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1 Introduction

1.1 Introduction & Context

Over the last decade Big Data has become a buzzword used to define probably too many things. What is
undeniable is that the amount of data generated every day has not stopped increasing as well as the source
types where this data comes from. Estimations report that 2.5 quintillion bytes of data are generated every
day and a large portion of it is geographical location related [Lee and Kang, 2015]. NASA’s Earth Observing
System only, generates 1 terabyte of data every day [Leptoukh, 2005].

The large portion of data that is location aware is commonly named Geospatial Big Data [Lee and Kang, 2015,
Li et al., 2016]. Geospatial Big Data can be defined as the data whose "size, variety and update rate exceed
the capacity of commonly used spatial computing and database technologies to learn, manage and process data
with reasonable effort" [Shekhar et al., 2012]. This is only possible due to a shift in the way Geospatial data
is collected. Whereas it used to be based on technically demanding, accurate, expensive techniques, where the
measuring process was itself sometimes an art [Lee and Kang, 2015], nowadays there is less accuracy in certain
aspects and the problem is no longer how or where to get the data from, but what to do with it.

Much research has been done regarding Big Data Analytics, but less in terms of Geospatial Big Data Analytics.
The most common is related to location-based business or social media analysis, [Zeng et al., 2010, Phillips
et al., 2010] are examples of it, due to the economical potential and its huge expansion in the past 10 years.
This does not mean though that Geospatial Big Data Analytics are constrained or only meant for location-based
analysis at a user level.

The exponential growth of data globally is undeniable, either Geospatial or not, and the fact that it will not
stop, but increase more and more. Thus, the problem that arises is: how to deal with it?

Taking into account that a single processor is not enough to cope with Big Data, it has been necessary to shift
to other paradigms, such as cloud computing. Big Data is a new hype concept to many of us is probably because
before 2005 the general idea was that with every new generation of processors the processing speed incremented
as well, but later in the same decade it was seen that the Moore’s law [Schaller, 1997] is only achieved by
increasing the number of cores / nodes, since the clock cycles in the processors stopped increasing (Figure 1).

Figure 1: Clock CPU Scaling [Cook, 2013]

When this situation was encountered, research head for new methods, such as parallel distributed paradigms
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[Lee et al., 2014, Shekhar et al., 2012] as the best solution to deal with big data sets so that the data can be
split, sent to multiple processors and retrieved in such a way that it can be managed and processed.

The concept of parallel programming is not a new, but parallelizing implies a complete different mindset in
terms of software development. The biggest obstacle encountered is because of the non-determinism1 caused by
concurrent actions accessing a shared mutable state.

A solution for parallelizing has traditionally been functional programming. Pure2 functional programming
means coding without mutable variables, assignments and other imperative control structures. Functional
programming solves the non-determinism problem, also known as data races3, by avoiding mutable states or,
in other words, strictly controlling the simultaneous access to mutable data.

However, dealing with Big Data sets does not only reduce to a programming language scope, but an entire
system capable to deal with parallel distributed problems and algorithms is needed. Hadoop MapReduce was
one of the first platforms [Padhy, 2013, Hadoop, 2017] to appear. However, the best, simpler and more complete
framework at the moment is Apache Spark [Shanahan and Dai, 2015, Spark, 2017a].

Apache Spark is a cluster-computing platform that provides an API for distributed programming. It is by far
the most used platform thanks to its ease of use. It can run on different cluster types (e.g. Hadoop), clusters
managers (e.g. YARN) and it has different programming API’s in Scala, Java, R and Python [Spark, 2017a].
While performance is key when dealing with Big Data, the fact that there are so many API’s allows many
scientists and researchers to use it. The Apache Spark Stack (Figure 2) offers such interoperability.

Figure 2: Apache Spark Stack [Bengfort and Kim, 2016]

From a more technical perspective, Apache Spark ensures the scalability and fault tolerance, which are key
aspects in Big Data. On the one hand, scalability stands for the ability to adapt, so that any algorithms can
still run no matter how big the data set is (vertical scalability) or how many processors are used (horizontal
scalability). On the other hand, fault tolerance means that, in case a node in the system would fall, no data
would be lost.

Both key aspects are achieved on the base of Apache Spark’s distributed memory abstraction, Resilient Dis-
tributed Data sets (RDD) [Zaharia et al., 2012]. RDD’s are what is known as data types in traditional program-
ming, but for parallel distributed programming. Fault tolerance is achieved thanks to a lineage and immutability.
Immutability defines that any transformation applied to a file (RDD) will create another file. Thus, in case of

1Non-determinism: A mode of computation in which, at certain points, there is a choice of ways to proceed which cannot be
predicted in advance [Oxford English Dictionary, 2007].

2Many programming languages are non-pure functional or flexible.
3A data race occurs when two or more threads in a single process access the same memory location concurrently [Oracle, 2017].
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failure, all or a part of transformations can be reapplied by simply looking back at the lineage or the "history"
of transformations [Bengfort and Kim, 2016].

One last key aspect that has put out many features and libraries is Apache Spark’s Catalyst optimizer [Armbrust
et al., 2015]. Thanks to this extensible optimizer in the core of Apache Spark, applications and libraries can be
written on top of Apache Spark and still take advantage of all the benefits that the core engine provides.

Finally, parallel distributed programming ensures a faster time of calculation and a bigger capacity in terms of
data volume, but it comes at a cost. Since the data is organized in a completely different way than traditional
programming, the algorithms must adapt as well, so that the same process can be done. Therefor, how can
geospatial algorithms be parallelized.

Research suggest that it depends on the nature of the problem itself [Griffith et al., 2017], since many of the
geographical problems are easily parallelized or have the "parallel property", where a large problem involving
n locations can be subdivided in n smaller problems [Guan et al., 2011]. It becomes more difficult when
partitioning the space is not as easy as a regular grid [Guan and Clarke, 2010], but it is definitely possible and
both research and industry are more often looking towards "thinking in parallel" [Turton and Openshaw, 1998].

1.2 Problem definition & Research questions

In the last couple of years, a few software packages that run on top of Apache Spark have come out into the
open as GeoSpark [Lenka et al., 2016] or Magellan [Vasavi et al., 2018]. There already exist a few promising use
cases where Geospatial Analysis has been conducted using Apache Spark packages, such as finding out spatial
relations in Taxi and Limousines trips in NYC [Sriharsha, 2017] or how Hurricane Harvey affected the supply
chain of vessels visiting ports in the Gulf of Mexico in late summer 2017 [Hezbor and Hughes, 2017].

While specific examples have been reported in recent literature, where parallel distributed Geospatial software
packages were used, it is unclear whether these libraries are mature enough to be used in a broader scope. It
is obvious that the level of development can not be compared to traditional GIS tools, because the latter exist
for decades already. This does not mean that Apache Spark packages should not be taken into consideration
either.

In order to find an objective way to qualify the maturity of these software packages, a benchmark test is the
most suitable idea. Thus, the aim of this research is to answer the following question:

• What is the maturity of Geospatial Big Data software packages in Apache Spark? This creates the
following subquestions:

– How can the maturity of Geospatial Big Data software packages in Apache Spark be assessed?

– What is the performance of Geospatial Big Data software packages in Apache Spark compared to
traditional Geospatial software packages?

– Can Geospatial Big Data software packages in Apache Spark be used in a production level?

1.3 Structure of the document

First, the methodology followed to answer the research question is described as well as the tools used to develop
such methodology. Then the design of the different tests used in this research are presented. Later the results
of applying such tests are shown followed by the discussion of them. This reports ends with the conclusions
that have been extracted from conducting this research together with some recommendations for the future.
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2 Methods & Tools

2.1 Methods

The maturity of the software packages will be assessed in four steps as can be seen in Figure 3. The first thing
that will be described is the functionality of the software packages, which operations do they support. Then,
with a clear picture of the functions the software packages can perform, they will be put into practice and
compared against traditional software by means of a performance test. Later on, with the functionality and
performance results, the software packages will be used in a use case. Finally, the self experience of this research
will be also added to the final maturity description.

Figure 3: Methodology Flowchart

2.1.1 Functionality Test

The first step is to describe the software packages’ functionality. In order to do that in a quantifiable and
objective way, a benchmark test will be defined. This will be done by means of a literature review on both the
basic operations within the GIS scope and the already existing Spatial Benchmark tests. Based upon that it
will be decided on whether make use of an existing benchmark test or define one for this research, based on
already existing tests.

2.1.2 Performance Test

After describing every library’s utility, they will be put into practice. This will be done by means of defining
a set of queries that will test the vast majority of the functionality. The execution time will be taken as the
performance measurement. These measurements will be compared against the ones of performing the same set
of queries in a spatial RDBMS.
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2.1.3 Use case

The next step will consist on making use of the software packages in an environment where there is a spatial
data management system in production. This part will consist in replicating one or more situations that often
occur in the environment chosen in order to compare a traditional system with an Apache Spark one.

2.1.4 Own Experience

Finally, the own experience of the conductor of the research will be taken into account. The potential users
of these types of tools are GIS analysts that do not have a deep knowledge in Software Engineering. Then,
further aspects beyond technical issues will be taken into account, such as the documentation quality, if existing,
installation process or its speed of development.

2.2 Tools

The software packages to be tested in this research have been chosen based on some conditions. Due to time
constraints the number of software packages to be tested has been limited to four. At the same time, the chosen
software packages must be developed on top of Apache Spark. This decision is based on the scientific community
shift towards this specific tool regarding parallel distributed management tools. Finally, the existence or not of
publications where the software packages are used to solve a use case, has also been taken into account in order
to have an indication of its potential use.

2.2.1 Magellan

Magellan [Magellan, 2017] is a distributed execution engine for geospatial analytics on big data and it is im-
plemented on top of Apache Spark. The developers are active parts in Databricks4. It is the first library to
extend Spark-SQL to provide a relational abstraction for Big Geospatial analytics. In such a way, SQL queries,
or SQL alike queries, can be performed in Data Frames to evaluate geometric expressions, while the engine
(Spark-SQL) takes care of efficiently laying data out in memory during query processing, picking the right
query plan, optimizing the query execution with cheap and efficient spatial indexes. [Sriharsha, 2017, Spark,
2017a]

Magellan is part of the Apache Spark packages [Spark, 2017b] and can also be found in different Maven reposito-
ries [Maven, 2017]. Magellan’s only focus is vector data so far and defines three predicates: Within, Contains and
Intersects. Finally, documentation does not yet exist, besides a few incomplete explanations that can be found
in its Github repository and a couple of entries in a blog [Sriharsha, 2017] there is no proper documentation.
There is an example on a big data set of taxi trips in NYC.

2.2.2 GeoPySpark

GeoPySpark is being developed at Azavea, which is part of Location Tech [Azavea, 2017, Loation Tech, 2017].
GeoPySpark is actually a Python binding library for GeoTrellis, which is developed in Scala. By using PySpark,
it is able to provide an interface into the GeoTrellis framework using Python. The main reason why a Python
binding is being developed is because "GeoTrellis has a limited user base due to the geospatial community’s
preference for other languages such as Python and R" [GeoPySpark, 2017].

GeoPySpark is mostly dedicated to Raster Data only. This includes basic operations such as Map Algebra, but
also some distance operations, such as cost analysis, and transformations. As of today, there are plenty tutorials

4Databrics is a company founded by the creators of Apache Spark, that aims to help clients with cloud-based big data processing
using Apache Spark [Databricks, 2017a].
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and examples, in the form of python notebooks, that can be found in their Github repository ([GeoTrellis, 2017]).
At the same time, documentation is constantly updated and published in their website ([GeoPySpark, 2018]).

2.2.3 GeoSpark

GeoSpark is a Java software project created at Arizona State University’s Datasylab, together with Babylon,
a GeoSpark visualization extension. Its main goal is to provide a full-fledged cluster computing framework to
load, process and analyse large-scale spatial data in Apache Spark [Geospark, 2017].

GeoSpark is solely dedicated to Vector data. It has different methods for partitioning and indexing spatial
data, which adds flexibility depending on the data in use [Huang et al., 2017b]. It has a set of Java-like built-in
functions to perform spatial queries, but also a set of pre-defined PostGIS-like queries.

GeoSpark extends Apache Spark’s RDD’s to Spatial RDD’s to benefit from all the parallelization power with
a spatial property. Recently a connector to Spark SQL has been added. This allows benefiting from Apache
Spark’s Data Frames abstractions, with a spatial component, which reminds of how Magellan does it. Finally,
it is important to mention that "GeoSpark uses the real shape of a geometry to calculate the result which might
be slow. When using spatial tree index (Quad-Tree or R-Tree), GeoSpark always follows filter-refine model to
ensure the correct results" [Yu et al., 2016]. Most of the existing libraries only use MBR (Minimum Bounding
Rectangle), or they do not follow filter-refine model to refine their results after querying the tree-index.

2.2.4 GeoMesa

GeoMesa is an open-source, distributed, spatio-temporal database that allows large-scale geospatial analytics on
cloud and distributed computing systems. GeoMesa, as well as GeoPySpark or GeoTrellis, is being contributed
by Location Tech [Loation Tech, 2017], as well as CCRi [CCRI].

One of the key aspects of GeoMesa, as depicted in their website, is the interoperability that it has with a great
variety of Data Stores and File Systems, such as Apache Accumulo [Apache Accumulo, 2017], Apache HBase
[Apache HBase, 2017] or Apache Cassandra [Apache Casandra, 2017]. It also provides support for near real
time stream processing by using the Apache Kafka messaging system [Apache Kafka, 2017]. Finally, a whole
range of PostGIS-like queries in order to perform complex geospatial analytics tasks in a simpler way [Hezbor
and Hughes, 2017].

There already exist a few use cases that benefit of GeoMesa to process a large quantity of spatial data, such
as heat maps from maritime traffic [Hezbor and Hughes, 2017] or an animated visualization for the Superbowl
2015 Tweets [GIS Lounge, 2015] that demonstrate the capabilities of GeoMesa regarding GeoSpatial Big Data
analytics
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3 Tests Design & Definition

3.1 Functionality Test

3.1.1 Literature Review

Evaluating software is something that has been carried on for decades. Most of the research is focused on how
to measure the software quality [Jones, 2008, Fenton and Bieman, 2014, Coleman et al., 1994]. NASA provides
with an example of it with the 9 Technology Readiness Levels [Mankins, 1995]. These levels are used to define
the maturity state of a technology, being the first level the most basic principles and the ninth "Actual system
“flight proven” through successful mission operations".

Unfortunately, there is no widely used standard spatial benchmark [Ray et al., 2011]. Some research has been
narrowed towards the evaluation of spatial indexing. There has not been research focused on which operations
or algorithms should a GIS tool conceive [Myllymaki and Kaufman, 2003, Gurret et al., 1999].

In GIS any possible operation could be into Data exploration or exploratory statistics, Vector and Raster.
Much research suggests these three blocks as the best solution to subdivide GIS operations. [Chang, 2004], for
example, classifies the basic GIS analytic operations in the following blocks:

1. Data exploration

2. Vector Data Analytics

3. Raster Data Analytics

Data exploration is the starting point before any other kind of operation is going to be performed. During
explorations, descriptive statistics give an overview of the data, which is the base for further analyses. When
performing data exploration to geospatial data sets it only varies from non-geospatial data sets in the obvious
fact that the latter does not involve both spatial and attribute data.

Vector data refers to the data that uses coordinates to create spatial features such as points, lines and polygons.
One of the key aspects in Vector Data Analytics is the topology [Molenaar, 1998]. Topology in GIS is the spatial
relationship between features or objects. This is very important because is what defines the relative location
of an object and what ultimately defines any kind of operation on geospatial data. Topology serves as well to
create better quality control and greater data integrity.

There is a big range of operations regarding vector data, but a set of basic tools could be the following:

1. Buffering: Operation based on the concept of proximity. It creates two surfaces; one within a specified
distance from the feature and the other beyond that distance. The buffer area is the one within the two
boundaries.

2. Overlay: Operation that combines the geometries of two spatial data sets. Output must be the inter-
section of the inputs with both attributes on it. Example methods are: Union, Intersects, Symmetrical
Difference or Identity [Chang, 2004].

3. Distance Measurement: Measuring straight (Euclidean) lines between features, geodetic distances or
spheric distances.

Finally, Raster and its basic operations are illustrated in [Chang, 2004]. Rasters refer to those datasets in form
of a regular grid or pattern. In a raster data set, each cell represents a value at a given location. The value can
represent different things; Digital Numbers (DN), height, precipitation volume, temperature, etc. One of the
reasons for a very extended raster usage is the benefits that come with regular patterns when storing data and
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(a) (b)

(c) (d)

Figure 4: Local (a), Focal (b), Zonal (c) and Global (d) Map Algebra [GIS Dictionary ESRI, 2015]

computing. This is, when data is organized in regular grids, it can be accessed easily since the data location
can be known beforehand and does not change.

Raster Data Analytics can be performed in four different levels, also known as Map Algebra5:

1. Local (Figure: 4a): This is the core of the raster analysis [Molenaar, 1998]. These operations happen at
a cell level, the value in the output raster is at the same location on the input raster. Examples of cell
operations are [GIS Geography, 2017]:

• Arithmetic operations: sum, subtraction, multiplication, division.

• Statistical operations: minimum, maximum, mean, median, etc.

• Relational operations: greater than, equal to, etc.

2. Focal (Figure: 4b): It involves a central cell and a set of surrounding ones. Used mostly for filtering and
convolution. Moving windows are also examples of zonal operations.

3. Zonal (Figure: 4c): In this type, the new cell value is based on a function of different cell values from
different rasters (a minimum of two) based on clustering. The input zones can be contiguous (cells spatially
connected) or non-contiguous (cells with the same value) [Ligtenberg, 2016]

4. Global (Figure: 4d): This type of operations are those that involve the whole raster. Euclidean distances
or cost distances are examples of global operations in raster.

One last set of basic operations that apply to both types of spatial data are geostatistics, i.e. operations
that relate to spatial correlation, estimation (Kriging) and simulation. Geostatistics are broadly used in many
situations that involve sampling and that require analyses and prediction based on their location [GIS Dictionary
ESRI, 2015].

5A language that defines a syntax for combining map themes by applying mathematical operations and analytical functions to
create new map themes. [GIS Dictionary ESRI, 2015]
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Another broadly used geostatistics method is what is commonly known as "Hot Spot Analysis". This type of
analysis uses vectors to identify the locations that are statistically significant as "hot spots" or "cold spots" [Lu
et al., 2012].

Finally, some publications [Chang, 2004] mention Map Manipulation as a basic GIS tool. It refers to the usage
of a GUI to perform operations. Even though having a GUI can be very handy to reach a broader audience, it
is beyond the scope of this research. In all, this summarizes the most basic operations within a GIS system.

Based on these tools and more complex ones, after years of development in GIS software, different GIS applica-
tions appeared that could reach a broader audience. Those applications include desktop [QGIS, 2016, gvSIG,
2015, Marble, 2014, GRASS Development Team, 2015, Harris Geospatial, 2016, ESRI, 2016, Autodesk, 2015,
Bentley, 2017], both open source or proprietary software and GIS libraries and Geospatial Data Management
tools [Geo Tools, 2016, PostgreSQL, 2015, GDAL, 2016].

The emerging of many platforms dedicated to the same end, raised the need of a reference test which a Geospatial
tool could be tested against.

One of the first Geospatial Data Benchmark test defined was SEQUOIA 2000 [Stonebraker et al., 1993] and its
main characteristic was the fact that it was only tapered at Earth Sciences and focused on raster data. At the
same time, this benchmark only specifies the queries, and rules for reporting price/performance analysis.

After SEQUOIA 2000, more spatial data benchmark tests research came out. One example is Jackpine [Ray
et al., 2011], which is a benchmark test defined at the University of Toronto based on SEQUOIA 2000 to evaluate
spatial database performance. Its main goals are: to be able to support a great number of different databases
and to include a comprehensive set of workloads. The test is divided in two smaller benchmarks:

1. Micro Benchmark: This benchmark has the goal to test the basic topological relationships and spatial
analysis functions. So if this is passed, the Spatial Data Base would provide minimal coverage.

2. Macro Benchmark: The Macro Benchmark scenarios attempt to model some of the new emerging
geospatial web services. Each scenario consists of a set of queries that make up each of the scenarios.

Another example in Spatial Data Benchmark tests is VESPA (VEctorial SPAtial) [Paton et al., 2000]. This
benchmark test was created due to the necessity of a benchmark for vector spatial data bases. In the test, it is
stated that a benchmark test should always satisfy the following requirements:

• Ease of use. It should not be time consuming since it is only meant to be a test.

• Wide ranging functionality. It should asses a great number of features.

• Scalability. The data sets generated should be as small or as big as needed.

In order to achieve a wide ranging functionality, VESPA consists of a set of 26 tasks, aggregated in ten different
groups:

• Updates: Insertion and deletion of objects.

• Set operations: Union polygons.

• Containment operations.

• Overlap operations.

• Intersect operations.

• Adjacent operations.
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• Search inside area: Buffer search and window search.

• Measurement operations: Size, lengths, areas and Euclidean distances.

• Spatial Analysis operations: Aggregation.

• Non-spatial operations: Selection, join, aggregation.

It has been decided to define a Functionality Benchmark test because there is no test that adapts to the particular
needs of these software packages. The defined test, is based on the methodology approach described in VESPA,
but with the basic operations stated in Chang’s and Molenaar’s approach [Chang, 2004, Molenaar, 1998] on
what the basic operations should be for any GIS tool. This responds to the need of creating a Functionality
Benchmark test easily reproducible that takes into account the youth of these software packages.

3.1.2 Functionality Benchmark Test Definition

The operations that are part of this test have been divided in an incremental order, based on their complexity.
For every operation, the final score is given based on the actual coverage of that operation. It could be the case
that one operation is supported, but not for all the possible geometry pairs. This aims to represent a clearer
picture of the actual state of development of those libraries. All operations count the same to the final score of
the test. The test can be seen in Table 2.

In the next paragraphs, the different classes of operations contained in the test will be explained:

• Reading Data

Before performing any kind of operation, data needs to be retrieved. In this first section of the test, the
different file formats that every software package states to be able to perform with, will be tested and a
description of the process will be given.

In Table 1, five vector and raster file formats have been considered as the basic file formats that should be
accepted in any GIS tool. They have been selected either for its extended use (e.g. Shapefile, GeoTIFF),
for its readiness (e.g. Geo(JSON)) or for its relation with the big data scope (J2).

Vector Raster

Text Files Text Files

XML GeoTIFF

WKT Jpeg

GeoJSON J2

Shapefile JSON

Table 1: Basic File Formats

• Queries:

A query or request is the most basic action that can be performed to a data set, whether is spatial or
not. It is a subset from the entire data set, based on conditions defined by the user. Querying does not
imply any change or modification in the original data set or its meaning. This type of operations have
been inherited from the traditional Relational Database Management Systems (RDBMS).

Queries can be subdivided into:

– Attribute Data queries: This type of queries can be split, at the same time, into simple and
complex queries. Simple queries correspond to those requests that only involve one table, whereas
complex refer to those that involve two or more tables and the usage of joins.
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– Spatial Data queries: Feature selection based on spatial relationships and how spatial joins are
applied. In this sort of query, topology plays a crucial role [Molenaar, 1998] and its correct and
precise management will be tested as well.

– Raster Data queries: Raster selection based on raster attributes.

– Temporal Data queries: This type of queries is also known as "versioning". Sometimes entities
change through time, but it is necessary to keep all the versions. GIS has not been good at this
traditionally, but this topic has become of more relevance.

• Transformations:

Transformations are operations that modify the data without changing its thematic and/or geometric
meaning. Transformations can be applied to data sets of the same data type or to change from one to
another.

The first group includes the coordinate reference system transformations. This sort of transformations
are crucial in any GIS system. A common reference system must exist among all data sets that take part
in any operation so that it can be performed satisfactorily. It is not strange that data sets that come
from different sources are referenced in different systems. Consequently, transforming different reference
systems is an important tool [Robinson, 1960].

The second kind of transformation refers to the transformation from vector to raster and vice versa. This
type of transformations may occur when particular operations of a data type are needed and data sets are
not of that data type.

• Alterations:

Alterations are the most complex spatial operation. Alterations modify the thematic and/or geometric
definition of the original data set. They imply combining the original files into another one in order to
obtain the information needed. Multiple operations across the data occur and this is why alterations are
very time-consuming.

There are many operations within the block of alterations, but the most basic and common ones that have
been considered are the following:

– Buffering: Returns a polygon covering all area within a given distance from the input geometry.
The distance can be both constant or variable (cost analysis) [Open Geospatial Consortium, 2011].

– Intersects (Figure 5): The topological integration of two spatial data sets that preserves features
that fall within the spatial extent common to both input data set [GIS Dictionary ESRI, 2015, Open
Geospatial Consortium, 2011].

– Within (Figure 6): Returns the point, line, or polygon features (or portions of these features) that
are within the boundaries of polygons in another layer [GIS Dictionary ESRI, 2015, Open Geospatial
Consortium, 2011].

– Contains: A spatial relationship in which a point, line, or polygon feature or set of features is
enclosed completely within a polygon [GIS Dictionary ESRI, 2015, Open Geospatial Consortium,
2011]. (Contains and Within are "inverse" from each other).

– Union (Figure 7): A topological overlay of two or more polygon spatial datasets that preserves the
features that fall within the spatial extent of either input dataset; that is, all features from both
datasets are retained and extracted into a new polygon dataset [GIS Dictionary ESRI, 2015, Open
Geospatial Consortium, 2011].

– Map Algebra: Operations that can be applied to one or more raster in different levels:

∗ Local: Set of operations that occur at a cell level.
∗ Zonal: Set of operations that occur in the surrounding area of a cell.
∗ Focal: Set of operations that occur in areas. Those can be contiguous or non-contiguous.
∗ Global: Set of operations that involve the whole raster.

– Distance operations: This is the last set of alterations. It includes the calculation of Euclidean
distances (shortest separation between features) and cost distances.
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Figure 5: Intersects operation with different vector data types [Open Geospatial Consortium, 2011]

Figure 6: Within/Contains operation with different vector data types [Open Geospatial Consortium, 2011]

Figure 7: Union of two layers [GIS Dictionary ESRI, 2015]

• Geostatistics:

Geostatistics are a subclass of statistics used to analyze and predict the values associated with spatial or
spatiotemporal phenomena [GIS Dictionary ESRI, 2015]. It is applicable to any function distributed in
real space. One of its principles, satial correlations, is based on Tobler’s first law of geography: "everything
is related to everything else, but near things are more related than distant things".

Geostatistics are widely used in many areas of science and engineering, such as mining, environmental
sciences or catastrophe-event management just to mention a few examples.
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Operation Description

Reading Data Accepted file formats

Queries

Selection by attributes

Thematic Data
Query

Raster Data
Query

Spatial Geometric Data
Query

Temporal Temporal Data
Query

Coordinate
System

Transform from a
coordinate system

to another

Transformations Vector -> Raster Convert a vector
file into raster

Raster -> Vector Convert a raster
file into vector

Buffering
Create a buffer
in a point, line
and polygon

Intersects Feature intersects
feature

Within Feature within
feature

Contains Feature contains
Feature

Alterations Union Union of two features
that share spatial extent

Local Operations that occur
at a cell level

Zonal
Operations that occur

in a small area
around a central cell

Map Algebra
Focal

Operations that occur
in areas that share

attributes

Global Operations that occur
in the whole raster

Distance
Operations

Area, length,
Euclidean Distance,

Cost Distance

Geostatistics
Spatial interpolation

(Kriging)
Hot Spot Analysis

Total

Table 2: Reference table for functional test
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3.1.3 Functionality Benchmark Test Datasets

The functionality benchmark test will be conducted in all libraries using the same data sets. In order to facilitate
validation, a set of simple geometries and grids will be constructed.

In the case of vector data, this means points, lines and polygons manually created using the libraries constructors.
With such controlled datasets it can be easily depicted whether the software packages implementations produce
the correct results or not. Figure 8 shows an example of the possible topological relationships for polygons.
They are defined as squares and contain:

• A polygon completely inside another polygon.

• A polygon intersecting another polygon.

• A polygon in the border of another polygon.

Figure 8: Example of topological relations within polygons.

For the raster data, a squared matrix 4 by 4 filled with 1’s will be defined as the dataset.

Figure 9: Example matrix for raster data set.
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3.2 Performance Benchmark Test

In order to measure the performance, a set of queries has been defined, based on the functionality test and its
results, to be tested in the new software packages as well as in traditional software. For the latter, PostgreSQL
with its spatial extension PostGIS will be used. At the beginning it was intended to define two different
performance tests; one for vector data and the other for raster data. Unfortunately, due to time constraints,
only a vector data performance test has been defined.

In the next paragraphs, the different set of queries are explained. For a clearer understatement all queries have
been written in SQL or pseudo-SQL, although this does not mean that the real code looks like that. Except for
the ordering in returning the results, all queries in all platforms perform the same way. Finally, the number of
results has been specified to give an idea of the query size. The operations have been subdivided in the same
way as in the Functionality Benchmark Test.

The datasets used for this test are explained later in Section 3.2.4

3.2.1 Queries

Attribute Query: Although this type of query does not involve spatial operators, it is broadly used, necessary
and will serve the purpose of seeing Apache Spark’s performance with different types of datasets. The following
queries have been subdivided into two groups.

The first one contains 4 queries to a text file (csv), where the first two queries are performed to a 65000 records
text file and the other two queries are performed to a 12000000 records text file.

No. Query No. of Results

1 SELECT * FROM trips_split WHERE trip_distance > 4.5 10141

2 SELECT * FROM trips_split WHERE passenger_count > 2 9670

3 SELECT * FROM trips WHERE trip_distance > 4.5 1910474

4 SELECT * FROM trips WHERE passenger_count > 2 1823993

Table 3: Text File Attribute Queries

In the second group, there are two queries to two different Shapefiles [ESRI, 2016]. Although the queries are
not spatially related it has been considered important to see how do the libraries behave when querying the
attribute table of a spatial file.

No. Query No. of Results

1 SELECT * FROM neigh. WHERE neighborhood LIKE ’Brooklyn’ 51

2 SELECT * FROM nyc_zoning WHERE zones LIKE ’PARK’ 1549

Table 4: Shapefile Attribute Queries

Within the two different groups, since the queries are subdivided as well between a smaller data set and a bigger
one, both PostGIS and Apache Spark’s scalability will be tested. Thus, how do their performance behave when
the data sets increase their number of features.

Containment Query: Two queries to return all the points that fall within a dataset of polygons.

17



No. Query No. of Results

1 SELECT * FROM trips_split WHERE trips_split WITHIN neigh. 65151

2 SELECT * FROM trips WHERE trips WITHIN neigh. 11498018

Table 5: Within Queries

Intersection Query: Three intersection queries between different geometries:

No. Query No. of Results

1 SELECT * FROM neigh WHERE neigh. intersects nyc_zoning 5861

2 SELECT * FROM streets WHERE streets intersects with neigh. 18527

3 SELECT * FROM streets WHERE streets intersects with nyz_zoning 25958

Table 6: Intersection Queries

KNN Query: Two queries that returns the closest "K" features, 1000 in this particular case, from a given
feature, e.g. a point.

No. Query No. of Results

1 SELECT 1000 closest points to KnnQueryPoint from trips_split 1000

2 SELECT 1000 closest points to KnnQueryPoint from trips 1000

Table 7: kNN Queries

3.2.2 Transformation

Transform every data set from a Geographical Reference System to a Projected Reference System. For this
particular case, since all the datasets were retrieved in WGS84 (EPSG: 4326), and considering their geographical
location, they will be projected to NAD83 / New York Long Island (EPSG: 2263).

No. Query No. of Results

1 SELECT ST_TRANSFORM(trips_split.geom, 2263) FROM trips_split 66454

2 SELECT ST_TRANSFORM(trips.geom, 2263) FROM trips 12484276

3 SELECT ST_TRANSFORM(neigh.geom, 2263) FROM neigh. 195

4 SELECT ST_TRANSFORM(zones.geom, 2263) FROM zones 4547

5 SELECT ST_TRANSFORM(streets.geom, 2263) FROM streets 230682

Table 8: Coordinate Reference System Transformation

3.2.3 Alterations

Due to the functionality limitations this part of the test will only consist in creating a 100 meter buffer for
every data set. This is not a simple query, but an Alteration, which will modify the thematic and/or geometric
definition of the original data set.
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No. Query No. of Results

1 SELECT ST_BUFFER(trips_split.geom, 100) FROM trips_split 66454

2 SELECT ST_BUFFER(trips.geom, 100) FROM trips 12484276

3 SELECT ST_BUFFER(neigh.geom, 100) FROM neigh 195

4 SELECT ST_BUFFER(zones.geom, 100) FROM zones 4547

5 SELECT ST_BUFFER(streets.geom, 100) FROM streets 230682

Table 9: Buffer Creation queries

3.2.4 Performance Benchmark Test Datasets

The data used for the Performance Benchmark Test will be open data. In such way, this test can be reproduced
by anyone, if necessary.

Variable
Name

Data
Type Descriptiona Size Feature

Count Data Origin

Trips Point
CSV Containing pickup
points for taxi and limousines
in NYC, January 2015

1.8Gb 12000000 Taxi & Limousine
Commission (TLC), NYC.b

Trips_split Point A slice of the Taxi and
Limousine Data set 10Mb 65000 Taxi & Limousine

Commission (TLC), NYC

Streets Line
Public streets compiled
from orthoimagery for
the State of NY

150Mb 230000 NYC Open Data Portalc

Neigh. Polygon Neighborhoods of NYC 3.4Mb 192 NYC Open Data Portal

Zones Polygon NYC Zoning Districts 6.1Mb 4500 NYC Open Data Portal

Table 10: Performance Test Data sets

aTables’ schemas can be found in Appendix A
bhttp://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
chttp://www1.nyc.gov/site/planning/data-maps/open-data.page

Unfortunately, due to time constraints and a lack of functionality this research has not conducted a Raster
Performance Test.

3.3 Use Case

At Wageningen Environmental Research (Alterra), they are currently working and developing the Agro Data
Cube. As its own name indicates this is a cube of data containing yearly information about all the fields in The
Netherlands since 2012 until today. Currently, it is stored as a database in PostgreSQL.

In this cube, as can be seen in Figure 10 (in Dutch), one axis corresponds to time (years (Tijd)), another one
to space (physical representation (Ruimte)) and the last axis is formed by descriptive layers (Kenmerken) such
as, weather (Meteo), growth (NDVI), soil type (Bodem), crop type (Gewas), acreage (Areaal) and elevation
(Hoogte).
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Figure 10: Agrodatacube [Knapen]

The AgroDataCube contains a set of more than a hun-
dred tables that serve for a wide range of purposes.
Table 11 describes the used datasets for this part of
the research.

A few queries came up that were suitable for being
tested in Agro Data Cube’s own environment and
Apache Spark. Common queries involve retrieving in-
formation of areas or regions, for a specific time span.
It was then decided to analyze and compare the per-
formance with the following query type:

• Find all the fields that are within a bounding
box and have a certain crop

• Define a point (x,y) and retrieve which crops did
it have for all the years

• Define a polygon and find all the polygons that overlap with it throughout the years.

• Define a polygon with a hole in the middle and repeat the above query.

• Overlap the parcels table with the soil physical properties’ grid to obtain every field’s physical properties.

• Find the best meteorological station per field.

• Retrieve what type of crops did X amount of points had for all the years.

For all the queries that require retrieving information for a point, as this is very small, a fishnet6 has been
created covering the Province of Utrecht, in The Netherlands. The result grid has a 100 meter spatial resolution
and contains around 225.000 points. In Table 11 can be seen a description of the different data sets involved.

Variable
Name Data Type Descriptiona Size Feature Count

Gewaspercelen Polygon

Shapefile containing the
geometries for all the fields
in The Netherlands between
2012 and 2016

3.3Gb 4500000

Meteo_station Point
Point Dataset containing
the different meteorological
stations in The Netherlands

1.5 Mb 50

Bofek_2012 Polygon

Vector data set containing
the spatial distribution for
72 different physical soil
properties in The Netherlands.

2.5 Mb 41251

Utrecht_fishnet Point Fishnet of the approximate
area of the Province of Utrecht 13.1Mb 225000

Table 11: Use Case Data sets

aTable schemas can be found in Appendix A

Although being stored as a traditional RDBMS, the Agro Data Cube is located in a high performance server,
an HP Proliant BL460c Gen9 server blade, with 40 Intel Xeon CPU’s ES-2650 v3 at 2.3 Ghz, 128 GB RAM

6A fishnet is a net of rectangular cells. These cells can be defined as Points, Polylines or Polygons.
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memory, and 2 TB storage. Taking into account such environment, this research has decided to find out what
would be the specifications for an Apache Spark cluster to perform as fast as the Agro Data Cube server, or
how does a cluster with similar specifications as the Agro Data Cube server perform.

4 Functionality Test Results

Next, the results of conducting the functionality benchmark test in the different software packages are presented.
The code generated to conduct such tests can be found in https://git.wur.nl/geospatial_spark/functionality_test

4.1 Magellan

4.1.1 Reading Data

Magellan is capable of loading any kind of text file (CSV, TXT, TSV,...), GeoJSON files, Shapefiles and
OpenStreetMaps XML files. Well Known Text (WKT) files are stated to be able to be read as well, but there
is an implementation missing.

Vector Raster

File Type Supported File Type Supported

Text Files 1 Text Files 0

XML 1 GeoTIFF 0

WKT 0 Jpeg 0

GeoJSON 1 J2 0

Shapefile 0.8 JSON 0

3.5/10

Table 12: Magellan Predicates Support

The reason of the grade given to Shapefile in Table 12 is because if the data set contains MultiPolygons it
throws an error.

Codewise, loading files is a very straight-forward action. It always follows the same pattern, where the Spark-
Context, file path and extra options have to be specified. So, the difference between one file type or another
relies in the "type" option specification. Since the library inherits capabilities from Spark-SQL and the data is
loaded as a Data Frame, there are plenty of other options that can be specified [Databricks, 2017b].

One of the most useful parameters when loading a text file is that the user can create geometry a column (Point,
Line or Polygon) on the fly.

4.1.2 Data types

Magellan has support for the following data types:

• Point

• Line
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• PolyLine

• Polygon

Magellan has simple constructor methods to create any single object for the different data types. Point is the
most basic feature and with it the rest of object types can be built: e.g. a Line, is defined by two points and a
Polyline is nothing but a set of lines. Finally, a Polygon is defined by its vertices, which are Points.

4.1.3 Queries

The fact that it is implemented on top of Apache Spark and that it extends Spark-SQL provides a relational
database abstraction for big geospatial analytics [Sriharsha, 2017]. This abstraction implies that coding spatial
queries using Magellan does not differ a lot from traditional SQL queries. There are built-in functions to define
a bounding box and perform a spatial query on that.

4.1.4 Transformations

Magellan has no implementation yet for any kind of transformation. Neither rasterization nor vectorization are
considered, and Coordinate Reference System transformation is not implemented either.

4.1.5 Alterations

Magellan supports the following predicates:

• Within

• Intersects

• Contains

These predicates though, do not apply to all the possible geometry objects combinations. Table 13 illustrates
the existing implementations.

Within Intersects Contains

Point - Line 1 0.5 1

Point - Polygon 1 1 1

Line - Line 0 1 0.5

Line - Polygon 0.25 1 0.5

Polygon - Polygon 0 0.75 0.75

Total 2.25/5 4.25/5 2.75/5

Table 13: Magellan Predicates Support

In Table 13, a Line and a Polyline are treated the same, since they produced the same results. The fact that
some predicates do not have a whole point for some pair of data types means that some possible topological
relationships have not yet been implemented, e.g. in Line-Polygon the grade is 0.25 because of the four possible
topological relations (A Line completely inside a Polygon, a Line crossing a Polygon, a Line in the border of a
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Polygon and a Line outside a Polygon), the only implementation that exists is a Line that crosses a Polygon.
Similar situations apply for other cases, but for more in depth specification please refer to the repository:
https://git.wur.nl/geospatial_spark/functionality_test
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Operation Description Supported

Reading Data Accepted file formats 0.35

Queries

Selection by attributes

Thematic Data
Query 1

Raster Data
Query

Spatial Geometric Data
Query 1

Temporal Temporal Data
Query

Transformations

Coordinate
System

Transform from a
coordinate system

to another

Vector -> Raster Convert a vector
file into raster

Raster -> Vector Convert a raster
file into vector

Alterations

Buffering
Create a buffer
in a point, line
and polygon

Intersects Feature intersects
feature 0.8

Within Feature within
feature 0.5

Contains Feature contains
Feature 0.6

Union Union of two features
that share spatial extent

Map Algebra

Local Operations that occur
at a cell level

Zonal
Operations that occur

in a small area
around a central cell

Focal
Operations that occur
in areas that share

attributes

Global Operations that occur
in the whole raster

Distance
Operations

Area, length,
Euclidean Distance,

Cost Distance

Geostatistics
Spatial interpolation

(Kriging)
Hot Spot Analysis

Total 4.5/20

Table 14: Magellan Functionality Test
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4.2 GeoPySpark

4.2.1 Reading Data

Figure 11: Example of a GeoPySpark catalog [GeoPyS-
park, 2018]

GeoPySpark is capable of interacting back and forth
with a variety of file systems. Any local file system,
HDFS (Hadoop Distributed File System), S3 (Ama-
zon web service storage), Apache Cassandra7, Apache
HBase8 and Apache Accumulo9.

At the same time, when uploading layers, GeoPyS-
park stores them in a specific way, known as catalog.
Figure 11 is an example directory structure of a cata-
log where every layer of data has its own multilayered
data and another layer specifically for the metadata.

Besides being able to interact with many file systems,
Table 15 shows the file types GeoPySpark is capable
of reading and writing.

There is a unique method, get, to load files in memory.
But then methods like write and read can be used
to save and retrieve data to and from the catalog.
This straight-forward manner of dealing with data set
simplifies the data handling process.

Vector Raster

File Type Supported File Type Supported

Text Files 0 Text Files 1

XML 0 GeoTIFF 1

WKT 0 Jpeg 1

GeoJSON 0 J2 1

Shapefile 0 JSON 1

Total: 5/10

Table 15: GeoPySpark File Types

4.2.2 Queries

There are two ways of retrieving data from a saved layer in the catalog. One is reading the entire layer using
the method read, and the other is selecting a portion using the method query.

When using the method query a geometry can be passed to clip the specific area of interest. This geometry can
be passed as a shapely.geometry10 (which can be either a Polygon or a MultyPolygon), the WKB representation
of the geometry, or an Extent. This will define one or more windows and the pixels that fall completely inside
it will be returned.

7Apache Cassandra is a NoSQL database management system.
8Apache HBase is a distributed, non-relational database.
9Apache Accumulo is a sorted, distributed key/value store.

10Shapely is a Python library dedicated to the manipulation and analysis of geometric objects in the Cartesian plane [Shapely,
2017].
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By default, the same Coordinate Reference System is expected in both the geometry and the queried layer, but
if that is not the case, the EPSG code can be specified while querying.

In addition, GeoPySpark allows the creation of Spatial Temporal layers. This means that every layer can have
one or more time-stamp column which will allow temporal queries. The layer can then be queried by a specific
instant or an interval.

The user can then decide to query by extent, time or both at the same time by just specifying or not the desired
parameters when typing the query

4.2.3 Transformations

GeoPySpark has bindings for Proj.4 [OSGeo, 2016], which is a standard UNIX filter function that performs
conversions between cartographic projections. This allows to transform or reproject any uploaded layer.

Finally, since it is a raster library, there is a Rasterize method. It determines the set of pixel values covered
by each vector element and assigns a supplied value to that set of pixels in a target raster. One inconvenient
of this method is the fact that the geometries must be Shapely geometries and there is no specification on the
possible resampling methods.

4.2.4 Alterations

GeoPySpark has support for Map Algebra operations on rasters. Unfortunately, as of today and unlike its
parent GeoTrellis, GeoPySpark only allows local and focal operations.

Those operations run only on TiledRasterLayer and if a local operation requires multiple inputs, those inputs
must have the same layout and projection.

Local operations include arithmetic operations (addition, substraction, multiplication and division) using inte-
gers, floats or other TiledRasterLayer.

Focal operations need an operation and a neighborhood definition. The neighborhood can be a square (squared
neighborhood), a circle (the radius determines which cells fall within the bounding box), a wedge (a wedge
neighborhood; a radius, a starting angle and an ending angle have to bee specified), an annulus (ring) and a
NESW (North, East, South, West).

Finally, cost distance operations can also be performed using GeoPySpark.
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Operation Description Supported

Reading Data Accepted file formats 0.5

Queries

Selection by attributes

Thematic Data
Query 1

Raster Data
Query 1

Spatial Geometric Data
Query 1

Temporal Temporal Data
Query 1

Transformations

Coordinate
System

Transform from a
coordinate system

to another
1

Vector -> Raster Convert a vector
file into raster 1

Raster -> Vector Convert a raster
file into vector

Alterations

Buffering
Create a buffer
in a point, line
and polygon

Intersects Feature intersects
feature

Within Feature within
feature

Contains Feature contains
Feature

Union Union of two features
that share spatial extent

Map Algebra

Local Operations that occur
at a cell level 1

Zonal
Operations that occur

in a small area
around a central cell

1

Focal
Operations that occur
in areas that share

attributes

Global Operations that occur
in the whole raster

Distance
Operations

Area, length,
Euclidean Distance,

Cost Distance
1

Geostatistics
Spatial interpolation

(Kriging)
Hot Spot Analysis

Total 9.5/20

Table 16: GeoPySpark functional test
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4.3 GeoSpark

4.3.1 Reading Data

Table 17 shows the fie types that GeoSpark is capable of loading.

Vector Raster

File Type Supported File Type Supported

Text Files 1 Text Files 0

XML 0 GeoTIFF 0

WKT 1 Jpeg 0

GeoJSON 1 J2 0

Shapefile 1 JSON 0

Total 4/10

Table 17: GeoSpark Reading capabilities

Besides file types that appear in Table 17, GeoSpark has support for NASA Earth Data NetCDF/HDF11

For CSV, TSV, WKT and GeoJSON it is enough with specifying the FileDataSplitter when using the constructor
to load the data set. Every accepted Data Type (Circles, LineStrings, Points, Polygons or Rectangles) has a
variety of different constructors, depending on the arguments given, but all of them need the location ad the
splitter type, at least. For both Esri Shapefile and NASA Earth Data NetCDF/HDF there are specific methods.

4.3.2 Queries

After geometrical objects are retrieved as Spatial RDD or Spatial Data Frames, users can then call any spatial
query operations defined. GeoSpark will run over the in-memory cluster, decide how spatial object-relational
tuples could be stored, indexed and accessed using SRDDs. It then returns the spatial query results. The
built-in queries shown below:

• Range Query: In GeoSpark, range query is constrained to a defined query window in the form of an
Envelope.

• Join Query: There are two different types of Join Queries:

– Distance Join Query: Inner joins two sets of geometries on a given distance from one of them.
What is commonly known as a buffer. It returns RDD of pairs where each pair contains a geometry
and a set of matching geometries.

– Spatial Join Query: Inner joins two sets of geometries on "Contains" or "Intersects" relationship,
which has to be specified when calling the method. It returns RDD pairs, where each pair contains
a geometry and a set of matching geometries.

• KNN Query: Returns the "K" closest features from a layer to a point.
11HDF: Hierarchical Data Format is a set of file formats (HDF4, HDF5) designed to store and organize large amounts of data.

NetCDF (network Common Data Form) is a data model for array-oriented scientific data, as well as a freely distributed collection
of access libraries that support implementation of the same data model, and a machine-independent data format. Together, the
interfaces, libraries, and format support the creation, access, and sharing of scientific data.
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4.3.3 Transformations

GeoSpark has support for Coordinate Reference System transformations, by means of supplying the EPSG
code, of any kind of data type. Once the method is called, for the transformation to persist, Analyze method
must be applied to the desired variable. There is no support for any transformation between raster and vector
or vice versa.

4.3.4 Alterations

Finally, in GeoSpark has a set of Geometrical Operations defined, as can bee seen in Table 18. Besides the
three predicates shown, Polygon Union and Boundary predicates can also be performed

Within Intersects Contains

Point - Line 1 1 1

Point - Polygon 1 1 1

Line - Line 1 1 1

Line - Polygon 1 1 1

Polygon - Polygon 1 1 1

Total 5/5 5/5 5/5

Table 18: GeoSpark Predicates support
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Operation Description Supported

Reading Data Accepted file formats 0.5

Queries

Selection by attributes

Thematic Data
Query 1

Raster Data
Query

Spatial Geometric Data
Query 1

Temporal Temporal Data
Query

Transformations

Coordinate
System

Transform from a
coordinate system

to another
1

Vector -> Raster Convert a vector
file into raster

Raster -> Vector Convert a raster
file into vector

Alterations

Buffering
Create a buffer
in a point, line
and polygon

1

Intersects Feature intersects
feature 1

Within Feature within
a feature 1

Contains Feature contains
Feature 1

Union Union of two features
that share spatial extent 1

Map Algebra

Local Operations that occur
at a cell level 0

Zonal
Operations that occur

in a small area
around a central cell

0

Focal
Operations that occur
in areas that share

attributes
0

Global Operations that occur
in the whole raster 0

Distance
Operations

Area, length,
Euclidean Distance,

Cost Distance

Geostatistics
Spatial interpolation

(Kriging)
Hot Spot Analysis

Total 8.5/20

Table 19: GeoSpark functional test
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4.4 GeoMesa

Unfortunately it has not been possible to realize any of the test above mentioned to GeoMesa. Its complicated
architecture and its focus towards a more software engineering audience made impossible for this research to
even set it up due to time constraints.

5 Results on performance test

In order to conduct the performance test in a cluster environment, the Amazon Web Services EC2 [Amazon
Web Services, 2017a] have been chosen. At the same time, benefiting from the AWS Educate Starter Account
[Amazon Web Services, 2017c], the m4.large instance type [Amazon Web Services, 2017b] was used. This type
of instances have two CPU’s each, with 6Gb memory and a dedicated bandwidth of 450 Mbps. In addition,
Flintrock [Chammas, 2018], a command-line tool for launching Apache Spark test clusters has been used. In
such a way, for every test 5 instances were launched, 4 slaves and 1 master, with 6.0 Gb of dedicated memory.

The queries tested in PostGIS where launched in an Asus laptop with an Intel Core i7 processor and 8 Gb of
RAM.

The code generated for this test can be found in https://git.wur.nl/geospatial_spark/performance_test

Every test has been executed a minimum of ten times and the average time is presented, as well as the standard
deviation. Five different times have been measured:

1. Loading times: The time every library needed to load the necessary data sets.

2. Warm-up times: This is the measured time for the first query done to a data set. Since the first query
is always 10x to 20x times slower than the rest it has not been taken into account in the average but has
been measured separately.

3. Transformation: The time every library needs to transform from one CRS to another.

4. Query times: The average result of running ten times the defined queries.

5. Feature creation: Creating a buffered feature for every data set

Following, the time results of applying the performance test on the libraries are shown.

5.1 Loading Times & Warm Up Times

Although during the entire data analytics process it may happen only once, if no mistakes are made, loading
the data sets into the database or the desired environment can take plenty of time. This is why this time has
been measured (Table 20).

Size PostGIS Magellan GeoSpark

Trips (CSV) 2.2 Gb 1200 (1.3) 18.93 (0.16) 20.18 (0.99)

Trips_split table (CSV) 11.6 Mb 120 (1.2) 10.60 (0.26) 1.25 (0.06 )

Neighborhoods (GeoJson) 1.7 Mb 0.5 (0.01) 0.62 (0.01) 0.69 (0.015)

NYC Zones (Shapefile) 6.4 Mb 1.0 (0.02) 1.25 (0.33) 1.07 (0.12)

NY State (Streets) 146 Mb 22.35 (1.29) 1.38 (0.28) 1.015 (0.08)

Table 20: Loading Data Sets Times (s), 10 repetitions
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Secondly, the first query time has not been considered into the final average calculation, but has been measured
as well as seen in Table 21.

Size PostGIS Magellan GeoSpark

Trips (CSV) 2.2 Gb 28 (0.05) 24.29 (0.41) 12.15 (0.56)

Trips_split table (CSV) 11.6 Mb 0.52 (0.02) 3.33 (0.26) 1.49 (0.25)

Neighborhoods (GeoJson) 1.7 Mb 0.15 (0.01) 1.05 (0.06) 2.28 (0.17)

NYC Zones (Shapefile) 6.4 Mb 0.085 (0.0) 1.89 (0.12) 0.89 (0.08)

NY State (Streets) 146 Mb 0.15 (0.05) 18.62 (1.23) 20.50 (0.81)

Table 21: Warm-up Query Times (s), 10 repetitions

5.2 Attribute Queries

5.2.1 Queries to CSV’s

In Figure 12, queries 1 and 2 have been performed to the Trips_split CSV file with 65000 records and queries 3
and 4 have been performed to the Trips CSV file with 12000000 records. It can be seen that those libraries that
benefit from Apache Spark do not scale-up, whilst in PostGIS, for a dataset 180 bigger it performs 30 times
slower.
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Figure 12: CSV Attribute Query Times (s), 10 repeti-
tions

No. PostGIS Magellan GeoSpark

1 0.14 (0.01) 0.27 (0.03) 0.18 (0.01)

2 0.11 (0.01) 0.34 (0.04) 0.27 (0.03)

3 4.46 (0.02) 0.78 (0.24) 0.69(0.05)

4 4.67 (0.02) 0.83 (0.10) 0.57 (0.07)

Table 22: CSV Attribute Query Times (s), 10
repetitions

In Figure 13, the first query was performed to the Neighborhoods dataset containing 192 polygons and the
second query was performed to the Zones dataset containing 4500 polygons. It can be seen that those libraries
that benefit from Apache Spark do not scale-up, whilst in PostGIS, for a data set 23 times bigger, it performs
5 times slower.
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5.2.2 Queries to Shapefiles
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Figure 13: Shapefile Attribute Query Times (s), 10
repetitions

No. PostGIS Magellan GeoSpark

1 0.10 (0.01) 0.19 (0.03) 0.09 (0.01)

2 0.56 (0.02) 0.17 (0.02) 0.1 (0.02)

Table 23: Shapefile Attribute Query Times (s), 10
repetitions

5.3 Intersection Queries

Three intersection queries have been performed.

1. Neighborhoods (Polygon, 192 features) - Zones (Polygon, 4500 features)

2. Streets (Line, 230000 features) - Neighborhoods (Polygon, 192 features)

3. Streets (Line, 230000 features) - Zones (Polygon, 4500 features)

As it can be depicted from Figure 14, the first thing that stands out visually is the amount of time that it takes
to Magellan to perform these queries.
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Figure 14: Intersection Query Times (s), 10 repetitions

PostGIS Magellan GeoSpark

1.82 (0.73) 28.62 (1.13) 15.52 (0.59)

3.835 (0.85) 422.32 (5.45) 54.16 (1.52)

49.1 (1.29) 854.58 (8.34) 117.67 (1.80)

Table 24: Intersection Query Times (s), 10 repe-
titions

5.4 Within Queries

Two within queries have been performed.

1. Trips_split (Point, 65000 features) Within Neighborhoods (Polygon, 192 features).

2. Trips (Point, 12000000 features) Within Neighborhoods (Polygon, 192 features).

For this type of query, the library whose results stand out is GeoSpark, note the logarithmic y-axis scale in
Figure 15. For an increase of 180 times more features, Magellan performs 33 times slower, PostGIS 411 times
slower and GeoSpark could not be measured.
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Figure 15: Within Query Times (s), 10 repetitions

PostGIS Magellan/ GeoSpark

3.49 (0.74) 2.86 (0.14) 53.47 (1.18)

1440 (3.29) 93.98 (7.11) NULL

Table 25: Within Query Times (s), 10 repeti-
tions
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5.5 kNN Query

Two kNN queries have been performed:

• Return the 1000 closest points to a given point from Trips_split (Point, 65000 features).

• Return the 1000 closest points to a given point from Trips (12000000 features).

As it can be seen in Figure 16, PostGIS query times increase around 180 times when the dataset is also 180
times bigger, whilst in GeoSpark the increase is only of around 25 times.
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Figure 16: kNN Query Times (s), 10 repetitions

PostGIS GeoSpark

0.336 (0.05) 0.372 (0.03)

59.4 (1.23) 5.34 (0.38)

Table 26: kNN Query Times (s), 10
repetitions

5.6 Transformation

What can be clearly depicted from Figure 17 is that PostGIS increases exponentially its performance time as
the data sets increase in size. Transforming the Trips data set (12000000 features) took more than one hour,
compared to GeoSpark wich took a bit more than a minute.
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Figure 17: Transformation Times (s), 10 repetitions

No. Dataset PostGIS GeoSpark

1 Trips_split 3.2 (0.02) 4.25 (0.89)

2 Trips 3950 (2.31) 71.32 (1.25)

3 Neighborhoods 0.70 (0.01) 0.86 (0.02)

4 Zones 0.71 (0.02) 0.72 (0.03)

5 Streets 27.7 (0.09) 7.86 (0.05)

Table 27: Transformation Times (s), 10 repetitions

5.7 Alterations

What can be depicted from Figure 18 is that PostGIS increases exponentially its performance time as the data
sets increase in size. Both creating a buffer around the 250000 lines data set and 12000000 point data set took
more than one hour, compared to GeoSpark, which took than 15 seconds in both cases.
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Figure 18: Feature Creation times (s), 10 repetitions

No. Dataset PostGIS GeoSpark

1 Trips_split 11.1 (0.05) 0.27 (0.06)

2 Trips 3800 (10.23) 12.50 (0.54)

3 Neighborhoods 14.8 (0.93) 0.53 (0.04)

4 Zones 2.2 (0.89) 0.46 (0.05)

5 Streets 3600 (15.58) 7.81 (0.53)

Table 28: Buffer Creation Times (s), 10 repetitions

Finally, with the aim of testing Apache Spark’s horizontal scalability, as well as seeing the performance time
change with more computing power, the same performance test was conducted both on a set of 4 and 8 nodes.

Table 29 shows the results for GeoSpark and Table 30 shows the results for Magellan.
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4 nodes 8 nodes
Dataset \

Query num. Mean (s) St. Dev. Mean (s) St. Dev.

Loading times

Trips Split 1.34 0.15 1.25 0.06

Big Trips 32.11 1.06 20.18 0.99

Neighborhoods 0.69 0.12 0.69 0.02

Zones 0.03 0.03 0.02 0.004

Streets 0.02 0.001 0.002 0.005

Warming Up times

Trips Split 0.65 0.03 0.68 0.003

Big Trips 0.77 0.17 0.87 0.21

Neighborhoods 2.43 0.18 2.47 0.04

Zones 2.57 0.968 3.23 0.19

Streets 21.27 0.952 20.51 0.08

Attribute Query CSV

1 0.1 0.01 0.18 0.01

2 0.28 0.05 0.27 0.02

3 0.34 0.07 0.32 0.02

4 0.68 0.15 0.37 0.23

Attribute Query Shapefile
1 0.09 0.01 0.1 0.02

2 0.08 0.00 0.1 0.01

Intersects Query

1 15.05 0.82 15.52 0.33

2 56.97 2.37 54.16 1.52

3 112.94 4.49 117.67 1.80

Within Query

1 57.38 2.97 51.91 1.18

2 NaN NaN NaN NaN

Buffer Query

1 4.02 0.45 4.09 0.17

2 10.49 0.48 10.21 0.54

KNN Query

1 0.45 0.06 0.36 0.03

2 8.88 0.07 5.34 0.38

Table 29: GeoSpark 4 nodes vs. 8 nodes
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4 nodes 8 nodes
Dataset \

Query num. Mean (s) St. Dev. Mean (s) St. Dev.

Loading times

Trips Split 11.40 2.37 10.60 0.5

Big Trips 28.69 0.57 18.93 0.16

Neighborhoods 0.55 0.06 0.6 0.01

Zones 0.28 0.04 0.31 0.06

Streets 0.44 0.06 0.48 0.01

Warming Up times

Trips Split 3.09 0.19 3.33 0.26

Big Trips 42.81 0.75 24.29 0.41

Neighborhoods 1.01 0.09 1.05 0.06

Zones 1.45 0.24 1.89 0.12

Streets 20.82 2.02 18.71 1.23

Attribute Query CSV

1 0.38 0.03 0.27 0.03

2 0.34 0.05 0.36 0.04

3 0.58 0.16 0.73 0.24

4 0.63 0.16 0.84 0.10

Attribute Query Shapefile
1 0.19 0.03 0.17 0.03

2 1.73 0.20 0.17 0.02

Intersects Query

1 28.62 1.11 28.7 0.54

2 422.32 5.35 415.97 1.75

3 854.58 8.34 827.92 0.94

Within Query

1 2.69 0.14 2.85 0.23

2 168.83 7.11 93.98 1.22

Table 30: Magellan 4 nodes vs. 8 nodes

6 Results on AgroDataCube

Due to time constraints, only one query was finally put into practice. This is retrieving the crops for all the
years for a fishnet of points covering the Province of Utrecht. This single query though, was too big for a small
sized cluster, such as the ones used for the Performance Benchmark test, is no longer enough. This is why and,
in order to emulate Agro Data Cube server’s performance, the same query, for different sized data sets, have
been run in 4, 8 and 16 nodes clusters and in two different types of clusters:

• m4.large: 2 vCPU, 8 Gb memory and 450 Mbps Dedicated EBS Bandwidth.

• m4.xlarge: 4 vCPU, 16 Gb memory and 750 Mbps Dedicated EBS Bandwidth.

Both type of clusters are eligible for the Amazon Web Services Educate Starter Account.

Following, Table 31 shows the obtained results during the tests.
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m4.large m4.xlarge PostGIS

Points 4 Nodes 8 Nodes 16 Nodes 4 Nodes 8 Nodes 16 Nodes –

103 1.3 0.81 0.5 0.83 0.45 0.25 0.52

104 17 7.4 4.1 7.45 4.02 1.96 0.75

105 – 76.15 41.93 – 41.05 19.89 1.85

250215 (all) – – 141.82 – – 75.96 5.7

Table 31: Point Within Polygon Times (min)
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Figure 19: 103 points query times (min)
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Figure 20: 104 points query times (min)

Figures 19 and 20 show the times of performing the query to a subset of 1000 and 10000 points, respectively.
It also shows the time taken to perform the same query using PostGIS in a regular computer.
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7 Discussion

From the results obtained during the functionality test, it can be stated that the existing functionality in the
tested libraries is not yet developed enough to cope with the needs of GIS. Not solely the lack of operations, but
also the lack of some topological relations, describes a very low development in functionality still. At the same
time, the final grade in the test should be taken carefully into account. All the libraries are either dedicated to
Raster or to Vector. This is one of the reasons of the low grades all libraries obtained in the functionality tests.

The functionality analysis showed as well that there are two different trends for solving the problems that arise
when dealing with GeoSpatial Data in parallel distributed systems. The first one observed, in Magellan, is to
make use of all the potential of SparkSQL and store the data in extended Data Frames with a spatial component.
A (Spatial) Data Frame is not different from a table in a RDBMS. They can be queried, joined or sliced as
regular tables, because all the underlying parallel processes are not seen by the user.

The latter, as seen in GeoPySpark and GeoSpark is to make use of the existing Spark Data types, RDD’s
(Resilient Distributed Data Sets). All data that is dealt with using GeoPySpark is, at some point of the process,
stored within a RDD. GeoPySpark does not work with PySpark RDDs directly, but rather uses Python classes
that are wrappers of classes in Scala that contain and work with a Scala RDD. GeoSpark, on the other hand,
has a super class named SpatialRDD and any type of geometry is a subclass of it (PointRDD, RectangleRDD,
CircleRDD, LineStringRDD and PolygonRDD). Starting from this, every variable can then be converted to a
Data Frame if needed.

Regarding the performance test there are a couple results that stand out. To begin with, there are two queries
that run strangely slow in Apache Spark. These are the Intersection Query for Magellan and the Within Query
for GeoSpark.

In the former this is due to a miss-functionality in indexing line data sets, which involve the second and third
queries [Sriharsha, 2018 (Personal communication)]. Without this implementation, it does not matter whether
the calculation is parallelized or not, because they are highly time demanding. Beyond this noteworthy result, it
is important to mention that in no case has any Apache Spark library performed faster than PostGIS regarding
the intersection queries. This could be due to different reasons, but it is likely that either the data sets are not
big enough to push PostGIS to its limits and prove the benefits of parallelizing, or that the algorithms behind
PostGIS are far better than those algorithms in Magellan and GeoSpark.

For the latter, the reason behind this performance is due to the fact that GeoSpark uses JTS12 library to do
1:1 point-polygon test in parallel, which is the case for both Within queries. However, JTS point-polygon query
is much slower than some existing libraries, such as ESRI geometry API. From GeoSpark they are trying to
replace JTS with other libraries, or overwrite the existing JTS alrgorithms (which is being done in many cases),
but as many open-source projects, there is a lack of time to implement such improvements [Yu, 2018 (Personal
communication)]. In the case of Magellan, this join is executed as a Broadcast Nested Loop Join [Sriharsha,
2017]. Magellan performed up to 15 times faster than PostGIS for the second query.

Because of these two performance problems in can not be depicted which of the two approaches (Spatial Data
Frames or Spatial RDD’s) performs better when dealing with Geospatial data.

Parallelizing showed improvement again in the kNN query, because this type of queries are very compute-intense.
When the data size is 180 times bigger, PostGIS performs almost 180 times slower whilst GeoSpark only around
20 times slower.

Regarding both Coordinate Reference System Transformation and feature creation, it can be seen the exponen-
tial increase in time, as the data set size increases, in PostGIS. It could be arguable the fact that this was run not
in a very powerful computer, but the interesting aspect is the underlying notion that while using a traditional
RDBMS performance time increases exponentially, whilst in a parallel distributed system it increases lineally.

12The JTS Topology Suite is a Java library for creating and manipulating vector geometry. It also provides a comprehensive
set of geometry test cases, and the TestBuilder GUI application for working with and visualizing geometry and JTS functions.
[LocationTech]
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Another result that backs the data sets size statement is what can be seen in Tables 29 and 30. Performance
times do not improve significantly or at all from a 4 node cluster to an 8 one. There are only two specific cases
that, when doubling the number of clusters, the performance time reduces by nearly a half; the Intersection
Query in Magellan and the KNN query in GeoSpark. The first one is because kNN queries require that the entire
table is read before sorting out [Huang et al., 2017a], which is very computing demanding. In the Intersection
Query this happens because, as Magellan has no correct indexing line data sets, the query is not optimized and,
by adding more executers (so computing power) the process speeds-up.

Finally, the software packages performance was applied to a use case. Although this was successfully designed,
the time constraint has not permitted to develop further analysis on the results that are not quite clear, i.e
results on Table 31 show that in this case PostGIS performed up to 40 times faster than Magellan. Although the
query (within) was also used in the performance test, see Table 25 and Figure 15 where Magellan performed up
to 30 times faster than PostGIS, the datasets in this case are different. One of the reasons for the performance
evolution could be the polygons’ granularity. Whilst in the performance test the geometries were the different
neighborhoods of new York city, in the Use Case those polygons are the different fields in The Netherlands. For
the first case, the geometries are more complex than in the second case. It appears that PostGIS can really
boost its performance when the geometries are simpler [Santos et al., 2015]. Magellan on the other hand does
not seem to make any difference in performance no matter the complexity of the polygons.

It could be arguable that the chosen query was not the most suitable to test in Apache Spark, but it is what
came out for the use case. Nevertheless this last step of the research served the purpose of testing Apache
Spark’s horizontal scalability. As Table 31 and Figures 19 and 20 show, although being slower than PostGIS,
performance times decrease when more clusters are added. Despite of being logical and expected, this proves
that without any change in the code, just by deploying it to more nodes, the performance increases whereas
the results obtained from the PostgreSQL/PostGIS data base can not be improved once the physical limits
are reached. Besides parallelizing, Apache Spark also provides robustness. This allows for a continuous query
utility as long as half of the nodes within the cluster are alive [Wang and Khan, 2015]. In comparison with a
traditional RDBMS where only one master-slave mode is ensured [Sanders and Shin, 2001].

During this step of the research, the tuning possibilities Apache Spark provides have been tested. When
launching an operation in a cluster, in order to maximize the existing resources, it is crucial that all nodes are
busy at all time. So, Apache Spark has a default parallelization, but it can be changed for every specific need.

As an example, when running the first queries in a m4.large cluster, with 8 nodes (16 executors), it was noted
that Apache Spark divided the operation in 24 partitions. This meant that, during the first go, 16 executors
were busy, but only 8 were operating during the second round. When that was tuned to 32 partitions, which
also meant that every partition was a bit smaller in memory, performance time decreased my almost 25%. This
proves that the potential of Apache Spark does not end in launching operations but its complete flexibility to
adapt to every particular situation.

Although the results do not show a great level of maturity, there are indicators that leave room for hope. In
Figure 21a the relative development of the three software packages tested is shown as well as which data type
are they more focused on. As it can be seen, GeoPySpark and GeoSpark are the most developed. Figure 21b
also shows this by presenting the number of commits and the years that the software packages have been under
development. It can be seen that GeoPySpark, being the youngest, has more than two times commits than the
other software packages.
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(a) (b)

Figure 21: Data type vs. Development (a) and Years of development vs. Number of commits (b)

8 Conclusions

There are many ways of creating a Functionality Benchmark Test for GeoSpatial Big Data, depending on what
its purpose would be. Since one of the goals of this research was to define what are the most basic and necessary
tools or operations within GIS, the literature review was based upon that. Then, once these operations are
defined, it is important to define such test in an incremental way. From "simpler" operations to more "complex"
ones. At the same time, such test must be done extensively, testing every predicate for every data pair possible.
It can be concluded then that, although there are many ways of creating a Functionality Benchmark Test, it
would be desirable to develop a standardized test in order to have a rule on which base future software packages
classification.

After defining and applying the benchmark tests it can be concluded that these libraries do not have yet the
necessary functionality to be used for a more extensive use within the Geo Information Science scope. As of
today, the early stages of development, added to the fact that the vast majority of the geospatial scientific
community is unaware of Apache Spark, leads to the undeniable situation where a complete spin towards the
parallel paradigm is not yet possible.

Results and current development show that, despite the actual lack of functionality, it is a matter of time for
it to become a reality. This can perfectly be seen in Figures 21a and 21b, which show both the youth of these
software packages and the relative speed of development. As mentioned before in this report, once the data sets
become too big to be dealt with in normal computers or with traditional software there will always be the need
to change paradigms.

Even though their functionality development level does not allow a more extended use, this research proves that
the base on which to build further development exists, i.e. it is possible to analyze geospatial data in a parallel
distributed environment. Furthermore, one of the greatest things about developing on top of Apache Spark
and also the base of this research is the fact that a Apache Spark based Spatial Database can be "endlessly"
extended horizontally. This is, increasing the number of backend servers.

The tested software packages have performed better than an RDMBS tool in operations that were computing
demanding, such as the kNN query, Coordinate Reference System Transformation or Creating new features,
like the Buffer case. On the other hand, in spatial queries like Intersect or Within (during the Use Case),
PostGIS performed better than GeoSpark or Magellan. This proves that, nowadays, it only makes sense to
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perform GeoSpatial Analytics when the analysis itself is of a high computational demand. Even though PostGIS
performs in a sequential manner (compared to the parallel approach of Apache Spark), its algorithms are very
efficient and it is a powerful tool for Geospatial analytics.

These software packages can replicate the results obtained with traditional GIS software in a production environ-
ment, as long as the predicates that are needed for the algorithm have been defined. As mentioned previously,
Apache Spark can be extended horizontally as much as needed, so its performance could ultimately always reach
the one of any high performance server. Furthermore, Apache Spark allows to be tuned while launching jobs in
a cluster, which makes it a highly flexible tool capable of adapting to every kind of situation. This means that
one could analyze every step or operation needed and change Apache Spark’s inner parameters to perform to
its best with the available resources.

Finally, from the self experience of conducting this research, there are a couple of things that deserve to be
mentioned. First, the fact that these software packages are developed by teams that are not necessarily GIS
developers creates confusion when it comes to naming conventions, for example. Secondly, although being in
a very experimental state in most of the cases, the easiness in which the developers could be reached made it
possible for this research to reach its actual point. Lastly, despite not reaching the desired performance in the
last step of the research, this has proven that by means of Apache Spark and a simple laptop anyone with a
small knowledge of software can set up and environment to process Big GeoSpatial Data.

9 Recommendations

This research serves as a starting point for further research based on Geospatial Analysis in Apache Spark.
Due to time constraints it has only been possible to develop a Vector Performance Test, but it would be very
important as well to develop and perform one for Raster Data. At the same time, it would be of very importance
to further investigate in the results obtained during the Use Case application as well as to try new applications
or scenarios that could make use of big geospatial analysis tools.
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A Appendices

A.1 Tables Schemas

Trips

Column Name Data Type Description

VendorId Integer Code indicating the TPEP
provider that provided the record.

pickup_datetime Date Date and time when the meter was engaged.

pdropoff_dateime Date Date and time when the meter was disengaged.

passenger_count Integer Number of passengers in the vehicle.

trip_distance Float The elapsed trip distance in miles.

pickup_longitude Float Longitude where the meter was engaged.

pickup_latitude Float Latitude where the meter was engaged.

Rate_CodeId Integer The final rate code in effect at the end of the trip

Flag String Flag indicates whether the trip record was held
in vehicle memory before sending to the vendor.

dropoff_longitude Float Longitude where the meter was disengaged

dropoff_latitude Float Latitude where the meter was disengaged

payment_type Integer Numeric code signifying how the passenger
paid for the trip.

fare_amount Float The time-and-distance fare calculated by the meter.

extra Float Extras and surcharges.

mta_tax Float $0.50 MTA tax that is automatically charged.

tolls_amount Float Total amount of all tolls paid in trip.

improvement Float If there was an improvement surcharge
and how much.

total_amount Float The total amount charged to the passengers.

Table 32: Schema for Trips dataset
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Trips_split

Column Name Data Type Description

VendorId Integer Code indicating the TPEP
provider that provided the record.

pickup_datetime Date Date and time when the meter was engaged.

pdropoff_dateime Date Date and time when the meter was disengaged.

passenger_count Integer Number of passengers in the vehicle.

trip_distance Float The elapsed trip distance in miles.

pickup_longitude Float Longitude where the meter was engaged.

pickup_latitude Float Latitude where the meter was engaged.

Rate_CodeId Integer The final rate code in effect at the end of the trip

Flag String Flag indicates whether the trip record was held
in vehicle memory before sending to the vendor.

dropoff_longitude Float Longitude where the meter was disengaged

dropoff_latitude Float Latitude where the meter was disengaged

payment_type Integer Numeric code signifying how the passenger
paid for the trip.

fare_amount Float The time-and-distance fare calculated by the meter.

extra Float Extras and surcharges.

mta_tax Float $0.50 MTA tax that is automatically charged.

tolls_amount Float Total amount of all tolls paid in trip.

improvement Float If there was an improvement surcharge
and how much.

total_amount Float The total amount charged to the passengers.

Table 33: Schema for Trips_split dataset

Neighborhoods

Column Name Data Type Description

BoroCode Integer Code for every Borough.

BoroName String Borough’s name.

NTACode Integer National Transport Association Code.

NTAName String National Transport Association Name.

geom Geometry The polygons

Table 34: Schema for Neighborhoods dataset
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Zones

Column Name Data Type Description

ZONEDIST String Zone’s code.

geom Geometry The polygons.

Table 35: Schema for Zones dataset

Streets

Column Name Data Type Description

Jurisdiction Integer Code for the state to
which the segment belongs.

LeftCounty String County located to
the west of the segment.

RightCounty String County located to
the east of the segment.

LeftCityTo String City located to
the west of the segment.

RightCityTo String County located to
the east of the segment.

Label String What type of entity the segment is.

geom Geometry The different lines.

Table 36: Schema for Streets dataset

Gewaspercelen

Column Name Data Type Description

Year Integer The year that geometry was entered.

Grondgebruik String The land use.

crop_code Integer A code that defines the crop.

crop_name String The crop name

geom Geometry The Polygons.

Table 37: Schema for Gewaspercelen dataset

Bofek

Column Name Data Type Description

ObjectID Integer The global id.

bofek2012 Integer The code for the lookup table.

geom Geometry The geometries.

Table 38: Schema for Bofek dataset
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