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 1 

Highlight: 2 

We discuss the importance of SAUR genes for plant growth adaptation, focussing on their 3 

molecular functions and the various mechanisms for regulation of SAUR activity. 4 

 5 

 6 

Abstract 7 

The family of Small Auxin Up-Regulated genes (SAURs) is a family of auxin-responsive genes 8 

with about 60 to 140 members in most higher plant species. Despite the early discovery of 9 

their auxin responsiveness, their function and mode of action remained unknown for a long 10 

time. In recent years, the importance of SAUR genes for the regulation of dynamic and 11 

adaptive growth, and the molecular mechanisms by which SAUR proteins act are increasingly 12 

understood. SAURs play a central role in auxin-induced acid growth, but can also act 13 

independently of auxin, tissue-specifically regulated by various other hormone pathways and 14 

transcription factors. In this review, we summarize the recent advances in SAUR gene 15 

characterization in Arabidopsis and other plant species. We particularly elaborate on their 16 

capacity to fine tune growth in response to internal and external signals, and discuss the 17 

breakthroughs in understanding the mode of action of the SAURs in relation to their complex 18 

regulation. 19 

 20 

 21 

Introduction 22 

The first discovery of small transcripts that rapidly responded to auxin dates back to 1987 from 23 

experiments with elongating soybean hypocotyls (McClure and Guilfoyle, 1987). In the years 24 

thereafter, these small auxin upregulated RNAs (SAURs) were also identified in tobacco, 25 

Arabidopsis and maize (Gil et al., 1994; Knauss et al., 2003; Newman et al., 1993), all showing 26 

a rapid induction after auxin treatment. Both the transcript and protein half-lives were found 27 

to be very short (Knauss et al., 2003; McClure and Guilfoyle, 1989; Newman et al., 1993), 28 

indicating that SAUR activity can be quickly reduced after removal of the auxin stimulus, 29 

allowing very dynamic responses. Because the transcripts were identified in elongating 30 

hypocotyls and induced by the growth-hormone auxin, which had been proposed to induce 31 

cell elongation via acid growth (Rayle and Cleland, 1970; Rayle and Cleland, 1980), a link 32 
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between auxin, SAUR gene expression and cell elongation was apparent. However, genetic 33 

evidence demonstrating the role of SAURs in auxin-induced cell elongation remained absent 34 

for a long time.  35 

 It was the renewed interest in SAUR gene function in combination with a strong 36 

increase in the availability of genetic and molecular tools and resources, which recently 37 

allowed to link the SAURs to auxin-induced growth in correspondence with the acid growth 38 

theory. First, different SAURs were found to induce cell elongation in Arabidopsis when 39 

overexpressed (Chae et al., 2012; Li et al., 2015; Spartz et al., 2012; Stamm and Kumar, 2013), 40 

and secondly, Spartz et al. (2014) made a major contribution to the field by showing that 41 

SAURs can interact with PP2C.D phosphatases to inhibit their activity. This inhibition prevents 42 

membrane H+-ATPases from being dephosphorylated, which increases their activity and 43 

induces cell wall acidification. Thus, SAURs indeed induce plant growth by regulating cell wall 44 

acidification. In addition to induction by auxin, SAURs can be regulated by a plethora of other 45 

upstream factors, thereby regulating growth dynamically in response to internal as well as 46 

environmental cues (e.g. Favero et al., 2017; Hu et al., 2018; Kodaira et al., 2011; Oh et al., 47 

2014; van Mourik et al., 2017). Because SAUR overexpression is sufficient to induce growth 48 

(Fendrych et al., 2016; Spartz et al., 2017), other upstream factors may regulate SAUR-49 

mediated growth independent of the auxin pathway. SAURs have thus been unveiled as 50 

growth-factors that are essential for both normal plant development as well as adaptation to 51 

environmental conditions. In the last few years, SAUR studies from species other than 52 

Arabidopsis have also been emerging, broadening our view on the importance of SAURs in the 53 

plant kingdom.  54 

 Here, we review the recent advances in SAUR gene characterization in Arabidopsis as 55 

well as in other plant species, and discuss their conservation and divergence in the plant 56 

kingdom. We will summarize the novel insights into the molecular function of the SAURs, and 57 

in particular elaborate on the different mechanisms of upstream and downstream regulation 58 

of SAUR activity, which allow the plant to fine-tune growth is a tissue-specific manner under 59 

different environmental conditions. 60 

 61 

SAUR gene evolution in the plant kingdom 62 

The SAURs form a plant-specific gene family, with the most basic members described in the 63 

moss Physcomitrella patens, which contains 18 SAUR genes (Rensing et al., 2008). Notably, 64 
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the Aux/IAA-ARF-mediated auxin signalling is also present from the moss lineages to the 65 

higher plants (Lau et al., 2009), suggesting that SAUR genes have been important for the 66 

output of the auxin response from the beginning of land plant evolution onwards. Thanks to 67 

recent advances in genome sequencing, SAUR families could be described in a large number 68 

of species. Besides Arabidopsis, which contains 79 SAUR genes (Ren and Gray, 2015), most 69 

higher plant species contain between 60 and 140 SAUR genes in their genomes, which are 70 

often arranged in clusters (Chen et al., 2014; Hu et al., 2018; Jain et al., 2006; Li et al., 2017; 71 

Wang et al., 2010; Wu et al., 2012). This high level of tandem and segmental duplications is 72 

remarkable, but may to some extent be explained by the small size of the SAURs, permitting 73 

duplication of the complete gene without loss of essential regions.   74 

SAUR genes are generally intronless, with open reading frames predicted to encode 75 

proteins of a size between 7 and 20 kDa (about 60 to 180 amino acids) (Chen et al., 2014; Jain 76 

et al., 2006; Wang et al., 2010; Wu et al., 2012). These proteins have a conserved core of 77 

approximately 60 residues, whereas the homology at the N-termini and C-termini is rather low 78 

(Jain et al., 2006; Park et al., 2007; Ren and Gray, 2015). Within this core region, Wu et al. 79 

(2012) identified four highly conserved motifs, present in the vast majority of the SAUR 80 

proteins. The presence of these highly conserved motifs suggests that the SAUR proteins all 81 

share a conserved basic function (see below). However, their variable N- and C-termini also 82 

hint at distinct roles. For example, intracellular localization has been found to be different for 83 

the SAUR proteins (e.g. Ma et al., 2017; Markakis et al., 2013; Park et al., 2007; Qiu et al., 84 

2013; Spartz et al., 2012), and may thus be encoded by the less conserved N- or C-terminus. 85 

In addition, histidine-rich regions in the N- and C-termini of some Arabidopsis, sorghum, 86 

tomato and potato SAURs were suggested to allow metal-binding (Wu et al., 2012), and some 87 

maize, Arabidopsis (SAUR70) and soybean SAURs have been shown to bind calmodulin via 88 

their N-terminus (Popescu et al., 2007; Yang and Poovaiah, 2000), while many more are 89 

expected to have this capacity (Ren and Gray, 2015). The presence of the divergent N- and C-90 

termini thus suggest functional divergence amongst the SAUR proteins. 91 

Kodaira et al. (2011) published a phylogenetic tree of the Arabidopsis SAURs, in which 92 

three distinct SAUR clades could be recognized (indicated as clades I to III). To discuss the 93 

conservation and divergence of the SAURs in a broader perspective and evaluate the position 94 

of the Arabidopsis clades, we used the protein sequences from Arabidopsis, Physcomitrella, 95 

potato, tomato, rice and sorghum SAURs to construct a phylogenetic tree of the SAUR family. 96 
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Based on this analysis, the plant SAUR family can be divided into three subfamilies, which all 97 

contain both monocot and eudicot sequences (see Figure 1 for an overview and Supplemental 98 

Figure S1 for the complete tree). However, all Physcomitrella SAURs group together in one 99 

clade of subfamily A (green in Figure 1), which consists of two Physcomitrella  subclades that 100 

are sister to a third subclade containing SAURs from sorghum, rice, potato and Arabidopsis. 101 

These ancestral SAURs have sequences that are quite divergent from the other SAURs (see 102 

Supplementary data File 1). The other two subfamilies, B and C, have only evolved after the 103 

divergence of the mosses. These subfamilies contain clades that are lineage-specific for either 104 

higher plants, monocots, eudicots, Arabidopsis or Solanum. This reveals that a considerable 105 

number of recent gene duplication events have taken place throughout the evolutionary 106 

history of the SAUR family, and that the duplicates have often been retained. This retention 107 

may be explained by the advantage that a higher number of SAUR genes offers the plant. The 108 

increasing complexity of higher land plants and their capability of colonizing different habitats 109 

probably also raised a higher demand for growth adaptation in response to environmental 110 

factors such as herbivory, shade and drought. The retention of duplicated SAUR clusters in 111 

many different plant lineages suggests that SAUR copies are in general beneficial for the 112 

plant’s fitness, probably enhancing the plant’s options to regulate growth. 113 

 Interestingly, proteins classified into clades I and II by Kodaira et al. were recovered in 114 

two clades of subfamily C, most distantly related from the ancestral SAURs, while clade III 115 

SAURs are dispersed over many clades. The Arabidopsis SAUR63-clade, placed into clade II by 116 

Kodaira et al., can be found back as a separate clade (‘clade IV’) in our analysis. The SAURs 117 

from clades I and II appear to possess functions distinct from those of clade III SAURs, as many 118 

are responsive to abscisic acid (Kodaira et al., 2011) and regulate cell elongation in seedlings 119 

(Sun et al., 2016) (see next section). This brings forward the intriguing possibility that these 120 

functions have evolved more recently and are particularly important for the growth of higher 121 

plants.  122 

 123 

SAUR function and mode of action 124 

 125 

Cell elongation and growth 126 

The long period between the discovery of auxin-upregulated RNAs and their functional 127 

characterization can be ascribed to the fact that single SAUR knock-outs rarely give a mutant 128 
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phenotype due to redundancy. In addition, distinct overexpression phenotypes could often 129 

only be observed after stabilization of the protein through fusion with for example GFP (Chae 130 

et al., 2012; Spartz et al., 2012). The first functional data therefore originated from 131 

overexpression of fusion proteins or simultaneous downregulation of a group of paralogous 132 

genes using amiRNA silencing. The majority of these studies showed that overexpression of 133 

SAUR genes can induce cell elongation in Arabidopsis (Bemer et al., 2017b; Chae et al., 2012; 134 

Franklin et al., 2011; Kong et al., 2013; Spartz et al., 2012; Stamm and Kumar, 2013; van Mourik 135 

et al., 2017). Recently, Sun et al. (2016) used a comprehensive approach to show that light-136 

regulated seedling growth in Arabidopsis is controlled by a group of 32 redundantly acting 137 

SAURs. These so-called lirSAURs (light-induced in cotyledons and/or repressed in hypocotyls) 138 

are responsible for auxin-induced hypocotyl elongation in the dark and/or for the expansion 139 

of cotyledons upon exposure to light. Phytochrome Interacting Factors (PIFs) are important 140 

for this regulation in both tissues, but surprisingly, their breakdown upon exposure to light 141 

reduces SAUR expression in the hypocotyls, while inducing it in the cotyledons (Sun et al., 142 

2016). The mechanisms behind this opposite effect remain to be resolved, but different co-143 

factors probably play a role (Sun et al., 2016). 144 

Although the function of the SAURs has thus far been mainly studied in Arabidopsis 145 

seedlings, there is increasing evidence that their cell-elongating function goes far beyond the 146 

juvenile stage, regulating growth in many different tissues. In addition to expression data, 147 

which show plant-wide SAUR gene activity in various species (Hu et al., 2018; Jain et al., 2006; 148 

van Mourik et al., 2017; Wu et al., 2012; Xie et al., 2015), overexpression studies revealed that 149 

SAUR activity can induce growth in leaves, stems and floral organs (Chae et al., 2012; Spartz 150 

et al., 2012; van Mourik et al., 2017). Interestingly, the specific expression of a SAUR50-like 151 

gene from sunflower on the east side of the stem correlates with the diurnal bending of the 152 

apex towards the sun (Atamian et al., 2016), and there is evidence that the Arabidopsis 153 

SAUR10 gene, which is upregulated in shaded conditions, affects the degree of branch bending 154 

(Bemer et al., 2017b). This indicates that SAURs can also regulate light responses in the adult 155 

phase in different plant species. In conclusion, the majority of SAUR genes probably play a role 156 

in the induction of growth via cell elongation.   157 

Auxin-induced cell elongation has been hypothesized to occur according to the acid 158 

growth theory, based on the observation that a low pH induces cell wall loosening (Rayle and 159 

Cleland, 1970) and that H+ excretion takes place in response to auxin application (Rayle and 160 
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Cleland, 1980). Recently, the mechanism by which acid growth occurs via auxin and SAURs 161 

was step-by-step elucidated. First, Chen et al. (2010) showed that auxin induces 162 

phosphorylation of the plasma membrane H+-ATPase AHA1 in vitro. Plasma membrane H+-163 

ATPases, of which AHA1 and AHA2 have the highest expression (Ren and Gray, 2015), require 164 

phosphorylation of the C-terminal Thr-947 residue and subsequent binding of a 14-3-3 protein 165 

for activation (Fuglsang et al., 1999). Takahashi et al. (2012) then demonstrated that auxin 166 

treatment increases the phosphorylation levels and 14-3-3 binding in planta, without changing 167 

the amount of H+-ATPases. The localization of SAUR19-clade proteins to the plasma 168 

membrane prompted Spartz et al. (2014) to investigate whether SAURs could regulate the H+-169 

ATPases, thereby discovering the link between auxin and cell membrane acidification, and 170 

achieving a major break-through in the understanding of SAUR function. In their study, Spartz 171 

et al. showed that SAUR proteins can interact with protein phosphatases of the PP2C.D family 172 

to inhibit their function. This prevents dephosphorylation of the H+-ATPases, resulting in 173 

increased H+-ATPase activity and induced membrane acidification (Figure 2A). Cell growth is 174 

subsequently probably achieved by activation of cell-wall expansins due to the low apoplastic 175 

pH, as well as increase of osmotic water flow due to plasma membrane hyperpolarization 176 

(Spartz et al., 2017). Arabidopsis SAURs from different clades were tested for their ability to 177 

reduce PP2C.D activity in vitro, and they all exhibited this capacity (Spartz et al., 2014; Sun et 178 

al., 2016), suggesting that repression of PP2C.D activity is the general mechanism by which 179 

SAURs induce cell elongation. The Arabidopsis PP2C.D subfamily consists of nine members, of 180 

which three (D2, D5 and D6) are located to the plasma membrane. In a recent paper, Ren et 181 

al. (2018) showed that the three plasma-membrane localized PP2C.D members are the 182 

primary regulators of AHA activity in planta, although small contributions of the other 183 

PP2C.Ds, of which some can interact in vitro with SAUR19 as well, cannot be excluded. The 184 

phenotype of the d2d5d6 triple mutant is similar to that of SAUR overexpression lines, with 185 

increased cell elongation in seedlings, leaves, stem and floral organs (Ren et al., 2018), 186 

suggesting that the SAUR-induced cell elongation is regulated via interaction with these 187 

PP2C.Ds throughout the plant.   188 

 189 

SAUR function in other processes 190 

Interestingly, the overexpression lines of some SAURs were reported to display phenotypes 191 

other than increased cell elongation, indicating that SAUR family genes may perform 192 
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additional functions. Some of these functions can probably be related to their interaction with 193 

PP2C.Ds, while the mechanisms underlying other observed phenotypes may rely on different 194 

factors. In this section, we shortly discuss the involvement of SAURs in other processes based 195 

on the different phenotypes that have been reported.  196 

An early senescence phenotype has been observed in overexpression lines of SAUR10, 197 

SAUR36 and the rice gene OsSAUR39 (Bemer et al., 2017b; Hou et al., 2013; Kant et al., 2009), 198 

while saur36 knock-out mutants exhibited a delayed leaf senescence phenotype (Hou et al., 199 

2013). Thus, SAURs appear to induce senescence, a function that may be regulated by 200 

interaction with a PP2C.D phosphatase, as Xiao et al. (2015) identified the PP2C.D phosphatase 201 

SENESCENCE-SUPPRESSED PROTEIN PHOSPHATASE (SSPP) as an important negative regulator 202 

of leaf senescence. SSPP (PP2C.D7 according to TAIR, but designated PP2C.D1 in Ren et al. 203 

2018), which is mainly cytosolic localized, dephosphorylates the senescence-inducing 204 

receptor-like kinase AtSARK, localized at the plasma membrane (Figure 2B) (Xiao et al., 2015). 205 

SAURs may thus interact with SSPP in the cytosol, thereby repressing its activity and activating 206 

AtSARK and leaf senescence.  207 

Several other studies reported SAUR overexpression phenotypes not related to cell 208 

elongation. In particular the few studies that published about nuclear-localized SAURs report 209 

overexpression phenotypes different from cell elongation. Overexpression of SAUR32, the 210 

first characterized Arabidopsis SAUR gene, leads to reduced hypocotyl growth and abolished 211 

apical hook formation in the dark. The gene does not respond to auxin or light (Park et al., 212 

2007; Sun et al., 2016) and is localized to the nucleus, suggesting that it does not interact with 213 

the plasma membrane PP2C.Ds. Overexpression of SAUR76, which is predominantly nuclear 214 

localized, does not promote cell elongation either, but affects the meristematic activity of the 215 

tissues, with less cells in the leaves and more cells in the roots (Markakis et al., 2013). Both 216 

genes thus appear to have a function in the nucleus that may be unrelated to interaction with 217 

PP2C.Ds, or involves nuclear-localized PP2C.(D)s. Interestingly, Ma et al. (2017) reported that 218 

the cassava MeSAUR1 protein, also localized to the nucleus, can bind and regulate the 219 

promoter of the ADP glucose pyrophosphorylase subunit MeAGPs1a, and would thus act as a 220 

transcription factor. MeSAUR1 contains a specific N-terminus conserved in a clade of monocot 221 

and eudicot SAURs, among which the Arabidopsis SAUR10 and SAUR50 proteins (Figure 1). It 222 

is not very likely that this N-terminus provides DNA-binding activity however, as both SAUR10 223 

and SAUR50 exhibit canonical cell-elongation phenotypes upon overexpression. A more 224 
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thorough in vivo analysis of MeSAUR1 and other SAURs in the future is required to determine 225 

whether some SAURs can act as transcription factors and to unveil the role of SAURs in the 226 

nucleus. 227 

SAUR overexpression can also have an effect on auxin levels, polar auxin transport 228 

and/or expression of auxin pathway genes (Chae et al., 2012; Kant et al., 2009; Kong et al., 229 

2013; Ren and Gray, 2015; Spartz et al., 2012; Xu et al., 2017). Overexpression of growth-230 

inducing SAURs (SAUR19, SAUR41, SAUR63) results in increased auxin transport, while 231 

overexpression of growth-inhibiting SAURs (OsSAUR39, OsSAUR45) has a repressive effect 232 

(Kant et al., 2009; Xu et al., 2017). These effects on the auxin pathway can be indirect, because 233 

the increase in H+-ATPase activity probably leads to an increased plasma membrane potential, 234 

expected to induce auxin transport (Ren and Gray, 2015). However, since polar auxin transport 235 

is regulated via phosphorylation of the PIN auxin efflux carriers via PP2C.A phosphatases 236 

(Ballesteros et al., 2012), one could also speculate that some SAURs might interact with other 237 

PP2C phosphatases, thereby acting directly on polar auxin transport. Another plausible 238 

explanation for the effect on polar auxin transport is the putative calmodulin-binding capacity 239 

of many SAURs, because polar auxin transport depends on calcium signalling (Vanneste and 240 

Friml, 2013; Ren and Gray, 2015). 241 

These examples show that SAUR function is not restricted to the promotion of cell 242 

elongation. Other observed functions, such as senescence, are probably also regulated via the 243 

interaction with PP2C.Ds, while other functions may depend on other mechanisms and be 244 

more clade-specific. The presence of specific N- or C-termini could enable calmodulin-binding, 245 

metal binding  (Wu et al., 2012), interaction with ethylene receptors (SAUR76-78, (Li et al., 246 

2015)), or even DNA-binding capacity. The clade-specific presence of conserved N- or C-247 

termini suggests that different sub-clades can have distinct functions. Interestingly, the 248 

Arabidopsis SAURs that can induce cell elongation and were reported by Sun et al. (2016) to 249 

be regulated during seedling morphogenesis, practically all fall into clades I and II defined by 250 

Kodaira et al. (2011), while most clade III SAURs are either not expressed in the 251 

hypocotyl/cotyledon, or do not exhibit differential expression upon transfer to the light 252 

(except for SAUR41, SAUR49 and SAUR52) (Sun et al. 2016). This could mean that the ability 253 

to induce cell elongation, probably linked to plasma-membrane localization, is recorded in the 254 

protein sequence. Likewise, the ability to perform functions other than cell elongation may 255 

also depend on specific protein motifs. The future elucidation of protein motifs responsible 256 
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for localization and protein-protein interactions will give more insight into the possible 257 

presence of clade-specific functions.  258 

 259 

In conclusion, the main function of SAUR proteins is the plant-wide induction of cell 260 

elongation, by repression of PP2C.D activity, in accordance with the acid growth theory. The 261 

growth-inducing function appears to be executed by plasma membrane localized SAURs 262 

interacting with PP2C.D2, D5 and D6. Furthermore, some SAURs probably perform roles in 263 

other processes than cell elongation, such as leaf senescence or cell division. In agreement 264 

with this, a number of SAURs (including MeSAUR1, OsSAUR39, OsSAUR45, SAUR32, SAUR36, 265 

SAUR40, SAUR41, SAUR55 and SAUR71) do not localize to the plasma membrane, but to the 266 

cytosol or nucleus (Kant et al., 2009; Kong et al., 2013; Narsai et al., 2011; Park et al., 2007; 267 

Qiu et al., 2013; Xu et al., 2017). These SAURs can possibly interact with other PP2C.Ds, which 268 

are localized to other cell compartments (Ren et al., 2018) (see Figure 2), or even with PP2Cs 269 

from other classes. Interestingly, only few rice and sorghum sequences group together with 270 

the clade I and II Arabidopsis proteins, while the majority of the monocot sequences are 271 

closest to the clade III Arabidopsis proteins, of which the function appears less restricted to 272 

cell elongation. This may imply that the abundance of SAUR-proteins involved in cell 273 

elongation has evolved in the eudicots, while the majority of the monocot SAURs displays 274 

other functions. 275 

 276 

Regulation of the different SAURs is highly diverse 277 

In contrast to their general role in cell elongation, the regulation of different SAUR genes is 278 

highly diverse (see Figure 3 for a graphical summary). In recent years, reports from Arabidopsis 279 

as well as other species have unveiled that SAURs show tissue-specific expression patterns 280 

and can be regulated by a plethora of upstream factors. Although many SAURs can be induced 281 

by auxin (~70% in Arabidopsis (van Mourik et al., 2017)), there is also a group of SAURs, named 282 

class II SAURs by Van Mourik et al. (2017), which is not responsive to auxin. At least one of 283 

these SAURs however (SAUR8), can induce cell elongation when overexpressed (van Mourik 284 

et al., 2017), indicating that class II SAURs can promote growth by repressing PP2C.D activity 285 

in response to stimuli other than auxin 286 

  Factors that can up- or downregulate SAUR expression have been identified in 287 

different species. Characterization of the SAUR family in tomato (Wu et al., 2012), cotton (Li 288 
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et al., 2017), poplar (Hu et al., 2018), citrus (Xie et al., 2015), watermelon (Zhang et al., 2017), 289 

maize (Chen et al., 2014) and Arabidopsis (e.g. van Mourik et al., 2017) all revealed that the 290 

different SAUR genes exhibit specific expression patterns throughout plant development. 291 

Moreover, the expression of different sets of SAUR genes can be positively or negatively 292 

regulated by many different hormones, including auxin (summarized in Ren and Gray, 2015; 293 

van Mourik et al., 2017), cytokinin (van Mourik et al., 2017), gibberellic acid (GA) (Bai et al., 294 

2012; Stamm and Kumar, 2013), brassinosteroids (e.g. Oh et al., 2014; van Mourik et al., 2017; 295 

Wiesel et al., 2015), ethylene (only SAUR76-78 (Li et al., 2015)), ABA (Kodaira et al., 2011; 296 

Nemhauser et al., 2006), jasmonate (JA) (Nemhauser et al., 2006) as well as by different light 297 

conditions (e.g. OuYang et al., 2015; Roig-Villanova et al., 2007; Sun et al., 2016; van Mourik 298 

et al., 2017), cold (Hu et al., 2018; Wu et al., 2012), drought (Guo et al., 2018; Wu et al., 2012), 299 

high temperature (Franklin et al., 2011), and high salt conditions (Guo et al., 2018; Wu et al., 300 

2012) in different plant species. In general, SAUR genes are upregulated in response to 301 

hormones and conditions that are known to induce growth, such as auxin, brassinosteroids, 302 

gibberellin and decreased R:FR ratios, but downregulated in response to ABA, JA, and stress 303 

conditions, such as drought, cold and high salt. This stress-induced down-regulation of growth 304 

is probably compensating the plant’s investment in resistance mechanisms. GUS reporter 305 

analysis revealed that the response of SAURs to environmental and hormonal stimuli occurs 306 

mainly in the tissue where they are already expressed (Markakis et al., 2013; van Mourik et 307 

al., 2017). This suggests that the tissue-specific expression of SAUR genes is determined by 308 

upstream transcription factors (TFs) that may be mainly developmentally regulated, while the 309 

amplitude of their expression in these tissues depends on their response to various 310 

environmental and hormonal stimuli. Plants thus contain an extensive toolbox to regulate 311 

growth dynamically in different tissues in accordance with environmental conditions. 312 

The idea that tissue-specific SAUR gene expression is regulated by upstream 313 

developmentally regulated TFs is supported by large-scale ChIP-seq data, revealing frequent 314 

binding events of key developmental regulators such as LEAFY (LFY), APETALA 1 (AP1), 315 

APETALA 2 (AP2) SEPALLATA 3 (SEP3) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 316 

(SOC1) (van Mourik et al., 2017). Induced activity of the TCP (TEOSINTE BRANCHED 317 

1/CYCLOIDEA/PROLIFERATING CELL FACTOR 1) TFs TCP4 and TCP20 can also rapidly 318 

upregulate a set of SAUR genes (Challa et al., 2016; Danisman et al., 2012), but in the case of 319 

TCP4, this occurs probably indirectly via the ARF-BZR pathway (discussed below) by direct 320 
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induction of the auxin biosynthesis gene YUCCA5 (Challa et al., 2016). Only the binding and 321 

regulation of the MADS-domain TF FRUITFULL (FUL) to the SAUR10 locus, involved in the 322 

repression of its stem-specific expression (Bemer et al., 2017b), and the direct repression of 323 

SAUR19-clade genes by the AHL transcription factor SUPPRESSOR OF PHYTOCHROME B4-#3 324 

(SOB3) in hypocotyls (Favero et al., 2016) has been characterized in more detail so far. The 325 

factors involved in the regulation of tissue-specific SAUR expression thus largely await further 326 

investigation.  327 

 328 

Regulation by ARF-BZR-PIF 329 

The mechanisms controlling auxin, brassinosteroid, gibberellic acid (GA) and light-regulated 330 

SAUR expression have been largely elucidated in recent years. Oh et al. (2014) showed that 331 

ARF6, BZR1 and PHYTOCHROME INTERACTING FACTOR 4 (PIF4) can physically interact with 332 

each other in hypocotyls and have largely overlapping target gene sets, including a large 333 

number of SAUR genes. This points to a major role for an ARF-BZR-PIF complex in the 334 

regulation of SAUR gene expression. In line with this, SAUR genes can be synergistically 335 

upregulated by combined addition of auxin and brassinosteroids, (Bemer et al., 2017b; van 336 

Mourik et al., 2017; Walcher and Nemhauser, 2012), are abundantly present in target lists of 337 

ARF5, ARF7, ARF8 and ARF19 (Nagpal et al., 2005; Okushima et al., 2005; Schlereth et al., 2010) 338 

and downstream of different PIFs (Sun et al., 2016; van Mourik et al., 2017). Several other 339 

studies have provided additional evidence for the role of a ARF-BZR-PIF complex in the SAUR-340 

induced growth response. Sun et al. (2016) showed direct binding of PIFs to the lirSAURs, 341 

which induces their expression in dark-grown hypocotyls; Miyazaki et al. (2016) reported that 342 

the hypocotyl elongation phenotype of LOV KELCH PROTEIN 2 (LKP2) overexpression is 343 

accompanied by SAUR gene upregulation and depends on both auxin and PIFs; and Favero et 344 

al. (2017) found that both brassinolide and auxin treatment enhanced transcript accumulation 345 

of SAUR19 subfamily genes in hypocotyls and that blocking polar auxin transport could 346 

attenuate the growth responses of SOB3 mutants to exogenous brassinolide. Moreover, 347 

family-wide in silico analysis of the regulatory regions of the Arabidopsis SAUR genes revealed 348 

that inverted repeats of two AuxRE elements, bound by ARFs (Boer et al., 2014), are enriched 349 

in auxin-induced Class I SAURs, in combination with BZR and PIF5 binding motifs (van Mourik 350 

et al., 2017).  351 
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GA also plays a role in the ARF-BZR-PIF signalling module, as the growth-inhibiting 352 

DELLA proteins interact with BZR1 and with ARF6 (Bai et al., 2012; Bemer et al., 2017a; Oh et 353 

al., 2014), thereby preventing their binding to the DNA. In the presence of GA, DELLAs are 354 

degraded and the ARF-BZR-PIF complex can induce SAUR expression. DELLAs can also interact 355 

with PIFs, thus controlling the activity of the inducing complex even more (De Bruyne et al., 356 

2014). In line with this, GA induced hypocotyl elongation requires both BZR1 and PIFs (Bai et 357 

al., 2012). These data indicate that at least in Arabidopsis, there is a distinct group of SAURs 358 

that can be induced by auxin, brassinosteroids, gibberellin and light through ARF-BZR-PIF 359 

complexes (van Mourik et al., 2017). The light response of SAURs is regulated via the PIFs, 360 

which are degraded by the phytochromes in the active Pfr state when the ratio of red to far-361 

red light is high (Castillon et al., 2007). In low light conditions or at low red:far-red ratios (in 362 

the shade), PIFs are active and induce SAUR expression. SAURs thus both regulate growth 363 

downstream of photomorphogenesis and contribute to the shade avoidance response (Ren 364 

and Gray, 2015; Sun et al., 2016; van Mourik et al., 2017). Also warm-temperature-induced 365 

SAUR upregulation in Arabidopsis is mediated by the PIFs (Franklin et al., 2011). Research in 366 

other species have linked brassinosteroid and light signalling to SAUR gene expression as well. 367 

Mutations in the Medicago brassinosteroid receptor MtBRI1 affected the expression of a set 368 

of SAUR genes (Cheng et al., 2017), a potato SAUR gene was identified as a marker for 369 

induction of the brassinosteroid pathway (Wiesel et al., 2015), SAURs were identified 370 

downstream of PIFs in rice (Kudo et al., 2017) and light treatments in Norway spruce also 371 

induced SAUR gene expression (OuYang et al., 2015). In conclusion, the cell elongation 372 

capacity and light response of seedlings appears to a large extent regulated by the ARF-BZR-373 

PIF complex. 374 

 375 

Other factors involved in SAUR regulation 376 

The regulatory networks involved in the repression of SAURs upon stress conditions such as 377 

cold, drought and increased salinity have been less well characterized. However, Kodaira et 378 

al. (2011) showed that the cold- and high salt-inducible TFs ARABIDOPSIS ZINC-FINGER 1 379 

(AZF1) and AZF2, which function in the ABA response pathway, can repress 15 SAUR genes. 380 

Electrophoretic Mobility Shift Assays (EMSAs) also showed that both TFs can bind to the 381 

upstream region of SAUR20 and SAUR63, indicating that the regulation of the SAURs by 382 

AZF1/2 occurs via direct binding. The repressive effect of JA is probably transduced via the 383 
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ARF-BZR-PIF complex, because JAZ proteins can interact with the DELLA proteins, thereby 384 

inhibiting the interaction of the DELLA proteins with the PIFs. In the presence of JA, JAZ 385 

proteins are degraded, resulting in increased DELLA-mediated inhibition of ARF-BZR-PIF (Yang 386 

et al., 2012). The fact that the pifq mutant is impaired in JA-induced growth inhibition (Yang 387 

et al., 2012), confirms this dependency of JA signalling upon the ARF-BZR-PIF complex. 388 

SAUR transcript levels are also regulated in a circadian manner. The sunflower SAUR50-389 

like gene for example, is particularly highly expressed in the morning at the east-side of the 390 

stem (Atamian et al., 2016), while the circadian movement of waterlily flowers is under control 391 

of auxin, associated with day-time dependent expression of 25 SAUR homologs in the petals 392 

(Ke et al., 2018). In Arabidopsis hypocotyls, SAURs are induced by PIFs (Oh et al., 2014; Sun et 393 

al., 2016), which accumulate at dawn in short-day (SD) seedlings (Soy et al., 2014). This 394 

suggests that SAUR transcripts may also be most abundant around dawn, at least in SD 395 

conditions, in agreement with the timing of maximum hypocotyl elongation (Soy et al., 2014). 396 

Indeed, SAUR63 subfamily genes revealed to be diurnally expressed, with highest expression 397 

in the early morning (Chae et al., 2012). The clock genes PSEUDO-RESPONSE REGULATOR 5 398 

(PRR5) and PRR7 are negative regulators of hypocotyl growth expressed in the course of the 399 

day, and act as transcriptional repressors (Nakamichi et al., 2010). Both factors can directly 400 

bind to many Arabidopsis SAUR genes (van Mourik et al., 2017), thereby probably repressing 401 

their expression in the afternoon. Thus, the majority of the SAUR genes may be higher 402 

expressed in the early morning and repressed in the afternoon through the upstream control 403 

of clock genes. Family-wide temporal expression analyses are required however, to validate 404 

this circadian expression pattern.  405 

In addition to upstream regulation of SAUR gene transcription, post-transcriptional 406 

and post-translational regulation of SAUR activity also contributes considerably to the SAUR-407 

mediated dynamic growth control. SAUR overexpression gives a much more severe phenotype 408 

when fused to a tag such as GFP, which probably stabilizes the protein that has a very short 409 

half-life (Chae et al., 2012; Knauss et al., 2003; Ren and Gray, 2015). Besides the rapid protein 410 

decay, which has not been further investigated so far, several studies have shown that SAUR 411 

transcript levels quickly drop after removal of the inducer (e.g. auxin) (Markakis et al., 2013; 412 

van Mourik et al., 2017). This post-transcriptional regulation is at least in part regulated by a 413 

~40-nucleotide downstream (DST) element in the 3’ untranslated region (UTR) of a number of 414 

SAUR genes. This region was initially characterized in a few SAURs from soybean, mung bean 415 
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and Arabidopsis (McClure and Guilfoyle, 1989; Newman et al., 1993), and confers mRNA 416 

instability (Newman et al., 1993). Sullivan and Green (1996) identified two functionally 417 

important conserved regions within the DST element (ATAGAT and GTA) by mutational 418 

analysis in tobacco. The DST element, more precisely defined as GGA(N)xATAGAT(N)xGTA, is 419 

present in 30 of the 79 Arabidopsis SAURs (Ren and Gray, 2015). Overexpression of 420 

Arabidopsis SAURs including the DST element resulted in much less severe phenotypes than 421 

when the element was excluded (Hou et al., 2013; van Mourik et al., 2017). Putative DST 422 

elements were also identified in SAURs from rice (Jain et al., 2006) and tomato (Wu et al., 423 

2012). The DST element has been associated with circadian control of mRNA, because several 424 

other transcripts with a DST sequence, which are upregulated in the dst1 and dst2 EMS 425 

mutants, are regulated in a circadian manner (Pérez-Amador et al., 2001). However, more 426 

recently, also oxidative stress was found to induce transcript degradation via 3’UTR DST 427 

sequences (Ravet et al., 2012), suggesting that several upstream cues can induce DST-428 

mediated transcript degradation. Which upstream factors regulate SAUR mRNA decay 429 

remains to be investigated. Identification of the loci causal for the dst1 and dst2 molecular 430 

phenotypes would certainly contribute to the elucidation of DST-controlled SAUR mRNA 431 

decay.   432 

  433 

The data summarized in this section illustrate the complex regulation of the SAUR genes via 434 

both developmental, environmental and clock-controlled pathways at the transcriptional and 435 

post-transcriptional levels (see Figure 3). Despite the high level of complexity, many regulatory 436 

modules appear to converge at the ARF-BZR-PIF complex, which integrates various upstream 437 

cues. In addition, tissue-specific TFs and other upstream regulators also contribute 438 

significantly to the dynamics of SAUR activity, and also determine the expression of the SAURs 439 

that are not regulated via ARF-BZR-PIF. 440 

 441 

Concluding remarks 442 

Land plants need to constantly adapt their growth to the environmental circumstances in 443 

accordance with their developmental stage. To achieve this, they evolved dynamic growth 444 

factors that can rapidly induce growth in response to a wide range of internal and 445 

environmental stimuli. These growth factors, the SAUR proteins, generally share a common 446 

function in repression of PP2C.D phosphatases, but their genes exhibit a great regulatory 447 
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region diversity, allowing tissue-specific and stimuli-specific expression patterns. This provides 448 

the plant with a great toolbox for growth adaptation. The high retention of SAUR genes after 449 

duplication indicates that expansion of this toolbox delivers an evolutionary advantage. In 450 

Arabidopsis, about ~70% of the SAUR genes is responsive to auxin and probably regulated by 451 

the ARF-BZR-PIF complex. The majority of these SAURs regulate cell elongation, at least in the 452 

seedling (Sun et al., 2016), which is linked to interaction of their proteins with the plasma-453 

membrane localized PP2C.Ds (D2, D5 and D6) (Ren et al., 2018). Plasma-membrane localized 454 

SAURs are presumably the main determinants of cell elongation, at least in part regulated via 455 

the ARF-BZR-PIF module. SAURs that are localized to the cytosol at the other hand, could 456 

repress the cytosolic PP2C.D PPSL, thereby inducing senescence. Several SAURs, such as 457 

SAUR10 and SAUR36 (Bemer et al., 2017b; Hou et al., 2013), can both induce cell elongation 458 

and senescence, and are thus expected to localize both to the plasma membrane and the 459 

cytosol. Interestingly, several SAURs exhibit nuclear localization (Narsai et al., 2011; Park et 460 

al., 2007), and can possibly target the nuclear-localized PP2C.Ds: D1, D3 and D4 (Ren et al., 461 

2018). The nuclear-localized SAUR32, which has been characterized in detail (Park et al., 462 

2007), inhibits cell elongation and is not responsive to auxin, suggesting that nuclear-localized 463 

SAURs may fulfill a function different from promoting cell elongation, possibly linked to 464 

induction by other factors, such as cytokinin. SAUR51, expressed in meristematic cells, is also 465 

non-responsive to auxin, but upregulated by cytokinin (van Mourik et al., 2017). Future 466 

experiments will have to elucidate whether the localization of SAUR proteins is indeed 467 

predictive for their function, and whether this also correlates with their response to particular 468 

stimuli. Other outstanding questions regarding SAUR regulation and molecular function (see 469 

Table 1) will hopefully be solved in future studies as well.  470 

 471 

 472 

 473 

 474 

 475 

 476 

 477 

 478 

 479 
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Figure S1. Full version of the phylogenetic tree displayed in Figure 1. The colours of the clade 483 

correspond with the colours in Figure 1. The tree was generated in MEGA based on a hand-484 

adjusted Bio-Edit alignment (Supplementary data file 1) 485 
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Data File S1. Alignment of all SAUR proteins used to generate the phylogenetic tree. 487 
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Tables 

 

Table 1. Outstanding questions 

 

• Which protein motifs determine the intracellular localization of the SAUR proteins? 

• Can SAURs also interact with other PP2C clades? 

• Which protein motifs are required for the interaction with PP2C.Ds? 

• Is the effect on senescence regulated via the interaction with PPSL? 

• Are only plasma membrane localized SAURs involved in cell elongation? 

• What is the biological function of the calmodulin binding SAURs? 

• Does the predicted metal-binding capacity of some SAURs have a biological 

function? 

• Which TFs are involved in tissue-specific SAUR expression? 

• Which SAURs act redundantly in the different tissues? 

• Which pathways are involved in the response of SAURs to abiotic stresses? 

• Is the response to ARF-BZR-PIF linked to plasma membrane localization? 

• How is the DST-mediated SAUR mRNA decay regulated? 

• What is the reason for the short half-life of SAUR proteins? 
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Figures 

 
 

Figure 1. phylogenetic tree of the SAUR family. The unrooted tree was constructed from a 

hand-adjusted BioEdit alignment of all SAURs from Arabidopsis (www.Arabidopsis.org), 

Physcomitrella (Rensing et al., 2008), potato (Wu et al., 2012), tomato (Wu et al., 2012), rice 

(Jain et al., 2006) and sorghum (Wang et al., 2010) (Supplemental data) using the maximum 
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likelihood method in the MEGA software (Hall, 2013). The colours of the triangles indicate the 

species represented in that clade. Green: all species (including Physcomitrella); Blue: eudicot 

and monocot; Yellow: monocot; Orange: eudicot; White: Arabidopsis; Purple: Solanum. In 

some cases, the separation of the clades is uncertain and supported by low bootstrap values 

(Supplemental Figure S1). Some characterized SAURs have been listed alongside the clades. 

The clade division from Kodaira et al. (2011) is indicated in dark green. 
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Figure 2. Schematic model of the putative molecular functions of SAURs in different cell 

compartments. A) In the plasma membrane, SAURs interact with PP2C.D2/5/6, thereby 

repressing dephosphorylation of the H+ATPases AHA1/2 and inducing cell elongation. B) In 

the cytosol, SAURs can probably interact with SSPP (PP2C.D1), thereby repressing 

dephosphorylation of AtSARK and inducing senescence. C) In the nucleus, the function of 

SAURs is still unclear, but they may interact with the nuclear localized PP2C.D1/3/4. 
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Figure 3. Regulation of SAUR genes by developmental, environmental and clock-controlled 

factors. The different tissues where SAURs play a role are indicated, as well as some upstream 

tissue-specific regulators (in yellow). Environmental signals (dark red) are transduced via 

hormones (orange). Most pathways converge at the level of the ARF-BZR-PIF complex 

(purple), while others directly act on the upstream region of SAUR genes or affect transcript 

stability. The black lines indicate direct or indirect activation or repression. The circadian 

regulation is indicated with a clock symbol. 

 

 

 


