7% 0.84 0.74 0.79 57 

Above 7 % 0.79 0.82 0.80 40 

avg/total 0.82 0.82 0.82 126 
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From confusion matrix technique, many performance metrics can be reduced to evaluate the 

performance of the selected algorithm. Hence, a classification report per label was elaborated to 

summarize firstly, the proportion of positive data points that were correctly considered as positives 

with respect to all positives classes, so-called recall or sensitivity, and secondly, the probability of a 

class that was predicted, and actually belongs to that class label, called positive predictive values or 

precision. It can be observed from Table 13 that class without disease got the highest recall score 

indicating that fewer samples were misclassified, while class ‘up to 7%’ in contrast had more 

misclassification, although 84% of samples predicted as this label corresponded to that class.     

 

A spatially explicit representation of results obtained with the predictive model are shown in Figure 

22. The main objective was to compare the ground truth SU labels with those ones which were 

predicted by the model using the spatial context to visualize the potential and applicability of learning 

algorithms to contribute with the plant crop protection community. In that sense, Figure 22 shows 

that, even though the SVM model had an overall good performance to generalize the learned data to 

unseen samples, is possible to visualize that in the first assessment all SU were predicted as ‘non-

disease class’ (Figure 22) without capturing some SU that were assigned as ‘up to 7%’. Similar results 

can be observed on the third assessment, while on the fourth assessment most of the SU predicted as 

‘above 7%’ did not match with the actual disease label of the corresponded SU. In addition, it was not 

possible to find a relation between the crop system used within SU and the errors found on predictions 

of labels. 
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Figure 22. Comparison between grown truth labeled SU (left) and predicted SU labels (right) from the 

SVM model for SUs in the test plots at different assessment moments
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6 DISCUSSION 
 

The following chapter aims to discuss the main results obtained during the development and 

implementation of the disease predictive model generated in this study. The results are discussed in 

the same order as presented in chapter 5. In addition, based on an extensive literature review that 

contributed to answer the first research question of this study, the potential use of high-resolution 

UAV imagery in combination with advanced analysis techniques for plant disease assessment, is also 

discussed.   

 

6.1 POTENTIAL USE OF HIGH-RESOLUTION UAV IMAGERY TO PREDICT PLANT DISEASE 
 

This section discusses the hyperspectral sensor challenges to retrieve information that could be used 

to detect the physiological effects of late blight disease over a potato plant, in order to discriminate 

crop health status. Firstly, the discussion is focused on the use of hyperspectral technology for 

detection, identification, quantification and prediction of plant disease and secondly the complexity 

of the physiological impact of late blight disease is described. 

 

Remote sensing described as an indirect assessment technique, has been extensively explored and 

used to provide information through the detection of the physical characteristics (spectral signatures) 

of vegetation. These characteristics can be related to their health status, based on the physiological 

processes and plant parameters differences, since most biotic stress factors affects both internal and 

external structures, which in turn has an effect on the optical properties of plants (Behmann et al., 

2015). This relation between the spectral response of vegetation, which is influenced by the canopy 

structure and the health status of vegetation, allowed to investigate the potential use of remote 

sensing as a timely, location-precise, non-invasive method for the assessment of plant diseases 

(Franceschini et al., 2017; Jiang et al., 2012; Martinelli et al., 2015). 

 

Results obtained during the exploratory data analysis (Figure 16) shows that a major reflectance 

difference between healthy and late blight affected sampling units can be observed in the range of 

700nm and 900nm. These differences of spectral responses clearly provided information that allowed 

to discriminate healthy sampling units from the ones that were severe affected by the disease. 

Similarly, Zhang et al. (2003) explored the capability of applying hyperspectral remote sensing to 

monitor late blight disease in a tomato crop. They concluded that hyperspectral remote sensing bands 

mainly in the range of 700nm and 900nm, were more valuable and effective to detect tomatoes late 

blight disease. Moreover, the potential discrimination of healthy and infected tomatoes plants 

provided by spectral information, was possible for those plants with the higher disease levels, but not 

for the plants with lower severity levels. This was also observed in this study, where the discrimination 

of the class ‘up to 7%’ was less effective (Figure 16) in comparison with the other two classes. 

 

Different types of sensors have been used to detect plant response to different diseases and disease 

severity levels (Martinelli et al., 2015). For instance, there is a growing tendency to use hyperspectral 

cameras combined with UAV platforms to generate high-resolution data needed for crop disease 

detection, identification, quantification and prediction (Garcia-Ruiz et al., 2013; Mahlein et al., 2012; 

Singh et al., 2016; Zhang et al., 2003). For example, Garcia-Ruiz et al. (2013), compared the use of a 
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hyperspectral imaging system attached to a UAV, with a similar imaging system (aircraft-based 

sensors), for the detection of Huanglongbing (HLB) disease affecting a citrus orchard. Authors found 

that at both spatial resolution (5.45 cm and 0.5 m per pixel), reflectance values at 710nm wavelengths 

were significantly different between healthy and HLB-infected trees. In contrast, the minimum 

differences identified between reflectance values were observed at 690nm. 

 

Dissemination of late blight is mainly due to aerial dispersal of  Phytophthora infestans sporangia from 

lesions on leaves and stems, or by oospores on the ground or plant material in the neighborhood 

(Olanya et al., 2015; Sugiura et al., 2016). This foliar and tuber disease component can destroy potato 

foliage within 7 to 10 days under favorable environmental conditions (Jiang et al., 2012; Olanya et al., 

2015). A plant which is infected, reacts to protect itself, and this physiological reaction, will lead not 

only to internal structure changes, but also to external changes as the disease severity increases 

(Martinelli et al., 2015; Zweep, 2014). 

 

During the host-pathogen interaction, different spectral regions of the electromagnetic spectrum can 

be related to specific changes in both internal and external structures of plants. For instance, 

thermography and fluorescence allow to detect plant stress even before symptoms are visible. Once 

the pathogen affects the photosynthesis apparatus, the visible region 500nm - 680nm can be used to 

detect changes in chlorophyll content. As soon the pathogen influences the cellular structure, 

variation in the near infrared wavelength are described (Thomas et al., 2018). Spectral resolution of 

hyperspectral sensors allowed the exploration to find specific reflectance patterns that are related to 

specific host-pathogens interactions.     

 

For instance, at early stages, when visual symptoms cannot be observed yet, plants react by 

decreasing the photosynthesis rate, which could result in an increase of fluorescence, heat emission, 

and a decrease of chlorophyll content (Martinelli et al., 2015). For example, as observed from the third 

acquisition performed for this study (64 DAP)(Figure 4), canopy structure was still vigorous, specially 

within those plots with mixed production system (Figure 11). Two days later (66 DAP), the disease 

development was registered, when the first visual symptoms appeared. These first symptoms are 

generally observed in the lower leaves, where smalls, light to dark green with irregular shape lesions 

start to appear towards the margin of the leaf (Appendix B) (Tekos, 2010). As disease severity 

increases, the spots enlarge rapidly and take a brown color with well-defined edges until the lesions 

turn black as the affected leaves start rotting, while at canopy scale, disease impact can change canopy 

density and vegetation coverage (Martinelli et al., 2015; Sankaran et al., 2010; Tekos, 2010). 

 

Since one of the main characteristic of late blight disease is that it spreads extremely rapidly during 

growing season, with devastating results within the second or third week after the first visible 

symptoms appears if no control measures are taken, especially in those production systems where no 

chemicals are applied in the field (Gebru et al., 2017; Lammerts van Bueren et al., 2008; Nowicki et 

al., 2012; Sugiura et al., 2016; Zhang et al., 2003), there is a need in the plant breeding and crop 

community, to explore alternative methods that could contribute to overcome the limitations 

encountered in conventional methods, such as the time-consuming and subjective labor, described 

for the visual assessment (Sugiura et al., 2016). 
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Even though hyperspectral sensors are widely explored and used to extract physical variables that can 

be related to vegetation properties to estimate the vegetation health status, there are many internal 

and external factors that make this method too error prone. Some of the main challenges in the 

implementation of this advanced retrieval method such as heterogeneity of elements of the 

background, features correlation, among others are discussed in the next section. 

 

6.2 CHALLENGES IN THE IMPLEMENTATION OF HYPERSPECTRAL TECHNOLOGY FOR PLANT 

DISEASE ASSESSMENT  
 

The vast amount of data that can be retrieved from hyperspectral imagery, requires the exploration 

and implementation of complex analysis to find underlaying patterns, that could be related to the 

disease characteristic and its progress over the time (Behmann et al., 2014; Jiang et al., 2012; Mahlein 

et al., 2013). However, high dimensionality of the hyperspectral data where wavelengths next to each 

other are highly correlated, could have a negative impact on classification and prediction performance 

(Mahlein et al., 2013; Preet et al., 2015). Hence, many approaches have been employed in 

hyperspectral data analysis to overcome the effect of collinearity between acquired features.  

 

In this study, a high correlation was found between spectral features, especially between bands within 

NIR range. Therefore, a principal component analysis (PCA) was included within a pipeline, to evaluate 

if this preprocessing procedure contributed in the selection of the best model. The PCA method 

involves a linear transformation of the original data into the so-called components, which are 

statistically uncorrelated keeping the maximum amount of information (Gilbertson & van Niekerk, 

2017; Muller & Guido, 2016; Preet et al., 2015). As a result, the best model identified for this study 

(Table 10) was obtained when the principal component analysis was introduced as a preprocessing 

step within the pipeline, where the first five components were selected to train the predictive model.  

 

Although this dimensionality reduction technique has been extensively used, especially for 

classification tasks (Rivera-Caicedo et al., 2017), authors like Rivera- Caicedo et al. (2017), stated that, 

in principle, other techniques such as partial least squares (PLS) or canonical correlation analysis (CCA), 

could be used instead. However, they concluded that when combining dimensionality methods with 

non-linear machine learning algorithms, it is the principal components analysis method together with 

partial least squared, the top performing techniques in terms of accuracy. Moreover, authors like Kong 

et al. (2018) proposed the use of second derivative spectra and PCA loadings to select the optimal 

wavelengths to detect sclerotinia sckeritiorum on oilseed rape stems.  

  

Alternatively, other feature selection techniques, in which the original data is not transformed, has 

been also used for the identification of an optimal subset of features (Bazi & Melgani, 2006; Kong et 

al., 2018; Maldonado et al., 2014). For instance, authors like Maldonado et al. (2014), proposed an 

embedded method for backward feature elimination, inspired in the recursive feature elimination 

procedure (RFE), which aims to exclude those features that do not contribute to the model 

performance. It was found that the proposed method outperformed other ranking techniques, such 

as the recursive feature elimination wrapped with a SVM. 
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Furthermore, Bazi and Melgani (2006), compared the performance of a SVM classifier trained with the 

entire set of features, to classify nine different types of land cover classes, with the performances of 

the models trained with an optimal subset of features, applying different feature selection methods, 

such as the recursive feature elimination (RFE) and the radius margin bound minimization method. 

This comparative study, found that the recursive feature elimination, together with the radius margin 

bound minimization feature selection method, showed relatively poor performances in terms of 

classification accuracy, in comparison with the SVM model trained with all features. 

 

Implementation of hyperspectral technology also requires considering factors related to the 

heterogeneity of elements of the background, disease characteristic , illumination, the effect of the 

atmosphere, which forces the methods to rely on very tenuous differences to discriminate among 

them (Barbedo, 2016; Hy et al., 2011). Therefore, in this study a NDVI threshold approach was used 

to exclude soil (non-vegetation) and excessive unwanted non-canopy pixels. As a result, several pixels 

were removed from each sampling unit which were considered non-vegetation pixels (Figure 7), 

mostly from those sampling units evaluated on the last date, where the potato plants were severely 

affected by the disease (Figure 11) . However, it is known that this vegetation index is largely affected 

by background effects, therefore, several indices have been proposed to correct background effect 

such as the weighted difference vegetation index (WDVI), or the optimized soil-adjusted vegetation 

index (OSAVI)(Franceschini et al., 2017). Besides the use of vegetation indices, other techniques have 

been proposed to overcome this issue. For example, authors like Hy et al. (2011), investigated the use 

of machine vision techniques to develop a plant segmentation algorithm to detect individual plants 

under outdoor light condition imagery. Object oriented analysis has been explored and compared with 

per-pixel analysis techniques, where accuracy of vegetation parameters estimation and discrimination 

of above ground biomass were significantly higher when object-oriented techniques were applied 

(Addink et al., 2007).   

 

Besides the limitation of the NDVI-threshold approach, Garcia-Ruiz et al. (2013) used a similar 

approach, with the exception that the analysis was performed for a citrus orchard. In their study, citrus 

trees were manually segmented using a 0.2 threshold value for NDVI such that the pixels covering the 

tree canopy were included, while pixels (non-vegetation) were excluded. They concluded that their 

approach successfully achieved the expected result. It is also important to mention, that as explained 

before, the occurrence of different degrees of severity level on each plant within each SU varied, 

therefore, the analysis should be also be evaluated at a pixel level scale, to test if the model capture 

the variability of information within each SU, which could improve the predictive performance 

(Behmann et al., 2014).  

 

Although, this study considered soil-background affect, there are many external factors especially 

attributed with the use of UAV platforms and the environmental conditions during measurements that 

could influence the performance of the model. Factors like flight conditions, illumination conditions 

(specific illumination and sun-target-sensor geometry) and overcast conditions (cloud, wind) can 

affect the accuracy of the spectral information over time, these variables should be explored in more 

detail to understand their influences on the performance of the model. Hence, there still is a need to 

explore methods for preprocessing procedures that can be implemented and incorporated to 

automated systems (Thomas et al., 2018). 
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6.3 MODELLING DISEASE ASSESSMENT 
 

A support vector machine (SVM) learning algorithm was selected to explore its capability to assess 

late blight disease. As recommended by Hsu et al. (2008), the grid search approach together with cross 

validation was implemented in this study to evaluate several parameters values combinations (Table 

6). As a result of the procedure, it was found that applying a PCA as a preprocessing step together with 

a radial basis function (RBF) kernelized SVM, achieved the best performance, reaching 82% of 

balanced accuracy (Table 10).  

 

One of the most important procedures that aims to improve a model’s generalization performance is 

called hyperparameter optimization. Tuning hyperparameters to configure learning algorithms can 

influence the effects on the resulting performance of the model, hence, it is considered a best practice 

when a machine learning algorithm is under development (Hsu & Chang, 2008; Huang et al., 2017; 

Koch et al., 2017).  

 

Even though, the combination of the manual and grid search is the most applied method for 

hyperparameter optimization, there are many advanced optimization methods that have been 

explored to improve the selection of optimal parameters (Bergstra & Yoshua, 2012). For instance, 

Bergstra and Yoshua (2012) proposed the use of random search technique as a substitute of grid 

search. They described the grid search approach as a naïve, ineffective and a poor choice for 

configuring algorithms, especially for new datasets.  

 

However, there are some reasons that explain why the grid search method was implemented in this 

study despite other advanced methods. Firstly, even though the grid search is described as a computer 

intensive technique because it grows exponentially with the number of hyperparameters that will be 

evaluated (Koch et al., 2017), the time and computer resources required to find the best parameters 

due to the size of the disease data set, allowed its implementation. Secondly, the scikit-learn package, 

as implemented in this study, provides the GridSearchCV tool, which is simple to implement and takes 

advantage of the inherent ability of this approach to train and evaluate all models in parallel (Bergstra 

& Yoshua, 2012; Chih-Wei Hsu, Chih-Chung Chang, 2008; Koch et al., 2017; Muller & Guido, 2016). 

Finally, given the relatively low number of features used in this study (17 features), the grid search 

approach was considered a reliable approach for low dimensional spaces as described by Bergstra and 

Yoshua (2012). 

   

Authors like Rumpf et al. (2010) applied the grid search approach to search for the best radial basis 

function and an appropriate factor for penalizing classification errors, to find the best classification 

method to discriminate, differentiate and identify diseases on sugar beet leaves, even before specific 

symptoms became visible. Authors concluded that early differentiation between healthy and 

inoculated plants can be achieved using kernelized radial basis function support vector machine, 

reaching accuracies between 65% - 90% depending on the type and stage of the disease.  

 

Similarly, Kong et al. (2018) evaluated the performance of several discriminant models to detect 

sclerotinia sckeritiorum disease on oilseed rape stems. The optimal combination of parameters of the 

support vector machine with a radial basis function kernel evaluated by the authors, was obtained 

through a grid search approach, achieving overall accuracies over 90%, for both the training and test 
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set. In addition, Huang et al. (2017) despite to describe several currently techniques to select model 

parameters such as the gradient descent method, Bayesian method, artificial immune, genetic 

algorithm, among others, decided to implement the grid search cross validation method for optimal 

hyperparameter selection, to find the best classifier to detect sugarcane borer diseases.  

 

In general, for most datasets only a few hyperparameters are relevant, but different hyperparameters 

are important on different datasets (Bergstra & Yoshua, 2012). This phenomenon described by 

Bergstra and Yoshua (2012), seems to reveal a major drawback in the procedures to derive the optimal 

hyperparameters, and use them with new datasets. In that sense, many efforts are being made for 

the development of new hyperparameter optimization algorithms that could allow the use of the 

trained model for broadly applications. 

 

The Performance metric plays a fundamental role to achieve the optimal algorithm during the model 

selection (Brodersen et al., 2010; Ferri et al., 2009). For classification tasks, there are several metrics 

that have been explored and used over the years, however, some of them without a consensus and a 

clearly justified theoretical basis, especially for the multiclass imbalanced problem (Ferri et al., 2009; 

Mosley, 2013).  

 

The accuracy is one of the most widely performance metric used for the assessment of supervised 

machine learnings algorithms, mainly because it is described as a metric that measures overall 

effectiveness of an algorithm (Bekkar et al., 2013). However, this metric is more appropriate for 

balanced datasets, because in some cases it can be biased to the majority class, therefore results can 

be overoptimistic. Many different measures have been proposed to overcome this limitation, yet most 

of the works reviewed for this study, relies on the accuracy to evaluate their classification and 

prediction performances (Bekkar et al., 2013; Mosley, 2013). 

   

Due to the characteristics and structure found in the disease dataset, in which the three target classes 

have an overall unbalance distribution, the balanced accuracy metric was proposed as the measure to 

evaluate the models trained during the grid search cross validation procedure. This metric basically 

measures the performance of the classifier for each class separately, and then an average of the 

performances of classes is calculated. Hence, if the model performs well in all classes, the balanced 

accuracy will be equal to the conventional accuracy, but if the accuracy is biased towards the majority 

class, then the balanced accuracy will balance the score (Brodersen et al., 2010). 

 

Authors like Mahlein et al. (2013) and Mosley (2013), explored and used the balanced accuracy as a 

performance. However, it is important to mention that using balanced accuracy, the metric is based 

on how well the model avoids the false negatives (recall), therefore it neglects how well the classifier 

is performing to avoid the false positives (precision), which means that the evaluation is based on the 

classification power of the algorithm instead of the prediction capabilities. 

 

The improvement of the performance of the model that was found with the grid search procedure in 

this study (Model A), was evaluated using the overall accuracy. Furthermore, the ROC curve and the 

AUC were also calculated to visualize the capability of both models to discriminate each class from the 

other classes (Figure 19). Even though overall accuracy indicated that Model B outperformed in both, 

training and test set, a slightly higher AUC metrics were observed in Model A in comparison with 



46 
 

Model B, especially for the ROC curve for the class ‘up to 7%’. The fact that both metrics evaluated 

different aspects, generated an interest of different authors to explore their relationship. Authors like 

Cortes and Mohri (2003), made a statistical analysis of this relationship and concluded that ‘‘the 

average AUC is monotonically increasing as a function of the classification accuracy, but that the 

standard deviation for uneven distributions and higher error rates is noticeable. Thus, algorithms 

designed to minimize the error rate may not lead to the best possible AUC values”. In that sense, those 

slightly differences between performances can be expected, and for this study, ROC curve was only 

used to visualize the capability of the model to discriminate one class from the other classes.  

 

The learning curve of the selected model (Model B) was elaborated to visualize and describe the 

relation between the training size and the classifier performance. This relation seemed to be 

important to visualize, because it is known that achieving a good classification performance is usually 

related to the amount of available training data (Weiss & Battistin, 2014). At some point, it seems that 

the model cannot improve its classification performance as data is shown to the model, therefore, 

instead of adding more training samples, training the current learning algorithm with more features 

could be tested. Several approaches from different domains such as computer vision, deep learning 

and remote sensing, have been proposed in literature as alternatives to add relevant features that 

could help to improve the model performance. Some of these techniques are based on spectral 

vegetation indices (SVIs), spectral disease indices (SDIs), while others are based on the idea that colors 

hold a large part of relevant information, descriptors such as histogram of colors, histograms of 

gradients and histogram of edge orientations (Bileschi & Wolf, 2007; Gao et al., 2018; Mahlein et al., 

2013; Rahman et al., 2017; Rey et al., 2017). 

 

6.4 SVM PREDICTIVE PERFORMANCE 
 

The kernelized SVM-RBF learning algorithm implemented in this study achieved a good performance 

identifying each class as such, especially for those classes where SUs were assigned as ‘non-disease’ 

and those with the highest disease severity so-called ‘above 7%’ (Figure 21). Therefore, the model has 

the capability to avoid false negatives (FN) for those classes with high accuracy, indicating the potential 

use of hyperspectral information to detect SUs severely affected and those without disease. Since one 

of the main characteristics of late blight disease is that it can disseminate over the field in a short 

period of time , around twenty days after the first symptoms appeared, as observed in this study (66 

DAP – 86 DAP)(Figure 11) (Gebru et al., 2017; Lammerts van Bueren et al., 2008), an important 

requirement for a model, is to reach low false negative percentages, mainly because in practice high 

number of false negatives could led to inappropriate crop management decisions. Similar results were 

obtained by Garcia-Ruiz et al. (2013), where a SVM with kernel with 85% accuracy and 11% false 

negatives were obtained, they concluded that the use of UAV at low altitudes could become a 

promising tool for disease detection. 

 

On the other hand, the predictive power of the model is explained through its capability to avoid false 

positives, the average positive predicted value (PPV) for the classes reached by the predicted 

algorithm was 82% (Appendix E). The capability to avoid false positives was less effective between the 

class “up to 7%’ and the other classes. A predictive model requires low numbers of predicted false 

positives, since predicting a sampling unit as severely affected by the disease while it is not, could also 

led the farmers to take drastic measures to control the disease with unreliable information. There are 



47 
 

few reported activities that uses machine learning as a predictive tool of plant stress (Kaundal et al., 

2006; Singh et al., 2016). Authors like Behmann et al. (2014) focused their work on the prediction of 

drought-induced stress, based on a pixel scale to predict local stress for each plant. Authors found that 

the SVM one-versus-all approach achieved only (66%) of accuracy, probably related to the low number 

of features. On the other hand, even though linear SVM did not have the best performance, it has a 

potential applicability, due to its capacity to handle vast amount of data, which is required when 

hyperspectral data is used. Other authors like Kaundal et al. (2006), explored the use of weather 

variables as predictors, to introduce a prediction approach based on support vector machines, for the 

forecasting of rice blast disease. They concluded that SVM-based regression provided a better 

description of the relation between weather variables and the disease level.   

 

6.5 FURTHER RESEARCH 
 

The importance of an automated systems that could provide reliable information for decision making 

is considered a relevant one the most relevant challenge for the precision crop community(Thomas et 

al., 2018). Many efforts have been made to better understand the relation between the vegetation 

characteristics and the spectral responses captured by different non-invasive optical sensors over the 

past years. The combination of high-resolution and UAV platforms explored in this study, allowed to 

understand the potential of these techniques, together with complex analysis such as machine 

learning, to explore the potential applicability to monitor plant stress, host-pathogen relation and the 

spatial spread of the late blight disease over the growing season. 

  

However, there are several factors that need to be considered, in order to develop a reliable, timely 

and automated application that could be used by the crop protection community. For instance, 

environmental conditions of each acquisition can affect the intensity of reflected light, the selection 

of specific spectral ranges according to the host-pathogen system among others, are crucial steps to 

be incorporated for the development of better models. In that sense, authors like Thomas et al. (2018) 

propose that disease-specific spectral signatures seem to be transferable between different scales, 

this could allow to explore if hyperspectral signatures ranges acquired under controlled conditions, 

can be transferable to field-based experiments. In addition, Behmann et al. (2015) states the need to 

implement adaptive analysis pipelines within the development of reliable and easy to interpret 

outcomes.
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7 CONCLUSION 

 

The main objective of this research was to explore the potential use of machine learning techniques 

for the assessment of late blight disease in an organic potato production system from high-resolution 

UAV imagery. Moreover, this study explored which discriminant function (linear – non-linear) of a 

support vector machine classifier provided the best solution and performance to predict late blight 

disease. The experiment was conducted over eight experimental plots, where two different 

production systems were evaluated through visual assessments (ground truth), together with the 

acquisition of high-resolution UAV imagery. The combination of both datasets was used as input to 

train and evaluate the selected predictive model. 

 

A support vector machine learning algorithm was used to classify three different disease severity 

classes. As expected, a high correlation between spectral features was found. Besides the use of all 

spectral features to train the model, the introduction of a PCA as a feature selection technique was 

also evaluated. Results obtained from the grid search procedure indicated that the incorporation of a 

the PCA technique within the pipeline, outperformed other models, therefore the best performance 

obtained during the grid search, reaching 82% of accuracy (balanced accuracy), was obtained when 

the SVM model was trained with the first five uncorrelated PCA components.   

 

In addition, both a linear and non-linear SVM discriminant function was tested, to explore which 

extension of the classifier was more suitable to predict late blight disease. As most of the researches 

reviewed for this study, among the methods evaluated, a radial basis kernelized SVM algorithm was 

selected during the model selection procedure. The combination of grid-search and manual search 

methods to find the best combination of hyper-parameters of the model, allowed an improvement of 

(1% and 4%) on the overall accuracy in both train and test set respectively. However, there is a need 

to incorporate and select features based on specific characteristics of the physiological impact of the 

disease and its relation to the disease severity. This is required to provide more discriminatory 

information to the model that could turn into an improvement of the model performance. 

 

The discrimination capability between classes evaluated with the receiver characteristic operating 

(ROC) curve, helped to visualize the quality of the trained model to discriminate the most severe 

affected sampling units from those without disease symptoms. As the disease severity increased, the 

model was able to separate with a good performance the class ‘above 7%’ from the other classes, 

while with those sampling units assigned to low disease severity values, the model did not reach the 

same performances. This capability can be related to the spectral responses of the sampling units 

affected by the disease, especially in the range of 700nm and 900nm, which provides discriminatory 

information due to the difference found in the spectral responses within this range between both, the 

healthy sampling units and the most affected ones. 

 

Based on the literature reviewed and the results obtained in this study, aerial remote sensing with 

high spectral and spatial resolution has a great potential to generate information that can be used to 

assess late blight disease. The capability of the machine learning techniques such as the support vector 

machines in combination with the vast amount of data acquired with hyperspectral technology, serves 
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as a basis to the development of applications to monitor crop health status. However, it is still 

necessary to consider factors such as environmental conditions during flight acquisitions, image 

preprocessing and the selection of well-known specific features for the development of automated 

systems that can provide timely, non-invasive, and reliable information to forecast temporal and 

spatial disease spread, information that can be use by the crop protection community. 

 

This study was focused on the exploration of the capability of a machine learning algorithm to predict 

late blight disease. There are several external factors that needs to be considered to better understand 

the host-pathogen relation and how this influence the spectral responses of vegetation. The 

incorporation of specific features, related to the disease severity could provide enough information 

to improve the classification and prediction performances, especially at lower disease severity levels. 

On the other hand, the need of timely information from the crop management community, requires 

the consideration of the applicability of the model since the beginning of the project. 
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9 APPENDICES 

 

APPENDIX A 

STUDY AREA AND EXPERIMENTAL SET-UP (PERFORMED PREVIOUS THE STUDY) 

 

Data acquisition was realized between the Spring and Summer of 2016 in an organic strip cropping 

experiment (51.9917°N, 5.66332°E; WGS84) started in 2014, at the Droevendaal experimental farm of 

the Wageningen University, The Netherlands. In this site, plots cultivated with potato were followed 

over time, mainly focusing on the assessment of late blight (Phytophtora infestans) development and 

general crop healthy status. Twelve plots measuring 3 by 10 m (small plots) were stablished in a strip 

along the field (Figure 3) while buffer areas, measuring 3 by 5 m, were placed before and after each 

plot, in the same strip, in order to avoid border effects along the experiment. The same experimental 

configuration, but with larger plots (with 6 by 10 m, and buffer areas with 6 by 5 m), was repeated in 

a nearby field. 

 

Two different treatments were compared within the experiment: (a) plots in which a single cultivar 

susceptible to late blight was planted (non-mixed system); and (b) plots in which a mixture of three 

varieties with different degrees of resistance (from low to high, respectively) to late blight were 

iterated in each crop row (mixed system). Considering the treatments, the minimum comparable area 

between plots, besides individual plants, corresponded to that including three consecutive plants 

arranged in the same row. Based on that, each plot surface was divided in multiple sampling units 

measuring 0.75 by 1 m. These sampling units were then used during data acquisition at ground level 

and to extract spectral information from UAV-borne imagery. Late blight occurrence and severity was 

visually assessed periodically after the first symptoms of the disease were detected in the field (every 

3 to 5 days), following the methodology described by the European and Mediterranean Plant 

Protection Organization (European and Mediterranean Plant Protection Organization [EPPO], 2008). 

For late blight assessment, four fixed sample units per plot were followed during the growing season 

(one per crop row), and other seven were randomly chosen before each assessment in order to better 

describe intra-plot variability over time (Figure 3). 

 

The experiment followed a generalized randomized block design, with three blocks and two replicates 

of each treatment (i.e., cultivation methods) in each block. From the three blocks included in the 

experimental site, only the first two were followed in this study, since evaluating the overall 

performance of the cropping systems was not the main objective but rather exploit the variability 

present in the cultivated areas to evaluate the methods tested here. 

 

UAV-BORNE HIGH RESOLUTION OPTICAL IMAGERY 

 

Spectral data was acquired on six dates during the growing season in order to follow the dynamics of 

crop and disease development over time using mainly a lightweight hyperspectral frame camera 

(Rikola Ltd., Oulu, Finland). This Fabry-Perot interferometer (FPI) based camera (Honkavaara et al., 

2013) was configured to register 16 narrow bands between 600 and 900 nm, chosen due to their 
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relevance to describe changes in leaf pigments (mainly chlorophylls) and leaf area (Clevers & Kooistra, 

2012).   

 

Due to intrinsic characteristics of the FPI system, images corresponding to different wavelengths were 

acquired sequentially, since changes in the wavelengths measured depend on internal camera 

adjustments. Consequently, a mismatch between images corresponding to different wavelengths in a 

given datacube occurred, an issue solved during photogrammetric processing in dedicated software 

(PhotoScan version 1.3, AgiSoft LLC, St. Petersburg, Russia). This procedure relied on the 

implementation of Structure from Motion (SfM) algorithm, with feature matching and self-calibrating 

bundle adjustment (Harwin, Lucieer, & Osborn, 2015)(Harwin et al., 2015). During image alignment 

and derivation of dense points cloud, imagery with full resolution was used (i.e., setting quality to 

‘high’ and ‘ultra-high’ for these steps in the software processing chain, respectively). Optimization of 

retrieved camera positions and orientations was performed based on 4 to 8 ground control points 

(depending on the acquisition date, which had their coordinates registered using RTK-GPS. Before the 

optimization step, sparse point clouds were filtered based on residuals and reconstruction uncertainty 

(10% of points with the largest values were removed in each case), as performed by (Honkavaara, 

Rosnell, Oliveira, & Tommaselli, 2017). Dense point cloud depth filtering was set to ‘mild’ to preserved 

details in the final 3D reconstruction of the crop surface. Considering the approximate flight height of 

80 m, a ground sampling distance between 0.04 and 0.05 m was achieved in the final orthorectified 

images. 

 

Conversion of digital numbers (registered with 12-bit radiometric resolution) to radiance, in mW/ (m2 

str nm), was performed using proprietary software provided with the camera (HyperspectralImager 

version 2.0). Corrections (e.g., flat field and dark current compensation) were made based on factory 

calibration parameters and on images taken with the sensor lens completely covered (dark reference), 

before flight. Radiance values were converted into reflectance factor through the empirical line 

approach using images, also acquired before flight, of a Spectralon reference panel with 50% 

reflectance (LabSphere Inc., North Sutton, NH, USA), taken under the same general illumination 

conditions observed during data acquisition. In this case, after radiometric and geometric correction 

of the data acquired the final product used to extract spectral information for the sampling units 

correspond to the mosaic of images acquired over the study area in each date composed by the 

nearest spectra/pixel to the nadir field of view. 
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APPENDIX B 

 
Key assessment of (European and Mediterranean Plant Protection Organization [EPPO], 2008) 

 

 
 
 
European and Mediterranean Plant Protection Organization  
2008 OEPP/EPPO, Bulletin OEPP/EPPO Bulletin 38, 268–271
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APPENDIX C         GRID SEARCH MODEL PERFORMANCES (BALANCED ACCURACY METRIC) 
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APPENDIX D – Disease Dataset
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APPENDIX E 

Confusion Matrix reduced metrics of model A and model B 

 

Model A: SVM (C= 45; gamma =0,01; number of components = 5) 
 

TPR TNR PPV NPV FPR FNR FDR ACC 

Non-Disease 0.97 0.95 0.85 0.99 0.05 0.03 0.15 0.95 

Up to 7% 0.65 0.88 0.82 0.75 0.12 0.35 0.18 0.78 

Above 7% 0.83 0.83 0.69 0.91 0.17 0.18 0.31 0.83 

Avg/total 0.81 0.89 0.79 0.88 0.11 0.19 0.21 0.85 

 

 

Model B: SVM (C= 35; gamma =0,02; number of components = 4) 
 

TPR TNR PPV NPV FPR FNR FDR ACC 

Non-Disease 0.97 0.94 0.82 0.99 0.06 0.03 0.18 0.94 

Up to 7% 0.74 0.88 0.84 0.80 0.12 0.26 0.16 0.82 

Above 7% 0.83 0.90 0.79 0.92 0.10 0.18 0.21 0.87 

Avg/total 0.84 0.91 0.82 0.90 0.09 0.16 0.18 0.88 

 

Abbreviations 

FP = False Positive 

FN= False Negative 

TP= True Positive 

TN= True Negative 

TPR = TP/(TP+FN) (Sensitivity, hit rate, recall, or true positive rate) 

TNR = TN/(TN+FP) (Specificity or true negative rate) 

PPV = TP/(TP+FP) (Precision or positive predictive value) 

NPV = TN/(TN+FN) (Negative predictive value) 

FPR = FP/(FP+TN) (Fall out or false positive rate) 

FNR = FN/(TP+FN) (False negative rate) 

ACC = (TP+TN)/(TP+FP+FN+TN) (Overall accuracy) 


