
A Resurrected Scenario : Single Gain and Massive Loss of Nitrogen-Fixing
Nodulation
Trends in Plant Science
Velzen, Robin; Doyle, Jeff J.; Geurts, Rene
https://doi.org/10.1016/j.tplants.2018.10.005

This article is made publicly available in the institutional repository of Wageningen University and Research, under the
terms of article 25fa of the Dutch Copyright Act, also known as the Amendment Taverne. This has been done with explicit
consent by the author.

Article 25fa states that the author of a short scientific work funded either wholly or partially by Dutch public funds is
entitled to make that work publicly available for no consideration following a reasonable period of time after the work was
first published, provided that clear reference is made to the source of the first publication of the work.

This publication is distributed under The Association of Universities in the Netherlands (VSNU) 'Article 25fa
implementation' project. In this project research outputs of researchers employed by Dutch Universities that comply with the
legal requirements of Article 25fa of the Dutch Copyright Act are distributed online and free of cost or other barriers in
institutional repositories. Research outputs are distributed six months after their first online publication in the original
published version and with proper attribution to the source of the original publication.

You are permitted to download and use the publication for personal purposes. All rights remain with the author(s) and / or
copyright owner(s) of this work. Any use of the publication or parts of it other than authorised under article 25fa of the
Dutch Copyright act is prohibited. Wageningen University & Research and the author(s) of this publication shall not be
held responsible or liable for any damages resulting from your (re)use of this publication.

For questions regarding the public availability of this article please contact openscience.library@wur.nl

https://doi.org/10.1016/j.tplants.2018.10.005
mailto:openscience.library@wur.nl


TRPLSC 1742 1–9
Opinion
A Resurrected Scenario: Single Gain and
Massive Loss of Nitrogen-Fixing Nodulation
Robin van Velzen,1 Jeff J. Doyle,2 and Rene Geurts 1,*
Highlights
N2-fixing nodulation symbiosis is a
complex and important agronomic
trait. It occurs in phylogenetically sepa-
rated lineages, and its evolution may
be explained by two alternative
hypotheses: (i) single gain followed
by massively parallel loss, or (ii) parallel
evolution and fewer losses. The latter
hypothesis is widely accepted, but the
first hypothesis is supported by recent
phylogenomic data.

Molecular and developmental com-
monalities across distinct lineages
support a common origin of nodula-
tion. Moreover, recent comparative
genomics studies revealed parallel loss
of key nodulation genes in non-nodu-
lating species.

These findings support a single gain of
nodulation followed by massively par-
allel loss in most descendant lineages.
Such massive loss may have been
triggered by reductions in global atmo-
spheric CO2 levels.
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Root nodule endosymbiosis with nitrogen-fixing bacteria provides plants with
unlimited access to fixed nitrogen, but at a significant energetic cost. Nodula-
tion is generally considered to have originated in parallel in different lineages,
but this hypothesis downplays the genetic complexity of nodulation and
requires independent recruitment of many common features across lineages.
Recent phylogenomic studies revealed that genes that function in establishing
or maintaining nitrogen-fixing nodules are independently lost in non-nodulating
relatives of nitrogen-fixing plants. In our opinion, these data are best explained
by a scenario of a single gain followed by massively parallel loss of nitrogen-
fixing root nodules triggered by events at geological scale.

Nitrogen-Fixing Nodule Endosymbiosis: A Complex Genetic Trait
Nitrogen is a critical limiting element for plant growth. It is predominantly present as atmo-
spheric di-nitrogen gas (N2), an unsuitable source for plants. Instead, plants rely on reduced
nitrogen forms, such as ammonium (NH4

+) or nitrate (NO3
�) that they generally absorb from

soil. Some plants, however, make specialized root organs called nodules where they intracel-
lularly host diazotrophic (see Glossary) bacteria. Legumes (Fabales, Fabaceae) and the non-
legume Parasponia (Rosales, Cannabaceae) host a polyphyletic group of diazotrophic a- and
b-proteobacteria collectively referred to as rhizobia. Other nodulating species are known as
‘actinorhizal’ because they host diazotrophic filamentous Actinobacteria in the genus
Frankia. Inside nodule cells, these microsymbionts find appropriate physiological conditions
to catalyze the conversion of atmospheric N2 to NH4

+ by the bacterial enzyme complex
nitrogenase [1]. Fueled by plant photosynthates, such endosymbionts provide these plants
with an additional supply of nitrogen.

Nitrogen fixation is an energy-demanding conversion, requiring 16 moles of ATP per mole of N2

fixed [1]. Nodulating plants tightly regulate nodule numbers through autoregulation [2,3] and
abolish nodulation altogether when sufficient nitrogen is available, such as in fertilized agricul-
tural fields [4]. Similarly, nodulation has been found to be limited mainly by photosynthesis in
tropical legumes [5]. Thus, it is clear that nodulation confers a fitness advantage only under
environmental conditions in which growth is limited by nitrogen and when the benefit conferred
by symbiotic nitrogen exceeds the cost of photosynthetic carbon.

Nitrogen-fixing nodules are the result of an intricate exchange of host plant and microsymbiont
signals that simultaneously trigger nodule organogenesis and intracellular microbial infection.
Within nodule cells, specialized symbiotic membranes allow for the exchange of sugars and
ammonia, while defense responses are repressed [6,7]. Genetic dissection of nodulation in the
legume models Medicago truncatula (medicago) and Lotus japonicus (lotus) uncovered more
than 40 essential symbiosis genes. These include genes encoding LysM-type receptor kinases
such as NFP/NFR5 that perceive rhizobial lipo-chitooligosaccharides (LCOs; known as Nod
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Glossary
Actinorhizal plants: plants that
make nodules hosting a symbiosis
with Frankia bacteria.
Diazotroph: a microorganism that is
able to grow without external
sources of fixed nitrogen by using
nitrogenase.
Frankia: a genus of nitrogen-fixing,
Gram-positive filamentous
actinomycete bacteria that can
engage a symbiosis with actinorhizal
plants.
LCOs: lipo-chitooligosaccharides
that act as symbiotic signals, that is,
as Myc factors when produced by
endomycorrhizal fungi or as Nod
factors produced by rhizobia and
Frankia.
NFP/NFR5: NOD FACTOR
PERCEPTION/NOD FACTOR
RECEPTOR 5 lysin motif (LysM)
containing receptor kinase that is
essential for Nod factor signaling in
legumes.
NIN: NODULE INCEPTION
transcription factor that is essential
for nodule formation in legumes.
Nitrogenase: bacterial enzyme
complex responsible for catalyzing
the reduction of nitrogen (N2) to
ammonia (NH3).
Nitrogen-fixing clade: a
monophyletic group comprising the
orders Fabales, Fagales,
Cucurbitales, and Rosales and
including all plant lineages with
nitrogen-fixing root nodules.
Nod factors: symbiotic signaling
LCOs produced by rhizobia and
some Frankia bacteria that have
nodulation genes.
Rhizobia: a polyphyletic group of
diazotrophic Gram-negative rod-like
a- and b-proteobacteria that can
engage a symbiosis with nodulating
legumes (Fabales) and Parasponia
(Rosales, Cannabaceae).
RPG: RHIZOBIUM-DIRECTED
POLAR GROWTH, a long coiled-coil
protein that is essential for rhizobial
infection in legumes.
factors) and activate a transcriptional network initiating nodule organogenesis, of which NIN is
a master regulator [6,8,9]. Together with a series of other genes, such as RPG, NIN is also
essential for intracellular infection [8,10]. Considering the developmental and physiological
complexity and the number of genes that are indispensable for nodule formation, it is clear that
nitrogen-fixing nodulation symbiosis is a functionally and genetically complex trait.

Recent comparative genomic studies have provided insights into the evolution of the nodulation
trait [11,12]. Here, we discuss the implications of these new findings and advocate a radical
change in the current view on evolution of nitrogen-fixing nodulation.

Phylogenetic Perspective on Nitrogen-Fixing Root Nodules
Because all nodulating plant species occur in the monophyletic group comprising the orders
Fabales, Fagales, Cucurbitales, and Rosales, these four orders have been referred to as the
nitrogen-fixing clade [13] (Figure 1). To account for the observation that nodulating lineages
in this clade are interspersed among lineages that do not possess the symbiosis, two general
hypotheses have been postulated [13]: (i) a single gain of nodulation in an ancestor of the
nitrogen-fixing clade followed by massively parallel loss of this trait in most descendants, or (ii)
parallel evolution of nodulation in some descendants and fewer losses. The first hypothesis has
been almost universally dismissed, whereas the latter is widely accepted on the basis of two
main arguments [14–24]. First, it comprises scenarios that require fewer evolutionary events
and that are supported by phylogenetic ancestral state reconstruction studies [14–16,20,22].
Second, there is considerable variation among nodulating lineages in the type of microsym-
biont, nodule ontogeny, and physiology [25–28]. For example, legume nodules are all infected
by rhizobia and share a unique ‘stem-like’ ontogeny with a peripheral vascular system and a
large central zone of infected cells. In contrast, nodules of the non-legume Parasponia are
infected with the same rhizobial strains but have a ‘lateral root-like’ ontogeny with a central
vascular bundle and infected cells in the periphery, similar to actinorhizal nodules [23].
Furthermore, distinct strategies evolved to provide low oxygen pressure to protect nitrogenase
from oxidation. For example, most actinorhizal plants rely on mechanisms provided by the
Frankia microsymbiont. Frankia spp. can differentiate into rigid infection structures, known as
vesicles, that have a physical oxygen barrier, produce hopanoid-derivatives forming protective
laminar lipid layers, and/or express truncated hemoglobin HbO that affect oxygen homeostasis
[25,29,30]. In contrast, legumes, Parasponia, and the actinorhizal plant Casuarina (Fagales,
Casuarinaceae, Casuarina glauca) evolved a plant-encoded mechanism to control oxygen
homeostasis. This mechanism relies on adaptation of either class I (Parasponia) or class II
hemoglobin genes (legumes and Casuarina) to function as oxygen transporters in infected
nodule cells [26–28]. Taken together, these and other differences are often regarded as
evidence that not all nodules are homologous and that nodulation therefore arose indepen-
dently in different lineages [14,15,21,23,24,31].

Despite the general acceptance of the parallel evolution hypothesis, there are several issues
that challenge this view. First, as parallel evolution can in principle occur in any plant, it does not
explain why all nodulating species are confined to the nitrogen-fixing clade. To resolve this
apparent conflict, it is commonly assumed that a genetic predisposition event leading to a
precursor state for nodulation evolved in a common ancestor of the nitrogen-fixing clade
around 110 million years ago (Mya). This precursor state facilitated the parallel evolution of
nodulation in different descendant lineages [13,22]. Despite decades of research, this hypo-
thetical precursor state for nodulation has remained elusive and lacks empirical support
[14,16,19,22]. In our opinion, this renders the supposed predisposition a problematic
explanation.
2 Trends in Plant Science, Month Year, Vol. xx, No. yy
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Figure 1. Single Gain and Massive Loss Hypothesis. Representation of the phylogenetic distribution of nodulating
and non-nodulating plants in the nitrogen-fixing clade under the single gain and massive loss hypothesis. Phylogenetic tree
of the nitrogen-fixing clade based on [15,66,67]; distribution of nodulating and non-nodulating plants based on [63].
Branch colors indicate putative host status and type of microsymbiont; color gradients indicate uncertainty in the
phylogenetic placement of secondary losses. The legumes Dicorynia (Dialioideae) and Humboldtia (Detarioideae) have
been reported to nodulate and may therefore represent additional ‘relict’ nodulators [68,69]. The putative host switch
depicted in an ancestral legume is a minimum age estimate as it may have occurred as early as in an ancestor of all Fabales;
the putative host switch depicted in an ancestral Parasponia is based on genetic changes supporting adaptations in
hemoglobin required for oxygen transport in rhizobium symbiosis [11,27]. CUC, Cucurbitales; FAG, Fagales; Mya, million
years ago.
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Second, scenarios with many parallel origins optimized on phylogenetic trees are in conflict with
developmental and structural data [14]. For example, within legumes as many as four inde-
pendent origins are reconstructed, even though all legumes share the same stem-like ontog-
eny, which is consistent with nodule homology [18,19,22,23]. Similarly, given their �85-million-
year divergence, the two nodulating lineages in Cucurbitales Coriaria (Coriariaceae) and Datisca
(Datiscaceae) are consistently reconstructed to represent independent origins, even though
their nodule anatomy is very similar [14,15,22,23]. Also, the distinctive root-hair infection
process shared by several species representing all three nodulating Fagales lineages suggests
that their common ancestor had a similar characteristic [14,23,32]. Consequently, despite the
evident phenotypic divergence between the main nodulating lineages that separated more than
100 Mya, developmental and structural data suggest far fewer and much older origins than
those predicted based on phylogenetic considerations.

Third, phylogenetic ancestral state reconstructions generally imply a priori equal weight for
gains and losses. However, considering the complexity of nitrogen-fixing nodules, it has often
been acknowledged that an evolutionary gain of this trait is genetically much more difficult than
a loss [24,31,33]. For example, single inactivating mutations in NFP/NFR5, NIN, and RPG each
result in loss of functional nodules [10,34,35]. Thus, it would be more realistic to incorporate
higher rates of losses versus gains when modeling the evolution of nodulation.

A Single Gain of Nodulation
Based on our current understanding of the phylogeny of the nitrogen-fixing clade, the hypoth-
esis of a single gain of nodulation requires at least 7 losses in Fagales, 5 in Cucurbitales, 17 in
Rosales, and 36 in Fabales (Figure 1). Assuming a single common nodulating ancestor readily
explains why all nodulating species occur in one clade and, consequently, eliminates the need
to hypothesize the highly speculative predisposition for nodulation, replacing it with the
evolution of nodulation itself. Clearly, accurate reconstruction of evolutionary events that
occurred �110 Mya is difficult. Nevertheless, there are two main lines of evidence suggesting
that the origin of nodulation is much older than generally assumed.

The first line of evidence comes from structural and developmental similarities across nodules
from distantly related plants. Parasponia and some legume species host rhizobia in fixation
threads, which show strong resemblance with infection structures found in actinorhizal nodules
[36,37]. Fixation threads have been considered ‘primitive’, suggesting a common ancestral
state [36]. Furthermore, the ontogeny of all nodules from Cucurbitales, Fagales, and Rosales
species is very similar [23,24,28]. Given that these three orders form a clade (Figure 1), we
believe that these similarities may be more readily explained by homology than by parallel or
convergent similarity. The latter requires that developmental constraints favoring the evolution
of a certain type of nodules arose in the common ancestor of this clade. This echoes the
predisposition for nodulation in the entire nitrogen-fixing clade required by multiple gain
scenarios, and for which there is no evidence. We therefore argue that these similarities have
a stronger phylogenetic signal than what may be expected based on parallel evolution.

The second line of evidence can be found in the commonalities in symbiotic gene function
between diverse nodulating lineages. Assuming that all nodules arose from a single gain, it can
be predicted that the genes recruited for nodulation are orthologous [24]. For example,
expression of the NIN transcription factor is essential to induce nodule organogenesis in
legumes as well as in the actinorhizal plant Casuarina [9,35,38]. Moreover, Casuarina NIN
can functionally complement a legume nin knockout mutant [9]. A recent study comparing
genes with nodule-enhanced expression from medicago and Parasponia revealed a set of 290
4 Trends in Plant Science, Month Year, Vol. xx, No. yy
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putatively orthologous genes that are used in both species [11]. These include key genes that
are specifically required for nodulation such as NIN and RPG. Similarly, comparative tran-
scriptomic studies revealed extensive commonalities in nodule-expressed genes between
legumes and the actinorhizal plants Casuarina and Alnus (Fagales), although orthology was
not assessed rigorously for these genes [17]. Such commonalities have been interpreted as
cases of ‘deep homology’ or as leads to the supposed predisposition [17–19,39]. We rather
advocate the simpler interpretation that these commonalities are the result of a single recruit-
ment of all of the components of a homologous nodulation symbiosis [14,24]. In our opinion,
these structural, molecular, and genetic data together suggest that the various nodulation
phenotypes have a single origin.

The fossil record would provide clear evidence for the single gain hypothesis, if definitive
fossilized roots bearing nodules were found that pre-dated ancestors in which independent
origins of nodulation are hypothesized under the parallel origins hypothesis. Several fossilized
root structures that strongly resemble multi-lobed nodules were dated at �84 Mya [40]. Given
that nodule fossils are rare/absent even from more recent sediments in diverse and widespread
lineages such as legumes, this date should be considered as a minimum bound for the age of
nodulation if the fossils are truly nodules. Notably, it is much older than the crown age of any
nodulating lineages (Figure 1) [15,22,41]. For example, legumes are the oldest and most diverse
nodulating lineage, and abundant in the fossil record; but the earliest fossils that can be
definitively assigned to the legume family appeared in the late Paleocene (�65 Mya) [42].
Because nitrogen-fixing symbiotic nodules can be very difficult to distinguish from other root
structures such as nematode root galls and ectomycorrhizal nodules [43], more and better
fossil evidence are needed to confirm an early origin of nodulation (see Outstanding Questions).

Parallel Loss of Symbiosis Genes in Non-nodulating Species
Given the phylogenetic framework, a single gain hypothesis implies a massively parallel loss of
the nodulation trait within the nitrogen-fixing clade [13,18,24,33]. It was previously hypothe-
sized that the genomes of non-nodulating taxa could harbor ‘fossil’ evidence of nodulation,
such as pseudogenization of genes functioning only in nodulation similarly as was found for
loss of arbuscular mycorrhizal symbiosis [19,44]. Two recent phylogenomic studies found
exactly that [11,12]. The first study compared the genome of Parasponia with its closest non-
nodulating relative, Trema, and revealed that three genes that are essential for establishing
nitrogen-fixing root nodules in legumes and actinorhizal plants, namely, NFP/NFR5, RPG, and
NIN, are lost or pseudogenized in the Trema genome as well as in those of relatively distantly
related non-nodulating Rosales species [11]. The second study compared genomes of
nodulating and non-nodulating plants across the nitrogen-fixing clade and revealed a similar
pattern of gene loss for NIN and RPG [12]. Orthologs of these genes occur outside the
nitrogen-fixing clade where they must have non-symbiotic functions that remain unknown.
Nevertheless, given our current understanding, within the nitrogen-fixing clade these genes
are exclusively associated with nodulation, strongly suggesting that loss of these genes
resulted from the loss of the nodulation trait. Consequently, absence of nodulation in these
sampled species across the nitrogen-fixing clade likely represents a secondary loss rather
than an ancestral state.

Loss of Nodulation and Decreasing Global Atmospheric CO2

Nodulation is an example of phenotypic plasticity in plants [45], turned on and off in nodulating
species depending on the benefit provided by symbiotic bacteria relative to the cost of their
maintenance. Although the relationship between phenotypic plasticity and adaptive evolution is
Trends in Plant Science, Month Year, Vol. xx, No. yy 5
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complex [46], it seems reasonable to predict that, should abiotic and biotic conditions
consistently disadvantage symbiosis in any nodulating plant species over a long period, the
ability to nodulate would be lost. This is because, when nodulation is turned off, genes
dedicated solely to the symbiosis, thus freed from purifying selection, would accumulate
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Figure 2. Decrease of Atmospheric CO2 and Pseudogenization of NIN in Non-nodulating Prunus and Trema
Species. (A) Global atmospheric CO2 levels decreased over a period of 40 million years [56]. Significant drops are marked
red and are most prominent in the Eocene–Oligocene transition �34 million years ago (Mya), through Late Oligocene �29–
23 Mya, and the Middle Miocene �14 Mya. Shaded areas indicate confidence intervals based on [56]. pCO2, partial
pressure of carbon dioxide in parts per million volume; Plio-Pleist, Plio-Pleistocene. (B) Preliminary data on timing of parallel
loss events based on mutations in the NIN gene. Shared loss-of-function mutations (marked in red) in NIN from Prunus
species indicate that the associated loss event occurred before their divergence �21 Mya [70–73]. Independent loss-of-
function mutations in NIN from two Trema species indicate that the associated loss events occurred after their divergence
�17 Mya [11,15]. Phylogenetic branches along which putative loss events may have occurred are in red; NIN exon
structure given in arrows (introns not in scale). CD, four conserved domains in gray; RWP-RK, conserved amino acid
domain in orange; PB1, Phox and Bem1 domain in yellow. Triangles indicate frameshift mutations; X’s indicate nonsense
mutations resulting in premature in-frame stop codons.
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Outstanding Questions
When, and how frequent, did parallel
loss of nodulation occur?

Can nodulation be restored in non-
nodulating plants by reintroducing lost
symbiosis genes?

What was the ancestral nodule micro-
symbiont and in which lineages did
host switches occur?

Can fossil evidence be found to sub-
stantiate: (i) occurrence of the nodula-
tion trait >100 Mya, and (ii)
subsequent massively parallel loss of
this trait?

Under a massive loss scenario, what
factor(s) determined that the currently
symbiotic lineages retained the nodu-
lation trait?

What are the functions of symbiosis
genes such as NIN and RPG in non-
nodulating species both inside and
outside the nitrogen-fixing clade?
inactivating mutations through neutral processes and become pseudogenes. The major
challenge for postulating many independent losses is therefore to identify a common factor
that would cause nodulation, once an asset to plant growth, to become a liability in numerous
unrelated nodulating plant lineages. Increased availability of fixed nitrogen, or development of
‘cheating’ bacteria that enter root nodules, but do not deliver nitrogen, have been postulated as
possible factors driving loss of nodulation [12]. However, such scenarios would most probably
act only locally, whereas widespread parallel loss is explained best by a factor acting globally
and at geological timescales. One such factor is atmospheric CO2, which is the basis for
photosynthesis. In contrast to other primary growth factors such as light, water, and nutrient
availability, CO2 is relatively evenly distributed throughout the Earth’s atmosphere, rendering it
an inescapable selective force [47]. Changes in atmospheric CO2 levels have been postulated
to drive the evolution of plant anatomy and physiology, such as C4 photosynthesis [48–51],
stomatal density [52,53], and chemical defense [54,55]. Global atmospheric CO2 levels have
generally been decreasing in the last 100 million years, since the time when nodulation is
hypothesized to have arisen under the single origin scenario. During this general decrease,
there have been periods of particularly steep decline during the Eocene–Oligocene transition
�34 Mya, the Late Oligocene �29–23 Mya, and the Middle Miocene climate transition �14
Mya (Figure 2A) [56]. Consequently, given the high photosynthetic demands of symbiotic
nitrogen fixation [1,5] and the variability in photosynthetic efficiency of different species, CO2

could have become a limiting factor for plant growth for different lineages during these climatic
transitions [51,53]. Decreasing CO2 would account not only for the loss of nodulation in diverse
lineages but also for differences in the timing of loss, from very recent (e.g., Trema) to more
ancient (e.g., Prunus) (Figure 2B).

Concluding Remarks and Future Perspectives
Based on the single gain and massive loss hypothesis, we predict loss of nodulation-specific
genes in most non-nodulating species in the nitrogen-fixing clade. Testing this prediction
requires a more comprehensive genome-scale analysis of additional non-nodulating lineages
from the nitrogen-fixing clade as well as from related orders. Nevertheless, it is already clear that
the patterns of maintenance and loss of nodulation genes are not consistent. For example, the
non-nodulating plant jujube (Ziziphus jujuba) retains NIN [11,57], whereas the nodulating
legume Arachis ipaensis lost RPG [12,58]. This suggests that nodulation genes that are
maintained in non-nodulating species encode unknown non-symbiotic functions, whereas
such genes can become dispensable in some nodulating lineages. In-depth understanding of
the molecular functioning of these genes is required to obtain insights in such deviant
evolutionary trajectories.

Assuming a single gain of nodulation, at least two switches between Frankia and rhizobial
microsymbiotic partners must have occurred. We hypothesize that nodulation first evolved with
an LCO-producing Frankia species rather than rhizobia, since Frankia has the intrinsic char-
acteristics to protect nitrogenase from oxidation [25]. Subsequently, different proteobacteria
obtained LCO biosynthesis genes by horizontal gene transfer [59–61], allowing them to
compete with Frankia and independently infect ancestors of legumes and of Parasponia
(Figure 1), where Burkholderia spp. (b-proteobacteria) are considered to be more ancient
microsymbionts than Rhizobiales (a-proteobacteria) [62]. Microsymbiont switches between
Frankia and rhizobia almost certainly required genetic adaptations of the putative host plant.
One such adaptation is the recruitment of hemoglobin genes to control oxygen homeostasis in
the nodule, as rhizobia lack the oxygen-regulating features of Frankia [11,27]. It can be
anticipated that several more adaptations, for example, in resistance responses, may have
been essential.
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Undera single gainand massivelyparallel lossscenario, theorigin ofnitrogen-fixingrootnodulation
should be further re-evaluated. Given massively parallel loss, the origin may have been even earlier
than the nitrogen-fixing clade. Some indirect evidence supporting this hypothesis can be found in
related orders within the fabid clade. First, there are unconfirmed studies on nodulating Zygo-
phylloideae species (Zygophyllales, Zygophyllaceae) [63]. Second, stable isotope measurements
of fossil wood from the Oligocene (23-34 Mya) suggested nitrogen fixation in Magnistipula
(Malpighiales, Chrysobalanaceae) [50]. Experimental,phylogenomic,and fossil evidence isessen-
tial to assess whether these cases represent(ed) cases of nitrogen-fixing nodulation.

Based on our assumption that loss of nodulation genes is directly related to loss of nodulation,
we predict that functional ancestral variants of these nodulation genes confer symbiotic
potential to plants in the nitrogen-fixing clade. This can be tested by re-introducing such
genes in non-nodulating plants and measuring symbiotic responses. Given their putatively
recent loss of nodulation genes, close relationship with nodulating Parasponia [11], and
availability of transformation protocols [64,65], Trema species are ideal candidates for such
a re-engineering approach.
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