Phenotypic plasticity as a clue for invasion success of the submerged aquatic plant Elodea nuttallii

Szabó, S., Peeters, E. T. H. M., Várboró, G., Borics, G., & Lukács, B. A.

This article is made publically available in the institutional repository of Wageningen University and Research, under article 25fa of the Dutch Copyright Act, also known as the Amendment Taverne.

Article 25fa states that the author of a short scientific work funded either wholly or partially by Dutch public funds is entitled to make that work publicly available for no consideration following a reasonable period of time after the work was first published, provided that clear reference is made to the source of the first publication of the work.

For questions regarding the public availability of this article, please contact openscience.library@wur.nl.

Please cite this publication as follows:


You can download the published version at:

https://doi.org/10.1111/plb.12918
**RESEARCH PAPER**

**Phenotypic plasticity as a clue for invasion success of the submerged aquatic plant Elodea nuttallii**

S. Szabó1, E. T. H. M. Peeters2, G. Várbiro3,4, G. Borics3,4 & B. A. Lukács3

1 Department of Biology, University of Nádudvar, Nádudvar, Hungary
2 Department of Environmental Sciences, Aquatic Ecology and Water Quality Group, Wageningen University, Wageningen, the Netherlands
3 Department of Tisza River Research, MTA Centre for Ecological Research DRI, Debrecen, Hungary
4 GINOP Sustainable Ecosystems Group, MTA Centre for Ecological Research, Tihany, Hungary

---

**Keywords**

Alien; aquatic plant; competition; light; macrophyte; nitrogen.

**Correspondence**

B. A. Lukács, Department of Tisza River Research, MTA Centre for Ecological Research-DRI, Bern tér 18/C, H-4026, Debrecen, Hungary.
E-mail: lukacs.balazs@okologia.mta.hu

**Editor**

J. T. M. Elzenga

Received: 5 April 2018; Accepted: 19 September 2018
doi:10.1111/plb.12918

---

**INTRODUCTION**

Invasions of non-indigenous species are recognised as one of the major environmental problems worldwide. Invasions may have many ecological impacts (Peterson 2003) such as a drastic reduction in biodiversity (Williamson 1999). Furthermore, by jeopardising ecosystem services, species invasions can have high economic costs (Pimentel 2005). Several hypotheses have been developed to explain the mechanisms of establishment and spread of invasive species. According to Davis et al. (2000), a plant community becomes more susceptible to invasions when there is an increase in the amount of unused resources such as light, nutrients or water. It has been argued that global environmental changes may also accelerate species invasion (Mormul et al. 2012) partly due to increases in available resources, since higher temperature accelerates decomposition leading to higher availability of nutrients (Dukes & Mooney 1999; Hellmann et al. 2008; Netten et al. 2010). In aquatic ecosystems, eutrophication caused by excessive anthropogenic nutrient loading (N, P) often triggers instability of the ecosystems (Scheffer et al. 2003), and these altered systems can easily be invaded by several, globally invasive, submerged weeds.

Characteristics identified as important determinants of plant invasiveness are rapid growth, high offspring production and potential long-distance dispersal of propagules (Rejmánek & Richardson 1996; Goodwin et al. 1999). Successful invaders have also been suggested to have fewer enemies (Keane & Crawley 2002) and to be better competitors than native species (Vilà & Weiner 2004; Lukács et al. 2017).

Phenotypic plasticity, the capacity of a given genotype to express different phenotypes in different environments (Sultan 2000), is the primary adaptive mechanism for plants to spread into a range of habitats. Under various environmental conditions such as light, nutrient or temperature, plants are able to rapidly change their phenotypic characters (apical elongation, chlorophyll concentration in leaves, branching; Larson 2007; Riis et al. 2010; Molnár et al. 2015). Using such acclimation mechanisms submerged aquatic plants can optimise light and nutrient utilisation in their natural habitats, and these acclimations enable them to outcompete other aquatic plants (Chambers 1987; Chambers & Kalf 1987).

Several aquatic plant species are considered as invasive aliens and have important impacts on the invaded communities. Among them, being introduced from North America in the
middle of the 19th century, *Elodea canadensis* was recently integrated into most Western European freshwater systems (Simpson 1984; Cook & Urmí-König 1985). The subsequent introduction of its congeneric species pair *E. nuttallii* (Plach) St. John from North America in the middle of the 20th century resulted in a gradual displacement of *E. canadensis* by this new invader, even at sites where the latter was well established (Cook & Urmí-König 1985; Simpson 1990; Greulich & Trémolières 2006). This displacement took place over a period of 1 or 2 years, as documented in the British Isles (Lund 1979; Simpson 1990) and in Western Europe (Barrat-Segretain 2001). The new invader plays a key role in structuring aquatic plant communities since it often forms monospecific vegetation types in hypertrophic waters throughout Western Europe (van Zuidam et al. 1990) and in Western Europe (Barrat-Segretain 2001). The mechanisms resulting in the successful invasion by *E. nuttallii* into habitat previously occupied by *E. canadensis* are unclear. Some hypotheses suggest differences in ecophysiological characteristics, such as biomass growth rate (Barrat-Segretain & Elger 2004), photosynthesis and respiration (James et al. 1999), nitrogen and phosphorus accumulation (Robach et al. 1995; James et al. 2006), life history traits (Barrat-Segretain et al. 2002; James et al. 2006; Barrat-Segretain & Lemoiné 2007). Competition experiments between the two species revealed that growth of *E. canadensis* was negatively influenced by intra- and interspecific neighbours, but in the case of *E. nuttallii* this impact was not significant (Barrat-Segretain & Elger 2004). Shading induced by the formation of a canopy may be a key factor in explaining the success of *E. nuttallii* (Simpson 1990; Barrat-Segretain 2004, 2005). This confirmed Thompson’s (1991) theory that invaders must have such advantageous traits that are not shared by pre-existing species.

The question arises: what environmental factors trigger the phenotypic response of *E. nuttallii* in canopy formation? The aim of this study was to evaluate in a laboratory experiment the combined effects of environmental variables (light exposure and nitrogen concentrations) on several phenotypic characteristics of the two *Elodea* species; and to relate these phenotypic characteristics to the invasion success of *E. nuttallii* over *E. canadensis*. Since canopy formation of submerged macrophytes takes place along an increasing light gradient (from the shady bottom to the water surface), we therefore hypothesised that light intensity might play a key role. Nitrogen concentration of the water could be another potential key factor in canopy formation, because large-scale analyses of presence-absence and abundance data of aquatic plants from The Netherlands (Knoben & Peeters 1997; van Zuidam & Peeters 2013) and from Central European waters (Király et al. 2007; Grudnik et al. 2014) suggested that the replacement of *E. canadensis* by *E. nuttallii* was especially pronounced in ditches in agricultural areas, where total nitrogen input was much higher. Consequently, we hypothesised that: (i) *E. nuttallii* has a wider range of phenotypic plasticity than *E. canadensis* along the light intensity and nitrogen concentration gradients; (ii) increasing nitrogen concentrations stimulate the relative elongation of *E. nuttallii* better than that of *E. canadensis*; and (iii) high light level together with high nitrogen concentration stimulate branching degree of *E. nuttallii*.

Both *Elodea* species may strongly modify light conditions if they are grown in co-cultures (Barrat-Segretain & Elger 2004; Barrat-Segretain 2005). In order to exclude these effects both species were cultivated separately.

**Material and Methods**

**Plant collection, pre-incubation**

*Elodea canadensis* plants were collected from the River Bodrog (48.172491°N, 21.563358°E) and *E. nuttallii* from the Eastern Principal Channel in the surroundings of Hajdúnánás (47.860911°N, 21.382270°E) in Hungary. Genetic variability among the selected shoots was minimal because only vegetative reproduction takes place among the European *Elodea* species (Barrat-Segretain et al. 2002). In addition, the shoots were selected from the same colony (polycormon), consequently the selected shoots were genetically similar (i.e. ramets). Pre-incubation under experimental conditions lasted for 18 days. Apical *Elodea* shoots were placed in five 20-l aquaria containing growth medium, modified from Barko & Smart (1985) by adding NH4NO3 to a final nitrogen concentration of 0.05, 0.25, 0.5, 2.5 or 5.00 mg·N·l⁻¹ among treatments. Phosphorus was added as KH2PO4 to a final concentration of 0.2 mg·P·l⁻¹ and a supply of micronutrients was ensured by adding TROPICA micronutrient solution (TROPICA, Egå, Hungary) with a 10,000-fold dilution. The solution was renewed every second day. After the pre-incubation period, length of the shoots was reduced to 65 mm, thus the shoot had no lateral branches or adventitious roots (Madsen et al. 1998).

**Laboratory experiment**

Three shoots were placed in an upright position on a plastic mesh and placed in 2-l aquaria with 12 cm depth containing 2-l solutions described above. Based on the water temperature profile (May–July) of small lakes in the Carpathian Basin (Borics et al. 2015) and on the optimal temperature range for shoot growth (Barko et al. 1982; Mormul et al. 2012), all aquaria were set to a controlled temperature (23–25 °C) in a water bath. For both *Elodea* species, all the five different N treatments were incubated at five different light intensities from 0, 10, 28, 80 to 180 μmol·m⁻²·s⁻¹ PAR on the water surface (cosine irradiance) in a 16-h:8-h light-dark regime, with renewing of the medium every second day. Illumination was achieved with Philips 400 W metal halogen lamps and by using green plastic gauze with different mesh sizes between the light source and the aquaria. Each treatment was replicated four times, meaning that 200 aquaria were used. In order to keep the initial light levels more or less constant, as well as to avoid self-shading of the plants, the duration of the experiment was only 12 days before the plants were harvested (Madsen et al. 1998; Forchhammer 1999).

**Plant trait measurement**

We measured five traits (shoot dry weight, root dry weight, shoot length, root length and number of branches), which were
used to calculate five additional traits [total shoot relative growth rate (RGR), apical shoot RGR, relative elongation, lateral spread and plasticity index]. All traits were measured and calculated at the individual level in all aquaria; however, for statistical analysis only the mean trait values of the three plants of each aquarium were considered. Shoot and root dry weight were measured after samples had been dried at 105 °C for 24 h in a forced-oven until constant weight was achieved. Total shoot length refers to the length of the apical and lateral (side) shoots, while apical shoot length represented the main (longest) shoot of the plant. Total shoot length data were used in the calculation of RGR, branching degree, relative elongation and lateral spread. Total shoot RGR was calculated as \( RGR = \frac{\ln l_t - \ln l_0}{t} \), where \( l_0 \) represents the initial and \( l_t \) the final total shoot length of the plants and \( t \) was the incubation time in days. Apical shoot RGR was calculated as \( RGR = \frac{\ln l_t - \ln l_0}{t} \) where \( l_0 \) represents the initial and \( l_t \) the apical shoot length of the plants and \( t \) was the incubation time in days. Relative elongation of the plants was calculated as shoot length formed from a unit biomass (mm mg\(^{-1}\) DW). Lateral spread was calculated as side shoot/ apical shoot length. Branching degree (i.e. branching architecture) was the number of living ramifications per unit of shoot length (Pérez-Harguindeguy et al. 2013); it was calculated as the number of branches/length of shoot.

We calculated the plasticity index for both Elodea species for nitrogen (Pl\(_N\)) and for light (Pl\(_L\)) according to Valladares et al. (2002, 2005) as: Pl = (maximum mean−minimum mean)/ maximum mean. Plasticity index for nitrogen (Pl\(_N\)) was calculated under \( l_{\text{max}} \) light intensities, plasticity index for light (Pl\(_L\)) was calculated under \( N_{\text{max}} \) nitrogen concentration, where the variable showed its highest value (i.e. root formation \( l_{\text{max}} \) 180 \( \mu \text{mol m}^{-2} \text{s}^{-1} \), \( N_{\text{max}} \) 0.5 mg\( \text{l} \text{kg}^{-1} \)). The index ranges from 0 (no plasticity) to 1 (maximum plasticity).

**Statistical analysis**

A principal components analysis (PCA) was performed with all measured traits as independent variables to determine the co-variation between traits. Normality of the variables was checked with a Kolmogorov-Smirnov test. Total shoot RGR, apical shoot RGR, relative elongation and root length were all normally distributed (\( P > 0.05 \)). The branching degree of the shoots were normally distributed only between 10–180 \( \mu \text{mol m}^{-2} \text{s}^{-1} \). A generalised linear model (GLM) was used to test the significance of the factors (light, nitrogen, species identity) and their interactions on the variables. Residuals were checked for normality and homogeneity of variances evaluated with Levene’s test. Depending on the homogeneity of the variances, Tukey and Dunnett T3 post-hoc tests were used to evaluate which treatments differed from each other. Pair-wise comparisons were used to test the variables for significant differences between species where mean differences (MD) ±SD were indicated. All analyses were done in SPSS 16.0 (SPSS, Chicago, IL, USA).

**RESULTS**

**Ordination with PCA**

The results of PCA ordination revealed that *E. canadensis* and *E. nuttallii* were separated along the studied phenotypic characters, especially along the first PCA axis. The first two axes of PCA ordination explained 94.5% of total variability. *E. nuttallii* showed higher apical shoot RGR and higher relative elongation, while *E. canadensis* showed higher rates of branching degree, root formation and lateral spread (Fig. 1).

**Differences in phenotypic plasticity**

Along the examined light and nitrogen gradient the two *Elodea* species showed characteristic differences in their phenotypic plasticity (Table 1). Regarding the overall phenotypic characteristics, *E. nuttallii* showed a higher plasticity than *E. canadensis*. *E. canadensis* showed higher (by 0.1) plasticity for light regarding relative elongation. *E. nuttallii* showed higher (by 0.1) plasticity for nitrogen in apical shoot RGR, root formation, lateral spread and branching degree for light in apical shoot RGR and branching degree. Branching degree PI\(_N\) values showed the most characteristic difference between the two *Elodea* species (0.13, *E. nuttallii* 1.00).

**Relative growth rate**

Total shoot RGR and apical shoot RGR were significantly influenced by species identity, nitrogen concentration, light intensity and their interactions (Table S1). Increase in nitrogen concentration caused significantly (\( P < 0.001 \) Tukey test) higher total shoot RGR for both species, and this effect was far less pronounced at low light level (10 \( \mu \text{mol m}^{-2} \text{s}^{-1} \)) than in well illuminated conditions (80–180 \( \mu \text{mol m}^{-2} \text{s}^{-1} \); Fig. 2). Total shoot RGR of both *Elodea* species increased toward higher nitrogen concentrations, up to 2.5 mg\( \text{l} \text{kg}^{-1} \). Under high nitrogen concentrations (2.5–5.0 mg\( \text{l} \text{kg}^{-1} \)) both *Elodea* species showed significantly (\( P < 0.001 \) Tukey test) increased total shoot RGR with increasing light intensity until 80 \( \mu \text{mol m}^{-2} \text{s}^{-1} \) (Fig. 2). Pair-wise comparisons indicated that the total shoot RGR of *E. nuttallii* (0.086 ± 0.002) was not significantly (\( P = 0.052 \)) lower than that of *E. canadensis* (0.090 ± 0.002). Apical shoot RGR of *E. nuttallii*...
(0.073 ± 0.001) was significantly higher (P < 0.001) than that of *E. canadensis* (0.031 ± 0.001). In general, *E. nuttallii* had twice as high apical shoot RGR as *E. canadensis* and also had the highest apical shoot growth under relatively low light (28 μmol·m⁻²·s⁻¹; see Fig. 3, S1).

**Relative elongation**

Relative elongation, i.e. the shoot length formed from a unit of biomass, was significantly influenced by light intensity, nitrogen concentration, species identity and their interactions (Table S1). Relative elongation of the shoots was highest in media with high nitrogen concentration (2.5–5.0 mg·L⁻¹) at low light intensity (10 μmol·m⁻²·s⁻¹) for both *Elodea* species (Fig. 3). With increasing light intensity from 10 μmol·m⁻²·s⁻¹, the relative elongation of the plants was significantly lowered (P < 0.001 Dunnett T3 test). With increasing nitrogen concentration, the relative elongation of the plants significantly increased (P < 0.001 Tukey test). Under the highest light level (180 μmol·m⁻²·s⁻¹) *E. nuttallii* (4.75 ± 0.166) showed significantly higher (P < 0.001, pair-wise comparisons) relative elongation than *E. canadensis* (3.50 ± 0.166; Fig. 4).

**Root length**

Since only apical shoots were planted, all roots were formed during the experiment. Growth stimulation by light was reflected in increased root length, which was highest at the higher light intensities in cultures growing at 0.5 mg·L⁻¹. Root length was significantly influenced by light intensity, nitrogen concentration, species identity and their interactions (Table S1). *E. canadensis* (0.461 ± 0.008) produced significantly longer (P < 0.001, pair-wise comparisons) root than *E. nuttallii* (0.270 ± 0.008; Fig. 4).

**Lateral spread**

For both *Elodea* species, lateral spread (i.e. side shoot length per apical shoot length) of the shoots increased with increasing nitrogen concentration and with increasing light intensity (Figs 3 and 5). However, lateral spread seemed to be saturated above 10 μmol·m⁻²·s⁻¹ for *E. canadensis*. Under illumination (10–180 μmol·m⁻²·s⁻¹) *E. canadensis* (1.49 ± 0.05) had significantly higher (P < 0.001, pair-wise comparisons) lateral spread than *E. nuttallii* (0.242 ± 0.050).

**Branching degree**

Branching degree (number of branches per meter shoot length) was significantly influenced by light and species identity (Table S1). Nitrogen had a significant (df = 4, F = 31.633, P < 0.001, ANOVA) impact on branching degree of *E. nuttallii* but not on *E. canadensis* (df = 4, F = 0.792, P = 0.534, ANOVA). The branching degree of *E. canadensis* was very high (>10 m⁻¹) under any light level and it remained independent of the applied nitrogen concentration (see Figs 3, 6 and S2). *E. nuttallii* on the other hand, did not show intensive branching under low light intensity and under low nitrogen concentrations; it started to produce some branches only at higher light levels (80–180 μmol·m⁻²·s⁻¹) combined with higher nitrogen concentration (2.5–5.0 mg·L⁻¹; Figs 6, S2). Under illuminated conditions (10–180 μmol·m⁻²·s⁻¹) *E. canadensis* (16.037 ± 0.245) had a significantly higher (P < 0.001, pair-wise comparisons) rate of branching degree than *E. nuttallii* (5.112 ± 0.245).

**DISCUSSION**

**Interactive effects of light and nitrogen**

Previous studies found that the distribution of *E. canadensis* and *E. nuttallii* was basically determined by nutrient, temperature and light variables. Among the two congeneric species, *E. nuttallii* was found to be more resistant to nutrient enrichment and temperature increases (Greulich & Trémolieres 2006). *E. canadensis* was found to be more sensitive to eutrophication than *E. nuttallii* (Kolada & Kutya 2016). Moreover, light availability had a stronger effect on growth rate and plant morphology of *E. canadensis* than temperature (Riis et al. 2010). In our study we investigated the environmental-induced phenotypic plasticity of both species to nutrient and light variables in more detail. We found that light and nitrogen limited the growth of both *Elodea* species simultaneously. The two factors had an interactive effect on many of the measured traits: under high nitrogen concentrations (2.5 and 5.0 mg·L⁻¹), higher light levels stimulated growth of the shoots twice as much as those at low N levels (0.05–0.25 mg·L⁻¹). These results revealed that in order to sustain the same growth, under decreasing light intensity, the plants need more nitrogen; and vice versa, under lowered nitrogen level they need more light. Interactive effects of various factors on plant growth have previously been observed more often for light and inorganic...
carbon (Madsen & Sand-Jensen 1994), light and temperature (Barko et al. 1982), temperature and phosphorus (Peeters et al. 2013) and nitrogen and phosphorus (Cao et al. 2011).

Different resource acquisition strategies
Elodea canadensis and E. nuttallii showed high ability to balance the need and capacity to acquire light and nutrients. The two studied species had many similarities and differences in response to different light and nutrient exposure. Under maximum applied light intensity (which reflects the light conditions in the upper water body) and under low nitrogen levels both species showed increased root formation and reduced plant elongation, as also found by James et al. (2006). This clearly indicated that plants invested more in nutrient uptake than in photon capture, since more belowground biomass was necessary for nutrient uptake in nitrogen-poor water (Madsen & Cedergreen 2002). The differences between the two species were that, on one hand, E. canadensis invested much more in root formation and branching than E. nuttallii, while E. nuttallii invested relatively more in apical shoot elongation than E. canadensis. On the other hand, at low light levels (which reflect the bottom growing conditions), both species redirected resources towards more efficient photon capture rather than nutrient uptake, as indicated by the increased shoot elongation per unit biomass, reduced allocation to root formation and drop in lateral spread and branching. In this study, changes in phenotypic traits were mainly related to environmental changes but not to changes in genotype, since the selected shoots were genetically similar.

Similar morphological changes in shoot length (Barko et al. 1982; Rodrigues & Thomaz 2010), lateral spread and branching degree (Riis et al. 2012; Zefferman 2014) and root biomass allocation (Sand-Jensen & Madsen 1991) have been found for several submerged species, including Egeria densa, E. canadensis, E. nuttallii and Lagarosiphon major. In our study, both the increase in elongation and the trends in the various morphological acclimations (branching degree, root length, length specific weight and shoot length) were similar to those observed in response to decreased light intensities through shading of floating vegetation found in submerged aquatic plants (Larson 2007; Lu et al. 2013). The observed changes are in line with the foraging concept, where plants develop their traits (longer stems, less root biomass, less branches) under low light conditions to improve resource acquisition and reduce respiratory costs (de Kroon & Hutchings 1995).

We found that under optimal light (80–180 μmol·m⁻²·s⁻¹) and nitrogen (2.5–5.0 mg·N·l⁻¹) conditions E. canadensis had much the same total shoot growth rate as E. nuttallii, which confirms the result of Barrat-Segretain & Elger (2004).

Fig. 2. Apical shoot RGR and total shoot RGR of E. canadensis (a) and E. nuttallii (b) at different nitrogen and light levels. Error bars indicate ±SE.
Fig. 3. Boxplots of apical shoot RGR, lateral spread and branching degree and relative elongation of *E. canadensis* and *E. nuttallii* under different light levels and different nitrogen concentrations. Each boxplot represents data of five nitrogen concentrations in the left panel, or data of five light intensity in the right panel. Boxes: +25–75% percentiles; whiskers: ±SD; □: median, n = 20.
However, our results highlighted a few remarkably different acclimation strategies between *E. nuttallii* and *E. canadensis* under a wide range of nitrogen concentrations and light levels. In accordance with our first hypothesis, we found that the phenotypic plasticity of *E. canadensis* for branching and for apical growth was much lower than that of *E. nuttallii*. This specifically means that *E. canadensis* has less chance to adjust its morphology to altering nutrient and light conditions. Our results clearly showed that *E. canadensis* tends to produce dense branches and put more effort into lateral spread even under low light intensity (10 μmol m⁻² s⁻¹) and low nitrogen level (see Figs 5 and 6). Therefore, *E. canadensis* forms dense stands on the bottom of the water body and shows less apical growth, which might be a disadvantage in the competition for light with *E. nuttallii*. On the other hand, *E. nuttallii* showed much higher phenotypic plasticity than *E. canadensis* for branching degree along an increasing nitrogen concentration gradient combined with an increasing light gradient, which is in line with our first hypothesis. Under shaded conditions, *E. nuttallii* did not form side shoots but *E. canadensis* did (Fig. 6). Therefore, under low light levels *E. nuttallii* was able to elongate much faster from the same biomass due to the higher plant elongation, lower branching degree and low lateral spread ability, which is in line with our second and third hypotheses. Furthermore *E. nuttallii* stems are more slender, meaning that biomass formation contributes more to length extension in comparison with that of *E. canadensis*. (Barrat-Segretain & Elger 2004). Rapid stem elongation is an essential trait for reaching the surface and forming canopies. In addition, at high trophic levels *E. nuttallii* has much less periphytic algal biomass than *E. canadensis* (James *et al.* 2006), thus the new invader may have an even greater advantage for light capture compared...
to *E. canadensis*. Thus, shoots of *E. nuttallii* are able to reach the optimal light levels at the water surface much faster. Under eutrophic and hypertrophic conditions, once shoots reach the layer of high light intensity, they can form a dense canopy close to the surface (Kuni 1984) due to their increased lateral spread and branching degree, resulting in strong shading of other submerged plants (Barrat-Segretain 2005). Consequently, light and nitrogen jointly trigger the development of those phenotypic traits that makes *E. nuttallii* successful in light competition via canopy formation (Fig. 7), which is in line with our third hypothesis. Due to this strategy, *E. nuttallii* is a better competitor against other submerged plants and algae, and due to its strong nutrient uptake, it is also a better competitor against floating plants (*Lemna*; Szabó et al. 2010). Our results provide a mechanistic explanation as to why *E. nuttallii* has a great advantage in occupying the surface of eutrophic waters in those areas where other submerged plants form only dispersed stands (Barrat-Segretain 2005).

Our results corroborate other studies which found that higher phenotypic plasticity promotes species survival and reproduction in heterogeneous and temporally highly variable environments (Kaplan 2002; Dorken & Barret 2004).
Moreover, our findings are in line with the fluctuating resource availability hypotheses (Davis et al. 2000), since successful invasion of *E. nuttallii* more frequently occurs under eutrophic and hypertrophic conditions (van Zuidam & Peeters 2013). Our results are also in line with the empty niche hypothesis (Elton 1958), with the difference that resource use efficiency appears not just between alien and native species but between congeneric alien species as well. Since the apical shoot RGR and branching degree were found to have higher plasticity for *E. nuttallii*, therefore the later invader may use resources more efficiently than the former one (*E. canadensis*).

**CONCLUSIONS**

The results of any invasion depend not only on the characteristics of invasive species and the species of the target community (Tilman 1997), but also on the interactions between the invasive and target species (Alpert et al. 2000). Our results clearly support the view that successful invaders have wider phenotypic plasticity that permits a better species–environment response, maximising its fitness in variable environmental conditions (Agrawal 2001; Davidson et al. 2011). However, the advantage of this higher phenotypic plasticity mainly depends on the kind of species with which they interact. Shading via canopy formation is a general mechanism of interspecific competition between aquatic plants. This mechanism determines the interaction between native–native, native–alien as well as alien–alien interactions. Our study revealed how this mechanism can determine the co-occurrence of two congeneric alien species. We conclude that *Elodea nuttallii* and *E. canadensis* possess different growth form strategies, determined by light and nutrient variables. They have marked differences in their environmental-induced phenotypic plasticity, which might determine their competitive success against other native or alien species.

**ACKNOWLEDGEMENTS**

The authors would like to thank Joan Mattia for improving the language of the manuscript and Tamás Havasi for drawings of *Elodea* species (Fig. 7). GV and GB was supported by the GINOP-2.3.2-15-2016-00019 project. BAL was supported by National Research, Development and Innovation Office – NKFIH, OTKA grants (PD120775, KH129520, FK127939), New National Excellence Program of the Ministry of Human Capacities (UNKP Bolyai+) and by the Bolyai János Research Scholarship of the Hungarian Academy of Sciences.

**SUPPORTING INFORMATION**

Additional supporting information may be found online in the Supporting Information section at the end of the article.

**Table S1.** Analysis of variance of the relative growth rates (RGR) of the shoots, relative growth rates (RGR) of the apical shoots, relative elongation, root length, and branching degree of *Elodea* species (*E. canadensis*, *E. nuttallii*) grown in aquaria under different nitrogen concentrations in the water combined with different light intensities.

**Figure S1.** Relative growth rate (RGR) of the apical shoot of *Elodea canadensis* and *E. nuttallii* at different light levels under low (0.25 mg N L⁻¹) and high (2.5 mg N L⁻¹) trophic levels. Error bars indicate the standard error of the data.

**Figure S2.** Branching degree of *E. canadensis* (a) and *E. nuttallii* (b) at different light levels under low (0.25 mg N L⁻¹) and high (2.5 mg N L⁻¹) trophic levels. Error bars indicate the standard error of the data.


