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Abstract 

    Soil fertility is a major constraint to agricultural development in sub-Saharan Africa. 
While intensification of crop productivity through mineral fertilizers is recognized as an 
option, large variability in yields has been observed on smallholders’ fields. The 
formulation of fertilizer recommendations requires an understanding of the sources and 
scales of fertilizer response variability. During the 2015-2016 growing season, nutrient 
omission trials were performed on 296 farms to understand rainfed maize yield responses 
to nitrogen (N), phosphorus (P), potassium (K) and secondary macro- and micronutrients 
(M). Linear mixed effect and non-linear random forest models were used to analyze how 
yield and yield responses were related to a range of available geographical data with 
edaphic and climatic co-variates. The models were calibrated and tested using a holdout 
approach, at the farm and district level. Drought, temperature, pH, cation exchange 
capacity, soil organic carbon, P and K explained for at most 16% of the yield nutrient 
responses variation, after cross validation between farms. The variability of yield 
macronutrient responses was dominated by small-scale variation. To a much lower extent, 
also large-scale variation of yield responses was present for nitrogen and phosphorus. 
These findings highlighted that yield responses to macronutrient supply varied in 
response to factors that strongly differ between fields, even at small distances. However, 
yield variation in control plots were explained for 46% by the same covariates, 
highlighting the effect of large-scale climatic and edaphic factors. None of the tested 
statistical models had predictive power when testing between districts, highlighting lack 
of causality between covariates and yield response. Formulating refined fertilizer 
recommendations is not possible at the field scale for this dataset. The response variation, 
occurring at small-scale, requires further understanding and inclusion of local 
information, e.g. related to current and historical field management.  
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1. Introduction 

1.1. Maize cultivation in sub-Saharan Africa 

Low productivity in sub-Saharan Africa (SSA) has been attributed to the depletion of soil 
fertility (Sanchez, 2002). Severe nutrient depletion and declining soil fertility are 
widespread among African soils (Chianu et al., 2012; Haileslassie et al., 2005; Smaling 
et al., 1997). Continuous cropping without nutrient replenishment via crop residues, 
manure, mineral fertilizer or regeneration during fallow periods has led to nutrient mining 
and degradation of soil resources (Tittonell & Giller, 2013; Vanlauwe et al., 2014). As a 
result, many regions of SSA are affected by negative nutrient balances (Alley & 
Vanlauwe, 2009; Smaling et al., 1993). High deficiencies in macronutrients, particularly 
nitrogen (N) and phosphorus (P) (Chianu et al., 2012; Smaling et al., 1997) but also in 
micronutrients (Waddington et al., 1998) were observed in many cropping systems and 
limit crop productivity.  

Rainfed maize is the most prevalent staple crop grown in SSA (van Ittersum et al., 2016), 
with half of the countries allocating more than 50 % of the total cultivated area to this 
crop (Tesfaye et al., 2015). Averages of actual dry maize grain yields range from 1.2 in 
Tanzania to 2.2 t ha-1 in Ethiopia for the 2003-2012 period (van Ittersum et al., 2016). 
Maize has one of the largest yield gaps among crops grown in SSA (Global Yield Gap 
Atlas, www.yield.gap.org) with actual yields representing only 15 to 27% of the water 
limited potential (van Ittersum et al., 2016). Increase in crop production has been achieved 
mainly through expansion of the cultivated area (Cassman et al., 2003) but little was 
attributed to an increase in crop yield, stagnating since the late 90’ (Ray et al., 2012). In 
Tanzania, while the area under rainfed maize cultivation has been multiplied by four 
during the last decade, average annual yields have been stagnating between 1 and 1.5 t 
ha-1 (FAOSTAT, 2017).  

Increasing production in Africa though area expansion has a limited scope in densely 
populated areas. Moreover, under the current agricultural practices, it is expected to occur 
at the expense of natural areas and hence associated with land resource degradation (Brink 
& Eva, 2009). Intensification of crop productivity to meet the increasing food demand 
(van Ittersum et al., 2016) is therefore desirable in SSA (Vanlauwe et al., 2014). 
Smallholder farmers, cultivating usually less than two hectares of land, are the first 
providers of staple crop in most African countries (AGRA, 2014). However, they 
generally have limited opportunities for intensification. In addition to poor soil fertility, 
they face socio-economic challenges including limited access  to input, credit markets 
(Xu et al., 2009), and supporting services (Edmonds et al., 2009). These factors are 
recognized as important constraints that explain the low level of technologies and 
agrochemical inputs (Tittonell & Giller, 2013; Vanlauwe et al., 2014).  
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1.2. Crop intensification through mineral fertilization 

Since the Africa Fertilizer Summit of 2006, increasing access to fertilizer by targeted 
subsidies has been a widely accepted intensification option for crop productivity and for 
addressing the challenge of declining soil fertility (IFDC, 2006). In other words, it aimed 
to increase fertilization rates in SSA from an average of 13 kg ha-1 (Minot & Benson, 
2009) to 50 kg ha-1 (IFDC, 2006). Recommendations on nutrient management, through 
mineral fertilizers application, were promoted on uniform or “blanket” basis in relation 
to crop potential demand (Giller et al., 2011). They were formulated according to the 
potential yield within an agroecological zones (AEZ), for a given area, crop and dominant 
soil type (FURP, 1994) assuming homogeneity of production factors at landscape and 
farm level (Vanlauwe et al., 2015). Plus, these recommendations were derived from 
fertilizer response trials performed on research stations, often located on productive sites 
under researcher “best” practices (Vanlauwe et al., 2016) and were covering large areas, 
even entire countries (Vanlauwe & Giller, 2006). The drawbacks resulting from these 
generic recommendations were twofold. First, responses to fertilizers were often lower, 
and more variable on farmer’s fields compared to the controlled conditions on research 
stations (Liverpool-Tasie et al., 2017; Tittonell et al., 2008). Second, these 
recommendations underestimated the large spatiotemporal heterogeneity of biophysical 
conditions that can substantially vary within a recommendation domain (Vanlauwe et al., 
2015).  

Despite a considerable increase of fertilizer use in many SSA countries as a result of 
fertilizer subsidy programmes (Sheahan & Barrett, 2017), the profitability of this option 
needs to be discussed (Jayne & Rashid, 2013). Adoption of such intensification option 
implies a risk as it represents a considerable investment for smallholder farmers (Bumb 
et al., 2011; Edmonds et al., 2009). In Tanzania, fertilizer application increased from 9 to 
17 kg ha-1 per year since 2008 after the introduction of a fertilizer subsidy programme 
under the Agricultural Input Voucher Scheme (Senkoro et al., 2017; Mowo et al., 1993). 
These quantities remain far below the fertilizer recommendation based on the AEZ 
scheme proposed by De Pauw (1984). Moreover, the relatively low return on fertilizer of 
7 kg of grain per kg on nitrogen applied (Mather et al., 2016) questions the efficiency of 
the blanket recommendations. Before their formulation, there is thus a need to understand 
the variability of the responses and its magnitude (Vanlauwe et al., 2016) as it translates 
directly the probability of success and determines farmer’s willingness to adopt (Bielders 
& Gérard, 2015). 

1.3. Yield response variability: magnitude and scale 

1.3.1. Yield responses to fertilizer in SSA 

Positive crop responses have been observed in farmers’ fields with fertilizer application 
for several crops (Edmonds et al., 2009) such as maize in SSA (Kihara et al., 2016; 
Vanlauwe et al., 2011), and millet and soybean in West Africa (Buerkert et al., 2001). 
The response distribution and magnitude of variation is however more informative than 
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the average response (Vanlauwe et al., 2016), but has only received interest recently. For 
instance, in a study by Buerkert et al., (2001) microdose fertilization of millet increased 
yield on average by 120% with a yield increase ranging from 0 to 2000 kg ha-1. For NPKS 
(respectively 80-60-60-24 kg ha-1) fertilization of maize plot trials in Kenya (Vanlauwe 
et al., 2016), average increase was 180% with a yield response ranging from the negative 
with – 2000 to 5500 kg ha-1.  

The wide range of responses can be illustrated by cumulative frequency curves that show 
the frequency of the yield increment with fertilizer. Vanlauwe et al., (2016) presented it 
for maize and bean (Fig. 1a,b). Moreover, it shows that for the same treatment, the 
potential gain from fertilizer application varies greatly across farms within similar AEZs. 
High variability in treatment response has been observed for several crops e.g. millet 
(Bielders & Gérard, 2015), soybean (Ronner et al., 2016), and maize (Kihara et al., 2016), 
with a wide range of responses at every level of control yield.  

 

 

1.3.2. Potential sources of variation at different scales 

Under nutrient limiting conditions yield variability is related to the level of soil fertility 
and the farm management history (Zingore et al., 2007). When fertilizer is applied and 
nutrients are not limiting, the yield response variation is caused by factors that determine 
the components of nutrient use efficiency, i.e. capture and conversion efficiency 
(Tittonell et al., 2008). Moreover, the yield obtained with nutrient application varies 
according to geologic, pedologic (slope, soil type), and climatic (rainfall amount and 
distribution) factors that set permanent limitations and determine the attainable yield 
(Tittonell & Giller, 2013). Other processes, both biotic (pest and diseases) and abiotic 
stress (drought), can also occur during the growing period, reducing yield and nutrient 
uptake (Vanlauwe et al., 2015). The combination of these factors determines the crop 
growing conditions. They vary greatly in space and time, and contribute to yield 
variability at different scales.  

Figure 1. Cumulative 
frequency curves of 
maize response to 
NPKS fertilizer in 
Vihiga and Siaya 
district of Kenya (a) 
and bean response to 
NP fertilizer in 
Rwanda, from 
Vanlauwe et al. (2016) 
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At national and regional scale, yield variability may be attributed to different soil types, 
landforms, and climates. At that scale, a wide range of water limited yields for rainfed 
maize can already be observed. For Tanzania, they vary from 2400 to 8000 kg ha-1 
(Global Yield Gap Atlas, www.yield.gap.org). Various agroclimatic zones co-occur in 
SSA (Voortman et al., 2003). They are characterized by temperature (min and max), 
rainfall (amount and distribution), solar radiation and the length of the growing season. It 
is also important to account for temporal variability of weather patterns that impacts the 
length of the growing season and rainfall, that substantially vary from year to year 
(Rowhani et al., 2011). In addition, different soil types with very heterogeneous 
distribution patterns can be observed at the regional level (ISRIC, www.soilgrids.org). 
Soil types are characterized by different inherent nutrient retentions and water holding 
capacities (Bationo et al., 2012) ; chemical properties ; and resilience to land degradation 
by erosion (Stocking, 2003). These properties, resulting from long-term processes by soil 
forming factors are correlated with plant growth and nutrient uptake constraints (Baligar 
et al., 2001).  

At landscape and community/village scale, within similar agroclimatic conditions, yield 
response to fertilizer is influenced by factors varying on small distances. Within a Kenyan 
landscape, Njoroge et al. (2017) observed large spatial variability of maize yield 
responses to NPK fertilization. For similar fertilization treatments, Kihara et al. (2016) 
also reported large magnitudes of yield response to NPK (100-30-60 kg ha-1) within 
several African landscapes. Detailed landforms can be recognized at that scale with 
different pedologic conditions varying along the toposequence. Field position in the 
landscape and topsoil texture are then important criteria to classify soil conditions 
(Deckers, 2002). Analyzing crop NDVI response to fertilization in a landscape of Mali 
showed that landscape position contributed significantly to the yield variation  (Blaes et 
al., 2016). Differences between catena position can be characterized by distinct slopes, 
rootable depths, water holding capacities, drainage characteristics (Blaes et al., 2016; 
Deckers, 2002) and influence crop response to weather extremes (Bationo et al., 2012) 

At farm scale, yield variability can be attributed to local conditions that are characterized 
by short range variation of soil properties in combination with crop and soil management 
(Tittonell et al., 2007, 2007; Zingore et al., 2007). For instance, Yemefack et al., (2005) 
showed that pH, clay content and available P were varying strongly at local level and 
illustrates the influence of land use on topsoil variability. In addition, historical 
management results in great heterogeneity between and within farms, evidence by the 
presence of strong fertility gradients (Tittonell et al., 2005). To a certain extent, practices 
leading to severe soil nutrient depletion lead to the occurrence of “non-responsive” fields, 
where commercially available fertilizer application is not followed by an increase in crop 
productivity (Zingore et al., 2007). They are characterized by complex nutrient 
imbalance, including macro- or micronutrient deficiency, often poor physical structure, 
and occasionally, nutrient toxicity (Kihara et al., 2016; Kurwakumire et al., 2014).  
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1.4. Targeting fertilizer recommendations: key challenges 

There is in general agreement among researchers that crop intensification, in such 
heterogeneous context, cannot be achieved without locally adapted options, tailored to 
the productivity constraints of the farming systems (Giller et al., 2011). Spatially adapted  
fertilizer recommendations, in terms of quantity, blend and form (Muthoni et al., 2017), 
are expected to improve fertilizer agronomic efficiency (Vanlauwe et al., 2011). 
However, the challenge stands in the delimitation of recommendation domains, areas 
where farmers are facing a set of similar productivity conditions and yield responses are 
expected to be homogenous (Jauregui & Sain, 1992). Researchers have often treated the 
farm as a relevant level to evaluate performances of intensification options (Vanlauwe et 
al., 2015). Formulation of farm specific recommendations is however not yet available 
publicly. Then, this poses questions about the optimal scale for targeting fertilizer 
recommendations. What is feasible, according to the available data, and what is 
applicable, according to farmers access and awareness of input market?  

A second challenge exists in capturing the heterogeneity of the growth conditions in the 
area of interest. Site specific studies do not give insight in the patterns that may vary 
gradually across the landscape. Controlled on-farm experiments, with consistent testing 
of treatments over a large area, are necessary to understand yield constraints across a 
population of heterogeneous farms (Lobell et al., 2009; Van Ittersum et al., 2013). An un-
biased selection of experimental sites is needed to properly represent the area and farming 
conditions, and to capture the spatial heterogeneity in the agricultural landscape 
(Hochman et al., 2013; Vanlauwe et al., 2016).  

As discussed by Vanlauwe et al. (2016) the problem of data collection and data quality 
needs to be addressed, as trials performed over large areas increase the number of 
operators and the probability of inconsistency in the measurements. The use of 
biophysical datasets, soil and climate related, can be challenging in such heterogeneous 
context (Waha et al., 2015). On one hand,  measurements of soil properties can be 
inaccurate or not informative and show weak relationships with yield response (Njoroge 
et al., 2017). On the other hand, interpolated data predicting soil properties at coarse level 
may not capture short range soil spatial variability. As a result, the accuracy of the data 
needs to be taken into account when selecting variables to explain yield response 
(Grassini et al., 2015).  

One of the key requirements for targeted recommendations consists in understanding the 
impacts of the biophysical environment on the yield response. Only few studies attempted 
to quantify the contribution of the factors discussed in section 1.3. and their interactions 
with the fertilizer performances. Ronner et al., (2016) succeeded to explain a substantial 
part of variability based on local management and environmental variables with a R2 of 
0.61 for soybean response to P fertilizer and rhizobium inoculants. However, the 
predictive power of their variables was limited for targeting recommendations as it 
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decreased considerably when cross validating their model in new areas and other growing 
seasons. Bielders & Gérard, (2015) explained 20% of the overall millet yield variability 
by environmental and management factors and 27% by the effect of fertilization and 
manure application. In a more detailed selection of variables Burke et al., (2017) 
highlighted significant interactions between soil conditions and fertilizer response for 
maize. However, while numerous variables were used to explain variability, only 30% 
was explained by those covariates. The results of these studies highlight the challenge in 
the selection of explanatory variables and their accuracy. Most importantly, it highlights 
the difficulty of drawing reliable conclusions when explaining yield response variability 
within such heterogeneous contexts. The underlying components of yield response in 
SSA are currently not understood well enough to address fertilizer options at a scale that 
ensure farmers profitability.  
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2. Research objectives  
Improving the understanding of the factors governing the yield response to fertilizer and 
their scale of influence are crucial information for the formulation of spatially targeted 
fertilizer recommendations. There is an increasing number of available geospatial 
datasets on climatic and edaphic conditions. However, it is unknown if these data, can 
improve our understanding of the nature of yield response variability and help to better 
define recommendation domains.  

The aim of this study was to assess the sources of maize yield variability in response to 
mineral fertilizer application in Tanzania through the analysis of widespread on-farm 
testing of nitrogen (N), phosphorus (P), potassium (K) and secondary macro- and 
micronutrients (M). The analysis relies on the following axes of investigation.  

The first step was to describe the variability of yield response variation to N, P, K and 
micronutrients application from the farm, to the regional scale. Second, spatial variability 
of yield response and presence of response patterns across the study sites were evaluated. 
Third, using climatic, topographic and edaphic variables derived from geospatial datasets 
into a statistical model to explore the relationships between biophysical context and yield 
response. Different modelling approaches were evaluated to predict yield response with 
the use of linear mixed model, spatial autoregression, geostatistics and machine learning. 
Fourth, the ability of the selected variables to predict yield response was evaluated by 
cross-validation and their relevance for improved targeted fertilizer recommendations 
was discussed.  
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3. Materials and methods  

3.1. Study area 

This study uses data from on-farm trials located in the Southern Highlands and Northern 
Zone of Tanzania (Fig. 2). The country has a complex landscape due to the East African 
Rift, resulting in topographic and climatic variability ranging from tropical savanna 
climates near the coast to warm semi-arid climates covering the Southern and Northern 
highlands (Rowhani et al., 2011). 

 

 

Figure 2. Geographic distribution of on-farm trials across the regions of Tanzania and a digital elevation model 
(DEM) GEMTED2010. Maize target regions are outlined in black.  

N 
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The Southern Highlands zone is located between 7.5° to 10.5° S latitude, and 31° 36.5°E 
longitude, and it covers the regions of Rukwa, Iringa, Ruvuma, Mbeya. The Northern 
zone is located between 3° 5.5°S latitude, and 35° 38°E longitude, and includes the 
regions of and Manyara, Arusha and Kilimanjaro (Fig. 2). In terms of AEZ (De Pauw, 
1984), the Northern Highlands (1000-2500 meter above sea level) are characterized by 
volcanic uplands with deep fertile loamy soils in the Kilimanjaro region, with a bimodal, 
but very variable rainfall (1000-2000 mm per year) pattern. Around the central part of the 
country, in Manyara and Northern Iringa (1000-1500 masl), well drained but not very 
fertile soils and saline soils are present with a unimodal, variable rainfall (500-800mm 
per year) pattern. In the Southern zone, the Highlands (1200-1500 masl) cover the regions 
of Mbeya and Iringa with moderate fertile clay soil sand low fertility sandy soils in the 
West of Rukwa. The Plateau region of Eastern Ruvuma is characterized by sandy plains. 
The Southern regions benefit from a more reliable unimodal rainfall when compared to 
the Northern Highlands, with a growing season lasting from about November to April 
(800-1400 mm per year) (Magehema et al., 2014).  

Trials were implemented in areas of interest (AOI) defined by the TAMASA (Taking 
Maize Agronomy to Scale in Africa) project team. AOIs were defined as areas 
representative of major maize-based systems (50% of the crop in more than half the 
season is maize), where farmers have intensification as their aim (cf. TAMASA Sampling 
Strategy and site-selection SOP). A total of 296 on-farm trials ran in randomly selected 
locations within a selected set of 26 grids of 102 km during the maize growing season of 
2016 (Fig. 2). Grids were selected to represent all major climate zones. In this study, 
“plot” referred to the 6 different treatments within a single “farm”. The term “farm” was 
used to name what is actually the field scale, as there was one field studied per fam. Farms 
were included in a 10 km2 grid referred as “district”, each district contains between 6 and 
15 farms. District being the closest scale to the grid cell scale, this term is used instead of 
“grid cell” for this study.  The locations were further differentiated according “zones”, 
the Northern and Southern Highlands zone.  

3.2. Experimental design 

On-farm trials consisted of a nutrient omission trial (NOT) design with one replication 
per farm. Fields in the target areas were selected to represent the main types of farmers 
and soil types in the area. Only fields with uniform soil fertility, managed homogeneously 
in the past by the farmer were selected in order to avoid as much as possible confounding 
effect of within-field heterogeneity.   

Each trial comprises 6 fertilization treatments and were performed on a single field: a 
control without fertilization, PK (-N), NK (-P), NP (-K), NPK, NPK with secondary 
macronutrients (Ca, Mg, S) and micronutrients added (Zn, B). Nutrient application rates 
varied according to rainfall and maize production potential of the location. Three levels 
of fertilization for N, P and K were applied with increasing rates, i.e. 100-30-30, 120-40-
40 and 140-50-50 kg ha-1 (Table 1).  
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Table 1. Fertilization rate in kg ha-1 for N, P and K fertilization in NOT plots according to expected production 
potential 
Production  
potential 

 Low  Medium  High 
 N P K  N P K  N P K 

             
Control  0 0 0  0 0 0  0 0 0 
PK  0 30 30  0 40 40  0 50 50 
NK  100 0 30  120 0 40  140 0 50 
NP  100 30 0  120 40 0  140 50 0 
NPK  100 30 30  120 40 40  140 50 50 
             

 

Fertilization rates were applied to achieve expected attainable yields without nutrient 
limitations. Expected attainable yields were determined based on rainfall (low, moderate 
and high) and agroecological potential with production potential ranging from 5-6 t ha-1, 
7-8 t ha-1 to 8-10 t ha-1 at a given location (Fig. 3). These production potentials were 
assigned according to expert knowledge.  

Figure 3. Geographic distribution of on-farm trials across the region of Tanzania with their assigned production 
potential classes, low (red), medium (green) and high (blue).  
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Maize (Zea mays L.) crops received N application in three equal splits: at planting, 1st 
and 2nd topdressing, other nutrients were all applied as basal application at planting (cf. 
Guidelines and protocols for implementation of on-farm nutrient omission trials as a basis 
for developing district-specific nutrient management practices). The fertilizer type for N, 
P, K application were urea, triple superphosphate and potassium chloride respectively.  

Planting was performed at a spacing of 75 x 25 cm to ensure a density of at least 53 000 
plants ha-1. All fields were prepared with conventional tillage and weeded manually at 
least twice during the cropping season. Gross plot sizes were 25 m2 for the trials in the 
Namtumbo district and 64 m2 for the rest of the trials, corresponding to a net plot size of 
16 and 36 m2 respectively. Crops were grown on the gross plot area and harvested from 
the net plot. Detailed information about maize varieties used in this study were not 
available, a high yielding hybrid variety recommended for the specific district growing 
conditions was used.  

3.3. Data collection  

3.3.1. On-farm soil and crop data 

Four soil samples were taken from each experimental field at 0-20 cm depth before 
planting for soil analysis. Data from two methods were available, near-mid infrared 
spectrometry (NIR-MIR) from CYMMIT (International Maize and Wheat Improvement 
Center) and wet chemistry from IITA (International Institute of Tropical Agriculture). 
Only the latter was used in this analysis due to the discussed reliability of the former 
(Njoroge et al., 2017; S1). Measured soil parameters from wet chemistry analysis are 
presented in Table 2. Each of the on-farm experimental fields, where the measurements 
were taken, was georeferenced with its latitude, longitude and altitude using a standard 
GPS device.  

 
Table 2. Measured field soil chemical properties based on Mehlich-3 extraction 
Soil nutrient  Abbreviation Unit 
Total Carbon Content Org. CC %  
Total Nitrogen content N % 
Phosphorus concentration Meh. P ppm 
Potassium concentration  K ppm 
Sulphur concentration S ppm 
Copper concentration Cu ppm 
Exchangeable calcium concentration Ca ppm 
Exchangeable manganese 
concentration  

Mn ppm 

Zinc concentration  Zn ppm 
Exchangeable magnesium 
concentration  

Mg ppm 

Exchangeable sodium concentration  Na ppm 
Iron concentration Fe ppm 
Boron concentration  B ppm 
Soil water pH Water pH  
Effective cation exchange capacity ECEC cmol kg-1 
Nutrient extracted by Mehlich 3 extraction (wet chemistry)  
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Crop data, including planting date, harvest date, fertilizer application and yield were 
collected by members of TAMASA project team. Six enumerators performed the data 
collection across Tanzania. Maize was harvested between May and October 2016 at 
physiological maturity. Yields were measured at harvest from the net plot area (avoiding 
border effect) as weight of fresh cobs per plot after stover removal. Five cobs were 
randomly selected in order to calculate the shelling percentage of the cobs. The following 
coefficient was used to convert cob fresh yield into grain fresh yield: Coef. Shelling = 
fresh grain weight (kg)/ fresh cobs weight (kg). Grain moisture content was measured in 
the field at harvest with a grain moisture meter. The following coefficient was used to 
convert fresh yield into yield adjusted at 12.5% moisture content: Coef. Adj. MC = (100 
– Moisture Content)/87.5. Fresh cob weight per plot was then converted into kg ha-1 of 
grain at 12.5% moisture content.  

3.3.2. Geospatial data 

Several geographic open source datasets were included in this study to represent the 
climatic, edaphic and topographic conditions under which the trials took place (Table 3). 
These variables were selected as they are known to have an effect on maize growth and 
fertilizer use efficiency. Climatic variables were chosen to assess the extent of heat and 
water stress during the cropping period. Several rainfall characteristics  (Beyer et al., 
2016) were calculated using daily precipitation data from Climate Hazards Group 
InfraRed Precipitation (CHIRPS) (Funk et al., 2015). The characteristics included were: 
total rainfall; number of dry days; length of the longest drought, and precipitation 
seasonality. Temperature data were retrieved from MODIS Land Surface Temperature 
(Wan et al, 2015) 8-days aggregated. The third quartile of the temperatures and the 
temperature seasonality were chosen as variables. Soil physical properties provided by 
ISRIC (www.soilgrids.org) were used as an estimation of the soil texture parameters of 
the trial location such as sand content, bulk density and proportion of coarse fragments 
(Hengl et al., 2015). Root zone depth was also used in this study as an indicator of root 
zone plant available water holding capacity (Leenaars et al., 2018). In order to bring an 
estimation of the extent of land degradation and soil constraints, a set of land 
characteristic variables were added (Vågen et al., 2016, 2013). Furthermore, it can be 
assumed that vegetation characteristics of the surrounding environment may have 
impacted the extent of land degradation by erosion (Tully et al., 2015). Soil organic matter 
peaks after forest clearance and gradually declines during years of cultivation (Tittonell 
et al., 2007). As a result, a dataset of forest cover (Hansen et al., 2013) has been added, 
measuring the canopy closure of vegetation taller than five meters in 2000. To bring an 
indicator of land use, the percentage of cropland cover was retrieved from GlobeLand30 
(Chen et al., 2014).  
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Table 3. Description of the biophysical geographic variables derived from geodata and their resolution 
Variable name Code Unit Res. Reference 
Topography     
Altitude Altitude m 20 m GNSS 
Slope SLOPE ° 250 m   AfSIS, 2014 
     
Climate      
CHIRPS Climate Hazard IR Prec.   5 km Funk et al., 2014 
     Total Rainfall in GP TotRainfall mm   
     Dry days (<0.5 mm prec.) DryDay day   
     Longest Drought period (<0.5 mm prec.) Maxdrought day   
     Precipitation seasonality  CVRain    
     
MODIS Land Surface Temperature - 8 days   1 km Wan et al., 2015 
    Third quartile of temperature TQTemp °C   
    Temperature seasonality CVTemp    
     
Soil physical properties     
Sand content  SG.SAND.15 % 250 m Hengl et al., 2015 
Bulk density  SG.BULK.15 kg dm-3  Hengl et al., 2015 
Coarse Fragment SG.COAR.15 %  Hengl et al., 2015 
Root zone depth  RZD cm 1km Leenaars et al., 2015 
     
Land characteristics      
Forest canopy cover in 2000 Tree2000 % 30 m Hansen et al., 2013 
Cropland area Cropland.cov % 30 m Chen et al., 2014 

 

3.4. Data processing   

3.4.1. TAMASA datasets  

Data processing and statistical analysis were performed in R version 3.4.3. Graphical 
outputs in R, are obtained using the ggplot package. Maps were produced with QGIS 
3.02. A first dataset (296 farms) with georeferenced information on plant characteristics 
and yield was provided and background information of every plot and farm was carefully 
checked. In order to account for potential measurement errors of shelling and moisture 
content, cob fresh weight per plot was converted using farm medians of the shelling 
percentage and the moisture content adjusted at 12.5%. While this method overcame 
problems of missing data for shelling and moisture content, it was assumed that 
fertilization treatment did not affect these parameters. Plots with missing yield data (cob 
fresh weight or plant parameters), missing background information, missing fertilization 
rate or incomplete design (missing treatment) were discarded resulting in a dataset of 227 
farms. A second dataset with analysis of soil properties was merged based on geographic 
coordinates due to incorrect background information for numerous farms. Background 
information was checked after merging through similarity between character strings using 
the Levenshtein distance. The package stringdist was used for this purpose. Two farms 
were removed from the process resulting in 225 farms.  
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The geographic distribution of data points is theoretically clustered in 10 km2 grids. Using 
a hierarchical clustering model with the hclust function, new clusters were assigned. The 
aim was to combine two districts that were very close geographically in order homogenize 
the “district” scale (Fig. S2). The cutoff distance was chosen as trade-off between the 
total number of districts and the number of farms per districts. Finally, new districts 
containing less than three farms were discarded from the analysis resulting in a final 
dataset of 219 farms distributed in 20 districts (Table 4). A third dataset with planting and 
harvest date has been associated with the yield dataset, with data available for only 130 
farms (Table 4). This subset was only used to predict yield response in function of 
environmental covariates while the whole dataset was used in the exploratory analysis.  

 
Table 4. Farm distribution per districts for the whole dataset and the subset including planting and harvest date 
used for yield response predictions 
Region District n (all) n (subset) AE Potential*      
Southern Highlands     
Rukwa Nkasi 12 0 HP 
Mbeya Mbozi 9 9 HP 

 Mbeya Rural 10 4 HP 
Iringa Njombe 21 0 HP 

 Ludewa 14 0 HP 
Ruvuma Songea Rural 15 0 MP 

 Namtumbo 12 0 MP 
Iringa Mufindi 15 10 HP 

 Iringa rural 12 12 MP 
 Kilolo 10 10 MP      

total  130  45       
Northern zone     
Kilimanjaro Mwanga 6 6 LP 

 Moshi Rural 10 10 MP 
 Hai 6 6 LP 

Arusha Arumeru 9 9 LP 
 Monduli 11 11 MP 
 Karatu 8 8 HP/LP 

Manyara Mbulu 9 9 MP 
 Babati 10 9 MP 
 Hanang 12 9 HP 
 Kiteto 8 8 LP      

total  89  85  
*For the Southern Highlands, production potentials (low, medium and high) are homogeneous within a district, in the Northern 
zone, different potentials coexist within one district and only the dominant one is reported in this table.  

 

3.4.2. Geographic open-sources data 

MODIS Land Surface Temperature for temperature and CHIRPS for rainfall data were 
expressed in °C and mm respectively. In order to account for the potential effect of heat 
and water stress on fertilizer response at different physiological stage, each of the related 
variables (Table 3) were aggregated in three phases splitting the growing season. An 
example of this procedure can be found in Landau et al., (2000). Phase I represented the 
onset of the growing season, starting 10 days before sowing until the 15th day after 
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sowing. Phase II included the vegetative, early reproductive and anthesis growing stages, 
from the end of phase I and to two thirds of the total growing period. Phase III represented 
the grain filling and maturation growing stages from end of phase II to harvest.  The 
overall growing period (GP) included all three phases.  

3.5. Data analysis  

3.5.1. Response variables and covariates assessment  

First, a descriptive analysis was first performed to evaluated plant parameters, treatment 
yield, yield response to individual nutrient and agronomic efficiency using scatterplot and 
boxplot. Plant parameters included the proportion of harvested plants per plot (%), in 
comparison to the expected plant density at harvest, the number of cobs per plant, the 
individual cob weight (kg). Proportion of harvested plants was calculated as the ratio of 
the number of plants per plot at harvest and the number of plants per plot at planting, 192 
plants per plot or 85 for the Natumbo district.  

Yield absolute responses (kg ha-1) to nutrient (Nitrogen (N), Phosphorus (P), Potassium 
(K), Secondary macro- and micronutrients (M)) were estimated using the following linear 
regression with farm and the interaction between farm and presence (binary variable) of 
the four nutrients as fixed effect. Interactions between nutrients were ignored in the model 
formulation as no field-specific interactions were assumed.  

Model 0: yield ~ farm + farm:(N presence + P presence + K presence + M presence) 

From the above model, the coefficients for farm:N, farm:P, farm:K and farm:M are the 
best unbiased estimates of the farm specific response to N, P, K and M. These coefficients 
(“nutrient presence” * “farm”) were extracted and use as nutrient response variables. 
Exploratory analysis and yield response predictions were performed using these 
estimated nutrient yield responses. This method consisted in estimating farm nutrient 
responses by “comparing” all treatments with a given nutrient present to the other 
treatments were this nutrient was absent. It was considered more suitable than the 
observed yield response as it accounts for within farm variation for a given nutrient. 
Observed response being usually calculated as the difference between the yield in the 
NPK plot and the yield in the plot where the nutrient of interest is omitted. Response to 
NPKM was however calculated as the absolute difference between the control and the 
full fertilization (NPKM) plot. In addition, the within farm error was estimated by the 
root mean squared error of a simple linear regression between estimated and observed 
nutrient responses for each nutrient.  

Agronomic efficiency (Vanlauwe et al., 2011) of N, P and K was calculated as the 
estimated nutrient yield response (e.g. yield response to N in kg ha-1)  divided by the 
quantity of input applied (kg of N applied). Treatment effect on yield was evaluated at 
the district level using the stability analysis approach from Raun et al., (1993) that 
consisted in plotting the district median treatment yields over the district median yield 
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(all treatment confounded). The distribution of yield responses to nutrient was assessed 
graphically using cumulative frequency curves (Vanlauwe et al., 2016).  

Before building predictive model assessment of the potential explanatory variables with 
summary tables was conducted where the district median of each covariate and their 
respective coefficient of dispersion were reported. Correlations between variables were 
further assessed with principal component analysis (PCA) with the dudi.pca function of 
the ade4 package.  

3.5.2. Linear mixed models 

a. Theoretical justification  

In the present case, the maize grain yield represents the response variable (Y) where Y is 
a vector of n observation from different locations. Fertilization treatments and/or 
environmental covariates are the potential explanatory variables (X) where X is a matrix 
of n observations and v variables. The linear relation (1) can be expressed with the 
following formula, where b is a coefficient for each X and e N(0, s2) the n residuals of Y 
not explained by X:   

Y = Xβ + 	ε (1) 

Due to the structure of the sampling distribution, it is reasonable to assume that 
observations from the same district, i.e. under similar biophysical conditions, are likely 
to be more related than observations between different districts. However, the assumption 
of independence as well as homogeneity may be violated. Mixed-effect modelling is then 
a better tool suited for clustered data where residuals are assumed independent and that 
have not constant variances (Zuur et al., 2009). Relation (1) become the following where 
the random term is 𝑍)𝑏), Z being the random factor and b its coefficient, for i level of 
district. 

Y+ = X+β +	Z+b+ +	ε+    (2) 

The yield can then be modelled as a linear function of the fertilization treatments (fixed 
effect) where the intercept is allowed to vary per district and per farm within district 
(random effect). In this study, the purpose of the mixed model is to account and correct 
for district/farm specific yield differences. It also allows to quantify the variation 
associated with a particular level of data i.e. evaluate the sources of variability. As 
experimented by van Heerwaarden et al. (2017) and Tittonell et al. (2013), such multilevel 
model can be used to quantify variation, here of maize yield response (c.f. 3.5.1), at 
different spatial scales.  

b. Practical use 

Model 1: yield ~ treatment*(zone + fertilization rate), random = ~ 1 | district/ farm  

Model 1 was used to check significance of the average treatment effect on yields and their 
interaction with the zone (Northern, Southern Highland) and fertilization regime (Low, 
Medium and High potential). The model was first used on the whole dataset after 
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processing (c.f. 3.4) to detect main outliers from the treatment effect. From the analysis 
of the model, farms containing plot-level residuals higher than three times the standard 
deviation of the pooled residuals was excluded from the dataset. These farms were 
inspected individually and showed very strong heterogeneity in response to treatments, 
or a very high yield (12 to 13 t ha-1). Consequently, 9 farms were removed and not 
included for further analysis. It was assumed that such variation was due to unexpected 
events and/or strong within farm heterogeneity, affecting plot performances.  

Moreover, this model was used to estimate grain yield and yield components according 
to the fertilization treatment, fertilization level and zone. A separate analysis (model 1b) 
for the Northern and Southern Highlands was performed. This model had the same 
structure as model 1 without zone as fixed effect. The scale to which fertilization rate was 
applied differed between zones. In the Southern Highlands, there was no variation of rate 
within district giving a per district application, contrary to the Northern zone (Fig.3, Table 
4). For this model, significance was computed with F statistics using the anova function 
directly on the model (Pinheiro & Bates, 2000). Fixed effects and their interactions were 
further analyzed with pairwise comparison using the predictmeans package. 

Model 2: yield nutrient response ~ random = ~ 1 | zone/ district 

Model 2 was used to analyze the contribution of geographic stratification (the scales), by 
estimating the variance components for the response to N, P, K and M (obtained from 
model 0, c.f. 3.5.1) with the zone, districts as random effect only. The contribution of a 
given scale on the total variation can be quantified with the intraclass correlation 
coefficient. To this end, the ratio between the variance of a given strata over the total 
variance was computed. For the analysis of the variance component, mixed models were 
fitted with REML (Fox et al., 2015) 

Model 3: yield ~ treatment + environmental covariates, random = ~ 1 | district /farm 

For the analysis of this mixed model, significance of fixed effects was assessed via 
likelihood-ratio test using the χ2 distribution by comparing model models with and 
without a given fixed effect. P-value < 0.05 indicated significance differences between 
models and significance of the fixed effect.  

Model 4 

control or yield nutrient response ~ environmental covariates, random = ~ 1 | district 

A final mixed model was used to predict the control yield and yield response for each 
nutrient (obtained from model 0, c.f. 3.5.1) according to a set of environmental covariates. 
This model was used for every nutrient response variable with the same set of 
environmental covariates.  

For all models, normality and homoscedasticity of the residuals was verified visually 
(Zuur et al., 2009) by plotting residuals and their distribution against model fitted values. 
The lme function in the nlme package was used for model 1 and 1b while the lmer function 
from the lme4 package was used for model 2, 3 and 4.  
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3.5.3. Spatial regression and geostatistical models 

When analysing spatial data, spatial dependence is the case where the dependant variable 
at a given location is correlated with observations at other locations (Anselin & Bera, 
1998) leading to the violation of independent and identically distributed errors. In order 
to detect spatial autocorrelation, the residuals of (1) were evaluated using Moran’s index 
of autocorrelation and statically test using lm.morantest from the spdep package. If spatial 
correlation is detected, it can be accounted for in a regression model.  

For this study, two spatial approaches were used, a geostatistical approach to spatial 
regression and a spatial autoregressive approach. Both methods have been used and 
compared for agronomic data (Colonna et al., 2004; Lambert et al., 2004) in order to 
account for spatially correlated residuals. These approaches imply the assumption of 
spatial stationarity and isotropy (Dormann et al., 2007). Spatial stationarity means that 
spatial autocorrelation and the effect of biophysical process is constant across the region. 
Isotropic spatial autocorrelation means, on the other hand, that the processes causing 
spatial autocorrelation acts in the same way in all directions. 

The geostatistical approach is based on the generalized least squares (GLS) approach 
where the spatial covariance structure is directly modelled in the covariance matrix S of 
e, N(0, S). The mean function of the model (1) is estimated via ordinary least square 
(OLS) and the spatial structure of the residuals is assessed with an empirical 
semivariogram using the variogram function in the gstat package.  The semivariogram 
g(h) is a function that measures the spatial dependence between two districts separated by 
a distance h and characterized by its parameters (range, nugget, sill). Its parameters are 
used to model the “spatial” covariance matrix S characterized by the range, sill, and 
nugget of the semivariogram (Lambert et al., 2004). Parameters of S are estimated by 
restricted maximum likelihood (REML) and the coefficient of the regression model are 
re-estimated, this time adjusted for spatial autocorrelation, by replacing the elements of 
S by its estimates (Gelfand et al., 2010). Using the georob package in R the experimental 
semivariogram can be fitted to the appropriate variogram model by weighted non-linear 
least squares and include in the linear model via the georob function by Gaussian REML 
(Papritz, 2018).  

Alternatively, the spatial autoregressive approach aims to correct for spatial 
autocorrelation, not by directly including the spatial covariance structure in S but by 
modelling the process generating spatial correlation with neighbourhood matrices. Here, 
the values of the residuals at a given location is modelled as a function of the values at 
adjacent locations (Dormann et al., 2007). The spatial error specification for this type of 
model correspond to a situation where the correlation in the residual is due to the omission 
of a spatial explanatory variable leading to inefficient estimates, and correct for it 
(Lambert et al., 2004). For this model the error term is expressed as e = lWe + ξ where 
W is a weight matrix defining the neighbourhood structure, l is the autoregressive 
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coefficient and ξ is non-spatially correlated error term. First, a neighbourhood criterion 
was selected based on a radius distance around a central point and a spatial weight matrix 
was created to identify neighbors. The criterion used here was a radius distance of 10 km 
that is the shortest distance between points allowing all point to have neighbors. After 
testing for spatial dependency in the residuals the spatial error regression was modelled 
with the errorsarlm function from the spdep package.  

3.5.4. Random forest 

The last approach for predicting yield response is based on regression trees, that make no 
assumption about the linearity of the variable to predict in their relation to the predictors. 
Alternatively, to linear regression, the data can be partitioned into “boxes” defined by 
threshold values of each predictors. The main advantage of this approach over the linear 
regression is there is no assumption that the functional form is the same throughout the 
range of predictors. However, regression trees are subjected to high variances. For 
improving the stability of this method, random forests, developed by Breiman, (2001) can 
be used. It consists in the building of a large number of regression trees using random 
sets of observations, or bagging, that have their prediction averaged over the number of 
trees performed. The package randomForest in R was used to model yield response to 
nutrient according to a given set of covariates.  

3.5.5. Model evaluation and validation 

Concerning regression models with fixed and/or random effect, residuals (e) distribution 
was evaluated graphically. First homogeneity was checked by plotting the residuals 
against the fitted values of the model, normality was checked using quantiles plot function 
and independence was evaluated by plotting residuals against explanatory variable 
values.  

Moreover, the yield response prediction performances were evaluated by cross validation 
using two resampling methods. The data was first divided (50/50 split) into training and 
validation set. The parameters of the training model are used to predict unknown yield 
values in the validation set. The first resampling method described as “farm” cross 
validation was performed by randomly splitting the data in two at every district. The 
purpose here was to maintain an equal number of farms of training and validating within 
each district. It allowed to evaluate prediction on farms being in similar conditions to the 
training set. The same approach (50/50 split) was used at the district level, this time by 
training the model on a set on randomly selection districts and testing on the rest of them. 
The prediction performances of the model were tested on conditions that are likely to be 
more heterogeneous than the testing set.   
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3.5.6. Workflow summary 

A summary of the procedure for analyzing yield response, based on the approaches 
describe above, is presented in figure 4.  
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4. Results  

4.1. Effects of fertilization treatments on maize yield and its components  

In this section, plant parameters and grain yield of maize are analyzed under the effect of 
the 6 fertilization treatments and the 3 fertilization rates. In addition, the plot conditions 
at harvest and their relations to grain yield were investigated through a number of plant 
parameters. These parameters were the following:  number of plants harvested, number 
of cobs per plant, cobs individual fresh weight. 

4.1.1. Plant parameters 

Large variability was found in the proportion of plants harvested per plot within and to a 
lower extent between district when comparing to the expected number of plants from 
sowing density. The proportion of harvested plants should reflect the proportion plant 
established from sowing and is likely to vary according the plot growing conditions. 
District median proportion of harvested plants (Fig. 5) ranged from 58.7% (Kilolo) to 109 
% (Hanang). The presence of values above the 100% threshold indicated that numerous 
plots were having more plants than it was expected from the sowing density, leading to a 
potential overestimation of the grain yields.   
 

Figure 5. Boxplot representation of the proportion of harvested plants (%) on the total number of plants at sowing in a 
given plot for the different district. Districts on the left of the axis break correspond to the Southern Highlands zone 
and to the Northern zone on the right. Letters (A, B, C, D, E, F) and their respective colour stand for the different 
enumerators.  

 

Northern Southern Highlands 
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The relationship between maize grain yield and proportion of plants harvested differed 
between the Northern and the Southern Highlands zone (Fig. 6a) with significant higher 
values of harvested plants per plot in the North (model 1, + 11%, P = 0.001). Moreover, 
larger variation in grain yield was found for this zone (Fig. 6a) with a higher proportion 
of harvested plants while in the Southern highland, variability in yield increased with 
increasing proportion of harvested plants. Significant interaction between zones and 
treatment was found on the proportion of harvested plants (model 1, P < 0.001) because 
of lower values for NK treated plots only (Fig. S3a), observed in the Mufindi and Kilolo 
districts of the Southern Highlands zone. The effect of fertilization rates was not 
significant (model 1, P=0.068), neither its interaction with treatment (model 1, P=0.133). 
In our case, the   proportion of harvested plants was not affected by the treatment, 
indicating that within a farm, the number of plants established was not affected by the 
fertilization.  

The number of cobs per plant in a given plot was affected differently for the fertilization 
treatments when comparing the two zones. The significant interaction zone*treatment 
(model 1, P < 0.001) indicated that cobs per plant was highly responsive to every 
fertilization treatment in the Southern highlands but was unaffected in the Northern zone 
(Fig. S3b). Estimated means ranged from 0.52 for the control up to 0.80 cob per plant in 
the full fertilization (NPKM) plot in the Southern zone (Fig. S3b). Every fertilization 
treatment was significantly different from the control, however, N and P fertilized plots 
(NP, NPK and NPKM) were not different from each other (avg. LSD = 0.08, P < 0.05). 
The average number of cobs per plant were significantly higher in the North (model 1, P 
< 0.001). The number of cobs per plant showed a strong correlation with grain yield (Fig. 
6b) up to the value of one cob per plant in the Southern Highlands. For the Northern zone, 
most values were clustered around one cob per plant with grain yield showing high 
variation from about 2000 to 10 000 (kg ha-1).  

Individual cob fresh weight showed a strong linear relationship with grain yield (Fig. 6c), 
however, for similar individual cob weight, maize yield was higher in the Northern zone. 
Variability of cob weight was deemed higher in the Southern highlands with very low 
values associated with low yields (Fig. 6c). The interaction of the treatments with zones 
was significant (model 1, P < 0.001) as well as the effect of fertilization rate alone (model 
1, P = 0.023). No interaction was found between fertilization rate and treatment (model 
1, P= 0.600). Cob weight was significantly higher in the NP fertilized plots compared to 
the control (Fig. S3c) in both zones. However, no significant difference between zones 
was observed for these plots (LSD = 0.02, P < 0.05). Moreover, PK and NK fertilization 
treatment had significant higher yield than the control in the Southern Highland, while 
only the NK application was significantly higher in the Northern zone. This indicated a 
stronger response to P fertilizer in the Southern Highlands, even with the absence of N 
fertilization.  
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4.1.2. Average yields  

 For all farms, average maize grain yield was strongly affected by fertilization treatment 
(model 1, P < 0.001) with a positive increment of 1074 kg ha-1 for the NK plots up to 
1575 kg ha-1 for the NPK plots, compared to the control. There was no significant 
difference between the control and the PK treatment, neither between the N and P 
fertilized plots (NP, NPK, NPKM) (avg. LSD = 182.3, P < 0.05). However, the significant 
interaction between treatment and zones (model 1, P < 0.001) indicated a stronger 
response to P fertilization in the Southern Highlands (Fig. 7) even without N application 
(avg. LSD = 657.6, P < 0.05). Grain yield was further increased by the combination of N 
and P application up to 2763 kg ha-1 (avg. LSD = 657.6, P < 0.05). For the Northern zone, 
only the application of N increased yield significantly (Fig. 7).   

a) b) c) 

Figure 6. Relation between maize grain yield (kg ha-1) at 12.5 moisture content for all plots and (a) proportion of harvested plants per 
plot (%), (b) plot average of number of cobs per plants, (c) plot average individual fresh cob weight (kg). Black and grey colours stand 
for the Northern zone and the Southern Highlands zone respectively.   
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Figure 7. Predicted means of maize grain yield (kg ha-1) for all farms for each fertilization treatment, model 1. Different letters 
stand for significant difference between treatments*zones, by pairwise comparison (P < 0.05).  
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When analyzing the two zones separately to study the effect of the fertilization rates (Fig. 
S3f, S3g), only the Southern Highlands showed a significant interaction between 
treatment and fertilization rate (model 1b, P < 0.001, S3f). Indeed, response to NK 
fertilization was significantly higher (+ 991 kg ha-1, P < 0.001) for the medium rate 
compared to the high rate. This indicated a lower response to P fertilization in the 
following districts: Songea Rural, Namtumbo, Iringa Rural and Kilolo. However, 
fertilization rates were confounded with the district locations and it was not possible to 
conclude if the differences in average NK responses was due to the rates or the locations. 

4.1.3. Agronomic efficiency 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 Figure 8. Boxplot representation of agronomic efficiency (kg kg-1) of N (a), P (b) and K (c) for the 
Northern and Southern zones according for low, medium and high rate of fertilization. Dashed lines 
represent the median agronomic efficiency of all farm and are 8.11, 8.86 and -2.13 for N, P and K 
respectively. Different grey scales stand for the fertilization rates.  

a) b)  

c)  
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While fertilization rate was found to have only an effect in the Southern Highlands, the 
agronomic efficiency of the application of N, P and K was assessed to highlight the 
profitability of these different rates. Application of increasing rates was associated with 
increasing target yields. Agronomic efficiency was low for N and P with a median of 8.11 
and 8.86 kg kg-1 respectively (Fig. 8).  

Large variability of agronomic efficiency between farms with identical fertilization rate 
was observed (Fig. 8). For the Northern zone, agronomic P efficiency tended to be lower 
with increasing fertilization rate while the opposite can be observed in the Southern 
Highlands, highlighting the importance of P fertilization in the latter. Median agronomic 
K efficiency was negative (-2.13 kg kg-1) with a large proportion of farms showing a 
negative response to K application. However, increasing rates of K fertilization in the 
Northern zone were associated with increasing agronomic efficiency (Fig. 8).  

4.2. Yield variability in fertilization treatments 

Best average yields were obtained under the combined application of N and P. However, 
responses to nutrients were highly variable between farms within districts (Fig. S4). In 
this section, variations of yield between fertilization treatment are analyzed, as well as 
variations resulting from the individual responses to N, P, K and secondary nutrients.  

4.2.1. Treatment yields variability at the farm scale 

Grain yields from fertilized plots varied substantially between farms for a wide range of 
control yields, from 0 to 8000 kg ha-1 (Fig. 9). PK application yielded the same as the 
control, supporting the importance of N fertilization for all farms. Highest variation in 
PK yields was observed for low values of control yield (0-2500 kg ha-1) and numerous 
farms did not benefit from this application. Farms associated with low control, clustered 
in the bottom left corner (Fig. 9), mainly concerned plots located in the Southern Highland 
zone, in the regions of Rukwa, Mbeya and Southern Iringa (Fig. S4).  

Yield variability was larger when N was applied in absence of P. Treatments with NK 
fertilization increased yields up to 5500 kg ha-1 for control yield between 0 and 3500 kg 
ha-1 and response to NK tended to level off after than range. It was observed that when P 
and K were applied in addition of N (NP, NPK and NPKM), high variation in yield was 
observed for a broader range of control yield, up to 5000 kg ha-1. The combination of N 
and P fertilization resulted in a high number of plots yielding more than 1000 kg ha-1 for 
a range low control yields (0 to 1000 kg ha-1) of the Southern Highlands. Fewer farm 
were below the 1:1 line when N and P were applied (Fig. 9). Plus, NP, NPK and NPKM 
yields tended to be less clustered in the bottom left corner (Fig. 9) supporting the evidence 
of N and P deficiency for these farms. In addition, while a constant increase in yield for 
N and P fertilized plots in the Northern zone was observed (Fig. 9), plots in the Southern 
Highlands leveled off at high control yields (Fig. 9). This indicated a lower attainable 
yield in the Southern Highlands. 
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4.2.2. Stability analysis at the district scale 

From the stability approach used by Raun et al., (1993) districts treatment median yields 
are compared with the districts median yields (all treatment confounded). Districts 
median yields resulting from P and K application (-N) were very close to the control, 
indicating little impact from application of these nutrients alone (Fig. 10). However, the 
intercept of the linear regression was higher for the PK treatment and pointed out a more 
positive response to PK in districts with very low yields.  

Figure 9. Yield (kg.ha-1) of individual farms in fertilized plots over control yield. The dashed diagonal represents 
the 1:1 line where control and fertilized plot yield are equal. Black and grey colours stand for the Northern zone 
and the Southern Highlands zone respectively.   
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From the interpretation of  Shehu et al., (2018), the slopes of the regression lines translate 
the sensitivity of a treatment to the environmental conditions. NK treatment had the 
highest response in the high yielding districts and the highest slope (1.09) compared to 
other nutrient combinations indicating a higher sensitivity to the environmental 
conditions, soil available phosphorus for instance. It can be assumed here that low 
yielding districts are more P deficiency than high yielding districts. Thus, response to NK 
is likely to be lower in the low yielding districts.  

When N and P were applied (Fig. 10, black regression lines), little differences were found 
in term of intercept and slopes between the different treatments. NP treatment had a 
higher response in low yield districts and a slightly lower slope (0.88) in comparison to 
NPK (0.98) and NPKM (0.96) treatments. These results pointed out that responses to K 
and M are likely to be slightly higher in high yielding districts.  

Figure 10. Stability analysis of treatment median yield over district median yield (all treatments) for the 20 
districts. Regression equation of every fertilization treatment and adjusted coefficient of determination are 
displayed on the bottom right. 
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4.3. Yield variability in nutrient responses  

4.3.1. Variability of yield nutrient responses at the farm scale 

At the lowest scale of variability, the estimation of yield nutrient responses (model 0) 
allowed a quantification of the within farm variability. The root means square error of the 
relation between observed and estimated farm responses to nutrient was 617.4, 439.7, 
468.5 and 469.9 for N, P, K and M respectively. 

The yield responses to N, P, K and secondary macro- and micronutrients did not show a 
strong relation with the control yield (Fig. 11). As observed before with yields in fertilized 
plots (Fig. 9), the yield responses for all nutrients were varying strongly for the entire 
range of control yields. Difference in response to P were again observed between the two 
zones, with decreasing P response for high control yield in the Southern Highlands. In 
the Northern zone, the variation in P response increased with high control yield, with 
more farms being negatively affected by P application. High responsive districts, Nkasi, 
Mbozi and Mbeya rural, showed large variation within districts with an interquartile range 
(1st quartile – 3rd quartile) situated between 835 to 1194 kg ha-1 (Fig. S5). Such variability 
was also observed in low responsive districts such as Mbulu, characterized by an 
interquartile range of 1863 kg ha-1 (Fig. S5).  

 

Figure 11. Yield (kg.ha-1) responses (estimated from model 0) on individual farms to N, P, K and secondary macro and 
macronutrients over control yield. Dashed horizontal line indicates no response. Black and grey colours stand for the 
Northern zone and the Southern Highlands zone respectively.   
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N responses varied greatly between districts and less between farms within the same 
district, with the exception of Mufindi, Songea Rural (Southern Highlands) and Karatu, 
Hanang (Northern) (Fig. S5). High responsive (> 1900 kg ha-1) districts such as Mbulu, 
Babati, Karatu and Mbozi showed high variation with and interquartile range between 
819 and 1690 kg ha-1 and this range of response was even high in low response districts 
(< 500 kg ha-1) such as Njombe, Hanang and Moshi rural (Fig. S5). Responses to K and 
M was relatively low and often negative, for the entire range of control yields (Fig. 11).  

Responses to K showed less variability within districts and only a few districts (Mbulu, 
Hai and Mwanga) had a consistent gain from K application while most of the districts 
showed none, or consistent negative responses. The latter concerned the Mbozi, Mbeya 
rural, Ludewa, Iringa Rural, Kilolo in the Southern Highland and Babati, Kiteto in the 
Northern zone (Fig. S5).  However, responses to secondary nutrients was very 
inconsistent. Yield responses were varying greatly between districts but particularly 
within districts (Fig. S5) such as Nkasi, Mbozi (Southern Highlands), Mbulu, Babati 
(Northern) were the response range reached 4000 kg ha-1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The range of yields can be interpreted with the cumulative frequency of yield responses 
(Fig. 12). It indicated the proportion of farm achieving more or less a given response to a 
particular treatment, in comparison to the control. These curves allow to draw important 
conclusions regarding the performances of a given nutrient application and the risk 
associated with it. For both zones, it was observed that more than 90% of the farms 
benefited from the application of N while for P application, only 50% found benefits in 
its application in Northern zone compared to 80% in the Southern Highlands. In this zone, 

Figure 12. Cumulative frequency of yield (kg.ha-1) responses (estimated from model 0) on individual farms 
to N, P, K and secondary macro and macronutrients. The left panel represents farms located in the Northern 
zone, the right panel represents the Southern Highlands zone. Dashed lines marks the response of 0 kg.ha-1 
(vertical)  and the 50th percentile (horizontal).  

Northern Southern Highlands 
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50% of the farmers had a yield increase higher than 650 kg ha-1 from P application and 
higher than 1000 kg ha-1 from N application (Fig. 12 right panel). In the Northern zone, 
50% of the farmers had an N response higher than 1100 kg ha-1 but only 110 kg ha-1 from 
the application of P (Fig. 12 left panel). Such trends support the importance of P 
application in the Southern Highlands. In both zones application of M was profitable for 
slightly larger proportion of farms than application of K. However, more farms (60%) in 
the Southern Highlands were benefiting from M application compared to the Northern 
zone (50%). A more horizontal curve, as observed for high N responses, indicated a less 
predictable response for this nutrient.  

4.3.2. Nutrient response and soil fertility  

Response to N were not related to soil organic matter content represented by the 
percentage of organic carbon (Fig. 13) most of the farms were below the threshold of 2% 
(Musinguzi et al., 2013). Within the 0-2% range, high variation of response was found, 
varying between 0 and 3 500 kg ha-1. Maximum P response were found in farms below 
the 10 ppm threshold of soil available P and tended to decreased after this limit. It can 
also be observed that P deficient farms are mainly located in the Southern Highlands and 
showed the highest response to this nutrient. Yield response to K were highly variable 
and low for a wide range of soil available K (0-400 ppm) and did not show any correlation 
with soil available K. 

Figure 13. Yield (kg ha-1) responses (estimated from model 0) on individuals farms to N, P and K over soil organic 
carbon, soil available P and soil available K respectively. Dashed horizontal line indicates no response and dashed 
vertical lines represent critical threshold for each soil properties (2% for org. C, 10 ppm for soil P and 125 ppm for 
soil K) Black and grey colours stand for the Northern zone and the Southern Highlands zone respectively.   
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4.3.3. Scales and nutrient responses variability  

In view of the wide variability observed above, it seemed that variation in yield responses 
differed between nutrients, but also between geographic scales. The correlations between 
observations at a given scale gives an indication of the scale at which the observations 
may vary (Fig. 14).  

 

 

For the control yield, 56.3% of the total variation is accounted for zones, and 26.0% for 
districts. Variance in the response to N was mainly attributed to unexplained variation at 
farm scale with 75% of the total variance. The 25% of variance left was accounted for 
between-district variations and might indicate the presence of factors with some 
consistent effect within districts. Similarly, variation in response when all nutrients are 
applied (NPKM) are accounted for 25% by differences between districts. Response to P, 
with zone differences accounting for 22% of the total variance, are likely to be under the 
influence of large-scale processes impacting the response to this specific nutrient. This 
supports again the extent of P deficiency in the Southern Highlands. Variation of K and 
M responses was due to the unexplained farm variation, 94.0 and 99.6 % respectively.  

Figure 14. Contribution of the geographic scale (strata) on the variance components related to control (Co) 
yields and yield responses to N, P, K, M (estimated from model 0) and their combination (NPKM). Different 
colours stand for the different strata. Variance components were extracted from model 2, per nutrient. 

District 
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4.4. Spatial dependence of yield response  

4.4.1. Detection of spatial dependency  
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Figure 15. Moran scatterplot for nutrient responses. Diamonds data points represent high influence measures. 
Spatial lag represents the weighted average of neighbouring values defined by the neighbour criterion (here 10 
km). 
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Spatial autocorrelation was assessed using Moran’s index on control yield and predicted 
nutrient responses (N, P, K, M, NPKM). Control yield, response to N, response to P and 
response to NPKM showed a significant positive spatial autocorrelation (P < 0.001) when 
testing Moran’I on the entire dataset. Control yield showed the strongest spatial 
autocorrelation with an index of 0.642. In figure 15, it is clear that, low values of control 
yield tended to be surrounded by low values (lower-left quadrant). A similar trend can be 
observed with the response to N. However, it was observed that numerous points were 
located in the lower-right and upper-left quadrant. These quadrants correspond to 
negative spatial autocorrelation and can be interpreted as dissimilar values at neighboring 
locations. Regarding control yield and NPKM responses together, the Moran scatterplot 
indicated a stronger positive correlation for low values of yield in comparison with high 
yield values (upper-right). K and M responses did not show any spatial autocorrelation 
(P > 0.05) indicating a random distribution. 

 
Table 5. Moran’I  of nutrient responses and significance for all locations, Northern zone and Southern 
Highlands 

Variables Moran’I 

 All        p-value Northern Zone     p-value Southern Highlands     p-value 

Control 0.643 < 0.001 0.475 < 0.001 0.175 < 0.001 
N response 0.256 < 0.001 0.419 < 0.001 0.149 < 0.001 
P response 0.154 < 0.001 -0.017 0.9409 0.073  0.053 
K response 0.070 0.057 0.060 0.320 0.056 0.128 
M response 0.004 0.822 -0.024 0.857 0.008 0.697 
NPKM response 0.284 < 0.001 0.248 < 0.001 0.261 < 0.001 

 

A closer examination of each zone indicated that spatial autocorrelation of control yield 
and N response was stronger in the Northern zone compared to the Southern Highlands 
(Table 5). Responses to P were not significantly spatially correlated within zones (Table 
5). However, it was the case when testing on the entire datasets and may indicate that 
similarities between neighboring values may be observed at larger scales when including 
both zones in the analysis.  
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4.4.2. Quantifying spatial dependency over distance 

Spatial dependency was illustrated with an exponential variogram model to estimate the 
nugget, range and sill of the empirical variogram (Fig. 16). Every variogram showed 
erratic behavior. This was assumed to be the result of a low number of sample points and 
the very clustered structure of the data points. The separation distance in which pair of 
points are included to estimate the semivariance was 50 km. Lower values did not result 
in interpretable variograms and larger ones did not show clear increase of the 
semivariance. However, a clear spatial dependency was found for the control yield and 
the response to N. These variograms showed dependence to 12.4 km and 5.7 km 
respectively according the range giving by the model. However, the empirical variogram 
for the control showed a larger range of about 20 km. Moreover, N response and control 
yield were observed to have a similar short distance variance (nugget) but the 
semivariance associated with control yield increased greatly over distance and reach a 
higher sill than the response to N. Other nutrient responses were difficult to model due to 
unstable parameter values. Response to P, K, M and NPKM, did not show spatial 
dependency.  
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Figure 16. Nutrient responses empirical variogram (dots) and with a fitted exponential variogram model (lines) 
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4.5. Characterizing growing conditions for variable selection.  

4.5.1. Heterogeneity of soil properties   

 
Table 7. Soil physico-chemical properties of the districts 
 pH   Ca   Mg   K   Na   ECEC  
District  (ppm) (ppm) (ppm) (ppm) (cmol kg-1)              
S. Highlands 6.1 0.4 432.0 358.8 105.1 86.5 101.7 92.8 16.1 3.4 3.4 2.3 
             
Mbozi 5.8 0.3 496.0 237.2 173.7 91.9 281.5 40.6 20.7 0.0 4.7 2.0 
Mbeya Rural 6.3 0.1 1000.0 231.3 286.1 90.1 713.6 176.8 17.3 3.4 9.4 2.6 
Mufindi 5.9 0.4 512.0 456.6 95.4 62.1 62.6 34.8 18.4 3.4 3.4 2.1 
Iringa rural 6.1 0.1 284.0 258.0 46.8 27.0 54.7 17.4 16.1 3.4 2.0 1.4 
Kilolo 6.4 0.8 364.0 252.0 117.2 54.0 142.7 60.9 13.8 3.4 3.1 1.3 

             
Northern 6.8 0.4 1158.0 790.2 95.4 54.9 117.3 89.9 18.4 3.4 7.0 4.5 
             
Mwanga 7.6 0.3 1044.0 410.7 185.3 70.3 121.2 49.3 16.1 1.7 7.6 2.0 
Moshi Rural 8.2 0.5 1467.0 470.0 125.8 45.9 584.5 568.1 16.1 17.0 9.6 2.5 
Hai 6.6 0.1 1826.0 154.2 145.8 18.9 320.6 69.6 20.7 1.7 11.0 0.4 
Arumeru 6.5 0.6 1694.0 284.7 104.5 36.0 179.9 179.7 20.7 6.8 10.2 2.3 
Monduli 7.3 0.7 1656.0 198.7 99.6 9.0 164.2 69.6 18.4 3.4 9.8 0.8 
Karatu 6.9 0.1 1202.0 194.2 94.2 6.3 105.6 37.7 18.4 1.7 7.0 1.0 
Mbulu 5.8 1.2 384.0 115.6 54.7 19.8 58.7 5.8 16.1 3.4 2.8 0.5 
Babati 6.8 0.1 948.0 136.4 84.4 45.9 62.6 37.7 13.8 0.0 5.9 1.8 
Hanang 6.8 0.1 1036.0 717.6 81.4 36.0 117.3 104.3 13.8 3.4 6.4 4.2 
Kiteto 7.0 0.2 224.0 65.2 24.3 11.7 27.4 5.8 18.4 0.0 1.5 0.4              
CD (%) 6.9  58.3  43.5  59.6  20.0  53.9  
Values presented are median (left) and median absolute deviation (right) per district of each soil properties. Max and min values are highlighted in bold 

Table 6. Soil physico-chemical properties of the districts 
 Sand  B.D.  C.F.  RZD  Org. C N  Meh.P  S  
District (%) (kg dm-3) (%) (cm)  (%) (%) (ppm) (ppm) 
S. Highlands 62.0 4.4 1362.0 86.0 4.0 2.2 143.5 9.6 1.1 0.8 0.1 0.1 5.9 4.8 8.1 3.7 
                 
Mbozi 59.0 2.2 1335.5 36.3 6.5 2.2 145.0 5.9 1.4 0.7 0.1 0.0 1.5 1.0 8.4 2.5 
Mbeya Rural 51.0 3.0 1304.5 1.5 6.0 0.7 150.0 0.0 1.9 0.5 0.2 0.0 3.3 0.6 12.0 0.8 
Mufindi 61.5 2.2 1327.5 26.7 4.0 0.7 150.0 0.0 1.6 0.4 0.2 0.1 5.6 1.5 11.7 3.9 
Iringa rural 67.0 7.4 1436.0 36.3 2.0 1.5 139.0 11.9 0.5 0.1 0.1 0.0 10.1 8.4 5.9 1.9 
Kilolo 63.5 3.7 1453.5 20.8 2.5 3.0 119.0 9.6 0.7 0.3 0.1 0.0 9.3 5.1 6.7 1.0 

                 
Northern 41.5 8.9 1345.5 50.4 5.0 3.0 141.0 13.3 1.5 0.8 0.1 0.1 9.2 5.3 11.1 3.4 
                 
Mwanga 54.5 3.0 1329.5 57.1 8.0 1.5 146.0 5.2 1.4 0.6 0.1 0.1 8.9 5.5 9.3 3.3 
Moshi Rural 38.0 3.7 1382.5 17.8 5.0 1.5 40.0 48.2 1.8 0.4 0.2 0.0 14.3 3.2 10.4 1.7 
Hai 40.5 1.5 1285.0 23.0 7.5 0.7 150.0 0.0 4.1 2.1 0.4 0.2 6.5 4.7 10.6 5.0 
Arumeru 40.0 1.5 1347.0 41.5 7.0 1.5 115.0 0.0 1.4 1.0 0.1 0.1 12.2 12.6 12.7 4.8 
Monduli 36.0 3.0 1324.0 11.9 7.0 1.5 95.0 29.7 1.6 0.2 0.1 0.0 9.2 2.3 15.0 4.7 
Karatu 23.0 4.4 1294.5 40.8 7.0 0.7 130.0 22.2 1.5 0.8 0.2 0.0 7.5 6.8 10.6 3.6 
Mbulu 55.0 7.4 1392.0 29.7 3.0 1.5 141.0 5.9 0.9 0.1 0.1 0.0 8.2 3.0 10.8 3.8 
Babati 42.5 5.9 1351.0 25.2 3.5 1.5 150.0 0.0 1.3 0.6 0.1 0.1 15.4 3.8 10.8 1.7 
Hanang 56.0 7.4 1345.0 4.4 4.0 0.0 150.0 0.0 1.1 0.6 0.1 0.1 6.9 1.2 13.3 2.3 
Kiteto 67.0 3.7 1382.5 53.4 4.0 0.0 150.0 0.0 0.4 0.1 0.0 0.0 6.8 6.9 9.9 2.8 

                 
CD  (%) 21.4  3.0  40.0  13.2  39.2  41.7  45.8  25.4  
B.D.: bulk density, C.F.: Coarse fragments, RZD: Root zone depth 
Values presented are median (left) and median absolute deviation (right) per district of each soil properties. Max and min values are highlighted in bold 
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District aggregated soil properties give an indication of the heterogeneity that can be 
found between the study districts. Soils in the region of Manyara (Mbulu, Hanang, Babati, 
Kiteto) and in the Southern Highlands tend to have a higher sand content than regions in 
the Northern zone. This was associated with a lower organic carbon content and higher 
bulk density in this zone. Between districts, available soil P varied strongly but with a 
lower range and median for the Southern Highlands (5.9) compared to the Northern zone 
(9.2). The lowest values were found the region of Mbeya (Mbozi and Mbeya rural) (Table 
6). Soil K showed very high variation between and within districts (Table 7). Often, 
variation of soil K was associated with other cations (Ca and Mg), as illustrated by the 
districts Mbeya Rural, Mbozi, Moshi Rural and Hai. Soil water pH tended to be lower in 
the Southern Highlands with values ranging from 5.8 to 6.4 than the Northern zone with 
5.8-8.2. Districts near the Kilimanjaro mount (Moshi Rural, High, Arumeru) showed 
medium to high pH (up to 8.2) and were associated with high values of Ca, Mg and K 
(Table 7).   

Soil micronutrients showed relatively little variation between zones than macronutrient 
(Table 8) with the exception of soil Mn and Fe. The median values of these nutrient being 
higher in the Northern zone.  

 

 

Table 8. Soil micronutrient content of the districts 
 Zn   Cu  Mn   Fe   B   
District (ppm) (ppm) (ppm) (ppm) (ppm) 
           
S. Highlands 4.6 2.2 2.3 1.1 45.4 27.3 68.3 24.6 0.1 0.1 
           
Mbozi 5.3 1.3 2.0 0.8 35.0 10.9 35.2 11.8 0.16 0.04 
Mbeya Rural 11.8 3.9 2.1 0.8 9.5 4.9 42.5 1.4 0.17 0.10 
Mufindi 4.6 2.2 2.3 1.1 43.9 26.1 88.7 24.6 0.06 0.04 
Iringa rural 3.1 1.1 2.6 0.5 46.0 26.9 77.2 7.6 0.04 0.04 
Kilolo 5.3 2.2 2.3 0.5 67.6 26.9 60.6 15.1 0.08 0.07 

           
Northern 6.3 2.6 2.1 1.5 114.5 49.3 92.4 34.0 0.2 0.1 
           
Mwanga 6.1 0.0 2.6 1.1 100.9 40.3 68.3 15.1 0.09 0.03 
Moshi Rural 9.8 4.1 3.7 1.1 104.4 31.4 99.3 37.8 0.33 0.14 
Hai 15.5 7.4 0.5 0.0 130.4 24.0 134.6 20.9 0.21 0.16 
Arumeru 10.6 5.9 0.8 0.4 81.1 93.4 99.3 20.9 0.25 0.13 
Monduli 4.6 2.2 2.1 0.9 111.9 7.6 75.2 25.5 0.22 0.13 
Karatu 4.6 2.2 3.1 0.5 163.6 15.2 72.3 25.5 0.10 0.06 
Mbulu 4.6 2.2 1.5 0.9 89.4 50.0 63.7 17.0 0.07 0.03 
Babati 6.8 3.3 5.0 1.9 120.6 52.3 126.7 46.7 0.16 0.08 
Hanang 9.0 6.6 2.7 0.9 85.3 34.9 115.3 25.5 0.18 0.06 
Kiteto 5.3 1.1 2.1 0.5 119.1 50.0 109.6 12.7 0.19 0.06 

           
CD (%) 32.75  39.26  43.06  27.91  50.00  
 Values presented are median (left) and median absolute deviation (right) per district of each soil properties. Max and min values are highlighted in bold 
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4.5.2. Heterogeneity of climatic conditions   

The growing period was relatively longer in the Southern Highlands, that benefited from 
high amounts of rainfall (990 to 1376 mm) with most of the rainfall occurring during 
phase II (Table 9). A similar pattern was observed for the Northern Highlands. The lowest 
amounts of rainfall were associated with the districts situated in the Kilimanjaro and 
Arusha region with Mwanga, Monduli and Karatu that received less than 300 mm. 
Temperature regimes showed high values particularly during phase I in the Arusha and 
Kilimanjaro regions (Table 9).  

4.5.3. Selecting variables for predicting maize yield responses  

In view of the heterogeneity of growing conditions and the low correlations between these 
variables and the maize response yields under the different fertilization treatments, the 
selection of the main predictors was done using agronomic knowledge. The initial 
stepwise procedure of model 3 failed to select variables as a clear overfitting of the data 
was present when the model was fitted with farms nested into districts as random effects. 
As a result, the addition of any environmental covariates yielded no significant 
differences against the basic model. The variable selection was performed on the same 
model by removing the farm random component of model 3.  

Table 9.  Length of the growing period, third quartile of average daily temperatures and total precipitation for the total growing period (GP)  
and during maize physiological stages 
 
 LGP   T. GP   T. I T. II   T. III   Prec. GP Prec. I Prec. II Prec. III 
District (days) (°C) (°C) (°C) (°C) (mm) (mm) (mm) (mm) 
                   
S. Highlands 207.0 11.1 27.9 2.0 29.6 2.9 27.8 1.8 26.1 1.9 1124.9 191.1 193.3 17.4 898.7 161.0 14.4 15.9 
                   
Mbozi 211.0 3.0 28.2 0.3 32.1 2.2 28.4 1.0 27.8 0.5 1197.2 21 195.6 20 957.3 46 52.8 10 
Mbeya Rural 215.0 0.0 27.0 0.5 26.9 0.6 27.0 0.4 26.3 0.1 1076.6 8 193.3 3 856.3 10 25.0 0 
Mufindi 222.5 2.2 25.4 0.4 28.3 0.9 25.7 0.5 23.9 0.6 1376.7 96 194.0 8 1093.7 74 71.5 34 
Iringa rural 199.0 7.4 27.6 1.2 29.5 2.0 27.9 0.9 25.7 0.9 991.0 119 175.5 39 799.4 111 8.5 5 
Kilolo 201.0 1.5 30.0 0.9 36.1 2.0 29.9 0.6 26.8 0.7 990.3 15 203.5 19 782.4 15 6.4 1 

                   
Northern 162.0 10.4 31.8 3.6 34.0 5.3 29.9 2.8 28.9 2.8 523.5 159.1 79.9 68.1 348.5 123.1 12.6 18.7 
                   
Mwanga 131.0 0.0 28.4 3.0 33.8 5.1 26.0 3.2 27.3 2.7 354.4 117 167.4 32 157.3 58 8.1 5 
Moshi Rural 166.0 4.4 33.2 1.8 42.6 2.4 31.1 1.0 30.3 1.5 449.9 128 62.3 14 340.8 141 19.2 9 
Hai 163.0 1.5 35.5 3.1 41.2 0.7 26.8 1.0 29.7 0.5 608.2 0 69.6 0 538.6 0 0.0 0 
Arumeru 159.0 4.4 34.9 1.6 40.5 1.7 34.5 1.5 29.6 0.7 438.1 87 79.3 7 349.2 74 0.0 0 
Monduli 154.0 3.0 34.3 0.9 35.8 2.3 34.2 1.5 30.7 0.9 301.4 0 35.8 7 259.2 17 0.0 0 
Karatu 160.5 2.2 33.2 0.7 35.0 1.6 32.6 1.5 25.9 1.4 326.3 15 27.6 1 299.0 12 0.0 0 
Mbulu 172.0 11.9 28.9 0.9 30.0 2.0 29.1 0.7 25.9 1.9 612.2 48 80.8 15 486.3 27 59.7 23 
Babati 193.0 1.5 28.3 1.0 33.1 1.4 28.2 1.3 25.7 1.8 628.2 37 129.7 16 476.1 45 23.6 6 
Hanang 184.0 1.5 28.7 0.5 29.0 1.5 29.0 0.9 27.1 0.5 555.7 4 171.4 1 365.5 6 18.8 8 
Kiteto 161.0 3.0 30.0 0.6 31.6 0.9 30.7 1.8 29.0 0.7 527.0 11 201.3 27 325.6 18 25.5 5 

                   
CD (%) 11.4  7.7  11.0  6.3  6.5  40.7  46.1  44.9  97.4  
Values presented are median (left) and median absolute deviation (right) per district of each soil properties. Max and min values are highlighted in bold 
I: Onset of the growing period, from 10 days before sowing to 15 days after sowing 
II.: Vegetative, early reproductive and anthesis growing stages, from end of onset to two third of the total growing period  
III.: Grain filling and maturation growing stages, from end of II to harvest 
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Figure 17. Principal component analysis of (a) soil properties and (b) climatic conditions of the 
potential predictors. Gradient colour indicates variable quality of representation (cos2). Suffix at 
the end of the variable code is “tot” for GP, “onset” for I, “veg” for II and “rep” for III.   
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The results of the principal component analysis (Fig. 17) helped to detect collinearity 
among the potential predictors and to make a first selection prior to modelling. For the 
soil physical and chemical properties (Fig. 17 upper panel) the first axes contained 29.4 
% of the information. Soil Ca, ECEC, organic C, N and sand content contributed the most 
in this axe. Organic C and N content were confounded and inversely correlated with bulk 
density, as well as Ca and ECEC that were negatively correlated with sand content. Slope 
percentage were surprisingly positively correlated with root zone depth but negatively 
with micronutrient as Mn, Fe and B.  

Regarding the weather variables, many were confounded, especially characteristics 
associated with the same growing stages (Fig. 17 lower panel) with drought 
characteristics of stage I and stage III. Temperatures (third quartiles of average daily 
temperature) were confounded between the growing periods and with drought 
characteristics of the stage II. The total amount of rainfalls was also highly correlated.  

 

 

From the summary of the district characteristics and the principal component analysis, 
significance of soil and weather variables were tested (Table 10) to obtain a final model 
composed of pH, ECEC, org. C, Mehlich P, K, 3rd q. of the average daily temperatures 
during stage III (grain filling and maturation) and drought during stage I (onset of the 
growing period and plant emergence). Soil N and Ca were not included due to strong 
collinearity with org. C and ECEC respectively. Mg was not included in the model testing 
for simplicity as it was assumed to depend on variables that were already included in the 
model. Micronutrients were not included in the model because no strong deficiency was 
observed for most of them, and addition of B in model “d” (Table 10) did not improve 
the model significantly. Variance inflation factors were below 3 for all variables and 
residuals normality and homoscedasticity were validated by visual assessment.   

 

 

Table 10. Stepwise selection of predictors on maize yield variation corrected for treatment application (model 3) 
 Model expression p-value 
a Treatment + Soil physical properties (Sand, CF, BD, RZD, SLOPE)    0.607 
b Treatment + Soil chemical properties (pH, ECEC)     0.005 * 
c Treatment + Soil Nutrients (Org. C + Mehlich P + K)    0.007 * 
d b + Soil Micronutrients (Org. C + Mehlich P + K)    0.002 ** 
e Treatment + Temperature (GP) + Rainfall (GP)     0.579 
f Treatment + Temperature (II) + Rainfall (II)     0.793 
g Treatment + Temperature (III) + Drought (I)      0.033 * 
h d +  Temperature (III) + Drought (I)      0.044 * 
p-value indicate significant difference from the basic model (treatment alone) via likelihood ratio test. When a sub model is 
added in the model expression e.g. “d”, the model is tested against it and not again the basic one.   
Significant levels of 0.1, 0.05, 0.01, and 0.001significances were indicated with  . ,*, **, and *** respectively 
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4.6. Predicting yield nutrient response  

4.6.1.  Prediction with linear mixed-effects model 

 

Table 11. Summary statistics of the mixed effects models and results of the farm and district cross validation 

Variables Y ~ X Estimates s.e.  p-value All CV Farms 
CV 

Districts 
    R2 (%) 
Control (kg ha-1)       
Drought (I) -4.5 50.2 0.929 0.68 0.46 0.07 
Temperature (III) 22.8 75.7 0.764    
ECEC 5.3 52.6 0.920    
Water pH 449.1 221.0 *0.044    
Org. C 333.2 144.0 *0.022    
Meh. P -2.5 14.4 0.863    
K  -1.1 0.8 0.193           
Response N (kg ha-1)       
Drought (I) -52.3 33.7 0.130 0.36 0.16 0.01 
Temperature (III) -26.0 55.6 0.642    
ECEC 48.9 45.6 0.285    
Water pH -323.6 184.5 .0.082    
Org. C -167.8 122.6 0.174    
Meh. P 10.6 12.7 0.407    
K  -0.3 0.7 0.658           
Response P (kg ha-1)       
Drought (I) -47.3 24.3 .0.060 0.37 0.05 0.00 
Temperature (III) -98.6 40.4 *0.018    
ECEC 13.7 33.8 0.685    
Water pH -67.4 136.1 0.621    
Org. C -29.1 90.8 0.749    
Meh. P 1.0 9.5 0.912    
K  -0.4 0.5 0.354           
Response K (kg ha-1)       
Drought (I) 46.3 15.3 **0.006 0.17 0.01 0.02 
Temperature (III) 22.7 26.8 0.403    
ECEC 29.5 25.7 0.254    
Water pH -82.7 100.6 0.414    
Org. C -2.1 69.6 0.975    
Meh. P -12.2 7.5 0.107    
K  -0.1 0.3 0.801           
Response M (kg ha-1)       
Drought (I) -4.6 25.7 0.857 0.01 0.12 0.01 
Temperature (III) 2.5 45.3 0.957    
ECEC -11.8 45.0 0.795    
Water pH 31.0 175.5 0.860    
Org. C -31.4 123.1 0.799    
Meh. P -5.9 13.4 0.661    
K  0.6 0.6 0.337           
Response NPKM (kg ha-1)      
Drought (I) -42.4 45.0 0.353 0.34 0.04 0.00 
Temperature (III) -116.9 75.0 0.125    
ECEC 85.6 63.0 0.176    
Water pH -439.9 253.7 .0.086    
Org. C -216.6 169.4 0.203    
Meh. P -1.0 17.7 0.956    
K  -0.5 0.9 0.548    
Estimates, standard errors and p-value of explanatory variables are presented from the mixed models using all data points.  
R2 represent the squared correlation between predicted and observed values for the testing set, where predictors have been 
obtained for the training set. Data were split for training and testing at the farms and the districts levels. 
Significant levels of 0.1, 0.05, 0.01, and 0.001significances were indicated with  . ,*, **, and *** respectively 
Model 4 was used to predict the nutrient responses.  
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Mixed models were used to predict each of the nutrient response variable with as factors 
the maximum length of drought during onset, the third quartile of the temperatures during 
the grain filling period, effective cation exchange capacity, soil water pH, soil organic 
carbon, and soil available P and K. This set of variables explained the most variation in 
control yield with a R2 of 68% (Table 11). The effect of soil water pH and organic carbon 
were significant (P < 0.05) for this variable. Response to N, P and NPKM had a 
reasonable part variation explained with a R2 of 0.36, 0.38 and 0.34 respectively. Among 
this variable, only the drought (I) and temperature (III) were significant (P < 0.05) (Table 
11).  Cross validation at the farm and district level showed that model performances 
dropped to much lower values of R2 compared to the model with all data points. When 
predicting on farms at neighboring locations i.e. within the same district, 46% of the 
variation of control yield could still be explained by the set of explanatory variables. For 
the nutrient responses, best prediction was achieved with a R2 of 16% for the nitrogen 
response. In addition, prediction performances for farms in different districts from the 
training model were close to 0 indicating that relation observed between the covariates 
and the response were very different between the training and the validation districts.  

4.6.2. Prediction with random forest 

Output of the random forest showed a similar trend in term of response performances 
with a low R2 when testing on new farms (Table 12). Predictions performances were 
situated between 0 and 7% for N, K, M and NPKM response. Variation of control yield 

Table 12.  Summary of the farm and district cross validation for the random forests 
Variables Y ~ X All CV Farms CV Districts 
 R2 (%) 
Control (kg ha-1)    
Water pH 0.36 0.26 0.08 
Drought (I)    
ECEC    
Response N (kg ha-1)    
Meh. P 0.07 0.03 0.00 
Water pH    
Temperature (III)    
Response P (kg ha-1)    
Drought (I) 0.20 0.13 0.11 
Temperature (III)    
ECEC    
Response K (kg ha-1)    
Meh. P 0.06 0.01 0.12 
Drought (I)    
Temperature (III)    
Response M (kg ha-1)    
Meh. P 0.00 0.00 0.01 
Temperature (III)    
Drought (I)    
Response NPKM (kg ha-1)    
Temperature (III) 0.06 0.06 0.00 
Meh. P    
Water pH    
R2 represent the squared correlation between predicted and observed values for the testing set, where predictors have been obtained for 
the training set. Data were split for training and testing at the farms and the districts levels. 
The first three most important covariates are indicated below the nutrient response variable. 
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were still reasonably explained by the model with an out-of-bag prediction explaining 
36% of the variation (Table 12).   

4.6.3. Prediction with spatial autoregressive error model 
Table 13. Summary statistics of the spatial error models and results of the farm and district cross validation 
Variables Y ~ X Estimates s.e.  p-value All CV Farms CV Districts 
        R2 (%) 
Control (kg ha-1)        
Drought (I) -7.8 49.9 0.876 0.59 0.09 0.01 
Temperature (III) 58.4 75.3 0.438    
ECEC 24.0 51.1 0.639    
Water pH 359.9 221.8 0.105    
Org. C 227.9 153.6 0.138    
Meh. P 1.7 13.8 0.903    
K  -1.1 0.8 0.158           
Response N (kg ha-1)      
Drought (I) -54.3 32.4 .0.093 0.24 0.05 0 
Temperature (III) -48.5 53.0 0.360    
ECEC 29.5 43.5 0.498    
Water pH -333.0 179.4 .0.063    
Org. C -87.2 125.1 0.486    
Meh. P 9.7 12.0 0.421    
K  -0.1 0.6 0.917           
Response P (kg ha-1)      
Drought (I) -51.1 20.6 *0.013 0.20 0.02 0.01 
Temperature (III) -77.7 35.4 *0.028    
ECEC 19.5 32.6 0.551    
Water pH -132.1 130.2 0.310    
Org. C -47.9 91.0 0.599    
Meh. P -2.0 9.4 0.828    
K  -0.3 0.4 0.441           
Response K (kg ha-1)      
Drought (I) 46.2 14.2 *0.001 0.13 0 0.02 
Temperature (III) 19.8 25.0 0.430    
ECEC 30.9 24.5 0.209    
Water pH -82.3 96.0 0.391    
Org. C -0.3 67.3 0.996    
Meh. P -12.1 7.3 0.095    
K  -0.1 0.3 0.668           
Response M (kg ha-1)      
Drought (I) -6.7 22.7 0.769 0.02 0.12 0 
Temperature (III) 1.6 40.6 0.968    
ECEC -15.3 42.3 0.718    
Water pH 29.7 162.4 0.855    
Org. C -39.9 114.2 0.727    
Meh. P -6.6 13.0 0.611    
K  0.7 0.5 0.196           
Response NPKM (kg ha-1)      
Drought (I) -48.4 42.3 0.252 0.22 0 0 
Temperature (III) -111.6 70.5 0.113    
ECEC 81.0 60.2 0.178    
Water pH -458.1 245.6 .0.062    
Org. C -190.0 171.3 0.267    
Meh. P -4.7 16.8 0.779    
K  -0.4 0.9 0.633       
Estimates, standard errors and p-value of explanatory variables are presented from the mixed models using all farms.  
R2 represent the squared correlation between predicted and observed values for the testing set, where predictors have been 
obtained for the training set. Data were split for training and testing at the farms and the districts levels. 
Significant levels of 0.1, 0.05, 0.01, and 0.001significances were indicated with  . ,*, **, and *** respectively 
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Spatial autocorrelation of the linear regression (with fixed effect only) residuals were 
tested with Moran’s I. After accounting for the effect of the environmental covariates, 
residuals of control yield, response to N and NPKM were still autocorrelated with a 
Moran’ I of 0.51, 0.22 and 0.16 respectively (P < 0.001). Regression residuals of P 
responses were not correlated after accounting for the effect of covariates. Minor 
differences were observed in the coefficients and standard error values of the models by 
comparing the mixed model and SAR approaches. For both, cross validation at farm level 
and district level is very low, even for the control yield in the SAR model (Table 13). 
Significant effect of the drought during onset was found for response to P and K and this 
was already observed for K in the mixed model approach.  

4.6.4. Prediction with geostatistics  

The variograms of the regression residuals are presented in S7. Fitting a variogram of the 
residuals and implement its parameter to include a spatial correlation structure in the 
linear models. As we encountered in 4.3.2. fitting a variogram model on the data was 
difficult and ended with convergence issue, that is, when the parameter value did not 
stabilize. Control yield residuals did not show any spatial correlation on long (50 km) and 
short distance (15 km) with a very erratic behavior. Model residuals of N and NPKM 
responses seemed to show a spatial dependence (between 0 and 15 km) at 50 km. 
However, a closer look at this relationship using 15 km as threshold distance did not yield 
more interpretable information. Regarding P and K response residuals, M being very 
erratic, a stable but poor spatial dependence was observed at a distance of 2-3 km. Due to 
the difficulty to obtain variogram parameter and in the presence of non-spatial 
dependency showed by the variogram, it was decided not to pursue the modelling exercise 
for this approach.  
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5. Discussion 
This section evaluates the main outcomes of the analysis of the TAMASA campaign in 
Tanzania for the 2015-2016 maize growing season and discusses their potential 
implications regarding the formulation of fertilization recommendations. The main 
objective of this study was to characterize the variation of rainfed maize yield responses 
to mineral fertilizer application: nitrogen, phosphorus, potassium and secondary macro- 
and micronutrients and understand their sources of variability.  

5.1. Response to mineral fertilizers across the study space 

The aim of describing and quantifying yields and responses to nutrient variability across 
the study space was twofold. On one hand, it provided an estimation on how mineral 
fertilizer application may increase on-farm maize production, on the other hand it 
indicated to which extent yield response variation can be related to geographic scales. 
The existence of a spatial yield structure for maize yield was assumed in this study, the 
on-farm trials being distributed in a large area covering a wide range of growing 
conditions. The different scales at which yield limiting factors occurs was hypothesized 
to be correlated with the spatial variation of yield.  

5.1.1. Zone and district scale variation of yields 

Large differences in yield were found between the two zones with significantly lower 
control and treatment yield in the Southern Highlands (Fig. 7). Average yields in the 
Northern zone were three time higher than in the Southern highlands for the control, 
respectively 3541 and 851 kg ha-1, and two times higher for the NPK treatment yield, 
respectively 4845 and 2698 kg ha-1. Such a difference between the two zones was 
surprising for the NPK treatment. Indeed, climatic conditions are more favorable in the 
Southern Highlands (Magehema et al., 2014) and historical yield indicated higher average  
maize yields in this zone (Rowhani et al., 2011). Moreover, rainfall conditions reported 
in this study concorded with historical trends. It is important to note that the proportions 
of plants harvested in the experimental plots, in comparison to the expected plant density 
at planting, was significantly higher in the Northern zone (Fig. 5, S3a). The percentage 
of plants harvested was likely to vary to according the proportion established plants after 
sowing, depending on the quality of the field preparation and soil physical properties. The 
delimitation of the harvested area by the enumerator may also impact the number of plants 
harvested and the final yield. In figure 5, the highest yielding districts (Fig. S4) are also 
the ones with the highest proportion of harvested plants. However, the correlation 
between the number harvested plant was, in general not correlated with the final yield 
(Fig. 6). It is then difficult to draw clear conclusions regarding the consequence of this 
potential data collection bias.   
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N application at the zone and district levels (Fig. 7,10) was associated with a clear 
increase in crop yield compared to the control and the interactive effect of N and P was 
of importance in the lowest yielding environments mainly (Fig. 10). Decrease in maize 
yield in low production districts was particularly linked with a decrease in the number of 
cobs per plant (Fig 6; S3b), a component sensitive to nitrogen and particularly phosphorus 
fertilization (Selassie, 2016). Results of this analysis tend to converge to the conclusion 
that yield reduction through the number of cobs per plant was more pronounced in the 
Southern Highlands when compared to the reduction of cob weight (Fig. 6). The latter 
could be partly explained by stronger P deficiency in this zone, but it is important to keep 
in mind that different maize varieties were used. Traits of these varieties were unknown 
and might influence differences in plant parameters such as the number of cobs per plant.  

5.1.2. Variation of nutrient responses and local scale variation 

While aggregated values of grain yield at the zone and district level tend to demonstrate 
a clear effect of nitrogen and phosphorus application on yield, the magnitude of the 
response varied strongly, and particularly at local scale, i.e. between farms within a 
district. N application yielded the highest response with a median of 1060 kg ha-1 grain 
yield, this nutrient being recognized as the most limiting for maize in SSA (Kihara et al., 
2016; Vanlauwe et al., 2011). However, response variation for this nutrient was also the 
largest with an interquartile range of almost 1635 kg ha-1 for the entire dataset (Fig. 11). 
Most of the farms achieved a higher yield in the N treated plots compared to the control 
but only 50% obtained an increase higher than 1000 kg ha-1 (Fig. 12). While 50% of the 
farms in the Southern Highlands observed a response higher than 650 kg ha-1 from P 
application (Fig. 12). P response variation was also highly heterogenous within districts 
(Fig. S5) with the highest interquartile ranges observed in Mufindi and Mbozi. High 
variation in the responses to M and K was observed and a benefit from potassium 
application was unlikely among the farms included in this analysis. On the other hand, 
while response to secondary macro- and micronutrient was low or null, some districts 
showed consistent benefits from this application: Nkasi, Ludewa, Namtumbo, Moshi 
Rural, Mbozi and Kilolo (Fig. S5). This highlights the importance of secondary 
macronutrients, here Ca, Mg, S and micronutrient Zn, B in specific conditions. Gain from 
this treatment has been already reported for several crops in SSA (Kihara et al., 2017).  

The presence of response patterns across the study area was limited and variation of 
responses were weakly correlated with the different scales of analysis. Local variation, 
represented here by within district differences, is the principal component of nutrient 
response variation (Fig. 14). Geographic variation of responses was observed for N and 
P application indicating the presence of medium to large scale processes, between 
districts and between zones respectively. However, it represents only a small part of the 
total variation associated with the responses. Upscaling the analysis of yield responses at 
higher aggregation level is indeed uninformative in the present context as it hides most 
of the variation and results in misleading conclusion about the biophysical components 
of risk for the farmers (Ronner et al., 2016; Vanlauwe et al., 2016). 
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5.1.3. Explaining the variation of nutrient responses 

The set of covariates used to predict nutrient responses resulted from a selection of 
significant yield constraints (Table 10). Only a small part of the nutrient response 
variation was explained by these variables. The best predictions, once cross validated at 
the farm level, were 16 % for the response to N (linear mixed model, Table 11) and 13 % 
for the response to P (random forest, Table 12). These values are much lower than 
reported in similar attempts by Bielders & Gérard, (2015) and Ronner et al., (2016).  
Indeed, while a reasonable part of the variation was expected from the model fitted on all 
the farms, especially for N and P response, prediction performances dropped dramatically 
to 0 % when predicting in new districts. This indicated clear overfitting when modelling 
with all farms. Furthermore, it highlights the fact that when predicting for unknown 
conditions (different districts), yield constraints in the training set are likely to be different 
than the ones in the validation set, resulting in large differences between modelled and 
measured yield responses.  

 

The scales of variation associated with each environmental variable tend to be explained 
most by between districts and between zones differences for the water pH, ECEC, soil 
available K, drought during onset and temperature during the grain filling phases (Fig. 
18). Variation of soil available P was however explained by local variations. A clear 
mismatch between the scale of variation of biophysical variables and the variation of 

Figure 18. Contribution of the geographic scale (strata) on the variance components of the explanatory variables. Different 
colours stand for the different strata. Variances were computed from separated models for each variable. 

District 
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nutrient responses was observed. Indeed, the best predictions, for N and P response were 
related to their scale of variation seen in figure 14. Response to K and M, varying 
principally at local scale, could not be predicted by these explanatory variables.  

Regarding the multiple collected variables, no strong correlations were observed with the 
nutrient responses. All soils were situated below the bulk density critical threshold of 
1600 kg dm-3 (Arshad et al., 1996) to limit root development. Moreover, the districts were 
associated with low and variable organic carbon content, less than 2% for all districts 
(Musinguzi et al., 2013) with exception of Hai in the Northern Zone where soil organic 
C was weekly correlated with N response (Fig. 13). Available phosphorus showed large 
differences between districts, with lowest values in Mbozi, Mbeya Rural, Mufindi, and 
were associated with medium to strong responses to P fertilization (Fig. S5). Some 
districts presented a potential soil K deficiency, with a content lower than 125 ppm (van 
Biljon et al., 2008). However, soil available K was not related to K response, the only 
district with a positive response to K was Mwanga. This district had a median soil K 
content of 121 ppm, just below the deficiency threshold. Positive response to this nutrient 
may be associated with a better tolerance to drought (Grzebisz et al., 2013) as this district 
was characterized by the lowest amount of rainfall during the vegetative and the early 
reproductive stages of maize. Considering the threshold value of 9 ppm for soil S (van 
Biljon et al., 2004), no strong deficiencies were observed. Regarding potential 
micronutrient deficiency: Cu, Zn, Mn and Fe were well above the deficiency thresholds 
(1, 0.45-1.77, 2, 4.5 ppm respectively (summarized in Kihara et al., 2016). Boron 
deficiencies might have been present in some districts with values lower than 0.15-0.5 
ppm (Aref, 2011). However, null to positive response to M was observed in these sites.  

Soil properties from chemical analysis and weather variables were unable to explain 
variation in nutrient responses. But associated with climatic variables, they could explain 
a large part of the control yield with 46 % (Table 11). In this study, control yield is the 
best indicator of the soil fertility variation that can be observed between farms. Between 
zone (large scale) variation accounted for more than 50% of the total variance of the 
control yield. Despite large difference in term of rainfall regimes they were not related 
with yield. However, soils of the Northern zone appeared to be more fertile. The dominant 
soil types in the Northern zone are Ferralsols in the region of Arusha, Cambisols and 
Vertisols in the region of Kilimanjaro and Cambisols and Luvisols in the Region of 
Manyara. On the other hand, Ferralsols and Acrisols are dominant for most study sites in 
the Southern highlands (www.soilgrids.org). These soils are often found in sub-tropical 
areas and are characterized by strong weathering their low capacity to supply and retain 
nutrients (Bationo et al., 2012). Hence, they require large amount of P fertilizer as 
phosphate is strongly adsorbed by iron and aluminum oxides (Bationo et al., 2012).  

Our ability to explain nutrient responses variation through biophysical factors was, in 
conclusion, very limited. The variables selected represented mainly the large-scale 
processes and depicted the heterogeneity between zone and district.   



 48 

5.2. Implications for the formulation of fertilizer recommendations 

5.2.1. Downscaling the analysis to capture local variation 

From our understanding of the response variation observed, local variation tends to 
overrule the total variation. A better understanding of the factors under this level of 
analysis is required as it is not possible to make predictions with biophysical variables. 
Hence, as reflected by van Heerwaarden et al., (2017) the lack of correlation between the 
response and the control yield indicates that productivity constraints, as we observed 
explaining variation of the control, may not be good indictors for the response itself.  

Small-scale variation is likely to vary according to land use, management practices 
(current and historical) and resource endowment (Vanlauwe et al., 2006). In view of the 
poor correlation between soil analysis and the yield response to macronutrients (Fig. 13), 
as reported by Njoroge et al., (2017) in a similar design, these findings support the use of 
other soil quality indicators (Vanlauwe & Giller, 2006) as experienced in Falconnier et 
al., (2016).  

Moreover, a precise understanding of the local variation was not possible in our case, 
considering the size of the area and the number of data points per district (about 10 for 
1000 km2). Indeed, assessing local variation would requires a higher sampling density. 
Although, the district scale in our case, was the best intermediate scale between the farm 
and the regional scale. The community/village scale has been reported as a relevant for 
the implementation of agricultural technologies (Giller et al., 2011; Vanlauwe et al., 
2015), however, was not assessed in this study. 

5.2.2. Potential profitability of fertilizer in the study sites 

For the quantity of N fertilizer applied, which was between 100 and 140 kg ha-1, the 
potential profitability of this application is low. Indeed, the median agronomic efficiency 
of N was about 8 kg kg-1. This value is comparable with the results of a national survey 
in Nigeria (Liverpool-Tasie et al., 2017). Under farmer’s management, with a mean N 
application rate of 70 kg ha-1, gain from application was about 7.6 kg kg-1. In contrast, a 
metanalysis of Vanlauwe et al., (2011), average fertilizer agronomic efficiency was about 
19 and 23 kg kg-1 for farmer-lead and researcher-led management respectively. In latter 
study, maximum ANE was about 30 kg kg-1 for N application rates higher than 100 kg 
ha-1. Low agronomic efficiency was found to P (9 kg kg-1) and differences were observed 
between the two zones. Under researcher-led management, values ranging between 29 
and 67 kg kg-1 in acidic sandy soils,  were reported by Kurwakumire et al., (2014) for an 
application of 40 kg ha-1. These values are far above the APE of this study, even for the 
Southern Highlands that show similar environmental conditions, and higher APE.  

These values are alarming when considering that plots were under researcher-led 
management. Moreover, they indicate that such amounts of fertilizer may not be 
profitable regarding the generally low and variable return from the application. This 
supports the need of testing alternative fertilization rates in association with additional 
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inputs to increase the agronomic efficiency fertilizer such as lime, manure (Bielders & 
Gérard, 2015; Kihara et al., 2016) or other organic input (Vanlauwe et al., 2011). 
However, a further identification of the yield response limiting factors is necessary before 
testing additional inputs. Testing the influence of historical soil management practices 
would then be necessary. 

5.3. Methodological consideration  

5.3.1. On the data collection and processing 

From the 296 farms present in the dataset, only 225 had yield data. Even fewer farms had 
planting dates available and as a result, only 134 data points were used to model yield 
across the country. Moreover, planting and harvest dates were characterized by strong 
variation within farms while planting and harvesting of the six plots were supposed to be 
performed on a single day. However, detailed characteristics of the trial conditions were 
not available (pest, diseases occurrences and remedial, plot damages, etc.).  

In order to correct for the high variation of shelling percentage of the cobs and moisture 
content at harvest, a farm median aggregated indicator was used. Although, a significant 
effect of treatment was observed for shelling percentage (Fig. S3d) in the Southern 
Highlands only. Thus, farm aggregated values could have slightly overestimated of the 
yield of these plots.  

5.3.2. On the model selection and predictions 

With the attempt to predict yield and response using different types of models, different 
outcomes were observed between the different models. Our main purpose was to ensure 
independence of the model residuals across the study space. Indeed, violation of 
independence is assumed to create a bias in the model estimates (Zuur et al. 2009). 
Geostatistical models were dropped from the analysis because of the erratic empirical 
variogram preventing to fit the data into a variogram model. The highly heterogenous 
spatial structure of the data points and their relatively low density was likely to cause the 
erratic variogram obtained (Armstrong, 1984; Yemefack et al., 2005). Moreover, fitting 
a single variogram for data points situated in very different conditions might be intuitively 
wrong. It is likely that yields may have a very different spatial structure from one region 
to another depending on the heterogeneity of the growing conditions within this region. 
To our knowledge, spatial analysis of yield using geostatistics have been commonly 
performed at the field scale (Colonna et al., 2004; Kravchenko, 1998; Lambert et al., 
2004). It is questionable this method may be used in our context.   

Different model estimates and associated standard errors were not statistically tested in 
this study. Colonna et al., (2004) observed a consistency of the estimates after accounting 
for spatial dependence. In our study, important change in coefficients were found when 
comparing linear regression (with fixed effect only) to mixed models and spatial error 
model. However, we did not observe large differences between mixed models and spatial 
error model coefficients. Taking the district grouping factors as random effects with a 
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distance criterion of 10 km for the spatial weight matrix, is already accounting for spatial 
correlation at this scale.  

Large differences between model predictions and observed values for the farm level cross 
validations were observed. The training sample being the same and the estimated 
coefficient similar (for all data) the different prediction procedure, inherent to the model, 
were assumed to cause these differences. For the mixed models, in the case of a random 
intercept case, fitted values for an observation are estimated in the following way: Xib + 
bi (where b is the coefficient of the random factors at level i). The fixed value is then 
corrected by the random effect coefficient. When all random effects are included in the 
model (all data and farm CV) the fitted values are conditional on all the modes of the 
random effects (Bates et al., 2015). However, for the district cross validation, values were 
predicted on unknown random effects. Hence, the predictions were made at the 
population level where all random effects are set to 0 (Bates et al. 205). Regarding the 
spatial error model, the predicted value is decomposed into trend, signal and noise 
(Bivand, 2002). In the case of the error model, the signal being set to 0 the trend 
(predictive value) takes the form Xb +(I- lW)-1e. Finally, one of the main shortcomings 
of our model testing procedure was replicability. For the fam and district cross validation, 
only one round of cross validation was performed, implicating a single random splitting 
of the data. It is reasonable to assumed that different sets of observations for training and 
testing might have given different estimates and then different prediction performances. 
It is then likely that out estimates are biased because not representative of the population 
estimates. Looking at the random forest results, where data are resampled multiple times 
to make predictions, the proportion of variation explained is already lower compared to 
the mixed model when testing on the entire dataset. The inherent resampling procedure 
of this method is assumed to give more stable predictions compared to a model where 
only a single sample is used to predict.  
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6. Conclusion  
 

Understanding the scales of fertilizer response variation is a necessary step prior to 
formulating recommendations. The variability of yield nutrient responses is dominated 
by small-scale variation. To a lower extent, also large-scale variation of yield responses 
exists for nitrogen and phosphorus. Yield response variability between farms was very 
high for every nutrient, implying that mineral fertilization would not be beneficial for a 
large proportion of the farmers in the trials. Hence, fertilizer as a sole option to increase 
maize productivity is not sufficient and needs to be associated with better soil 
management practices.  

Variables representative of the biophysical conditions could explain a reasonable part of 
the variation of yield in the control plot. However, these variables were associated with 
large-scale factors and explained very little of the variation of the macronutrient 
responses. The latter are likely to vary according to small-scale factors, such as historical 
land use and soil fertility management. Model prediction performances, based on these 
only factors, were very low and therefore deemed not to be good indicators to help the 
formulation of fertilizer recommendations.  

To advise farmers in the use of fertilizers, our study suggests that a better understanding 
of the yield response constraints is necessary. This requires downscaling the level of 
analysis, with multiple sites at the landscape/community scale, within similar 
agroclimatic conditions. The study of the combined effects of small-scale biophysical 
factors with historical management is needed for the identification of yield response 
constraints and their scale of influence. Finally, temporal stability of yield response was 
not assessed in this study but remains an essential component of yield variation, that needs 
further understanding in the context of maize cultivation in sub-Saharan Africa. 
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Supplementary Material 

S1. Comparison of soil measurements methods NIR-MIR vs Wet Chemistry 

  

Figure S1.a. Comparison of soil properties (Org. C, N, P, K, Soil Water pH, Ca, Mg, S) measured with wet 
chemistry and NIR-MIR. Black and grey colours stand for the Northern zone and the Southern highlands 
zone respectively. 
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Figure S1.b. Comparison of soil properties (Na, Mn, Zn, Fe, B)) measured with wet chemistry and NIR-
MIR. Black and grey colours stand for the Northern zone and the Southern highlands zone respectively. 
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S2. Homogenization of farm clusters size based on geographic distance 
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Figure S2. Result of the farm clustering based on geographic distance, each circle represents a cluster 
of farms referred as districts.  
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S3. Estimated means and differences for yield components 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

  

Figure S3.a. Estimated means (model 1) 
for the proportion of plant harvested per 
plot affected by zone and fertilization 
treatment. Avg. LSD = 6.92  

Figure S3.b. Estimated means (model 1) 
for the number of cobs per plant affected by 
zone and fertilization treatment. Avg. LSD 
= 0.08  

Figure S3.c. Estimated means (model 1) 
for the cob weight per cob affected by 
zone and fertilization treatment. Avg. 
LSD = 0.02  
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Figure S3.d. Estimated means (model 1) for 
the percentage of grain weight per cob affected 
by zone and fertilization treatment. Avg. LSD 
= 0.04  

Figure S3.e. Estimated means (model 1) for 
the adjusted coefficient of moisture content 
representing the deviation from a standard 
moisture content of 12.5%,  affected by 
fertilization rate and fertilization treatment. 
Avg. LSD = 0.04  

Figure S3.f. Estimated means (model 2b) for 
maize grain yield (kg ha-1) in the Southern 
Highlands affected by fertilization rate and 
fertilization treatment,  Avg. LSD = 555.25  

Figure S3.g. Estimated means (model 2a) for 
maize grain yield (kg ha-1) in the Northern 
zone affected by fertilization rate and 
fertilization treatment,  Avg. LSD = 555.25  
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S4. Treatment variations   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S4. M
aize grain yield distribution (kg.ha

-1)  per  district and  treatm
ent w
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ent, from
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S5. Response variations 

 

 
Figure S5. Maize grain yield response distribution (kg.ha-1)  per districts and nutrients within districts . Different 
colours indicate nutrient, from the left to the right (N, P, K and M).  
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S6. Topographic, land use, and drought characteristics of the districts 

 

 

Table S6.a. No. of dry days and maximal drought period of the districts for the total growing period (GP) and during maize growing stages 
 Dry GP  Dry I  Dry II  Dry III  Dro. GP Dro.  I Dro. II. Dro. III 
District    (days)     
                 
S. Highlands 1591.2 164.0 2.4 1.6 9.0 5.9 55.5 63.8 1591.2 164.0 2.4 1.6 9.0 5.9 55.5 63.8 
Mbozi 123 1 6 0 45 4 70 1 68 1 2 1 6 1 68 1 
Mbeya Rural 142 1 12 0 58 1 72 1 71 1 5 0 12 0 71 1 
Mufindi 139 1 12 1 55 1 72 1 38 1 6 0 13 0 38 1 
Iringa rural 135 0 13 4 58 3 65 3 65 0 9 1 13 1 64 2 
Kilolo 146 0 12 1 68 0 66 0 64 0 6 0 17 0 64 0 

                 
Northern                 
Mwanga 125 1 21 0 62 4 42 0 26 1 21 1 15 2 23 1 
Moshi Rural 148 12 24 1 73 7 51 3 51 12 14 4 26 2 27 0 
Hai 145 1 20 0 70 1 55 0 77 1 8 0 22 1 55 0 
Arumeru 146 4 21 0 72 4 53 1 61 4 9 0 15 1 53 1 
Monduli 148 1 20 0 77 1 52 1 85 1 8 0 34 1 52 1 
Karatu 147 5 22 1 73 1 54 1 64 5 8 0 14 3 54 1 
Mbulu 142 1 18 1 69 4 52 6 18 1 8 3 17 0 18 3 
Babati 160 0 15 1 83 1 62 0 53 0 7 0 11 1 53 0 
Hanang 157 0 12 0 86 1 59 0 57 0 3 0 18 0 57 0 
Kiteto 139 1 11 1 78 1 50 1 34 1 5 1 34 4 34 0 

                 
CD (%) 4.2  27.3  12.4  12.8  28.2  20.0  28.8  29.7  
Values presented are median (left) and median absolute deviation (right) per district of each soil properties. Max and min values are highlighted in bold 
I: Onset of the growing period, from 10 days before sowing to 15 days after sowing 
II.: Vegetative, early reproductive and anthesis growing stages, from end of onset to two third of the total growing period  
III.: Grain filling and maturation growing stages, from end of II to harvest 

 

Table S6.b. Topographic and land use characteristics of the districts 
 Elevation  Slope   Tree Cover  Cropland cover 
District (masl) (%) (%) (%) 
         
S. Highlands 1591.2 164.0 2.4 1.6 9.0 5.9 55.5 63.8 
Mbozi 1604.5 84.7 4.0 3.1 9.0 4.4 0.0 0.0 
Mbeya Rural 1855.1 11.9 2.7 1.4 16.0 0.0 100.0 0.0 
Mufindi 1723.2 157.7 2.2 1.3 16.0 3.0 51.5 52.6 
Iringa rural 1529.3 92.5 2.9 1.4 6.0 7.4 59.0 50.4 
Kilolo 1380.1 42.1 2.2 1.6 3.0 3.0 78.0 32.6 

         
Northern 1372.0 278.8 1.5 1.1 5.0 5.9 100.0 0.0 
Mwanga 1058.5 155.3 4.8 4.2 5.0 7.4 100.0 0.0 
Moshi Rural 707.4 12.3 0.3 0.1 5.0 3.0 100.0 0.0 
Hai 1198.7 42.3 1.5 0.6 9.0 0.7 100.0 0.0 
Arumeru 1025.4 23.9 1.2 0.4 5.0 4.4 100.0 0.0 
Monduli 1420.5 36.0 2.1 1.0 5.0 1.5 100.0 0.0 
Karatu 1440.0 38.8 2.7 2.8 4.0 2.2 100.0 0.0 
Mbulu 1883.1 102.0 0.9 0.5 0.0 0.0 100.0 0.0 
Babati 1369.1 40.5 2.1 1.3 6.0 0.7 100.0 0.0 
Hanang 1560.8 7.6 1.1 0.4 1.0 1.5 100.0 0.0 
Kiteto 1421.5 84.0 1.8 0.4 0.0 0.0 100.0 0.0 

         
CD (%) 9.1  50.0  79.5  30.7  
Values presented are median (left) and median absolute deviation (right) per district of each soil properties. Max and min values are highlighted in bold 
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S7. Residual variogram for control yield and input responses 
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Figure S7a. Empirical and fitted model variogram of the nutrient responses on 50 km distance  

Figure S7b. Empirical and fitted model variogram of the nutrient responses on 15 km distance  
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S8. Input response predicted vs observed values 

 

Figure S8. Model predicted (BLUE) against observed nutrient (Y NPK plot – Y Nutrient 
omitted plot) response  


