

A survey on modeling and model-driven engineering practices in the
embedded software industry

Akdur, D., Garousi, V., & Demirörs, O.

This is a "Post-Print" accepted manuscript, which has been published in "Journal of
Systems Architecture"

This version is distributed under a non-commercial no derivatives Creative Commons

 (CC-BY-NC-ND) user license, which permits use, distribution, and
reproduction in any medium, provided the original work is properly cited and not
used for commercial purposes. Further, the restriction applies that if you remix,
transform, or build upon the material, you may not distribute the modified material.

Please cite this publication as follows:

Akdur, D., Garousi, V., & Demirörs, O. (2018). A survey on modeling and model-
driven engineering practices in the embedded software industry. Journal of Systems
Architecture, 91, 62-82. DOI: 10.1016/j.sysarc.2018.09.007

You can download the published version at:

https://doi.org/10.1016/j.sysarc.2018.09.007

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.sysarc.2018.09.007

Accepted Manuscript

A survey on modeling and model-driven engineering practices in the
embedded software industry

Deniz Akdur , Vahid Garousi , Onur Demirörs

PII: S1383-7621(18)30245-5
DOI: https://doi.org/10.1016/j.sysarc.2018.09.007
Reference: SYSARC 1530

To appear in: Journal of Systems Architecture

Received date: 13 June 2018
Revised date: 27 September 2018
Accepted date: 29 September 2018

Please cite this article as: Deniz Akdur , Vahid Garousi , Onur Demirörs , A survey on modeling and
model-driven engineering practices in the embedded software industry, Journal of Systems Architecture
(2018), doi: https://doi.org/10.1016/j.sysarc.2018.09.007

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.sysarc.2018.09.007
https://doi.org/10.1016/j.sysarc.2018.09.007

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 1

A survey on modeling and model-driven engineering practices in the
embedded software industry

Deniz Akdur1, Vahid Garousi2, Onur Demirörs3, 4

1ASELSAN Inc., Ankara, Turkey
2Information Technology Group, Wageningen University, the Netherlands

3School of Computer Science and Engineering, University of New South Wales, Sydney, Australia
4Department of Computer Engineering, İzmir Institute of Technology, İzmir, Turkey

denizakdur@aselsan.com.tr, vahid.garousi@wur.nl, onurdemirors@iyte.edu.tr

Abstract: Software-intensive embedded systems have become an essential aspect of our lives. To cope with its growing complexity,
modeling and model-driven engineering (MDE) are widely used for analysis, design, implementation, and testing of these systems. Since a
large variety of software modeling practices is used in the domain of embedded software, it is important to understand and characterize
the-state-of-the-practices and also the benefits, challenges and consequences of using software modeling approaches in this domain. The
goal of this study is to investigate those practices in the embedded software engineering projects by identifying to what degree, why and
how software modeling and MDE are used. To achieve this objective, we designed and conducted an online survey. Opinions of 627
practicing embedded software engineers from 27 different countries are included in the survey. The survey results reveal important and
interesting findings about the state of software modeling and MDE practices in the worldwide embedded software industry. Among the
results: (1) Different modeling approaches (from informal sketches to formalized models) are widely used in the embedded software
industry with different needs and all of the usages could be effective depending on the various modeling characteristics; (2) The majority
of participants use UML; and the second most frequently selected response is ―Sketch/No formal modeling language‖, which shows the
wide-spread informal usage of modeling; (3) In model-driven approaches, it is not so important to have a graphical syntax to represent the
model (as in UML) and depending on the type of target embedded industrial sector, modeling stakeholders prefer models, which can
represented in a format that is readable by a machine (as in DSL); (4) Sequence diagrams and state-machines are the two most popular
diagram types; (5) Top motivations for adopting MDE are: cost savings, achieving shorter development time, reusability and quality
improvement. The survey results will shed light on the state of software modeling and MDE practices and provide practical benefits to
embedded software professionals (e.g., practitioners, researchers and also educators).

Keywords: Embedded systems; embedded software; modeling; model-based; model-driven engineering (MDE); practitioner survey

1 Introduction

It is difficult to imagine day-to-day life without embedded
software systems [1]. They can be found in many devices
such as cars, TVs, smart phones and also systems such as
avionics or defense [2-5]. The growth rate in software-
intensive embedded systems is more than 14% per annum
and it is forecasted there will be over 40 billion devices
world-wide by 2020 [6].

Analysis, design, implementation and testing of
software-intensive embedded systems are not trivial due to
multiple constraints across different dimensions of
performance and quality [7-9]. Moreover, the increasing
amount of components in these systems and having
distinct functionalities incorporated into a single system,
which require seamless integration of many hardware and
software systems, make the embedded systems
development more challenging [10, 11].

In order to manage the complexity of these systems,
software modeling helps engineers to work at higher levels
of abstraction and facilitates communication [12-16].
However, the modeling approaches in embedded software
industry usually vary since the characteristics of modeling

such as purposes, motivations and challenges differ among
systems as well as among sectors, e.g., consumer
electronics, defense or automotive [17]. At one extreme,
some modeling stakeholders (e.g., some project managers
or systems engineers) use software modeling at a very
informal level, where diagrams are sketched on a white
board in order to help communicate ideas with colleagues.
In such cases, the emphasis is on selective communication
and these diagrams might be either soon discarded or
quickly become inaccurate since they are not kept updated
along with the source code [12]. At the other extreme, for
some other stakeholders (e.g., software developers),
modeling turns into programming with automated
generation of code and these diagrams have long lifespans
and demand for archivability. Moreover, even in the same
software project, different units within the same company
can use different modeling approaches for different
purposes [18]. Since a large variety of modeling practices is
used in embedded software industry, it is important to
identify different modeling approaches, in relation with
challenges and benefits they provide.

There have been a few prior surveys related to
modeling in the embedded software industry (e.g., [19-21]).

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 2

They have either focused on only one aspect of modeling,
(e.g., the use of Unified Modeling Language (UML) or the
use of formal models), or modeling in regional contexts
(e.g., UML and model-driven approaches in Brazil or in
Greece). There are also some surveys, whose participants
were involved with model-based/driven techniques on a
single sub-domain of embedded systems (e.g., automotive
[19]).

The goal of the practitioner survey reported in this
paper is to understand the state-of-the-practice in modeling
and model-driven engineering (MDE) practices in the
embedded software industry by providing a view on the
latest software modeling approaches, languages, tools
used, and also the relevant challenges faced by
practitioners. To achieve this goal, we designed and
conducted a survey that is responded by 627 engineers
from 27 countries working in different industrial sectors
related to embedded software projects. The survey takes a
holistic scope on the subject and covers a wide range of
modeling aspects in embedded software industry. We
focused on the modeling practices of the embedded
software industry for two reasons: (1) given the specific
characteristics of embedded software, modeling practices
are usually tailored for these systems, e.g., there are
specific UML extensions (profiles) such as MARTE [22] and
various Domain-Specific Languages (DSLs) for this sector;
(2) in the context of an ongoing industry-academia
collaborative project of a major embedded software firm in
Turkey, the need has raised to critically assess the global
state of the modeling in the embedded software industry
so that proper decisions can be made with respect to
adopting the right modeling practices and modeling
approaches.

We believe that the results will benefit both embedded
systems professionals as well as researchers, by creating an
awareness for the trends, successes and challenges of
practitioners. We also believe that the survey results would
provide practical benefits to all stakeholders by influencing
not only the aspects related to software-intensive
embedded systems development, but also the system-level
design and methods for hardware/software co-design.

The remainder of this paper is structured as follows.
Section 2 discusses background and the related work.
Section 3 presents the research methodology used to
perform the survey. Section 4 presents the results. Section 5
summarizes the results and implications, and reviews the
potential validity threats. Finally, Section 6 concludes this
study and discusses the future work directions.

2 Background and related work

In this section, we first present a brief overview of the
concepts of Model-Based Engineering (MBE), MDE and
Model-Driven Development (MDD). Related work in
relation with the surveys on modelling for embedded
software is reviewed next.

2.1 MBE versus MDE and MDD

In the literature, there are different terminologies in the
context of software modeling. While designing the survey,
we followed the terminology offered by Brambilla et al.
[23] for describing and differentiating between ―model-
based‖ and ―model-driven‖ approaches. According to [23],
MDD treats models as “the primary artifact of the development
process”. Usually, in MDD, there is an automatic code
generation from the models. In addition to just
development, MDE encompasses all the other tasks of the
software engineering (SE) process such as testing and
maintenance, and thus, MDE is considered a superset of
MDD. On the other hand, MBE is a process, in which
diagrams (either formal models or informal sketches) still
play an important role although they are “not necessarily the
key artifacts of the development”. As in the case of our
industrial experience, we agree with and followed the idea
that MBE does not ―drive‖ the process as in MDE. For
example, software designers specify the diagrams (e.g., on
paper or by using modeling tools), but then these diagrams
are directly handed out to the software developers to
manually write the code (i.e., no automated code
generation). Therefore, all model-driven processes are
model-based but not the other way round. The Venn
diagram shown in Figure 1 (adopted from [24]) visually
depicts these concepts .

Figure 1. Venn diagram depicting the relationship among
MBE, MDE and MDD

Note that the terminology offered by [23] focuses on
―prescriptive modeling‖, but in the literature, there is also
―descriptive modeling‖ terminology, in which sketching
plays an important role while modeling (e.g., [18], [25, 26]).
However, while designing our survey, we counted
―informal sketch‖ as a part of MBE since these diagrams
don‘t ―drive‖ the development process and they have less
lifespan and archivability than the ones used in MDE [26].

According to various sources, (e.g., [23, 27, 28]), MDE is
considered as one of the most popular approaches in
software abstraction. In the context of embedded domain,
by abstracting out details, MDE helps software engineers
manage the complexities in embedded software
development [10] by automating Software Development
Life Cycle (SDLC) artifacts not only in implementation [29]
but also in testing and documentation. There are many
books, e.g., [30-32], many conferences and a large body of
knowledge in the application of MDE. Furthermore, since
economic factors such as time-to-market require a reliable
development process allowing quick SDLC [33], many
practitioners in different domains (e.g., consumer
electronics, defense and aerospace, automotive, and

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 3

telecommunication) have started to adopt MDE [34-37].
More specifically, several studies point out the necessity of
MDE in the embedded world to minimize the effects of
platform heterogeneity and its complexity [38] besides
validation and verification [39].

2.2 Related work

We were able to find three survey studies [19-21, 40],
which have investigated the-state-of-the-practice of model-
driven techniques via opinion surveys. Some of the surveys
have focused on the embedded domain, while others are
generic in terms of the domain. Table 1 summarizes those
three surveys, which have been conducted in this topic.
The respondents of these surveys were basically from a
specific embedded domain (i.e., automotive) or in regional
levels (i.e., Brazil) or people who have already worked
with model-based/driven techniques. Apart from these
embedded-related surveys, there are also several studies,
which investigate mainly UML-based modeling [27, 41-49],
which we also briefly review in Table 1.

The study in [19] was a 2011 world-wide survey of 67

participants which investigated the reasons of introducing
model-based development in a single sub-domain of
embedded systems (i.e., the automotive industry) taking
into account its costs and benefits. It focused only on
"development" phase (e.g., model-based development
(MBD)) of the entire "engineering" (MBE) process. The
main findings from this study were: (1) The top three
motivations of model-based development are:
―improvement of the product quality‖, ―development of
functions with high complexity‖, and ―shorter
development times‖; (2) Positive experiences of MBD are
"communication with other colleagues", "possibility of
early simulation of the functional model", "easier
maintenance if the generated code is not changed
manually"; whereas the negative experiences are "high
process of redesign costs" and "tool costs"; and (3) MBD can
bring significant cost savings, but only with a ―well-
chosen‖ approach and an established development process
with defined interfaces and role allocations. Otherwise
MBD can be much more expensive than a hand-coded
manual software development.

The study in [20] investigated the use of UML and
model-driven approaches in the Brazilian embedded
software development industry. According to the results:
(1) 45% of the participants use UML either completely or
partially; (2) The subjects report increases in productivity
and improvements in quality (maintainability and
portability) as key advantages of model-driven techniques;
(3) Models are mainly used for documentation and design
with only little of code generation; (4) Class, sequence, use
case, and state machine diagrams are the most popularly
used diagram types. One of the interesting results is that
experienced users (i.e., the ones with more than 10-year
experience) can better assess the benefits of UML for the
development of embedded software. On the other hand,

the major problems encountered in the adoption of UML
refer to the lack of modeling skills, the lack of appropriate
tools, and the strict time requirements.

The study in [21] was a 2014 European survey that
investigated the current state of MBE in embedded domain
by analyzing its positive & negative effects and its
shortcomings. Its target projects were applying model-
based and model-driven approaches, where its participants
had already used model-driven techniques (93%),
therefore, it lacks of general embedded software
professionals contribution (Note that according to their
terminology, there is no model-driven but MBE includes
model-driven techniques too). The results confirmed that
MBE is widespread in the embedded domain. The main
finding from this study was that models are clearly not
only used for informative and documentation purposes;
they are key artifacts of the development processes, and
they are used for, e.g., simulation and code generation.
Moreover, while survey respondents reported mostly
positive effects of MBE, the results showed some common
and major challenges (i.e., adoption, tool support and its
interoperation). The same group of authors presented
another study [40] in 2018 in which they analyzed the
results of [21] in more depth, and offered insights into the
current industrial practice.

The survey in [41] was a 2005 world-wide survey of 131
participants, which investigated the adoption and usage of
UML by analyzing its perceptiveness and perceived ease of
use. The results showed: (1) The majority of respondents
viewed UML as accurate, consistent, and flexible enough to
use on development projects; (2) Developers clearly
seemed eager to use UML, which was spreading across the
world; and (3) Use case, class, and sequence diagrams are
the most popularly used diagrams types.

In [42], how and why using UML were investigated.
According to their results, UML may be too complex
supported by phrases such as ―Not well understood by
analysts‖ or ―insufficient value to justify the cost‖.
Respondents of [42] reported that class, use case, and
sequence diagrams were the most popularly used
diagrams; whereas collaboration diagrams were used the
least. The other interesting result was that class, sequence
and state machine diagrams were considered as the most
useful for capturing technical aspects; whereas use-case
narratives, activity and use case diagrams were the
preferred means with regard to customer involvement.

The study in [43] investigated UML usage and its
quality. The results addressed UML‘s problems, where the
main problems were synthesized as: ―scattered
information‖, ―incompleteness‖, ―disproportion‖ and
―inconsistency‖. The results in [43] showed that UML
practices should be improved in some areas such as
modeling uniformity and standards, development of
project-specific reference architectures and patterns.

The survey in [45] was a 2008 European survey of 80
participants, which investigated the impact of UML

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 4

modeling styles. The findings focused only on aspects
related to the improvement in software development
quality and productivity. One of the results revealed that
the impact of using UML on productivity was perceived
mostly in the design, analysis, and implementation phases.

On the other hand, there were also some national
surveys on UML. The results of survey in [44], which
investigated the utilization of UML in Bulgarian
companies, showed that in most cases UML was not
properly used in the industry and more training was
needed. A Greek survey [46] with 91 participants, which
mentioned "model-driven" concept but only with UML,
investigated the role of UML in all different types of

applications (e.g., web, windows, or embedded). The
findings indicated that UML was used successfully in the
majority of software development. Among the results: (1)
The most popular diagrams were class, use cases and
activity, whereas the least used diagrams were package
and state machines; (2) Even though UML was extensively
used, its extensions (such as SysML) were not well known
and a large percentage of the user group was not familiar,
whereas others rarely or never use. The main conclusion
was that despite the limitations and extensions needed,
UML is the only general-purpose modeling language that
is an industry standard for specifying software-intensive
systems, that is supported by numerous tool vendors [46].

 Table 1. Existing surveys explicitly on MDE

Citation Year Scale/ region Number
of
subjects

Goal/Focus area MBD/MBE/

MDD/MDE

Domain

[19] 2011 World-wide 67 Investigated the reasons of introducing model-based

development in a single sub-domain of embedded systems

(i.e., the automotive industry) with its costs and benefits.

Focused on only "development" phase (MBD) of the entire

"engineering" (MBE) process.

MBD Embedded

systems

[20] 2013 Brazil 209 Investigated the use of UML and model-driven approaches in

the embedded software development industry

MDD Embedded

systems

[21] 2014 Europe 112 Investigated the positive & negative effects of MBE.

It did not address categorization between model-based and

model-driven techniques.

Same authors presented another study [40] in 2018 in which

they analyzed the results in more depth.

MBE (MDE) Embedded

systems

This

study

2015 World-wide 627 Investigates the degree to which, why and how software

modeling and its benefits, challenges, and consequences.

MDE Embedded

systems

[41] 2005 World-wide 131 Investigated the adoption and usage of UML by analyzing its

perceptiveness and perceived ease of use.

MBD In general

[42] 2006 No information

given

182 Investigated how and why using UML. MBD In general

[43] 2006 No information

given

80 Investigated UML usage and its quality in actual projects. MDD (but only

with UML)

In general

[44] 2006 Bulgaria 100+
Investigated the utilization of UML

MDE (but only

with UML)

In general

[45] 2008 Europe 80
Investigated the impact of UML modeling styles. MDD (but only

with UML)

In general

[46] 2014 Greece 91
Investigated the role of UML.

MDD (but only

with UML)

In general

[47] 2008 World-wide 113
Investigated software modeling experiences.

MDE In general

[48] 2011 World-wide 250

Investigated the adoption and application of model-driven

software development in industry.

Same authors presented another study [27] by identifying the

importance of complex organizational, managerial and social

factors, as opposed to only technical factors, that appear to

influence the relative success, or failure of MDD.

MDD In general

[49] 2011 Italy 155

Investigates the modeling languages, processes and tools with

MDE. Same authors presented another study [50] in 2013 in

which they analyzed the results in more depth.

MDE In general

[51] 2014 World-wide 3785 Investigates the use of software design models in software

development

MDD/MDE In general

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 5

There are also surveys on MDE in general [27, 47-49],
which do not explicitly address embedded software
industry as their target. The study in [47] was a 2008
survey with two thirds of the respondents from Canada
and the United States, which investigated software
modeling experiences. According to its results, UML was
identified as the dominant notation. Participants reported
that the biggest perceived problem of model-centric
approaches is keeping the model up-to-date with the code.
Moreover, another interesting result is that participants
working on real-time systems are more likely to agree that
their organizational culture does not like modeling.

The study in [48] was a 2011 survey of 250 participants
which investigated the adoption and application of model-
driven software development. According to the results: (1)
MDE represented a need for new skills, including UML
modeling expertise (in which significant additional
training is needed); (2) Code generation was an important
aspect of MDE gains, but integrating the code into existing
projects could be problematic; and (3) Class, activity and
use case were the most popularly diagrams. The same
authors presented another study [27] by identifying the
importance of complex organizational, managerial and
social factors, as opposed to only technical factors, that
appear to influence the relative success, or failure, of MDD.

Another study [49] was a 2011 Italian survey which
investigated the modeling languages, processes and tools
in the Italian software industry with MDE. According to its
results: (1) 68% of participants reported to always or
sometimes use models, and among them, 44% reported
generating codes from models; (2) The subjects who do not
use models commonly stated that modeling requires too
much effort and time investment (50%) or was not useful
enough (46%); and (3) Models were used mainly in larger
companies and that a majority of all the subjects using
models (76%) apply UML although DSLs are used as well.
The same authors presented another study [50] in 2013 in
which they analyzed the results in more depth.

The study in [51] was a 2014 survey, which investigated
the use of design models in software development. The
results of this study showed that design models are not
used very extensively in industry (almost ~50% of
participants never use them), and where they are used, the
use is informal and without tool support, and the notation
is often not UML. According to results, these models are
used primarily as a communication and collaboration
mechanism where there is a need to solve problems and/or
get a joint understanding of the overall design in a group.

Our work builds on these studies and significant
extensions: our study is not limited to neither a sub-
domain of the embedded systems (e.g., automotive), nor a
subset of SE phase (e.g., development), nor just a specific
region (e.g., Brazil). In this perspective, our survey is the
first world-wide survey, which focuses on embedded
software industry by investigating a wide range of
modeling practices.

3 Research methodology

Survey methodology is a well-established technique for
obtaining broad characterization of a particular issue by
enabling collection of different information such as
opinions, perceptions, attitudes and behaviors [52]. It has
been applied in various fields. Surveying is a well-fitted
strategy as it is suitable for collecting empirical data from
large populations.

There are different surveying methods, each with
different advantages and disadvantages [53]. In this study,
we chose to use the online survey method since we wanted
to obtain information from a relatively large number of
practitioners in a quick manner so that we can easily
categorize and analyze these data. The other conventional
approach in the SE is to conduct interviews with subjects,
which is usually more effort intensive. Compared to the
latter, the former (the opinion surveys approach) may have
drawbacks since there is no interviewer, ambiguous and
poorly-worded questions might be problematic [52]. In
order to cope with this challenge, a pilot study was applied
before the execution of the survey.

Moreover, even though it is relatively easy for software
engineers to fill out questionnaires, they still must do so on
their own and may not find the time [52]. In that sense, the
organization of survey questions are crucial and require
special considerations [54]. Accordingly, we have designed
the question in order to reduce the time taken to complete
the survey.

3.1 Goal and research questions

The research approach used in our survey study is the
Goal, Question, Metric (GQM) [55]. By using its template
[55], the goal is to understand the state-of-the-practice of
modeling and MDE in the embedded software domain by
identifying to what degree, why and how they are
conducted with its benefits and challenges. Based on this
goal, we raised the following research questions (RQs):

 RQ1: What is the current state of modeling in the
embedded software industry?

 RQ2: What is the current state of MDE adoption in the
embedded software industry?

 RQ3: What are the benefits, challenges and
consequences of using MDE in the embedded software
industry?

3.2 Survey design and execution

In designing of the survey, we made sure that the
questions are relevant to the embedded software industry
and capture the most useful information as relevant to the
goal and RQ‘s of the survey. In designing this survey, we
utilized and benefitted from several survey guidelines (e.g.,
[54, 56, 57]), and also our previous experience in designing
and executing industrial survey studies (e.g., [58]).

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 6

3.2.1 Identifying target audience

The identified target audience is anyone working in the
embedded software industry, with a variety of different SE
roles from requirement engineer to business analyst and
from software developer to tester. This study established a
sampling frame composed by a large set of embedded
software professionals working in different locations
around the world and in different industrial sectors.

3.2.2 Sampling method

In our study, given our limited resource constraints, it
was not practically doable in the outset of our project to
recruit a large pool of embedded software practitioners. As
in the survey guidelines (e.g., [54, 56, 57]), we thus used the
‗accidental non-probabilistic‘ sampling [54] and we
targeted subjects via our industry contacts, professional
social network sites such as LinkedIn, industry events, and
forums. The survey was also promoted through SE and
academic institutional mailing lists. Besides, we also
encouraged recipients to distribute the survey to their
colleagues and partners. After receiving the non-
probabilistic sampled data, one could possibly perform a-
posteriori probability-based (systematic) sampling, e.g., by
grouping the data for various companies and then selecting
the filtered data so that every member of the population
has statistically seen an equal chance of being selected, in a
way to mimic probability sampling. However, this was
also infeasible in our setting since data in our survey were
fully anonymous, since we did not want to gather
company names nor any revealing information.
Anonymity of data was important since revealing
information could have damaged the quality of the data
reported by participants since they would have hesitate to
report honest opinions (such situations have been observed
before, e.g., [53]).

Another issue in our survey design, inter-related with
the sampling method, is the ‗unit‘ of interest [53]. The units
of analysis in this survey might be anyone working in the
embedded software domain, who individually and
anonymously participated in our survey. Thus, for all the
statistics and analysis, these professionals are the unit of
analysis and the implications shall be tied to world-wide
community under investigation and neither to companies
nor projects. We also might need to emphasize that taking
individual embedded professional as the unit of analysis
has been considered a generally acceptable approach in
previous surveys reported in the literature (e.g., [59]).

3.2.3 Designing survey questions

Surveys require special considerations [54]. In order to
develop a survey that would adequately cover the latest
trends on modeling, we reviewed the similar past surveys
(See Section 2.2), benefitted from our professional
experiences in industrial projects (for the case of all three
authors), considered factors given in survey guidelines

[54], and prepared a draft set of questions. We conducted a
round of peer reviews with nine industrial practitioners
from different industries, different software engineering
roles, different experiences and five different companies, in
which our personal contacts have been working. All peer
reviews were conducted face to face and according to their
results, we improved four questions (i.e., Q20, Q25, Q26
and Q27). The final survey questionnaire consisted of four
sections: the first section gathers the profiles of the
participants and their companies; the other sections
correspond to each of the study RQs, as shown in Table 2
(For each question, the type of answers are also mentioned, e.g.,
single answer from a list, or a Likert scale). Due to space
constraints, we do not present the entire survey in this
paper, but it can be found in an online source [60].

The introduction of the survey is written to attract
respondents‘ attention. Therefore, the survey began with
an informed consent, which contained the topic of the
study, a confidentiality statement, the expected time to
complete the survey and a thank you statement (See [60])
so that the majority of potential respondents will decide
whether or not to drop out of the questionnaire based
solely on the first page. By clicking through the consent
statement and submitting the completed survey,
individuals are indicating their willingness to participate.

It is very important to have clear definitions and easy-
to-follow instructions in the survey to get high quality data
[54]. The first part of the questionnaire gathered personal
and organizational demographic data. The 10th question
investigated how often any informal or formal software
modeling (i.e., sketches and/or models) is used in SDLC by
asking ―How often do you use software modeling in your
software development life cycle? (informal or formal: i.e., sketches
or models)‖. Since any informal usage of modeling was seen
as "modeling usage" in this survey, the aim of this question
was to understand the ratio of participants, who did not
use any software modeling. After categorizing this group
and made them complete the survey, the questionnaire
continued with modeling approaches questions, which
aimed at understanding informal usage of modeling,
model-based and model-driven techniques. In other words,
this second part aimed at gathering the current state of
software modeling. At the beginning of 19th question, we
gave the terminology, which clearly explained the
difference between model-based and model-driven
concepts as in Section 2.1 (See [60]) so that participants
could consistently answer subsequent questions:

“Please read the following definitions before proceeding with the rest of

the survey.

In terms of terminology, Model Driven Development (MDD) uses

models as the primary artifact of the development process. Usually, in

MDD, the implementation is automatically generated from the models.

Model Driven Engineering (MDE) is a superset of MDD since it

encompasses other tasks of a complete software engineering process like

testing and maintenance (e.g., documentation). On the other hand,

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 7

Model Based Engineering (MBE) is a process, in which software models

still play an important role although they are not necessarily the key

artifacts of the development. For example, designers specify the models

(i.e., by using paper or modeling tool), but then these models are directly

handed out to the programmers to manually write the code (no auto

generation).”

With the help of this terminology and given example,
we assume that respondents, at least, can understand the
concept of "the automatic generation of an artifact", e.g.., code,
or document. Then, the survey asked about the degree of
model-driven techniques in SDLC. In order to prevent any
misunderstanding and potential threat in this terminology,
pilot study was applied. After the pilot study, instead of
asking “Do you use any model-driven techniques?”, we

modified this question into "When you write code, document
or test, to what degree do you use model driven techniques?" by
assuming that the respondent can answer whether there is
an automatic generation of some artifact or not. At that
point, the survey was completed for the respondents, who
chose ―Never‖ in the Likert scale (which means that
informal usage of modeling (e.g., sketching) and/or model-
based approach). Then, in the remaining parts, MDE
specific questions, which were interested to know about
MDE practices, benefits and challenges, started for the
respondents, whose answers were different from ―Never‖
(e.g., ―Sometimes‖ to ―Always‖).

Table 2. List of the questions developed and used in the survey (details of the responses can be found in [60])

RQ &

Aspect

Survey Questions (and Metrics)
Type of Answers

Single
answer
from a

list

Multiple
answers
from a

list

Free
text
field

Likert
scale

Likert scale
(Range

value from
Never to
Always)

Profiles

p
ra

ct
it

io
n

er
s

Q1. Please choose the country that you work in. x x

Q2. What is your highest academic degree? x

Q3. What is (are) your university degree(s) in? x x

Q4. What is (are) your current position(s)? x x

Q5. How many years of work experience do you have in software

development?

x

Q11. How many years of modeling experience do you have in software

development?

x

Q12. Where/how did you learn modeling? x x

co
m

p
an

ie
s

Q6. What is the type of the application(s) developed in your company? x x

Q7. What is the target sector of the product(s) developed? x x

Q8. What is the number of employees working in software engineering

roles?

x

Q9. What is the size of your typical software development team? x

RQ1

Current state of

modeling

Q10. How often do you use software modeling in your software

development life cycle? (informal or formal: i.e., sketches or models)

 x

Q13. What medium do you use to create the sketch or model? x x

Q14. Which modeling language(s) do you use for modeling? x x

Q15. Which programming languages do you use with the above

modeling language(s)?

 x x

Q16. Which modeling environment/tool(s) do you use, if any? x x

Q17. When modeling, which diagrams do you use? x x

Q18. In which phase(s) of software development life cycle do you use

modeling?

 x

RQ2

Current state of

MDE and its

adoption

Q19. When you write code, document or test, to what degree do you use

model driven techniques?

 x

Q20. What do you use MDE for? x x

Q21. What is the estimated effort (in person-month) of the most

representative MDE project in your company?

x

Q22. How would you describe your company's maturity in terms of its

MDE usage?

x

Q23. What have been the motivations (potential benefits) that your

company has considered for adopting MDE?

 x x

RQ3

Benefits,

Q24. Based on your experience, to what degree has each of the above

motivations (potential benefits) been achieved?

 x x

Q25. What is (are) MDE challenge(s) in your company? x x

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 8

challenges and

consequences

Q26. To what extent do the following problems apply to the MDE

environment/tool(s) that you have used?

 x x

Q27. Based on your experience, what do you think about the following

statements?

 x x

3.2.4 Survey piloting and execution

Performing a pilot study before distribution is an
important step since it would help preventing
misinterpretations in large-scale data collection of the
survey. Pilot studies are carried out by using the same
material and procedures but with a smaller number of
participants from the target population [54]. Before the
pilot study, it was necessary to decide whom to use as
participants. It is recommended to select participants based
on differences instead of trying to replicate similarities [61].
Therefore, the survey was firstly piloted by eight
colleagues from different industries working in different
SE roles, with different experiences and from different
nations (four Turkish, two English, one French and one
Taiwanese). This was done to ensure that the wording and
terminology used in the survey is easily understandable
and well-formulated to get high quality data. In order to
prevent misunderstandings, which could lead to invalidity
of conclusions, great importance was given to clarifying
survey questions and explanations. Given their feedback
and the time they needed to fill out the survey, the
questionnaire was refined by modifying three questions
(i.e., Q10, Q19 and Q23), the terminology given at the
beginning of 19th question (See [60] for more details), and
also five pre-given answers set (i.e., Q14, Q23, Q25, Q26
and Q27). The revised survey was reviewed a second time
by five other colleagues and two colleagues, who were
participated in the first pilot study. Therefore, the final
version of this survey was reviewed by 13 professionals.
After the revisions, the final version of the questionnaire
consisted of 27 questions, in the form of multiple-choice
(checkboxes), single-choice (radio buttons) and Likert-scale
answers. Where applicable, free-text areas for additional
input were provided to respondents as ―Other‖.

To design and execute the survey, we used the Google
Forms tool. The ethics approval for the survey was issued
by the Human Subjects Ethics Committee of Middle East
Technical University (METU) in March 2015. The survey
was then executed in the period of April-May 2015. The
hyperlink of the survey has been distributed to embedded
software professionals via social networks as well as to our
network of embedded software professionals working in
all around the world.

3.3 Pre-analysis considerations and data validation

The last step of the survey process was to analyze the
collected data. Although the title of the survey, the protocol
part of the survey, the invitations and forums entries are
emphasizing on ―embedded‖, some participants chose just
"Desktop applications" or "Web applications" for Q6. The
answers, which do not include any ―Embedded applications‖,

were considered out of scope of this survey. Some
companies develop different kinds of applications (e.g.,
both embedded and desktop); therefore any answer, which
consisted of ―Embedded‖, was included in the sample. Aside
from that requirement, there were no other criteria for
inclusion or exclusion. By applying this criterion, 15 survey
data were excluded. After the data validation phase, we
had 627 acceptable responses from 27 different countries.
To increase transparency, the raw survey data is made
available online [62] for other researchers to validate and
replicate. Considering that no incentive was offered to the
participants, it is interesting to see that the number of
participants is quite high in comparison to previous
surveys (Section 2.2).

3.4 Plan for cross comparison with previous surveys

One of the important analyses that we conducted and
report in Section 4 is cross comparison of our findings with
previous surveys on MDE in embedded systems [19-21]. To
plan the cross comparisons, we itemized the types of
findings reported by each of those studies and paired them
(if any) with a question in our survey. Table 3 presents an
overview of our plan for the cross comparisons. For
example, we will compare the benefits of model-based
development as reported in [19] with results of Q24 in our
survey. Based on the types of available data, some of the
comparisons are quantitative or qualitative. Note that for
easier traceability and understanding, we will present the
results of these comparisons and the interpretations of
possible reasons in the question itself (e.g., in a single
section), instead of splitting their discussions in a separate
sub-section (e.g., moving into discussion part).

Table 3. Plan for cross comparison of our findings with the
previous surveys on modeling in embedded systems

Study
referenc
e

Aspects to be compared in
Section 4

Questi
on # in
our
survey

Types of
comparison

[19] Motivations of model-based
development

Q23 Quantitative

Benefits of model-based
development

Q24 Qualitative

Positive/negative experiences of
model-based development

(reasons/challenges of model-
based development)

Q20-
Q25

Qualitative

[20] Modeling languages Q14 Quantitative

Diagram types Q17 Quantitative

Benefits of model-driven
development

Q24 Qualitative

Major problems in model-driven
development

Q25 Qualitative

[21] Modeling languages Q14 Quantitative

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 9

Modeling environments Q16 Quantitative

Types of notations (diagram
types)

Q17 Quantitative

Development phases where
MBE is used

Q18 Quantitative

Motivations of model-based
development

Q23 Quantitative

Benefits of model-based
development

Q24 Qualitative

Major problems in model-based
development

Q25 Qualitative

4 Survey results

In this paper, due to space constraints, we report a subset
of the survey results. All other remaining results in the
survey are accessible from [63].

4.1 Demographic of participants and their companies

The first question asked respondent about their
geographical location (Q1). Our goal was to reach out to as
many countries as possible and to ensure that all regions
where there is a presence of embedded software industry
are reasonably well represented in the dataset. The final
dataset had respondents from 27 different countries
distributed in all the continents. Figure 2 shows the world
heat-map, and also the distribution of responses by
continents, showing that most of the responses originating
from Europe (66%), followed by Asia (17%) and America
(14%). Of course these data do not provide any information
in relation with relative sizes of the embedded software
industry in different continents. Note that due to
researchers‘ location (i.e., Turkey), the ratio of European
respondents is higher than others.

Figure 2. Countries and geographical distribution of respondents

Participants were asked to provide their highest
academic degrees (Q2). The result reveals that 50% and
11% of respondents have a Master's and PhD‘s degree
respectively. Only 3 respondents (0.5%) reporting to have
High School or lower degree, denoting that the embedded
software is demanding in terms of background knowledge.
Figure 3 shows that our dataset includes more PhD and

MSc holders than our expectation, perhaps denoting that
the modeling in embedded software might be demanding
more combination of academic disciplines to understand
various part of the system (e.g., both hardware and
software) easier (e.g., a participant, whose BSc is in
Electrical/Electronics Engineering and MSc is in SE).

Figure 3. Highest academic degrees

In order to understand the respondents‘ educational
skill-set, participants were then asked to provide their
university degrees (Q3). The results of this multiple-
response question is shown in Figure 4. Note that the
department name of computing discipline degrees might
be different (e.g., depending on the university of the
participant); hence it is better to analyze the underlying
discipline in a single item as ―Computing Disciplines‖ (e.g.,
computer engineering, computer science, software
engineering, information systems) since their ―software
modeling‖ curriculum might be similar. Then we can say
that Computing Disciplines and Electrical/Electronics
Engineering are the top university degrees in the survey.
Please refer [63] for the details of other university degrees.

Figure 4. University degrees

The current positions of respondents (Q4) are shown in
Figure 5 (Note that multiple roles could be recorded in this
question, e.g., a person can be a software
developer/programmer and software designer at the same
time). Most of the participants have ―Software
Developer/Programmer‖ role. ―Software Designer‖,
―Software Architect‖ and ―Software Tester‖ roles are the
other majority roles in the survey.

0.5%
38.9%

49.9%

10.7%

High School or lower

BSc

MSc

PhD

1.50%

1.0%

1.5%

2.0%

2.1%

4.0%

5.6%

19.4%

28.5%

34.4%

Other

Industrial Engineering

Mechanical/Mechatronics…

Mathematics

Business Administration

Information Systems

Software Engineering

Computer Science

Computer Engineering

Electrical/Electronics Engineering

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 10

Figure 5. Current positions

When work experience of the participants in software
development was asked (Q5), it is seen that the majority of
respondents have 10+ years (52%) and 6-10 years (40%)
work experience. 41 participants (6%) reported to have 2-5
years of experience; whereas only 10 participants (2%) have
less than 2 years of experience. This indicates that our
participants are generally experienced industry
professionals in embedded systems (assuming that their
work experience is on embedded systems). We also asked
the participants to report their modeling experience (Q11)
in software development (Figure 6). The interesting point
here is that, although the majority of survey respondents
have 10+ years (52%), which is followed by 6-10 years
(40%) of work experience, in this question the majority is in
6-10 years (46%), followed by 10+ years of modeling
experience (40%). This might be occurred by some possible
reasons. Firstly, some respondents might have learned
software modeling after getting the job or employment
(i.e., after graduation, during the job or with some
training). Secondly, modeling in embedded domain might
require some initial work experience to understand
embedded requirements and systems.

Figure 6. Work vs. modeling experience of participants who use

any software modeling

Q12 was again a multiple-response question, in which
we asked where/how the participant learned software
modeling. (e.g., participants might learn modeling in
university and from formal corporate trainings). The
answers are compatible with the previous question, which
investigates the modeling experience and explains why 6-
10 years modeling experience is the majority. For example,
some participants, who were graduated from
Electrical/Electronics Engineering, have learned software
modeling after getting the job (after graduation, on his/her
own or with formal corporate training). Therefore, his/her

work experience is longer than modeling experience since
he/she did not take any software engineering or computer
science courses on modeling during university. However,
any computing discipline graduate‘s work experience and
modeling experience are most probably the same. As
expected, ―University‖ is the majority, followed by ―On
your own‖ and ―Formal corporate training‖. The given
responses are shown in Figure 7 with ―Other‖ responses.

Figure 7. Where/how software modeling was learned

Q6, in which the type of the applications developed was
asked, is the only question, which is used for inclusion or
exclusion of data points gathered from the respondents.
Since this was again a multiple-response question, multiple
type of application could be recorded, e.g., a company can
develop both embedded and desktop applications. 77% of
participants reported developing ―Embedded applications
and 13% of participants (13%) both ―Embedded‖ and
―Desktop‖ applications. Some participants used the free-
text area as ―Other‖ (10%) to explicitly indicate their type
of applications developed in their company. Some
responses (e.g., ―Smart TV applications‖) are also counted
to be in the embedded domain and included in our dataset.

Q7 was about the target sectors of the products
developed by the company employing the participants
(Figure 8). Seven possible choices were pre-provided in the
questionnaire, which were designed in discussions with
embedded software industry partners. The most popular
target is ―Consumer Electronics‖, followed by ―Defense &
Aerospace‖ and ―IT & Telecommunications” (Please refer
Section 4.5 for cross-factor analysis based on these sectors).

Figure 8. Target sectors of products

To get a sense of the size of the companies, instead of
asking the size of the company (in order to eliminate non-
engineering roles as technicians, office workers, etc.), the
number of employees in SE roles was asked (Q8). Results
are shows in Figure 9.

2.2%

1.0%

1.3%

1.3%

1.8%

2.1%

4.9%

5.9%

8.1%

11.5%

17.2%

19.0%

68.7%

Other:

Business Analyst

Academic

Quality Assurance Engineer/Lead

Systems Engineer

High Level Manager

Consultant

Requirement Engineer

Project Manager

Software Tester

Software Architect

Software Designer

Software Developer/Programmer

0%

20%

40%

60%

less than 2 years 2-5 years 6-10 years 10+ years

Work

Experience

Modeling

Experience

0.9%

27.9%

51.4%

70.8%

Other

Formal corporate training

On your own (i.e. from books, in…

University (i.e. from software…

1.8%

10.0%

15.3%

15.5%

18.5%

23.1%

23.6%

45.8%

Other:

Government

Finance & Banking

Automotive & Transportation

Healthcare & Biomedical

IT & Telecommunications

Defense & Aerospace

Consumer Electronics

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 11

Figure 9. Number of employees in SE roles

We should note that, as it has been established in
studies on information quality (for example by Garvin
[64]), people in different positions see and rate importance
of different issues differently and in general have varying
viewpoints on SE and related processes. As seen, there is a
good mixture of respondents from various embedded
software industry and different number of employees in SE
positions (from developer to tester and project manager to
quality assurance engineer), which would enable our
analysis to cover a wider spectrum of inputs.

4.2 Current state of modeling (RQ1)

4.2.1 Degree of using software modeling in SDLC (Q10)

This question investigated how often the participants
use software modeling in the SDLC by including both
informal and formal usage (i.e., sketches or models) using a
5-point Likert-scale (Notice that sketching is counted as
software modeling in the survey). As we can see from
Figure 10, the ―often‖ choice is the most reported one.

Figure 10. Degree of software modeling usage

4.2.2 Media used to create sketch or model (Q13)

In this multiple-response question, respondents were
asked to report the media they use to create (draw) models.
A 5-point Likert-scale was utilized for the answers. Results
are depicted in Figure 11. By far, using modeling software
on PCs for modeling is the most used medium. Modeling
using pen and paper is the next common approach.

Figure 11. Mediums to create diagrams and their usage frequency

The purpose of the modeling and the category of
software modeling (e.g., sketch, model-based or model-
driven) are strongly related with the medium used [26]. It
is possible that some of the respondents were referring to
descriptive modeling and others to prescriptive modeling
while answering this question as in [18]. If there is no auto-
generation of any software artifacts (e.g., code, document
or test scripts – as in the case of model-based usage, which
includes ―sketching‖ in the survey), analog media like
paper or whiteboard are enough for communication or
understanding a problem at an abstract level. It does not
mean that model-driven users do not use paper or
whiteboard; indeed, such analog mediums might be a
quick solution for a better communication and faster idea
sharing technique in some situations. However, the
lifespan of these sketches or diagrams are less than the
ones created digitally via PC or tablet/smartphone. In that
sense, the digital mediums like PC or tablet/smartphone
have advantageous on archiving and have longer lifespan.
Therefore, by providing modeling tools and archiving
diagrams (either informal sketches or formal models)
easier as being digital, PC is the most used medium.

Cross-factor analysis of the above data with Q14
(Modeling languages) showed that the participants, who
do not use any formal software modeling (i.e., the ones
who draw some sketches), use just paper or whiteboard.
On the other hand, the participants, who use any formal
modeling language (e.g., the ones, who use UML), usually
use modeling tools on PCs. We have a specific question to
ask about the modeling tools (Q16).

4.2.3 Modeling languages (Q14)

Notice that any informal usage of modeling (as a
sketch) is seen as "modeling usage" at that point and this
question tried to understand the modeling language that
participant use, if any. Since this was again a multiple-
response question, multiple items could be recorded (e.g.,
participants might use both UML and DSL). The majority
of participants (77%) use UML (not surprisingly), but it is
interesting that the second most frequently selected
response is ―Sketch/No formal modeling language‖ (65%),
which is the informal usage of modeling. ―DSL‖, ―Any

0%

50%

100%

Never (0%) Sometimes (<50%)

Often (>=50%) Most of the time (>75%)

Always (100%)

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 12

UML extensions (profiles) such as MARTE‖, ―Systems
Modeling Language (SySML)―, ―MATLAB‖, ―Any
Business Process Modeling Language such BPML‖ and
―Service Oriented Architecture Modeling Language
(SoaML)‖ took also some responses as shown Figure 12.

Figure 12. Modeling languages

Another interesting result is that some respondents
chose both UML and also ―Sketch/No formal modeling‖,
which show that these participants use modeling both
formally and informally as in [17] depending on their
purposes. Apart from the pre-given choices, many ―Other‖
modeling languages (8,6%) were reported (e.g., AUTOSAR,
Eclipse Modeling Framework (EMF), Markov Chain
Markup Language, AADL or Modelica) which you can
access its detail from [63]. This denoted that there exists a
wide spectrum of modeling languages in this domain and
engineers select the modeling languages suitable for their
needs (e.g., target sector of the product or modeling
purpose) in their projects (See Section 4.5).

[20] and [21] have reported the usage share of modeling
languages in their survey pool. According to [20], 45% of
participants use UML either completely or partially. In
[20], only 1% of participants reported that they use another
modeling languages than UML, and the names of those
other modeling languages were not explicitly reported.
Thus, the results of [20] are different from our results and it
is not easy to explain why. In [21], the majority of
participants (46%) reported using UML, followed by
SysML, various DSL‘s, Modelica and the MARTE UML
profile.

Since UML is a general-purpose modeling language, its
usage is not only restricted to modeling software, but it is
also used for system engineering, for business process
modeling and for representing the organizational
structures [46] although there are some specific modeling
languages for these disciplines (e.g., SysML for system
engineering, BPML for business process). Moreover,
although UML is built upon object-oriented concepts such
as classes and operation, non-object oriented systems may
also be modeled using it. Furthermore, during university
(e.g., from SE courses, if taken), mostly UML is taught as
modeling language. Therefore, UML‘s popularity is not a
surprise [65]. On the other hand, a very recent study on the
usage of UML in practice [17] shows that although UML is
viewed as the ‗de facto‘ standard, it is by no means
universally adopted. The majority of those interviewed in

[17] who do use UML tend to do so selectively and often
informally. This finding also supports the ratio of our
second most selected response as ―Sketch/No formal
modeling‖.

As observed in [18], UML is not so popular for
prescriptive modeling since its semantics is not exactly
defined and this would hamper the automatic translation
towards other models. We also found that in model-driven
approaches, it is not so important to have a graphical
syntax to represent the model (as in UML), but these
models should be represented in a format that is readable
by a machine (as in DSL) [66]. This also supports our
findings on ―DSL‖s.

4.2.4 Programming languages (Q15)

The responses given for this question is shown in Figure
13. According to this multiple-response question, the C
language is the first, followed by C++ and then Java.
Notice that, although C is the most popular programming
language in the embedded world, the total responses for
C++ and Java combined, which are both object-oriented
programming languages are much more than C. MATLAB,
C#, BPEL, Ada, Delphi and Smalltalk took some responses,
which were in the pre-given answer set.

Figure 13. Programming languages

Apart from these pre-given choices, Python (2,7%),
Objective-C (2,7%), JavaScript (1,2%) and Scala (1%) were
among the ―Other‖ answers for this question.

We observed that the participants, whose type of
application developed is related with "mobile" (the ones,
who explicitly mentioned "mobile" in the "Other" free-text
area in Q6) are using mostly Java and Objective-C, which
also showed that mobile applications are developed with
such programming languages.

Notice that this question was not intended to inquire
about automated code generation (e.g., model-based users
also responded this question while they might use software
modeling as a communication tool). Thus, this question did
not answer the target languages / encoding used by code
generators (e.g., C, C++ or Java). We thus postpone such
questions and inquiries to the future work.

8.6%
6.4%

8.9%

10.7%

12.3%

16.9%

33.7%

65.2%

77.0%

Other:

Service Oriented Architecture…

Any Business Process Modeling…

MATLAB modeling utilities

Systems Modeling Language…

Any UML extensions (profiles)…

Domain Specific Language (DSL)

Sketch/No formal modeling…

UML

7.5%
2.7%

4.9%

5.1%

8.0%

8.1%

11.3%

33.3%

45.3%
51.0%

Other

Smalltalk

Delphi

Ada

 BPEL

C#

MATLAB

Java

C++

C

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 13

4.2.5 Modeling environments/tools (Q16)

This question was also a multiple-response question,
and thus multiple modeling tools could be recorded. As
seen in Figure 14, the majority of respondents use ―Eclipse-
based‖ tools, which is followed by ―Microsoft Visio‖.
About 7.2% of the respondents indicated that they do not
use any modeling environment or tool, which almost all
came from users which reported not using PC-based tools.

Figure 14. Modeling tools

Again, among the ―Other‖ answers, respondents
mentioned modeling tools such as: Papyrus, MaTeLo,
argoUML, MetaEdit+, Astah, and Artop. Notice that
although Papyrus (~3%) is an eclipse-based tool, some
participants wanted to explicitly mention on this tool in
―Other‖ part. (For the details of ―Other‖, please see [63]).

The study [20] stated that survey studies are needed to
investigate the types of UML tools used in practice. As a
comparison, in the dataset of the survey reported in [21],
the majority (%50) used Matlab/Simulink/Stateflow,
followed by Eclipse-based tools, Enterprise Architect, in-
house tools and IBM Rational Software Modeler.

4.2.6 Diagram types (Q17)

Participants were then asked about the diagram types
that they use while modeling via the same 5-point Likert-
scale used in previous questions. Notice that, it was not
mandatory to select a frequency answer on each item,
therefore, total responses for each diagram types might
vary (i.e., total response for Class Diagram is 542, whereas
this number is 516 for Deployment Diagram). Note that the
respondents, who state that they were doing informal
modeling, make the sketches, which include some essences
of UML (e.g., some elements of state machine/charts, but
not dependent on strict UML rules) as in [17], who do use
UML tend to do so selectively and often informally.
Therefore, these participants, who do informal modeling,
answered this question by selecting some model (diagram)
types (e.g., some participants draw a use case diagram or
sequence diagram informally). All responses for each
diagram types are shown in Figure 15.

According to the responses, sequence diagrams and
state -machines/-charts are the most popular diagram
types in the embedded software by analyzing their usage
interval values [63]. It came as a surprise that sequence
diagrams were more popular than state machines/-charts,
since the latter are discussed more commonly in the
embedded-software-focused research. By an in-depth look
at the data, we found that most people use sequence
diagrams informally and selectively to convey the
communication among the entities in a given system (e.g.,
the participants, who use ―Sketch/No formal modeling‖
with ―UML‖).

18.4%

7.2%

2.7%

2.9%

3.2%

5.2%

5.8%

12.6%

13.2%

16.4%

20.0%

30.8% 54.8%

Other

None

ARIS Business Process Analysis…

Artisan Studio

IBM WebSphere Business Modeler

Visual Paradigm

StarUML

MATLAB/Simulink/Stateflow

IBM Rational Family

In-house tool

Enterprise Architect

Microsoft Visio

Eclipse-based tools

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 14

Figure 15. Usage frequency and interval of different diagram types

Notice that although class diagram is relevant for
object-oriented programming languages (e.g., C++ or Java)
and is not used in C, which is the most used programming
language according to our survey result, this diagram is in
third place. In other words, where applicable (i.e., if
relevant for the used programming language), Class
Diagram is widely used. The reason for a large usage of
class diagram might be just due to the fact that it is a
fundamental part of any well-formed UML diagram (i.e., if
you draw a sequence diagram you need some classes to
type the lifelines).

In [20], since it focused only on UML, the four most
used UML diagrams were class, sequence, use-case and
state machines, which were also reported so in [41] and
[42]. Class diagrams were the most frequently used in these
three surveys [20, 41, 42]. One of the most interesting result
is that, although previous surveys on modeling indicates
that use-case diagram usage was at one of the first places,
the frequency of use case diagram usage is relatively low in
our survey. Perhaps, since use-case diagram has a specific
role for the analysis phase rather than design or
implementation of SDLC and our pool of participants
might use different types of diagrams for analysis, if
needed. Moreover, use cases might not be the best way to
present the requirements for an embedded system.

4.2.7 SDLC phases in which software modeling is used (Q18)

This multiple-response question was about SDLC
phases, where software modeling is used. The majority of
respondents use modeling in the ―systems/software
design‖, ―implementation‖ and ―preliminary/systems
analysis (requirements)‖. ―Integration‖ is the SDLC phase,
in which modeling is used at least. The results are
presented in Figure 16. Notice that there is no
categorization on modeling approach (i.e., for sketches,
model-based or model-driven) while answering this
question; therefore there is no distinction for either
descriptive or prescriptive modeling [66].

Figure 16. SDLC phases where software modeling is used

The survey in [21] reported similar results as that
dataset stated that models are mainly used for
subsystem/component design, implementation, system
architecture, and testing. These findings are as expected
since modeling (e.g., UML) is mainly applied for design

4.0%

5.4%

9.0%

17.7%

24.1%

64.1%

74.4%

89.5%

Integration

Installation and Deployment

Business Process Analysis

Testing

Maintenance

Preliminary/Systems Analysis

Implementation

Systems/Software Design

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 15

and requirements phases. Although the survey in [19] did
not explicitly mentioned their ratios, it reported that MBD
is mainly used in design, implementation and
maintenance.

4.3 Current state of MDE and its adoption (RQ2)

4.3.1 Degree of using MDE (Q19)

This question investigates how often the participants
use MDE. Q19 acted as a decision point in the survey in a
way that the survey ended for the participants who
mentioned not using MDE at all (i.e., the ―Never‖ answers
(370 respondents, 59.5% of all participants)). The survey
continued for participants who said they use MDE
(remaining 185 respondents, 29.5% of all participants). This
decision logic was programmed into the online survey
form. The results are shown in Figure 17.

Figure 17. Degree of using MDE

Our results show that the MDE usage ratio is slightly
more than the ratio reported in [20], in which 15.8% of its
participants reported knowing MDE and using it. Our
study reflects a world-wide picture and ~2 years has
passed after [20] was executed. We might speculate that the
embedded software industry has gradually adapted the
MDE practices and its usage ratio has increased. Therefore,
this difference might be explained with the participants‘
demographics and the possible increasing popularity of
MDE practices in the embedded software industry.

4.3.2 What MDE is used for (Q20)

We further asked the reasons and purposes for MDE
usage as a multiple-response question. Results are shown
in Figure 18. Documentation and code generation were
reported to be the most popular reasons for using MDE.
Notice that we do not distinguish between descriptive and
prescriptive modeling in that question (e.g., as in [18]).
However, as we indicated that the purpose of the modeling
and the category of software modeling (and also the media
used, the lifespan and the archivability) are strongly
related (See Q13). Descriptive models classify actual
objects, events, and processes into categories; whereas
prescriptive ones specify what is expected of systems
components and how to develop them [18]. That
distinction provides a formal justification between analysis
and design models, which might affect the reasons for
MDE usage. For example, just for ―communication‖,

descriptive modeling might be enough (e.g., sketch), and it
might not be a primary concern of MDE. Therefore, from
this perspective, we suggest the future surveys to explicitly
identify this distinction.

Figure 18. What MDE is used for

In [19], communication and early simulation of the
functional model were reported as the main usage reasons
of MBE. According to [20], communication, understanding
of a problem at an abstract level and documenting designs
are the most important reasons of using MDE. The survey
[21] reported that models are mainly used for model
simulation, code generation, test-case generation and
information/documentation; hence, using models for
assisting activities in the SDLC seems to be an important
function as also confirmed by our survey results.

On the other hand, most participants in the survey of
[20] reported that they are not conducting model-based
automatic code and document generation. The authors in
[20] argued that the lack of skilled professionals in MDE
and also the lack of powerful and user-friendly MDE tool
support are the main reasons of such a situation. They also
claimed that these findings differ from results of [48],
which reported that activities such as code generation,
transformation models, and executable models are more
used in practice. We assumed that ―documentation
generation‖, ―code generation‖ and ―test-case generation‖
include some Model-to-Text (M2T) transformation;
therefore we just gave ―M2M‖ transformations in the
answer set in order to get rid of any possible duplication.
By focusing on the embedded software, our survey differs
from [20]‘s results since automatic artifact generation (e.g.,
document or code) seems to be quite popular in the
embedded world for those who employ MDE.

Note that some MDE purposes in that question (e.g.,
―communication‖) might not be specific to MDE usage and
the stakeholder might achieve such purposes without MDE
enforcement (e.g., strict syntax) or without using a
modeling tool. If we categorize the answer set of Q20
whether the purpose is specific to MDE or not, we have
two groups:

- MDE-specific purposes (i.e., “code generation”, “test-
case generation”, “documentation generation”, “M2M
transformation” and “model simulation”)

- The modeling purposes, which might be also
achieved without model-driven approach (i.e.,

2.2%
15.1%

37.3%

38.4%

40.5%

57.8%

67.0%

76.2%
76.8%

Other

Model simulation

Model-to-Model (M2M)…

Test-case generation (Model-…

Communication

Documenting designs

Understanding a problem at an…

Code generation

Documentation generation

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 16

“communication”, “understanding” and “documenting
analysis & design”)

By this way, we want to understand the relative ratios
of these two derived groups in each related works as in
Table 4 (Notice that in [19], there is not any percentage
values for the reasons, therefore we include [20, 21] as a
comparison).

Table 4. MDE-specific purposes‘ ratio comparison with the
related works ([20, 21])

Purpose In [21] In [20] This
study

MDE-specific purposes * 76% 23% 61%

The modeling purposes, which might be
achieved without model-driven approach
(e.g., with sketching or model-based) **

24% 77% 39%

*“code generation”, “test-case generation”, “documentation generation”, “M2M
transformation” and “model simulation”

** “communication”, “understanding” and “documenting analysis & design”

The majority of participants (93%) in [21] had already
used model-driven techniques in their projects and
software modeling is mainly used for MDE-specific
purposes (76%). On the other hand, in [20], MDE activities
are mainly used for the purposes, which might be also
achieved by using sketching or model-based approach
(77%). In our survey, there are also some participants, who
just use one of the MDE-specific purposes such as
―documentation generation‖ or ―model simulation‖ (e.g.,
without ―code generation‖) besides having general
modeling purpose(s) such as ―understanding‖ (Note that
67% of our respondents use MDE for understanding a
problem at an abstract level).

On the other hand, although it is not directly related
with embedded software development and focused on
only UML, the survey in [67] showed that practitioners use
modeling during communication and planning of joint
implementation effort. Similarly, [51] found that modeling
are used primarily as a communication and collaboration
mechanism where there is a need to solve problems and/or
get a joint understanding of the overall design in a group.

With the comparison of these related works, we can
say that there are different understanding (and also
purposes) of ―MDE‖ in the industry, which might be
specific to MDE purpose or not. Our survey showed that
although MDE has different benefits (Q24), it has also some
drawbacks (Q25), which are not experienced in sketching
or model-based approaches. Since there is a danger that
resources are being wasted, deciding in what degree and
with how much modeling rigor (e.g., by automating
software artifact generation as in MDE with an extra tool
cost) is a critical question. Moreover, while using MDE, the
type of MDE-specific purpose (e.g., ―code generation‖ or
―document generation‖) might affect modeling practices
with respect to technology cost (e.g., selection of modeling

tool). We believe that purpose is one of the important
factors, which determines the most effective modeling
approach (from sketching to model-driven approach)
depending on stakeholder‘s tasks and responsibilities in
the particular project (See Section 5.2).

4.3.3 MDE maturity levels (Q22)

Participants were asked to describe their company‘s
maturity in its use of MDE. We were aware of several
existing maturity models for MDE (e.g., [68] and [69]). [68]
seems to be the most comprehensive maturity models in
this context. In choosing a maturity model to be used in
our survey, we had two criteria in mind: (1) using the
maturity model should not lead to having many questions
which would negatively impact the response rate of our
survey, and (2) the maturity model should be comparable
to existing measurements in the reported surveys. Due to
this, we adopted the maturity model as shown in Figure 19.

The majority of the participants (57%) are in the Level 4,
indicating that they have completed multiple MDE
projects. 10% of participants reported that they have the
first significant project on MDE (just finished); whereas 6%
are in initial exploration phase and 10% are in the
prototyping phase of MDE. On the other hand, 9% of
participants reported an extensive experience of MDE on
many projects and/or over many years.

Figure 19. Maturity of MDE usage

According to [20], since it only focused on UML, 48% of
the respondents confirmed its use as an initial exploration
of MDE with UML and only 21% declared the
development of several complete projects using UML,
whereas the others confirmed its use as a first experimental
use (13%) and first significant project (17%). On the other
hand, concerning the MBE experience in [21], many
participants (41%) are well experienced with more than 3
years of usage; whereas 36% state that they have moderate
experience and only 23% are new in the field of MBE.

Since the terminologies used in these two studies are
different from each other, we want to categorize them in
similar groups. According to that categorization, we
assume that ―initial exploration‖ in [20] is in the same
category in ―new‖ in [21]; ―first experimental use and first
significant project‖ in [20] is in the same category in
―moderate experience‖ in [21]; and finally ―several complete
projects― in [20] is in the same category in ―well experienced‖
in [21] (which is our both ―multiple projects completed‖
and ―extensive experience‖ categories). The maturity level
comparison is depicted in Figure 20.

10%

6%

10%

57%

9%

8%

Level 1: Prototyping

Level 2: Initial exploration

Level 3: First significant project

Level 4: Multiple projects…

Level 5: Extensive experience of…

I don't know

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 17

Figure 20. MDE/MBE maturity level comparing with data
categorization from [20, 21]

As it can be seen, we can say that maturity level has
changed (and increased) depending on either time,
generalization of geographical area (i.e., [20] was executed
at 2011 in Brazil and [21] was more recent in Europe) or
participant demographics. Notice that, by no means, these
data indicate that the popularity and the usage of MDE
have increased, but it gives an insight about its trends
although all studies use different scales (and questions)
and have entirely different populations.

4.3.4 Motivations for adopting MDE (Q23)

Participants were asked about the motivations that they
and/or their companies considered for adopting MDE
(Figure 21). Since using MDE provides different types of
benefits for different users, the survey provided 12
motivations to be selected according to the degree of
importance. This set of motivations was synthesized from
the related work (as discussed in Section 2.2).

Figure 21. Motivations for adopting MDE

According to results, cost savings and shorter
development time were generally ranked of the highest
importance. In [19], quality improvement, development of
functions with high complexity and shorter development
time were reported as the top three motivations for MDE.
On the other hand, according to [21], shorter development
time, reusability and quality improvements were the most
three popular motivations to introduce MBE; whereas cost
savings is at sixth place in popularity while adopting MBE.

4.4 Benefits, challenges and consequences of using MDE
(RQ3)

4.4.1 Benefits of MDE (Q24)

Since it is important to understand the impact of the
MDE, participants were asked about the degree to which
their motivations were actually achieved after using MDE
(i.e., the degree to which their expectations were met). Note
that the list of possible answers for question Q23 (i.e.,
motivations such as cost savings, shorter development
time, etc.) is the same as for that question, where their
ranges are different (i.e., ―importance‖ ranges are from no
importance to very important (0-4); whereas ―benefit‖
ranges are from no effect to fully achieved (0-3)). Results
are shown in Figure 22. According to respondents, cost
savings, ensuring compatibility between source code and
models, shorter development time and quality
improvement are the top four benefits. Generally, all the
benefits are below the importance levels, denoting that
expectations are not fully met. Please refer [63] to see what
expected and gotten from MDE.

Figure 22 Benefits of MDE in embedded software engineering

Such findings differ from [20], in which the most
significant benefits are associated with quality
improvement, portability, maintenance and productivity.
On the other hand, according to [21], the effect of
introducing MBE are quality, reusability, reliability,
traceability, maintainability, development time and cost,
respectively (according to highly positive answers). In that
sense, our results are also different from [21] since cost
savings is the most significant effect of MDE. In that sense,
[19] also says that MBD can bring significant cost savings
and time savings, but only with a well-chosen approach
(i.e., without manually changing auto generated code).

As in any engineering activity, embedded software
projects should also be completed within anticipated
budget (cost), within anticipated schedule (time) in
conformance to requirements (quality) [70]. All individual
quality factors (e.g., reusability, maintainability,
portability) and shorter development time have significant
effect on project budget, which is related with cost. Our

48%

30%

21%

23%

36%

41%

16%

10%

66%

Level 1 & Level 2: Initial

exploration OR New

Level 3: First experimental use &

First significant project OR…

Level 4 & Level 5: Multiple projects

completed / Well experienced

This survey MBE experience in [21] MDE with UML in [20]

0% 20% 40% 60% 80% 100%

Portability

Team collaboration

Traceability

Maintainability

Reusability

Quality improvement

Reliability

Ensuring source code &…

Productivity

Test effectiveness

Shorter development time

Cost savings

Very Important Important Moderately Important

Of Little Importance No importance I don't know

0% 20% 40% 60% 80% 100%

Portability

Team collaboration

Traceability

Maintainability

Reusability

Quality improvement

Reliability

Ensuring source code & design…

Productivity

Test effectiveness

Shorter development time

Cost savings

Fully achieved Moderately achieved Partially achieved
No effect I don't know

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 18

participants experienced different benefits degrees on some
specific quality attributes (e.g., moderately achieved
reusability, but partially achieved productivity or vice
versa) with a direct or an indirect effect on cost savings.
Similarly, some of our participants achieved shorter
development time, which also affects cost savings. In other
words, although there might be some variations in the
degree of benefit for quality attributes, improvements and
shorter development time; all these resulted cost savings.
This viewpoint might explain why "Cost savings" is the
only benefit, which is between "Fully Achieved" and
"Moderately Achieved" range according to our findings.

4.4.2 MDE challenges (Q25)

Participants were asked about the MDE challenges in
their company as multiple-response answers. According to
responses, tool support and modeling expertise in the
company are the most encountered challenges (Figure 23).
Thus, we can pick those as areas for possible improvement
in training, further research and tool development.

Figure 23. Challenges of MDE in embedded software engineering

Note that, during the pilot study, we needed to modify
this question pre-given answer set by combining some
separate answers; but in that case we tried to make the
argument clearer by including some explanations. For
example, although ―transformation‖ and ―merging‖
models seem to be two different challenges, we combined
them in a single item but include ―how to integrate models
in different projects?‖ explanation.

Although there was no explicit question on MDE
challenges in [20], the reasons of not using UML diagrams
was asked and the top three results were: short lead-time
for the software development, lack of understanding or
knowledge of UML models and existence of few people in
the company who have deep knowledge of UML.
Furthermore, according to [20], in MDE the users must
have access to appropriate tools, in a way that integrates a
tool suite that meets requirements such as modeling,
transformations, and code generation. This supports our
finding about tool support challenges in order to guarantee
synchronization between software artifacts; i.e., code,
document and test driver. In that sense, our findings are
similar to [20]. In addition, although it is not directly

related with embedded systems, [48] pointed out the need
of a longer training period so as to overcome the lack of
UML expertise, which is also in parallel with the
―modeling expertise‖ challenge in our survey. According
to [21], ―high effort for training of developers‖ and
―modeling tool challenges‖ (which will be analyzed
separately in Section 4.4.3) were also mentioned, which are
similar to our findings. There was no explicit MDE-
challenge question in [19], however "tool costs" and
―training‖ were seen as a negative aspect of MDE in the
automotive industry.

4.4.3 Problems with MDE environments/tools (Q26)

As a both multiple-response and 5-point Likert-scale
question, participants were asked about the degree to
which the given problems are applied to MDE
environment/tool they use. All responses are shown in
Figure 24, whose x-axis indicates the response percentage.
In the figure, red and orange bars indicate the existence of
such a problem; whereas green-based bars indicate that
there is no such an existence. On the other hand, neutral
responses are depicted with yellow bar, and ―not
applicable‖ answers are depicted with grey bar. Notice that
MDE environments/tools problems are directly related
with what MDE is used for (Q20) hence ―not applicable‖
answers (e.g., for the respondents who use MDE for only
―documentation generation‖, ―difficulties with code
generation capabilities‖ is not applicable).

Figure 24. Problems with MDE environments/tools in embedded
software engineering

According to [21], tool-related problems were reported
to be the following: many usability issues with the tools,
difficulties with version management, difficulties of
integration with legacy code, impossible/difficult to
customize the tools, lack of model checking capabilities
and difficulties with code generation capabilities. Such
findings are quite similar to our results.

Although it is not directly related with embedded
software development, a recent study in 2017 pointed out
that MDE tools, which depends on technical,
organizational and social factors, play a major part in the
adoption of MDE [71]. Note that in that question, we
focused not only on technical features of the MDE tool, but
also non-technical factors such as organizational and social

2.2%

18.4%

25.4%

27.0%

29.7%

33.5%

39.5%

45.4%

51.4%

73.0%

75.7%

Other (Field debugging, cost of…

Optimization and performance…

Modeling languages (i.e. domain…

Software certification (i.e. for safety-…

Transformation/merging of models…

Training

Model quality (i.e. how to define,…

Model verification/validation…

Understanding and acceptance of…

Modeling expertise in the company

Tool support (Guaranteeing…

0% 20% 40% 60% 80% 100%

Difficulties with code…

Difficulties with version…

Difficulties with traceability…

Back/Forward compatibility…

High effort for training

Difficulties in taking…

Lack of model checking…

Many usability issues in its…

Difficulties with model-level…
NotAppli

cable

Strongly

Disagree

Disagree

Neutral

Agree

Strongly

Agree

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 19

factors (e.g., training and difficulties in taking support
from the vendor), which the respondents were also stated
as impeding issues.

4.4.4 Impacts and implications of MDE (Q27)

This question investigated the impacts of MDE on code
generation and model-based/driven testing as well as the
complexity aspects of MDE. By applying a similar design
to [48]'s "paired questions", in which they aimed to explore
the balance between the types of positive and negative
effects of MDE, participants were asked about the
consequences of MDE. The results are shown in Figure 25.

Due to the growing complexity of software, it is
generally agreed that the only realistic way to manage this
complexity is using appropriate methods of abstraction
with modeling [72]. Moreover, model-driven code
generation is an important aspect to improve productivity
in MDE [20]. However, an interesting result in [47] is that

participants working on real-time systems are more likely
to agree that their organizational culture does not endorse
(like) modeling due to automatic code generation.
Similarly, as in [42], UML is too complex or according to
[43], there are lots of UML complexity problems as
reported in previous studies (e.g., [73-75]). In this question,
to address the balance, for example, in model-driven code
generation part, the first statement mentions about the
possible positive consequences of MDE on ―abstraction‖,
whereas the second statement mentions about the possible
negative consequences of MDE on ―abstraction‖. Similar
approaches are applied for both model-based/driven
testing and complexity. As seen in Figure 25, all responses
are depicted according to response percentage (in y-axis)
and the mean value is also presented with its
corresponding color at the bottom of each statement.

Figure 25. Impacts and implications of MDE in embedded software engineering

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 20

In terms of implications of MDE, the results showed
that ―abstraction‖ has positive impacts since the mean
value of the first statement (i.e., possible positive
consequence) is near to ―Yes‖; whereas the mean of the
second statement (i.e. possible negative consequence) is
between ―Neutral‖ and ―No‖. Moreover, similarly,
respondents generally agreed that modeling reduces the
design complexities as a positive consequence and they
mostly did not agree that modeling languages are too
complex to be learned and applied, which might be a
possible negative consequence. Therefore, for these two
―paired‖ arguments, there was no conflict (e.g., the
majority of participants did not agree with the possible
negative consequences; instead the negative argument
supported the first one, which is the positive consequence).
On the hand, many respondents believed that model-
based/driven testing makes it easier to develop and
execute test cases by supporting test automation (e.g.,
positive consequences); however, although it helps to start
to test and its design earlier; it requires significant
additional upfront efforts to model and validate them (e.g.,
negative consequence). Therefore, according to responses,
there should be a ―balance‖ while applying such an
approach.

Note that the pre-given answer set for that question was
also revised after pilot study. For example, the second part
of the second argument for model-driven code generation
was added after the first pilot study, in which three
participants suggested such an argument too. Therefore,
we decided to include this argument but with a probability
(i.e., ―which might decrease…‖).

4.5 Cross-factor analysis

One of the opportunities the survey data provided as a
further study was to analyze relations among software
modeling practices and practitioner demographics. To
understand the effect of target sector of product(s) on the
modeling practices and approaches, a cross-factor analysis
was conducted. Please refer [76] for the details of this study
(Note that in that study, due to space constraint, we excluded
“Government”, which is the least chosen sector in the survey).
According to the results:

 ―Healthcare & Biomedical‖ sector is using software
modeling the least as being at ―Sometimes‖ level, the
other sectors is at ―Often‖ level. However, according to
MDE usage, all sectors are at ―Sometimes‖ level, where
―Finance & Banking‖ is the least.
- Although ―Consumer Electronics‖ might be
probably considered as one of the sectors where
innovation and time to market drives the business,
MDE usage ratio is between 9%-17%. MDE is a
technique established to support these values at most;
but it might be important to analyze what and where is
the problem in this sector although its software
modeling usage ratio (but not MDE usage) is high (e.g.,

the participants in this sector use sketching or model-
based approaches, but what are the specific consumer
electronics‘ challenges or bad experiences on MDE,
which resulted such a situation?)
- ―Defense & Aerospace‖ sector is the one, which
uses MDE at most, whose MDE usage ratio is between
24%-43%. Perhaps, the project length and necessary
investigation on MDE (its corresponding costs, i.e., tool,
training, etc.) might be suitable for this sector.

 The dominant modeling language is UML in all sectors;
however, there are interesting results based on sectors.
- Specific modeling language for target sectors (i.e.
AADL (Architecture Analysis & Design Language) for
―Defense & Aerospace‖, EAST-ADL for ―Automotive &
Transportation‖ and Markov Chain Markup Language
for ―Consumer Electronics‖) are interesting results.
- DSL is mostly used in ―Automotive &
Transportation‖, where AUTOSAR usage is ~15%
although it was not in the pre-given answer set.
- The usage of ―Sketch/No formal modeling
language‖ is very similar to UML usage in ―Finance &
Banking‖ sector.

 The most used diagram type according to the survey
result (i.e., Sequence Diagram) is also the most used
diagram for only two sectors (i.e., ―IT &
Telecommunications‖ and ―Healthcare & Biomedical);
the other sectors have different most frequently used
diagram types (e.g., for ―Consumer Electronics‖ is
―Flowchart/Diagram‖ or for ―Defense & Aerospace‖ is
―State Machine/Chart‖).

With the help of this cross-factor analysis, the state-of-
the-practice of software modeling and MDE practices in
different industrial sectors was better understood by
addressing RQ1 and RQ2. Some modeling languages or
diagrams are specific to some sectors or their usage ratio is
different depending on their purposes and challenges [76].

5 Discussions

A summary of our findings is discussed in Section 5.1.

Section 5.2 provides implications of our findings for
software modeling stakeholders. Limitations, potential
threats to the validity of our study and steps we have taken

to minimize or mitigate them are discussed in Section 5.3.

5.1 Summary of findings

Our survey received 627 acceptable responses from 27
different countries in five continents and different
industrial sectors related to embedded software. There was
a good mixture of different profiles, which helped our
results to be unbiased from certain types of demographics
in the embedded software engineering projects. A
highlight of the results is discussed next.

RQ1 - Summary of the current state of modeling

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 21

Software modeling (either informal, selective or formal)
is widely used by many embedded professionals (89%). As
expected, different engineers and companies use software
modeling approaches in varying degrees, which usually
depends on the modeling characteristics [26]. Software
modeling is conducted from informal sketches (on paper)
to formalized models using sophisticated modeling tools.

The majority of respondents use UML. However,
depending on the type of industrial sector, a general-
purpose modeling language such as UML is usually not
sufficient to meet the specific requirements; therefore other
modeling languages are used, e.g., the AUTOSAR
language (in ―Automotive & Transportation‖), models
based on the Markov chains (in ―Consumer Electronics‖),
and various other DSLs (e.g., AADL for ―Defense &
Aerospace‖). Especially, in model-driven approaches,
modeling stakeholders prefer models, which can be
represented in a format that is readable by a machine (as in
DSL).

A variety of modeling tools are used, the most popular
ones being the ―Eclipse-based‖ family of tools, followed by
―Microsoft Visio‖. The most used diagram types are
sequence diagrams, state-machine diagram, and class
diagram. The majority of respondents use modeling in the
systems/software design phase, followed by
implementation‖ and requirements/systems analysis
phases of SDLC.

RQ2 - Summary of the current state of MDE adoption

Notice that 29.5% of all participants use MDE
approaches (Q19). The respondents reported that they use
MDE for mostly documentation and code generation, and
then for understanding and analysis the problem domain
at an abstract level.

To assess MDE maturity levels, we adopted from the
literature a 5-level maturity model. Based on that model,
we found that the majority of the participants (57%) are in
the Level 4, indicating that they have completed multiple
MDE projects. This is a generally good sign for the
embedded software industry. The other aspect that we
explored in terms of the current state of MDE and its
adoption was the motivations for adopting MDE. The top
motivators were ―cost savings‖, ―shorter development
time‖, ―reusability‖ and ―quality improvements‖.

RQ3 - Summary of the benefits, challenges and
consequences of using MDE

In terms of benefits of MDE, ―cost savings‖, ―ensuring
source code & design model compatibility‖, and ―shorter
development time‖ were reported the most. In terms of
challenges, tool support, and more specifically difficulties
with model-level debugging and usability issues of tools
were stated as the most impeding issues.

In terms of positive consequences and impacts, model-
driven code generation was generally reported to be a
beneficial outcome of MDE. Many respondents believed

that model-based/driven testing makes it easier to develop
and execute test cases by also supporting test automation
via test scripts; however, although it helps to start to test
and its design earlier; it requires significant additional
upfront efforts to model and validate them. The embedded
software community largely believes that modeling
reduces design complexities and modeling languages are
not that complex as reported in many studies.

5.2 Implications of results

Modeling captures some or all of the design decisions
that comprise a system's architecture besides affecting all
facets of software architecture by serving as the intellectual
centerpiece of software development and evolution [77].
The survey results have shed light on the state of modeling
and MDE practices in embedded software engineering
projects and would provide practical benefits to various
modeling stakeholders (especially software architects), by
enabling them observe the latest trends in this industry and
also influencing not only the system-level design (e.g.,
hardware/software co-design), but also other software-
intensive embedded systems development aspects.

We discuss below the implications of our survey
findings for practitioners, researchers, educators and tool
vendors besides for the company that commissioned this
study.

5.2.1 Implications for practitioners:

 Benefitting from what others are doing: By looking at
the benefits and challenges of MDE (See Section 4.4), this
empirical evidence will help embedded software
professionals, who are thinking about adopting MDE in
their projects, to know common practices other adopted for
their context. As survey results showed that there is a wide
variety of practices, motivations and tools. Although we
consulted with several industrial practitioners and used
our personal industrial experiences when designing the
closed-ended questions in the survey, we had a lot of
―Other‖ answers than we expected (e.g., modeling
language (Q14), programming language (Q15) or modeling
tool (Q16)). This showed that there is a wide spectrum of in
terms of the technology used for software modeling and
our results might also help embedded software
professionals to get awareness of these new technologies.
In order to solve this need, a database that is formed by
modeling community‘s prior experiences (i.e., survey data)
has already constructed to guide different SE roles (e.g.,
software developers, software architects, systems
engineers, test engineers) with respect to process and tool
improvements during embedded software development
[78]. By this way, this survey data helps modeling
stakeholders (via this database) to know beforehand what
similar profiles (e.g., similar SE positions, target sector of
products, etc.) are doing while modeling and this saves

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 22

time and budget before embarking on a project with
alternative modeling practices.

 Need to identify the characteristics of modeling and the
relations between them: We found that software modeling is
widely used (89%), across a diverse range of embedded
software industries to better handle the growing
complexity of their software-intensive products.
Embedded software professionals use different modeling
languages, programming languages, environments with
different motivations and face different challenges. In other
words, different SE roles can use modeling and MDE
selectively not only in implementation but also analysis,
design or maintenance phase of SDLC according to the
characteristics of modeling [26] (e.g., purpose). All of these
approaches could be effective depending on these
characteristics. As the survey results showed, MDE has
certain challenges, which are not experienced in sketching
or model-based approaches (e.g., MDE tool cost or
automatic code generation challenges). Since there is a
danger that resources are being wasted, deciding when to
model or in what degree and with how much modeling
rigor (e.g., as a sketch without modeling language
formality or by automating software artifact generation as
in MDE with strict enforcement) are frequently asked and
challenging questions for software teams. Therefore, it is
important for the practitioner to identify these
characteristics and apply the most suitable approach for
her/his tasks and responsibilities in the particular project.

 Modeling as an effective communication tool: Q20
revealed that modeling are also used as a communication
and collaboration mechanism. Since software-intensive
embedded systems include many hardware and software
components, modeling is beneficial not only for software
development side but also during system-level design
including hardware/software co-design among all
stakeholders. As the survey (Q23) also revealed that
collaboration seems one of the motivations for using
software modeling since it creates a common language and
understanding among the teams during communication
and planning of joint development. We investigated that
some modeling stakeholders (mainly, systems engineers,
whose responsibilities are cross-cutting with both
hardware and software components of the system) use
modeling (especially with sequence and activity diagrams)
to convey the communication among the entities in a given
system: Their purpose is a quick communication and
explaining a scenario among both hardware and software
stakeholders‘ of the system. If all modules‘
communications/interactions are well-depicted in a
complete diagram with the necessary inputs (e.g., message
interfaces) during a system scenario, every SE roles can
understand the corresponding scenario without looking at
the ―textual description‖ of it, which might cause some
misinterpretation; hence they could save time and effort by
getting rid of unnecessary meetings between stakeholders
[66]. By this way, modeling via ―visualisation‖ creates a

common language for embedded software development
[78]. Since modeling provides great support in the
communication with other colleagues because of its
possible graphical design, even colleagues from other
departments or domains, who are not familiar with
software development, can be involved in the software
development.

5.2.2 Implications and benefits for the company that
commissioned this study

 Software Modeling and MDE Research Group: As
survey results revealed, software modeling is not only
used by software developers or architects; there are also
other stakeholders such as systems engineers, test
engineers or project managers. All necessary stakeholders
in the company were informed about the results of this
research (via presentations and meetings) to increase the
awareness on the latest state-of-the-practices while
modeling in the embedded software development. Then, in
order to follow the latest modeling trends and apply them
in a systematic manner, it was decided to form a new
research group from different departments (e.g., Software
Engineering Department (three software architects),
Systems Engineering Department (two systems engineers),
and Test Department (two test engineers)). This group is
responsible for analyzing the problems in a specific context
(e.g., within specific process or project) and try to find
possible modeling approaches and solutions to these
challenges besides working on the adoption/acceptance of
related-technologies.

 The adoption of MDE concepts & technologies & tools:
The Company had already worked with some MDE
concepts; but there were some challenges in their adoption
(e.g., one of the challenges in the survey - an organizational
resistance). Although some teams in software department
had used an MDE tool, which automatically generates
code, document and test driver for communication
interfaces of each component [4], some non-developer
stakeholders (e.g., systems engineers and test engineers)
had some concerns about using this tool for their business
side. As Q27 (i.e., diagram 3 in Figure 25) revealed that
most practitioners with different SE (e.g., not only software
developers or architects) believed that if code generation is
synchronized with other artifacts (e.g., document, test
driver), MDE benefits are maximized. After having the
results (as being an empirical evidence) and with the help
of newly organized research group mentioned above, the
usage of this MDE tool increased not only in the software
departments, which uses automatic code generation facility
of that tool, but also in test and systems department, which
utilize from other generated SDLC artifacts (e.g., test
driver/simulator and documentation). As a domino effect
(since this tool is now used by many teams), the adoption
and understanding of different concepts of modeling has
been positively changed in the company. Moreover, with

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 23

the experience gained by MDE usage, the Company have
designed and implemented various SDLC artifacts, which
is currently used by many teams [16].

5.2.3 Implications for researchers:

 Need for more MDE techniques across all SDLC phases:
In Q18, we found that the majority of respondents use
modeling in the systems/software design phase,
implementation and analysis phases. Modeling is used not
that widely for integration and testing, although there are
lots of academic advances and novel techniques in these
areas. This makes us think whether there are issues which
decrease the practical application of those techniques in
industrial settings. Researchers are encouraged to look into
these issues.

 Addressing the MDE challenges: Tool support and
modeling expertise in the companies were the most
encountered challenges. Researchers can work to develop
better research-prototype tools and also collaborate with
industry to improve modeling expertise of engineers.

5.2.4 Implications for educators:

 Improving the software modeling educations: Our
results also have implications for software modeling
educations, e.g., [79, 80], and educators. Our survey results
suggest implications for the way in which software
modeling is taught (from Q12). Some respondents
(especially the Electrical and Electronics Engineering
graduates) reported that they have mostly learned software
modeling after getting the job (i.e., after graduation, during
the job or with some training). Some respondents who
were computer and software engineering graduates also
reported that they have learned some modeling techniques
during their undergraduate studies, but not at the
application level in the industrial context.

 MDE is not just the analysis and design phase: A
typical university SE course teaches a top-down fashion, in
which diagrams are first developed for analysis and then
iteratively refined into design, implementation and test
phases of SDLC. In most software modeling courses, the
students study how to design and develop a software
system using software modeling techniques, but the focus
is generally on the analysis and the design phases and
there is a missing part while translating these diagrams
into executable code. Extensions of these courses could
focus on the important concepts in MDD, the requirements
for setting up a model-driven approach, the state-of-the art
MDE approaches, and the corresponding challenges in
software modeling projects (there is an increasing number
of universities, which use [23] as a SE course book and that
might be a good sign for educators to understand and
teach modeling trends and standards in practice).
Therefore, we believe that the given courses on modeling
might also be updated or enhanced after a further analysis

of the results in our survey, which suggest topics that
could have been widely covered or emphasized.

5.2.5 Implications for MDE tool vendors (builders)

 Need for better tool support: Tool support is one of
the most encountered MDE challenges (Q25). We have also
observed several shortcomings in terms of tool support
(Q26). Supporting MDE with appropriate tools increases
modeling benefits. Not only for embedded software
development but also for rapid prototyping for different
platforms with a flexible design-space exploration, such a
powerful tool is crucial. Notice that useful and usable tools
not only help maximizes MDE‘s benefits, but also play an
important role in the adoption of MDE [71]. Therefore, we
suggest MDE tool vendors to invest more efforts in
development and improvement of these tools and
including/improving the features that practitioners
mentioned in this survey (such as ―increasing usability of
the tool‖, ―customization on the tool‖, ―model
verification/validation and model–level debugging
feature‖).

 Focusing on what industry uses the most:
Documentation, code generation and understanding of
problems at higher abstract levels were reported to be the
most popular reasons for using MDE with different
benefits and challenges. Thus, we recommend that tool
vendors work on developing more industry-relevant tools
and techniques, which are not tackled by commercial tool
vendors. This might be achieved with more industry-
academia collaborations.

5.3 Limitations and threats to validity

We discuss the possible validity concerns based on a
standard checklist [81], in terms of construct, internal,
external and conclusion validity concerns, and also the
steps that we have taken to minimize or mitigate them.

Construct validity: Construct validities are concerned with
the extent to which the objects of study truly represents
theory behind the study [81]. In other words, the issue
relates to whether this survey measured software modeling
approaches in embedded industry. We collected data from
different sources (different countries, different industrial
sectors, etc.) in order to avoid mono-operation bias.

When people feel being evaluated based on what they
think, they might deflect their answers. To mitigate these,
we informed participants prior to the survey that our
motivation in this study was to take a snapshot of the
embedded software industry and that we will not collect
any identifying information so that participants will
remain anonymous. Therefore, for the sake of
objectiveness, the survey is completely anonymous.

In our measurement strategy, what we did was
common to other survey studies (e.g., [58]) —we counted
the votes for each question and then made statistical
inferences. We believed that results based on such voting

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 24

data can, to a certain extent, reflect the opinions of the
embedded software professionals.

Although we tried to select the most suitable ―paired
questions‖ to figure out the balance between the positive
and negative consequences of MDE (See Q27), we
presented ―possible positive consequence‖ as a first
statement in this question; and the choice of this order may
have led the respondents to bias in the results (e.g., if the
possible negative consequences was given first, the results
might have been different).

Last but not the least is the issue and definitions of
MDE vs. MBE as understood by that participants. We tried
to reduce this threat by making sure the participants
understood and distinguished the terminologies by
providing them the definitions mentioned by Brambilla et
al. [23] (See [60]). In order to prevent any
misunderstanding and potential threat in this terminology,
we conducted a pilot phase of the survey in which several
practitioners filled the survey and we met with them to
assess their common understanding of the terminologies
regarding MDE, MDD and MBE (See Section 2.1).
However, the definition provided by Brambilla et al. [23]
sadly still leave room for subjectivity and we could not
come up with better definitions while designing the survey
since we did not have the definition provided in [26] yet
(Notice that this definition, [23] is enriched and synthesized with
the concept of sketching). Thus, this issue stays as a potential
threat, e.g., a given practitioner might in fact use MBE,
even though s/he stated to use MDE or s/he does not
count sketching in MBD. Moreover, although there was no
specific feedback on the pre-given answer set for some
items (i.e., ―model checking capabilities‖, ―M2M
transformation‖), as we have not explicitly specified the
terms, there might be different interpretations and we
could not be sure that the all respondents have the same
understanding.

Internal validity: Internal validity reflects whether all
causal relations are studied or if unknown factors affect the
results [81]. Instrumentation was improved by using a pilot
study. The survey took approximately 2-10 minutes to be
filled out depending on the modeling usage type (e.g., for
no modeling, it takes ~2 minutes just to take demographic
data; for model-driven usage, it takes ~10 minutes) and
was intended to be filled out once by every participant.
This reduces the likelihood for learning effects and, hence,
maturation effects. Moreover, since the wording and
terminology used should be easily understandable to get
high quality data and to prevent misunderstandings, the
pilot includes embedded software professionals with
different native languages (English, Turkish, French and
Taiwanese), different SE roles and different experiences.

External validity: External validity is concerned with the
extent to which the results of this study can be generalized
[81]. In order to decrease the effect of possible dominant
participant number in a specific sector due to authors‘

previous and current work experiences‘ network (i.e.,
defense & aerospace, consumer electronics, academia), the
survey has been distributed to embedded software
professionals via various social network sites in all around
the world for different industrial sectors. Therefore, we
have done our best to reach the subjects with a variety of
different backgrounds representative for the embedded
software industry. Our sample size is quite high compared
to previous surveys. While we did our best to achieve an
even geographical distribution, the samples were mostly
based from Europe (66%), followed by Asia (17%) and then
the Americas (14%). Due to researchers‘ location, ~40% of
respondents are from Turkey, which may have led to bias
in the results. Nevertheless, note that we used non-
probabilistic sampling design and thus external validity is
limited. To address this, we reported demographic
information of the participants and companies covered in
our study, and therefore the readers will be able to
evaluate the applicability in different contexts.

Conclusion validity: Conclusion validity of a study deals
with whether correct conclusions are reached through
rigorous and repeatable treatment [81]. This study was
designed by one author, who has both researcher and
practitioner hat and two other researchers from two
different institutions; therefore the risk for ―fishing‖ on the
results is reduced. We attempted to conclude, qualitatively,
that the modeling approaches in embedded software
industry have economics and organizational aspects as
well as purely technical concerns. For each RQ, we
attempted to reduce the bias by seeking support from the
statistical results. Although we collected data from
different sources (different countries, different industrial
sectors, different SE roles, etc.), we, clearly, do not have
any intentions to generalize our findings to all over the
embedded software world since these results depend the
company and practitioner demographics. Nevertheless, we
reported demographic information of the participants and
companies covered in our study, and therefore the readers
will be able to evaluate the applicability in different
contexts. Moreover, to increase transparency, the raw
survey data is made available online [62] for other
researchers to validate and replicate; hence, all the
conclusions that we drew are strictly traceable to data.
Furthermore, we improved the reliability of our survey
using pilot studies prior to the survey execution.

6 Conclusion

With the help of this study, the state-of-the-practice of
software modeling and MDE was better understood by
identifying to what degree, why and how it is used in
embedded software industry with its possible challenges
and its benefits. By this way, both embedded software
professionals and also researchers could benefit from our
results, which would influence not only aspects related to

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 25

software-intensive embedded systems development, but
also the system-level design.

Different SE roles use software modeling approaches in
varying degrees (e.g., from informal sketches to formal
models). Our study showed that 11% of respondents do
not use any software modeling approaches (neither
informal nor formal); whereas the remaining 89% is
somehow (partially or fully) using it in their SDLC.

This study also showed that ―Sketch/No formal
modeling language‖ is widely used in the embedded
software industry (i.e., the second most frequently selected
response after UML usage) and this finding revealed that the
formality of the modeling language is not very important
while benefitting from modeling for different purposes.
The formality of modeling is important when there is an
auto-generation of some software artifacts (e.g., code,
document or test scripts); on the other hand, for
communication or understanding, this is not so crucial. We
observe that the purpose and the category of software
modeling (i.e., sketch, model-based or model-driven) are
strongly related with the medium used. If there is no auto-
generation of some software artifacts, analog media like
paper is enough for communication or understanding. At
that sense, our study showed that, not surprisingly, by
providing modeling tools (for both sketch/model-based
and model-driven) and archiving diagrams easier as being
digital, PC is the most used medium. However, we think
that in the near future tablet/smartphone usage ratio
might increase as it provides more mobility than PC while
modeling.

We observed that model-driven code generation (Q27)
is an important aspect and if code generation is
synchronized with other artifacts (e.g., document, test
driver), the benefits are maximized as in [4]. On the other
hand, the results (Q27) also showed that model-
based/driven testing makes easier to develop and execute
test cases by also supporting test automation via test
scripts; however, although it helps to start to test and its
design earlier; it requires significant additional time to
model and validate them.

We also observed that the ―cross-factor‖ correlations
among the results are interesting. Some modeling
languages or diagrams are specific to some sectors or their
usage ratio is different depending on their purposes and
challenges. For example, although the dominant modeling
language is UML in all sectors; specific modeling language
for target sectors (e.g., AADL for ―Defense & Aerospace‖
and Markov Chain Markup Language for ―Consumer
Electronics‖) are interesting results as reported in Section
4.5.

The survey showed that the embedded software
professionals use modeling approaches in varying degrees
(e.g., either as an informal sketch or more formalized
model) with different constrains depending on their needs.
All of the usages could be effective depending on the
software modeling characteristics in embedded software

industry, but what are these significant characteristics?
Based on the results of the survey and a conceptual model
of software modeling usage, we have already identified
these characteristics and the relations between them [26].
Then, we focused to fill one major part of the gap in the
existing literature by identifying and defining modeling
approach patterns in embedded software industry. In
order to improve what we found out from this survey
result (e.g., quantitative data), we conducted a series of
semi-structured interviews over eight months with 53
embedded software professionals to get more
personalized, qualitative data [66]. Based on these findings,
we created a characterization model, which identifies and
defines a modeling stakeholder‘s pattern and culture as
commonsense practices by presenting what the similar
profiles is doing while modeling (via the database
constructed with survey data presented in this study) [78].
This characterization model is the first wide-coverage
model of software modeling characteristics for embedded
software development projects built on extensive input
from the industry.

Acknowledgements

The authors would like to thank all embedded software
professionals, who contributed to this survey.

References

[1] C. J. Ebert, Capers, "Embedded Software: Facts, Figures, and
Future," IEEE Computer Society, vol. 42, pp. 42-52, 2009.

[2] J. Schäuffele and T. Zurawka, Automotive Software
Engineering: Principles, Processes, Methods, and Tools: SAE
International, 2005.

[3] Y. Yin, B. Liu, and H. Ni, "Avionics embedded software
modeling based on time-constrained transition equivalence
class," Advanced Science Letters, vol. 5, pp. 844-847, 2012.

[4] D. Akdur and V. Garousi, "Model-Driven Engineering in
Support of Development, Test and Maintenance of
Communication Middleware: An Industrial Case-Study," in
International Conference on Model-Driven Engineering and
Software Development (MODELSWARD), 2015.

[5] L. Jóźwiak, "Advanced mobile and wearable systems,"
Microprocessors and Microsystems, vol. 50, pp. 202-221, 2017.

[6] M. A. Vega-Rodríguez, "Design space exploration of
embedded systems: A view from diverse domains," Journal
of Systems Architecture, vol. 59, pp. 1113-1114, 2013.

[7] M. Broy, "Challenges in automotive software engineering,"
presented at the Proceedings of the 28th international
conference on Software engineering, Shanghai, China, 2006.

[8] J. Rushby, "New challenges in certification for aircraft
software," in Embedded Software (EMSOFT), 2011.

[9] C. Walls, Embedded Software, Second Edition ed. Oxford:
Newnes, 2012.

[10] A. Gokhale, D. C. Schmidt, B. Natarajan, J. Gray, and N.
Wang, "Model Driven Middleware," in Middleware for
Communications, ed: Wiley, 2004.

[11] L. Jóźwiak and S.-A. Ong, "Quality-driven model-based
architecture synthesis for real-time embedded SoCs," Journal
of Systems Architecture, vol. 54, pp. 349-368, 2008.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 26

[12] W. J. Dzidek, E. Arisholm, and L. C. Briand, "A Realistic
Empirical Evaluation of the Costs and Benefits of UML in
Software Maintenance," IEEE Transactions on Software
Engineering, vol. 34, pp. 407-432, 2008.

[13] E. Linehan and S. Clarke, "An aspect-oriented, model-driven
approach to functional hardware verification," Journal of
Systems Architecture, vol. 58, pp. 195-208, 2012.

[14] N. A. Karagoz and O. Demirors, "Conceptual Modeling
Notations and Techniques," in Conceptual Modeling for
Discrete-Event Simulation, ed, 2010.

[15] A. Dikici, O. Turetken, and O. Demirors, "Factors
influencing the understandability of process models: A
systematic literature review," Information and Software
Technology, vol. 93, pp. 112-129, 2018.

[16] D. Akdur, E. Özpolat, and T. Başıbüyük, "Model Driven
Engineering of Communication Protocol Artifact with
Design Pattern Usage in Distributed and Real-Time
Embedded Systems: An Industrial Experience," International
Journal of Engineering Science and Application, vol. 1, pp. 91-
98, 2017.

[17] M. Petre, "UML in practice," in 35th International Conference
on Software Engineering (ICSE), 2013, pp. 722-731.

[18] R. Heldal, P. Pelliccione, U. Eliasson, J. Lantz, J. Derehag,
and J. Whittle, "Descriptive vs prescriptive models in
industry," in ACM/IEEE 19th International Conference on
Model Driven Engineering Languages and Systems, France,
2016.

[19] M. Broy, S. Kirstan, H. Krcmar, and B. Schätz, "What is the
benefit of a model-based design of embedded software
systems in the car industry?," in Emerging Technologies for the
Evolution and Maintenance of Software Models, ed, 2011, pp.
343-369.

[20] L. T. W. Agner, I. W. Soares, P. C. Stadzisz, and J. M. Simão,
"A Brazilian survey on UML and model-driven practices for
embedded software development," Journal of Systems and
Software, vol. 86, pp. 997-1005, 2013.

[21] G. Liebel, N. Marko, M. Tichy, A. Leitner, and J. Hansson,
"Assessing the State-of-Practice of Model-Based Engineering
in the Embedded Systems Domain," in Model-Driven
Engineering Languages and Systems. vol. 8767, ed: Springer
International Publishing, 2014, pp. 166-182.

[22] B. Selic and S. Gérard, Modeling and Analysis of Real-Time and
Embedded Systems with UML and MARTE: Developing Cyber-
physical Systems: Morgan Kaufmann, 2013.

[23] M. Brambilla, J. Cabot, and M. Wimmer, "Model-driven
software engineering in practice," Synthesis Lectures on
Software Engineering, vol. 1, 2012.

[24] J. Cabot. (2009). Relationship between MDA,MDD and MDE.
Available: http://modeling-languages.com/relationship-
between-mdamdd-and-mde/

[25] (2016). Career Award Talk - Bran Selic. Available:
https://www.youtube.com/watch?v=9qPbGksB3d4

[26] D. Akdur, O. Demirörs, and V. Garousi, "Characterizing the
development and usage of diagrams in embedded software
systems," in 43rd Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), Vienna,
Austria, 2017.

[27] J. Hutchinson, J. Whittle, and M. Rouncefield, "Model-
driven engineering practices in industry: Social,
organizational and managerial factors that lead to success or
failure," Science of Computer Programming, vol. 89, Part B, pp.
144-161, 2014.

[28] P. Liggesmeyer and M. Trapp, "Trends in Embedded
Software Engineering," Software, IEEE, vol. 26, pp. 19-25,
2009.

[29] R. France and B. Rumpe, "Model-driven Development of
Complex Software: A Research Roadmap," presented at the
Future of Software Engineering, 2007.

[30] B. P. Douglass, Real Time UML: Advances in the UML for Real-
time Systems: Addison-Wesley, 2004.

[31] G. M. Nicolescu, P. J., Model-Based Design for Embedded
Systems CRC Press, 2009.

[32] S. Gerard, J.-P. Babau, and J. Champeau, Model Driven
Engineering for Distributed Real-Time Embedded Systems:
Wiley-IEEE Press, 2010.

[33] "Model Driven Architecture - Foundations and
Applications," in ECMDA, The Netherlands, 2009.

[34] Eclipse.org. (2012). EclipseCon 2012. Available:
www.eclipsecon.org/2012

[35] M. Guttman and J. Parodi, Real-life MDA : solving business
problems with model driven architecture. Amsterdam; Boston:
Elsevier/Morgan Kaufmann Publishers, 2007.

[36] D. Frankel, Model Driven Architecture: Applying MDA to
Enterprise Computing: John Wiley & Sons Inc., 2002.

[37] T. Weigert and F. Weil, "Practical experiences in using
model-driven engineering to develop trustworthy
computing systems," in IEEE International Conference on
Sensor Networks, Ubiquitous, and Trustworthy Computing,
2006.

[38] G. Karsai, S. Neema, and D. Sharp, "Model-driven
architecture for embedded software: A synopsis and an
example," Science of Computer Programming, vol. 73, pp. 26-
38, 2008.

[39] H. Espinoza, D. Cancila, B. Selic, and S. Gérard, "Challenges
in Combining SysML and MARTE for Model-Based Design
of Embedded Systems," in Model Driven Architecture -
Foundations and Applications. vol. 5562, R. Paige, A. Hartman,
and A. Rensink, Eds., ed: Springer Berlin Heidelberg, 2009,
pp. 98-113.

[40] G. Liebel, N. Marko, M. Tichy, A. Leitner, and J. Hansson,
"Model-based engineering in the embedded systems
domain: an industrial survey on the state-of-practice,"
Software & Systems Modeling, vol. 17, pp. 91-113, 2018.

[41] M. Grossman, J. E. Aronson, and R. V. McCarthy, "Does
UML make the grade? Insights from the software
development community," Inf. Softw. Technol., vol. 47, pp.
383-397, 2005.

[42] B. Dobing and J. Parsons, "How UML is used," Commun.
ACM, vol. 49, pp. 109-113, 2006.

[43] C. F. J. Lange, M. R. V. Chaudron, and J. Muskens, "In
practice: UML software architecture and design
description," Software, IEEE, vol. 23, pp. 40-46, 2006.

[44] J. Peneva, S. Ivanov, and G. Tuparov, "Utilization of UML in
Bulgarian SME - Possible Training Strategies,"
Communication and Cognition-Artificial Intelligence, vol. 23,
pp. 83 -88, 2006.

[45] A. Nugroho and M. R. Chaudron, "A survey into the rigor of
UML use and its perceived impact on quality and
productivity," in ACM-IEEE Empirical Software Engineering
and Measurement (ESEM), 2008, pp. 90-99.

[46] P. Fitsilis, V. C. Gerogiannis, and L. Anthopoulos, "Role of
unified modelling language in software development in
Greece - results from an exploratory study," Software, IET,
vol. 8, pp. 143-153, 2014.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 27

[47] A. Forward and T. C. Lethbridge, "Problems and
opportunities for model-centric versus code-centric software
development: a survey of software professionals," in
International workshop on Models in software engineering,
Leipzig, Germany, 2008, pp. 27-32.

[48] J. Hutchinson, J. Whittle, M. Rouncefield, and S.
Kristoffersen, "Empirical assessment of MDE in industry," in
33rd International Conference on Software Engineering, Waikiki,
Honolulu, HI, USA, 2011, pp. 471-480.

[49] M. Torchiano, F. Tomassetti, F. Ricca, A. Tiso, and G.
Reggio, "Preliminary Findings from a Survey on the MD
State of the Practice," in Empirical Software Engineering and
Measurement (ESEM), 2011, pp. 372-375.

[50] M. Torchiano, F. Tomassetti, F. Ricca, A. Tiso, and G.
Reggio, "Relevance, benefits, and problems of software
modelling and model driven techniques—A survey in the
Italian industry," Journal of Systems and Software, vol. 86, pp.
2110-2126, 2013.

[51] T. Gorschek, E. Tempero, and L. Angelis, "On the use of
software design models in software development practice:
An empirical investigation," Journal of Systems and Software,
vol. 95, pp. 176-193, 2014.

[52] F. Shull, J. Singer, and D. I. K. Sjoberg, Guide to Advanced
Empirical Software Engineering: Springer-Verlag New York,
Inc., 2007.

[53] R. M. Groves, F. J. Fowler, M. P. Couper, J. M. Lepkowski, E.
Singer, and R. Tourangeau, Survey Methodology, Second ed.:
John Wiley & Sons, 2009.

[54] J. Linaker, S. M. Sulaman, R. Maiani de Mello, M. Höst, and
P. Runeson, "Guidelines for Conducting Surveys in Software
Engineering," 2015.

[55] V. C. Basili, G.; Rombach, D.H., "The Goal Question Metric
Approach," in Encyclopedia of Software Engineering, ed: Wiley,
1994.

[56] T. Punter, M. Ciolkowski, B. Freimut, and I. John,
"Conducting on-line surveys in software engineering," in
Proceedings of International Symposium on Empirical Software
Engineering, 2003, pp. 80-88.

[57] T. R. Lunsford and B. R. Lunsford, "The Research Sample,
Part I: Sampling," J. Prosthetics and Orthotics, vol. 7, pp. 105-
112, 1995.

[58] V. Garousi, A. Coşkunçay, A. Betin-Can, and O. Demirörs,
"A Survey of Software Engineering Practices in Turkey,"
Journal of Systems and Software, vol. 108, pp. 148-177, 2015.

[59] L. Wallace, M. Keil, and A. Rai, "Understanding software
project risk: a cluster analysis," Inf. Manage., vol. 42, pp. 115-
125, 2004.

[60] D. Akdur, V. Garousi, and O. Demirörs, "MDE in embedded
SW industry-Survey Form (Questions),"
https://dx.doi.org/10.6084/m9.figshare.4262978, 2015, Last
accessed: Nov. 27, 2016.

[61] P. Runeson, M. Host, A. Rainer, and B. Regnell, Case Study
Research in Software Engineering: Guidelines and Examples:
Wiley Publishing, 2012.

[62] D. Akdur, V. Garousi, and O. Demirörs, "MDE in embedded
SW industry-Raw survey data,"
https://dx.doi.org/10.6084/m9.figshare.4262972, 2015, Last
accessed: Nov. 27, 2016.

[63] D. Akdur, V. Garousi, and O. Demirörs, "MDE in embedded
software industry, Technical Report," METU II-TR-2015-55,
https://dx.doi.org/10.6084/m9.figshare.4262990, 2015, Last
accessed: Nov. 27, 2016.

[64] D. A. Garvin, Managing quality: the strategic and competitive
edge: Free Press, 1988.

[65] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and A.
Tang, "What Industry Needs from Architectural Languages:
A Survey," IEEE Transactions on Software Engineering, vol. 39,
pp. 869-891, 2013.

[66] D. Akdur, O. Demirörs, and B. Say, "Towards Modeling
Patterns for Embedded Software Industry: Feedback from
the Field," in 44th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), Prag, Czech
Republic, 2018.

[67] T. Ho-Quang, R. Hebig, G. Robles, M. R. V. Chaudron, and
M. A. Fernández, "Practices and Perceptions of UML Use in
Open Source Projects," presented at the IEEE/ACM 39th
International Conference on Software Engineering (ICSE),
2017.

[68] Project FP6-IP 511731 MODELWARE (MODELling solution
for softWARE systems), "MDD Maturity Models,"
http://www.cin.ufpe.br/~bbm/files/D2.6%20MDD%20Maturity
%20Model.pdf 2014, Last accessed: Sept. 2016.

[69] A. G. Kleppe, J. B. Warmer, and W. Bast, MDA Explained:
The Model Driven Architecture : Practice and Promise: Addison-
Wesley Professional, 2003.

[70] I. Sommerville, Software Engineering: Addison Wesley, 2010.
[71] J. Whittle, J. Hutchinson, M. Rouncefield, H. Burden, and R.

Heldal, "A taxonomy of tool-related issues affecting the
adoption of model-driven engineering," Software & Systems
Modeling, vol. 16, pp. 313-331, May 01 2017.

[72] J. Kramer, "Is abstraction the key to computing?," Commun.
ACM, vol. 50, pp. 36-42, 2007.

[73] D. Thomas, "MDA: revenge of the modelers or UML
utopia?," Software, IEEE, vol. 21, pp. 15-17, 2004.

[74] C. Kobryn, "Will UML 2.0 be agile or awkward?," Commun.
ACM, vol. 45, pp. 107-110, 2002.

[75] D. Dori, "Why significant UML change is unlikely,"
Commun. ACM, vol. 45, pp. 82-85, 2002.

[76] D. Akdur, V. Garousi, and O. Demirörs, "Cross-factor
analysis of software modeling practices versus practitioner
demographics in the embedded software industry," in 6th
Mediterranean Conference on Embedded Computing (MECO),
Montenegro, 2017.

[77] R. N. Taylor, N. Medvidovic, and E. M. Dashofy, Software
Architecture: Foundations, Theory, and Practice: Wiley
Publishing, 2009.

[78] D. Akdur, "Modeling Patterns and Cultures of Embedded
Software Development Projects," Thesis, Doctor of Philosophy
(PhD), Information Systems, Middle East Technical University
(METU),
www.researchgate.net/publication/322701453_Modeling_Pattern
s_and_Cultures_of_Embedded_Software_Development_Projects,
Feb. 1, 2018.

[79] S. Akayama, S. Kuboaki, K. Hisazumi, T. Futagami, and T.
Kitasuka, "Development of a modeling education program
for novices using model-driven development," presented at
the Proceedings of the Workshop on Embedded and Cyber-
Physical Systems Education, Tampere, Finland, 2013.

[80] S. Flint, H. Gardner, and C. Boughton,
"Executable/Translatable UML in computing education,"
presented at the Proceedings of the Sixth Australasian
Conference on Computing Education - Volume 30, Dunedin,
New Zealand, 2004.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 28

[81] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell,
and A. Wesslén, Experimentation in Software Engineering:
Springer Berlin Heidelberg, 2012.

Deniz Akdur is a Lead Software Engineer at
ASELSAN, Inc., which is largest Defense &
Aerospace company of Turkey. Prior to that,
he worked as a Software Architect for different
companies in both Turkey and United
Kingdom in Consumer Electronics sector. He
received his BSc degree in Computer Science
from Bilkent University and MSc & PhD
degrees in Information Systems from Middle
East Technical University (METU), Ankara,
Turkey. His specialties and research interests
include software-intensive embedded systems,
software engineering, model-driven
engineering, technology acceptance, software
quality management and industry-academia
collaborations.

Vahid Garousi is an Associate Professor of
Software Engineering in Wageningen
University, the Netherlands. His research
interests in software engineering include:
software testing and quality assurance, model-
driven development, software maintenance
and empirical software engineering. He is also
passionate about of development of "scientific"
and engineering software (e.g., software for oil
pipelines or embedded controllers). Since 2002,
he has also worked as a consultant for software
companies in Canada, Turkey and the
Netherlands, helping them in various areas of
software engineering.

Onur Demirors is a Professor of Computer
Engineering at the Izmir Institute of
Technology (ceng.iyte.edu.tr) and the strategy
director of Bilgi Grubu Ltd. (www.bg.com.tr).
He has recently joined UNSW for his
sabbatical. His current research focuses on
decentralized modelling and organizational
change, software measurement, and
management. He has leaded major research
and application projects on developing
improvement and modelling techniques, on
establishing and implementing modelling
approaches for organizations and on
establishing measurement infrastructures for
software organizations. He has leaded
application projects for dozens of companies to
improve their processes, to establish their
measurement infrastructures, to create
organizational knowledge structures and to
identify their software needs. He continues to
teach on decentralized modelling, event based
systems, software project and quality
management, software measurement and
innovative software development approaches.

