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Abstract 

Gebreyesus, G. (2018). Fine mapping and genomic prediction for detailed milk 

composition. PhD thesis, Aarhus University, Denmark and Wageningen University, 

the Netherlands.  

 

Suitability of milk for processing into high-value products, such as cheese and butter, 

is affected by its protein and fatty acid (FA) composition. In addition, there are 

consumer concerns to some specific components of milk, whilst increasing 

preferences for others, mainly on health grounds. Therefore, economic and 

consumer pressures are driving interests in altering the detailed protein and FA 

composition of milk. Among potential strategies to alter detailed milk composition, 

genetic improvement provides cumulative effects carried over generations for a unit 

of investment. Selective breeding requires large-scale availability of data for accurate 

estimation of genetic parameters and prediction of genetic merits. Measurement for 

detailed milk protein and FA traits is currently limited to experimental scales due to 

costly and time-consuming analytical techniques. The PhD study aimed at improving 

accuracy of genetic parameter estimation and prediction of breeding values as well 

as understanding the genetic backgrounds of detailed milk protein and FA traits 

using efficient quantitative approaches. It is shown that improved accuracy of 

parameter estimation and genomic prediction is possible for scarcely recorded traits 

using multi-trait analyses. Advantages of existing multi-trait models is limited when 

genetic correlation between analyzed traits is weak. With a novel Bayesian model 

considering heterogeneous correlation structures over the genome, we show that 

despite weak genome-wide correlation, there exist genomic-regions explaining 

strong correlation and that it is possible to utilize such “local” correlations for 

accurate multi-trait genomic prediction. Combining datasets from different 

populations of a breed was another strategy investigated and shown to benefit 

genome-wide association (GWA) and genomic prediction for scarcely recorded traits. 

It is also demonstrated that existing linear genomic prediction models can be 

extended to incorporate GWA findings for further gain in prediction accuracy. Post-

GWA analyses with multiple data sources including tissue-specific gene expression, 

ontology and pathway information can help refine GWA findings and provide potent 

information for genomic prediction models. Novel genomic regions and candidate 

genes established in the study contribute to the knowledge base on the complex 

genetic backgrounds of milk FA traits. The findings suggest that genomic selection 

for detailed milk composition is possible. Novel methods presented in the thesis will 

be of value for genomic prediction in other scarcely recorded traits of economic 

importance.  
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1.1. Milk production and dairy processing 

According to the FAOSTAT database, milk is produced in all countries of the world. 

Cow’s milk in particular has been an important basis of animal-source protein 

across different cultures and socio-economic classes globally (FAO, 2017).  Milk and 

dairy products are vital components of human nutrition. Especially early in life, milk 

provides all the nutrients crucial for vitality and development. Rich in essential 

nutrients, milk makes substantial contribution to meeting the human body’s needs 

for calcium, magnesium, selenium, riboflavin, vitamin B12 and vitamin B5 (FAO, 

2013). Several proteins essential for human nutrition are present in milk. For 

instance casein, which contains many essential amino acids, makes up 

approximately 80% of the total proteins in milk (Farrell et al. 2004).   

The global production of cow’s milk in the year 2016 was estimated at 700 million 

tons (IDF, 2017). With a staggering share of 24% of the global cow’s milk production 

in 2016, the European Union (EU-28) stands as the single biggest milk producer in 

the world (Eurostat, 2017). According to the Eurostat database, 96.8 % of the 

whole milk available to the dairy sector in the European Union member countries 

in 2016 was processed into different products including 9.6 million tons of cheese 

and 2.4 million tons of butter and other products. In recent years, the global dairy 

sector has witnessed market price variability and major shifts in consumer 

preferences prompted with changes in life style. Future projections indicate an 

overall decrease in consumption of fluid milk and growing demand for processed 

products such as cheese. Following the ascendance of the fast food industry, more 

dairy products will be used as ingredients to meet the rising demand for processed 

foods such as pizza or pastry (European Commission, 2017). World market price 

variability, and the projected continuation of such commodity price volatility, has 

also prompted interests in producing more high-value products like cheese, butter 

or infant formula. In the EU, despite the lifting of milk quota in 2015, only slight 

increase was observed in the volume of milk production in 2016, while at the same 

time the price of farm milk continued to fall (Eurostat, 2017). The projected growth 

in milk production over the coming decade also stands only at 0.8% per year, while 

the projections for cheese production alone over the same outlook period is 

estimated at 1.4% per year (OECD/FAO, 2017). Such global and regional trends 

place the production of specialized value-added milk products at the center of the 

future of the dairy industry.  
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1.2.  Detailed milk composition on the spotlight  

Suitability of whole milk for processing into high-value products is affected by its 

protein and FA profile. In addition, the protein and FA composition of milk affect 

its nutritional value. There are increasing consumer concerns over certain protein 

and FA components of milk in relation to health. Simultaneously, there are 

increasing preferences to other components, such as the omega FAs. Such 

economic and societal pressures have led to mounting interests on the detailed 

protein and FA composition of milk from farmers, the dairy industry and 

researchers.  

 

1.2.1. Milk protein composition 

Bovine milk is composed of several proteins, the majority of which are the caseins 

(αS1-CN, αS2-CN, β-CN, κ-CN), that collectively make up around 80% of total protein 

in cow’s milk (Farrell et al., 2004), and the whey proteins (α-LA and β-LG). Of the 

casein proteins, β-CN and αS1-CN were reported as the two most abundant 

components of the total milk protein across different cattle breeds (e.g. Bevilacqua 

et al., 2006, Schopen et al., 2009). The casein proteins also exist in several post-

translational modified forms such as phosphorylation and glycosylation. Of the 

casein proteins, αS1-CN is heavily phosphorylated which in some studies is linked 

to common milk allergic reactions in early childhood (e.g., Høst, 2002). The αS1-CN 

has two common phosphorylation states, with eight (αS1-CN-8P) and nine (αS1-CN-

9P) phosphorylated serine residues. Apart from phosphorylation, some milk 

proteins also undergo glycosylation: a posttranslational modification occurring 

through the action of various glycosyltransferases (O'Riordan et al., 2014). Among 

the caseins, κ-CN is known to exist in abundance in glycosylated forms.  

The relative concentration of the different proteins in milk have been shown to 

affect its technological properties that are essential for the profitability of the dairy 

processing industry. Milk coagulation, for instance, is affected by its protein 

composition (Jõudu et al., 2008; Bonfatti et al., 2013). An increase in the proportion 

of caseins is known to increase cheese yield. Variations in concentrations of the 

different proteins in the milk also underlie differences in rennet clotting time and 

curd firmness (Wedholm et al., 2006; Jõudo et al., 2008). Higher concentration in 

the milk of the glycosylated form of κ-CN has also been shown to reduce rennet 

coagulation time (e.g. Bonfatti et al., 2014). The concentration of β-LG in the milk 

is also reported to affect the heat stability of milk; increases in β-LG correspond to 

increased heat stability (Feagan, 1979). In addition to its relevance for cheese 

production, protein composition might be of relevance for other aspects of dairy 
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products and dairy processing; for example, production of infant formula (Rutten 

et al., 2011).  

 

1.2.2. Milk fatty acid composition 

The fatty acids (FAs) in milk can be classified on basis of their chain length i.e., short 

chain (4 - 10 carbons), intermediate (12-16) and long chain FAs (18-22 carbons). 

FAs are also classified according to degree of saturation. Accordingly, FAs with only 

single bonds in the carbon chains are saturated FAs, whereas FAs with at least one 

double bond are termed as unsaturated FAs. Depending on the number of double 

bonds, the unsaturated FAs can be further classified as monounsaturated (one 

double bond) (MUFA) or polyunsaturated (more than one double bond) (PUFA). 

Milk FAs are also further categorized based on isomerization. Approximately 70% 

of the FAs in milk are believed to be saturated (Givens, 2010). FAs arise in milk via 

different pathways. The short and intermediate chain FAs (C4-C14), and 

approximately 50% of C16:0, are de novo synthesized in the mammary gland 

(Chilliard et al., 2000). Acetate, from fermentation of carbohydrates in the rumen, 

and hydroxybutyrate, formed from absorbed butyrate in the rumen epithelium, 

are believed to be major sources of carbon in the de novo synthesis of FAs in 

ruminants (Bauman and Griinari, 2003). In addition, there are also evidences that 

some of the FAs are synthesized de novo from propionate in ruminant tissues, 

including the mammary gland (Massart-Leën and Massart, 1983; Vlaeminck et al., 

2006). There are also indications that some of the short-chain FAs might arise from 

the feed. For instance, the study of Heck et al., (2012) indicated that C12:0 is not 

completely synthesized de novo but rather also partly derived from the feed. Most 

short chain FAs are not present in plant-based feed for ruminants. The findings of 

Heck et al. (2012) however suggest that if cows were fed with short chain FAs of 

other sources, they would probably end up in the milk. 

The long chain FAs (>C18), and the rest of C16:0, are suggested to be derived from 

blood lipids (Chilliard et al., 2000).  Majority of these circulating FAs are of dietary 

and microbial origin absorbed from the intestine which are taken up from 

circulation by the mammary epithelial cells (Bauman and Griinari, 2001). The 

remaining circulating FAs taken up by the mammary epithelial cells originate from 

mobilization of body fat reserves (Bauman and Griinari, 2003). FAs assumed to be 

mainly deposited in body fat reserves include C16:0 and C18:0 (Clarke, 1993). 

Proportion of milk FAs arising from mobilized body fat reserves is estimated to be 

between 4% and 8% in cows at positive energy balance (Pennington and Davis, 

1975; Bauman and Griinari, 2003). However, the importance of FA synthesis from 
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body fat reserves increases when cows are in negative energy balance (Balmain et 

al., 1952). 

The FA composition in the milk affects its physical properties and processing 

abilities such as melting point and hardness of butter, crystallization and 

fractionation of milk fat (Chilliard, 2000). Milk FA composition has also attracted 

mounting interests in relation to the effects on its nutritional quality. In human 

nutrition, the FA composition of milk is a determinant of its risk factor status for 

several diseases. Saturated FAs in the diet, specially the C14:0 and C16:0 (German 

and Dillard, 2006), which is believed to be the most abundant FA in milk (Givens, 

2010), have been linked to raised plasma cholesterol concentrations. In contrast, 

some group of FAs are considered beneficial in brain development and reducing 

cardiovascular disease risks. Specifically, the poly-unsaturated omega3 FA has for 

long been a target of high research interest in relation to perceived beneficiary 

effects on human health, particularly in relation to coronary heart disease risks 

(e.g. Ascherio et al., 1996). A recent meta-analysis study involving ten trials with 

over 70,000 sampled individuals (Aung et al., 2018) however found no evidence to 

support the claims of beneficial association of omega3 FA supplement in diets with 

cardiovascular disease risks. The omega3 FAs arise in milk mainly from grass-based 

feeding. Studies have shown that dairy production systems with relatively more 

grazing and fresh pasture based systems allow production of milk with more 

omega3 concentrations. Organic milk, for instance, was shown to have significantly 

higher proportions of omega3s than conventional milk (Benbrook et al., 2013; Hein 

et al., 2018).  

 

1.3. Prospects to include detailed milk composition in 

breeding goals 

Milk yield, recorded throughout lactation, forms the first category (Boichard and 

Brochard., 2012) of the 30 – 40 traits commonly recorded (Banos, 2010) in present 

dairy cattle selection schemes across several developed countries. Recordings for 

milk composition traits are currently limited to protein, fat and lactose contents as 

well as somatic cell counts analyzed using mid-infrared (MIR) spectrometry. 

Economic and societal pressures stipulate implementation of selective breeding to 

alter milk protein and FA composition towards increasing yield of high-value 

products and addressing consumer concerns over specific components. The 

importance of including these traits have long been indicated (Boichard and 

Brochard, 2012). The rationale behind such calls back then are even more concrete 

today. Moreover, new technologies are now increasingly available to set and 
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support new breeding goals (Merks et al., 2012). However, inclusion of new 

phenotypes in existing breeding goals comes with its own challenge and requires 

consideration of several other criteria apart from the economic values of the 

potential trait(s). Primarily, the expected genetic gain from selection for the 

candidate trait should outweigh the costs required for routine evaluations, among 

other things. The yearly genetic is defined as:   

  ∆𝑮 =  
𝒊∗𝒓∗𝝈𝒂

𝑳
, 

Such that i is the selection intensity, r is the prediction accuracy, 𝝈𝒂 the additive 

genetic standard deviation, while L is generation interval. Therefore, genetic gain 

is directly proportional to prediction accuracy, section intensity and genetic 

standard deviation and inversely related to the generation interval. Different 

factors affect prediction accuracy including sources and amount of information 

used and the prediction strategy applied. The amount of information available for 

prediction of genetic merits depends on availability of rapid and cheaper analytical 

techniques of measuring the phenotypes of interest.  

 

1.3.1. Analytical methods for determining milk composition traits 

Over the past decades, different methods have been introduced for separation and 

quantification of detailed protein contents in foods. Some among these methods 

include polyacrylamide gel electrophoresis with urea (urea – PAGE) (Farkye et al., 

1991), capillary zone electrophoresis (Recio et al., 2001), mass spectrometry (MS) 

methods (Mann et al., 2001) and reversed–phase high performance liquid 

chromatography (RP-HPLC) (Veloso et al., 2002). Currently, the electrospray 

ionization mass spectrometry (ESI-MS) methods are most commonly used to 

quantify detailed milk protein composition. These methods combine physical 

separation techniques of liquid chromatography (LC) with the mass analysis 

capabilities of mass spectrometry (MS) (Fenn et al., 1989).  

The reversed–phase high performance liquid chromatography (RP-HPLC) has also 

been applied for separation of FAs in the milk (e.g. Gresti et al., 1993). However, 

gas chromatography (GC) method is most commonly used due to its efficiency and 

is considered as the golden standard in quantifying milk FA composition. 

Nevertheless, its requirement for preparation of an esterified compound has been 

a disadvantage in terms of the time consuming process and requires specialized 

skills (Rodriguez et al., 2014).  

Both the LC/ESI-MS (for milk proteins) and the GC (milk fats) are currently 

considered the golden standards in quantifying detailed milk protein and fat 
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composition traits highly accurately. However, the methods are costly and time 

taking limiting the feasibility of large-scale phenotyping for the detailed milk 

protein and fat composition traits. Samples determined with such methods are 

currently limited to small and experimental scales. Recently, mid-infrared (MIR) 

and Fourier transform infrared (FTIR) spectrometry methods for predicting milk 

protein (e.g. De Marchi et al., 2009; Bonfatti et al., 2011a; Ferrand et al., 2012) and 

FA composition traits (e.g. Soyeurt et al., 2006; De Marchi et al., 2011) have 

attracted interests as alternatives to otherwise expensive LC/ESI-MS and/or GC 

quantified phenotypes. Studies continue to look into the concordance between 

golden standard measured phenotypes and IR predicted measurements (e.g. 

Poulsen et al., 2014; Rodriguez et al., 2014). 

 

1.3.2. Genetic parameters 

Genetic parameters, including heritability of the trait and the correlations with 

other traits in the breeding goal, are crucial information in planning for selective 

breeding. Genetic parameters are essential to compare the significance of genetic 

factors vis-a-vise non-genetic factors across traits and in different environments. 

Particularly, heritability estimates enable prediction of the response to selection 

and are key inputs in designing breeding schemes. Genetic parameters in 

populations are not constant (Visscher et al., 2008) and can change due, for 

instance, to inbreeding (Wade et al., 1996) or selection (Beniwal et al., 1992). 

Hence, estimation of genetic parameters for quantitative traits, in relation to 

designing and/or evaluation of breeding schemes, is not a one-time activity, and 

rather requires periodic updating.  

Few studies reported genetic parameters estimates for detailed milk protein 

composition measured using LC/EMS (e.g. Schopen et al., 2009; Bonfatti et al., 

2011b; Buitenhuis et al., 2016). These studies show medium to high heritability for 

most of the milk protein traits. Similarly, scanty information is available on the 

genetic parameters of milk FA traits quantified using the GC technique (e.g. Stoop 

et al., 2008; Krag et al., 2013; Bilal et al., 2014). Across these different studies, 

moderate to high heritability estimates have been reported for most de novo 

synthesized FAs while generally lower heritability estimates were reported for the 

intermediate and long chain FAs. 

Studies reporting genetic parameters on LC/EMS quantified milk protein and GC 

measured milk fat composition traits are based on limited samples due to 

associated expenses. Sampling error in estimation of heritability values is a 

function the sample size and relatedness structure, as well as bias due to 
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confounding (Visscher et al., 2008). Therefore, thousands of observations might be 

needed to attain very precise estimates (Visscher et al., 2008).  

Genetic parameter estimation for scarcely recorded traits might benefit from the 

use of genetic markers (Visscher et al., 2008) by estimating the realized 

relationship as opposed to expected relationships from pedigree information. 

Especially with the increasing affordability of high density (HD) genotyping, it is 

now possible to capture most of the variants with small to large effects and hence 

allowing more accuracy in estimating genetic parameters. At the phenotypic level, 

availability of information on multiple related traits and simultaneous estimation 

of heritability estimates might improve accuracy of estimates. Some studies based 

on real (Eaglen et al., 2012) and simulated data (e.g. Mathew et al., 2016) indicate 

that different variance components can be estimated with higher accuracies 

and/or lower standard errors of prediction using multi-traits analysis. By allowing 

incorporation of information on genetic correlations into analysis, multi-trait 

models significantly improve the accuracy of the genetic parameter estimates. In 

chapter 2, we implement multi-trait analysis for estimation of genetic parameters 

in the detailed milk protein composition traits based on relationship matrix 

computed using genotype data imputed to full sequence.  

 

1.3.3. Genomic selection  

For the past several decades, dairy cattle breeding schemes involved estimation of 

breeding values from performances recorded on candidates and their relatives 

using the pedigree relationship. This relied on progeny testing schemes to ensure 

accuracy of selecting candidates for sex-limited traits such as milk yield, therefore, 

requiring costly facilities and resulting in longer generation intervals. Following the 

availability of genetic markers, the emergence of genomic selection has 

revolutionized the cattle breeding system. Genomic selection refers to the 

selection of breeding candidates in quantitative models that make use of 

information from all genetic markers available throughout the genome. The use of 

genetic-marker information in statistical models for the prediction of genetic 

merits, also known as marker-assisted selection, has been around for decades. 

Initially, such approaches were based on genotyping animals for only a few markers 

to detect QTL with linkage studies and using the information for prediction of 

breeding values. In contrast, many QTLs often with small effects control 

quantitative traits and as a result, the proportion of the genetic variance explained 

by the QTL limits the benefit from marker-assisted selection. Rethinking this 

approach, Meuwissen et al. (2001) showed the possibility of simultaneously 

estimating the effects of all available genetic markers covering the whole genome 



1. General introduction 

 

 

20 

 

to predict genetic merits and/or future phenotypes. Prediction of breeding merits 

in such approach requires the estimation of the effects of all available markers in 

a reference population of individuals that are both phenotyped and genotyped. 

The estimated effects of the genome-wide markers are then used to predict the 

genomic estimated breeding values (GEBVs) in a training population that only have 

genotype data. With phenotypic records no longer necessary for all selection 

candidates, selection for sex-limited traits at younger ages has resulted in 

considerable reductions in costs and generation intervals.  

 

1.3.3.1. Genomic prediction models 

With the possibility of simultaneously estimating the effects of all available 

genome-wide markers, genomic prediction, also referred to as the “black box” 

method, would allow prediction of genetic merits without the need to identify the 

underlying causal QTLs. This statistical breakthrough was later followed by the first 

sequencing of the bovine genome (Consortium, 2009), which led to availability of 

many thousands of variants in the form of single nucleotide polymorphisms (SNPs). 

Technological advances over the last decades have led to rapid reduction of 

genotyping cost, resulting in the availability of thousands of genotyped reference 

animals. With the emergence of next generation sequencing and significant 

developments in genotype imputations techniques, it is now possible to capture 

large proportions of the genomic variants. With such increasing availability of 

hundreds of thousands of genetic markers, often much bigger than the number of 

genotyped individuals, an issue with the simultaneous estimation of all marker 

effects has been the dimensionality of the marker data.  

Meuwissen et al. (2001) presented different methods of overcoming 

dimensionality of genotype data often larger than genotyped animals: least square 

estimation, BLUP-based approaches (SNP-BLUP) and Bayesian methods. The BLUP 

based approaches assume SNP effects to come from a normal distribution and 

have the same variance. An extension of this method, GBLUP (VanRaden, 2008) 

constructs genomic relationship matrix replacing the additive relationship matrix 

used in traditional BLUP approach. However, for some traits, the assumption of 

normally distributed QTL effects does not fit well to prior knowledge of QTL with 

major effects. Hence, various Bayesian approaches, including the initial Bayes A 

and Bayes B models of Meuwissen at al. (2001), have been suggested with 

alternative prior assumptions for QTL effects. Bayes B assumes that π proportion 

of the markers have no effect on the trait, while a prior distribution of inverted chi-

square is assumed for the rest (1- π) markers. Bayes A assumes all markers have 

effects with a prior distribution of an inverted chi square. Thus, Bayes A can be 
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considered as special case of Bayes B where the proportion π of markers with no 

effect is assumed zero. Series of extensions and variants of these methods in what 

Gianola, (2013) described as “the Bayesian alphabets” continue to be proposed. 

The most of known of these is the Bayes Cπ suggested by Habier et al. (2011). The 

proportion π of markers with zero effects is treated as known in Bayes A (π =0) and 

Bayes B (π > 0). Arguing that π should be treated as an unknown and inferred from 

the data as the shrinkage of SNP effects is affected by π, Habier et al. (2011) 

suggested Bayes Cπ where π is assigned a prior and estimated during the analysis. 

Other Bayesian models suggested include Bayes R (Erbe et al., 2012), in which 

variants are assigned to one of several normal distributions with different 

variances. Most of the suggested Bayesian models commonly rely on estimation of 

locus-specific (co)-variances, leading to estimation of too many parameters as 

genotype data often contained many thousands of markers. This is especially 

problematic when available phenotypic data is limited, such as in scarcely recorded 

traits, where there is little information to estimate thousands of parameters. In 

such cases, Gianola et al. (2009) suggests to group markers, where markers within 

a group explain similar variances, to estimate group-specific variances and hence 

reducing the number of parameters to estimate.  

Studies have compared the different Bayesian and GBLUP prediction models for 

prediction accuracies and computational efficiency. For most traits, Bayesian 

models showed similar accuracy or small superiority to the GBLUP approaches 

(Hayes et al., 2009; Daetwyler et al., 2010; Clark et al., 2011).  Larger advantages in 

prediction accuracies were however reported for the Bayesian models for traits 

controlled by few QTL (Cole et al., 2009; Legarra et al., 2011) and when the genetic 

relationship between reference populations and selection candidates is weak (Gao 

et al., 2013; Van den Berg et al., 2015). However, typical Bayesian models are 

implemented in Markov chain Monte Carlo (MCMC) algorithms that are 

computationally demanding (Mossel and Vigoda, 2006) and are not 

straightforward. Therefore, application of the Bayesian models for routine 

evaluations is so far limited.  

 

1.3.3.2. Computing accuracy of genomic prediction  

Cross-validation strategies are commonly used to calculate genomic prediction 

accuracies while some deterministic methods have also been proposed (e.g. 

Goddard, 2009; Wientjes et al., 2015a). Cross-validation strategies commonly 

involve dividing the studied individuals into training and validation sets. The 

training population will have both phenotypes and genotypes used to estimate 

marker effects. Phenotypes of the validation population are masked and their 
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genomic breeding values (GEBVs) are predicted based on their genotypes and the 

marker effects estimated on the training population. The accuracy of genomic 

prediction in cross-validation is ideally defined as the correlation between the 

estimated GEBVs and true breeding values and. Since the true breeding values 

remain unknown in real scenarios, different approximations are followed to assess 

the reliability of genomic prediction.  

Accuracy of genomic prediction is affected by several factors related to the studied 

population, the traits of interest, marker and QTL properties, and prediction model 

applied. Factors related to the population affecting prediction accuracy include 

reference and effective population sizes, which determines LD range as well as 

genetic relatedness within and between reference and validation population. The 

LD between available markers and the underlying QTL as well as the minor allele 

frequencies (MAF) of markers and the underlying QTLs (Wientjes et al., 2015b) also 

influences prediction accuracy. Genetic architecture of studied traits have also 

been shown to affect genomic prediction accuracy. Important factors in this regard 

include heritability of the trait in the studied population and the number of loci 

affecting the trait and the distribution of their effects (Daetwyler et al., 2010; Hayes 

et al., 2010; Gianola, 2013).  

 

1.3.3.3. Genomic prediction for scarcely recorded traits  

Some immerging traits of economic importance in livestock breeding are expensive 

and/or difficult to measure at large-scale limiting the available reference 

population size. Accuracy of genomic prediction for such scarcely recorded traits 

remain low. Small reference population is associated with low power to estimate 

marker effects leading to less accurate estimates of genetic merits of individuals. 

Approaches suggested to improve prediction reliabilities for such traits include 

multi-traits analyses and combining datasets from different population/breeds 

(e.g. Calus et al., 2011; Lund et al., 2011). 

While most of the initially suggested genomic prediction models were developed 

on the basis of single-trait scenario, models that allow simultaneous estimation of 

breeding values for two or more traits have also been proposed (e.g. Calus et al., 

2011; Jia and Jannink, 2012; Hayashi and Iwata, 2013). Multi-trait prediction for 

scarcely recorded traits allows the use information from other large-scale recorded 

indicator traits and relatives (Henderson and Quaas, 1976). Advantages from 

simultaneous evaluation for multiple traits have been shown to depend on the 

genetic correlation between the trait of interest and indicator traits (Calus et al., 

2011), genetic architecture of the target traits (Jia and Jannick, 2012) and the 

prediction models used (Calus et al., 2011; Jia and Jannick, 2012). We show in 
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chapter 3 that multi-trait genomic prediction models might benefit by accounting 

for heterogeneous correlation structures of the genome.  

Other efforts to improve genomic prediction accuracy for scarcely recorded traits 

or populations of numerically small size have been to combine reference of 

multiple populations/breeds (de Roos et al., 2009; Lund et al., 2011; Erbe et al., 

2012; Calus et al., 2018). The potential benefits of combining multi-

population/breed datasets have been shown to largely depend on genetic 

relatedness between the populations (Habier et al., 2007; Lund et al, 2014), 

consistency in LD between the markers and QTLs affecting the trait (de Roos et al., 

2008; Pryce et al., 2011) and consistency in allele substitution effects between the 

populations (Wientjes et al., 2015b). In chapter 6, we implement genomic 

prediction for the milk FA traits using combined reference populations of the 

Chinese, Danish and Dutch Holstein and investigate gains in prediction reliability 

compared to genomic prediction using population-specific data. 

 

1.3.3.4. Genetic architecture and genomic prediction accuracy 

The genetic architecture of traits, most importantly the number of QTLs affecting 

the trait and distribution of the effects sizes, affect accuracy of genomic prediction 

(Daetwyler et al., 2010; Hayes et al., 2010; Gianola, 2013). Larger differences in 

accuracies have been reported between different genomic prediction models for 

traits controlled by few QTL with large effects than traits following the infinitesimal 

genetic model (e.g. Cole et al., 2009; Hayes et al., 2010; Legarra et al., 2011; Gao 

et al., 2015). Unlike the assumptions behind the GBLUP models where 

polymorphisms across the genome explain similar variance, regions harboring QTLs 

of large to intermediate effect might explain larger proportions of in the genome-

wide variance for traits controlled by few QTL. Different approaches can be 

adopted to account for such heterogeneous covariance structures to improve 

prediction reliabilities. In chapter 3, we develop and implement novel single- and 

multi-traits Bayesian models and show that improvement in prediction accuracies, 

compared to the traditional GBLUP and Bayes A models, is dependent on the 

genetic architecture of studied milk protein traits.  

 

1.3.3.5. Augmenting prediction models with biological information 

Apart from using priors to account for the number of QTL and the distribution of 

effects to improve prediction reliability, genomic prediction models might also 

benefit from identifying the underlying QTLs and the mechanistic pathways of 

control. While the black box method, where all markers are used without prior 

information on the causative QTL, have proved to work and has revolutionized the 
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livestock breeding industry, such models incorporating biological information 

might be especially important to improve prediction reliability for difficult and/or 

expensive to measure traits. One effective strategy to detecting QTLs underlying 

quantitative traits has been the study of genome-wide associations between 

genetic markers and phenotypes of interest. In chapter 6, we show that genomic 

prediction using linear models assuming different effects for associated genomic 

regions improve prediction accuracies compared to the traditional linear models 

which implicitly assume all markers explaining a common (co)variance genome-

wide.   

 

1.3.4. Genome-wide association  

Genome-wide association (GWA) refers to quantitative method to detect 

associations between genetic markers and mutations that affect a trait. Apart from 

enabling to understand the genetic mechanisms behind quantitative traits, findings 

of GWA studies can be incorporated into genomic prediction models to enhance 

prediction accuracies. While genomic prediction uses all available variants across 

the genome to predict GEBVs, there is enormous potential for GWA analysis to play 

in improving genomic prediction accuracy by selecting significantly associated 

variants for models that can put different weight for different group of variates.   

Different quantitative approaches have been adopted in GWA experiments. The 

most common approach, at least in the livestock gene-mapping community, has 

been the implementation of linear mixed models where the effect of each marker 

is tested at a time and the relationship matrix, constructed from the pedigree or 

marker information, is used to account for the population stratification. The 

consequence of this approach, especially in cattle breeds with long range LD, is that 

all markers in LD with the causative QTL will highly likely show significant 

associations thus limiting the mapping precision. As the approach involves testing 

each SNP at a time, it also comes with the problem of multiple testing and the 

associated stringent corrections. Multi-marker models to simultaneously test all 

markers for association with quantitative traits have also been suggested in 

Bayesian framework. Several studies have accordingly reported genomic regions 

associated with quantitative traits based on Bayesian models developed for 

genomic prediction of breeding values (e.g. Guo et al., 2016; Speidel et al., 2018).  

Association mapping studies have reported various regions of the bovine genome 

in connection to the milk protein and milk fat composition. For milk protein 

composition traits, polymorphisms in the β-casein, κ-casein and β-lactoglobulin 

genetic variants have been shown to underlie substantial proportion of the genetic 

variations (e.g. Heck et al., 2009) while several other regions have also been linked 
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through association studies. Schopen et al. (2011), for instance reported that the 

DGAT1 polymorphism in BTA 14 is associated with αS1-CN and αS2-CN contents in 

milk. Buitenhuis et al. (2016) also reported significant associations between the 

different milk protein composition traits and SNPs on several chromosomes across 

the bovine genome. Regions on BTA 14, 19 and 26 have been associated to the 

genetic variations in most of the milk FAs traits (Schennink et al., 2009a; Stoop et 

al., 2009; Bouwman et al., 2011; 2012; Li et al., 2014). The DGAT1 gene have been 

suggested as the most likely candidate for the region on BTA 14 (e.g. Grisart et al., 

2002) with the K allele of the DGAT1 K232A polymorphism shown to have 

significant effects on several FA traits (Schennink et al., 2007; Bovenhuis et al., 

2016). However, discovery of other mutations in the DGAT1 region affecting some 

FA traits (Lehnert et al., 2015) suggest that more candidate polymorphisms could 

be harbored in the region other than the DGAT1 K232A. On BTA 19, the FASN have 

been suggested as the candidate gene (Schennink et al., 2009b). However, using 

haplotype analysis Bouwman at al., (2014) showed significant effect of an 

additional nearby larger gene (CCDC57) for some FAs suggesting that there could 

be more QTLs than just FASN in the rather broader region frequently reported on 

BTA 19. The SCD1 have been suggested as the candidate gene for the BTA 26 region 

connected to milk FAs (e.g. Mele et al., 2007). The SCD enzyme is shown to be 

involved specifically in the desaturation process to synthesize MUFAs through 

introducing a double bond in the delta-9 position (Ntambi and Miyazaki, 2003). 

However, the genomic regions on BTA14, 19 and 26 combined explain between 3.6 

to 50 % of the genetic variations across the milk FA traits (e.g. Bouwman et al., 

2011, 2012). Additional regions explaining fractions of the remaining genetic 

variations are thus expected. Some such additional regions have so far been 

reported (e.g. Bouwman et al., 2011, 2012; Li et al., 2014; Li et al., 2015; Buitenhuis 

et al., 2014). The synthesis and metabolism of FA in milk is a complicated process 

involving many pathways. Hence, with the use of high density markers and larger 

datasets more incites are to be expected on additional genomic regions explaining 

smaller to intermediate fractions of the genetic variation in the milk FA traits. In 

Chapter 5, we undertake a GWA scan for the milk FA traits based on a large multi-

population dataset comprising the Chinese, Danish and Dutch Holstein Friesian and 

report novel, as well as previously reported genomic regions for the FA traits.    

GWA studies so far reported for milk composition traits in general are often based 

on numerically smaller datasets due to the associated expense for quantifying the 

traits using the golden standard methods. Studies have recently resorted to use of 

FTIR predicted milk composition phenotypes, as cheaper alternatives to costly GC 

and/or LC-EMS measured phenotypes, for GWA studies (e.g. Sanchez et al., 2017; 
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Olsen et al., 2017; Knutsen et al., 2018). However, lack of detections of some of the 

well-established causal polymorphisms for the FA traits cast doubts over the 

reliability of such IR predicted phenotypes for GWA studies. For instance, GWA 

studies of Olsen et al. (2017) and Knutsen et al. (2018) using the FTIR predicted FA 

phenotypes in the Nordic Red cattle did not detect any significant association near 

the DGAT1 region. Lack of segregation of the A variant of the DGAT1 K232A 

polymorphism have been suggested by the studies as the potential reason for the 

lack of detections in the DGAT1 region. However, both GWA studies (Olsen et al., 

2017 and Knutsen et al., 2018) did not also detect any significant associations in 

the SCD1 region despite the fact that the SCD1 allele is known to segregate in the 

Nordic Red cattle (Knutsen et al., 2018). Additionally, Wang et al. (2016) also 

reported no significant effect of the SCD1 polymorphism was observed on any of 

the milk IR wavenumbers in samples from the Dutch Holstein.  

The statistical power of GWA experiments to detect associations between markers 

and a quantitative trait depends on the sample size (Hong and Park, 2012), the 

distribution of effect sizes and the frequency of causal QTLs (unknown) in the 

population (Visscher et al., 2017), and the LD between the available markers and 

the causal QTLs.   

Currently, with the increased availability of high density and sequence level 

genotypes, most GWA studies evaluate hundreds of thousands of SNP markers 

(Hong and Park, 2012), requiring much larger sample size to attain an adequate 

statistical power (Klein, 2007; Spencer et al., 2009). This makes it particularly 

challenging for scarcely recorded traits, such as the detailed milk protein and fat 

composition traits, to detect QTLs explaining intermediate to small effects.   

Combining datasets from different populations and breeds have been 

implemented as strategy to increase sample size available for GWA studies. Such 

strategies combined either raw datasets for joint GWA (mega-analysis) (e.g. 

Veerkamp et al., 2012; Sanchez et al., 2017) or summaries of individual GWA 

studies for meta-analyses (e.g. Rubio et al., 2015; Bouwman et al., 2018). 

Advantages of combining multi-population datasets for GWA studies might be 

affected by the degree of heterogeneity between the samples to be combined. 

Such heterogeneity could arise due to genetic distance between the populations 

(Lund et al., 2014). In such cases, combining different populations of the 

same/related breed is more beneficial compared to combining different breeds. 

Differences between trait measurements and different environmental exposures 

can also cause heterogeneity by introducing genotype-by-environment 

interactions and thus adding more noise. In chapter 4, we use a multi-population 

dataset comprising the Chinese, Danish and Dutch Holstein population to 
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investigate the advantages and challenges of different data combining strategies 

for multi-population GWA.  

Apart from detection power, precision of detection is equally important for GWA 

studies to be of practical use in augmenting genomic prediction models. Due to the 

long range LD in cattle breeds, GWA studies often detect broad genomic regions. 

Such broad regions often contain several positional candidate QTLs/genes posing 

difficulty to untangle the true causative QTLs. Significant associations established 

using GWA between markers and a quantitative trait are not also directly 

informative of the causative gene or the mechanistic path through which the 

detected genomic region affects the associated trait. Integration of GWA and 

functional genomics (gene function annotation and ontology analyses) may help to 

prioritize positional candidate QTL regions for the true causative signals and take 

mechanistic insights into their effects (e.g. Hou et al., 2014; Littlejohn et al., 2016; 

Pegolo et al., 2017). The use of tissue-specific data (e.g. expressions of coding and 

regulatory (microRNA) genes) is also increasingly popular in the prioritization of 

GWA signals (e.g. Fang et al., 2018). 

 

Therefore, despite the challenge in large-scale phenotyping, accuracy of predicting 

genetic merits for the detailed milk protein and FA composition might be possible 

through utilization of information from correlated traits, multiple related 

populations and the biology underlying the traits. This thesis explores such 

possibilities in the case of bovine milk protein and fatty acid composition. 

 

1.4. Aim and outline of the thesis 

The aim of this PhD thesis is two folds: 1) explore different statistical models and 

approaches that allow accurate genetic analyses including genetic parameters 

estimation, genome-wide association and genomic prediction with limited data; 

and 2) Applying developed methods to study the genetic backgrounds and 

implement genomic prediction for the detailed milk composition traits. In chapter 

2, we examine the utility of multi-trait analyses in estimating the genetic 

parameters for detailed milk protein composition using numerically small dataset. 

In chapter 3, we develop and implement novel Bayesian single- and multi-trait 

genomic prediction models to improve prediction accuracy for the detailed milk 

composition traits by accounting for the genetic architecture and disentangling 

heterogeneous correlation structures with large-scale recorded related traits. 

Chapter 4 explores different data combining strategies to improve GWA detection 

power for detailed milk FA traits making use of multi-population datasets including 
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the Chinese, Danish and Dutch Holstein populations. Chapter 5 further characterize 

genomic region detected for the milk FA traits using multi-population GWA and 

post-GWA analysis with multiple-data sources. In chapter 6, we use the data 

combining strategies investigated in chapter 4 to implement genomic prediction 

for the milk FA traits using multi-population reference in linear models that allow 

incorporation of the GWA findings from chapter 5. Finally, chapter 7 links findings 

of the different chapters to the broader context of implementing selective 

breeding for the milk protein and FA composition traits. General discussion on 

contributions of the PhD study to the knowledge base, research questions 

requiring future studies and opinions on current topics pertaining to the milk 

protein and FA composition, such as infrared prediction of phenotypes, are 

presented.   
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Abstract 

 

Genetic parameters were estimated for the major milk proteins using bivariate and 

multi-trait models based on genomic relationships between animals. The analyses 

included, apart from total protein percentage, αS1-casein (CN), αS2-CN, β-CN, κ-CN, 

α-lactalbumin, and β-lactoglobulin, as well as the posttranslational sub-forms of 

glycosylated κ-CN and αS1-CN-8P (phosphorylated). Standard errors of the 

estimates were used to compare the models. In total, 650 Danish Holstein cows 

across four parities and days in milk ranging from 9 to 481 d were selected from 21 

herds. The multi-trait model generally resulted in lower standard errors of 

heritability estimates, suggesting that genetic parameters can be estimated with 

high accuracy using multi-trait analyses with genomic relationships for scarcely 

recorded traits. The heritability estimates from the multi-trait model ranged from 

low (0.05 for β-CN) to high (0.78 for κ-CN). Genetic correlations between the milk 

proteins and the total milk protein percentage were generally low, suggesting the 

possibility to alter protein composition through selective breeding with little effect 

on total milk protein percentage.  

 

Key words: genetic parameter, milk protein, multi-trait model, genomic 

relationship   
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2.1 Introduction 

Milk protein composition plays an important role in the technological properties of 

milk (Ikonen et al., 1999; Bittante et al., 2012). Changes in relative concentrations 

of individual milk proteins have a major effect on milk coagulation properties 

(Bonfatti et al., 2011) and coagulation ability of milk is essential in cheese making 

(Cassandro et al., 2008). The major milk proteins include αS1-CN, αS2-CN, β-CN, κ-

CN, α-LA, and β-LG. In addition, several posttranslational modifications of these 

proteins exist in milk. 

Previous studies have shown that considerable genetic variation exists in the 

composition of milk protein (Bobe et al., 1999; Schopen et al., 2009), presenting 

the opportunity to alter milk protein composition through selective breeding. 

Reliable estimates of genetic parameters, including heritability and genetic 

covariance, are crucial to evaluate the potential for breeding. Quantifying specific 

milk proteins requires specialized and costly equipment, making it difficult and 

expensive to measure the traits. As a result, sufficient phenotypic data are not 

available for reliable estimation of genetic parameters. One effective strategy to 

deal with such scarcely recorded traits could be implementation of multi-trait 

models that take advantage of information from correlated traits (Calus and 

Veerkamp, 2011). 

Generally, only a few studies have previously estimated genetic parameters for 

specific milk proteins (Schopen et al., 2009; Bonfatti et al., 2011) and their 

posttranslational sub-forms (Bijl et al., 2014). More importantly, none of the 

previous studies has estimated genetic parameters for milk protein profile using 

multi-trait analyses. 

In this study, we estimated genetic parameters for  the major milk proteins (αS1-CN, 

αS2-CN, β-CN, κ-CN, α-LA and β-LG), the posttranslational sub-forms (glycosylated κ-

CN and αS1-CN-8P, where P = phosphorylated serine), as well as protein percentage 

using bivariate and multi-trait models with genomic relationships between animals 

and compared standard errors of the estimated genetic  parameters. 

 

2.2 Material and Methods 

Morning milk samples were obtained from 650 cows from 21 herds in Denmark. 

The cows were in different stages of lactation (d 9 to 481 in milk) and parity 1 to 

4. The liquid chromatography/electrospray ionization-mass spectrometry (LC/ESI-

MS) methods were used to profile the milk proteins. Details on screening of 

samples and quantification of milk proteins were previously described by Jensen et 

al. (2012). 
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Of the total cows, 372 were genotyped using the BovineHD Illumina BeadChip. The 

remaining 278 cows were genotyped with the BovineSNP50 beadchip. Genomic 

DNA was extracted from ear tissue. Genotypes were subsequently imputed to full 

sequence in a 2-step procedure. The 278 cows genotyped with the BovineSNP50 

chip were first imputed to the BovineHD (777k) level using a multi-breed reference 

of 3,383 animals including the 372 HD genotyped cows used in this study. The true 

and imputed HD data for the 2 cow groups were then merged and imputed to the 

whole-genome sequence level using a multi-breed reference of 1,228 animals from 

the “1000 bull genomes” project (http://www.1000bullgenomes.com/) and data 

from Aarhus University using  IMPUTE2  v2.3.1  (Howie  et  al., 2011). 

The genomic relationship matrix was calculated as described by the first method 

presented in VanRaden, (2008). In total, 3.7 million SNP markers spread over BTA1 

to BTA29 were included to calculate the G matrix. 

The REML approach in DMU was used to estimate genetic parameters and variance 

components (Madsen and Jensen, 2010). Bivariate and multi-trait analyses were 

performed and compared using standard errors for the estimated heritability. 

The general model used was: 

 

𝑦𝑖𝑗𝑘𝑙  =  𝜇 +  𝑝𝑎𝑟𝑖𝑡𝑦𝑖  +  ℎ𝑒𝑟𝑑𝑗  +  𝑏1  ×  𝐷𝐼𝑀𝑘  +   

                                                       𝑏2 + exp−0.05𝑥𝐷𝐼𝑀𝑘 + 𝑎𝑛𝑖𝑚𝑎𝑙𝑙 + 𝑒𝑖𝑗𝑘𝑙 ,                   [1] 

 

where yijkl was the observation of animal l, in parity i and herd j; μ was the fixed 

mean effect; b1 was the regression coefficient for DIMk; and DIMk was a covariate 

describing the effect of days k in milk. Wilmink adjustment (exp−0.05×DIM) was used 

for DIM, b2 was the regression coefficient for the Wilmink adjustment; animall was 

the random additive genetic effect based on G of animal l with distribution 

𝑁(0, 𝐆𝜎𝑎
2), and eijkl was the random residual effect, which was assumed to be 

normally distributed with 𝒆 ∼ 𝑁(0, 𝐈𝜎𝑒 
2), where G is the genomic relationship 

matrix, I was the identity matrix, 𝜎𝑎
2 was the genetic variation,  𝜎𝑒

2 was the residual 

variation.  

The bivariate analyses were run for each milk protein analyzed in combination with 

protein percentage. For the multi-trait analysis, all nine traits were fitted 

simultaneously. Correlations between traits were based on the multi-trait analyses. 
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2.3 Results and Discussion 

Table 2.1 summarizes the descriptive statistics for the milk protein profile and the 

total milk protein percentage. Mean protein content in the sampled milk was 

3.38%. The major proteins (αS1-CN, αS2-CN, β-CN, κ-CN, α-LA, and β-LG) made up 

83% of the total milk protein fraction. The caseins constituted 72.3% of the total 

protein, with β-CN and αS1-CN alone contributing to 34.1 and 26.8% of the total 

milk protein, respectively. The whey proteins constituted 10.8% of the total 

protein. 

The αS1-CN-8P accounted for 19.2% of the total milk protein and 71.6% of the αS1-

CN fraction of the total protein percentage. This was comparable to previous 

findings, in which αS1-CN-8P accounted for 21.3% of the total protein (Bijl et al., 

2014) and 74% of the αS1-CN (Heck et al., 2008) in the Dutch Holstein population. 

 

Table 2.1. Descriptive statistics1 of milk protein profile and the total milk protein   

percentage 

 

Protein  or fraction
2
   Mean (%) CV (%)  5% quantile       95% quantile    

αS1-CN 26.8  9 25.5 28.1 

αS1-CN-8P 19.2 11 17.7 20.7 

αS2-CN   5.3 20   4.5   5.9 

β-CN 34.1 10 31.5 36.7 

κ-CN   6.1 18   5.3   6.9 

Glycosylated κ-CN   1.7 47   1.2   2.0 

α-LA   3.3 19   2.9   3.6 

β-LG   7.5 21   6.5    8.4 

Total protein (%)    3.38  9    3.2     3.55 
1Mean = phenotypic mean of the trait. 
2Protein composition was expressed as percentage fractions of the total milk 

protein percentage (wt/wt); total protein was expressed as percentage (%) of the 

total milk yield; individual proteins comprise only the peaks identified as intact 

proteins and isoforms; that is, αS1-CN (comprises αS1-CN 8P + 9P), αS2-CN (comprises 

αS2-CN 11P + 12P), β-CN (comprises β-CN 4P + 5P), and κ-CN (comprises κ-CN G + 

1P), where P = phosphorylated serine group. 

 

Heritability values and standard errors of estimation from the bivariate and multi-

trait models are given in Table 2.2. Generally, the heritability estimates for the milk 
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proteins were moderate to high except for β-CN, which had the lowest estimates 

(0.01–0.05). Glycosylated κ-CN (0.44) and αS2-CN (0.36) had moderate heritability 

values estimated using the two models; κ-CN had the highest heritability estimates 

in both models (0.78–0.79). Generally, standard errors were lower for heritability 

estimates using the multi-trait model for all traits except β-CN. The standard errors 

of estimation from the multi-trait model in the current study (0.08–0.10) were also 

lower compared with previous studies, including that of Schopen et al. (2009; 0.08–

0.12), Buitenhuis et al. (2014; 0.12–0.21), and Bobe et al. (1999; 0.07–0.12). Given 

the observed medium to high genetic correlations between the proteins, the multi-

trait analyses might have benefitted from use of information from correlated traits. 

Heritability values estimated with the multi-trait model were comparable to 

estimates from previous studies. Intraherd heritability of 0.66 for total protein and 

0.64 for κ-CN estimated by Schopen et al. (2009) were comparable to the current 

estimates of 0.59 and 0.78, respectively. The estimates for αS2-CN (0.36) in the 

current study were also comparable to the earlier reported value of 0.30 (Ikonen et 

al., 1997) but lower than estimates of Schopen et al. (2009; 0.73). β-casein had the 

lowest heritability estimate (0.05) in this study. This was in agreement with 

previous estimates for β-CN by Buitenhuis et al. (2014; 0.05), but considerably 

lower than estimates by Ikonen et al. (1997; 0.33 to 0.40) and Schopen et al. (2009;   

0.25). 

 

Table 2.2 Heritability values and standard errors of heritability estimates 

 

Trait 
Bivariate model  Multi-trait model 

h2 SE  h2 SE 

αS1-CN 0.13 0.10  0.15 0.09 

αS1-CN-8P1 0.14 0.10  0.14 0.09 

αS2-CN 0.36 0.10  0.30 0.10 

β-CN 0.01 0.07  0.05 0.08 

κ-CN 0.44 0.10  0.44 0.09 

Glycosylated κ-CN 0.79 0.09  0.78 0.08 

α-LA 0.22 0.11  0.25 0.10 

β-LG 0.56 0.11  0.54 0.10 

Total protein (%) 0.53 0.11  0.59 0.10 
1Where P = phosphorylated serine. 
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Genetic and phenotypic correlations estimated using multi-trait analysis are given 

in Table 2.3. Generally, the milk protein compositions had low to medium genetic 

correlation with total protein (−0.02–0.32). Higher genetic (0.75) as well as 

phenotypic (0.61) correlations were also observed between the two whey proteins 

(β-LG and α-LA). 

The genetic correlation between αS1-CN-8P and β-LG was low (−0.01). Bijl et al. 

(2014) have previously reported a distinct effect of β-LG protein variants and β-LG 

concentration on αS1-CN-8P concentration. Nonetheless, according to Bijl et al. 

(2014), the mechanism behind the established association between β-LG protein 

variants, as well as β-LG concentration and αS1-CN-8P concentration remains 

unclear, calling for further study. Genetic correlations between the milk proteins 

and the total milk protein percentage were generally low, except for αS1-CN-8P 

(0.38) and β-LG (0.27).  
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Table 2.3. Genetic (above diagonal) and phenotypic (below diagonal) correlations1 

 

Trait2 αS1-CN-8P αS1-CN αS2-CN β-CN Glyc κ-CN κ-CN α-LA β-LG Total protein(%) 

αS1-CN-8P  0.78 -0.11 -0.38 -0.42 -0.23 -0.59 -0.07  0.32 
αS1-CN  0.86  -0.51 -0.02 -0.33 -0.36 -0.46 -0.15  0.15 
αS2-CN  0.29 0.12  -0.78 -0.08 -0.21  0.18  0.09  0.12 
β-CN  0.41 0.47  0.04   0.37  0.49  0.13  0.03  0.11 
Glyc κ-CN -0.04 0.03  0.02  0.05   0.81  0.16 -0.04 -0.02 
κ-CN  0.20 0.16  0.05  0.21  0.68  -0.005 -0.02  0.12 
α-LA  0.10 0.08  0.09  0.09 -0.02  0.06   0.60 -0.03 
β-LG  0.006 0.01  0.04 -0.001 -0.07 -0.02  0.77   0.24 
Total protein(%)  0.18 0.03  0.12 -0.07   0.10  0.18 -0.04  0.13  
1SE (0.06–0.31) 
2P = phosphorylated serine; Glyc = glycosylated 
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2.4 Conclusions 

Our results suggest that genetic parameters can be estimated with high accuracy   

for scarcely recorded traits using multi-trait analysis with genomic relationships 

between animals. Lower genetic correlations between the milk proteins with total 

protein percentage reported in this study also suggest that altering milk protein 

compositions through selective breeding might have little or no effect on the total 

protein percentage. 
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Abstract 

Accurate genomic prediction requires a large reference population, which is 

problematic for traits that are expensive to measure. Traits related to milk protein 

composition are not routinely recorded due to costly procedures and are 

considered to be controlled by a few quantitative trait loci (QTL) of large effect. The 

amount of variation explained may vary between regions leading to heterogeneous 

(co)variance patterns across the genome. Genomic prediction models that can 

efficiently take such heterogeneity of (co)variances into account can result in 

improved prediction reliability. In this study, we developed and implemented novel 

univariate and bivariate Bayesian prediction models, based on estimates of 

heterogeneous (co)variances for genome segments (BayesAS). Available data 

consisted of milk protein composition traits measured on cows and de-regressed 

proofs (DRP) of total protein yield derived for bulls. Single-nucleotide 

polymorphisms (SNPs), from 50K SNP arrays, were grouped into non-overlapping 

genome segments. A segment was defined as one SNP, or a group of 50, 100, or 

200 adjacent SNPs, or one chromosome, or the whole genome. Traditional 

univariate and bivariate genomic best linear unbiased prediction (GBLUP) models 

were also run for comparison. Reliabilities were calculated through resampling 

strategy and using deterministic formula. 

BayesAS models improved prediction reliability for most of the traits compared to 

GBLUP models and this gain depended on segment size and genetic architecture of 

the traits. The gain in prediction reliability was especially marked for the protein 

composition traits β-CN, κ-CN and β-LG, for which prediction reliabilities were 

improved by 49 percentage points on average using the MT-BayesAS model with 

100-SNP segment size compared to the bivariate GBLUP. Prediction reliabilities 

were highest with the BayesAS model that uses 100-SNP segment size. The 

bivariate versions of our BayesAS models resulted in extra gains of up to 6% in 

prediction reliability compared to the univariate versions. 

Substantial improvement in prediction reliability was possible for most of the traits 

related to milk protein composition using our novel BayesAS models. Grouping 

adjacent SNPs into segments provided enhanced information to estimate 

parameters and allowing the segments to have different (co)variances helped 

disentangle heterogeneous (co)variances across the genome. 

 

Key words: Milk protein composition, genomic prediction, heterogeneous 

(co)variance, BayesAS, SNP grouping   
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3.1 Introduction 

The protein composition of milk determines its technological characteristics such as 

the cheese-making properties. Major proteins in milk include the caseins (αS1-, 

αS2-, β- and κ-CN) and whey proteins (α-lactalbumin, and β-lactoglobulin). The 

heritability of the relative proportion of these proteins in bovine milk is moderate 

to high (Bobe et al., 1999; Schopen et al., 2009; Gebreyesus et al., 2016), which 

provides the opportunity to alter the protein composition of milk through selective 

breeding. Prediction of genetic merit for traits related to milk protein composition 

has never been reported and one reason for this is that measurements of the 

detailed protein composition of milk is currently limited to experimental samples 

due to costly and time-consuming analytical techniques. 

In livestock breeding, genomic selection has become a successful approach, 

especially for sex-limited traits, because it speeds up the selection process by 

reducing generation interval and enables to select new selection candidates at 

early ages. Accuracy of genomic prediction hinges on a number of factors including 

size of reference population, heritability of the trait, effective population size, 

marker density, and the genetic architecture of the trait, in particular, the number 

of loci that affect the trait and the distribution of their effects (Daetwyler et al., 

2008; Goddard, 2009; Meuwissen, 2009). Therefore, prediction accuracy for traits 

with limited records is still low. However, if the methodology used exploits 

information about the distribution of the loci that underlie a trait, traits that are 

controlled by a few quantitative trait loci (QTL) with major effects can be predicted 

with better accuracy than traits that have a more polygenic nature (Hayes et al, 

2010). Several statistical models have been developed for genomic prediction using 

genome-wide single-nucleotide polymorphisms (SNPs), which include the Bayesian 

models (e.g. BayesA and BayesB) of Meuwissen et al. (2001), the genomic best 

linear unbiased prediction (GBLUP) model (VanRaden, 2008) and several extensions 

of these models. Compared to GBLUP, the Bayesian variable selection models 

improve considerably prediction reliability for traits that are controlled by a few 

QTL with major effects (Cole et al., 2009; Legarra et al., 2011). This is mainly due to 

the assumption that, in the GBLUP model, the variance does not vary across the 

genome, i.e. it does not take heterogeneity over segments into account. Unlike 

GBLUP, Bayesian variable selection models allow the variance of SNP effects to 

differ among loci (VanRaden, 2008). Genome-wide association studies have 

indicated that a few QTL regions underlie substantial proportions of the genetic 

variation in traits related to milk protein composition (Schopen et al., 2011). Hence, 

it is expected that, for traits related to milk protein composition, a model assuming 
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SNP-specific variances in genomic prediction can result in higher prediction 

reliability than the GBLUP approach. However when the available dataset is small, 

as is the case for expensive-to-measure traits, reliable estimation of SNP-specific 

variances with the Bayesian approach becomes problematic since there are too 

many parameters to estimate relative to the information available. In such 

situations, Gianola et al. (2009) suggested to group SNPs according to their 

common variance. Grouping adjacent SNPs might be advantageous for estimating 

variances reliably by enhancing the amount of information and reducing the 

number of parameters to estimate. Adjacent SNPs are very likely to be in linkage 

disequilibrium (LD) with the same QTL and to have the same variance, which allow 

us to account for heterogeneity between SNP groups. In this context, SNPs must be 

properly ordered and grouped such that they are realistically in LD with the same 

QTL while ensuring that their group size is optimum for the reliable estimation of 

variances. 

Another option that is widely used to deal with traits of limited records is to 

implement multi-trait models, which simultaneously use information from related 

traits and individuals (Henderson and Quaas, 1976). In multi-trait analysis, 

correlation structures between the traits is central to gaining any advantage in 

prediction reliability over single-trait predictions (Calus and Veerkamp, 2011). Milk 

protein traits have a low to moderate genetic correlation with routinely recorded 

traits such as total protein yield (Schopen et al., 2009). However, while the 

genome-wide correlation is generally low, specific genomic segments may display 

high genetic correlations between SNP effects for different traits. Therefore, 

modeling such heterogeneous covariance patterns may result in improved 

prediction reliability, when using multi-trait models. 

In this study, we report genomic prediction reliabilities for traits related to milk 

protein composition using a relatively small set of cow data by developing novel 

Bayesian hierarchical models that account for heterogeneous variance structures 

across regions over the genome. Furthermore, we extend our novel Bayesian 

models to bivariate scenarios that model heterogeneous covariance structures 

between milk protein composition traits measured on cows and a large set of bull 

data with highly accurate de-regressed proofs (DRP) for total protein yield. 
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3.2 Methods 

 

3.2.1. Animals and phenotypes 

Available data comprised two datasets: a relatively small set of cow data with 

information on traits related to milk protein composition and a large set of bull 

data with highly accurate total protein yields from regular milk recordings on 

daughters. Individuals in the two datasets were genetically related i.e. all the cows 

had their sires in the bull dataset. 

Single morning milk samples were collected once from 650 Danish Holstein cows in 

21 herds. Cows were sampled at different stages of lactation (days 9 to 481 in milk) 

and parity (1 to 4). Liquid chromatography/electrospray ionization-mass 

spectrometry (LC/ESI-MS) methods were used for profiling milk proteins. Details on 

the identification and relative quantification of milk proteins are in Jensen et al. 

(2012). We used these methods to quantify milk proteins, including αS1-CN, αS2-CN, 

β-CN, κ-CN, α-LA, and β-LG, posttranslational modifications of G-κ-CN and αS1-CN-

8P, as well as total protein percentage. In later analyses, β-CN was excluded from 

the genetic analysis due to very low estimates of its heritability across models (0.01 

to 0.05), which made meaningful predictions difficult to obtain given the small 

sample size. 

DRP for milk protein yield were obtained from 5326 progeny-tested Danish 

Holstein bulls. Estimated breeding values from the Nordic genetic evaluation in 

January 2013 were used to derive DRP following the methodology described by 

Schaeffer (2001).  

 

3.2.2. Genotypes 

Genotyping was performed using the BovineHD Illumina Beadchip for 372 cows or 

the BovineSNP50 Beadchip for the remaining 278 cows and all the bulls. SNPs that 

were overlapping in these two genotyping arrays were combined and subjected to 

quality control. Quality parameters used to select SNPs were: (1) minimum call 

rates of 90% for individuals and 95% for loci and (2) exclusion of SNPs with a minor 

allele frequency (MAF) lower than 5%. Finally, 36,000 SNPs across the 29 bovine 

autosomes were available for the analyses. 

 

3.2.3. Models 

Hierarchical Bayesian models based on genome segments of different sizes 

(hereafter collectively called BayesAS models) were developed to predict genomic 
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breeding values (GBV). Univariate and bivariate GBLUP models were used to 

compare performances of the novel Bayesian models. 

 

3.3.3.1. GBLUP models 

Univariate (based on cow data only) and bivariate (based on combined cow data 

and bull DRP) GBLUP models were implemented using DMU (Madsen and Jensen, 

2007). The general model used for the univariate analysis (ST-GBLUP) was: 

𝑦𝑖𝑗𝑘𝑙 =  𝜇𝑖 + 𝑝𝑎𝑟𝑖𝑡𝑦𝑖𝑗 + ℎ𝑒𝑟𝑑𝑖𝑘 + 𝑏𝑖1 𝐷𝐼𝑀𝑙  

+ 𝑏𝑖2 ∗ 𝑒𝑥𝑝−0.05∗𝐷𝐼𝑀𝑙 + 𝑔𝑖𝑙 +  𝑒1𝑖𝑗𝑘𝑙  ,            (1) 

where 𝑦𝑖𝑗𝑘𝑙  are the observations on trait 𝑖 from cow 𝑙, in parity 𝑗, and herd 𝑘; 𝜇𝑖  is 

the fixed mean effect for trait 𝑖; 𝑏𝑖1 is the regression coefficient for 𝐷𝐼𝑀𝑙  in trait 𝑖, 

which is a covariate describing the effect of days in milk for each cow 𝑙; 𝑏𝑖2 is the 

regression coefficient for the Wilmink adjustment (𝑒𝑥𝑝−0.05∗𝐷𝐼𝑀𝑙) of days in milk for 

trait 𝑖; 𝑒1𝑖𝑗𝑘𝑙  is a random residual effect that is assumed to be normally distributed 

with 𝐞1 ~ 𝑁(0, 𝐈1 𝑒1
2 ), where 𝐈1 is an identity matrix with dimensions 650 by 650. 

The effect of 𝑔𝑖𝑙  is a random additive genetic effect for trait 𝑖 of cow 𝑙 with 

distribution 𝑁(0, 𝐆𝜎𝑎
2), where 𝐆 is the genomic relationship matrix between cows 

with dimension 650 by 650 and 𝜎𝑎
2 is the genetic variation in trait 𝑖. 

To run a bivariate analysis (MT-GBLUP) of DRP on protein yield and each protein 

composition trait, DRP were modelled as: 

𝑦𝐷𝑅𝑃𝑙
 =  𝜇𝐷𝑅𝑃  +  𝑔2𝑙  +  𝑒2𝑙,                                                        (2) 

where, 𝑦𝐷𝑅𝑃𝑙
 is the DRP for bull 𝑙; and 𝜇𝐷𝑅𝑃 is the corresponding fixed mean effect. 

𝑔2𝑙 is the random additive genetic effect for animal l for protein yield with 

distribution 𝑁(0, 𝐆2𝜎𝑎
2), where 𝐆2 is the genomic relationship matrix for combined 

cow and bull population with dimension 5976 by 5976. Distribution of the vectors 

of the two animal effects in the bivariate models are as follows: 

(𝐠𝟏 
𝐠𝟐

) ~𝑁 ((0
0
), 𝛴⨂𝐆𝟐 ), 

with 𝛴 =  ( 𝜎1
2

𝜎1,2

𝜎1,2

𝜎2
2 ), 
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where, in this case, 𝐠1 is a vector of breeding values for all animals for one of the 

cow traits based on the covariance matrix 𝐆2 unlike in Model (1); 𝜎1
2 is the genetic 

variance for each cow trait and 𝜎2
2 is the genetic variance for the bull DRP. 

The random residual effect 𝑒2𝑙, in Model (2), is assumed to be normally distributed 

with, 𝐞𝟐 ~ 𝑁(0, 𝐈2 𝑒2
2 ), where 𝐈2 is an identity matrix with dimension 5326 by 5326 

and 𝑒2
2  is the residual variation for bull DRP. In the bivariate analysis, the residual 

covariance for the pair of bivariate traits was set to zero because the observations 

came from different individuals. The distribution of the vectors of the two residual 

effects in the bivariate analyses can be described as: 

(𝐞𝟏 
𝐞𝟐

) ~𝑁 ((0
0
), (

𝐈1𝜎𝑒1
2

0
 0

𝐈2𝜎𝑒2
2 )). 

The genomic relationship matrix used in the GBLUP models was calculated as 

described in the first method presented by VanRaden (2008).  

3.2.3.2. BayesAS models 

Models that were proposed initially by Janss (2014) were implemented in the 

MCMC Bayesian framework of the Bayz program (www.bayz.biz). Adjacent SNPs 

were grouped into non-overlapping genomic segments and the (co)variance for 

each segment was estimated. Accordingly, six models were implemented, in which 

a genome segment was defined as: single SNPs or groups of 50, 100, or 200 

adjacent SNPs, a complete chromosome or all the SNPs in the genome. The model 

that considers the whole genome as a segment can be considered basically as a 

GBLUP model implemented in a Bayesian manner. 

Univariate (ST) and bivariate (MT) versions of the BayesAS models were 

implemented. For the ST-BayesAS models, each protein composition trait (𝑦𝑖𝑗𝑘𝑙) 

from the cow dataset was run as in the model described below: 

𝑦𝑖𝑗𝑘𝑙 =  𝜇𝑖 + 𝑝𝑎𝑟𝑖𝑡𝑦𝑖𝑗 +  ℎ𝑒𝑟𝑑𝑖𝑘  

+ 𝑏𝑖1 𝐷𝐼𝑀𝑙 +  𝑏𝑖2 ∗ 𝑒𝑥𝑝−0.05∗𝐷𝐼𝑀𝑙 + 𝐳𝑙  𝐚𝑖  +  𝑒1𝑖𝑗𝑘𝑙 .  (3) 

Model components for fixed effects, covariates and random residual effects are in 

Model (1). 𝐙 is a matrix with SNP covariates (centered) with dimensions of the 

number of individuals (n = 650) by the number of loci (m = 36,000) and 𝐳𝑙 is a row 

http://www.bayz.biz/
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of genotypes for animal 𝑙, 𝐚𝑖  is a vector of SNP effects for trait 𝑖, with length m and 

with elements 𝐚𝑖 = {𝑎𝑖𝑗𝑘}, such that 𝑎𝑖𝑗𝑘  is the effect of SNP 𝑘 in SNP group 𝑗 for 

trait 𝑖. 

For the MT-BayesAS models, an additional model component was included to run 

the DRP on total protein yield from bulls (𝑦𝐷𝑅𝑃𝑙
) simultanously with each protein 

composition trait from cows. The following model was added to run the bivariate 

MT-BayesAS analyses: 

𝑦𝐷𝑅𝑃𝑙
 =  𝜇𝐷𝑅𝑃  +  𝐳𝑙  𝐚𝑖  +  𝑒2𝑙,              (4) 

𝐙 in the MT-BayesAS is a matrix with SNP covariates (centered) with dimensions of 

the number of individuals (n = 5976) by the number of loci (m = 36,000) and 𝐳𝑙 is a 

row of genotypes for animal 𝑙,  𝐚𝑖 is a vector of SNP effects for trait 𝑖, with length m 

and with elements 𝐚𝑖 = {𝑎𝑖𝑗𝑘} and the residual term (𝑒2𝑙), is as in Model (2). The 

index “i” here refers to both cow trait and bull DRP run in each bivariate analysis, 

for sake of simplicity in describing the models. SNP effects between each of the two 

traits in the bivariate analyses are correlated using latent variables by the following 

hierarchical model: 

𝑎𝑖𝑗𝑘 =  𝑟0𝑖  ∗  𝐬0  +  𝑟1𝑖𝑗   ∗  𝐬1  + 𝑎𝑖𝑗𝑘
∗ ,                              (5) 

where 𝐬0 = {𝑠0𝑗𝑘} and 𝐬1 = {𝑠1𝑗𝑘} are vectors of latent variables with length m, to 

model average covariance across SNP groups (𝐬0) and deviations within SNP groups 

(𝐬1) using nested regression; 𝑟0𝑖  is a regression coefficient of 𝐬0 for all SNPs and 𝑟1𝑖𝑗  

is a regression coefficient of 𝐬1 for each SNP group 𝑗; and 𝑎𝑖𝑗𝑘
∗  is the residual SNP 

effect, which is uncorrelated across traits. The latent variables in 𝐬0 and 𝐬1 are 

assumed to be normally distributed with a variance of 1: 

𝐬0~𝑁(0, 𝐈) and 𝐬1~𝑁(0, 𝐈), 

where, 𝐈 is an identity matrix with dimensions of number of loci (m = 36,000). 

Distributional prior assumptions for the regression coefficients of 𝐬0 and 𝐬1 are: 

 𝑟0𝑖  ~ 𝑈(−∞, ∞), 

𝑟1𝑖𝑗~ 𝑁(0, 𝜎𝑟1𝑖
2 ), 
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𝜎𝑟1𝑖
2  ~ 𝑈(0, ∞), 

where 𝑈() stands for a uniform distribution across the given interval. 

The residual SNP effect 𝑎𝑖𝑗𝑘
∗  is assumed to be normally distributed with a mean of 0 

and SNP-group specific variance (𝜎𝑎𝑖𝑗
∗  

2 ) for which an inverse-chi-square distribution 

was set with scale 𝑆𝐶𝑖
2 and degrees of freedom 𝑑𝑓𝑖  for all SNP effects in group 𝑗: 

𝑎𝑖𝑗𝑘
∗  ~ 𝑁(0, 𝜎𝑎𝑖𝑗

∗  
2 ), 

𝜎𝑎𝑖𝑗
∗  

2  ~𝜒−2(𝑆𝐶𝑖
2, 𝑑𝑓𝑖). 

The scale parameter 𝑆𝐶𝑖
2 is assumed to have a uniform distribution. The parameter 

𝑑𝑓𝑖  is set so that the spread of the variances of individual SNP-groups around the 

common scale is controlled (here, a value of 5 was used). 

Samples of the posterior distributions of the model parameters are obtained using 

MCMC techniques, i.e. sampling from conditional distributions. The conditional 

distributions for all parameters in Eqs (3), (4) and (5) are normal and for variances 

are scale-inverse chi-squared. For the parameters 𝐬0 and 𝐬1, which are present in 

the expectation for multiple SNP-effects, the bayz software automatically combines 

all parts of the likelihoods and combines them with the prior distribution to form 

the conditional posterior. 

𝐙𝐚𝑖  from Models (3) and (4) computes the genomic values (𝐠𝑖) at each MCMC 

cycle. The total explained genomic variance for trait 𝑖 is computed as the variance 

of the genomic values from every MCMC cycle: 

𝜎𝑖
2 = 𝑣𝑎𝑟(𝐙𝐚𝑖) = 𝑣𝑎𝑟(𝐠𝑖).                 (6) 

The genomic covariance between the cow and bull traits can then be calculated as: 

𝜎𝑐𝑜𝑤,𝑏𝑢𝑙𝑙 = 𝑐𝑜𝑣(𝐠𝑐𝑜𝑤 , 𝐠𝑏𝑢𝑙𝑙),    (7) 

where 𝐠𝑐𝑜𝑤  is a vector of genomic values for all individuals for each cow-trait and 

𝐠𝑏𝑢𝑙𝑙  is a vector of genomic values of all individuals for total protein yield. Similarly, 

genetic values for the individuals at SNP group 𝑗 (𝐠𝑖𝑗) was calculated at each MCMC 

sample based on the genotypes and estimated effects of SNPs in group 𝑗 as: 
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𝐠𝑖𝑗 = 𝐙𝑗  𝐚𝑖𝑗,      (8) 

where 𝐙𝒋 is a matrix of covariates for SNPs within group 𝑗, with size of number of 

individuals by number of SNPs at group 𝑗, and 𝐚𝑖𝑗  is a vector of effects of SNPs at 

group 𝑗 for trait 𝑖. Genomic variance for trait 𝑖 at SNP group 𝑗 was then calculated 

from these MCMC samples of individual genetic values as: 

𝜎𝑖𝑗
2 = 𝑣𝑎𝑟(𝐠𝑖𝑗).                 (9) 

The proportion of the genomic variance explained by segments was computed for 

each trait 𝑖 as: 
𝜎𝑖𝑗

2

𝜎𝑖
2. The genomic covariance for each cow and bull trait at each SNP 

group 𝑗 was then calculated as: 

𝜎𝑐𝑜𝑤𝑗,𝑏𝑢𝑙𝑙𝑗 = 𝑐𝑜𝑣(𝐠𝑐𝑜𝑤𝑗 , 𝐠𝑏𝑢𝑙𝑙𝑗).            (10) 

Inferences were based on 500,000 Gibbs samples. The first 50,000 samples were 

discarded as burn-in, and every 500th sample was saved for post-Gibbs analyses. 

The mean of the variance and covariance terms, which are calculated in each 

MCMC iteration, is used later. Convergence was assessed using the R package 

CODA (Plummer et al., 2006). 

The BayesAS models presented in this study can be considered as extensions of the 

Bayes A model of Meuwissen et al. (2001) mainly different in that estimates of 

variances are per SNP groups (segments) instead of single SNP. In this case, taking 

one SNP as a segment might be considered as an approximation to the BayesA 

approach.  

However, there still is a difference in that the scale parameter of the 𝜒−2(𝑆𝐶𝑖
2, 𝑑𝑓𝑖) 

prior for 𝜎𝑎𝑖𝑗
∗  

2 is treated as unknown instead of being fixed. Moreover, the bivariate 

versions of BayesAS uniquely use latent variables to model covariances between 

traits. 

 

3.2.4. Comparison of the predictive ability between models 

A resampling strategy using cows in five test sets was implemented to compare 

models for prediction reliability. Our aim was to avoid sibling relationships between 

each test set and between the training and test sets. Hence, 197 cows, which had 

no siblings in the dataset, were selected. In each of the resampled analyses, 100 of 

the 197 cows were randomly taken for the test set, while the remaining 97 cows 
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from each random sampling were included in the reference population of 550 

cows. For all models, prediction reliability for cows was computed as the squared 

correlation between estimated GBV and the phenotype corrected for fixed effects 

as in Model (1), divided by heritability estimates (Su et al., 2012) from the complete 

dataset of 650 cows using Model (1). Since the major practical implication of 

genomic prediction studies is to assess the predictive ability of models for young 

bulls with no phenotypic record, reliabilities of models in the MT-BayesAS analyses 

were computed for bulls using standard errors of predicted GBV using the following 

formula, as described by Mrode (2014): 

1 −  
𝑆𝐸𝑃𝑙

2

𝜎𝑖
2 ,                                  (11) 

where 𝑆𝐸𝑃𝑙 is the standard error of prediction (posterior standard deviations from 

MCMC samples) of GBV for each bull based on its Gibbs samples for each protein 

composition trait; and 𝜎𝑖
2 is the total genomic variance calculated as in Eq. (6), 

which, as an approximation, was taken as the additive genetic variance. Model 

reliabilities were computed for all bulls, and the average was taken as the model 

reliability for the respective trait. 

Further analyses were conducted using the Gibbs samples from the 100-SNP 

segment size MT-BayesAS model to assess prediction reliability when varying the 

proportion of segments, based on ranking of explained genomic variance, were 

used for prediction. Prediction reliabilities were, accordingly, computed using the 

top 2% (8), 7% (26), 15% (56), 25% (93), 50% (186), or 75% (279) of all 372 genomic 

segments included in the analyses. Segments were ranked on estimated variance 

based on evaluation on the training data with all segments included. Reliabilities 

were computed for the test sets similarly as in the other BayesAS models and were 

used to compare the different scenarios. 

 

3.3 Results 

 
3.3.1. Heritability estimates for milk protein composition traits and genomic 
correlations with total protein yield 
Table 3.1 presents heritability estimates for traits related to milk protein 

composition obtained with the ST-GBLUP model, their genome-wide correlations 

and covariances with total milk protein yield obtained with the MT-GBLUP model. 

Heritability estimates were high for κ-CN, G-κ-CN, β-LG, and protein percentage. 

Heritability estimates were moderate for αS2-CN, but lower for αS1-CN, αS1-CN-8P, 
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and α-LA. Milk protein composition traits showed very low (-0.16 to 0.15) genomic 

correlations with total milk protein yield. Genome-wide correlations with protein 

yield were negative for αS2-CN, αS1-CN-8P, and protein percentage. Standard errors 

of the correlations were higher than the correlation estimates for all traits except 

for αS2-CN and protein percentage. 

 

Table 3.1 Heritability estimates and genome-wide correlations and covariances 
with total milk protein yield 
 

aTrait h2 SE Covariance SE Correlation SE 

αS1-CN 0.14 0.07  0.01 0.05  0.04 0.16 

αS1-CN-8P 0.14 0.09 -0.02 0.05 -0.07 0.16 

αS2-CN 0.33 0.09 -0.08 0.06 -0.16 0.12 

κ-CN 0.69 0.09  0.06 0.05  0.09 0.07 

G-κ-CN 0.41 0.09  0.0008 0.04  0.0006 0.10 

α-LA 0.15 0.09  0.05 0.05  0.15 0.16 

β-LG 0.52 0.10  0.04 0.05  0.07 0.09 

Protein% 0.54 0.09 -0.08 0.06 -0.14 0.10 

aProtein composition expressed as a fraction of the total milk protein percentage 
by weight wt (wt/wt), protein% expressed as percentage of the total milk yield; 
individual proteins comprise only the peaks identified as intact proteins and 
isoforms; that is, αS1-CN (comprises αS1-CN 8P + 9P), αS2-CN (comprises αS2-CN 11P + 
12P), κ-CN (comprises κ-CN G 1P + unglycosylated κ-CN 1P), where P = 
phosphorylated serine group. G-κ-CN = glycosylated-κ-CN; αS1-CN-8P= αS1-CN with 
8 phosphorylated serine groups 
Heritability (h2) estimates were from the univariate GBLUP analysis; covariances 
and correlations are from the bivariate GBLUP model 
 
 
3.3.2. Prediction reliability of the GBLUP models 

Prediction reliabilities were low for all traits (0.03 to 0.21) when using the ST- and 

MT-GBLUP models (Table 3.2). Compared to the other protein composition traits, 

β-LG (0.21) and κ-CN (0.16) had the highest prediction reliabilities, whereas αS2-CN 

and αS1-CN-8P had the lowest (0.03) when using univariate analysis. There was a 

slight gain in prediction reliability for αS2-CN and protein percentage when bivariate 

analysis was used. There was no improvement in prediction reliability for κ-CN, G-

κ-CN, β-LG, or αS1-CN-8P compared to ST-GBLUP predictions. Prediction reliability 
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was a little lower with the MT-GBLUP model than with univariate prediction for αS1-

CN and α-LA. 

Table 3.2 Prediction reliability from univariate and bivariate GBLUP models 

aTrait ST-GBLUP MT-GBLUP 

αS1-CN 0.11 0.10 

αS1-CN-8P 0.03 0.03 

αS2-CN 0.03 0.06 

κ-CN 0.16 0.16 

G-κ-CN 0.14 0.14 

α-LA 0.12 0.11 

β-LG 0.21 0.21 

Protein% 0.10 0.12 
aProtein composition expressed as a fraction of the total milk protein percentage 
by weight wt (wt/wt), protein% expressed as percentage of the total milk yield; 
individual proteins comprise only the peaks identified as intact proteins and 
isoforms; that is, αS1-CN (comprises αS1-CN 8P + 9P), αS2-CN (comprises αS2-CN 11P + 
12P), κ-CN (comprises κ-CN G 1P + unglycosylated κ-CN 1P), where P = 
phosphorylated serine group. G-κ-CN = glycosylated-κ-CN; αS1-CN-8P = αS1-CN with 
8 phosphorylated serine groups. 

 

3.3.3. Genome segment-wise variances for milk protein composition traits and 

covariance with total protein yield 

Figure 3.1 presents the proportion of genomic variance in milk composition traits 

explained by each chromosome using the ST-BayesAS model. Marked differences 

were observed in the proportion of genomic variance explained by genome 

segments across the traits. For some of the protein composition traits, a single 

chromosome explained up to or more than half of the genomic variance. For 

instance, Bos taurus (BTA) chromosome 6 explained 76, 63 and 47 % of the 

genomic variance for κ-CN, G-κ-CN and αS2-CN, respectively. Likewise, 40% of the 

genomic variance for β-LG was explained by BTA11 alone. 
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Figure 3.2 shows the covariances between traits related to milk protein 

composition and total protein yield explained by genomic segments of 100 SNPs. 

Across the traits, some segments explained a large part of the covariance, whereas 

others accounted for nearly no covariance. Covariances between total milk protein 

yield and a particular trait were positive for some segments and negative for 

others. For G-κ-CN, κ-CN, β-LG, αS2-CN, and protein percentage, a few segments 
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showed peaks for the explained covariance. Segment 106, corresponding to a 

group of 100 adjacent SNPs on BTA6, explained a large amount of positive 

covariance of αS2-CN, κ-CN, and G-κ-CN with total protein yield. Similarly, a sizable 

proportion of the covariance between β-LG and protein yield was explained by a 

single segment on BTA11. A segment on BTA14 explained a substantial part of the 

negative covariance between protein percentage and protein yield. The same 

segment showed a peak for the covariance between αS1-CN-8P and total milk 

protein yield compared to the rest of the segments. Although some segments 

explained relatively more covariance between αS1-CN and total protein yield and 

between α-LA and total protein yield compared to other segments, the actual 

covariance values explained by these segments were very low (note the difference 

in y-axis scales between plots in Figure 3.2). 
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3.3.4. Prediction reliability with BayesAS models 

Prediction reliabilities for cows using the BayesAS models were generally high 

compared to those obtained with the GBLUP models across all traits. Prediction 

reliabilities using both the MT- (Figure 3.3) and ST-BayesAS models were generally 

high for most of the highly heritable traits, such as κ-CN, G-κ-CN, and β-LG, using 

different segment sizes. Using the 100-SNP segment size resulted in the highest 

prediction reliability for all studied protein composition traits in both univariate 

and bivariate versions of the BayesAS models. Prediction reliabilities using the 100-

SNP segment size with the MT-BayesAS model were 0.76 for G-κ-CN, 0.68 for κ-CN, 

and 0.52 for β-LG. Expanding the segment size to include all SNPs on a 

chromosome or the whole genome resulted in the lowest prediction reliabilities 

with the BayesAS models. The performance of the whole-genome-based model 

was similar to that of the respective GBLUP models. With the MT-BayesAS model, 

improvement in prediction reliability reached 63% for G-κ-CN, 52% for κ-CN, 31% 

for β-LG, and 15% for αS2-CN when using the 100-SNP-based model compared to 

the whole-genome-based model. Prediction reliabilities were low for αS1-CN, α-LA, 

and αS1-CN-8P for all BayesAS models and improved minimally by using the 100-

SNP-based model compared to the whole-genome approach. The 50- and 100-SNP 

models performed similarly well for β-LG. However, for the other proteins, the 100-

SNP model outperformed both the 50- and 200-SNP based models, which generally 

showed comparable results. Using the single-SNP segment size resulted in lower 

performance compared to the 50-, 100-, and 200-SNP-based models for all traits. 

Prediction reliabilities computed for β-LG and protein percentage using the single-

SNP-based MT-BayesAS model were better than when each chromosome (by 13 

and 1 percentage points) or the whole genome was used as the segment (by 18 and 

2 percentages points), respectively. 
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In general, slight additional gains in prediction reliability were achieved using the 

MT-BayesAS models compared to the univariate BayesAS model (Table 3.3), i.e. 6 

and 5 percentage points for G-κ-CN and κ-CN using 100 SNP-segments and the 

average improvement with this segment size was 3 percentage points. However, 

improvement in prediction reliability from the MT-BayesAS models declined when 

the whole genome was taken as segment, which resulted basically in similar 

performances than the ST version except for β-LG. 

 

Table 3.3 Prediction reliability from univariate and bivariate BayesAS models 
 

aTrait BayesAS-1SNP  BayesAS-100SNP  BayesAS-Genome 

MT ST MT ST  MT ST 

αS1-CN 0.10 0.09  0.13 0.09  0.10 0.09 

αS1-CN-8P 0.04 0.02  0.06 0.03  0.03 0.03 

αS2-CN 0.03 0.03  0.18 0.16  0.03 0.03 

κ-CN 0.38 0.37  0.68 0.63  0.16 0.16 

G-κ-CN 0.41 0.39  0.76 0.70  0.13 0.14 

α-LA 0.11 0.09  0.14 0.14  0.11 0.11 

β-LG 0.39 0.39  0.52 0.50  0.21 0.19 

Protein% 0.14 0.14  0.18 0.17  0.12 0.11 
aProtein composition expressed as a fraction of the total milk protein percentage  
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by weight wt (wt/wt), protein% expressed as percentage of the total milk yield; 
individual proteins comprise only the peaks identified as intact proteins and 
isoforms; that is, αS1-CN (comprises αS1-CN 8P + 9P), αS2-CN (comprises αS2-CN 11P + 
12P), κ-CN (comprises κ-CN G 1P + unglycosylated κ-CN 1P), where P = 
phosphorylated serine group. G-κ-CN = glycosylated-κ-CN; αS1-CN-8P = αS1-CN with 
8 phosphorylated serine groups 
 
3.3.5. Reliabilities of models for bulls 

Table 3.4 shows the reliabilities of the MT-BayesAS models for bulls with segments 

of different sizes. Prediction reliability computed for the cow datasets was higher 

than that for bulls for G-κ-CN while the reverse was found for αS2-CN. Higher model 

reliabilities were computed for bulls for αS2-CN, κ-CN, G-κ-CN and β-LG with the 50- 

and 100-SNP segments compared to the other MT-BayesAS models. On the 

contrary, prediction reliability did not vary much across models for αS1-CN, α-LA, 

αS1-CN-8P and protein percentage, which had relatively low reliabilities. Prediction 

reliabilities obtained from the MT-GBLUP model were similar to those from the 

genome-based MT-BayesAS model for all traits and hence are not presented in 

Table 3.4. 

Table 3.4 Model reliability for bulls across the MT-BayesAS models 

aTrait MT-BayesAS  model reliability 

1 50 100 200 Chromosome Genome 

αS1-CN 0.05 0.06 0.04 0.06 0.05 0.06 

αS1-CN-8P 0.06 0.06 0.06 0.06 0.06 0.07 

αS2-CN 0.12 0.32 0.32 0.26 0.21 0.14 

κ-CN 0.56 0.71 0.71 0.68 0.56 0.21 

G-κ-CN 0.42 0.56 0.56 0.54 0.39 0.15 

α-LA 0.07 0.07 0.08 0.08 0.08 0.06 

β-LG 0.37 0.50 0.51 0.49 0.27 0.19 

Protein % 0.23 0.22 0.22 0.21 0.19 0.18 
aProtein composition expressed as a fraction of the total milk protein percentage 
by weight wt (wt/wt), protein% expressed as percentage of the total milk yield; 
individual proteins comprise only the peaks identified as intact proteins and 
isoforms; that is, αS1-CN (comprises αS1-CN 8P + 9P), αS2-CN (comprises αS2-CN 11P + 
12P), κ-CN (comprises κ-CN G 1P + unglycosylated κ-CN 1P), where P = 
phosphorylated serine group. G-κ-CN = glycosylated-κ-CN; αS1-CN-8P= αS1-CN with 
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8 phosphorylated serine groups. 
 

3.3.6. Prediction reliabilities with selected genome segments 

Figure 3.4 shows prediction reliabilities according to the proportion of selected 

100-SNP segments used in the prediction. Using fewer segments that explain large 

proportions of the variances resulted in higher predictive ability for G-κ-CN, κ-CN, 

β-LG, αS2-CN, and protein percentage. For these traits, prediction reliability using 

only 2% (8) of the top-ranked segments resulted in the highest reliability, whereas 

prediction reliability decreased as more segments were added. In contrast, 

prediction reliability increased as more segments were added for α-LA, αS1-CN, and 

αS2-CN-8P, with the highest reliability obtained when all segments were used for 

prediction. 
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3.4 Discussion 

 

3.4.1. ST-GBLUP vs. MT-GBLUP models 

Using only the cow dataset with the GBLUP model resulted in low prediction 

reliability, due to the small size of the training dataset. Reference population size is 

a key factor that affects reliability of genomic prediction in cattle (Daetwyler et al., 

2008; Hayes et al., 2010; VanRaden et al., 2009). Moreover, a small sample size 

may not sufficiently reflect the genetic variability. For instance, considering a 

subset of the cow dataset used in this study, Poulsen et al. (2013) showed that the 

genetic variation of the CSN1N1 gene was very low in Danish Holstein, with most 

individuals having the BB genotype, which may explain the lower prediction 

reliability for αS1-CN and its sub-fraction αS1-CN-8P. 

Although information on total protein yield from a large number of bulls was added 

when using the MT-GBLUP model, prediction reliabilities were as poor as, or even 

worse than, those in the univariate analysis. Thus, addition of information from 

total milk protein yield was not sufficient to offset the computational burdens of 

the bivariate analyses, due to the low genome-wide correlation between protein 

yield and composition traits. Among the milk proteins, the highest genome-wide 

correlation with total protein yield was measured for αS2-CN (-0.16) and protein 

percentage (-0.14), for which the MT-GBLUP model resulted in slightly improved 

prediction reliabilities for cows and bulls. Although α-LA had a correlation of 0.15 

with total protein yield, the standard error of the correlation was higher than the 

correlation estimate (0.16). Although the data used was limited, our findings on 

genome-wide correlations were comparable to results from previous studies. In the 

literature, genetic correlations between milk protein percentage and protein yield 

in different dairy cattle breeds are low, in general (Meyer, 1985; Chauhan and 

Hayes, 1991; Roman and Wilcox, 2000). 

Moreover, all the bivariate analyses in our study involved combination of data on 

different scales, which may have influenced the computed reliabilities. DRP for milk 

protein yield were expressed on a lactation basis (305-day production), whereas 

protein composition traits and percentage were related to one morning milk 

sample. In our study, prediction reliabilities for the traits related to milk protein 

composition traits were expected to improve if both traits in the bivariate analyses 

were on a similar scale. 

 

3.4.2. Predictive ability of BayesAS models 

Prediction reliabilities from the resampling showed large improvements with the 
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ST- and MT-BayesAS models compared to their GBLUP counterparts. The BayesAS 

models allow for different variances and covariances by SNP groups, which can 

deviate from the genome-wide (co)variance. This was especially important for 

some traits for which one or two key segments alone explained a large part of the 

total variance. Grouping adjacent SNPs seems to have helped to get more reliable 

estimates from a small dataset while allowing the segments to have different 

variances disentangled heterogeneous (co)variance patterns and improved 

prediction reliability. Similarly, a simulation study by Shariati et al. (2012) showed 

that prediction reliability based on SNP grouping was better than that obtained by 

SNP-BLUP methods. SNP grouping in the study of Shariati et al. (2012) was based 

on similar effect sizes. Other grouping options also exist, e.g. depending on LD 

between SNPs (Dehman et al., 2015). The BayesAS models can also be used to 

implement such grouping strategies for which segment sizes might vary depending 

on LD or effect size similarity. 

Prediction reliability with the BayesAS models appears to depend highly on the 

segment sizes considered and the genetic architecture of the traits. Comparison 

between the BayesAS models with different segment sizes showed that grouping 

100 adjacent SNPs resulted in superior performance for all proteins. Grouping 50 

SNPs was as predictive as the models based on 100-SNP segments for all traits 

except G-κ-CN for which prediction reliability improved by 9 percentage points 

with the 100-SNP segment size model. Taking each SNP as a segment resulted in 

lower prediction reliability than groups of 50, 100, or 200 adjacent SNPs for most 

traits. With our BayesAS models, prediction reliabilities decreased as segment size 

increased beyond 100 SNPs in both the univariate and bivariate analyses. The 

lowest reliabilities were obtained when considering each chromosome or the 

whole genome as segments. In other words, the (co)variance between segments 

was diluted as segment size increased beyond 100 SNPs. Similarly, Brøndum et al. 

(2012) reported that using a segment size of 100 SNPs resulted in the highest 

accuracy in an across-breed genomic prediction study for protein, fat, and milk 

yield using 465,000 SNPs. Defining the optimal segment size, in terms of number of 

adjacent SNPs, is critical to achieving meaningful gains from the novel models 

presented here. Optimal segment size should be established for each specific 

situation, for instance through some resampling strategy, considering the SNP 

array, species, and LD in the population. 

The gain in prediction reliability from using different segment sizes in the BayesAS 

models also varied across the traits. In both the ST- and MT-BayesAS models, 

differences in prediction reliability between segment sizes were very large for G-κ-

CN, κ-CN, αS2-CN, and β-LG, whereas across all models they were smaller for αS1-
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CN, αS1-CN-8P, or α-LA. These results are likely related to the genetic architecture 

of the protein composition traits investigated. Previous genome-wide association 

studies found that the proportions of κ-CN, αS2-CN, and β-LG in milk are controlled 

by major QTL on BTA6 and 11 (Schopen et al., 2011), which carry the casein gene 

cluster and the gene encoding β-LG (Buitenhuis et al., 2016), respectively. On the 

one hand, a single chromosome could explain a very large proportion of the 

variance for some protein composition traits, including G-κ-CN, κ-CN, β-LG, and 

αS2-CN, which showed the largest improvement in reliability when the 

heterogeneity of variances across the genome segments was accounted for. On the 

other hand, the proportion of explained variance by each chromosome was very 

small for αS1-CN and α-LA, which indicates that many segments contribute small 

proportions to the average variance. Similarly, Buitenhuis et al. (2016) found no 

major region that was significantly associated with αS1-CN in the Danish Holstein 

population, which could be associated to the low genetic variability of the CSN1N1 

gene reported for this population by Poulsen et al. (2013). This result indicates that 

SNP grouping is more useful for traits that are controlled by QTL with major effects. 

Comparison between the univariate and bivariate versions of our BayesAS models 

showed that for the most informative traits, the MT version resulted in further 

improvements in prediction reliability of up to 6 percentage points for segment 

sizes of 100 and 50. While further improvements in prediction reliability of up to 

6% from the MT-BayesAS over the univariate versions are still important, it was 

generally lower than expected. Further investigations are required to understand 

the impact of genetic architecture of the indicator trait(s) on the potential 

advantages, over univariate analysis, of our bivariate BayesAS models. 

A few segments explained a substantial proportion of the genomic variance for 

traits related to milk protein composition and their covariance with protein yield. 

Thus, we investigated the reliability of predictions based on only a few of the best-

explaining 100-SNP segments. Predictions based on only 2% (8/372) of the genome 

segments resulted in the highest prediction reliability for G-κ-CN, κ-CN, β-LG, and 

αS2-CN. For these proteins, prediction reliability decreased as more segments were 

added. Inclusion of more segments that explained a smaller proportion of the 

(co)variance added noise rather than meaningful information. Similarly, in a 

simulation study based on a GBLUP approach Sarup et al. (2016) demonstrated that 

including non-causal markers led to dilution of the effect of causal markers and 

reduced predictive ability. For other protein composition traits, including αS1-CN-

8P, αS1-CN, and α-LA, prediction reliability improved as more segments were 

included, with the highest prediction reliability being obtained when all segments 

were considered. This result is in agreement with our finding on the proportions of 
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genomic covariance explained by 100-SNP segments, where many segments across 

the genome contributed small proportions of the average covariance between 

these traits and total protein yield. In this study, we have used the same dataset to 

rank the top segments and do the prediction. This could lead to overestimation of 

reliability and introduce prediction bias.  However, such bias is expected to be 

minimal as the SNP effects in these top segments are re-estimated for prediction 

with the different proportion of segments. 

 

3.5 Conclusions 

A novel BayesAS model, which allows to explore and model heterogeneous 

variance and covariance patterns across genomic regions, improved prediction 

reliabilities for milk protein composition traits with small dataset compared to the 

GBLUP and single-SNP based Bayesian models. The number of adjacent SNPs 

grouped together affected prediction reliability for the BayesAS models. A segment 

size of 100 SNPs gave the highest prediction reliability using 36,000 SNPs spread 

across the genome. For the most informative traits (highest genomic reliability), a 

further gain in reliability was observed when using the bivariate versions of our 

BayesAS models compared to univariate counterparts. Our results also show that 

the gains in prediction reliability achieved by SNP grouping depend on the genetic 

architecture of the traits. A future study with simulated data would be useful to 

test our novel BayesAS models with larger datasets. 
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Abstract 

In genome-wide association (GWA) studies, sample size is the most important 

factor affecting statistical power that is under control of the investigator, posing a 

major challenge in understanding the genetics underlying difficult-to-measure 

traits. Combining datasets available from different populations for joint or meta-

analysis is a promising alternative to increase sample sizes available for GWA 

studies. Simulation studies indicate statistical advantages from combining raw data 

or GWA summaries in enhancing quantitative trait loci (QTL) detection power. 

However, the complexity of genetics underlying most quantitative traits, which 

itself is not fully understood, is difficult to fully capture in simulated datasets. In 

this study, population-specific and combined-population GWA as well as different 

meta-analyses were carried out with the objective of assessing the advantages and 

challenges of different data combining strategies in enhancing detection power of 

GWA studies using milk fatty acid (FA) traits as examples. Gas chromatography (GC) 

quantified milk FA samples and high density (HD) genotypes were available from 

1566 Dutch, 614 Danish and 700 Chinese Holstein Friesian cows. Using the joint 

GWAS, 28 additional genomic regions were detected with significant associations 

to at least one FA compared to the population-specific analyses. Most of these 

additional regions were also detected using the different meta-analyses methods 

employed. Furthermore, using the confirmed regions of diacylglycerol 

acyltransferase 1 (DGAT1) and stearoyl-CoA desaturase (SCD1) genes, we show that 

significant associations were established with more FA traits in the joint GWA than 

the remaining scenarios. However, there were few regions detected in the 

population-specific analyses that were not detected using the joint GWA or the 

meta-analyses. These non-overlapping population-specific detections are shown to 

be highly likely caused by genotype by feed interactions. Our results show that 

combining multi-population dataset can be a powerful tool to enhance detection 

power in GWA studies for scarcely recorded traits. Detection of higher number of 

regions using the different meta-analyses methods, compared to any of the 

population-specific analyses, also emphasizes utility of these methods in the 

absence of raw multi-population datasets to undertake joint GWA.  

 

Key words: multi-population GWAS, fatty acid, milk, meta-analysis, Holstein 

Friesian, combining datasets   
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4.1 Introduction 

In GWA studies, sample size is the most important factor that affects statistical 

power and is under control of the investigator. Limited sample size is hence a major 

hurdle in GWA studies for traits that are difficult or expensive to measure. In the 

livestock breeding industry, emerging phenotypes of interest for selective breeding 

are often expensive or difficult to measure. Measurements for such traits are 

limited to experimental samples from different populations. One option to deal 

with the limitation of sample size in understanding the genetics underlining such 

traits could be to combine the available smaller datasets for joint GWA (mega-

analysis) or to combine summaries of the individual GWA for meta-analysis.  

Combining datasets for large-scale joint GWA has been used as an effective method 

to increase GWA power in human disease association studies (e.g. Consortium et 

al., 2013; Sung et al., 2013) and to some extent in livestock studies (e.g. Veerkamp 

et al., 2012). An alternative approach for the discovery of QTL for common human 

diseases (Begum et al., 2012) and livestock phenotypes (Rubio et al., 2015; 

Bouwman et al., 2018) has been the meta-analysis of individual GWA studies. The 

analysis of data summarized from multiple independent studies is expected to 

increase power while avoiding the limitations imposed by restrictions on sharing 

individual-level data (Evangelou and Ioannidis, 2013). Different methods of meta-

analysis have been proposed depending on the sources of information used and 

assumptions regarding SNP effects in the different populations. The most common 

approaches are to combine p-values/transformed p-values, such as in the weighted 

z-score method, and the use of SNP effects, as implemented either in fixed or 

random effects models. Some of these approaches weigh individual studies based 

on sample sizes and some assume SNP effects are different in the different 

populations/individual studies. The relative performance of the different meta-

analyses approaches depends on existence and extent of heterogeneity between 

studies and differences in sample sizes.  

Theoretical illustrations and simulation studies have indicated statistical 

advantages from combining datasets and GWA summaries in enhancing QTL 

detection power (e.g., Costafreda, 2009; Lin and Zeng, 2010). However, the 

complexity of genetics underlying most quantitative traits, which itself is not fully 

understood, is difficult to fully capture in simulated datasets. In this context, it is 

worth investigating the utility of these different approaches of combining datasets 

using real data and comparing results, for instance, in known QTL regions with 

confirmed connections to the studied traits. 
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In this study, we investigated the advantages and challenges pertinent to 

combining multi-population datasets for joint GWA and meta-analysis of 

population-specific studies using milk fatty acids (FAs) measured on Dutch, Danish 

and Chinese Holstein Friesians as example traits. Milk fat composition traits have 

attracted growing interest, mainly in relation to implication on human health. 

Better understanding of the genetics underlying these traits could help implement 

selective breeding for milk with specific fat composition. Detailed milk fatty acid 

composition is not routinely recorded. Gas chromatography (GC) analysis is 

currently the method of choice in determination of milk fat composition with high 

accuracy. However, this method is expensive and time consuming, thus, limiting 

the measurement of milk fat composition to experimental samples.  

Combining multi-population datasets is not straightforward and comes with its own 

challenges. Heterogeneity of samples from the different populations is a major 

hurdle. Such heterogeneity might arise, for instance, due to genetic distance 

between the populations, differences between trait measurements, different 

environmental exposures, and different genotyping chips (Begum et al., 2012).  

With the objective of assessing the advantages and challenges of different data 

combining strategies in enhancing detection power of GWA studies, this study 

compared detection of genomic regions for milk FA traits using population-specific 

GWA studies, joint GWA on combined population dataset and three different 

approaches of meta-analyses. Detection of significant associations on the 

previously confirmed regions of DGAT1 and SCD1 received due emphasis in 

comparing results of the different GWA scenarios. Possible sources of 

heterogeneity in the FA between the sample populations and potential implications 

of these on the different GWA scenarios are discussed. 

 

4.2 Material and Methods 

 

4.2.1 Animals and phenotypes 

Measurements for 13 FA traits including C8:0, C10:0, C12:0, C14:0, C14:1, C15:0, 

C16:0, C16:1, C18:0, C18:1c9, C18:2n6, C18:3n3 and C18:2 cis-9,trans-11 (CLA) were 

obtained from test day milk samples of 784 Chinese, 675 Danish and 1566 Dutch 

Holstein cows. Quantification of the FA traits was based on the GC method as 

previously presented in details by Li et al. (2014) for Chinese samples, Poulsen et al. 

(2012) for Danish samples and Stoop et al. (2008) for the Dutch samples. 

Desaturation indexes were also calculated based on the FA measurements as: C14 
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index = C14:1/(C14:1+C14:0) x 100; C16 index = C16:1/(C16:1+C16:0) x 100 and C18 

index = C18:1c9/ (C18:1c9+C18:0) x 100.  

Cows were sampled from 18 herds in China, 22 herds across Denmark and 398 

herds in the Netherlands. Stage of lactation in sampled cows ranged between 3 to 

700 days in milk in the Chinese population, 9 to 481 days in milk in the Danish 

population and 60 to 278 days in milk in the Dutch Holstein cows. To standardize 

the samples from the three countries, only cows at days-in-milk of 60 and above 

were considered for the association analyses. Thus, 700 Chinese, 614 Danish and 

1566 Dutch samples were available for the association analyses. The reason to 

standardize the dataset by lactation stage is that the genetic determination of milk 

fat composition traits might be different in the early stages of lactation. There is 

evidence that effects of genes in early lactation differ from those later in lactation 

(e.g., Bovenhuis et al., 2015). By excluding early lactation records we eliminate this 

heterogeneity issue.  

 

4.2.2 Genotypes and Imputation 

The BovineSNP50 Beadchip (50K, Illumina) was used to genotype cows in the 

Chinese dataset. Imputation of the 50K genotypes to HD was then performed with 

the Fimpute software package (Sargolzaei et al., 2014) using reference population 

of 96 Chinese Holstein bulls genotyped with BovineHD Beadchip (777K). In the 

Danish dataset, 278 cows were genotyped using the BovineSNP50 Beadchip. The 

remaining Danish Holstein cows were genotyped using the BovineHD Beadchip and 

used as reference to impute the 50K genotypes of the first part of the Danish cows 

to HD as described in Gebreyesus et al. (2016).  

A custom 50K SNP Beadchip, designed by CRV (Arnhem, Netherlands), was used to 

genotype all cows in the Dutch dataset. A reference population of 1,333 animals 

from the Dutch Holstein, with HD genotypes was then used to impute to the 50K 

genotypes to HD as described in Duchemin et al. (2014). SNPs with minor allele 

frequencies (MAF) less than 0.05 or with a count of one of the genotypes less than 

10 in each population were excluded from the association analyses, i.e., 

population-specific as well as joint GWA. Total of 464,130 SNPs were available in 

common for the population-specific as well as combined-population analyses. The 

SNP positions were based on the bovine genome assembly UMD 3.1 (Zimin et al., 

2009). 

 

4.2.3 Genome-wide bin-wise linkage disequilibrium and MAF analysis 

Genome-wide pair-wise linkage disequilibrium (LD) was calculated between the 

SNP markers within a 1 Mbp window along the genome using the r2 as a measure in 
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the Plink program (Purcell et al., 2007). Correlation of MAF in the three populations 

was assessed for non-overlapping bins of 100 SNPs throughout the genome.  

 

4.2.4 Statistical analysis 

 

4.2.4.1 Test for phenotypic differences 

Two tailed t-test was carried out for testing the differences in phenotypic means of 

the FAs between the three populations using the t.test default function in R (R Core 

Team, 2017). Similarly, F-test was carried out to test differences in standard 

deviations pairwise. The test criterion was: 𝐹 = 𝜎1/𝜎2, where 𝜎1 is the larger of 

the two standard deviations and with degrees of freedom f1 for the larger standard 

deviation and f2 for the smaller standard deviation (𝜎2).  

 

4.2.4.2 Association analysis 

A single-SNP association test was implemented using a mixed linear model in the 

GCTA program (Yang et al., 2011). Population-specific and combined-population 

analyses were undertaken using the following statistical model: 

𝑦𝑖𝑗𝑘𝑙 =  µ + 𝑝𝑎𝑟𝑖𝑡𝑦𝑖 + ℎ𝑒𝑟𝑑𝑗 + 𝑏1 ∗ 𝐷𝐼𝑀𝑖𝑗𝑘𝑙 + 𝑏2 ∗ 𝑆𝑁𝑃𝑘 +  𝑎𝑛𝑖𝑚𝑎𝑙𝑙 + 𝑒𝑖𝑗𝑘𝑙 ,  (1) 

 

Where yijkl is the phenotype of cow l; µ is the fixed effect of mean; parityi and herdj 

are the fixed effects of parity and herd, respectively; b1 is the regression coefficient 

for DIM, DIMijkl is a covariate of days in milk, since only cows with more than 60 

days-in-milk were included in the analyses, a linear adjustment for days in milk was 

sufficient; b2 is the allele substitution effect for SNP, SNPk is a covariate indicating 

the number of copies of a specific allele (0, 1 or 2) of the SNP; and animal is the 

random additive genetic effect. Animal effects were assumed to be distributed as 

N(0, 𝐆𝜎𝑎
2), where G is the genomic relationship matrix constructed excluding 

the chromosome on which the SNP k is located. Residuals were assumed to be 

distributed as N(0, 𝐈𝜎𝑒
2) where I is the identity matrix.  

Homogeneity of residuals was assessed by plotting the residuals against 

predicted phenotypes from the model used to estimate heritability, i.e. model 

(1) without the SNP effect. For some of the FAs, especially for C18:2n6, C18:3n3 

and CLA, residuals tend to increase with the mean indicating heterogeneity of 

the residual variance (Figure 4.1). Therefore, records for these FAs were log 

transformed in both the combined as well as the population-specific analyses.  
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Significance thresholds were determined using a false discovery rate (FDR). 

Significance thresholds corresponding to FDR of 5% ranged for different FA 

from –log10 p-value = 3.4 to –log10 p-value = 5. We used a –log10 p-value of 5 

as the genome-wide significance threshold for all FA composition traits. To 

determine if a region harbored one or more QTL, the lead SNP with the highest 

–log10 p-value on each chromosome was fitted as fixed effect for subsequent 

association analyses. If a peak around such a “leadSNP” was no more observed 

in the subsequent analysis, all SNPs around the leadSNP meeting the 

significance threshold were considered as part of that single region. If one or 

more peaks remained after the subsequent analysis, a different QTL was 

assumed and the SNP with the next highest –log10 p-value was taken as the 

next leadSNP and the procedure repeated until no SNP with significant 

association (–log10 p-value >5) remained.   
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Heritability (h2) estimates were computed for the populations separately as 

well as the combined dataset as:  

ℎ2 =  
𝜎𝑎

2

𝜎𝑎
2+𝜎𝑒

2,                                                        (2) 

 

Where,  𝜎𝑎
2 is the additive genetic variance estimated using model 1 but without 

fitting an effect for SNP and using G constructed from all SNPs, and 𝜎𝑒
2 is the 

residual variance.  

 

4.2.4.3 Meta-analysis 

We compared the performance of our joint GWA with meta-analysis of summaries 

from the population-specific studies. Three different methods of meta-analysis 

were implemented using Plink program (Purcell et al., 2007), i.e., the fixed and 

random effects models, and the weighted z-score approach. 

 

Fixed-effects model: Fixed effect meta-analysis methods assume SNP effects are 

similar across studies. Different implementations of the fixed effect meta-analysis 

model exist. In this study, estimates from each study were combined by weighing 

them according to the inverse of their standard error following Kavvoura and 

Ioannidis (2008). In short, a combined effect across population is computed as: 

 𝐵 =
∑ 𝛽𝑖𝑤𝑖𝑖

∑ 𝑤𝑖𝑖
, 

 

where, 𝛽𝑖  is the effect estimated for population i and wi is the weight for the 

corresponding population computed as: 𝑤𝑖 =  [𝑉𝑎𝑟(𝛽𝑖)]−1.  

 

Random-effects model: The random effects model assumes that the individual 

studies estimate different effects for each SNP. In this study, the Cochran’s test 

statistic (Q) was first calculated as: 𝑄 = ∑ 𝑤𝑖𝑖  (𝐵 − 𝛽𝑖).  The between-study 

variance of heterogeneity, expressed as τ2, is then computed as:  

𝜏2 = (𝑄 − (𝑁𝑖 − 1))/ ( ∑ 𝑤𝑖𝑖 − ( 
∑  𝑤𝑖

2
𝑖

∑ 𝑤𝑖𝑖
)),  

Where, 𝑁𝑖  is the number of individual studies, i.e., three in this case. The combined 

SNP effect is finally calculated as: 

 𝐵𝑅 =
∑ 𝛽𝑖𝑤𝑖

𝑅
𝑖

∑ 𝑤𝑖
𝑅

𝑖
,  
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where  𝑤𝑖
𝑅  is the random-effect weight for each population-specific study 

calculated by incorporating the between-study variance of heterogeneity (𝜏2) as:  

𝑤𝑖
𝑅 =  [ 𝜏2 + 𝑉𝑎𝑟 (𝛽𝑖)]−1.  

With the estimation of heterogeneity test statistic (Q) at SNP level, the random 

effects model is also able to give an estimate of the degree of heterogeneity 

between individual studies. However, as a test statistics, the Cochran’s test statistic 

(Q) has been suggested as underpowered when the number of studies used for the 

meta-analysis is small. Other robust test statistics have been proposed (Higgins and 

Thompson, 2002) that are suggested to be scale and size invariant (Nakaoka, 2009). 

In our study, to study the effect of heterogeneity under the different meta-analysis 

scenarios, one of these heterogeneity statistics (I2) was computed as:   

𝐼2 = 100 ∗  
𝑄−(𝑁𝑖−1)

𝑄
. 

Weighted z-scores method: In the weighted z-scores method, p-values are 

transformed into z-scores taking into account sample sizes (Whitlock, 2005) and 

direction of SNP effects in individual studies. In this method intermediate z-scores 

are first computed as:  was computed as:  𝑍𝑖 =  𝛷−1 (1 −  
𝑝𝑖

2
) ∗ 𝑠𝑖𝑔𝑛(∆𝑖), where 𝛷 

is the cumulative distribution function,  pi is the p-value for the ith population and ∆I 

is the direction of the SNP effect in population i. The overall weighted z-score is 

then calculated as: 𝑍 =
∑ 𝑍𝑖𝑤𝑖𝑖

√∑ 𝑤𝑖
2

𝑖

, where, 𝑤𝑖  is the square root of sample size of the ith 

population. 

 

4.2.4.4 Power calculations 

To quantify the theoretical expected gain in power as a result of combining the 

datasets for GWA analysis, we run a power test based on the sample size of each 

population and the combined dataset for varying scenarios of QTL explained 

variance assuming similar LD structures using the package ldDesign in R (Ball, 

2004). The parameter settings used for the ldDesign package were allele 

frequencies of p = q = 0.5, assuming same LD between markers and QTL in the 

different populations with r2 value of 0.3, and a significance threshold –log10 p-

value of 5. 
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4.3 Results 

 

4.3.1 Descriptive statistics and genetic parameters 

Table 4.1 presents phenotypic means and the standard deviations for FA traits in 

the three populations. Significant differences between the three populations were 

observed in phenotypic means for several of the FAs. Phenotypic means in the 

Chinese samples were in general lower for the short and medium chain FAs and 

higher for most of the long chain FAs. The largest difference in phenotypic means 

between the three populations was observed for C18:2n6, which was three times 

higher in the Chinese samples (3.99) compared to the mean values in the Dutch 

(1.11) and Danish (1.74) samples. Large differences in phenotypic means were also 

shown for C8:0 and C18:1c9 between the Chinese samples on the one hand and the 

Dutch and Danish samples on the other. There were significant differences in 

standard deviations between the populations but not to the same extent as for the 

means. There were only three FAs where all three populations differ significantly. 

Standard deviations were generally lower for most FAs in the Chinese sample 

compared to those for the Dutch and Danish samples. 

Table 4.2 presents additive genetic variances and heritability estimates for the 

studied milk FA traits in the Dutch, Danish and Chinese Holsteins as well as in the 

combined dataset. Due to relatively small sample sizes estimates of additive 

genetic variances in general showed large standard errors (some of which were 

larger than the estimates). For most FAs, additive genetic variances in Dutch and 

Danish samples were similar but additive genetic variances in the Chinese data 

differed (lower) from the other two populations. Heritability estimates were higher 

for most FAs in the Dutch samples compared to the Danish and Chinese samples. 

Heritability estimates from the combined analysis were moderate to high with the 

highest value estimated for C14 index (0.53) and the lowest for C18:3n3 (0.21).
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Table 4.1. Phenotypic means and standard deviations for the milk FA traits in the different populations and combined dataset   

 

FAs NL (N=1566)  DK (N=614)  CN (N=700)  Combined (N=2874) 

Mean SD Mean SD Mean SD Mean SD 

Saturated FAs1            
C8:0 1.31a 0.17a   1.47b  0.22b   0.58c 0.22b   1.18 0.38 
C10:0 2.87a 0.45a   3.22b  0.56b   2.22c 0.40a   2.80 0.58 
C12:0 3.79a 0.72a   3.69a 0.68a   2.94b 0.49b   3.58 0.76 
C14:0 11.1a 1.05a  11.6b 1.36b  10.1c 1.14ab  11.0 1.26 
C15:0 1.11a 0.19a   1.11a 0.19a   0.99b 0.13b   1.09 0.18 
C16:0 29.1a 3.50a  30.1b 3.49a  32.9c 1.84b  30.2 3.53 
C18:0 9.84a 1.74a   9.84a 1.91a  12.0b 1.69a  10.3 1.99 
Unsaturated FAs1            
C14:1  1.38a 0.27a   1.01b 0.28a   0.86c 0.21b   1.19 0.35 
C16:1  1.39a 0.29a   1.58b 0.42b   1.64b 0.33c   1.49 0.35 
C18:1c9 20.2a 2.78a  19.6b 2.84a  28.3c 2.44b  21.9 4.37 
C18:2n6  1.11a 0.25a   1.74b 0.27a   3.99c 0.46b   1.89 1.19 

C18:3n3  0.50a 0.16a   0.50a 0.09b   0.42b 0.06c   0.48 0.13 
CLA  0.56a 0.26a   0.57a 0.15b   0.41b 0.09c   0.53 0.23 
Desaturation indexes 2 

C14 index 11.0a 1.83a   7.98b 1.89a   7.84c 1.63b   9.71 2.37 
C16 index  4.60a 0.91a   4.97b 1.11a   4.74c 0.93a   4.70 0.97 
C18 index 67.3a 3.88a  66.6b 3.90a  70.2c 3.27b  67.8 3.98 
a,b,c phenotypic means and standard deviations on the same row with different superscripts are significantly different 
at p<0.001; NL = Dutch Holstein, DK= Danish Holstein, CN = Chinese Holstein 
1Expressed in % wt/wt 
2Desaturation indexes calculated as unsaturated/(unsaturated + saturated) × 100 
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Table 4.2. Genetic parameters* (+ standard errors) for milk fatty acids in 1566 Dutch, 614 Danish and 700 Chinese Holstein samples 

 

FAs NL   DK  CN   Combined 

𝜎𝑎
2

(SE) h2
(SE) 𝜎𝑎

2
(SE) h2

(SE) 𝜎𝑎
2

(SE) h2
(SE) 𝜎𝑎

2
(SE) h2

(SE) 

C8:0 0.01(0.04) 0.48(0.06)  0.01(0.07) 0.33(0.10)  0.002(0.04) 0.06(0.05)  0.008(0.04) 0.27(0.03) 
C10:0 0.09(0.11) 0.51(0.06)  0.09(0.17) 0.36(0.10)  0.02(0.09) 0.16(0.07)  0.07(0.09) 0.39(0.04) 
C12:0 0.12(0.14) 0.40(0.06)  0.10(0.19) 0.30(0.10)  0.04(0.13) 0.21(0.07)  0.09(0.11) 0.33(0.04) 
C14:0 0.27(0.21) 0.39(0.06)  0.15(0.32) 0.14(0.10)  0.21(0.28) 0.22(0.08)  0.21(0.17) 0.25(0.03) 
C15:0 0.006(0.04) 0.29(0.06)  0.007(0.05) 0.27(0.10)  0.001(0.02) 0.10(0.07)  0.004(0.02) 0.23(0.04) 
C16:0 2.79(0.66) 0.48(0.06)  0.75(0.76) 0.12(0.09)  0.77(0.51) 0.27(0.08)  1.80(0.48) 0.34(0.04) 
C18:0 0.78(0.39) 0.37(0.06)  0.53(0.49) 0.23(0.10)  0.54(0.43) 0.25(0.08)  0.52(0.29) 0.25(0.04) 
C14:1 0.03(0.07) 0.55(0.06)  0.03(0.09) 0.49(0.10)  0.01(0.06) 0.35(0.09)  0.03(0.05) 0.47(0.04) 
C16:1 0.05(0.08) 0.65(0.05)  0.07(0.13) 0.42(0.10)  0.02(0.09) 0.26(0.09)  0.05(0.07) 0.46(0.04) 
C18:1c9 1.90(0.58) 0.41(0.06)  0.37(0.66) 0.07(0.08)  1.33(0.68) 0.24(0.08)  1.38(0.46) 0.27(0.04) 
C18:2n6 0.007(0.04) 0.27(0.06)  0.01(0.07) 0.17(0.09)  0.03(0.12) 0.26(0.10)  0.01(0.05) 0.18(0.03) 

C18:3n3 0.002(0.02) 0.27(0.06)  0.0004(0.02) 0.05(0.08)  0.0001(0.01) 0.05(0.06)  0.005(0.01) 0.19(0.03) 
CLA 0.009(0.04) 0.32(0.06)  0.002(0.04) 0.11(0.09)  0.001(0.02) 0.15(0.07)  0.004(0.02) 0.21(0.04) 
C14 index 1.81(0.47) 0.62(0.05)  2.10(0.65) 0.59(0.10)  0.89(0.51) 0.36(0.09)  1.57(0.37) 0.53(0.03) 
C16 index 0.39(0.23) 0.55(0.06)  0.46(0.37) 0.37(0.10)  0.17(0.25) 0.24(0.08)  0.32(0.19) 0.38(0.04) 
C18 index 6.99(1.03) 0.49(0.06)  3.46(1.18) 0.26(0.10)  1.90(0.83) 0.21(0.07)  3.95(0.73) 0.31(0.04) 

*parameter estimates were prior to any data transformation; NL = Dutch Holstein, DK= Danish Holstein, CN = Chinese 
Holstein 
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4.3.2. Consistency in LD and MAF 

The genome-wide LD analysis showed that the three populations have similar LD 

structures across the genome (Figure 4.2). The maximum mean bin-wise LD was 

0.71 for the three populations, while the minimum mean bin-wise LD was 0.07 for 

the Dutch and Danish populations and 0.06 for the Chinese population. Correlation 

in MAF between the populations averaged for bins of 100 SNPs throughout the 

genome was 0.87 between the Danish and Dutch populations and between the 

Danish and Chinese populations, and 0.81 between the Chinese and Dutch 

populations. 

 

 
 

4.3.3 Genomic regions detected across the different analyses 

Table 4.3 shows genomic regions significantly associated with at least one FA trait 

using the different analyses. Using the different scenarios (population-specific, 
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combined population and meta-analyses), a total of 68 genomic regions were 

found significantly associated with the studied FAs. Regions were identified on all 

the chromosomes except BTA 18. Only three regions (14a, 14b and 26) were 

commonly detected with significant association to at least one FA across the 

different scenarios, i.e., all population-specific analyses, joint GWA, as well as the 

three different meta-analyses.  

The largest number of significantly associated regions was identified using the joint 

GWA on the combined dataset: 56 regions were detected with significant 

associations with at least one of the 16 FA traits studied. The detected regions 

were spread across all the chromosomes except BTA18. Of all regions detected 

using the joint GWAS, 28 regions were not detected in any of the population-

specific analyses, suggesting increased detection power from combining the 

datasets. Our computation of theoretic detection power, as a function of sample 

size and proportion of explained variance by a QTL, also shows that a QTL 

explaining more than 5% of the genetic variance can be detected with a power of 

0.97 in the combined dataset compared to a power of 0.57 in the Dutch, 0.08 in the 

Chinese and 0.05 in the Danish dataset (Figure 4.3). 
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Table 4.3. Genomic regions associated with milk FA traits detected using population-specific, combined population  

                   and meta-analysis 

Region* Start 
(Mbp) 

End 
(Mbp) 

Number of FAs significantly associated** 

NL DK CN Combined Meta-Fix Meta-Rand Meta-Zsc 

1a 19.92 19.93 - - - 1 1 1 1 
1b 60.0 60.0 - - - - 1 1 1 
1c 101.0 101.0 - - - 1 - - - 
1d 132 132 - 2 - - - - - 
1e 141.3 142.5 - - - 1 1 1 1 
2a 12.5 19.8 - - - 2 2 2 2 
2b 54.9 59.8 1 - - 4 3 3 3 
2c 64.1 67.8 - - - 2 2 2 2 
2d 106.5 135.6 1 - - 4 2 2 3 
3a 8.5 8.7 1 - - - - - - 
3b 104.2 104.2 - - - - 1 - 1 
3c 116.2 119.4 - - - 2 - - 1 
4 15.59 15.6 - - - 1 1 1 1 

5a 10.33 10.36 - - 1 1 1 1 1 
5b 65.7 82.8 - - 1 2 2 2 2 
5c 87.4 100.0 7 2 - 10 9 8 9 
6a 20.6 20.6 - - - - 1 - 1 
6b 41.4 41.4 - - - 1 - - - 
7a 5.05 5.09 1 - - - - - - 
7b 14.6 15.5 - - - 2 2 2 2 
7c 78.4 78.4 - - 1 1 1 1 1 
7d 81.6 83.2 - - - 2 2 2 2 
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Table 4.3. Continued 

Region* Start 
(Mbp) 

End 
(Mbp) 

NL DK CN Combined Meta-Fix Meta-Rand Meta-Zsc 

8a 57.5 59.7 - - - 3 2 1 3 
8b 79.9 98.4 - - - 3 3 2 3 
9a 25.5 25.6 - - - 1 - - 1 
9b 81.3 81.3 - - - 1 1 1 1 
9c 97.1 97.2 1 - - - 1 1 - 

10a 1.1 8.6 2 1 - 2 2 2 2 
10b 11.7 12.9 1 - - 2 1 1 1 
10c 73.4 73.5 - - - - 1 1 1 
10d 78.1 80.1 1 - - 1 - - 1 
10e 87.3 93.1 1 - - 3 2 2 2 
11a 24.7 26.7 - - - 1 1 1 1 
11b 58.81 58.89 - - - 1 1 1 1 
12a 17.1 17.1 - - - 1 1 1 1 
12b 24.0 24.8 - - - 1 - - - 
12c 70.0 77.4 - - 1 2 2 2 2 
12d 86.4 86.4 - - 1 - - - - 
13 64.6 65.7 2 - - 1 2 1 2 

14a 1.5 5.0 13 8 4 14 14 13 14 
14b 5.2 20 11 5 1 12 12 9 12 
14c 44.7 49.9 1 - - 4 3 3 3 
15a 27.2 31.2 - - 3 3 3 2 2 
15b 46.9 65.9 - - 1 1 5 3 4 
16a 23.8 25.22 - - - 2 2 2 2 
16b 57.53 57.58 2 - - 2 2 1 2 
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Table 4.3. Continued 

Region* Start 
(Mbp) 

End 
(Mbp) 

NL DK CN Combined Meta-Fix Meta-Rand Meta-Zsc 

17a 17.4 22.6 - - - 2 2 2 2 

17b 27.8 44.1 4 - - 5 3 2 4 
       19 37.3 61.3 6 - 2 8 7 6 7 

20a 1.8 11.0 2 - - - - - - 
20b 32.4 34.2 - - 1 2 2 - 1 
20c 36.7 36.9 - - 1 2 - - - 
20d 55.3 60.4 - - - 2 1 1 1 
21 53.8 59.1 1 - - 4 2 1 2 
22 59.12 59.13 - - - 1 1 1 1 

23a 21.22 21.23 2 - - - - - - 
23b 26.7 32.7 - - - 1 1 1 1 
23c 33.5 36.5 2 - - 1 1 1 1 
23d 40.7 43.5 2 - 1 3 2 1 2 
24a 6.82 6.85 - - 1 - - - - 

       24b 10.2 10.2 - - - 1 - - 1 
25a 9.8 9.9 - - - 1 - - 1 
25b 24.7 24.7 - - - 1 1 1 1 
25c 41.4 41.7 - - - 2 - - 1 
26 2.9 43.0 6 4 2 11 9 7 9 
27 37.0 42.2 - - 1 1 1 1 1 
28 36.6 37.2 - - - 2 - - - 
29 32.9 40.5 2 - - 2 1 1 1 
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The separate analysis of the Dutch samples detected 24 regions with SNPs 

significantly associated with at least one of the 16 FA traits except C18:0. Four of 

these regions were only detected in the Dutch data and not in any of the other 

scenarios including the joint GWA and meta-analyses. These regions exclusively 

detected for the Dutch samples were significantly associated with C18:3n3 (region 

3a), C16:0 (region 7a), C16:1 and C16 index (region 20a) and with C18 index and 

CLA (region 23a). Separate analysis based on the Danish samples resulted in 

detection of significant associations between the FA traits and SNPs at six regions 

found on BTA 1, 5, 10, 14 and 26. Significant associations in the Danish sample 

were limited to nine FA traits, with no significant association detected for C8:0, 

C10:0, C12:0, C14:0, C18:0, C18 index and CLA. One of the regions detected in the 

separate analysis for the Danish population (region 1d) was significantly associated 

with C14:1 and C14 index but was not detected in any of the other scenarios. The 

separate GWAS for the Chinese population detected 16 regions. Significant 

associations detected in the Chinese sample were limited to C14:1, C14 Index, 

C18:0, C18:1 and C18:2n6. Significant associations detected in the separate analysis 

for the Chinese population with C18:2n6 (region 12d) and C18:0 (region 24a) were 

not detected in the other population-specific analyses as well as in the combined 

GWAS and meta-analyses.  

Most of the genomic regions detected using the joint GWAS were also detected in 

the different meta-analyses. Meta-analysis using the fixed-model approach 

resulted in the detection of 50 regions with significant association to the FA traits. 

All but five of these regions were among the 56 regions detected using the joint 

GWAS. The random-model approach resulted in detection of the lowest number of 

regions, compared to the other two meta-analysis approaches, with detection of 47 

regions, of which 3 were not detected in the joint-GWAS. A lower number of 

significantly associated regions for the random effects model is supported by the 

higher p-values estimated in general for SNPs with higher heterogeneity statistics in 

this model compared to the other meta-analysis approaches. Figure 4.4 shows the 

–log10 p-values of SNP effects estimated using the fixed effects model plotted 

against the values from the random effects model. The –log10 p-values estimated 

using the two meta-analysis approaches were similar for SNPs with smaller I2 values 

(<10). With increase in heterogeneity statistic estimates (I2 > 10), the random 

effects model tends to give lower –log10 p-values compared to the fixed-effects 

model. Meta-analysis using the z-score method resulted in detection of 55 regions 

significantly associated with the milk FAs, of which 51 were among the regions 

detected in the joint GWA. 
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Apart from differences in the number of regions detected for at least one FA across 

scenarios, there were also differences in the number of FA traits significantly 

associated with the detected regions (Table 4.4). For region 14a for instance, only 

four FA traits were found to have significant associations in the Chinese analysis 

while the analysis in the Dutch sample resulted in detection of significant 

associations with13 FA traits. The same number of FA traits were found to have 

significant associations with regions 14a (14 FA) and 14b (12 FA) using the joint 

analysis, meta-analysis with weighted z-score and fixed effects models, while the 

random effects model lead to detection of significant association with lower 

number of FAs. Interestingly, association with C14:1 of region 14b was found only 

in the separate analysis of the Chinese data. For BTA 26, significant associations 

were detected with 11 FA traits in the joint GWA compared to 9 FA traits in Meta-

analysis with weighted z-score and fixed effects models and 7 FA traits with the 

random effects model followed by 6 FAs in the Dutch, 4 in the Danish and 2 in the 

Chinese separate analyses. 
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Table 4.4 FA traits significantly associated with the genomic regions 14a, 14b and 26 detected using population-specific analyses, 

joint GWA and meta-analysis. 

 

Scenario Overlapping regions 

Region 14a (1.5 -5 Mb) Region 14b (1.5-5 Mb) Region 26 (2.9-43.0 Mb) 

NL C8:0, C10:0, C14:0, C14 index, C15:0, 
C16:0, C16:1, C16 index, C18:1c9, 
C18:2n6, C18:3n3, CLA, C18 Index 

C8:0, C10:0, C15:0, C16:0, C16:1, 
C16 index, C18:1c9, C18:2n6, 
C18:3n3, CLA, C18 Index 

C10:0, C14:1, C14 index, 
C16:1, C16 index, C18 index 

DK C14 index, C15:0, C16:0, C16:1, C16 
index, C18:1c9, C18:2n6, C18:3n3 

C16:0, C16:1, C16 index, C18:2n6, 
C18:3n3 

C14:1, C14 index, C16:1, C16 
index 

CN C14:1, C14 index, C16:1, C18:2n6 C14:1 C14:1, C14 index 

Joint GWA C8:0, C10:0, C14:0, C14:1, C14 index, 
C15:0, C16:0, C16:1, C16 index, C18:1c9, 
C18:2n6, C18:3n3, CLA, C18 Index 

C8:0, C10:0, C14 index, C15:0, 
C16:0, C16:1, C16 index, C18:1c9, 
C18:2n6, C18:3n3, CLA, C18 Index 

C8:0, C10:0, C12:0, C14:0, 
C14:1, C14 index, C16:0, 
C16:1, C16 index, C18:0, C18 
index 

Meta-Fix C8:0, C10:0, C14:0, C14:1, C14 index, 
C15:0, C16:0, C16:1, C16 index, C18:1c9, 
C18:2n6, C18:3n3, CLA, C18 Index 

C8:0, C10:0, C14 index, C15:0, 
C16:0, C16:1, C16 index, C18:1c9, 
C18:2n6, C18:3n3, CLA, C18 Index 

C8:0, C10:0, C12:0, C14:0, 
C14:1, C14 index, C16:1, C16 
index, C18 index 

Meta-Rand C8:0, C10:0, C14:1, C14 index, C15:0, 
C16:0, C16:1, C16 index, C18:1c9, 
C18:2n6, C18:3n3, CLA, C18 Index 

C14 index, C15:0, C16:0, C16:1, C16 
index, C18:1c9, C18:2n6, C18:3n3, 
CLA 

C8:0, C10:0, C14:0, C14:1, 
C14 index, C16:1, C16 index 

Meta-Zsc C8:0, C10:0, C14:0, C14:1, C14 index, 
C15:0, C16:0, C16:1, C16 index, C18:1c9, 
C18:2n6, C18:3n3, CLA, C18 Index 

C8:0, C10:0, C14 index, C15:0, 
C16:0, C16:1, C16 index, C18:1c9, 
C18:2n6, C18:3n3, CLA, C18 Index 

C8:0, C10:0, C12:0, C14:0, 
C14:1, C14 index, C16:1, C16 
index, C18 index 
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4.3.4 SNP effects across the scenarios 

Table 4.5 presents the estimated regression coefficients and –log10 p-values for 

lead SNPs on BTA 14 (SNP within the DGAT1 gene) and 26 (SNP within the SCD1 

gene) found to have the strongest associations with the studied FA traits. The 

results also show that the combined-population analysis resulted in substantially 

increased –log10 p-values for the significant regions in most of the traits compared 

to the population-specific GWAS. For instance for C14 index, –log10 p-value for the 

lead SNP on chromosome 26 increased from 70.9 in the Dutch analysis to 126.1 in 

the combined analysis. These results also show that when the associations were 

significant, directions of SNP effects were similar for the three populations. Apart 

from direction of effects, we have compared estimated effects of the DGAT1 (ARS-

BFGL-NGS-4939) and SCD1 (BovineHD2600005461) loci standardized with the 

standard deviation of the FA in the combined dataset (by dividing the estimates by 

the standard deviation of the FA) in the different populations.  
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Table 4.5. Population-specific and combined-population regression coefficients and –log10 p-values for leadSNPs on BTA 14 and 26. 

 

  

Trait 

Population 

 
NL DK CN Combined 

SNP b(+SE) -log10p b(+SE) -log10p b(+SE) -log10p b(+SE) -log10p 

ARS-BFGL-NGS-4939 (BTA14) 
       

 
C8:0  0.04(0.006) 12.8  0.02(0.01)   0.7  0.03(0.01) 2.0  0.04(0.006) 11.0 

 
C10:0  0.09(0.02)    6.4  0.02(0.03)   0.2  0.09(0.03) 3.5  0.08(0.01)   8.0 

 
C12:0  0.03(0.02)    1.0  0.001(0.04)   0.01  0.08(0.03) 2.1  0.04(0.02)   2.1 

 
C14:0 -0.26(0.04) 12.9 -0.28(0.07)   4.8  0.08(0.07) 0.7 -0.20(0.03) 11.0 

 C15:0  0.04(0.006) 11.1  0.04(0.009)   6.8  0.03(0.008) 4.1  0.04(0.004) 21.0 
 C16:0  1.40(0.10) 42.4  1.20(0.16) 13.0  0.49(0.12) 4.6  1.2(0.07) 58.0 
 C18:0  0.03(0.06)   0.1 -0.14(0.10)   0.8 -0.05(0.10) 0.2 -0.02(0.05)   0.2 

 
C14:1  0.01(0.01)   0.9  0.03(0.02)   1.5  0.06(0.01) 5.8  0.03(0.007)   4.8 

 
C16:1  0.14(0.01) 33.3  0.23(0.03) 18.7  0.12(0.02) 7.4  0.16(0.01) 55.0 

 
C18:1n9 -1.23(0.09) 39.6 -0.87(0.15)   8.2 -0.67(0.16) 4.3 -1.03(0.07) 46.0 

 
C18:2n6 -0.07(0.006) 29.7 -0.05(0.009)   9.3 -0.04(0.007) 6.7 -0.06(0.004) 45.0 

 
C18:3n3 -0.06(0.007) 15.1 -0.06(0.01)   7.1 -0.03(0.008) 3.6 -0.05(0.005) 26.0 

 
CLA -0.08(0.01)    9.5 -0.07(0.01)   5.9 -0.05(0.01) 3.2 -0.07(0.007) 21.0 

 
C14 index   0.34(0.07)    6.2  0.46(0.12)   4.2  0.49(0.11) 5.3  0.40(0.05) 14.8 

 
C16 index   0.22(0.03)    9.4  0.47(0.07) 10.8  0.25(0.06) 4.5  0.28(0.03) 23.1 

 
C18 index -1.37(0.16) 17.8 -0.64(0.23)   2.2 -0.40(0.21) 1.2 -1.01(0.11) 19.3 
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Table 4.5 Continued 

 Trait NL DK CN Combined 

SNP  b(+SE) -log10p b(+SE) -log10p b(+SE) -log10p b(+SE) -log10p 

BovineHD2600005461 (BTA26) 
       

 
C8:0   0.03(0.007)   3.7   0.03(0.01)   1.5 0.002(0.01)   0.05 0.02(0.006)    3.7 

 
C10:0   0.11(0.02)   8.5   0.11(0.03)   3.7   0.03(0.03)   0.70 0.10(0.01)  11.9 

 
C12:0   0.06(0.03)   1.5   0.10(0.03)   2.7   0.03(0.03)   0.40 0.07(0.02)    3.8 

 
C14:0   0.15(0.04)   3.9   0.24(0.06)   4.1  0.20(0.07)   2.43  0.20(0.03) 10.90 

 C15:0 0.002(0.007)   0.1 -0.002(0.009)   0.07  0.002(0.008)   0.07 0.0005(0.005)   0.04 
 C16:0 -0.14(0.11)   0.7 -0.08(0.16)   0.2 -0.10(0.12)   0.40 -0.11(0.07)   1.00 

 
C18:0 -0.23(0.07)   3.1 -0.25(0.09)   1.6 -0.02(0.11)   0.06 -0.20(0.05)   4.30 

 
C14:1 -0.18(0.01) 56.1 -0.17(0.02) 26.7 -0.10(0.01) 13.30 -0.16(0.008) 98.0 

 
C16:1  0.15(0.01) 32.4  0.13(0.02)   7.84   0.06(0.02) 2.13  0.12(0.01) 33.5 

 
C18:1n9  0.11(0.10)   0.6 -0.14(0.14)   1.7 -0.01(0.17) 0.02 -0.003(0.07)   0.01 

 
C18:2n6 0.0003(0.006)   0.01 -0.01(0.008)   0.8 -0.007(0.007)    0.40 -0.005(0.004)   1.0 

 
C18:3n3 0.01(0.008)   1.7 -0.02(0.01)   1.7  -0.01(0.009)    0.90 -0.001(0.005)    0.1 

 
CLA 0.01(0.01)   0.2  0.005(0.01)   0.1 -0.003(0.01) 0.08  0.008(0.007)    0.6 

 
C14 index -1.42(0.08) 70.8 -1.37(0.11) 34.1  -1.0(0.11) 18.10 -1.3(0.06) 126.1 

 
C16 index 0.50(0.04) 36.0   0.40(0.07)   9.1 0.19(0.06) 2.70  0.4(0.03)   39.8 

  C18 index 0.68(0.17)   4.1   0.46(0.22)   1.4 0.02(0.22)  0.03  0.46(0.11)     4.3 
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Figure 4.5 shows correlations between standardized effects of DGAT1 marker in the 

three populations for all FAs except C12:0, C14:1 and C18:0, which are not 

significantly affected by DGAT1 in the combined analysis. The plots indicate that 

not only “directions of SNP effects were similar” but the estimates of DGAT1 effect 

in the Dutch and Danish population are very similar (high correlation and 

regression coefficient of about 1). The Chinese population showed a different 

pattern: the correlation between effects in the Dutch and Chinese population is 

high as is the correlation between effects in the Danish and Chinese populations. 

However, the regression coefficients are approx. 0.5 (0.57 and 0.52) indicating that 

the standardized effect sizes of DGAT1 in the Chinese population are about half of 

that observed in the Dutch and Danish population. Looking at effects at individual 

FAs, lower SNP effects were consistently estimated for the FAs where phenotypic 

averages in the Chinese sample significantly differed compared to the other 

populations i.e., C8:0, C18:1c9 and C18:2n6. Effect of DGAT1 loci on C8:0 was not 

significant in the Chinese and Danish datasets, therefore valid comparison cannot 

be made. For C18:1c9 and C18:2n6 however, the standardize effects of the DGAT1 

loci were the lowest in the Chinese dataset compared to the Dutch and Danish 

samples. 
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For SCD1, the number of FA detected across analyses and significantly affected in 

the joint GWA was much lower i.e., five FAs. However, the correlations of loci 

effects in these FAs showed similar trend with that of DGAT1 effect such that there 

were high correlations of effects between the populations but lower effect sizes for 

the Chinese population (Figure 4.6). 
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4.4 Discussion 

 

4.4.1 Detection of genomic regions under the different scenarios 

Our combined-population GWAS resulted in detection of 28 additional regions 

significantly associated with one or more of the studied FA traits than were 

detected in the population-specific analyses altogether. We have also shown that –

log10 p-values increased up to two folds in the joint GWA compared to the 

population-specific analyses. Apart from detection of more regions, also more FAs 

were significantly associated with the identified regions in the joint GWAS 

compared to the number of FAs associated with similar regions in the population–

specific studies. As theoretically expected, under the assumption that traits are 
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genetically the same in the different studies, these results demonstrate that 

combining datasets can substantially increase detection power.  

There were few regions detected within each of the population-specific analyses 

that were not detected in the remaining populations or in the joint GWAS and 

meta-analyses. Differences in detections between the three population-specific 

studies can to a large extent be explained by differences in sample size. This applies 

to the analysis in the Dutch samples (N=1566) on the one hand (24 regions) and 

analyses in the Chinese (N=700, 16 regions) and Danish (N=614, 6 regions) samples 

on the other. As sample sizes in the Chinese and Danish populations are 

comparable, its relevance to explain the difference between these analyses is 

minimal. Such differences in detection might also arise from false positives within 

populations. However, false discovery cannot explain all the eight exclusive 

detections in our study. Given that there are 16 FAs analyzed in 3 populations, the 

binomial probability of having 8 false discoveries at FDR value of 5% is only 0.002. 

This is assuming traits are independent, which is not necessarily true in the case of 

milk FA traits. Therefore, it is unlikely to have 8 false positives in our analyses. 

 

4.4.2 Heterogeneity between samples 

Theoretically, it is expected that combining data, by increasing sample size, will 

enhance detection power and enable detection of regions with effects that are too 

small to pass the thresholds in the population-specific studies. This is also 

demonstrated in our computation of theoretical expectations of detection power 

as presented in Figure 3. However, these calculations assume that genotypic effects 

in the different populations are the same. In reality, this assumption of 

homogeneity might be violated for several reasons.  

In many situations a major cause of heterogeneous genetic effects between 

populations is genetic distance between the populations. Differences in the pattern 

of LD structure over chromosomal regions of interest across populations are 

implicated as a cause of between-study heterogeneity in the genetic effects 

(Nakaoka and Inoue, 2009). In the presence of marked differences in LD structure, 

the same QTL might be relevant for the trait of interest in different populations but 

there could be differences in the markers that are in LD with the QTL. In this study, 

estimates of pairwise LD within bins of one Mbp size indicate that the genome-

wide LD pattern is similar between the Dutch, Danish and Chinese Holstein Friesian. 

This is in agreement with previous study by Zhou et al. (2013), which reported high 

consistency in LD between adjacent markers of the Chinese and Danish Holstein 

populations. These findings are also in line with expectations given the common 

use of outstanding bulls in the three countries. Therefore, the differences in 
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detections between the populations are less likely to result from differences in LD 

pattern. 

Factors other than genetic distance also cause heterogeneous genetic effects 

between populations. In our study, phenotypic means and standard deviations 

were significantly different between the three populations for most of the FAs. 

Especially the Chinese samples showed larger differences in phenotypic means 

compared with the Dutch and Danish samples. These differences could result from 

differences in analytic methods and management of the cows. 

 

4.4.3 Differences in trait measurements 

One possible cause of differences in means and standard deviations could be the 

method of quantifying traits in different populations. For milk FA traits, the GC 

method is considered the method of choice and was commonly used for 

quantifying all the samples in this study. However, Contarini et al. (2013) showed 

the generally low precision of the quantitative evaluation for FAs present in low 

concentrations. In our study, that would apply especially to C18:3n3 and CLA but to 

a lesser extent also to C8:0, C14:1, C15:0, C16:1 and C18:2n6. In addition, 

differences in GC operating conditions (column, temperature profile and 

integration parameters) applied in the three countries could result in resolution 

differences in the GC analyses. As an example, comparing different labs with 

different GC conditions using the same samples, Contarini et al. (2013) indicated 

that with some of the GC methods quantification of the trans and cis isomers of 

18:1 and other unsaturated FA was attained, while with others the quantities of 9c-

18:1 were overestimated and quantities of trans-18:1 were underestimated. Such 

differences in resolution of GC analyses might add noise and reduce the detection 

power of GWAS, especially in combined analysis. However, medium to high 

heritability values were estimate for the FA traits from the combined dataset and 

these estimates are within the ranges reported in previous GC-based studies (e.g., 

Krag et al., 2013; Bilal et al., 2014). Therefore, we expect the contribution of 

possible differences in GC operating conditions to detection differences in our 

study to be minimal. 

 

4.4.4 Consequences of genotype by feed interaction 

The larger differences shown in the Chinese dataset compared to the other two 

samples were mainly for C8:0, C18:1c9 and C18:2n6. These differences might also 

be partly explained by differences in feeding systems between the sample 

populations. Feeding systems in North-West Europe are generally characterized by 

keeping cows indoors and feeding them with concentrates and roughages during 
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the winter while there is some level of grazing/feeding of fresh-cut grass practiced 

during parts of the summer. Roughages commonly include silage made of rye grass, 

grass/clover, and/or alfalfa, and maize in some regions. Dairy production in the 

Beijing area of China, where the farms sampled in our study are located, is based 

on large-scale intensive dairy farms in densely populated cosmopolitan area with 

no access to grazing. The main feed sources are concentrates, mainly composed of 

maize, soybean meal, wheat bran, cottonseed meal and rapeseed meal, and 

roughages mainly including maize silage, alfalfa, and guinea grass (Beldman et al., 

2014). The long chain FA C18:2n-6 mainly originates from maize and concentrates 

whereas C18:3n-3 originates from fresh grass in the feed (Chilliard et al., 2000). 

Content of CLA in milk has also been shown to increase with higher levels of fresh 

grass feeding (e.g. Couvreur et al., 2006). The higher average for C18:2n6 in the 

Chinese Holstein sample suggests high levels of concentrate feeding with high 

maize content. This is also supported by the lower phenotypic averages for C18:3n3 

and CLA in the Chinese sample, which suggests that the cows are kept under lower 

levels of grass-based feeding. Higher content of poly-unsaturated FAs like C18:2n6 

through the diet of dairy cows is known to decrease the de novo synthesized FA 

(e.g., Chilliard et al., 2000; Duchemin et al., 2013), explaining the lower averages for 

the de novo synthesized FAs, including C8:0, in the Chinese sample. 

In genetic analysis, known sources of variation can be taken care of by accounting 

for them in the statistical analysis. In our analyses, phenotypic differences between 

the populations are accounted for by fitting herd as a fixed effect. Since herds were 

unique for each country, the effect of herd is expected to also account for 

differences between countries, including differences in feeding, or GC methods 

used. However, interaction of genotype with these sources of variation (e.g., 

genotype by feed interaction) might still have consequences in association 

analyses. In the presence of genotype interactions, different QTL might be relevant 

to the investigated trait in one population versus the other. Alternatively, the same 

QTL might have different effects for the same trait in the different environments. 

Differences in non-genetic factors such as feed can lead to differences in the 

expression of genes relevant for the traits of interest. For instances, Tao et al. 

(2015) has shown that feeding a high concentrate diet in goats down-regulated 

expression of the ACACA, LPL and SCD genes which play key roles in milk FA 

composition. Such differences will lead to detection of regions harboring such QTLs 

in one population but not in the others. Genotype by environment interactions can 

be quantified by calculating genetic correlations between the populations. This was 

not possible in our study due to small sample sizes within populations leading to 

high standard errors of the correlation estimates. The SNP effects in our analyses 
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were similar in direction in the three populations whenever the associations were 

significant. Comparison of the standardized effects of DGAT1 and SCD1 loci on the 

FA traits also shows strong correlation between estimated effects for both loci in 

the three population. However, effect sizes seem to be different in the Chinese 

data as compared to the Dutch/Danish data. Additive genetic variances in the 

Chinese data also differed from the other two populations in general. For C18:1c9 

and C18:2n6, which are derived mainly from the feed and for which phenotypic 

means in the Chinese dataset showed significant differences to the other 

populations, standardized effect of the DGAT1 loci was the lowest in the Chinese 

dataset. These differences might point to genotype by environment (feed) 

interaction. However, high correlations and similar direction of SNP effects 

between the populations suggest that this interaction is mostly due to scaling 

instead of re-ranking of genotype effects (strong correlation in effects and similar 

direction of effects). Since there is high correlation between estimated effects, the 

data from the three populations do not contradict but support each other. There 

are no indications that the GWA signal might disappear by combining data, due to 

effects that differ in direction (re-ranking). The estimated SNP effects imply that for 

at least the DGAT1 and SCD1 loci, the value of an observation from the Chinese 

population contributes less (to the joint GWA signal) than an observation from the 

other two populations due to the smaller effect sizes. 

 

4.4.5 Meta-analyses 

There were slight differences between the different meta-analyses approaches in 

the number of detected regions. Among the different meta-analyses approaches 

employed in this study, the weighted z-score method resulted in detection of 

regions the most comparable to the joint GWAS. The fixed and random effects 

models resulted in lower numbers of detections compared to the weighted z-score 

approach, with the random effects model resulting in the smallest number of 

detections. Similar results were previously reported in various meta-analyses of 

trans-ethnic GWA studies in human genetics (e.g., Wang et al., 2013) and in 

livestock multi-breed scenarios (e.g., Van der Berg et al., 2016).  

By assuming similar genetic effect size between individual studies, the fixed-effects 

model is expected to have limited power in the presence of genetic effect 

heterogeneity (Evangelou and Ioannidis, 2013). However in our study, –log10 p-

values tended to be much higher in the fixed effects model when heterogeneity 

statistics at markers increased. This implies that in case of high heterogeneity 

between populations, the fixed effects approach estimates SNP effects with smaller 

confidence intervals, leading to detection of larger numbers of significant 
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associations compared to the random effects model. This is contrary to our 

expectation and to the fact that the random effects model was developed to 

specifically account for heterogeneity between studies. It is suggested that the 

stringent assumptions in the random-effects model, which implicitly assumes 

heterogeneity under the null hypothesis, cause it to have far more limited power 

(Han and Eskin, 2011). 

 

4.4.5 Comparison of detections across the scenarios in the DGAT1 and SCD1 

regions 

While it remains difficult to compare detection power between GWA methods 

using real data since the “true” effects are unknown, it is possible to compare the 

different analyses based on example regions with well-established connections to 

the studied traits. The regions detected on BTA 14 (region 14a) and BTA 26 are 

known to contain the DGAT1 and SCD1 genes, respectively. The DGAT1 (e.g., 

Schennink et al., 2008; Bovenhuis et al., 2016) and SCD1 (e.g., Schennink et al., 

2008; Bouwman et al., 2012; Carvajal et al., 2016) genes are frequently reported to 

have significant associations with most FAs. Detections in the DGAT1 region were 

similar for the joint GWA and the meta-analyses using fixed effects and weighted z-

score approaches with significant associations established for 14 FA traits. 

Significant associations were also detected with these traits except C14:0 in the 

random effects meta-analysis model and C14:1 in the Dutch separate analysis. 

Previous studies have shown that the K allele of DGAT1 polymorphisms has a 

reducing effect in C14:0 (e.g., Schennink et al., 2008; Bovenhuis et al., 2016). 

Through reduction of C14:0, DGAT1 is also expected to affect the concentrations 

(%wt/wt) of C14:1. Therefore, significant associations with these FAs were 

expectable.  

The SCD enzyme is involved in the synthesis of monounsaturated FA by introducing 

a double bond in the delta-9 position of C14:0, C16:0 and C18:0, primarily (Ntambi 

and Miyazaki, 2003). The significant associations we detected across the different 

analyses with C14:1, C16:1 and the desaturation indexes of these FAs are thus 

expected. However, through the desaturation process, SCD1 also affects the 

concentrations (%wt/wt) of C14:0, C16:0 and C18:0 and thus significant association 

with these FAs are also to be expected. Significant associations for C16:0 and C18:0 

were, however, only detected using the joint GWAS. Similarly, significant 

associations with C18 index in this region were only detected using the joint GWAS 

and the meta-analysis with fixed effects and weighted z-score approaches.  

These results indicate that the joint GWA resulted in more power to detect 

associations in the confirmed DGAT1 and SCD1 regions compared to the rest of the 
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scenarios including the meta-analyses. Nonetheless, detection of higher number of 

regions and significant association of these regions to higher number of FAs in the 

meta-analyses compared to any of the population-specific analyses emphasizes 

utility of the methods in the absence of raw multi-population datasets to undertake 

joint GWA.  

While it is similarly difficult to handle heterogeneity between samples in joint GWA 

as is in meta-analysis, it provides an advantage of flexibility to employ different 

transformation and standardization strategies on the datasets and allows fitting 

common model components as opposed to summaries of different studies, often 

with different model components, in meta-analyses. In our study, such data 

transformation and standardization strategies have remedied to a certain extent 

some observed heterogeneity between the samples as discussed below. 

 

4.4.6 Data transformation and standardization for joint GWA 

In this study, different data transformation and standardization approaches are 

implemented to address differences in residuals, standard deviations and 

differences in stages of lactation between the samples. Residuals of some of the 

FAs, especially of C18:2n6, C18:3n3 and CLA, tended to increase with the mean, 

indicating heterogeneity of the residual variances and in this way violating the 

assumptions underlying significance testing. Logarithmic transformation is thus 

applied for these traits and the transformed values were used for both the 

population-specific analyses as well as the joint GWA. Residuals plotted against 

predicted phenotypes in these FA traits presented in Figure 1 indicate that the 

problem of heterogeneity is corrected by the transformation applied. 

Milk FA traits can also differ between populations due to differences in lactation 

stages of the cows. In our study, an attempt was made to tackle this source of 

differences by restricting lactation stages to 60 days in milk and above. There are 

evidences that effects of genes in early lactation differ from those later in lactation. 

For instance, Bovenhuis et al. (2015) have reported significant DGAT1 by lactation 

stage interaction for milk production traits including fat content and showed that 

the DGAT1 effect shows a large increase during early lactation (from the start of 

lactation to day 50 to 150) and tends to decrease later in lactation.  

Some significant differences in standard deviations were also observed between 

the samples from the three populations. To test sensitivity of such differences, in 

relation to the joint GWA outcomes, we standardized all the FA measurements 

within population to have mean of zero and standard deviation of one, and a 

separate test joint-GWA was undertaken with this standardized dataset. The joint 

GWAS using the standardized dataset led to detection of significant association 
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with one more FA on BTA 13 but detections in the rest of the regions remained 

unchanged after the standardization. While detection of significant association 

with one more FA at one of the 56 regions is still relevant and emphasizes the 

importance of such standardization, the fact that the rest of detections remained 

the same with and without standardization shows that our joint GWA is not 

substantially affected by differences in standard deviations and stresses the 

stability of our results. 

 

4.5 Conclusion 

Joint GWAS using multi-population datasets detected the highest number of 

regions and the highest number of associated FA traits compared to the 

population-specific analyses as well as the three different meta-analysis 

approaches employed. Detection of higher number of regions using the different 

meta-analyses methods, compared to any of the population-specific analyses, 

emphasizes utility of these methods in the absence of raw multi-population 

datasets to undertake joint GWA. Among the meta-analysis methods employed, 

the weighted z-score method was the closest to the joint GWA in terms of the 

number of detected regions and the number of FAs associated to each detected 

region. The random effects model, which is specifically designed to handle 

presence of heterogeneity among individual studies, resulted in the lowest number 

of QTL detected. 
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Abstract 

The power of genome-wide association (GWA) studies is often limited by the 

sample size available for analysis. Milk fatty acid (FA) traits are scarcely recorded 

due to expensive and time-consuming analytical techniques. Combining multi-

population datasets can enhance the power of GWA studies enabling detection of 

genomic region explaining medium to low proportions of the genetic variation. 

GWA studies often detect broader genomic regions containing several positional 

candidate genes making it difficult to untangle the causative candidates. Post-GWA 

analyses with data on pathways, ontology and gene expression status on tissues of 

relevance might allow prioritization among positional candidate genes. Multi-

population GWA for 16 FA traits quantified using gas chromatography (GC) in 

sample populations of the Chinese, Danish and Dutch Holstein with high-density 

(HD) genotypes detects 56 genomic regions significantly associated to at least one 

of the studied FAs; some of which have not been previously reported. Pathways 

and gene ontology (GO) analyses suggest promising candidate genes on the novel 

regions including OSBPL6 and AGPS on BTA 2, PRLH on BTA 3, SLC51B on BTA 10, 

ABCG5/8 on BTA 11 and ALG5 on BTA 12. Novel genes in previously known regions, 

such as FABP4 on BTA 14, APOA1/5/7 on BTA 15 and MGST2 on BTA 17, are also 

linked to important FA metabolic processes. Detection of such regions and 

candidate genes will be crucial in understanding the complex genetic control of FA 

metabolism. The findings can also be used to augment genomic prediction models 

with regions collectively capturing most of the genetic variation in the milk FA 

traits.  

 

Key words: Milk fatty acids, multi-population GWA, candidate genes, pathway 

analysis   
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5.1 Introduction 

Several fatty acids (FAs) of varying carbon chain length (C4-C22) and degree of 

saturation are present in milk. FAs in milk can originate either through direct 

transport from the rumen to the mammary gland via the blood, or from de novo 

synthesis in the mammary gland from acetate, beta-hydroxybutyrate (Bauman and 

Griinari, 2003) and propionate (Massart-Leën et al., 1983; Vlaeminck et al., 2006). 

Additionally, FAs in the mammary gland can originate from mobilization of body fat 

reserves. The short and intermediate chain FAs are mostly synthesized de novo in 

the mammary gland with the exception of C16:0, of which approximately 50% is 

assumed to be synthesized de novo. The long chain FAs, and approximately 50% of 

C16:0, are suggested to be derived from blood lipids originating from the diet 

(Chilliard et al., 2000) and mobilization of body fat reserves (Bauman and Griinari, 

2003). Considerable genetic variation has been reported for the fat composition of 

milk (e.g. Stoop et al., 2008; Krag et al., 2013). Genes with major effects such as the 

DGAT1 and SCD1 explain part of this genetic variation (Schennink et al., 2008). In 

addition, several regions on the bovine genome with suggestive effects on milk fat 

composition have been reported from GWA studies (e.g. Bouwman et al. 2012; 

Buitenhuis et al. 2014; Li et al. 2014). Identified genes and genomic regions explain 

a fraction of 3.6 to 53 % of the total genetic variation in different milk FA traits (e.g. 

Bouwman et al., 2011, 2012). Detection of additional genomic regions requires 

availability of larger sample size and high-density markers. GC analysis, the current 

method of choice to quantify milk FA, requires expensive equipment and is time-

consuming, thus limiting measurement of the traits to experimental scale. GWA 

studies for the milk FA traits so far relied on such smaller datasets within different 

dairy cattle breeds/populations.  

An option to deal with the limitation in sample size could be to combine the 

available smaller datasets across populations for joint GWA. Such analyses can 

increase detection power depending on the genetic distance between the 

populations and the marker density (Lund et al., 2014). In this study, we undertake 

multi-population GWA for milk FA traits by combining samples from Chinese, 

Danish and Dutch Holstein Friesians with HD genotypes available. Previous studies 

show high consistency in the linkage disequilibrium (LD) and minor allele 

frequencies between the three populations (e.g. Zhou et al. 2013; Li et al. 2015; 

Gebreyesus et al. submitted). Thus, combining samples from these populations for 

joint GWA might allow identification of genomic regions explaining even small 

proportions of the genetic variation in milk FA.  
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A hurdle is that due to the long range of LD in livestock breeds, GWA studies often 

result in detection of large genomic regions (de Roos et al., 2008) containing 

several positional candidate genes. Identifying the actual causative variants, 

therefore, requires additional evidence on top of the GWA test. Enrichment 

analysis is commonly undertaken in GWA studies to prioritize positional candidate 

genes linked to significantly enriched pathways and gene ontology (GO) terms that 

are believed to be relevant to traits of interest. However, FA synthesis can take 

place in various mammalian tissues and thus further evidence is needed to 

determine whether such prioritized genes are relevant particularly to milk FA 

related mechanisms. Studies have been profiling differential expression of genes in 

the mammary tissues in various species (e.g. Bionaz et al., 2012; Lemay et al., 

2013). Such publicly available data can been used to further prioritize candidate 

genes. Furthermore, the mammalian phenotype ontology (Smith et al., 2005), 

which provides annotation of mammalian phenotypes in the context of mutations, 

is increasingly becoming useful in fine-tuning the link between detected genes and 

phenotypes associated (e.g. Cai et al., 2018). 

To prioritize positional candidates in this study, we use publicly available resources 

to obtain Gene Ontology (GO) terms and enriched Kyoto Encyclopedia of Genes 

and Genomes (KEGG) pathways, and link results with reported mammary gland 

gene expression and the mammalian phenotype ontology database (Smith et al., 

2005). 

 

5.2 Methods 

 

5.2.1. Animals and phenotypes 

The dataset used for the association analysis comprised 700 Chinese, 614 Danish 

and 1,566 Dutch Holstein cows sampled from 18 herds in China, 22 herds across 

Denmark and 398 herds in the Netherlands. Stages of lactation of sampled cows 

ranged from 60 to 700 days in milk in the Chinese population, 60 to 481 days in 

milk in the Danish population and 60 to 278 days in milk in the Dutch Holstein 

cows.  

FA traits, including C8:0, C10:0, C12:0, C14:0, C14:1, C15:0, C16:0, C16:1, C18:0, 

C18:1c9, C18:2n6, C18:3n3 and C18:2 cis-9,trans-11 (CLA), were analyzed using the 

GC method. Details of the quantification methods are as described by Li et al. 

(2014) for Chinese samples, Poulsen et al. (2012) for Danish samples and Stoop et 

al. (2008) for Dutch samples. Genomic regions affecting the saturated FAs might 

show association to the unsaturated forms because the saturated form available 
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for desaturation determines proportion of the unsaturated FAs. Hence, calculation 

of the desaturation indexes might allow detection of regions particularly associated 

with the desaturation process. Accordingly, desaturation indexes were calculated 

based on the FA measurements as: C14 index = C14:1/(C14:1+C14:0) * 100; C16 

index = C16:1/(C16:1+C16:0) * 100 and C18 index = C18:1c9/ (C18:1c9+C18:0) * 

100. 

 

5.2.2. Genotypes and Imputation 

High-density (HD) genotypes, real or imputed, were available for all cows used in 

the analyses. Sampled cows from the Chinese Holstein were initially genotyped 

using the BovineSNP50 Beadchip (50K, Illumina). The 50K genotypes were then 

imputed to HD using reference population of 96 Chinese Holstein bulls, genotyped 

with the BovineHD Beadchip (777K). 

Part of the Danish dataset included cows genotyped with the BovineHD Beadchip, 

while the remaining Danish cows were genotyped using the BovineSNP50 

Beadchip. The HD genotypes available for part of the samples was therfore used as 

reference to impute the 50K genotypes of the first part of the Danish cows to HD. 

Details are described in Gebreyesus et al. (2016). Cows in the Dutch dataset were 

genotyped with a custom 50K SNP Beadchip and subsequently imputed to HD as 

presented in detail by Duchemin et al. (2014). SNPs with minor allele frequencies 

(MAF) less than 0.05 or with a count of one of the genotypes less than 10 in each 

population were excluded from the association analysis. A total of 464,130 SNPs 

were available for the association analysis. The SNP positions were based on the 

bovine genome assembly UMD 3.1 (Zimin et al., 2009). 

 

5.2.3. Association analysis 

A single-SNP association test was implemented using a mixed linear model in the 

GCTA program (Yang et al., 2011). Association analysis was carried out using the 

following statistical model: 

𝑦𝑖𝑗𝑘𝑙 =  µ + 𝑝𝑎𝑟𝑖𝑡𝑦𝑖 + ℎ𝑒𝑟𝑑𝑗 + 𝑏1 ∗ 𝐷𝐼𝑀𝑖𝑗𝑘𝑙 + 𝑏2 ∗ 𝑆𝑁𝑃𝑘 +  𝑎𝑛𝑖𝑚𝑎𝑙𝑙 + 𝑒𝑖𝑗𝑘𝑙 ,  (1) 

 

Where yijkl is the phenotype of cow l; µ is the fixed effect of mean; parityi and herdj 

are the fixed effects of parity and herd, respectively; b1 is the regression coefficient 

for DIM, DIMijkl is a covariate of days in milk; b2 is the allele substitution effect for 

SNP, SNPk is a covariate indicating the number of copies of a specific allele (0, 1 or 

2) of the SNP; and animal is the random additive genetic effect. Animal effects 

were assumed to be distributed as: N(0, 𝐆𝜎𝑎
2), where G is the genomic relationship 
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matrix constructed using all HD genotypes but excluding the SNPs on the 

chromosome on which SNP k is located. Residuals were assumed to be distributed 

as: N(0, 𝐈𝜎𝑒
2), where I is the identity matrix.  

Since only cows with more than 60 days-in-milk were included in the analyses, a 

linear adjustment for DIM was sufficient. For the FA traits C18:2n6, C18:3n3 and 

CLA, log transformation was applied prior to the association analysis to account for 

observed heterogeneity of residual variances.  

Significance thresholds were determined using a false discovery rate (FDR). 

Significance thresholds corresponding to FDR of 5% ranged for different FA from –

log10 p-value = 3.4 to –log10 p-value = 5.0. We used a –log10 p-value of 5.0 as the 

genome-wide significance threshold for all FA composition traits. 

 

5.2.3.1 Determining multiple regions on a chromosome 

To determine if a region harbored one or more QTL, iterative approaches fitting the 

effect of SNPs with the highest –log 10 p-values were employed. In this approach, 

the SNP with the highest –log 10 p-value for the studied FA trait was considered as 

the lead SNP. The allelic dosage of such a lead SNP was then fitted as fixed effect 

for a second round of chromosome-wide analyses. If other SNPs, also significantly 

associated in the first round GWA, were still found to have -log 10-pvalue > 5 in the 

second round analysis, the SNP with the highest –log 10 p-value in the second 

analysis was taken as the second lead SNP and its allelic dosage fitted as fixed 

effect for a third round of analysis. This procedure was iterated until no further SNP 

with -log 10-pvalue > 5 was observed. The SNPs that showed significant association 

in a round of GWA but showed –log 10 p-value < 5 upon fitting the allelic dosage of 

the lead SNP were then considered as part of a region around that lead SNP. The 

position of the first and last such SNP before and after the lead SNP were 

considered as the boundaries of the region. 

 

5.2.3.2 Estimation of genetic variances explained by SNPs 

Genetic variance explained by the lead SNP in a region was calculated from the 

GWA summary as: 2pqα2, where p and q are the allele frequencies and α is the 

allele substitution effect (Park et al., 2010). The proportion of total genetic variance 

explained by such a lead SNP was then calculated as: 
2𝑝𝑞α2

𝜎𝑎
2⁄ , 

Where, 𝜎𝑎
2 is the additive genetic variance estimated using model 1 but without 

fitting fixed effects of SNP and using G constructed using all HD SNPs. Computation 

of genetic variance explained by SNPs from a GWA summery might lead to 

overestimation of SNP effects (Beavis 1998) specially for small effect size SNPs that 
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only just reach the significance threshold. Heritability (h2) estimates were 

computed as:  

 

ℎ2 =  
𝜎𝑎

2

𝜎𝑎
2+𝜎𝑒

2,                                        (2) 

 

Where, 𝜎𝑒
2 is the residual variance. 

 

5.2.4. Gene assignment and enrichment analyses 

Genes found within detected genomic regions were retrieved from the ensemble 

database using the BioMart web interface based on the UMD 3.1 bovine genome 

assembly (https://www.ensembl.org/biomart/martview). The DAVID functional 

annotation tool (https://david.ncifcrf.gov) was then used to analyze 

overrepresented GO biological terms, which included the terms cellular component 

(CC), molecular function (MF), biological process (BP) and the KEGG (Kyoto 

Encyclopedia of Genes and Genomes) pathways. Ontologies in the mammalian 

phenotype database were accessed and searched for genes connected to 

abnormalities relevant to FA metabolism using the Mouse Genome Informatics 

(MGI) web platform (http://www.informatics.jax.org/batch). 

 

5.3 Results 

 

5.3.1. Descriptive statistics and genetic parameters 

Table 5.1 presents phenotypic means, additive genetic variances and heritability 

estimates of the FAs expressed as weight percentage of total fat and the 

desaturation indexes in the combined multi-population dataset. The 13 FAs studied 

together amounted to 87.6% of total fat. Of the studied FAs, C18:3n3 and CLA 

occurred at concentrations less than 1% of total fat in the milk samples. Other FAs 

including C15:0, C8:0, C14:1 and C16:1 also occurred at low concentrations of total 

fat (means = 1.09 – 1.49).  Coefficients of variation (not shown) of the FA traits 

ranged between 0.06 % (C18 index) and 0.43 % (CLA). Heritability estimates in the 

studied FA traits ranged from low (0.18) for C18:2n6 to high (0.53) for C14 index. 

The dataset used in the current study comprises samples from the Chinese, Danish 

and Dutch Holstein population and details regarding descriptive statistics and 

genetic parameters within each population can be found in chapter 4. 

 

 

 

https://www.ensembl.org/biomart/martview
https://david.ncifcrf.gov/
http://www.informatics.jax.org/batch
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Table 5.1. Phenotypic means (with standard deviations, SD) and genetic parameters 

(with standard errors, SE) in the combined-population dataset 

 

FAs Mean SD  𝜎𝑎
2 SE  h2 SE 

Saturated FAs1         

C8:0   1.18 0.38    0.008 0.04  0.27 0.03 

C10:0   2.80 0.58  0.07 0.09  0.39 0.04 

C12:0   3.58 0.76  0.09 0.11  0.33 0.04 

C14:0 11.00 1.26  0.21 0.17  0.25 0.03 

C15:0   1.09 0.18    0.004 0.02  0.23 0.04 

C16:0 30.20 3.53  1.80 0.48  0.34 0.04 

C18:0 10.30 1.99  0.52 0.29  0.25 0.04 

Unsaturated FAs1         

C14:1   1.19 0.35  0.03 0.05  0.47 0.04 

C16:1   1.49 0.35  0.05 0.07  0.46 0.04 

C18:1c9 21.90 4.37  1.38 0.46  0.27 0.04 

C18:2n6   1.89 1.19  0.01 0.05  0.18 0.03 

C18:3n3   0.48 0.13    0.005 0.01  0.19 0.03 

CLA   0.53 0.23    0.004 0.02  0.21 0.04 

Desaturation indexes2        

C14 index   9.71 2.37  1.57 0.37  0.53 0.03 

C16 index   4.70 0.97  0.32 0.19  0.38 0.04 

C18 index 67.80 3.98  3.95 0.73  0.31 0.04 
1Expressed in % wt/wt 
2Desaturation indexes calculated as unsaturated/(unsaturated + saturated) × 100 

 

 

5.3.2. Detected genomic regions 

Our multi-population GWA resulted in the detection of 56 genomic regions 

containing SNPs significantly associated with at least one of the studied FA traits 

(Table 5.2). Significant associations were detected on all chromosomes except bos 

Taurus autosome (BTA) 18.  Most of the FA traits showed significant associations 

with multiple genomic regions on several chromosomes; particularly for C10:0 (14 

regions), C16:0 (12 regions), C16:1 (13 regions), C18:1c9 (11 regions) and C16 index 

(13 regions). Proportions of genetic variance explained by the lead SNPs in the 

detected regions ranged between 1.4 % and 45.3 % for the different FA traits 

studied. 
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Table 5.2. Genomic regions associated with milk fatty acid traits in the multi-population analysis and suggested candidate genes 

 

Region* Start 
(Mbp) 

End 
(Mbp) 

Traits associated (and % of explained genetic variance) Candidate genes 

 

1a 19.92 19.93 C16:0(3.1)  
1b 101.0 101.0 C18 index(2.8)  
1c 141.3 142.5 C15:0(3.9)  
2a 12.5 19.8 C8:0(3.7), C10:0(3.0) OSBPL6, AGPS 
2b 54.9 59.8 C14:1(1.6), C16:0(3.6), C16:1(2.1), C14 index(1.5)  
2c 64.1 67.8 C16:1(2.3), C16 index(2.3)  
2d 106.5 135.6 C12:0(2.5), C15:0(5.6), C16:0(2.8), C18:1c9(3.8) MOGAT1, FABP3, MECR 
3 116.2 119.4 C18:3n3(4.3), CLA(3.2) PRLH 
4 15.59 15.6 C15:0(5.2)  

5a 10.33 10.36 C15:0(9.0)  
5b 65.7 82.8 C8:0(3.9), C10:0(2.5) CHPT1 
5c 87.4 99.0 C8:0(4.3), C10:0(3.2), C12:0(2.6), C14:1(1.7), C16:0(2.7) , C16:1(2.1), 

C18:1c9(5.6), CLA(3.2), C14 index(2.4), C16 index(4.9) 
MGST1, PLBD1, LRP6 

6 41.4 41.4 C18 index(2.9)  
7a 14.6 15.5 C8:0(3.3), C10:0(2.2)  
7b 78.4 78.4 C18:2n6(3.3)  
7c 81.6 83.2 C12:0(3.0), C15:0(6.0)  
8a 57.5 59.7 C15:0(6.1), C16:1(2.0), C16 index(2.5) PIGO, STOML2 
8b 79.9 98.4 C14:0(3.9), C18:0(4.1), CLA(3.3)  
9a 25.5 25.6 C14:1(1.7)  
9b 81.3 81.3 C15:0(5.0)  

10a 1.1 8.6 C10:0(2.0), C12:0(3.5)  



5. GWAS and enrichment analyses for milk fatty acids 

 

 

122 

 

Table 5.2.  Continued 

Region* Start 
(Mbp) 

End 
(Mbp) 

Traits associated (and % of explained genetic variance) 

 

Candidate genes 

10b 12.9 12.9 C14:1(1.6), C18:0(3.6) SLC51B 
10c 78.1 80.1 C18:3n3(4.9) PIGH 
10d 87.5 93.1 C18:0(4.1), CLA(3.4), C18 index(2.5)  
11a 24.7 26.7 C16:0(2.6) ABCG5, ABCG8 
11b 58.81 58.89 C16:0(2.8)  
12a 17.1 17.1 C18:1c9(3.5)  
12b 24.0 24.8 C14:1(1.8) ALG5 
12c 70.0 77.4 CLA(3.5), C16 index(2.5)  
13 64.6 65.7 C10:0(2.4) NCO6, ACSS2 

14a 1.5 5 C8:0(7.8), C10:0(3.6), C14:0(8.8), C14:1(2.1), C15:0(16.3), C16:0(33.8), 
C16:1(7.8), C18:1c9(34.1), C18:2n6(34.3), C18:3n3(24.2), CLA(14.6), 
C14 index(4.5), C16 index(11.3), C18 index(11.4) 

DGAT1, GPAA1 

14b 5.2 20 C8:0(4.3), C10:0(2.7), C15:0(5.2), C16:0(11.2), C16:1(6.6), C18:1c9(10.5), 
C18:2n6(15.2), C18:3n3(12.8), CLA(4.7), C14 index(1.8), C16 
index(3.4), C18 index(4.4) 

 ST3GAL1 

14c 44.7 49.9 C14:1(2.0), C16:1(1.9), C14 index(1.6), C18 index(2.7) PMP2, FABP9, FABP4 
FABP12 

15a 27.2 31.2 C10:0(2.3), C14:0(4.6), C18:0(4.6) APOA1, APOA4, APOA5, DPAGT1 
15b 46.9 65.9 C10:0(2.8) CAT, ELF5 
16a 23.8 25.22 C18:0(3.8), C16 index(2.3)  
16b 57.53 57.58 C16:1(1.7), C16 index(2.1)  
17a 17.4 22.6 C16:1(3.0), C16 index(2.1) MGST2 
17b 27.8 44.1 C8:0(5.9), C10:0(3.0), C16:1(2.6), C18:3n3(4.8), C16 index(2.3) LARP1B 
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Table 5.2 Continued 

Region* Start 
(Mbp) 

End 
(Mbp) 

Traits associated (and % of explained genetic variance) 

 

Candidate genes 

19 37.3 61.3 C8:0(7.6), C10:0(12.6), C12:0(13.6), C14:0(22.3), C16:0(4.6), 
C18:1c9(3.9), C14 index(3.1), C18 index(2.5) 

ACLY, BRCA1, FASN, STAT5A,  

20a 32.4 34.2 C16:1(1.9), C18:0(4.3) PLCXD3, PRKAA1 
20b 36.7 36.9 C14:1(1.6), C18:1c9(3.9)  
20c 55.3 60.4 C14 index(1.6), C18 index(2.8)  
21 53.8 59.1 C10:0(2.3), C12:0(2.9), C14:0(3.3), C18:1c9(4.1)  
22 59.12 59.13 C14 index(1.6)  

23a 26.7 32.7 CLA(4.3) AGPAT1, ATAT1 
23b 33.5 36.5 C15:0(5.8)  
23c 40.7 43.5 C18:1c9(3.4), C16 index(2.1), C18 index(2.6)  

     24 10.2 10.2 C18:0(4.2)  
25a 9.8 9.9 C12:0(3.1)  
25b 24.7 24.7 C18:1c9(3.5)  
25c 41.4 41.7 CLA(3.0) C14 index(1.4)  
26 2.9 43.0 C8:0(3.7), C10:0(5.5), C12:0(3.3), C14:0(8.0), C14:1(39.0), C16:0(2.4), 

C16:1(13.6), C18:0(4.5), C14 index(45.3), C16 index(19.7), C18 
index(3.3) 

SCD, ELOVL3,  ACSL5, GPAM 

27 37.0 42.2 C16:0(2.9)  
28 36.6 37.2 C16:1(2.3), C16 index(2.5)  
29 32.9 40.5 C16:0(2.5), C18:1c9(3.2) TKFC 
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Peak sizes (highest –log 10 p-value) across FA traits ranged from a –log 10 p-value 

of 6.9 for C18:0 to a –log 10 p-value of 126 for C14 index. Figures 5.1 – 5.4 present 

Manhattan plots for all FAs according to the different FA groups i.e., de novo FAs 

(Figure 5.1), intermediate to long-chain saturated FAs (Figure 5.2), the unsaturated 

FAs (Figure 5.3), and desaturation indexes (Figure 5.4). The strongest association 

for C8:0 (-log10 p-value=11.39), C15:0 (-log10 p-value=21), C16:0 (-log10 p-

value=58), C16:1 (-log10 p-value=55), C18:1c9 (-log10 p-value=46), C18:2n6 (-log10 

p-value=29), C18:3n3 (-log10 p-value=24.8), CLA (-log10 p-value=18.1) and C18 

index (-log10 p-value=19.3) was observed at two variants on BTA 14 (ARS-BFGL-

NGS-4939 and BovineHD1400000216). This region (14a) was significantly 

associated with all studied FA traits except C12:0. The lead SNP in this region 

explained up to 34 % of the genetic variation in C18:1c9 and C18:2n6. Two other 

regions on BTA 14 remained significantly associated with multiple FA traits after 

accounting for the fixed effect of the lead SNP from region 14a (ARS-BFGL-NGS-

4939). The second region (14b) was also significantly associated with most FA traits 

except C12:0. The third region on BTA 14 (14c), was significantly associated with 

C14:1, C16:1, C14 index and C18 index. The lead SNP in this region explained 2.7 % 

of the genetic variation in C18 index and 1.6 % in C14 index. 

Strongest association for C10:0 (-log10 p-value=24.3), C12:0 (-log10 p-value=22) 

and C14:0 (24.2) was detected with two variants on BTA 19 (BovineHD1900014372 

and BovineHD1900014348). Significant associations were also detected for C8:0, 

C16:0, C18:1c9, C14 index and C18 index with SNPs located between 37.3 to 61.3 

Mbp on chromosome 19. Particularly for C14:0, 22.3 % of the genetic variation was 

explained by the lead SNP in this region. 

The strongest association for C14:1 (-log10 p-value=98.8), C14 index (-log10 p-

value=126) and C16 index (-log10 p-value=39.8) was found with SNPs on 

chromosome 26 (BovineHD2600005461). Significant associations were also 

detected for C8:0, C10:0, C12:0, C14:0, C16:0, C16:1, C18:0 and C18 index. The lead 

SNP in this region explained 39.0 % of the genetic variation in C14:1. 
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5.3.3. Gene assignment and functional annotation 

Several genes positioned within the detected genomic regions were retrieved from 

the ensemble database. These positional candidate genes were further prioritized 

using enrichment analyses implemented in the DAVID web platform, which 

resulted in different significantly enriched GO terms and KEGG pathways relevant 

to FA related mechanisms (Table 5.3).  

Among the enriched GO terms and pathways were biosynthesis related, such as 

‘GO:0006633~FA biosynthetic process’ (7 genes) and ‘bta01040:biosynthesis of 

unsaturated FAs’ (3 genes), binding and transport related, such as 

‘GO:0008289~lipid binding (8 genes) and ‘GO:0006869~lipid transport’ (3 genes), 

and metabolism, such as ‘GO:0006631~FA metabolic process’ (21 genes) and 

‘bta00591:linoleic acid metabolism’ (4 genes).  

Some among the set of genes in all significantly enriched pathways and GO terms 

were also found to be expressed in mammary tissues and epithelial cells across 

different species. Furthermore, some of the prioritized candidate genes were linked 

to abnormalities related to FA metabolism in the mammalian phenotype database 

including ‘increased circulating triglyceride levels’ (MP:0001552), ‘abnormal lipid 

homeostasis’ (MP:0002118) and ‘abnormal phospholipid level’ (MP:0004777). 

Apart from genes, also non-coding genomic features such as micro RNAs were 

located within the detected genomic regions.  
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Table 5.3 List of significantly enriched pathways and GO terms 

 

Category Term Count Pvalue 

GOTERM_BP_DIRECT GO:0006633~fatty acid biosynthetic 
process 

7 <0.001 

GOTERM_MF_DIRECT GO:0008289~lipid binding 8 <0.001 
GOTERM_BP_DIRECT GO:0070328~triglyceride homeostasis 5 <0.001 
GOTERM_BP_DIRECT GO:0008610~lipid biosynthetic process 4 <0.001 
GOTERM_BP_DIRECT GO:0016042~lipid catabolic process 15 <0.001 
GOTERM_BP_DIRECT GO:0045717~negative regulation of fatty 

acid biosynthetic process  
4 <0.001 

GOTERM_BT_ALL GO:0010876~lipid localization 12   0.001 
GOTERM_MF_DIRECT GO:0005543~phospholipid binding 5   0.001 
GOTERM_BP_DIRECT GO:0006631~fatty acid metabolic process 21   0.005 
GOTERM_BP_DIRECT GO:0006629~lipid metabolic process 4   0.01 
GOTERM_BP_DIRECT GO:0006869~lipid transport 3   0.02 
GOTERM_BP_DIRECT GO:0006750~glutathione biosynthetic 

process 
3   0.02 

GOTERM_CC_DIRECT GO:0043190~ATP-binding cassette (ABC) 
transporter complex 

2   0.01 

GOTERM_MF_DIRECT GO:0036041~long-chain fatty acid binding 2   0.02 
GOTERM_BP_DIRECT
   

GO:0045796~negative regulation of 
intestinal cholesterol absorption 

2   0.02 

GOTERM_MF_DIRECT GO:0004623~phospholipase A2 activity 3   0.03 
GOTERM_MF_DIRECT GO:0070653~high-density lipoprotein 

particle receptor binding 
2   0.03 

GOTERM_BP_DIRECT GO:0046486~glycerolipid metabolic 
process 

3   0.03 

GOTERM_BP_DIRECT GO:0055114~oxidation-reduction process 8   0.04 

UP_KEYWORDS  Acyltransferase 10 <0.001 
INTERPRO IPR016181:Acyl-CoA N-acyltransferase 6 <0.001 
KEGG_PATHWAY  bta00564:Glycerophospholipid 

metabolism 
9 <0.001 

KEGG_PATHWAY  bta04975:Fat digestion and absorption 10 <0.001 
KEGG_PATHWAY  bta00565:Ether lipid metabolism 7 <0.001 
KEGG_PATHWAY  bta00062:Fatty acid elongation 4   0.004 
KEGG_PATHWAY  bta05204:Chemical carcinogenesis 3   0.004 
KEGG_PATHWAY  bta00591:Linoleic acid metabolism 4   0.01 
KEGG_PATHWAY  bta01040:Biosynthesis of unsaturated 

fatty acids 
3   0.03 

KEGG_PATHWAY  bta04977:Vitamin digestion and 
absorption  

3   0.03 

KEGG_PATHWAY  bta04919:Thyroid hormone signaling 
pathway 

5   0.05 
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5.4 Discussion 

 

5.4.1 Agreement between detected regions and previous reports 

Our multi-population GWA resulted in detection of large numbers of genomic 

regions significantly associated with at least one of the 16 milk FA traits studied, 

indicating the complexity of the milk FA synthesis pathways. Most of the detected 

genomic regions have been previously reported in connection to milk FA traits, e.g. 

genomic regions on BTA 14, BTA 19 and BTA 26 (e.g. Schennink et al., 2009a; 

Bouwman et al., 2012; Li et al., 2014).  

On BTA 14, our analysis indicates three distinct regions significantly associated with 

several FA traits. The first region is known to contain the DGAT1 gene, of which the 

effects are well established for multiple FA traits (e.g. Grisart et al., 2002; 

Bovenhuis et al. 2016). The second region was previously reported to show 

significant associations with milk fat percentage (Jiang et al., 2010). The boundaries 

of these two regions (14a and 14b) are in close proximity of each other (1.5-5 Mbp 

and 5.2-20 Mbp) and the regions appear to be highly correlated in terms of 

associated FA traits and proportions of genetic variance explained for these traits. 

While our analysis indicates two distinctive regions, Bouwman et al. (2012), based 

on part of the dataset used in our study, reported a single, broader region (0.0 - 

26.3 Mbp) with significant associations with several FA traits. Our hypothesis is that 

different QTLs underlie these two regions (14a and 14b) but that estimated effects 

of the two QTL could be confounded, because the high LD at the start of BTA 14 

(Arias et al., 2009) makes it difficult to disentangle the effects of multiple QTL.  

The third region on BTA 14 (44.7 – 49.9 Mbp) was exclusively associated with C14:1 

and C16:1 as well as C14 index and C18 index. This region was previously reported 

for significant associations with C16:1 (Bouwman et al., 2012) and milk fat 

percentage (Cole et al., 2011). The region contains the fatty acid binding proteins 

FABP4, FABP9 and FABP12 as well as the peripheral myelin protein (PMP2), 

enriching the GO terms of FA (GO:0006631) and lipid (GO:0006629) metabolic 

processes as well as lipid binding activities (GO:0008289). A study by Nafikov et al. 

(2013) reported a FABP4 haplotype negatively associated with saturated milk FAs 

and the ratio between saturated and unsaturated FAs while having positive effects 

on the unsaturated FAs. Marchitelli et al. (2013) also reported that the FABP4 

affected the ratio of monounsaturated/saturated FA in milk. Additionally, variation 

in FABP4 is reported to affect other milk production traits such as milk yield (Zhou 

et al., 2015). Therefore, results of our analysis and previous studies suggest a role 
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of this region in desaturation of C14:0, C16:0 and C18:0 with the FABP4 as the most 

likely candidate gene.  

Broader regions were detected on BTA 19 (37.3 – 61.3 Mbp) and BTA 26 (2.9 – 43.0 

Mbp). The genes FASN on BTA 19 (e.g. Schennink et al., 2009b) and SCD1 on BTA 26 

(e.g. Mele et al., 2007) have previously been suggested as the likely candidate 

genes for FA traits. However, our enrichment analysis indicate additional genes in 

these regions connected to important FA metabolism processes including the ACLY, 

STAT5a, PLCXD3, PRKAA1, GH on BTA 19 and ELOVL3, ACLS5 on BTA 26. Significant 

associations were previously reported between variants within some of these 

genes and some milk FA traits (e.g. Bouwman et al., 2011; Strillacci et al., 2014). 

In our study, more FA traits have been found to have significant associations with 

the DGAT1 and SCD1 regions than previous GWA studies using different parts of 

the multi-population dataset used in the current analysis (e.g. Bouwman et al., 

2011, 2012; Buitenhuis et al. 2014; Li et al., 2014, 2015). These previous studies 

might not be considered as independent of the current analysis; however, more 

associations in the current analysis can be an indication of improved detection 

power from combining the populations. This was also demonstrated in our 

previous study (Chapter 4) in which results of population-specific analyses versus 

multi-population joint GWA were compared. Effects of the DGAT1 (ARS-BFGL-NGS-

4939) and SCD1 (BovineHD2600005461) loci were similar in direction and highly 

correlated between the three populations but estimated effects in the Chinese 

sample were consistently lower across the FAs compared to the Dutch and Danish 

Holstein samples. 

The three regions detected on BTA 5 overlap with previously reported regions for 

milk FA traits (Bouwman et al., 2012; Buitenhuis et al., 2014; Littlejohn et al., 2016). 

For region 5c, MGST1 was suggested as the most likely candidate gene (Littlejohn 

et al., 2016). In our analysis, the lead SNP in the region was located within the 

MGST1 gene. However, our enrichment analysis did not establish any connection to 

MGST1 with significantly enriched FA related GO terms and pathways. Additionally, 

PLBD1 and LRP6 genes were connected to several pathways including lipid 

localization (GO:0010876) and transport (GO:0006869) suggesting that the 

significant association observed in the region with 10 FA traits might not be limited 

to the MGST1 effect.  

The region on BTA 13 was previously detected in the Dutch Holstein population 

(Bouwman et al., 2011 and 2012) and in Danish Jersey (Buitenhuis et al., 2014) with 

both studies suggesting the ACSS2 as the highly likely candidate gene. Meanwhile, 

using IR predicted phenotypes for the de novo FAs, Olsen et al. (2017) suggested 

that the NCOA6, not the ACSS2, is responsible for significant associations in the 
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region. Our enrichment analysis however links ACSS2 with several significantly 

enriched pathways while no such links were established for the NCOA6 gene.  

Similarly, the first region on BTA 15 (27.2 – 31.2 Mbp) has been reported in 

previous studies including a joint Chinese-Danish Holstein population (Li et al., 

2015). Several genes enriching FA related pathways were detected in the region 

including APOA1, APOA4, APOA5, and DPAGT1. The apolipoproteins APOA1/4/5 

enriched glycerolipid metabolic process (GO:0046486), fat digestion and absorption 

(bta04975) as well as negative regulation of FA biosynthetic process (GO:0045717) 

while the DPGAT1 was involved in lipid biosynthetic process (GO:0046486). The 

strongest associations observed in the region were between C18.0 and variants 

within the alipoprotein genes, which showed opposite direction of effects on C10:0 

and C14:0. Although effects were not significant, the lead SNP in the region also 

showed moderate effects on the other de novo FAs including C8:0 (-log 10 p-value 

= 2.96) and C12:0 (-log 10 p-value = 2.96) with direction of effects similar to C10:0 

and C14:0. The alipoproteins APOA1/4/5 are thus collectively suggested as the 

candidates underlying the strong effect on C18:0 observed in the region. The 

opposing effects on the de novo FAs might be directly through involvement of the 

alipoproteins in negative regulation of FA biosynthesis or indirectly through the 

effect on C18:0, which suppresses de novo synthesis. 

The two regions detected on BTA 17 are also in agreement with previous findings. 

The regions detected by Bouwman et al. (2012) (15.0 – 23.9 Mbp) and Li et al., 

(2014) (19.5 – 22.5 Mbp) overlap with the first region (17a) detected in our study. 

In the region, MGST2 significantly enriched GO terms that included FA 

(GO:0006631) and lipid (GO:0006629) metabolic processes and FA biosynthetic 

process (GO:0006633). The MGST2 is previously linked to intramuscular FA 

composition in pigs (Muñoz et al, 2013) and shown to be expressed in all stages of 

lactation in humans (Lemay et al., 2013). Therefore, the MGST2 is suggested as the 

likely candidate gene underlying effects on the first region of BTA 17. Using a 

subset of the dataset used in the current study to fine map BTA 17, Duchemin et al. 

Duchemin et al. (2017) suggested the LARP1B as a primary candidate gene in the 

second region (17b). However, our enrichment analysis did not result in significant 

enrichment of any of the FA pathways and ontology terms for genes in the region.  

Some of the regions detected in our analysis overlap with results from some of the 

recently published GWA studies that are based on IR predicted FA phenotypes (e.g. 

Olsen et al., 2017; Knutsen et al., 2018). Interestingly, some of the well-established 

genomic regions in connection to GC-based FA traits, which were also detected in 

our analysis, have not been found to have significant associations with any of the 
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milk FA phenotypes in these studies. For instance, GWA studies of Olsen et al. 

(2017) and Knutsen et al. (2018) using the FTIR predicted FA phenotypes in Nordic 

Red cattle did not detect any significant association in the DGAT1 and SCD1 

regions. Lack of segregation of the A variant of the DGAT1 K232A polymorphism 

has been suggested as the potential reason for the lack of association in the DGAT1 

region. Additionally, Wang et al. (2016a) showed that the SCD1 polymorphism did 

not significantly affect any of the milk IR wavenumbers in samples from the Dutch 

Holstein population. These findings suggest that IR predicted FA phenotypes are 

not preferred for GWA studies. While some FAs can be accurately predicted based 

on IR (Soyeurt et al., 2011), low prediction accuracies (e.g. De Marchi et al., 2011) 

and low genetic correlations with GC measured FA (e.g. Poulsen et al., 2014) have 

been reported for other FAs. Especially FAs found in low concentrations in milk 

were shown to have low IR prediction accuracies (Rutten et al. 2009). Apparently, 

the power to detect QTL can be severely restricted by the IR prediction accuracy. 

 

5.4.2 Novel genomic regions and candidate genes 

Of the 56 genomic regions significantly associated with at least one FA trait in this 

study, regions located on BTA 2, 3 10, 11, 12 and 21 appear to be novel regions that 

have not been previously connected to milk FA traits. The lead SNPs in these 

regions explained between 1.4 % and 5 % of the genetic variation in at least one of 

the FA traits studied.  

 

5.4.2.1 BTA 2 

Two genes retrieved for region 2a enriched GO terms related to fatty acids. The 

OSBPL6 gene belonging to the oxysterol-binding protein (OSBP) family, a group of 

intracellular lipid receptors, is shown to be involved in lipid binding (GO:0008289) 

and transport (GO:0006869) processes. The OSBPL6 gene is shown to be expressed 

in the human mammary gland during several stages of lactation (Lemay et al., 

2013). The human OSBPL6 gene is also shown to have a binding site for miR-33a/b 

(Ouimet et al. 2016), which is a microRNA shown to have targeting effects on genes 

regulating β-oxidation of FAs (Gerin et al., 2010), leading to significantly lower 

levels of β-hydroxybutyrate (Goedeke et al., 2013). Another gene located in the 

region (AGPS) also enriched GO terms related to FA synthesis including lipid 

biosynthesis process (GO:0008610) and lipid metabolic process (GO:0006629). In 

the mammalian phenotype database, mutation in the AGPS gene in mice has been 

linked to abnormal lipid levels (MP:0001547), which is a rather broad term in the 

database referring to any anomaly in the concentrations of fat-soluble substances 

in the body, including circulating triglyceride and free FAs. Thus, our enrichment 
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analysis indicate that both the OSBPL6 and AGPS might have roles on de novo 

synthesis of FAs. Pattern of SNP effects in the region is also in agreement with 

enrichment analysis such that strongest association was estimated with C8:0 and 

C10:0 while moderate, but not significant effect was measured for C12:0 and C14:0 

(-log 10 p-value = 4.2). Opposing direction of the lead SNP effect were also 

observed for the de novo synthesized FAs, except C15:0, on the one hand and most 

of the long chain FAs on the other (Figure 5 A). Therefore, both the OSBPL6 and 

AGPS are considered as likely candidates in the region. .  

 

5.4.2.2 BTA 3 

On the detected novel region of BTA 3, the prolactin releasing hormone (PRLH) was 

shown to be involved in lipid metabolic process (GO:0006629). Mutations on the 

PRLH gene in mice have been associated with increased circulating triglyceride 

levels (MP:0001552) and increased total body fat amount (MP:0010024) in the 

mammalian phenotype database. In mammals, the PRLH gene is known to 

stimulate prolactin release and regulate its expression. Prolactin, which is a 

polypeptide hormone, has been shown to stimulate the expression of genes 

involved in milk protein synthesis and lipid metabolism (Houdebine et al., 1985; 

Matusik and Rosen, 1980; Rudolph et al., 2011) and induce lipogenesis in many 

tissues (Barber et al., 1991). Moreover, prolactin has been shown to have a wide-

range of effects on lactation including growth and development of the mammary 

gland, promotion of milk synthesis and maintenance of milk secretion (Shiu and 

Friesen, 1980; Akers et al., 1981; Lamberts and Macleod, 1990). Therefore, the 

PRLH gene, through regulation of prolactin release might have effects on milk yield. 

The pattern of SNP effects in the region suggest a connection with the poly-

unsaturated fatty acids (PUFAs) with strongest associations observed for C18:3n3 

and CLA. The direction of effects of the lead SNP was similar for all unsaturated FAs 

as well as all the desaturation indexes, while opposing effects were estimated for 

the de novo synthesized FAs and C16:0 (Figure 5 B). C16:0 is shown to have strong 

negative genetic correlation with milk yield, while moderate positive correlations 

were reported for the PUFAs (Stoop et al., 2008). Therefore, the PRLH is suggested 

as the candidate gene in the region; the effect of which might be indirect through 

its effect on milk yield, affecting the concentration of the PUFAs and C16:0.  

 

5.4.2.3 BTA 10 

The second region on BTA 10 contains the solute carrier family 51-beta subunit 

(SLC51B) gene, implicated in lipid transport (GO:0006869) and localization 

(GO:0010876) processes. Pattern of effects in the region show strong effect on 
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C14:1 and moderate effects on with C14 index (-log 10 p-value = 4.5) and C18 index 

(-log 10 p-value = 3.6) in direction opposite to the strong effect on C18:0 (Figure 

5C). This pattern suggests a reduction in desaturation when C18:0 increases. C18:0 

in milk is largely derived via direct transport through the blood from the rumen 

where is it formed from bio-hydrogenation of dietary C18:2n6 and C18:3n3. 

Therefore, the effect of SLC51B is highly likely through its involvement in the FA 

transport processes. Dietary poly-unsaturated FAs, such as C18:2n6, are known to 

suppress SCD1 activity, thereby reducing its desaturation activity (Jeffcoat and 

James, 1978). Thus, we hypothesize that SLC51B underlies the effect on C18:0, 

while observed opposite effects on the unsaturated FAs and desaturation indexes 

are rather due to the correlation in C18:0 in milk and dietary PUFA, which suppress 

desaturation.  

 

5.4.2.4 BTA 11 

Among the genes located in the first region of BTA 11, the ATP binding cassette 

subfamily G5 (ABCG5) and ABCG8 enriched several pathways and processes 

including fat digestion and absorption pathway (KEGG~bta04975) and the GO 

terms of lipid localization (GO:0010876) and transport (GO:0006869). In the 

mammalian phenotype database, the ABCG5 and ABCG8 genes are linked to 

increased circulating triglyceride level (MP:0001552), abnormal lipid homeostasis 

(MP:0002118) and abnormal phospholipid level (MP:0004777). In humans, 

mutations in ABCG5/8 have been linked to conditions characterized by abnormal 

accumulation of sterols in blood and tissues (e.g. Berge et al., 2000; Lee et al., 

2001) implicating them in lipid absorption and transport. The KEGG pathway for fat 

digestion and absorption involves absorption of lipid from the rumen to the blood 

stream and from the blood stream to the mammary gland. Viturro et al. (2006) 

previously reported high expression levels of both ABCG5 and ABCG8 genes in 

bovine liver, mammary gland, digestive tract and blood samples. Expression of 

ABCG5/8 in bovine mammary gland might indicate that apart from absorption and 

transport of lipids from the digestive tract, ABCG5/8 might also be involved in the 

secretion of lipids from the mammary gland into the milk. Significant association in 

the region was limited to C16:0. Although not significant, this region was also 

associated with C16:1 (-log 10-pvalue = 3.8) and CLA (-log 10-pvalue = 2.2), with 

directions of effects on CLA opposite to the effects on C16:0, C16:1, and C16 index 

(Figure 5 D). The GO term of lipid localization and association almost exclusively 

with C16:0, which is one of the FAs that is highly mobilized from body reserves 

during negative energy balance, might also indicate a role in the mechanism of 

body fat reserve mobilization.  
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5.4.2.5 BTA 12 

The dolichyl-phosphate beta glucosyltransferase (ALG5) gene located on the 

second region of BTA 12 was shown to enrich the lipid biosynthesis process 

(GO:0008610) and glycerolipid metabolic process (GO:0046486). The ALG5 gene 

has previously been shown to be differentially expressed during the different 

stages of lactation in bovine (Bionaz et al., 2012) and human (Lemay et al, 2013).  

Significant effects in the region were limited to C14:1. The lead SNP also showed 

moderate effect on C14 index (-log 10 p-value=3.07) and C18:0 (-log 10 p-

value=3.43) where opposite direction of effects were observed for C18:0 (Figure 5 

E). Therefore, the ALG5 is suggested as promising candidate for further 

characterization for potential role in desaturation process. 

 

5.4.2.6 BTA 21 

Significant associations were detected on BTA 21 with C10:0, C12:0, C14:0 and 

C18:1c9. Effects estimated for the lead SNP were generally positive in the de novo 

synthesized FAs and C16:0 while they were negative for the long-chain FAs and 

desaturation indexes (Figure 5 F). Significant associations have previously been 

reported with bovine milk yield and milk protein yield (Kolbehdari et al., 2009) as 

well as cow fertility traits (Nayeri et al., 2016). However, our enrichment analysis 

show no gene implicated in the significantly enriched pathways and GO terms. 

Despite lack genes implicated on FA related pathways, moderate effects observed 

for multiple traits in the region are of particular interest. QTL detected through 

GWA might be located in non-coding regions. Such QTLs might be involved in 

regulation of expression of other genes affecting the traits of interest. Therefore, 

the region might be of interest for eQTL based GWA studies in milk FA traits.  
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5.4.3 Regulatory elements within detected genomic regions 

Apart from coding genes, retrieved genes from the detected regions included 

regulatory elements, most commonly microRNAs (miRNAs). MiRNAs are small RNAs 

that regulate the expression of complementary messenger RNAs (Ambros, 2004). 

Several studies have reported possible roles of miRNAs in lipid and fatty acid 

metabolisms and in mammary gland development and lactation in several species 

(e.g. Dávalos et al., 2011; Li et al., 2016; Wang et al., 2016b). Some of the miRNAs 

in the detected genomic regions in our study were previously linked to regulatory 

roles on genes related to FA metabolism and synthesis. Of these, bta-mir-27b, on 

BTA 8 (region 8b) was shown to target known FA synthesis genes such as FASN and 

SCD1 (Zhang et al., 2017) as well as mRNAs involved in lipid metabolism (Vickers et 
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al., 2013) and shown to be highly expressed during different stages of bovine 

lactation (Do et al., 2017).  Among the genes located on BTA 2 (region 2d), the bta-

mir-26b was shown to be expressed in bovine milk cells and mammary gland Li et 

al., 2016. Wang et al., (2016b) showed that downregulation of miR-26a/b and their 

host genes decreased the expression of genes related to fatty acid synthesis, 

including DGAT1 and SCD1. 

 

5.5 Conclusion 

Multi-population GWA for GC-quantified FA traits resulted in the detection of 56 

genomic regions significantly associated to at least one of the studied FAs, including 

novel regions explaining relatively smaller fractions of the genetic variation. 

Enrichment analysis of genes harbored in detected regions reveals promising 

candidate genes some of which have not been previously linked to milk FA traits, 

including OSBPL6 and AGPS on BTA 2, PRLH on BTA 3, SLC51B on BTA 10, ABCG5/8 

on BTA 11 and ALG5 on BTA 12. Post-GWA analyses using multiple data sources on 

pathways, ontology terms and tissue-specific gene expression status enabled 

prioritization of highly likely causative candidate genes among several positional 

candidates on detected regions. Use of such data in combination to patterns of 

effects across the milk FA spectrum allowed linking some of the candidates to 

specific FA synthesis mechanisms. Detection of several novel regions and candidate 

genes will be contribute to the knowledge base on genetics underlying the bovine 

milk FA composition. 
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Abstract 

Large-scale phenotyping for milk fatty acid (FA) composition is difficult due to 

expensive and time-consuming analytical techniques. Reliability of genomic 

prediction is often low for traits that are expensive/difficult to measure and for 

breeds with small reference population sizes. An effective method to increase 

reference population size could be to combine datasets from different populations. 

Prediction models might also benefit from incorporation of information on biological 

underpinnings of quantitative traits. Genome-wide association studies (GWAS) show 

that genomic regions on BTA 14, 19 and 26 underlie substantial proportions of the 

genetic variation in milk FA traits. Genomic prediction models incorporating such 

findings could enable improved prediction accuracy despite limited reference 

population sizes. In this study, we combine gas chromatography (GC) quantified FA 

samples from the Chinese, Danish and Dutch, Holstein populations and implement a 

genomic-features best linear unbiased prediction (GFBLUP) model incorporating 

variants on BTA 14, 19 and 26 as genomic features for which random genetic effects 

are estimated separately. Prediction accuracies were compared to traditional GBLUP 

models. Our prediction using multi-population reference with traditional GBLUP 

model resulted on average gains in prediction reliability of 11 percentage points in 

the Dutch, 9 in the Danish and 1 percentage point in the Chinese prediction 

compared to predictions with population-specific references. Implementation of 

GFBLUP model with multi-population reference led to further increases in prediction 

reliability of up to 38 percentage points in the Dutch, 26 percentage points in the 

Danish and 4 percentage points in the Chinese population compared to the 

traditional GBLUP. Prediction reliabilities from the GFBLUP model were moderate to 

high across the FA traits. With our results, we show that it is possible to predict 

genetic merits for milk FA traits with reasonable accuracy by combining related 

populations of a breed and with models incorporating GWAS findings.  

 

Key words: Genomic prediction, Milk fatty acid, Multi-population, GWAS   
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6.1 Introduction 

Milk contains several FAs, which can be grouped into different categories depending 

on the length of carbon chains, degree of unsaturation and isomerization. Some 

groups of FAs in milk have been linked to various health risks, while others have been 

suggested as beneficial for human health. Such links have long triggered interests to 

alter the FA profile of bovine milk. Several studies have reported substantial genetic 

variation in bovine milk FA traits (e.g. Stoop et al., 2008; Krag et al., 2013) presenting 

an opportunity to alter the milk FA composition through selective breeding. Genomic 

selection has become the main strategy in livestock selective breeding allowing 

selection of candidate bulls at younger ages (Hayes et al. 2009). However, prediction 

accuracy for traits that are difficult and expensive to measure is still limited due to 

small reference population sizes. So far, genomic prediction accuracy has not been 

reported for milk FA composition traits despite the growing interest to include these 

in the dairy cattle breeding goals (Boichard and Brochard, 2012). This is mainly due 

to the difficulty to record milk FA traits at large-scale. Gas chromatography (GC), the 

current method of choice in quantifying milk FA traits at high accuracy, requires 

expensive equipment and time-consuming techniques challenging large-scale 

phenotyping.  

A strategy that is increasingly getting attention in genomic prediction for numerically 

small breeds or traits difficult to measure is to combine datasets from different 

breeds/populations (Lund et al., 2014, van den Berg et al., 2017). Benefits of 

combining data for genetic analysis are highly dependent on the genetic distance 

between the populations used in different studies and the marker density (Lund et 

al., 2014). In this study, we combine samples for 16 FA traits quantified by GC method 

in the Chinese, Danish and Dutch Holstein populations genotyped using high density 

(HD) single nucleotide polymorphism (SNP) arrays for genomic prediction. Given the 

common use of outstanding North American bulls in the Chinese, Danish and Dutch 

Holstein breeding population, high genetic similarities are to be expected between 

these populations. Previously studies also show high consistency in linkage 

disequilibrium (LD) patterns between the Danish and Chinese Holstein (Zhou et al., 

2013; Li et al., 2015) and between the Dutch, Danish and Chinese Holstein 

(Gebreyesus et al., submitted).  

While genomic prediction allows using all markers genome-wide without the need 

for mapping quantitative trait loci (QTLs), incorporation of biological information 

might further improve accuracy for scarcely recorded traits. Methods have been 

suggested to weigh variants according to prior knowledge of their effect on the traits 

(e.g. Brøndum et al., 2015; MacLeod et al., 2016), with reports of some gain in 
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prediction accuracies (e.g., Edwards et al., 2016; Sarup et al., 2016). GWAS have for 

long been used as a powerful tool for investigating the genetic background of 

quantitative traits and diseases. Incorporation of GWAS detections in genomic 

prediction models might improve genomic prediction accuracy (e.g. Spindel, 2016), 

especially when predication accuracy is limited by reference size. GWAS on milk FA 

traits have frequently reported significant associations on broader regions of BTA 14, 

19 and 26 (Bouwman et al., 2011,2012; Buitenhuis et al., 2014; Li et al., 2014). 

Further characterization studies also suggest large effects of these regions on most 

milk FA traits (Ntambi et al., 2003; Mele et al., 2007; Schennink et al., 2007,2008; 

Bovenhuis et al., 2016; Pegolo et al., 2016;). In addition, several other regions 

explaining relatively smaller proportions on the genetic variations in multiple FA 

traits are also reported across the bovine genome (e.g. Bouwman et al., 2012; 

Buitenhuis et al., 2014; Gebreyesus et al., Submitted). Information on such major 

regions underlying the genetic variation might improve genomic prediction accuracy 

for the scarcely recorded milk FA traits.  

Traditionally, GBLUP model (VanRaden, 2008) is based on the assumption that many 

QTL explaining small fractions of the genetic variance underlie quantitative traits. In 

implementation, genetic effects are estimated based on realized relationship matrix 

computed from genome-wide markers (VanRaden, 2008). Often, contribution of 

genetic markers to the genomic relationship is not weighted according to explained 

proportion of the genetic variance. Such approach where all markers contribute 

equally to the relationship matrix, despite differences in association with the traits, 

might cause “dilution” of effects of major regions. In this context, Sørensen et al. 

(2014) suggested extension of the GBLUP model to allow incorporation of available 

information regarding the biological mechanism underlying quantitative traits. To 

implement such extensions, Sørensen et al. (2014) suggested a genomic features 

BLUP approach (GFBLUP), where variants can be categorized according to biological 

information, such as chromosome, genes, genes grouped in pathways, to allow 

differentiation between groups of SNPs in their explained variance and size of effects 

for genomic prediction.  

In this study, we implement a GFBLUP approach in which GWAS reported regions; 

i.e., BTA 14, BTA 19, BTA 26, are fitted as genomic features of interest to predict 

genomic breeding values (GBVs) for the FA traits. Prediction reliabilities are then 

compared with the traditional GBLUP model, which assumes common variance for 

markers throughout the genome. The objectives of this study were to: 1) Study 

genomic prediction reliabilities for 16 milk FA traits in three Holstein populations; 2) 

Investigate gains in genomic prediction reliability from combining multi-population 

reference sets and incorporating biological information based on GWAS findings. 
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6.2 Methods 

This study compares prediction reliabilities from scenarios where the Dutch, Danish 

and Chinese Holstein sample cows were used as reference populations separately or 

combining these populations for a common reference. Moreover, the study 

compares prediction reliabilities from a traditional GBLUP model versus GFBLUP 

model where GWAS identified genomic regions are fitted as features explaining 

different. 

 

6.2.1. Animals and phenotypes 

Milk samples were obtained from 700 Chinese, 614 Danish and 1566 Dutch Holstein 

cows. The sampling of cows involved 18 herds in China, 22 herds across Denmark 

and 398 herds in the Netherlands. Sampled cows were found in different stages of 

lactation ranging between 60 to 700 days in milk in the Chinese population, 60 to 

481 days in milk in the Danish population and 60 to 278 days in milk in the Dutch 

Holstein cows.  

The GC method was used to quantify 13 FA traits (presented in Table 6.1) with details 

on methods as described by Li et al. (2014) for the Chinese samples, Poulsen et al. 

(2012) for the Danish samples and Stoop et al. (2008) for the Dutch samples. 

Furthermore, desaturation indexes were calculated based on the FA measurements 

as: C14 index = C14:1/(C14:1+C14:0) * 100; C16 index = C16:1/(C16:1+C16:0) * 100 

and C18 index = C18:1c9/ (C18:1c9+C18:0) * 100. 

 

6.2.2. Genotypes and Imputation 

Real and/or imputed high-density (HD) genotypes were available for all the sample 

cows. All cows in the Chinese dataset were genotyped using the BovineSNP50 

Beadchip (50K, Illumina). A population of 96 Chinese Holstein bulls, genotyped using 

the BovineHD Beadchip (777K), was used as reference to impute the 50K genotypes 

of the cows to HD. Some of the cows (N=278) in the Danish dataset were genotyped 

using the BovineSNP50 Beadchip. The rest of Danish cows were genotyped using the 

BovineHD Beadchip and used as reference to impute the 50K genotypes of the first 

part of the Danish cows to HD as described in Gebreyesus et al. (2016). A custom 50K 

SNP Beadchip was used to genotype cows in the Dutch dataset. A reference 

population consisting of 1333 Dutch Holstein cows and 55 bulls genotyped using 

BovineHD Beadchip (777K) was used to subsequently impute the 50K genotypes of 

the Dutch samples to HD as presented in detail in Duchemin et al. (2014).  

Quality controls were undertaken on SNPs within each population. Accordingly, SNPs 

with minor allele frequencies (MAF) less than 0.05 or with a count of one of the 
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genotypes less than 10 in each population were excluded from both the population-

specific as well as combined-population predictions. A total of 464,130 SNPs were 

available in common for all the populations and scenarios.  

 

6.2.3. Models 

Traditional and “genomic features” GBLUP models were implemented to estimate 

genomic breeding values (GBVs).   

 

6.2.3.1 Traditional GBLUP  

GBLUP models were implemented using DMU (Madsen and Jensen, 2010) 

considering two scenarios: 1) a population-specific reference sets within the Chinese, 

Danish and Dutch samples and; 2) a combined reference set of the three populations. 

The general model used for the traditional GBLUP, both population-specific as well 

as combined population reference sets, was: 

 

𝑦𝑖𝑗𝑘𝑙 =  𝜇 + 𝑝𝑎𝑟𝑖𝑡𝑦𝑖 + ℎ𝑒𝑟𝑑𝑗 + 𝑏1 𝐷𝐼𝑀𝑘  

+ 𝑏2 ∗ 𝑒𝑥𝑝−0.05∗𝐷𝐼𝑀𝑘 + 𝑔𝑙 +  𝑒𝑖𝑗𝑘𝑙  ,    (1)  

 

where yijkl is phenotype of cow l in parity i, and herd j, μ is the fixed mean effect; b1 

is the regression coefficient for DMI k, which is a covariate describing the effect of 

days in milk, b2 is the regression coefficient for the Wilmink adjustment 

(𝑒𝑥𝑝−0.05∗𝐷𝐼𝑀𝑙) of DMI, 𝑒𝑖𝑗𝑘𝑙  is a random residual effect assumed normally 

distributed with 𝒆 ~ 𝑁(0, 𝐈 𝑒
2), where 𝐈 is an identity matrix. The effect of 𝑔𝑙  is a 

random additive genetic effect of cow l with distribution 𝑁(0, 𝐆𝜎𝑎
2), where G is the 

genomic relationship matrix between individuals and 𝜎𝑎
2 is the genetic variation. The 

genomic relationship matrix used in the GBLUP models was calculated as described 

in the first method presented by VanRaden (2008).  

 

6.2.3.2 GFBLUP 

A GFBLUP model was implemented using a combined population reference sets to 

estimate GBV for population specific training-sets. In the traditional GBLUP model, 

single random genetic effect based on genomic relationship matrix constructed using 

all markers was considered. In contrast, four random genetic effects were 

considered in the GFBLUP approach according to the following model: 
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𝑦𝑖𝑗𝑘𝑙 =  𝜇 + 𝑝𝑎𝑟𝑖𝑡𝑦𝑖 + ℎ𝑒𝑟𝑑𝑗 + 𝑏1 𝐷𝐼𝑀𝑘  

+𝑏2 ∗ 𝑒𝑥𝑝−0.05∗𝐷𝐼𝑀𝑘 + 𝒈14 +  𝒈19 + 𝒈26 + 𝒈R+ 𝑒𝑖𝑗𝑘𝑙 ,  (2) 

 

Where 𝒈14 is vector of random additive genetic effects based on relationships matrix 

(𝐆𝟏𝟒) constructed using markers on BTA 14, with distribution 𝑁(0, 𝐆𝟏𝟒𝜎14
2 ); where 

𝜎14
2  is the genetic variation explained by markers on BTA 14. Similarly, 𝒈𝟏𝟗 

 and 

𝒈𝟐𝟔 are vectors of random additive genetic effects based on relationships matrices 

computed using variants on BTA 19 and 26, respectively with similar distributional 

assumptions as in 𝒈14; while 𝒈𝑹 is the vector of additive genetic effects based 

genomic relationship matrix constructed using all the rest of variants excluding those 

on BTA 14, 19 and 26, with distribution 𝑁(0, 𝐆𝐑𝜎𝑅
2). Variants used to calculate the 

relationship matrices include 13,033 SNPs for BTA 14, 12,603 SNPs for BTA19 and 

9,703 SNPs for BTA 26. The different genomic relationship matrixes for the GFBLUP 

model were computed following the first method of VanRaden (2008). Other model 

(2) components were as in model (1).  

 

The total genomic value was calculated as: 𝒈 = 𝒈𝟏𝟒 + 𝒈𝟏𝟗 + 𝒈𝟐𝟔 + 𝒈𝑹.  

 

Proportion of the genomic variance explained by each genetic effect component of 

the GFBLUP model was computed as: 

%𝑣𝑎𝑟𝑓𝑒𝑎𝑡𝑢𝑟𝑒  =  𝜎𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑖

2

𝜎𝑡𝑜𝑡𝑎𝑙
2⁄ , 

Where 𝜎𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑖

2  is 𝜎14
2 , or 𝜎19,

2  or 𝜎26
2 , and 𝜎𝑡𝑜𝑡𝑎𝑙

2   is the total additive genetic variance 

computed as: 𝜎𝑡𝑜𝑡𝑎𝑙
2 =  𝜎14

2 + 𝜎19
2 + 𝜎26

2 +  𝜎𝑅
2.   

 

To study similarity of the LD structures in the three populations on the BTAs taken 

as features, pair-wise linkage disequilibrium (LD) was calculated between the SNP 

markers within a 1 Mbp window on BTAs 14, 19 and 26 with the r2 as a measure in 

the Plink program (Purcell et al., 2007). 

 

6.2.4. Training and validation populations 

For all the scenarios, a resampling strategy was used to create five validation sets of 

100 cows for each of populations. The general principle was to avoid sibling 

relationships among validation sets and with the reference population for each 

validation set. Table 6.1 shows the reference population sizes used in the within- as 

well as the combined-population genomic prediction for each trait and population. 

For the Danish population, subset of cows which had no siblings within the dataset, 
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were first selected (n = 197). In each of the resampled analyses, 100 of these cows 

were randomly sampled for the validation set, while the remaining of these cows 

were included back to the reference population. In the Dutch and Chinese 

population, all the sampled cows had at least one half-sib in the dataset. In the Dutch 

sample, all cows belonged to one of three sire-groups whereas in the Chinese 

dataset, the majority of the cows was from five different sires. Hence, a sire-group 

(group of cows with common sire) was randomly selected for each validation set. As 

each sire-group contained more than 100 cows in both the Chinese and Dutch 

dataset, further random sampling of 100 cows with undertaken within selected sire-

groups and the remaining cows in the group were excluded for the reference 

population. Main reason for limiting the validation to 100 cows is to have 

comparable reference population sizes in the Chinese and Dutch datasets as in the 

Danish population.  

 

6.2.5. Prediction reliability 

For all models, prediction reliability for cows was computed as the squared 

correlation between estimated GBV and the phenotype corrected for fixed effects 

and scaled by dividing with heritability estimates. Corrected phenotypes were 

computed based on single-population traditional GBLUP as in model model (1) and 

used commonly for all scenarios. Heritability estimates used to scale the reliabilities 

were from the traditional GBLUP approach computed as: 

 ℎ2 =  
𝜎𝑎

2

𝜎𝑎
2+𝜎𝑒

2.                   (3) 

 

Accordingly, for population-specific genomic prediction, heritability estimates from 

traditional GBLUP model within each population were considered. Similarly, for 

genomic prediction using combined-population reference, heritability estimates 

from traditional GBLUP computed with the combined dataset were used to scale 

reliabilities in all the validations.  
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Table 6.1 Number of cows in the reference sets for each FA trait in the Chinese (CN), 

Danish (DK), Dutch (NL) and the combined population genomic prediction. 

 

  CN  DK  NL 

Trait  Single Combined  Single Combined  Single Combined 

 C8:0  584 2764  518 2771  892 2188 

C10:0  585 2767  520 2775  892 2192 

C12:0  585 2765  519 2774  892 2190 

C14:0  586 2766  519 2774  892 2191 

C15:0  583 2751  516 2760  887 2181 

C16:0  583 2762  518 2769  892 2186 

C18:0  587 2762  518 2771  889 2178 

C14:1  584 2761  516 2769  890 2187 

C16:1  583 2755  519 2763  887 2185 

C18:1c9  585 2765  518 2773  892 2190 

C18:2n6  585 2760  518 2768  889 2188 

C18:3n3  583 2750  518 2759  885 2180 

CLA  580 2750  518 2758  886 2178 

C14index  583 2758  515 2767  890 2184 

C16index  580 2750  517 2757  887 2177 

C18index  585 2758  516 2767  889 2185 

 

 

6.3 Results 

 

6.3.1 Descriptive statistics and genetic parameters 

Table 6.2 presents phenotypic means, coefficient of variation (%) and the heritability 

estimates for the FA traits in the different populations and the combined dataset. 

Generally, phenotypic means were comparable between the Danish and Dutch 

samples while the Chinese dataset showed larger differences in some of the FA traits. 

Such differences between the Chinese data on one hand and the Danish and Dutch 

on the other were specially observed for C8:0, C18:2n6 and C18:1c9. Larger 

differences were also observed in coefficient of variation estimates between the 

populations for some of the studied traits. In the combined dataset, coefficient of 

variation ranged between 5.6% (C18 index) and 63.0% (C18:2n6). Similarly, some 

differences were also observed in heritability estimates, as heritabilities were 

generally higher within the Dutch sample followed by the Danish estimates.    
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Table 6.2. Phenotypic means and coefficient of variation (%) for FA traits across populations and combined dataset 

 

FAs CN   DK   NL   Combined  

Mean CV h2 Mean CV h2 Mean CV h2 Mean CV h2 

Saturated FAs1                
C8:0   0.58 37.9 0.06    1.47 15.0 0.33    1.31 13.0 0.48    1.18 32.2 0.27 
C10:0   2.22 18.0 0.16    3.22 17.4 0.36    2.87 15.7 0.51    2.80 20.7 0.39 
C12:0   2.94 16.7 0.21    3.69 18.4 0.30    3.79 19.0 0.40    3.58 21.2 0.33 
C14:0 10.10 11.3 0.22  11.60 11.7 0.14  11.10   9.5 0.39  11.00 11.5 0.25 
C15:0   0.99 13.1 0.10    1.11 17.1 0.27    1.11 17.1 0.29    1.09 16.5 0.23 
C16:0 32.90  5.6 0.27  30.10 11.6 0.12  29.10 12.0 0.48  30.20 11.7 0.34 
C18:0 12.00 14.1 0.25    9.84 19.4 0.23    9.84 17.7 0.37  10.30 19.3 0.25 
Unsaturated FAs1                
C14:1   0.86 24.4 0.35    1.01 27.7 0.49    1.38 19.6 0.55    1.19 29.4 0.47 
C16:1   1.64 20.1 0.26    1.58 26.6 0.42    1.39 20.9 0.65    1.49 23.5 0.46 
C18:1c9 28.30  8.6 0.24  19.60 14.5 0.07  20.20 13.8 0.41  21.90 20.0 0.27 
C18:2n6   3.99 11.5 0.26    1.74 15.5 0.17    1.11 22.5 0.27    1.89 63.0 0.18 

C18:3n3   0.42 14.3 0.05    0.50 18.0 0.05    0.50 32.0 0.27    0.48 27.1 0.19 
CLA   0.41 22.0 0.15    0.57 26.3 0.11    0.56 46.4 0.32    0.53 43.4 0.21 
Desaturation indexes 2               
C14 index   7.84 20.8 0.36    7.98 23.7 0.59  11.0 16.6 0.62    9.71 24.4 0.53 
C16 index   4.74 19.6 0.24    4.97 22.3 0.37    4.6 19.8 0.55    4.70 20.6 0.38 
C18 index 70.20  4.7 0.21  66.60  5.9 0.26  67.3   5.8 0.49  67.80 5.87 0.31 
1Expressed in % wt/wt 
2Desaturation indexes calculated as unsaturated/(unsaturated + saturated) × 100 
All parameter estimates for C18:2n6, C18:3n3 and CLA are computed on raw data before the log-transformation 
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6.3.2 Consistency in LD between the populations on BTAs 14, 19 and 26 

Estimation of pair-wise LD (r2) on BTAs 14, 19 and 26 indicates consistent LD 

structures between the populations on the regions considered for the genomic 

features prediction model (Figure 6.1). Furthermore, the minimum and maximum 

average pairwise LD values for SNPs within bins of 1Mbp sizes were similar between 

the populations in the three BTAs.  
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Prediction accuracy with traditional GBLUP models 

Table 6.3 presents reliabilities of predictions for the studied FA traits in the three 

populations using GBLUP model based on population-specific reference sets. 

Prediction reliabilities using reference populations separately were in general low 

across the FA traits and populations. Prediction reliabilities were especially low for 

the Chinese validation followed by the prediction in the Danish sets. In the Chinese 

single-population prediction, the highest reliability was observed for C18 index (0.15) 

followed by CLA (0.12). Prediction reliabilities were very low for the de novo 

synthesized FAs in general and for C10:0, C12:0 and C14:0 in particular in the Chinese 

validation set. Similarly, genomic prediction using the Danish reference population 

separately resulted in low reliabilities across the traits. The highest reliability was 

observed for CLA (0.14) followed by C14:0 (0.11), whereas the lowest values were 

observed for C16:0 and C18:1c9. Low to moderate prediction reliabilities were 

calculated for the Dutch reference population. The highest genomic prediction 

reliability using the Dutch separate reference population was computed for C14 

index (0.43) followed by C14:1 (0.39).  

Results of genomic prediction using combined-population reference show some 

increase in reliability across the traits and populations compared to the predictions 

using separate reference populations (Table 6.3). Genomic prediction using multi-

population reference resulted on an average increase in prediction reliability of 12 

percentage points for the Dutch validation population compared to single-

population genomic prediction. The higher increases in prediction reliability were 

observed for C16 index (∆ = 0.26), C18:2n6 (∆ = 0.21) and C18 index (∆ = 0.20), 

whereas no improvement in prediction reliability was observed for C18:0. In the 

Danish validation, an average increase in prediction reliability of 8 percentage points 

was observed as a result of adding the Dutch and Chinese reference populations. The 

improvements in reliability were especially higher for C10:0 (∆ = 0.22), C8:0 (∆ = 0.20) 

and C12:0 (∆ = 0.14). Sizable improvements in reliability were also observed for C14 

and C18 indexes. No improvements were shown for C14:0 and reliability declined for 

C18:3n3 in the multi-population prediction for the Danish validation. With an 

average increase in reliability of 1 percentage point, little or no increase in reliability 

was observed for most FA traits in the Chinese validation. In the Chinese validation, 

highest benefits of adding the Danish and Dutch reference populations were 

observed for C18:2n6 (∆ = 0.09), followed by C10:0 (∆ = 0.07) and C18:1c9 (∆ = 0.07). 
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Table 6.3 Genomic prediction reliabilities with traditional GBLUP based on within- 

and combined-population references. 

 

Trait CN 
 

DK  NL 

Single Combined 
 

Single Combined  Single Combined 

C8:0 0.06 0.06 
 

0.06 0.26  0.11 0.18 
C10:0 0.003 0.07 

 

0.06 0.28  0.17 0.27 
C12:0 0.001 0.03 

 

0.04 0.18  0.25 0.30 
C14:0 0.0004 0.001 

 

0.11 0.11  0.25 0.36 
C15:0 0.03 0.03 

 

0.04 0.19  0.03 0.06 
C16:0 0.19 0.18 

 

0.001 0.06  0.13 0.19 
C18:0 0.19 0.11 

 

0.06 0.07  0.05 0.05 
C14:1 0.11 0.15 

 

0.06 0.16  0.39 0.49 
C16:1 0.07 0.11 

 

0.09 0.13  0.22 0.38 
C18:1c9 0.07 0.14 

 

0.005 0.09  0.13 0.26 
C18:2n6 0.06 0.15 

 

0.01 0.05  0.10 0.31 
C18:3n3 0.08 0.05 

 

0.10 0.01  0.06 0.23 
CLA 0.12 0.14 

 

0.14 0.21  0.16 0.33 
C14 index 0.10 0.16 

 

0.05 0.18  0.43 0.56 
C16 index 0.10 0.13 

 

0.09 0.14  0.12 0.30 
C18 index 0.15 0.05 

 

0.02 0.15  0.12 0.19 

 

6.3.3 Prediction reliability with GFBLUP model 

Substantial increases in prediction reliability were obtained using GFBLUP model for 

multi-population reference sets compared to the combined GBLUP model (Figure 

6.2). Accordingly, further average gain in prediction reliability of 13.9 percentage 

points was observed in the Dutch validation using the GFBLUP model compared to 

the traditional GBLUP. The increase in prediction reliability from the GFBLUP model 

reached as high as 40 percentage points (C14:0). Large increases in prediction 

reliabilities were also observed for C18:1c9 (∆= 0.38) and C16:0 (∆=0.33) in the 

validation for the Dutch Holstein. Similarly, gains in reliability of 10 percentage points 

in the Danish validation and 2.6 percentage points in the Chinese validation 

populations were achieved using the GFBLUP model. High improvements in 

prediction reliability were obtained for C15:0 (∆ = 0.26), C14:0 (∆ = 0.22), for C16 

index (∆ = 0.22) and C18 index (∆ = 0.22). In the Chinese validation, the largest 

increase in reliability from the GFBLUP model was observed for C18 index (0.14) 

followed by C14 index (0.10).  

Whereas the increases in prediction reliability from the GFBLUP model varied 

between populations, sizable improvements for specific FAs were consistent across 

the populations. For C14:1, for instance, prediction reliability was improved by 15 
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percentage points in the Dutch, 18 percentage points in the Danish and 10 

percentage points in the Chinese validation populations. 
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Genomic features fitted in the GFBLUP model (BTA 14, BTA 19 and BTA 26) 

collectively explained substantial proportions of the total genetic variation across the 

FA traits (Figure 6.3). For instance in C14 index, 57% of the genetic variance was 

explained by the genomic features with BTA 26 alone explaining 38.3 % of the genetic 

variation. Similarly, sizable proportion of the total genetic variation for C14:0 (33.4%) 

and C10:0 (20%) of the genetic variation was explained by BTA 19 alone. Variants on 

BTA 14 collectively explained 38.3% of the genetic variation for C16:0 and 36.7% of 

the genetic variation in C18:1n9 and C18:2n6. On the contrary for C18:0, BTA 14 and 

26 explained 5% of the genetic variation each. 

 

 
 

In general, the gain in prediction reliability from the GFBLUP model across the FAs 

showed patterns of correlation with the proportional of genomic variance explained 

by the fitted genomic features. Such trends were consistent across the validation 

populations for some traits, for instance C18:0, CLA and C14 index. For others, like 

C18:1c9, lack of improvement in reliability observed in the Chinese and Danish 

dataset were in contrast to moderate proportion of genetic variance explained by 

the features for C18:1c9. The relationship between the proportions of genetic 

variance explained by the features and gains in prediction reliability from the GFBLUP 

model (vis-à-vis traditional GBLUP) are presented in Figure 6.4.  
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6.4. Discussion 

 

6.4.1. Combining reference populations 

The population-specific genomic prediction for the FA traits generally resulted in low 

prediction reliabilities in the Chinese and Danish population. In the Dutch validation, 

moderate prediction reliabilities were achieved for some of the FA traits. In general, 

the low prediction reliabilities with population-specific reference reflect the well-

established impact of a small reference population in genomic prediction reliability 

(Daetwyler et al., 2008; Goddard, 2009). However, prediction reliabilities were in 

general lower in the Chinese single-population prediction compared to the Danish 

reference despite similar reference sizes used. This might be partially explained by 

the lower heritability estimates in the Chinese dataset for most of the FAs compared 

to the other populations. The effect of small reference population size has a larger 

impact on traits of low heritability where a relatively large number of records will be 

required in the reference population to achieve high accuracies of GBV in 

unphenotyped animals (Hayes et al., 2010).  

Combining the reference populations resulted in relatively sizable improvements in 

prediction reliability in the Danish and Dutch validation. Previous studies using 

simulation (e.g., de Roos et al., 2009) as well as real data (e.g. Lund et al., 2011) 

suggest advantages of pooling data from different populations for genomic 

prediction accuracy. However, such advantages might be affected by the genetic 

distance in the populations (Lund et al., 2014), marker density used, genetic 

architecture of the traits (e.g., Zhou et al., 2014) and inconsistencies in allele 

substitution effects (Wientjes et al., 2015). A gain in prediction reliability of up to 9 

percentage points was obtained for some traits in the Chinese validation, whereas 

little or no increase in prediction reliability was observed for some of the traits from 

adding the Dutch and Danish Holstein reference populations. This is in contrast to 

our expectations given the genetic similarity and high consistency in genome-wide 

LD shown to exist between the populations combined (Zhou et al., 2013; Li et al., 

2015; Gebreyesus et al., submitted). A possible cause for observed lack of benefits 

from combining the reference populations for the Chinese validation could be 

differences in SNP effects between the Chinese population on one hand and the 

Dutch and Danish populations on the other. In a joint GWAS using the same dataset, 

we previously (Gebreyesus et al., submitted) reported that SNP effects in the DGAT1 

and SCD1 polymorphisms on BTA 14 and 26, respectively, are smaller in the Chinese 

dataset compared to the Dutch and Chinese population. DGAT1 and SCD1 

polymorphisms underlie substantial proportion of the genetic variation in most milk 
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FA traits. In addition, we show that LD structures on BTA 14, 19 and 26 are consistent 

in the three populations. Therefore, such differences in SNP effects are less likely to 

be caused by incomplete LD. In our previous GWA study, we have suggested 

differences in feeding systems as the most likely source of significant differences in 

phenotypic means between the Chinese dataset on one hand and the Dutch and 

Danish datasets on the other. Fitting herd as fixed effect accounts for differences 

due to management systems. However, such differences can introduce feed by 

genotype interactions resulting in differences in SNP effect sizes. Inconsistencies in 

SNP effects have been shown to reduce the advantages from multi-population 

genomic prediction (Wientjes et al., 2015). SNP effects estimated in a multi-

population reference, dominated by the Dutch Holstein (n=1566) compared to the 

Danish (n=614) and Chinese (n=586) populations, are used to predict breeding values 

for the 100 Chinese validation animals. The corrected phenotypes for these 

validation animals reflect the SNP effects in the Chinese population. With such 

differences in SNP effect estimates for the Chinese population compared to others, 

the correlations between breeding values estimated using the multi-population 

reference population and the corrected phenotype, i.e., prediction accuracy, can 

thus be expected to be low. This also leads us to expect lower contributions from the 

Chinese reference population for the gains in prediction reliability observed for the 

Dutch and Danish validations using the combined reference predictions. 

 

6.4.2 Incorporating biological information in prediction models 

In this study, we also implemented a GFBLUP model considering BTA 14, 19 and 26 

as genomic features and allowing separate random genetic effect components for 

these regions. Implementation of the GFBLUP model generally resulted in further 

improvements in prediction ability in most of the traits across the validation 

populations. However, amount of improvement varied across the populations in 

which case the lowest improvements were generally observed for the Chinese 

validation.  

Gain in prediction reliability under the GFBLUP model correlated with the proportion 

the genetic variance collectively explained by the features considered. Lowest 

increase in prediction reliability across the populations was computed for C18:0 

which also had the lowest proportion of variance estimated by BTA14, 19 and 26. 

Similarly, the gain in prediction reliability from the GFBLUP model was highest for 

C14 index for which more than half of genomic variance was explained by BTA14, 19 

and 26.  

Different methods have been suggested to incorporate biological information in 

genomic prediction models. For instance, MacLeod et al. (2016) introduced Bayes RC 
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model, an extension of the Bayes R (Erbe et al., 2016), to allow incorporating 

biological information by defining classes of SNP likely to be enriched for causal 

variants. Similarly, Brøndum et al., (2012) presented Bayesian prediction models 

based on genome position specific priors, whereas Gebreyesus et al. (2017) 

introduced hierarchical Bayesian models based on grouping of adjacent SNPs to 

exploit heterogeneous (co)variance patterns. However, most of these proposed 

models are implemented in Bayesian frameworks that are computationally 

demanding. Hence, applicability in routine evaluations is limited. GBLUP is 

straightforward to implement and estimated GBVs accuracies are similar to those 

estimated in BLUP approach (Hayes et al., 2009) since the method is equivalent to 

the BLUP approach used in traditional breeding programs (VanRaden et al, 2009). 

Thus, these simplicity and less computational burdens have made GBLUP a method 

of choice in routine genetic evaluations. Therefore, implementing biological 

information-augmented approaches in GBLUP models are closer to practical 

implementation in the breeding industry.    

For some FA traits, improvement in prediction reliability from multi-population 

prediction using the GFBLUP model was substantial and consistent across the 

populations. These include C14 index and to some extent C14:1 and C16:1 FAs. 

Saturated FAs in milk, in particular C12:0, C14:0 and C16:0 are frequently connected 

to increases in serum cholesterol in human, which has been the background for 

development of the atherogenicity index: (C12+4∙C14+C16)/(MUFA + n3 PUFA + n6 

PUFA) (Ulbricht and Southgate, 1991). In this study, we show that with data pooling 

and incorporating biological information, it is possible to predict genetic merits for 

the composition of such FAs with reliabilities as high as 0.76 despite limited 

reference populations used. These findings highlight the possibility of implementing 

selective breeding to alter the bovine milk FA composition, despite challenges in 

large-scale phenotyping. Our findings also indicate that genomic prediction for 

scarcely recorded traits might benefit with international collaborations for data 

access across populations.   
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6.5 Conclusion 

Accuracies of genomic prediction for the detailed milk fat composition traits using a 

multi-population reference and a model incorporating GWAS findings are compared 

with traditional GBLUP models in a single population scenario. Our results indicate 

that pooling multi-population data and implementation of prediction models 

augmented with biological information can enable prediction of genetic merits for 

the scarcely recorded bovine milk FA composition with reasonable accuracies. High 

prediction reliabilities were estimated for some of the FA traits using the multi-

population reference and a GFBLUP model, including 0.76 for C14:0, 0.71 for C14 

index and 0.64 for C18:1c9, indicating the possibility of altering milk fatty acid 

composition through selective breeding despite the current limitation in large-scale 

phenotyping. 
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7.1. Introduction 

The protein and fatty acid (FA) composition of milk affect its suitability for further 

processing into high-value products, thus determining profitability of the dairy 

processing industry. With the ascendency of the fast food industry, that requires 

processed dairy products as inputs, the demands for products such as cheese 

and butter is increasing. In addition, there are growing consumer preferences 

towards certain protein and FA component of milk, and concerns to others, 

mainly on health grounds. Such economic and consumer pressures are pushing 

interests to alter the detailed milk protein and FA composition. Despite such 

interests and increasing availability of the tools for setting up and running 

selective breeding for new phenotypes, the detailed milk fat and protein 

composition are not yet included in the dairy cattle breeding goals anywhere. 

Implementation of selective breeding for new phenotypes requires, among 

others, definition of the breeding objectives, understanding the extent of genetic 

variation and the genetic correlations with other breeding goal traits as well as 

accurate prediction of breeding merits. Genomic prediction accuracy is generally 

limited by reference population size, which in turn requires availability of cheap 

and rapid phenotyping methods. The current standard analytical methods for 

detailed milk protein and FA composition require expensive equipment and 

time-consuming techniques; thus, large-scale phenotyping is a challenge. Rapid 

advances in quantitative methods are increasingly allowing high accuracies in 

parameter estimation and prediction of breeding merits. Therefore, 

development of efficient methods to allow accurate genetic analysis with limited 

information is one option to deal with traits that are expensive to measure. 

Alongside such efforts, exploring for alternative high-throughput and cheaper, 

yet reasonably accurate, phenotyping strategies should be a priority.  

The main objective of this PhD thesis is to improve accuracy of genomic 

prediction and genetic parameter estimation as well as enhance our 

understandings on the genetic backgrounds of the detailed milk protein and FA 

composition traits. To this end, the study focused on investigating efficient 

quantitative approaches that allow such accurate genetic analyses in scarcely 

recorded traits mainly through exploiting additional information from other 

correlated traits, multiple cattle populations as well as the genetic architecture 

underlying the traits. In chapter 2, we investigate the advantages of multi-trait 

analyses for estimation of genetic parameters in the milk protein composition 

traits. In chapter 3, we present novel Bayesian single and multi-trait genomic 

prediction models assuming heterogeneous correlation structures between the 
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detailed milk protein traits, measured at small-scale, and protein yield from a 

large population of proven bulls. Chapter 4 investigates advantages of pooling 

multi-population datasets for genome-wide association (GWA) in the milk FA 

traits. In chapter 5, genomic regions underlying milk FA traits are detected using 

multi-population GWA. Implementing post-GWA analyses, using multiple data 

sources for pathways and ontology information, detected novel regions are 

further characterized and promising candidate genes suggested. In chapter 6, we 

implement genomic prediction for the milk FA traits using multi-population 

reference and linear models that allow incorporation of GWA findings.  

Here in this chapter, contributions of the different component studies to the 

knowledge base and to the broader context of implementing selective breeding 

for milk protein and FA composition traits are discussed. Moreover, other 

methodologies that could have been implemented are pointed out with detailed 

discussions on potential advantages and challenges. The chapter also highlights 

currently available information regarding genetic correlations of the detailed 

protein and FA traits with other breeding goal traits as well as status of the 

evolving strategy of IR prediction of detailed protein and FA composition of milk.  

 

7.2.  Multi-trait approaches 

7.1.1. Multi-trait parameter estimation and genomic prediction 

Traditionally, genetic parameter estimation and genomic prediction relied on 

models that fit only a single trait at a time. In contrast, simultaneous analysis of 

multiple traits might provide additional power to estimation of variance 

components and marker effects by utilizing information from between-trait 

genetic correlations. This is particularly of interest in the case of traits that are 

expensive to measure such as the detailed protein and FA composition of milk. 

Multi-trait analysis also allows utilization of information from relatives, which 

might not have phenotypes for the trait of interest but for other correlated 

trait(s). In both cases, the potential advantages of multi-trait analysis have been 

shown to largely depend on the genetic correlation between the traits (Calus et 

al., 2011; Jia and Jannick, 2012). In fact, information from correlated traits can 

be as useful as information from repeated records of the same trait to the extent 

of the magnitude of genetic correlation between traits. Substantial genetic 

correlation exists among some group of proteins and FA traits that are thought 

to arise into the milk via highly interrelated mechanisms. In chapter 2 

(Gebreyesus et al., 2016), we show high genetic correlations among some of the 

milk proteins; for instance correlation of -0.70 between αS2-CN and β-CN, and 

0.75 between α-LA and β-LG. Similarly, strong genetic correlations are reported 
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between milk FAs of similar origin. Stoop et al. (2008) reported high genetic 

correlations (0.76 – 0.96) among the do novo FAs (C6:0 – C14:0) and moderate 

to high genetic correlations (0.35 – 0.95) among the PUFA in the Dutch Holstein 

Friesian. Similarly, Krag et al. (2013) reported high genetic correlations between 

C6:0 and C8:0 (0.86), C8:0 and C10:0 (0.86) as well as C10:0 and C12:0 (0.91) in 

the Danish Holstein.  

Furthermore, almost all published studies regarding the genetics of milk protein 

and FA composition looked into multiple protein or FA traits. Thus, while limited 

sample size is used across studies, in terms of number of individuals sampled, 

records are often available on multiple protein and FA traits. Therefore, given 

substantial genetic correlations between some groups within the milk protein 

and FA trait spectra, and that records on multiple protein and FA traits are 

usually available, multi-trait approach is set to be the most useful statistical tool 

in the genetic analysis of the scarcely recorded milk protein and fat composition 

traits. This is also reflected in our findings in chapter 2, where we show that, 

despite limited dataset (N=650), genetic parameters can be estimated with 

lower standard errors (0.08 - 0.10) with multi-trait analysis.  

Multi-trait analysis also allows using information from relatives that have records 

for correlated traits that are recorded at large-scale. In chapter 3, we implement 

multi-trait genomic prediction for milk protein composition traits measured in 

small number of cows together with protein yield derived for large population of 

proven bulls in novel Bayesian models. Previous studies show that the gain in 

accuracy from multi-trait genomic prediction is limited when the genetic 

correlation between traits considered is weak (Calus et al., 2011; Jia and Jannick, 

2012). However, the implicit assumptions behind traditional multi-trait models, 

on which these studies were based, is that the correlation structure between 

traits is homogenous throughout the genome and the genome-wide average 

estimates are used to declare correlations as weak or strong. In chapter 3, we 

show that while genome-wide average correlation between traits might be 

weak, there exist genomic regions where higher correlations than the genome-

wide average are explained. Therefore, the limitation of current multi-trait 

models can be overcome by accounting for such heterogeneous correlation 

structures when genome-wide correlation is weak. 

 

7.2.1. Multi-trait genome-wide association analyses 

While utility of multi-trait analyses for GWA was not investigated in our studies, 

such approach might be very useful in the effort to unravel the genetic 
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backgrounds of milk protein and FA traits. Genome-wide association testing has 

largely been limited to single-trait scenario to detect variants associated with a 

particular phenotype or disease risk. Simultaneous evaluation of correlated traits 

might improve statistical power of association tests. Genetic correlation 

between two traits might be attributed to QTLs affecting both traits i.e., in what 

is known as pleotropic effect. Genetic correlations might also be caused by 

different QTL, affecting each trait, but that are in LD with each other.  Studies 

based on simulated and real data have shown that multi-traits GWA of 

correlated traits resulted in increased power, compared to single-trait analyses, 

to detect pleiotropic QTL affecting more than one trait (e.g. Korte et al., 2012) or 

even when the QTL effected only one of the traits (e.g. Galesloot et al. 2014).  

Different models have been proposed for multi-variate GWA including the 

extensions of the linear regression (e.g. Wu and Pankow, 2018), linear mixed 

models (e.g. Korte et al., 2012; Zhou and Stephens, 2014), Bayesian multi-marker 

methods (e.g. Kemper et al., 2018) and meta-analysis of single-trait GWA 

summaries (e.g. Gai and Eskin, 2018; Turley et al., 2018). In livestock GWA 

studies, linear mixed models are commonly applied to estimate the fixed effects 

of variants one at a time with a relatedness matrix, constructed from pedigree 

information or marker data, fitted as random effect. Extension of this approach 

for multi-trait scenario requires modeling between-trait covariances as 

additional random effects. Such additional between-trait covariance structure in 

some cases allows estimation of fixed effects of the variants with improved 

reliability. Therefore, even if a QTL is affecting only one of the traits, multi-trait 

analysis allows more reliable estimation of its effects, compared to single-trait 

analysis due to additional information from between-trait covariances. Such 

additional information might highly benefit GWA for the milk protein and FA 

traits, where high genetic correlations exist among related group of traits. 

Additionally, multi-trait analysis also allows utilization of data on related traits 

measured at large-scale on other related individuals. In chapter 3, we present 

novel Bayesian models to utilize information from large-scale recorded traits for 

prediction of genetic merits in related small-scale recorded traits. Such models 

can be further extended for GWA test to benefit scarcely recorded traits using 

information from routinely recorded traits even while the genome-wide 

correlation is weak.  

Apart from increased power in detection of trait-specific QTLs, multi-trait GWA 

also allow detection of pleotropic QTLs and untangling the pleotropic structure. 

The effect of pleotropic QTLs might be different in magnitude as well as direction 

between the correlated traits. Detecting such QTL and structure of the 
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pleiotropic effect provides additional insight into the physiological pathways of 

interrelated spectrum of traits such as milk FA composition. While it is still 

possible to detect polymorphisms significantly associated with two different 

traits using single-trait analyses, resolving whether such associations with more 

than one trait are due to a QTL with pleiotropic effects or two linked QTLs, or a 

variant in LD with two different QTLs has proven challenging (Solovieff et al., 

2013; Bolormaa et al., 2014).  

Additionally, significant association established using single-trait GWA for a 

variant with more than one trait might be due to the “phenotypic dependency” 

of one of the traits on the other. The case of milk FA traits can be a very good 

example to elaborate such phenomenon. The milk FA composition traits are 

interrelated. Expressed as percentage of the total fat, the proportion of short-

chain FAs, part of which are elongated into the intermediate chain FAs, affects 

the proportion the intermediate chain FAs. Likewise, the proportion of saturated 

FAs available for desaturation affects the proportion of corresponding 

unsaturated forms. The concentration of long chain FAs is also known to inhibit 

de novo synthesis. Hence, phenotypic dependency exists between the different 

group of FAs. A QTL affecting some of the short-chain FAs might not be a causal 

QTL for the other intermediate FAs but indirectly affect the intermediate chain 

FAs through its effect on the short-chain FAs. Similarly, QTLs affecting the long 

chain FAs might be indirectly affecting the short-chain FAs through the 

suppression effects of the long chain FAs on the de novo synthesis. Solovieff et 

al. (2013) describes such phenomenon as mediated-pleiotropy. If the aim of a 

GWA is to study genetic background of a specific mechanism, for instance 

desaturation or elongation process, such mediated-pleiotropic QTLs might be a 

noise rather than signal. Single trait GWA is expected to result in significant 

association of the variant with both the first trait it truly affects as well as the 

second trait that is affected by the first trait. However, such indirect associations 

might not be detected if the analysis is conditioned on the first trait (Hackinger 

and Zeggini, 2017).  

In general, our studies as well as other previous studies indicate that multi-trait 

analyses can benefit genetic parameter estimation, genomic prediction and 

GWA studies of scarcely recorded traits. A limitation to the application of multi-

trait analyses is the requirement to estimate the additional covariances, which is 

prone to inaccuracies unless sufficient data is available. Potential inaccuracies in 

estimation of the parameters are directly proportional to the number of traits 

included and inversely related to available dataset for each trait. Therefore, 
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benefit from multi-trait analyses requires delicate balance between number of 

traits analyzed simultaneously and data available for each trait.  

Additional challenge in implementing multi-trait analyses, especially for routine 

evaluations, is the longer run time and convergence problems when many traits 

are included. Convergence issues under the REML setting in multi-trait analysis 

is especially problematic when highly correlated traits are considered. In chapter 

3, our comparison of the BayesAS and GBLUP models was limited to bivariate 

scenarios due to convergence issue with the GBLUP model when more than two 

traits, including the DRP, are simultaneously fitted. In our multi-trait BayesAS 

model presented in chapter 3, latent variables are used to model the correlation 

of SNP-group effects between traits. The BayesAS model taking whole genome 

as a segment might in fact be considered as an approximation of the GBLUP 

approach. Although results are not presented in chapter 3, for the sake of 

comparison with GBLUP models, it was possible to simultaneously run the ten 

milk protein traits without convergence issues in the BayesAS approach. 

Similarly, Bouwman et al. (2014) showed that it was possible to run 14 different 

milk FA traits, some of which are highly correlated, using a latent variable 

approach to fit (co)variance structures in a Bayesian mixed model setting. 

 

7.3.  Multi-population approaches 

Genetic analysis for scarcely recorded traits might benefit from combining 

datasets available in different populations/breeds of livestock. Such approaches 

are shown to be beneficial when measurements from closely related breeds or 

populations are combined (e.g. VanRaden et al., 2012; Zhou et al., 2014). Apart 

from genetic distance between combined populations, marker density used also 

affects the potential benefit from multi-population analyses. Using samples from 

the Chinese, Danish and Dutch Holstein with HD genotypes, we show in chapter 

4 the advantages of combining multi-population dataset for GWA in the milk FA 

traits. Similar findings are presented in chapter 6 where genomic prediction 

based on multi-population reference sets resulted in improved prediction 

reliabilities compared to within-population analyses. Amount of gains in 

prediction reliability was not however uniform across the validation populations 

considered. Specifically, gain in prediction reliability was slight or none for the 

Chinese dataset compared to the Danish and Dutch validation population. This 

is in agreement with our report in chapter 4 that estimated effect sizes for some 

of the major QTLs, including DGAT1 and SCD1, were lower in the Chinese sample 

compared to the two European populations. Such differences in SNP effects are 
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in contrary to our observation of similar LD patters across the genome and high 

correlations in allele frequencies, as has also been shown in previous reports 

(e.g. Zhou et al., 2013; Li et al., 2015). Our hypothesis is that such differences in 

allele substitution effects arise due to feed by genotype interaction as our 

Chinese dataset comes from a highly intensive production system characterized 

with concentrate feeding. Therefore, our study indicate that apart from genetic 

distance and marker density, differences in management, with consequences of 

genotype interactions, should be put to consideration when combining multi-

population datasets. However, further sensitivity analysis we undertook 

excluding the Chinese dataset (not included in chapter 6) show slightly lower 

gains in the Danish and Dutch validation sets than when the Chinese dataset is 

included. This indicates that while differences in allele substitution effects might 

have limited the gain in reliability for the Chinese validation, information from 

the Chinese sample still contributed to the observed gain in prediction accuracy 

in the other populations. Such gains might increase with increased data 

availability within each population. We also show that data standardization and 

transformation might be helpful for combining datasets from different 

populations in the presence of heterogeneous residual variances or differences 

in standard deviations.  

In general, our findings on multi-population approaches indicate large benefits 

for GWA and genomic prediction in the detailed milk composition traits. Several 

research groups have been working on limited samples of the detailed milk 

protein and FA traits quantified with the “golden standard” methods. Such data 

can be pooled for robust analyses compared to within-population studies that 

use numerically small data. International collaborations, allowing access to 

multi-population data for mega-analyses, should thus be the way forward in 

genetic analyses for the detailed milk protein and FA composition traits.  

 

7.4.  Including biological information in genomic 

prediction 

The main principle in genomic prediction is that detection of underlying QTL(s) 

is no longer necessary to predict breeding merits of selection candidates due to 

use of all markers available genome-wide. This approach has proven to be the 

most successful of attempts to use genetic markers with quantitative models in 

the prediction of genetic merits and future phenotypes. Therefore, an important 

question arises regarding the importance of QTL detection in the context of 

genomic prediction. While genomic prediction has allowed high accuracy of 
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selection of breeding candidates at early ages, prediction accuracy for scarcely 

recorded traits is still limited by the small reference population size. 

Requirement for large number of reference animals is also a major challenge for 

genomic prediction in breeds with small population size. Moreover, in principle, 

genomic prediction accuracies can go as high as 100% (1). This is currently not 

yet achieved even for larger breeds or routinely recorded traits. Therefore, the 

“black box” approach of genomic prediction has its limitations and incorporation 

of information on the underlying biology might further improve its accuracy.  

  

7.4.1. Accounting for genetic architecture 

Genetic architecture of the traits, especially the number of QTL affecting the 

trait and the distribution of their effects influence accuracy of genomic 

prediction (Daetwyler et al., 2010). Hence, prediction models taking into account 

the genetic architecture might result in improved prediction accuracies. While 

different genomic prediction models showed slight or no difference in prediction 

accuracies for most traits (e.g. Daetwyler et al., 2010; Clark et al., 2011), Bayesian 

models showed superiority to the BLUP-based approaches with larger 

differences in prediction accuracies for traits controlled by few QTL (e.g. Cole et 

al., 2009; Legarra et al., 2011). This mainly attributes to the differences between 

the Bayesian and GBLUP-based approaches in the assumption of distribution of 

QTL effects. The GBLUP-based models are built on the implicit assumption that 

quantitative traits are controlled my many QTLs each with small effects. While 

such assumptions might hold for majority of the traits, it is often violated when 

it comes to traits controlled by few QTL with large effects. On the other hand, 

the Bayesian approaches assume non-normal distribution of QTL effects and 

allow the variance of SNP effects to differ among loci (VanRaden, 2008). In doing 

so, the Bayesian methods reduce dilution of the effects of major QTL by other 

variants. However, a challenge related to such locus-specific approaches in 

genomic prediction is the requirement to estimate too many parameters, often 

with limited data, given common use of tens of thousands of markers. This is 

especially problematic for scarcely recorded traits, for which often numerically 

small dataset is available to estimate too many parameters.  

In chapter 3, we show that clustering of SNPs, according to positions in the 

genome, can be implemented to reduce estimable parameters when data is 

limited. In our BayesAS models (Gebreyesus et al., 2017), different scenarios in 

clustering adjacent-SNPs were considered i.e., single SNP, 50, 100 or 200 SNPs, 

each chromosome or the whole genome. The assumption behind our SNP-

grouping approach is that adjacent SNPs are very likely to be in linkage 
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disequilibrium (LD) with the same QTL and thus explain similar (co)variances 

(Gebreyesus et al., 2017). Therefore grouping such SNPs can reduce 

dimensionality without causing dilution of effects. Such assumptions can only be 

met given optimum clustering such that group sizes, in terms of number of SNPs 

to cluster, are not too large to violate assumption of similar effect within cluster, 

yet large enough for meaningful reduction in parameters. Substantial 

improvements in prediction reliability were observed depending on the segment 

size considered and the genetic architecture of the traits. Highest improvements 

in prediction reliability were obtained when considering segment size of 

100SNPs and for the traits where few regions explained large proportion of the 

genetic variance. Large gains in accuracies we show indicate that these models 

can be useful for genomic prediction in other scarcely recorded traits or species. 

A limitation in our study is that no objective SNP clustering criteria was 

suggested. LD structure is not the same across cattle breeds or livestock species. 

Therefore, optimum grouping could vary depending on the studied population. 

Similarly, number of SNPs with certain level of LD will also vary depending on the 

density of SNP array used and the optimum SNP-group size reported in our study 

using 50K SNP arrays might not work well for other SNP arrays with higher 

density. Further studies are required to develop well-defined criteria and 

strategy for optimum SNP clustering. A possible approach could be to establish 

threshold pair-wise LD levels between “reference” SNPs and nearby “candidate” 

SNPs to consider for clustering. Therefore, size of SNP-groups might differ across 

the genome but pair-wise LD among SNPs within each group can be comparable 

across groups. Such “reference” SNPs can be established on the basis of position, 

for instance the first SNP in the first chromosome being reference SNP1 and all 

subsequent SNPs with pair-wise LD value included in a cluster with SNP1. 

Reference SNPs can also be established based on other evidences, such as GWA 

findings.  

 

7.4.2. Detection of QTLs for genomic prediction 

Approaches to using priors that are more informative in genomic prediction 

models can be further extended to include information on the underlying biology 

such as causative QTL(s), genome annotation, gene, protein or metabolite 

expression as well as pathway information. Such approaches will be the major 

research topic in the area of genomic prediction for several reasons. Primarily, 

information is increasingly available from GWA, expression and pathway studies. 

Second, full sequence genotype data is becoming increasingly affordable which 

in principle should contain the causative QTLs; meaning prediction should no 
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longer rely on LD. However, use of full sequence data in genomic prediction has 

not so far resulted in satisfactory gains in accuracy (e.g. Van Binsbergen et al. 

2015; Calus et al., 2016). While full sequence data includes causative variants, 

millions of other variants are also included adding noise and making genomic 

prediction computationally cumbersome, especially with Bayesian models. Thus, 

biological information can be used to reduce dimensionality of genotype data for 

more accurate and computationally efficient prediction. Incorporation of 

biological information can be implemented in different ways. Most studies have 

used either filtering or clustering approaches based on biological information. 

Filtering approaches use biological information to select fewer variants for 

genomic prediction. An example of filtering approach could be to undertake 

GWA and select most associated variants for genomic prediction. However, 

variant selection through GWA comes with its own challenges in terms of 

precision, due to LD, and is prone to bias. Genomic prediction using only variants 

selected from GWA on full sequence data was previously shown to result in 

decreased prediction accuracy and increased bias (e.g. Veerkamp et al., 2016). 

Therefore, bias and precision of detection are major challenges in filtering 

variants for genomic prediction based on GWA results. In contrast, clustering 

approaches use biological information to group all available variants into 

different classes, for instance group of significant and non-significant SNPs from 

GWA or SNPs assigned to different pathways (e.g. MacLeod et al., 2016; Sarup 

et al., 2016). In chapter 6, we implement similar approach where linear 

prediction models (GFBLUP) were fitted with additional random genetic effect 

components for GWA detected genomic regions. Following the findings in 

chapter 5 as well as previous studies, BTA 14, 19 and 26 were considered as 

genomic features with established biological links to the FA traits. The GFBLUP 

model accordingly included separate genetic effects for the genomic features 

considered based on additional relationship matrices built using only variants in 

each feature.  

However, information provided by GWA findings might not be strictly considered 

“biological” in the sense that most GWA results point at genomic positions for 

which the biological relation with the trait of interest remain unclear. Especially 

in cattle breeds, long-range LD often results in detection of broader regions 

containing multiple genes. Therefore, additional evidences are needed to 

establish biological links between detected regions and traits. Post-GWA 

analyses with multiple data sources might help refine GWA findings. Functional 

annotations making use of publicly accessible pathway and ontology databases 

is increasingly common in post-GWA analysis. In chapter 5, we use pathway 
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information, including the KEGG database, as well as ontology resources, 

including the gene ontology (GO) terms and the mammalian phenotype ontology 

database (Smith et al., 2005) to disentangle highly likely genes from many 

positional candidates. However, available ontology or pathway databases are 

not complete list of genes with established links to the physiological pathways. 

For instance for milk protein and FA traits, some major genes such as the MGST1 

are not assigned to any of the pathways linked to protein and FA synthesis.  

Tissue-specific information, such as expression of genes or RNAs are increasingly 

available (e.g. Moore et al., 2016) and might provide valuable additional 

evidences to prioritize among positional candidate genes. Studies are 

increasingly using information on differential expression of genes across 

lactation in the mammary gland to determine causal status of detected genes 

for milk production traits in general (e.g. Ron et al., 2007) and milk FAs in 

particular (e.g., Duchemine et al., 2014; Knutsen et al., 2018; Pegolo et al., 2017). 

In GWA studies, it is also common to detect significant associations with variants 

located in genomic regions where there are no known genes, i.e., non-coding 

regions of the genome. It is highly likely that such regions might be involved in 

regulatory roles affecting expression of other regions linked to the trait of 

interest, also known as expression QTL (eQTL). Early attempts integrating GWA 

with eQTL analysis for milk FA composition traits have shown promising results 

(e.g. Littlejohn et al., 2016). Further eQTL studies might reveal valuable insight 

into the genetic background of the milk composition traits. However, expression 

studies in relation to milk production traits in general and the FA traits in 

particular exclusively focused on the mammary gland. Control of traits such as 

the milk FAs involve complex and interconnected pathways involving different 

tissues and systems including digestion, absorption, lipid transport and storage. 

Hence, genes involved in FA synthesis via such pathways might not be expressed 

in the mammary gland. In such cases, differential expression of genes in the 

blood across lactation might provide additional valuable insight into the genetic 

background of milk FA traits. Only few studies used gene expression data from 

multiple tissues to assess expression status of genes implicated in lipid and FA 

mechanisms. These studies indicate that some of the genes implicated in lipid 

and FA metabolism that are expressed in the mammary gland are also expressed 

in the blood, among few other tissues (e.g. Viturro et al., 2006). Blood is also the 

easiest to sample tissue and mostly non-evasive techniques are available. Thus, 

it provides an additional opportunity to generate large dataset for more 

powerful analysis in gene expression and eQTL studies to unravel genetic 

background of complex traits.  
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7.5.  Alternative large-scale phenotyping strategies 

Studies in the PhD thesis focused solely on the milk protein and FAs traits 

quantified using the “golden standard” methods. While investigating efficient 

quantitative models for such expensive-to-measure, yet highly accurate, 

phenotypes is imperative, it is equally important to simultaneously explore 

alternative cheaper and accurate methods for large-scale phenotyping. In this 

regard, infrared (IR) spectroscopy prediction of detailed phenotypes is becoming 

one of the major topics in dairy science (De Marchi et al., 2014). Several studies 

have been investigating the possibility of IR prediction of the detailed milk 

protein (e.g. De Marchi et al., 2009; Bonfatti et al., 2011; Rutten et al., 2011) and 

FA traits (e.g.  Soyeurt et al., 2006, 2011; Ferrand et al., 2011; De Marchi et al., 

2011; Rodriguez et al., 2014; Fleming et al., 2017). Such IR predicted detailed 

phenotypes are also used to study genetic parameters for the milk protein (e.g.  

Sanchez et al., 2017a) and FA traits (e.g. Soyeurt et al., 2007; Bastin et al., 2011; 

Hein et al., 2018). Studies also used IR predicted protein and FA phenotypes to 

study associations with other milk production and heath traits (e.g.  Bobbo et al., 

2017; Fleming et al., 2018), to predict other difficult-to-measure traits such as 

methane (e.g. Shetty et al., 2017) and as indicators of reproductive stages such 

as pregnancy status (e.g. Toledo-Alvarado et al., 2018). Recent studies have also 

used IR predicted phenotypes for GWA tests in milk protein (e.g.  Sanchez et al., 

2017b) and FA traits (e.g. Olsen et al., 2017; Knutsen et al., 2018). However, the 

IR prediction of detailed milk protein and FA traits is still an evolving area. Thus, 

suitability of the IR predicted phenotypes for such applications as GWA studies 

and genomic prediction requires critical re-examination before normalization.  

IR prediction of phenotypes rely on infrared spectrum caused by the absorptions 

of electromagnetic radiation at frequencies correlated to the vibrations of 

specific chemical bonds of molecule in irradiate sample (Coates, 2000) therefore 

the spectrum representing these absorptions at different wavenumbers for a 

specific chemical composition (Smith, 1996; Soyeurt et al., 2006). IR prediction 

(calibration) models are then developed to process the spectra data. The Partial 

least squares (PLS) method have mostly been used for such calibration (Soyeurt 

et al., 2006; De Marchi et al., 2011) while Bayesian models have also been 

suggested (e.g. Ferragina et al., 2015).  

Compared to the FA traits, limited studies developed IR prediction equations for 

the detailed protein composition traits. In what can be seen as an initial attempt, 

De Marchi et al. (2009) reported validation R2 values ranging between 0.29 and 

0.58 in IR prediction of α-LA, β-LG, αS1-CN, whey protein and total casein. Rutten 
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et al. (2011) reported even lower IR prediction accuracies with validation R2 

values ranging between 0.18 (αS1-CN) and 0.56 (β-LG) for the detailed milk 

protein composition. Similarly, Bonfatti et al. (2011) reported low to moderate 

IR prediction accuracies for the milk proteins with validation R2 values ranging 

from 0.09 to 0.66. Sanchez et al., (2017a) reported the highest IR prediction 

accuracies for the detailed milk protein traits so far with validation R2 values 

ranging between 0.59 (α-LA) and 0.92 (β-CN).   

Relatively, higher prediction accuracies have been reported for the milk FA traits 

compared to the detailed protein traits. In general, better IR prediction 

accuracies are reported for FAs found in high concentrations compared to the 

minor FAs (Soyeurt et al., 2006; Rutten et al., 2009; De Marchi et al., 2011).  Milk 

FA measured with GC and phenotypes predicted with IR are not identical 

(Rodriguez et al., 2014), but are expected to be interchangeable in the genetic 

sense, i.e., highly genetically correlated. Not many studies are available 

comparing genetic parameters between the IR predicted and GC quantified FA 

traits using the same individual samples, data size or genetic models. Poulsen et 

al. (2014) showed that heritability estimates were comparable for some FA traits 

between IR predicted and GC measured phenotypes, while larger differences 

were shown for others. Interestingly, Poulsen et al. (2014) reported some of the 

lowest genetic correlations and larger differences in genetic parameter 

estimates for some FAs found in high concentrations in milk including C16:0. This 

is contrary to some studies reporting high IR prediction accuracies for such FAs 

(e.g. Rutten et al., 2009).  

Rutten et al. (2010) used relatively large number of calibration samples (n= 1917) 

and reported estimates of genetic correlations between GC-based and IR 

predicted FA phenotypes ranging from 0.77 to 0.99. In addition, using different 

subsets of the GC-based samples to calibrate IR prediction, Rutten et al. (2010) 

showed that estimates of genetic correlation between GC and IR predicted 

phenotypes is affected by the number of calibration samples used. Number of 

calibration samples used in IR prediction of FAs is known to strongly affect 

accuracy of the prediction (Rutten et al., 2009). Thus with larger calibration 

samples from GC, it might be possible to predict FA phenotypes more accurately 

and attain high genetic correlation with GC-based phenotypes. This elevates the 

prospect of using IR predicted FA phenotypes from prediction models based on 

large number of calibration samples for routine genetic evaluation. However, 

Eskildsen et al. (2014) showed that IR prediction of FAs is based on covariation 

of the FAs with the total fat content rather than directly with absorption bands 

associated to the individual FA; meaning that the predictions will be inaccurate 
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if the covariance structures in the initial calibration are not conserved in future 

samples. IR prediction of FAs is the combined effect of predicting fat content and 

fat composition and it is performed on milk samples, while GC measurement is 

performed on fat extracted from milk (De Marchi et al., 2011), thus the variation 

in fat percentages affects the relationship between GC measurement and IR 

prediction of FAs (Soyeurt et al., 2006). The consequence of these for routine 

measurement is that routine re-calibration, with large number of calibration 

samples, is required to obtain high prediction accuracies and genetic correlations 

with GC-based FA phenotypes. 

For the milk protein traits, Rutten et al. (2011) reported moderate genetic 

correlation between capillary zone electrophoresis determined phenotypes with 

the IR predicted protein fractions including β-CN (0.62), for αS1-CN (0.66) and α-

LA (0.69).  

Recently published GWA studies used IR predicted milk protein (e.g. Sanchez et 

al., 2017b) and FA phenotypes (e.g.  Olsen et al., 2017; Knutsen et al., 2018). The 

study of Sanchez et al. (2017b) was based on more than 800,000 milk samples 

from 156,660 cows and led to the re-detection of the known major regions for 

the milk protein composition traits. In contrast, GWA studies for IR predicted FA 

traits showed lack of detections on some of the well-established genomic regions 

associated with most FA traits. For instance, the studies by Olsen et al. (2017) 

and Knutsen et al. (2018) reported that no significant association was detected 

between the DGAT1 region and any of the FTIR predicted FA phenotypes using 

milk samples from 878 samples in the Nordic Red cattle. Knutsen et al. (2018) 

suggested that lack of detection could be due the A variant of the DGAT1 K232A 

polymorphism not segregating in the Nordic Red cattle. However, significant 

association was also not established between the SCD1 region and any of the 

predicted FA traits in the studies of Olsen et al. (2017) and Knutsen et al. (2018) 

despite that the SCD1 allele is known to segregate in the Nordic Red cattle 

(Knutsen et al., 2018). Similarly, GWA study on the milk IR wavenumbers by 

Wang et al. (2018) using samples from the Dutch Holstein reported that no 

significant association was detected between the SCD1 region and any of the 

wave numbers. The DGAT1 and SCD1 are major genes for milk FA traits 

explaining up to 50% of the genetic variation for some FAs (e.g. Bouwman et al., 

2011, 2012). Hence, association tests can detect such regions with relatively high 

power. Studies of Buitenhuis et al. (2014) and Li et al. (2015) have reported 

significant associations on the DGAT1 and SCD1 with most FAs using sample size 

smaller than the studies of Olsen et al. (2017) and Knutsen et al. (2018). 

Therefore, lack of detection of major regions with GWA based on IR phenotypes 
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cast doubt over the reliability of such phenotypes to study the genetic 

backgrounds of the “standard” traits. However, re-detection of the major 

regions for milk proteins reported by Sanchez et al. (2017b), despite generally 

lower IR prediction accuracies for the milk protein traits compared to the FAs, 

might indicate that it is possible to approximate reference phenotypes with the 

use of hundreds of thousands of samples.  

Additional challenge to prospect of using IR predicted phenotypes for genetic 

evaluation is the apparent difference in prediction accuracy depending on the 

expression of the traits. Studies have shown that it is even less accurate to 

predict the detailed milk proteins/FAs expressed on a protein/fat basis 

compared to per milk basis (De Marchi et al., 2014). Most of the studies on IR 

predictions of the milk proteins and FAs used traits expressed per unit of milk 

with few exceptions using proteins traits expressed per total protein basis (e.g. 

Bonfatti et al., 2011) and the FAs on a fat basis (e.g. Soyeurt et al., 2006; Rutten 

et al., 2009; Hein et al., 2018). Soyeurt et al. (2006) and Rutten et al. (2009) 

reported that accuracy of the IR prediction models were lower for FAs expressed 

per fat compared to per unit of milk. This will be problematic if the breeding 

objective is to change the protein and fat composition instead of 

increasing/decreasing yield of specific milk proteins or FAs. Expression of the 

traits have also been shown to impact genetic parameter estimates including 

correlation with other traits. Such differences in genetic parameters in 

connection to expression of the traits are also reported for the reference method 

quantified traits (e.g. Fang et al., 2018). Therefore, regardless of the phenotyping 

method, the choice of trait definition requires further comprehensive 

investigations.  

In general, IR predicted phenotypes are not identical to the phenotype based on 

the “golden standard” and therefore, GWA results should be interpreted with 

great care. Compared to milk protein traits, relatively higher IR prediction 

accuracies are possible for the milk FA phenotypes. However, prediction 

accuracy is still lower for FAs expressed on a fat basis. Thus, lower IR prediction 

accuracies will remain a challenge in prospects of using IR phenotypes for genetic 

evaluations if the breeding objective is to change the FA composition.  

 

7.6.  Genetic correlations with other breeding goal traits 

Considerations to include new phenotypes requires understanding the 

magnitude and direction of genetic correlations with other breeding goal traits. 

Not many studies are available reporting genetic correlations of the detailed 
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protein and FA composition of milk with other milk production and fitness traits. 

In the case of milk protein composition, some studies have reported genetic 

correlations with protein percentage and protein and milk yield. In chapter 2 

(Gebreyesus et al., 2016), we report generally low estimates of genetic 

correlations (-0.03 – 0.38) between the detailed protein composition and the 

total milk protein percentage in agreement with other studies (e.g. Schopen et 

al., 2009). Likewise, we report in chapter 3 (Gebreyesus et al., 2017), overall 

weak genetic correlations between milk protein yield on one hand and the 

detailed milk protein composition traits and protein percentage on the other. 

Previous studies have also reported low genetic correlations between milk 

protein yield and the detailed milk protein composition traits (e.g. Schopen et 

al., 2009) as well as protein percentage (e.g. Chauhan and Hayes, 1991; Roman 

and Wilcox, 2000; Shahbazkia et al., 2010). Similarly, Bobe et al. (2007) showed 

that differences in genetic merit of cows for milk production was not correlated 

with differences in milk protein composition indicating low genetic relationships 

between milk yield and the detailed protein composition. Fang et al. (2018) also 

reported weak to moderate genetic correlations between the concentration of 

αS1-CN and αS2-CN phosphorylation isoforms and milk yield. These findings 

suggest that selection for the detailed milk protein traits will not substantial 

impact over the genetic progress in milk yield and protein percentage. This also 

indicates that selective breeding focusing mainly on milk yield in the past 

decades might not have any substantial effect on the detailed milk protein 

composition traits. However, studies show that estimates of genetic correlations 

between the milk protein traits and other milk production traits depend on how 

the traits are expressed. For instance, Fang et al. (2018) reported moderate to 

high genetic correlations between yields of individual αS1-CN and αS2-CN 

phosphorylation isoforms and the total protein and milk yield, while the 

corresponding estimates were low to moderate when the phosphorylation 

isoforms were expressed per protein basis (wt/wt). Therefore, decisions on 

expression of the traits should take into account the genetic correlations with 

other breeding goal traits. 

For the milk FA traits, reported genetic correlations with milk production traits 

varied according to the studied breeds/populations, methods used to quantify 

the FA traits i.e. GC or IR predicted, and the expression of traits (per milk or fat 

basis). Table 7.1 summarizes reports of different studies regarding genetic 

correlations of both GC quantified as well as IR predicted FA phenotypes with 

milk production traits. Studies using both the GC as well as IR phenotypes show 

strong positive correlations between the saturated group of FAs and fat 
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percentage. This suggest that selection based on fat percentage can increase the 

saturated FAs in milk.  

Regarding the genetic correlations between the FA traits and milk yield, reports 

from the IR based studies indicate negative genetic correlations, for all 

FAs/groups, ranging from low (-0.20) to moderate (-0.62). These reports are not 

however supported by the studies based on GC measured phenotypes which 

reported positive genetic correlations between most of the FA traits and milk 

yield ranging between low (0.01 for C6:0) to high (0.77 for C18:2n6) estimates, 

except C12:0, C16:0, C18:0 and desaturation indexes, for which low to moderate 

negative correlations were reported. All of the IR based studies presented in 

Table 7.1 used FA traits expressed per unit of milk yield except the study of Hein 

et al. (2018), while traits were expressed as percentage of the total fat in all the 

GC-based studies.  

 

Table 7.1. Genetic correlations of the milk FA traits with the milk production 

traits based on GC as well as IR predicted phenotypes 

 

FAs/ 

groups 

Genetic correlation with GC or IR quantified FAs [and the reporting studies] 

GC  IR  

Milk (kg) Fat (kg) Fat (%)  Milk (kg) Fat (kg) Fat (%) 

SFA −0.16[1]   0.56[1]   0.94[1]  −0.26[5] 
−0.40[6] 
−0.38[7] 
−0.62[8] 
−0.36[10] 

  0.29[6] 
  0.53[7] 
  0.50[8] 
  0.34[9] 

  0.97[5] 
  0.97[6] 
  0.98[7] 
  0.99[8] 
  0.99[10] 

MUFA   0.15[1] −0.54[1] −0.89[1] 
  0.01[2] 

 −0.21[5] 
−0.39[6] 
−0.45[7] 
−0.32[10] 

  0.15[6] 
  0.31[7] 
−0.33[9] 

  0.74[5] 
  0.76[6] 
  0.84[7] 
  0.79[10] 

PUFA   0.19[1] −0.41[1] −0.80[1]  −0.39[6] 
−0.40[7] 
−0.38[10] 

  0.13[6] 
  0.24[7] 
−0.26[9] 

  0.72[6] 
  0.67[7] 
  0.52[10] 

C4:0   0.05[1] 
  0.09[3] 

  0.24[1] 
  0.30[3] 

  0.03[1] 
  0.16[3] 

 −0.27[6]   0.34[6]   0.81[6] 

C6:0   0.01[3]   0.58[3]   0.46[3]  −0.30[6]   0.34[6]  0.87[6] 

C8:0   0.03[3]   0.45[3]   0.34[3]  −0.31[6]   0.31[6]  0.85[6] 
C10:0   0.10[3]   0.24[3]   0.09[3]  −0.32[6]   0.27[6]  0.81[6] 

C12:0 −0.26[1] 
  0.09[3] 

  0.04[1] 
  0.15[3] 

  0.43[1] 
  0.00[3] 

 −0.36[5] 
−0.34[6] 

  0.24[6]  0.91[5] 
 0.81[6] 

C14:0 −0.09[1] 
  0.30[3] 

−0.09[1] 
−0.11[3] 

  0.04[1] 
−0.40[2] 
−0.43[3] 

 −0.29[5] 
−0.37[6] 

  0.28[6] 
  0.06[9] 

 0.80[5] 
 0.89[6] 
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Table 7.1 Continued 

 GC  IR 

FA Milk (kg) Fat (kg) Fat (%)  Milk (kg) Fat (kg) Fat (%) 

C16:0   0.10[1] 
−0.50[3] 

  0.57[1] 
  0.18[3] 

  0.72[1] 
  0.74[2] 
  0.65[3] 

 −0.25[5] 
−0.37[6] 
−0.35[10] 

  0.28[6] 
  0.17[9] 

 0.95[5] 
 0.92[6] 
 0.98[10] 

C18:0 −0.20[1] 
  0.15[3] 

−0.28[1] 
  0.18[3] 

−0.10[1] 
  0.28[2] 
  0.01[3] 

 −0.28[5] 
−0.37[6] 
−0.28[10] 

  0.17[6] 
−0.14[9] 

 0.97[5] 
 0.75[6] 
 0.86[10] 

C14:1   0.05[1] −0.01[1] −0.05[1] 
  0.10[2] 

 - - - 

C16:1   0.09[1]   0.31[1]   0.24[1] 
  0.34[2] 

 - - - 

C18:1c9   0.13[1] 
  0.32[3] 

−0.42[1] 
−0.36[3] 

−0.85[1] 
  0.02[2] 
−0.63[3] 

 −0.39[5] 
−0.35[6] 
−0.29[10] 

  0.13[6] 
−0.26[9] 

0.75[5] 
0.68[6] 
0.80[10] 

C18:2n6   0.24[1] 
  0.77[3] 

−0.25[1] 
  0.04[3] 

−0.69[1] 
−0.70[3] 

 −0.28[5] - 0.75[5] 

C18:3n3   0.15[1] 
  0.53[3] 

−0.25[1] 
−0.28[3] 

−0.55[1] 
−0.75[3] 

 - - - 

CLA   0.35[1] 
  0.33[3] 

−0.06[1] 
−0.30[3] 

−0.68[1] 
−0.55[2] 
−0.58[3] 

 - - - 

C14index  -0.39[4] −0.13[4]   0.34[2] 
  0.31[4] 

 - - - 

C16index  -0.37[4] −0.21[4]   0.40[2] 
  0.17[4] 

 - - - 

C18index   0.01[4] −0.36[4] −0.35[2] 
−0.35[4] 

 - - - 

[1] Bilal et al. (2014). Canadian Holstein;  
[2] Mele et al. (2009). Italian Holstein; 
[3] Stoop et al. (2008). Dutch Holstein; 
[4] Schennink et al. (2008). Dutch Holstein; 
[5] Soyeurt et al. (2007). Multi-Breed (Belgian); 
[6] Bastin et al. (2011). Belgian (Walloon) Holstein; 
[7] Tullo et al. (2014). Italian Holstein; 
[8] Fleming et al. (2018). Canadian Holstein; 
[9] Hein et al. (2018). Danish Holstein; 
[10] Petrini et al. (2016). US Holstein 

 

In general, available literature regarding the genetic correlations of the protein 

and FA composition of milk with other dairy production, fertility, fitness and 
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conformation traits is very limited. In this regard, there is critical need for future 

studies estimating such correlations in different dairy breeds.  

 

7.7. Conclusions 

In this study, different quantitative approaches were explored to improve 

accuracy of parameter estimation and genomic prediction for the detailed milk 

protein and fatty acid composition. We show that information from correlated 

traits, related populations and the underlying biology can largely benefit 

genomic prediction for scarcely recorded traits, but efficient models are required 

to fully exploit the advantages. Limitation of traditional multi-trait models for 

traits with weak genome-wide correlations can be overcome by disentangling 

heterogeneous correlation structure and using information from regions where 

there is higher genetic correlation.  

Our studies also show that combining multi-population dataset is advantageous 

for GWA and genomic prediction in the milk FA traits. International 

collaborations allowing access to multi-population data can thus benefit the 

study on genetics of milk protein and FA traits. Information is limited regarding 

the genetic correlation of the detailed milk protein and FA traits with other traits 

in the dairy cattle breeding goals. Future studies are thus required regarding 

genetic correlations of the detailed protein and FA composition of milk with 

other breeding goal traits or indexes (such as the Nordic total merit).  
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Summary 

There is an increasing interest in the detailed protein and fatty acid (FA) 

composition of milk following increasing demands for processed dairy products, 

coupled with decreasing prices of whole milk, and consumer preferences to certain 

specific components of milk. Therefore, there is increasing need to alter protein 

and FA composition of milk to increase yield of dairy products and address 

consumer preferences. Among possible strategies to alter the protein and FA 

profile of cow’s milk, genetic intervention through selective breeding provides 

cumulative effects for a one-time investment carried over generations. Emergence 

of new tools, such as genomic prediction over the past decades has enabled rapid 

response to selection, through reducing generation interval. Accurate genomic 

prediction requires availability of a numerically large reference population. The 

current standard analytical methods for the detailed milk protein and FA 

phenotypes require costly and time-consuming procedures, limiting measurement 

to experimental scale. Efficient quantitative methods are therefore required for 

accurate genetic analysis in scarcely recorded traits. This thesis presents 

exploration of different quantitative approaches to improve accuracies of genetic 

parameters estimation, genomic prediction as well as detection power of GWA for 

scarcely recorded traits focusing mainly on utilization of information from 

correlated traits, related populations as well as the underlying biology.  

Chapter 2 presents multi-trait approaches for estimation of genetic parameters in 

the detailed milk protein composition traits. Bivariate and multi-trait analyses were 

implemented in a REML setting with relationship matrix calculated using imputed 

full sequence data. High heritability estimates, computed with reasonable standard 

errors using multi-trait analyses, for some of the milk proteins indicate possibility of 

genetic improvement through selective breeding. Genetic correlations between the 

milk proteins and milk protein content were generally low, suggesting little or no 

potential impact on protein content by selecting for detailed protein composition.  

In Chapter 3, we develop and implement novel univariate and bivariate Bayesian 

prediction models (BayesAS), to improve accuracy of predicting breeding merits for 

milk protein composition by dis-entangling heterogeneous (co)variance structures 

across the genome. Large gains in prediction reliability are shown with 

implementation of the novel models, in comparison to the traditional GBLUP 

approach, indicating that efficient statistical models allow accurate genomic 

prediction for milk protein traits with a numerically small dataset. 

In chapter 4, we investigate advantages of combining multi-population datasets for 

genome-wide association (GWA) in the milk FA traits using samples from the Dutch, 
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Danish and Chinese Holstein. Comparing joint GWA, meta-analyses and within-

population GWA in terms of number of detected regions and associations in 

confirmed regions of DGAT1 and SCD1, we show that pooling raw data from 

different populations for joint GWA allows enhanced detection power for scarcely 

recorded traits.   

Chapter 5 further characterizes major regions detected using the multi-population 

GWA for the milk FA traits. Proportions of genetic variance explained by detected 

regions ranged between 1.4% and 45.3% indicating the statistical power of 

implemented analyses. Post-GWA analysis with multiple data sources on pathway, 

gene ontology and tissue-specific gene expression data suggest novel promising 

candidate genes potentially affecting different FA synthesis mechanisms.  

In chapter 6, we implement findings of chapter 4 and 5 to develop genomic 

prediction models for milk FA composition using multi-population reference and 

linear models allowing incorporation of GWA findings. Genomic features-based 

model (GFBLUP) where separate random genetic effects were considered for BTAs 

14, 19 and 26 using relationship matrices constructed separately for variants in the 

BTAs was implemented. Combined reference population resulted in small to 

moderate gains in prediction reliability compared to with-in population prediction. 

GFBLUP model resulted in further gains in prediction reliability for most traits but 

the amount of gain varied for the different validation populations.  

Chapter 7 (general discussion), highlights contributions of the PhD study to the 

current knowledge base and the broader context of implementing selective 

breeding to alter detailed milk protein and FA composition. We show that 

limitation of traditional multi-trait genomic prediction models for traits with weak 

genome-wide correlation can be overcome by disentangling heterogeneous 

correlation structure and using information from regions where there is higher 

genetic correlation. Our studies indicate advantages of pooling data from different 

population for GWA studies and genomic prediction. Therefore, it is suggested that 

international collaborations facilitating access to multi-population data are critical 

to successes in unraveling the genetic backgrounds and implementing selective 

breeding for the milk protein and FA composition traits. Our studies suggest 

benefits of incorporating biological information in improving genomic prediction 

accuracy. It is therefore highlighted that GWA studies will remain to be important 

in the context of selective breeding. The need for future studies have been stressed 

especially with regards to genetic correlations of the milk protein and FA 

composition with other traits in the dairy cattle breeding goal, genetic correlations 

with infrared predicted proxy phenotypes and regarding appropriate definition of 

the traits for the breeding objective. 
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Sammendrag 

Der er en stigende interesse for komælks detaljerede sammensætning af protein og 

fedtsyrer (fatty acid, FA), som følge af en stigende efterspørgsel på forarbejdede 

mejeriprodukter, koblet med faldende priser på sødmælk samt forbrugernes 

præferencer for visse specifikke mælkekomponenter. Der er derfor et stigende 

behov for at ændre mælks protein- og FA-sammensætning med henblik på at øge 

mejeriprodukters ydelse og håndtere forbrugernes præferencer. Blandt mulige 

strategier til at ændre protein- og FA-profil af komælk er genetisk intervention 

gennem selektiv avl, der ved en engangsinvestering giver en akkumuleret effekt over 

generationer. Fremkomsten af nye værktøjer de seneste årtier, såsom genomisk 

prædiktion, har muliggjort en hurtigere respons til selektion ved at reducere 

generationsintervallet. Præcis genomisk prædiktion kræver en talmæssigt stor 

referencepopulation. De nuværende gængse analysemetoder for mælkeprotein- og 

FA fænotyper er bekostelige og tidskrævende procedurer, der begrænser målinger 

til et eksperimentelt omfang. Effektive kvantitative metoder er derfor nødvendige 

for en præcis genetisk analyse af egenskaber, der kun er sparsomt registrerede. 

Denne ph.d.-afhandling præsenterer udnyttelsen af forskellige kvantitative tilgange 

til forbedring af nøjagtigheden i estimeringen af genetiske parametre, genomisk 

prædiktion såvel som præcisionen af genetiske associationsstudier (GWA) for 

egenskaber med få registreringer, ved primært at fokusere på anvendelse af 

information fra korrelerede egenskaber, relaterede populationer samt den 

underliggende biologi.  

Kapitel 2 præsenterer en multi-egenskabs tilgang til vurdering af genetiske 

parametre for mælkeproteinsammensætningen. Bivariate og multi-egenskabs-

analysemetoder blev implementeret i REML med en slægtsskabsmatrice beregnet 

fra imputerede fuldsekvensdata. Høje estimater for arvelighed, med rimelige 

estimerede standardfejl, ved at bruge multi-egenskabsanalyser, indikerer at der for 

nogle af mælkeproteinerne er mulighed for genetisk forbedring gennem selektiv avl. 

De genetiske korrelationer mellem mælkeproteinerne og mælkeproteinindholdet 

var generelt lave, hvilket antyder lidt eller ingen mulig indvirkning på 

proteinindholdet ved at selektere for proteinsammensætning.  

I kapitel 3 udvikler og implementerer vi nye univariate og bivariate Bayesiske 

prædiktionsmodeller (BayesAS) for at forbedre nøjagtigheden af at forudsige 

avlsfordele for mælkeproteinsammensætning ved at udrede heterogene 

(co)variansstrukturer på tværs af genomet. Implementeringen af de nye modeller 

gav store forbedringer af nøjagtigheden i prædiktionerne, sammenlignet med den 

traditionelle GBLUP tilgang. Dette indikerer at effektive statistiske modeller tillader 
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nøjagtig genomisk prædiktion for mælkeprotein-egenskaber med et talmæssigt lille 

datasæt. 

I kapitel 4 undersøger vi fordele ved at kombinere datasæt fra hollandske-, dansk- 

og kinesisk- Holstein kvægpopulationer til genetiske associationsstudier for FA. Ved 

at anvende en kombineret GWA, meta-analyser og intra-populations-GWA med 

hensyn til antal identificerede regioner, samt associationer i kendte regioner af 

DGAT1 og SCD1 viser vi, at ved at kombinere data fra forskellige populationer i en 

kombineret GWA giver større statistisk kraft for egenskaber med få registreringer.  

Kapitel 5 karakteriserer yderligere væsentlige regioner, der er påvist ved brug af 

flerpopulations-GWA for mælkefedtsyretrækkene (FA). Andelen af forklaret 

genetiske varians i de identificerede regionerlå mellem 1.4% og 45.3%, hvilket 

indikerer øget statistisk styrke. Post-GWA analyser på stofskifteveje, genontologi og 

vævsspecifik genekspressions indikerer nye lovende kandidatgener, der potentielt 

kan påvirke forskellige FA-syntesemekanismer.  

I kapitel 6 implementerer vi resultater fra kapitel 4 og 5 til at udvikle genomiske 

prædiktionsmodeller for mælks fedtsyresammensætning, ved at bruge multi-

populationsreference og lineære modeller, der tillader inkorporering af GWA 

resultater. En GFBLUP (Genomic feature-based) model blev implementeret, hvor 

separate genetiske effekter for kromosom 14, 19 og 26 blev estimeret ved at 

konstruere slægtskabsmatricer basseret på genetiske varianter på disse 

kromosomer. En kombineret referencepopulation resulterede i små til moderate 

forbedringer i prædiktionsnøjagtigheden, sammenlignet med prædiktion indenfor 

populationer. GFBLUP-modellen resulterede i yderligere forbedringer i 

prædiktionsnøjagtigheden for de fleste egenskaber, men størrelsen varierede for de 

forskellige valideringspopulationer.  

Kapitel 7 (generel diskussion), fremhæves bidraget fra denne Ph.d-afhandling til den 

eksisterende viden, samt den bredere kontekst ved implementering af selektiv avl 

for at ændre mælkeprotein- og fedtsyresammensætning i komælk. Vi viser, at 

begrænsningen i traditionelle genomiske prædiktionsmodeller for multi-egenskaber, 

for egenskaber med svag genetiske korrelationer, kan overvindes ved at udrede den 

heterogene korrelationsstruktur og bruge information fra regioner, hvor der er 

højere genetisk korrelation. Vores undersøgelser indikerer fordele ved at samle data 

fra forskellige populationer til genetiske associationsstudier og genomisk 

prædiktion. Det foreslås derfor at internationale samarbejder, der letter adgangen 

til multi-populationsdata, er nødvendig for succes til at udrede den genetiske 

baggrund for og implementering af selektiv avl for mælkeprotein- og 

fedtsyresammensætningsegenskaberne. Vores undersøgelser indikerer at ved at 

inkorporere biologisk information til genomisk prædiktion øges nøjagtigheden. Det 
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fremhæves derfor at genetiske associationsstudier fortsat vil være vigtige i en 

selektiv avlskontekst. Behovet for fremtidige undersøgelser er blevet understreget, 

især med henblik på genetiske korrelationer af mælkeprotein- og 

fedtsyresammensætning med andre egenskaber i avlsmålene for malkekvæg, 

genetiske korrelationer med infrarøde, forventede proxy-fænotyper og med henblik 

på passende definitioner af egenskaberne for avlsmålsætningerne. 
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Samenvatting 

Er is een toenemende belangstelling voor de gedetailleerde eiwit- en 

vetzuursamenstelling van melk als gevolg van de toenemende vraag naar 

gedifferentieerde zuivelproducten. Hierdoor is er een toenemende behoefte om de 

eiwit- en VZ-samenstelling van melk te veranderen om zo aan de vraag en voorkeur 

van de consument te voldoen. Een van de mogelijke strategieën om het eiwit- en 

vetzuurprofiel van koemelk te veranderen, is genetische interventie door selectieve 

fokkerij.  

Voorspelling van kenmerken door middel van genetische merkers heeft het 

mogelijk gemaakt om sneller te selekteren. Een nauwkeurige genomische 

voorspelling vereist de beschikbaarheid van een grote referentiepopulatie waarin 

de kenmerken gemeten worden. De huidige standaard analysemethoden voor de 

gedetailleerde melkeiwitten en vetzuur kenmerken vereisen kostbare en 

tijdrovende procedures, waardoor de metingen beperkt blijft tot kleinscahalige 

experimentele populaties. Efficiënte kwantitatieve methoden zijn daarom vereist 

voor nauwkeurige genetische analyse van deze nieuwe kenmerken. Dit proefschrift 

presenteert een verkenning van verschillende kwantitatieve benaderingen om de 

nauwkeurigheid van genetische parameters te verbeteren. Daarbij wordt gekeken 

naar de voorspelling van de eiwit- en vetzuurkenmerken op basis van genetische 

DNA merkers op het genoom en het detectievermogen van genetische DNA 

merkers voor eiwit- en vetzuurkenmerken, waarbij gebruik gemaakt wordt van 

informatie uit gecorreleerde kenmerken. 

Hoofdstuk 2 presenteert multi-trait benaderingen voor het schatten van 

genetische parameters voor de gedetailleerde melkeiwitsamenstelling. Bivariate- 

en multi-trait-analyses werden geïmplementeerd in REML. De genomische relatie 

tussen de dieren in de populatie wordt berekend met een genomische 

relatiematrix aan de hand van geïmputeerde DNA merkers. De geschatte 

erfelijkheidsgraad voor de specifieke melkeiwitten wijzen erop dat genetische 

selektie mogelijk is. De genetische correlatie tussen de specifieke melkeiwitten en 

het totale eiwitgehalte zijn laag, hetgeen suggereert dat er geen of weinig effect is 

op het totale eiwitgehalte in de melk wanneer er selektie plaatsvindt op de 

gedetaillieerde melkeiwitsammenstelling. 

In Hoofdstuk 3 ontwikkelen en implementeren we nieuwe univariate en bivariate 

Bayesiaanse voorspellingsmodellen (BayesAS) om de nauwkeurigheid van het 

voorspellen van de specifieke melkeiwitsamenstelling te verbeteren. Hierbij wordt 

gebruik gemaakt van de heterogene (co) variantie structuren op het genoom. Deze 

nieuwe Bayesiaanse modellen tonen een grote vooruitgang in de 

voorspellingsbetrouwbaarheid in vergelijking met de traditionele GBLUP-modellen. 
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Dit geeft aan dat efficiënte statistische modellen een nauwkeurige genomische 

voorspelling mogelijk maken voor melkeiwitkenmerken die gemeten zijn in een 

kleine dataset. 

In hoofdstuk 4 onderzoeken we de voordelen van het combineren van 

verschillende experimente data-sets voor het vinden van DNA merkers die 

geassocieerd zijn met specifieke vetzuurkenmerken in de melk. Hierbij wordt 

gebruik gemaakt van datasets die verzameld zijn van Nederlandse, Deense en 

Chinese Holstein koeien. Verschillende analyse methoden worden vergeleken 

(meta-analyse, analyse binnen de individuele populatie en een analyse waarbij alle 

data gecombineerd wordt) laten we zien dat wanneer alle datasets gezamelijk 

opnieuw geanalyseerd wordt, de detectie van nieuwe DNA merkers verbeterd. 

Hoofdstuk 5 worden de meest belangrijke regio's die zijn gedetecteerd met behulp 

van de analyse waarbij alle datasets opnieuw gezamelijk geanalyseerd worden, 

gekarakteriseerd. De genetische variantie die verklaard wordt door de 

gedetecteerde regio's varieerden tussen 1,4% en 45,3%. Een post-DNA merker 

associatie-analyse aan de hand van meerdere gegevensbronnen op het gebied van 

pathway gegevens, genontologie en weefselspecifieke genexpressiegegevens 

suggereren nieuwe veelbelovende kandidaatgenen die mogelijk van invloed zijn op 

verschillende vetzuursynthesemechanismen. 

In hoofdstuk 6 implementeren we bevindingen uit hoofdstuk 4 en 5 om 

genomische voorspellingsmodellen voor melk vetzuursamenstelling te ontwikkelen. 

Op basis van genomische kenmerken (GFBLUP-model) worden afzonderlijke 

genetische effecten die gevonden zijn op chromosoom 14, 19 en 26 getest. Het 

combineren van de Nederlandse, Deense en Chinese Holstein data-sets resulteerde 

in een kleine tot matige winst in voorspellingsbetrouwbaarheid in vergelijking met 

voorspelling van de drie individuele populaties. In het algemeen resulteerde het 

GFBLUP-model in een betere voorspellingsbetrouwbaarheid voor de meeste 

kenmerken, maar de hoeveelheid winst die behaald wordt varieerde voor de 

verschillende validatiepopulaties. 

De algemene discussie (Hoofdstuk 7) belicht de bijdragen van het 

doctoraatsonderzoek aan de huidige kennis en de plaats de resultaten in een 

bredere context ten aanzien van de mogelijkheden voor implementatie van 

genetische selektie om de gedetailleerde eiwit en vetzuursamenstelling in de melk 

te wijzigen. We laten zien dat beperkingen van traditionele multi-trait genomische 

voorspellingsmodellen voor kenmerken met een zwakke genoom-brede correlatie 

kan worden overwonnen door gebruik te maken van de heterogene 

correlatiestructuur en informatie te gebruiken uit regio's waar er een hogere 

genetische correlatie is. De studies in dit proefschrift wijzen op de voordelen van 
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het samenvoegen van gegevens van verschillende (experimentele) data-sets voor 

DNA merker associatie analyses en genomische voorspelling. Daarom wordt 

gesuggereerd dat internationale samenwerkingsverbanden die de toegang tot 

gegevens over meerdere populaties omvatten, zijn van cruciaal belang voor 

successen bij het ontrafelen van de genetische achtergronden en het 

implementeren van selectieve fokmethoden voor het melkeiwit- en 

vetzuursamenstelling. De studies laten voordelen zien van het gebruik van 

biologische informatie in het verbeteren van de nauwkeurigheid van de 

genomische voorspelling. 



 

 

 
 

 



 

 
 

 
 
 
 

Acknowledgement 
 
 
 
 
 
 
 
 
 

  

 

 



  



Acknowledgement 

 

 

209 

 

Acknowledgement 

I would like to take the opportunity to thank, as much as I can, the many people 

without whose contribution, in one way or another, the completion of this 

undertaking could not have been possible.   

 

I am exceptionally thankful to my supervisors Bart Buitenhuis, Henk Bovenhuis and 

Mogens Lund for the opportunity and trust bestowed on me to handle the project 

and the unreserved supports thereafter. Timely completion of major activities in 

this endeavor come down to Bart’s skills in planning and management together 

with the persistent support that kept me on track. I have been fortunate to have 

Bart as my main supervisor with his supervision approach that allowed me the 

freedom to explore as independently as possible and be in charge of my project, 

yet consistently providing me with the guidance and support as I stumble across 

challenging situations. Having Henk as one of my main supervisors and promoter 

have been very inspirational and a great learning experience. I am always 

fascinated with new perspectives Henk adds into the different studies and always 

looked forward excitedly to his comments on my manuscripts. Beyond just inputs 

to my manuscripts, I see attention to details, dedication to the field, and a level of 

critical thinking that has been very inspirational in the typically red-colored and 

exclamation-mark-riddled long lines of comments. My co-supervisor, Mogens, have 

been very helpful in broadening my view of the PhD project making me think of the 

practical importance of what I do. Mogens always came up with innovative ideas 

and helped me see opportunities out of phenomena I otherwise considered 

hurdles. I have been very lucky to have you all in my supervision team and I cannot 

thank you enough for the inspirations and lessons that I will carry with me 

throughout my career.  

I would also like to extend my appreciations to all my co-authors in different 

countries and research groups for the smooth and successful collaborations. 

Special thanks in this regard goes to Luc Janss, whom I really consider as an 

additional co-supervisor in light of the consistent support and mentoring that he 

has always extended, and Nina Poulsen for dedicated contributions in all my 

manuscripts.  

 

All my colleagues at QGG, I am very much thankful for all the support and friendly 

working atmosphere. I am very happy that i will continue working with you at QGG 

after my PhD. I am grateful to late Karin, Louise, Hanne Amtrup and Birgitte Larsen 

for all the supports at different parts of my PhD here in QGG. Jette Odgaard and 



Acknowledgement 

 

 

210 

  

Palle Duun, thank you for the translation works on the summary of the thesis. 

Thanks go to current/former PhD/postdoc pals at QGG: Ahmed, Lise, Biructawit, 

Mesbah, Wossenie, Berihu, Margot, Coralia, Helene, Mahlet, Mette, Daniel, 

Hongding, Mahmoud, Roos and many others I didn’t mention here. Thanks for all 

the nice discussions, the lunch-table gatherings and social occasions.  

Special thanks goes to my friends Gareth Difford and Larissa Zetouni. I enjoyed 

every moment of my PhD endeavor thanks to your friendship. Starting the PhD at 

the same time as Gareth and going throughout the journey together with such a 

friend has been a blessing. Thank you for all the help and the friendship that I will 

always cherish.  

Apart from QGG, thanks go to friends in Foulum, particularly Saman and Mihai for 

the helps in different occasions.  

 

My warmest appreciation also goes to all my colleagues at ABG of Wageningen 

University. Maria, Zih-Hua, Sonia, Pascal, Johanna, Floor and Juan thank you for all 

the good acquaintance and the fantastic parties. Harmen, Zhou, Robert and 

Langqing, you have been so awesome office mates, thank you. Outside of ABG, 

special thanks to Meklit Berihun and Shimelis Altaye for all the support and the 

unforgettable moments during my stay at Wageningen.  

 

Most importantly, my deepest appreciation goes to my family: my beloved 

daughters Blen and Yabsira and my partner Tehetena Ayele for the love, patience 

and encouragement. Finally, I would like to thank my mother, Almaz Kassaye and 

grandmother, Shewaye Cherinet, for all the things that I can’t even count. If 

anything good exists in me and if any of my undertakings are deemed a success, it 

is all because of the endless love you gave me and the values you raised me with, 

thank you! 



 

 

 

 

 
 

 
 
 

 
 

Curriculum Vitae 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Curriculum Vitae 

 

 

213 

 

About the author 

Grum Gebreyesus was born on October 1982 in Dire Dawa, Ethiopia. He did his 

bachelor’s degree in animal sciences at Haramaya University, Ethiopia. Upon 

completing his bachelor’s study, Grum worked at Endasselassie agricultural college 

as junior instructor and later at Jigjiga University, as an assistant lecturer. In his 

early teaching experience, Grum mainly focused on courses related to genetics and 

breeding, including principles of genetics, applied animal breeding, biometrics and 

statistics. With special interest to genetics, Grum returned to Haramaya University 

to pursue master’s study in animal genetics and breeding. In his master’s study, 

Grum focused on phenotypic characterization of indigenous animal genetic 

resources with his thesis work exploring the role of indigenous knowledge and 

communal breeding practices in shaping the local animal genetic resource gene 

pool. Upon completion of his master’s degree, Grum was re-employed by Jigjiga 

University as a lecturer and researcher where he taught courses including animal 

genetics and breeding, and participated on various research projects. In 2012, 

Grum joined the international livestock research institute (ILRI) where he worked 

as a research assistant in geneticist position. During his stay at ILRI, main activities 

focused on establishing and running community based breeding programs for 

indigenous goats in various regions of Ethiopia as part of a broader project entitled: 

“Harnessing genetic diversity for improving goat productivity in Africa”, led by the 

Biosciences Hub eastern and central Africa (BecA-Hub) and ILRI. In 2014, Grum 

received the Erasmus Mundus PhD scholarship under the joint program: European 

Graduate School in Animal Genetics and Breeding (EGS-ABG) in Aarhus University, 

Denmark and Wageningen University, Netherlands. After completion of the PhD 

program, Grum will continue his scientific career as postdoc researcher in 

quantitative genetics and genomics at QGG, Foulum.  

 

 

 

 

 

 

 

 

 

 

 



Curriculum Vitae 

 

 

214 
 

Peer reviewed publications 

1. Gebreyesus G., Lund MS., Janss L., Poulsen N.A., Larsen L.B., Bovenhuis H., 

Buitenhuis A.J. Short communication: Multi-trait estimation of genetic 

parameters for milk protein composition in the Danish Holstein. J Dairy Sci. 

2016 Apr;99(4):2863-6. doi: 10.3168/jds.2015-10501 

2. Gebreyesus G., Lund M.S., Buitenhuis A.J., Bovenhuis H., Poulsen N.A. and 

Janss L.G. Modeling heterogeneous (co)variances from adjacent-SNP 

groups improves genomic prediction for scarcely recorded milk protein 

composition traits.2017. Genet Sel Evol (2017) 49:89.  

3. Buitenhuis B., Poulsen N.A., Gebreyesus G., Larsen L.B. Estimation of 

genetic parameters and detection of chromosomal regions affecting the 

major milk proteins and their post translational modifications in Danish 

Holstein and Danish Jersey cattle. BMC Genet. 2016 Aug 2;17:114.  

 

Conference proceedings, abstracts and presentations 

1. Gebreyesus G., Buitenhuis A.J., Poulsen N.A., Visker M.W., Zhang Q., van 

Valenberg H., Sun D., and Bovenhuis H. 2018. Genome-wide association 

study of the de novo synthesized milk fatty acids based on Dutch, Danish 

and Chinese Holstein Friesians. In proceedings of the 11th World Congress 

on Genetics Applied to Livestock Production (WCGALP), Auckland, New 

Zealand. Paper: 141. 

2.   Gebreyesus G., Lund M.S., Janss L.G., Bovenhuis H.  and Buitenhuis A.J. 

Fine mapping and genomic prediction for detailed milk protein 

composition: in proceedings of the 5th International Conference on 

Quantitative Genetics (ICQG5). June 12- 17, 2016. Madison, Wisconsin, 

USA. 

3. Gebreyesus G., Lund M.S., Janss L.G., Bovenhuis H. and Buitenhuis A.J. 

Modeling heterogeneous co-variancas for genomic regions in prediction 

for milk protein compositions: in proceedings of the 67th Annual Meeting 

of the European Federation of Animal Science. 29 Aug- 2 Sep. Belfast, 

United Kingdom. 

4. Difford G.F., Gebreyesus G., Løvendahl P., Buitenhuis A.J., Lassen J., 

Guldbrandtsen B., and G. Sahana. Can rumen microbes improve prediction 

of metabolic traits  in Dairy cows. in proceedings of the 67th Annual 

Meeting of the European Federation of Animal Science 



Curriculum Vitae 

 

 

215 

 

Individual Training Plan (ITP)      

        

 

Training (33 ECTS) 

Mandatory courses (9) Place Year 
EGS-ABG welcome course WUR 2014 
EGS-ABG Fall school WUR 2017 
EGS-ABG Fall school SLU 2016 
EGS-ABG Fall school AgroParisTech 2018 
Research ethics and integrity in animal sciences WUR 2017 

Advanced scientific courses (18 ECTS)   
Introduction to genomic selection WUR 2014 
Linear models in animal breeding AU 2015 
Gene mapping AU 2015 
Genomic prediction in livestock Iowa 2015 
Design of breeding programs with genomic selection Iowa 2015 
Genomic selection in the era of genomic sequencing Madison 2016 
Statistical genetics of quantitative traits and 
complex diseases 

Madison 2016 

Professional skill support courses (6)   
QGG research skill course AU 2015 
Programing in animal science AU 2015 

   

Knowledge dissemination   

Teaching   
Teaching assistance: Genetics course AU 2016 

International conferences   
The 11th World Congress on Genetics Applied to 
Livestock Production (WCGALP) 

Newzealand 2018 

The 5th International Conference on Quantitative 
Genetics (ICQG5) 

Madison 2016 

The 67th annual meeting of the European Federation 
of Animal Science (EAAP) 

Belfast 2016 

Seminars and workshop   

Annual Gensap meeting Denmark 2015, 
2017 

Nordic cattle genomic selection workshop 

 

Denmark 2017, 
2018 



 

 

 
 

 



Colophon 

 

 

217 

 

Colophon 

The PhD study was supported by grants from the European commission, within the 

framework of the Erasmus-Mundus joint doctorate program (EGS-ABG), and the 

Center for Genomic Selection in Animals and Plants (GenSAP), funded by The 

Danish Council for Strategic Research. 

 

The studies used data from the Dutch Milk Genomics Initiative 

(www.milkgenomics.nl); High Technology R & D Program of China,2013AA102504 

and Beijing Dairy Industry Innovation Team, BAIC06-2018; Danish-Swedish Milk 

Genomics Initiative (www.milkgenomics.dk) and the Milk Levy Fund (Denmark) 

projects: “Phenotypic and genetic markers for specific milk quality parameters” and 

“The importance of the metagenome for milk composition and quality".  

 

This thesis was printed by Digisource, Viborg, Denmark 

http://www.milkgenomics.nl/
http://www.milkgenomics.dk/

