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The potato (Solanum tuberosum) can be seen as a model system for both autopolyploid 
crops and as model system for the development of storage organs. Potato is a highly 
heterozygous autotetraploid species (2n = 4x = 48), which implies that each potato 
variety contains four distinct homologous chromosomes. Nowadays, most of the 
commercially available varieties are tetraploids. From a plant breeding perspective, the 
goal of a potato breeding programme is the development of improved varieties, which 
contain better or novel traits in comparison to existing varieties. In that regard, potato 
breeding is aimed at developing varieties that are high-yielding, but also contain disease 
resistances, and have excellent quality criteria. Genetic improvement of potato varieties 
traditionally has been achieved with phenotypic selection, as the genetic basis of many 
traits was poorly understood (Hamilton, 2011). Intriguing examples of these traits are 
plant maturity (e.g.  daylight-dependent tuberization) and potato tuber shape (e.g. long 
or round tuber shape), where continuous trait variation is seemingly explained by 
multiple alleles at a single locus. To obtain better performing varieties an improvement 
of the genetic basis of these varieties is needed.  

A typical potato breeding program consists out of crosses between highly heterozygous 
parents. After selection in the F1 generation, breeders hope to identify a few progeny 
outperforming their parents which can be released as variety or selected for further 
breeding. This whole process of repeated crossing and selection takes around 10 years. 
In the context of marker-assisted breeding, molecular markers can be used to 
characterise DNA variation that is predictive for important agronomical traits, with the 
sole purpose to speed up this breeding process. The identification of this molecular 
variation linked to trait variation is the foundation of marker-assisted breeding (MAS). 
These molecular markers are used to select parents with favourable allele composition, 
or select progeny that score positively for the presence of these markers.  

Genetic studies in potato 
Genetic studies in potato are hindered by the occurrence of polyploidy, coupled with 
self-incompatibility, and inbreeding depression. Although challenging, the availability 
of a reference genome (PGSC, 2011), and high-quality linkage maps (van Os et al. 2006; 
Hackett et al. 2013; Massa et al. 2015), allows to perform these genetic studies on a more 
routine basis. Among polyploid species generally a distinction is made between 
autopolyploids and allopolyploids. Potato is considered a autotetraploid species, as 
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tetraploidy originated due to whole-genome duplication in the distant past. Like most 
autopolyploid crops, potato displays polysomic inheritance, where any of the 
homologous chromosomes can pair with each other (Bourke, PhD thesis).  In addition, 
potato exhibits severe inbreeding depression, which implies that breeders maintain a 
high degree of heterozygosity to obtain high-performing potato varieties.  

Genetic mapping in experimental populations 
In potato, for a long time genetic analysis focused on traits with simple genetic 
inheritance, due to complexities related to linkage mapping at higher ploidy level. 
Indeed, many of the early studies that performed genetic mapping in tetraploid F1 
populations mainly identified QTLs for resistance, such as the H3 locus (Bryan et al. 
2002), R2 locus (Li et al. 1998) and Rysto (Brigneti et al. 1997). These traits often display 
qualitative resistance, where a single dominant allele is needed for complete resistance. 
Recent progress in the development of tools for tetraploid linkage mapping (Hackett et 
al. 2002; Bourke et al. 2018) and the possibility to assign each marker to its putative 
homologous chromosome (Zheng et al. 2015), allows to model these QTLs not only by 
the contribution of each individual SNP, but rather on the relative contribution of each 
individual homolog. The application of these tools in tetraploid mapping panels allows 
to perform QTL mapping with more complex traits (Massa et al. 2015, Bourke et al. 
2018). Simulation studies also suggest that power for QTL discovery might increase by 
using the presence or absence of each homolog as factor in QTL analysis, compared to 
single marker QTL analysis (Bourke et al. 2018). However one of the drawbacks of QTL 
mapping in such populations is lack of allelic diversity that can be screened within a 
single population (e.g. only eight homologs). Moreover, the mapping resolution depends 
on the frequency of recombination, and only with a large panel size a locus can be refined 
to a small region of interest.  

Association mapping  
In contrast to QTL mapping in F1 populations, a genome-wide association study 
(GWAS) measures the association between each marker and phenotype within a large 
panel of varieties. Such panels of varieties exhibit a high allele diversity, as they often are 
composed of a set of ‘unrelated’ varieties, displaying varying levels of IBD to each other. 
In principle, association mapping is analogous to QTL mapping in a F1 population, as 
in both cases the association between allele and phenotypes is measured. In the context 



 General Introduction 

11 
 

of association mapping, this association between marker and phenotype is based on the 
assumption of  linkage disequilibrium of a marker with a QTL. The strength of the 
association between allele or marker and phenotype significantly depends on the 
proportion of phenotypic variance within the population explained by the marker, which 
in turn is a trade-off between frequency of such a molecular variant in the population 
and its allelic effect (Korte and Farlow, 2012). An very important aspect of association 
mapping is how reliable the individual marker-alleles tag the causative allele(s), as 
markers might be present in multiple haplotypes, diminishing the correlation between 
marker and phenotype.  

The composition of the association panel does often influence the outcome of association 
mapping experiments. If traits are correlated with population structure, false-positive 
marker-trait associations might occur frequently (Kang et al. 2008; Rosyara et al. 2016). 
In potato population structure is exemplified in the identification of population structure 
in three separate population groups, processing, starch and ‘rest’ (D’hoop et al. 2011; Vos 
et al. 2015). A marker that is present at higher frequency in any of the structure groups 
could lead to a misleading marker-trait association, if phenotypic variation is also 
correlated with these structure groups. Therefore, the composition and selection of 
varieties for an association panel is crucial for the success of these studies. To avoid 
population structure, these panels can be selected by maximizing the genetic distance 
between accessions (Li et al. 2010). An alternative approach is to select a representative 
subset of varieties, balanced in every subpopulation, to minimize the effect of population 
structure. After performing association mapping, the identified QTLs need to be 
validated. Firstly, the QTL(s) can be validated in an independent association panel. 
Secondly, parents can be selected, in which this QTL is expected to segregate. Subsequent 
linkage mapping can be followed by a QTL mapping experiment to validate the effect of 
the QTL(s). 

In potato several association mapping experiments have been performed, and this led to 
the identification of  many QTLs related to agronomical traits (D’hoop et al. 2014; 
Schönhals et al. 2016; Sharma et al. 2018). Successful application of GWAS allowed to 
identify a single major effect QTL for plant maturity (Kloosterman et al. 2013). Likewise, 
application of GWAS to glycoalkaloid content allowed to detect multiple QTLs 
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associated with this trait (Vos et al. 2017). Many traits will show a polygenic genetic 
architecture, where each QTL will have a small effect on the trait.  

 

Figure 1. Phenotypic diversity for potato tuber shape in a panel of 537 potato varieties. Overall tuber shape in 
cultivated potato ranges from round to extreme long, but shows a continuous distribution.  

Plant maturity and tuber shape 
For potato plant maturity, initially a major effect QTL was found on chromosome 5, 
using a genome wide association study (GWAS). Subsequent linkage mapping in a 
diploid full-sib mapping population refined the locus. Gene function studies revealed 
that the StCDF1 gene was responsible for regulation of day-light dependent tuberization 
(Kloosterman et al. 2013). Two dominant alleles of the StCDF1 gene were found: Firstly, 
the StCDF1.3 allele, containing a transposon insertion. Secondly, an excision allele, 
containing a 7bp footprint of the transposon insertion (StCDF1.2). Both these allelic 
variants result in a truncated StCDF1 protein that evades post-translational light 
regulation, leading to early tuberization. Likewise, potato tuber shape is a quantitative 
trait, displaying tuber shapes ranging from round to elongated (See Figure 1). A 
substantial part of this phenotypic variation is mediated by a single major effect QTL on 
chromosome 10. For this QTL previously three alleles were identified, from which only 
one conferred an elongating effect (van Eck et al. 1994).   
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Multiple alleles 
Various mechanisms can be envisaged that give rise to a quantitative genetic effect at a 
single genetic locus. The most simple explanation is that multiple loci jointly influence 
trait variation. An alternative explanation is that multiple alleles at a single genetic locus 
explain phenotypic differences. Hypothetically, in case of multiple alleles, allelic variants 
that are expressed at different level or have different enzymatic activities, can combine 
at a locus to produce subtle quantitative phenotypic differences. Furthermore, other 
complex combinations of expression and protein variation can be envisioned that could 
explain a fully quantitative genetic effect. Here a haplotype is defined as a segment of 
multiple adjacent SNPs that are present in only one homologous chromosome. 
Commonly an allele can be defined as a variant of a gene or locus. 

Indeed, the central aim of this PhD thesis is to identify alleles that are associated with 
trait variation. The occurrence of multiple functional alleles for traits such as tuber shape, 
and plant maturity is the main reason to pursue the development of haplotype 
reconstruction methods, as single SNP markers do not allow to disentangle these alleles 
and their contribution to phenotypic variation. To investigate the effect of each 
haplotype and allele, or their interactions, a comprehensive overview of all allelic 
variation present at a locus is needed, which can be achieved by methods such as 
described in this thesis. Subsequently each of these discovered alleles, or combinations 
of alleles can be tested for association to a specific trait.  

Molecular marker discovery  
For genotyping of polyploid crops, several marker platforms  are commonly used. Earlier 
studies in potato have used low-throughput marker systems such as SSR (Simple 
Sequence Repeat) markers or AFLP (Amplified Fragment Loci Polymorphism) markers 
(D’ hoop et al. 2011). Recent studies have employed single nucleotide polymorphisms 
(SNPs) to characterise genetic variation (Vos et al. 2015; Fletcher et al. 2012). Generally, 
these SNPs are bi-allelic, allowing the distinction between two alleles. Each of these SNPs 
can have five different dosage classes in a tetraploid (AAAA, AAAB, AABB, ABBB and 
BBBB). These alleles are commonly coded using a binary number, where 0 refers to the 
reference allele, and 1 refers to the alternative allele (Figure 2). For a segment of n bi-
allelic SNPs a total of 2n haplotypes are possible. In a tetraploid these 2n haplotypes can 
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be distributed in (𝑟𝑟+4−1)!
𝑟𝑟!(4−1)!

 distinct combinations of four haplotypes, where r is the ploidy 

level, which in case of two bi-allelic markers results in 35 possible phasing configurations.  

 

Figure 2. A) Possible haplotypes given two bi-allelic SNP markers. B) Possible genotypic combinations of two bi-
allelic SNP markers. For the genotypes depicted in grey, Haplotype inference is needed. For instance genotype 11 
can originate from haplotype configuration 11|00|00|00 or haplotype configuration 01|10|00|00. The haplotype 
contribution of the other genotypes can be inferred directly (i.e. genotype 00: 00|00|00|00 or genotype 01: 
01|00|00|00).  

These genotyping assays rely on fluorescent signals which allow determination of these 
different dosage classes (Voorrips and Maliepaard 2008), for instance in high-
throughput genotyping arrays (Vos et al 2015; Fletcher et al. 2012) or KASP markers.  

Sequencing technologies 
Sequencing-based genotyping has rapidly become a more important tool to characterise 
genomic variation, and perform SNP discovery. Several studies show that in potato it is 
feasible to obtain usable genotypic information using high-throughput short-read 
sequencing with Illumina (Uitdewilligen et al. 2013; Slater et al. 2014). A key requirement 
before downstream application, is the estimation of dosage classes with this read 
information. The estimation of a dosage of a SNP in an individual is based on relative 
counts of reads that belong to either the reference allele or alternative allele of that SNP. 
Commonly, a polyploid variant caller such as FreeBayes is used to determine these 
dosages (Erikson et al. 2008). Generally, these tools require a high read depth to reliably 
assign dosage classes. Previously it was determined that in practice a read depth of > 80× 
is needed to achieve a 95% accuracy (Uitdewilligen et al. 2013), mainly to distinguish 
between simplex (ABBB), duplex (AABB) and triplex (AABB) genotype calls. Currently, 
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short-read Illumina sequencing allows a read length up to 250bp. These read lengths are 
still limiting applications for haplotype detection or identification of structural variants.   

In recent years, however, third generation sequencing technologies have become 
available allowing sequencing of very long DNA fragments. These long-read, single-
molecule technologies such as those offered by Oxford Nanopore and Pacific 
Biosciences, potentially allow to sequence DNA molecules with lengths of several 100 kb. 
Application of these new technologies will allow to characterize highly complex regions, 
which are characterized by complex repeats and/or inversions. Examples of these regions 
are resistance gene clusters in plants (Witek et al. 2010), where complex repeat structures 
hinder interpretation and development of reliable marker assays.  

Haplotypes are more suitable as markers than bi-allelic SNP markers 
Nevertheless, most of these molecular marker technologies result in bi-allelic markers, 
which means that a single marker distinguishes only between two haplotypes. In many 
cases, multiple haplotypes are present at a locus, and a one bi-allelic SNP marker is not 
specific for a single haplotype. Obviously in an ideal situation, every marker has a high 
haplotype-specificity. One way to achieve haplotype-specificity is to consider multiple 
bi-allelic markers and reconstruct haplotypes. The reconstruction of haplotypes allows 
to improve distinction between different alleles. The application of these haplotype 
markers in QTL detection will likely result in a stronger association signal and therefore 
improve QTL detection power.  

Allele mining 
For diploids many tools have been developed that allow to characterise allelic variation, 
either by statistical phasing or by haplotype assembly (Browning and Browning, 2011), 
however efforts for phasing or assembly in polyploids have been limited, and studies that 
performed large-scale haplotype reconstruction have so far not been reported. Statistical 
phasing employs techniques to obtain haplotypes by exploiting information over 
multiple individuals. Conventionally these methods use unphased genotypes (i.e. 
dosages of individual SNPs), and estimate the most likely phasing for each individual, by 
exploiting information of the   allele frequency of each allele, or identify-by-descent 
information. With the use of this information the most probable phasing is selected. 
Often in case multiple phasings are equally likely, one of the likeliest solutions can be 
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selected. Despite efforts in polyploid phasing no reliable and scalable method has been 
developed that allow phasing over a large number of variants. Existing approaches such 
as Satlotyper (Neigenfind et al. 2008), polyHap (Su et al. 2008) and SHEsis (Shen et al.  
2016) only allow to phase a limited number of SNPs at high computational cost.  

In contrast, haplotype assembly makes use of SNP-alleles that are jointly present in a 
single sequencing fragment, to allow phase estimation based on physical linkage in 
sequencing data (Figure 3). With increasing ploidy levels the complexity of estimating 
haplotypes increases, limiting the application of these methods  in higher polyploids. 
Nonetheless, for polyploids several tools were introduced that allow to reconstruct 
haplotypes from short-read sequencing data (Anguir et al. 2013; Berger et al. 2014; Das 
et al. 2014; Xie et al. 2015). Based on a simulation study these approaches were found to 
have a high error rate, and often reconstruct chimeric haplotypes (Motazedi et al. 2016). 
In general these methods employ a reference-guided haplotype assembly and are 
performed within a single individual. In short, before haplotype assembly, sequencing 
fragments are aligned to the reference genome, after which genotyping is performed. 
Subsequently each alignment is interrogated for the presence of each SNP-allele, 
resulting in knowledge of physical linkage between SNPs (Figure 3). This information is 
exploited for the reconstruction of haplotypes. The advantage of sequencing-based 
haplotype reconstruction is the use of data of a single variety, avoiding the need for a 
large cohort of samples. 

 

Figure 3. Haplotype assembly A) First sequencing reads are aligned. In red genomic variants are depicted. B) Based 
on the physical linkage of SNP-alleles within these reads two haplotypes can be defined. In polyploids also the copy 
number (dosage) of the haplotypes need to be determined.   
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Towards a haplotype map of tetraploid potato 
In 2011 the potato genome was released, which was based on sequencing efforts in a 
doubled monoploid potato genotype (DM), where the final assembly comprised 722 Mb 
out of an estimated 831 Mb large genome (PGSC, 2011). As already mentioned above, 
the cultivated potato shows not only tremendous phenotypic diversity, but also has a 
highly heterozygous genome. Indeed, a single tetraploid variety has a SNP density of one 
variant in every 42 bp (Uitdewilligen et al. 2012), and exhibits extensive copy-number 
variations (Lovene et al. 2013, Hardigan et al. 2016). Despite targeted resequencing 
efforts to uncover allelic variation associated with agronomical traits (Schönhals et al. 
2016; Uitdewilligen et al. 2012; Schreiber et al. 2015), knowledge about the number of 
alleles per locus and haplotype diversity in the tetraploid potato gene pool is limited. 
Efforts to start building a haplotype map of potato were started with the study of 
Uitdewilligen et al. (2012), where 129,156 genomic variants were identified in 
approximately 800 genes. The aim of that study was to a discover SNP markers for use 
on a SNP array. In addition, the sequencing data in this study was generated to explore 
the construction of haplotypes from sequencing data in tetraploid potato. The developed 
SOL-STW 20K SNP array was subsequently used for genotyping of 537 potato cultivars 
(Vos et al. 2015).  

As potato has a highly heterozygous genome, we expect a high number of unique alleles 
in the potato gene pool. A single potato variety may contain an average of 3.1 unique 
alleles at any given locus, and because recombination leads to an exponential decay of 
linkage between alleles, a set of more frequent haplotypes (common), and an excess of 
low frequent (rare) haplotypes is observed. Based on the estimation of linkage 
disequilibrium between markers, and therefore linkage decay, potato should contain 
anywhere between 6-12 founder haplotypes (Vos et al. 2017). This suggests that the 
potato haplotype landscape is characterised by a mosaic of large haplotype blocks.  

Outline of the thesis 
In this thesis methods are described that allow  the identification of haplotypes in panel 
of ‘unrelated’ varieties of polyploid crops. These haplotypes were subsequently used to 
shed light on the question, if multiple alleles contribute to trait variation. In addition, a 
step is taken towards the construction of a haplotype map of potato. This thesis addresses 
the weaknesses and challenges of methods for obtaining haplotypes, and covers their 
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application in polyploid genetic studies. The developed haplotype reconstruction 
methods allow to routinely characterize haplotype diversity in tetraploid potato. 

In Chapter 2 the inheritance of potato tuber shape and eye depth was studied, using a 
genome-wide association mapping that allowed to define a region of 3.1 Mb on potato 
chromosome 10 where a  major effect QTL for overall tuber shape is located at similar 
genomic location as a major effect QTL for tuber eye depth. A recombinant screening 
for  tuber shape within a  diploid bi-parental mapping population (C×E), refined  this 
region to a cluster comprising 277 kb of sequence. In this chapter only single marker 
analysis were used,  limiting our ability to investigate haplotype structure for this region. 

In Chapter 3 a new method is described which reconstructs haplotypes  from sequencing 
data. For this we used exome sequencing data of ~800 genes in 83 tetraploid potato 
varieties. To build these haplotypes a stepwise approach was used, where first short-
range haplotypes are reconstructed, followed by a haplotype extension step that allows 
to compute longer haplotypes. The accuracy of this method was verified using simulated 
sequencing data. The reconstructed haplotypes allowed to determine haplotype diversity 
within potato.  

In Chapter 4 a new approach was introduced to reconstruct haplotypes from 
conventional SNP array data. This approach can be seen as complementary to the 
approach in chapter 3, as conventional sequencing data does not allow to estimate 
haplotypes over longer distances, due to limitations attributed to sequencing 
technologies. Here we perform long-range phase estimation by exploiting relations 
within a potato association panel. The method that is presented here consists of two 
steps: 1) Pairwise SNP phase estimation using the EM algorithm. 2) Constructing full-
length haplotypes SNP by SNP. The accuracy of this tool was validated with 
experimentally obtained haplotype information of two amplicons of the StGWD1 gene.  

In Chapter 5 the reconstructed haplotypes were used to explore haplotype-based 
association mapping. Haplotype-based regression was performed for four potato traits: 
plant maturity, flesh colour, tuber shape, and potato tuber uniformity. This led to the 
identification of not only SNP markers associated with these phenotypes, but also point 
towards which haplotype is responsible for differences in trait. From these results, a 
strong relation between the power of detecting a QTL and haplotype-specificity of a SNP 
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for a causative allele was observed. Using haplotype-based regression we could identify 
novel QTLs for plant maturity and flesh colour.  

In Chapter 6 a haplotype imputation method is presented that makes use of a haplotype 
library. This haplotype library is composed out of curated haplotypes, and imputation is 
aimed at identifying which unphased genotypes contain these haplotypes. This 
imputation method allows to improve the haplotypes obtained in both Chapter 3 and 
Chapter 4. 

In Chapter 7 the developed methods for haplotype reconstruction and imputation were 
applied to characterise the allelic diversity of the StCDF1 gene in a set of 83 cultivars? 

In the concluding Chapter 8 the results of previous chapters are evaluated and put into 
a broader scientific perspective. The implications of these results for genetic research of 
potato are discussed. 
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Abstract 
Tuber shape is an intriguing morphological trait, which displays continuous trait 
variation ranging from flat, round to oval and long. Initially a single locus model was 
proposed to explain tuber shape, where multiple alleles rather than multiple loci were 
proposed to explain quantitative variation (van Eck et al. 1994). Besides this major-effect 
QTL on chromosome 10 another minor effect QTL has been published on chromosome 
2, explaining 8% of the variance  (Prashar et al. 2014).  

To obtain a better overview on the loci contributing to variation in tuber shape a 
comprehensive genome wide association study (GWAS) was performed in a panel of 537 
commercial potato cultivars. This confirmed that the Ro locus is the major-effect QTL, 
but also the minor effect QTL on chromosome 2  was found. In addition, on 
chromosome 10, colocalization of the major effect QTL for tuber shape and a  major QTL 
for eye depth was observed. For the Ro locus, most significant associations were found 
to localize on superscaffold PGSC0003DMB000000385 on chromosome 10.  

To refine this region we performed a recombinant screening in a diploid population 
(C×E). Recombinant analysis resulted in the identification of 104 recombinants 
originating from the female meiosis and 27 recombinants from the male meiosis. 
Recombinant analysis with additional SNPs within the selected region allowed us to 
confine the Ro locus to a 280 kb region, located on superscaffold DMB546 (323kb). 
Within this region a cluster of cell wall III peroxidase genes is found. Based on the 
putative role of peroxidases, this gene family cluster of repeats is likely to be implicated 
in mediating differences in tuber shape. 

 

 

 

Keywords 
Solanum tuberosum, organ morphology, high resolution mapping, GWAS, haplotypes  
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Introduction 
Cultivated plant species often display tremendous morphological variation in organ 
shape due to domestication and selective breeding (Alonso-Blanco et al. 2009). Well-
studied examples of phenotypic plasticity are e.g. the variation in wheat grain size and 
shape (Gegas et al. 2010), tomato fruit shape (Monforte et al. 2014), or morphotype 
diversification in Brassica rapa and Brassica oleracea cultivar Groups (Cheng et al. 2016). 

Likewise, the tubers of potato (Solanum tuberosum L.) display intriguing phenotypic 
variability for morphological traits such as eye depth, tuber size and tuber shape (Van 
Eck 2007; Li et al. 2005; Prashar et al. 2014). It is often assumed that such morphological 
traits are controlled by multiple genetic factors, because trait variation shows a 
continuous quantitative distribution, in line with the  infinitesimal model of (Fisher, 
1918) postulating that trait variation is controlled by multiple minor-effect loci. 

In contrast, Sirks (1929) proposed a model  where phenotypic variation is explained by 
multiple alleles of a single major-effect locus. Evidence for multiple alleles with 
gradations of effects has been provided for e.g. pinewood density (Groover et al. 1994), 
frost tolerance in Eucalyptus (Byrne et al. 1997), and flowering time in Arabidopsis 
(Johanson et al. 2000). In potato short-day-dependent tuber formation and tuber shape 
are controlled by a single major-effect locus with multiple alleles (Kloosterman et al 2013; 
Van Eck et al. 1994).  

In this study we focus on potato tuber shape, which is a composite trait consisting of 
several aspects such as length/width ratio, curvature, eye depth, tapering and bulging 
(Van Eck 2007). In comparison to Latin American landraces, commercial varieties are 
highly uniform, only differing in tuber length/width ratio due to selection. This 
length/width ratio ranges from compressed (<1.0) to long (>2.0). From a market 
perspective the consumers prefer oval tubers, whereas processing industry prefers long 
tubers for the production of French fries, or round tubers for crisps. 

Genetic studies of potato tuber shape, initially hindered by continuous trait values in 
tetraploid material, advanced with the use of diploids. A monogenic Ro locus was 
proposed, where round is dominant over long (Masson, 1985; Jong and Burns, 1993). 
Subsequently, the Ro locus involved in tuber shape was mapped on potato chromosome 
10 in the diploid C×E population, with multiple alleles explaining more than 80% of the 
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genetic variance ( Van Eck et al. 1994). Since then, several studies confirmed this major-
effect QTL on chromosome 10 (Li et al. 2005; Śliwka et al. 2008; Prashar et al. 2014; 
Lindqvist-Kreuze et al. 2015), but additional minor-effect QTLs  have been reported as 
well. Śliwka et al. (2008) describe two minor-effect QTL on chromosome 2 and 
chromosome 11, explaining 8.0% and 5.6% of the phenotypic variance, respectively. Li 
et al. (2005) proposed a locus involved in eye depth (eyd locus) at 4 cM distance from the 
Ro locus. The association between eye depth and tuber shape on chromosome 10, and 
the  minor-effect QTL on chromosome 2, have also been described by Prashar et al. 
(2014). 

In this paper we analyse potato tuber shape, defined as length/width ratio from a genetic 
perspective. We use the recently published SOL-STW 20K Infinium SNP array (Vos et 
al. 2015) on a comprehensive association panel of tetraploid varieties.  In addition a high 
resolution map and marker saturation was obtained using the C×E bi-parental diploid 
mapping population. This paper presents the high resolution mapping of the Ro locus in 
the C × E mapping population along with a genome wide association study (GWAS) 
using commercial tetraploids, and pinpoints the Ro locus to a 280 kb cluster of 
peroxidase genes. The putative role of peroxidase genes in modulating tuber shape 
morphology is discussed. 

Materials and methods 

Genome wide association analysis of tuber shape 

For the purpose of this publication tuber shape is defined by the length/width ratio and 
all other aspects are ignored. Phenotypic data from a comprehensive panel of 537 
varieties (Table S1) were collected from 221 varieties and 190 advanced breeders clones 
grown on trial fields at different locations with clay and sandy soil in four-hill plots 
during the normal growing season in 2006 and 2008 (D’hoop et al. 2011). In addition, 
for 299 varieties multi-year, multi-location data were available from breeding programs 
(D'hoop et al. 2011).  In all cases the visual observations were recorded using an ordinal 
scale (1=long, 3=long/oval, 5=oval, 7=round/oval, 9=round) or converted to this scale. 
From these data sources the Best Linear Unbiased Estimators (BLUEs) for tuber shape 
were calculated using GenStat, release 8.11 (VSN International Ltd., Oxford, UK) and 
are shown in Table S1. BLUEs for Eye Depth were available for 190 out of the 221 
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varieties (D’hoop et al. 2011) following an ordinal scale from 4=very deep to 8=very 
shallow.   

A Genome Wide Association study (GWAS) was done with linear mixed models (LMM) 
using BLUEs for tuber shape as response variable and allele dosages per marker in a 
genotype as fixed effect. Thus, trait variation was modelled with a strict additive genetic 
model assuming a linear dose-response between phenotypes and allele dosage. In 
addition, a general model was fitted, testing for significant differences in the means of 
the trait values between genotype classes (dosages).   

Greater certainty about the putative presence of minor-effect QTL affecting tuber shape, 
beyond the major-effect Ro locus on chromosome 10, was obtained by co-factor analyses. 
Cofactors increased the statistical power for QTL detection and allow identification of  
marker-trait associations at positions elsewhere in the genome. For significant markers 
located in the Ro locus a cofactor analysis was done by including markers as additional 
fixed effect predictors to the LMM model. 

 In addition we employed a multi-locus stepwise regression to identify the minimum 
subset of markers explaining most phenotypic variation within the detected QTL region 
on chromosome 10. Initially all markers located within this region were used to calculate 
pairwise linkage disequilibrium (LD), after which from each set of highly correlated 
markers (r2 > 0.9), one representative marker was chosen. To select the best model we 
employed backwards selection where the least significant marker in the model was 
removed until all markers were significant (p < 0.05). 

Apart from naive association studies, we also included a correction for population 
structure. A kinship matrix (K) was calculated using ecological distance in GenStat (1-
|xi-xj|/r, unless xi=xj=0, where xi and xj are allele dosages and r is the range) on a subset 
of 710 markers selected on the basis of independence (Vos et al. 2016) 

All genome-wide association studies using Linear Mixed Models (LMM) were done 
using the ‘efficient mixed-model association’ EMMA (Kang et al. 2008) as implemented 
in the GWASpoly R package (Rosyara et al. 2016). All naive regression analyses were 
done using the LM procedure in R (R Development Core Team, 2008). The explained 
variance for each marker is calculated by using the squared correlation coefficient 
between marker and phenotype.  
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An experiment-wide type I error of 5% was obtained by a Bonferroni correction. With 
14,530 markers this Bonferroni significance threshold is p < 3.44e-06, which corresponds 
to a -10logP value of 5.46. In view of Linkage Disequilibrium (LD) patterns not all 
statistical tests are independent, leading to an overly conservative threshold (Johnson et 
al. 2010, Gao et al. 2010). Hence, we also employed a threshold of -10logP  value of 4 to 
allow detection of minor-effect QTLs. 

Haplotype structure at the Ro locus 

To investigate the haplotype structure around the Ro locus we calculated the Pearson’s 
r2 between SNP allele dosages at a conservative threshold of r2 > 0.2. These pairwise 
estimates were visualised in a 3 Mb window surrounding the Ro locus. Boundaries for 
haplotype blocks were manually placed and all markers were clustered using UPGMA. 

High resolution mapping of the Ro locus 

For the high resolution mapping experiment true seeds were sown from a cross between 
USW 5337-3 × 77-2102-37, hereafter referred to as C × E (Jacobs et al. 1995). At seedling 
stage the crumpled segregants due to the Cr-locus (Jongedijk et al. 1990) were removed. 
The remaining vigorous seedlings were planted out in boxes following a 12 x 8 grid. Leaf 
tissue was sampled in deep-well microtiter plates for a ‘quick and dirty’ DNA extraction 
using the NaOH-Tris method (Collard et al. 2007). Recombinants were selected from 
2500 seedlings grown in two batches of 1500 and 1000 seedlings each. The 173 
recombinant seedlings from the first batch and 29 recombinant seedlings from the 
second batch were transplanted to 1.1L pots and grown until senescence to harvest 
tubers. Meanwhile, new leaf tissue of recombinants was re-sampled for high quality DNA 
extraction using the KingFisher® genomic DNA purification kit (Thermo Scientific, 
Breda, The Netherlands) according to the manufacturer’s procedures. Tuber shape of 
each seedling was visually classified as compressed, round, and long. Furthermore, the 
length/width ratio (L/W) of three representative seedling tubers was recorded.  

PCR markers for recombinant analysis in C x E offspring are documented in Table S2. 
Intron spanning primers were selected with the Primer3+ program (Untergasser et al. 
2007) using exon sequences from the potato reference genome (PGSC, 2012) as template. 
PCR reactions started at 94oC for 3 minutes, followed by 40 cycles of 30 sec at  94oC, 30 
sec at 60oC and 1 min at 72 oC, and a final extension stage at 72oC for 5 min using high 
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fidelity Phire© DNA polymerase in the presence of LCGreen™. PCR products were 
analysed using the Lightscanner (Idaho Technology Inc., Salt Lake City, UT). followed 
by melting curve analysis (De Koeyer et al. 2009). All markers were tested on 20 progeny 
of C x E and two replicates of each parent.  

Ideally, markers were selected which display four melting curves to allow complete 
classification of the segregating alleles to identify recombination events both in the 
female and male meiosis. The general Mendelian model of segregating marker alleles in 
this BC1 population is ab × bc → ab : ac : bb : bc, where the melt curves of ab and bc 
offspring can be identified using the ab and bc parental samples. The curves with the 
highest melting temperature, due to the absence of SNPs, identifies the bb class. The 
remaining group of curves should thus be the ac class. In this way n offspring allows to 
scan 2n meiosis for recombination events (Figure S1). All seedlings were tested with 
markers LS_B466 and 495_499, designed at a safe distance flanking the most significant 
marker-trait associations located in superscaffold DMB385. The other markers (Table 
S2), developed to saturate this genetic interval, were genetically mapped using the 
recombinant offspring. 

Functional analysis of candidate region 

A physical region of 280 Kb comprising 13 candidate genes with a PGSC annotation was 
analysed. Dot plot analysis of the corresponding sequence from the DM reference 
genome was performed with Gepard (Krumsiek et al. 2007) to allow identification of 
repeat structures. Regions with potentially unannotated peroxidase genes were identified 
using BLASTn. For each hit a gene prediction was done using FGENESH (Solovyev et al. 
2006). Differential expression of candidate genes expressed as fragments per kilobase of 
exon model per million mapped reads (FPKM) in tuber and other tissues was studied 
using RNAseq data (Massa et al. 2011) and the Potato Genome Sequencing Consortium 
(2011) for DM1-3 516 R44 and RH89-039-16 (hereafter referred to as DM and RH).  

Results  

Distribution of tuber shape in varieties 

BLUEs for tuber shape trait values (Table S1) of a representative panel of 537 varieties 
(Vos et al. 2015) displayed a normal distribution (Figure S2). Within this set of varieties 
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extreme variation in overall shape is observed clearly displaying a normal distributed 
phenotype. Eye depth displayed a skewed distribution due to selection against deep eyes. 
The distribution observed among varieties will differ from the distribution in seedling 
generations, as values below a threshold will be regarded as unmarketable. A highly 
significant correlation (r = -0.57, N=190, p < 0.001) was observed between tuber shape 
and eye depth (Figure 1), where a long shape is associated with shallow eyes.  

Different market niches require varieties with a specific tuber shape, and earlier research 
has shown that market niche is strongly confounded with the genetic structure of the 
gene pool (D’hoop et al. 2008; 2010; 2014; Uitdewilligen et al. 2013; Vos et al. 2015, 
Rosyara et al. 2016). Therefore, the association between the structure groups ‘Starch, 
Agria and Rest’ (Vos et al. 2015) and tuber shape and eye depth was studied. Varieties 
used by starch industry are significantly more round (6.84 ± 0.14) than varieties from the 
other structure groups Agria (5.01 ± 0.18) and Rest (4.98 ± 0.08) (Table S3). Eye depth is 
also significantly confounded with structure groups, where starch varieties are hardly 
selected for eye depth and deep eyes are common (5.08 ± 0.16), processing varieties have 
shallow eyes (6.76 ± 0.074), whereas the rest group is more diverse (6.20 ± 0.067) (Table 
S4). 

 

Figure 1. In a panel of distantly related varieties a significant correlation is observed between tuber shape and eye 
depth 
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Genome Wide Association Study 

To identify QTL involved in tuber shape we applied GWAS to the phenotypic values 
(BLUEs) and 14,530 SNP genotypes (SolSTW SNP array; Vos et al. 2015). Initially a naive 
association model was fitted, ignoring the effects of population structure. This resulted 
in the identification of 346 SNPs which exceeded the Bonferroni corrected significance 
threshold (-10logP ≥  5.46). The corresponding Manhattan plot (Figure S4) suggests a 
single highly significant locus on chromosome 10  along with other significant 
associations scattered across the genome.  

After inspection of diagnostic Q-Q plots (Figure 3) severe P-value inflation was observed, 
indicating spurious associations for a large number of markers. To reduce the number 
of false-positive associations a population-structure corrected LMM association was 
performed (Figure 2A). This resulted in a strong decrease from 346 to eleven significant 
marker trait associations, confirming the aforementioned correlation between structure 
groups and tuber shape. Also the P-value inflation was no longer problematic as judged 
from the Q-Q plot (Figure 3). Therefore, population-structure corrected models for 
association mapping are used hereafter.  

 
Figure 2. Manhattan plots for tuber shape and eye depth. Manhattan plots of a (A) kinship corrected GWAS of 
tuber shape with 537 genotypes, (B) kinship corrected GWAS of eye depth in 537 genotypes. Dotted (red) horizontal 
line is at the Bonferroni multiple-testing threshold of –10log(p) of 5.46. The blue dotted line is at the threshold of –
10log(p)  4.0.  
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Figure 3. QQ-plots for association analysis.  

These eleven SNPs (Table 1), exceeding the Bonferroni significance threshold (-10logP 
≥  5.46), indicate a single major-effect QTL on chromosome 10, exactly at the position 
where the Ro locus was expected. When a less stringent threshold was used (-10logP ≥ 4) 
another nine SNPs were identified at the Ro locus, except for solcap_snp_c2_56344. This 
SNP is located at coordinate chr00:22129989, and tagged the unanchored 134 kb scaffold 
PGSC0003DMB000000773. On chromosome 2, just below the significance threshold, 
two SNP markers were identified, PotVar0123847 at 27.60Mb (-10logP =3.58) and 
solcap_snp_c1_11556 at 28.04Mb (-10logP = 3.99), suggesting a putative minor-effect 
QTL. The SNPs  solcap_snp_c1_5091 at 28.83Mb and solcap_snp_c2_51115 at 29.67Mb, 
reported by Prashar et al. (2014) were not associated at all with tuber shape in our 
material. 

When the outcome of the ‘general’ model was compared with the ‘additive’ model we 
did not identify other significant SNPs, although -10logP  values varied slightly between 
these models. The putative minor-effect QTL on chromosome 2 could not be identified 
with the general model.  
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Marker Chrom Position 

LMM: Shape 
additive (-
10logP  ) 

LMM: Eye 
depth 

additive (-
10logP  ) 

Explained 
variation 

tuber shape 
(r2) 

Explained 
variation 
Eye depth 

(r2) MAF 
PotVar0111687 10 48721966 18.71 13.83 0.26 0.29 0.29 
solcap_snp_c2_25471 10 48808404 15.81 11.36 0.25 0.29 0.28 
solcap_snp_c2_25485 10 48737840 13.34 9.91 0.25 0.26 0.28 
solcap_snp_c2_25522 10 48617457 13.02 10.37 0.21 0.25 0.29 
solcap_snp_c1_8019 10 48863165 12.81 10.74 0.21 0.27 0.27 
solcap_snp_c2_25526 10 48617149 11.34 8.90 0.20 0.23 0.28 
solcap_snp_c1_8020 10 48863048 9.63 3.72 0.17 0.13 0.24 
solcap_snp_c1_16351 10 48761642 8.23 2.94 0.16 0.12 0.24 
solcap_snp_c2_25532 10 48591792 7.40 3.98 0.14 0.11 0.24 
solcap_snp_c2_25549 10 48875383 6.73 7.06 0.11 0.21 0.04 
solcap_snp_c2_45611 10 48203431 5.76 3.67 0.13 0.10 0.24 
PotVar0132241 10 47156274 5.38 1.55 0.08 0.01 0.02 
solcap_snp_c1_8021 10 48862950 5.38 2.61 0.08 0.08 0.21 
solcap_snp_c1_8018 10 48863220 5.05 7.27 0.08 0.17 0.03 
solcap_snp_c2_25529 10 48593621 4.65 3.86 0.10 0.10 0.23 
solcap_snp_c2_56344 0 0 4.58 3.10 0.07 0.08 0.19 
PotVar0132243 10 47156328 4.49 0.97 0.08 0.01 0.02 
solcap_snp_c2_55861 10 46117955 4.11 3.18 0.10 0.13 0.25 
solcap_snp_c2_25527 10 48616993 4.03 2.62 0.08 0.09 0.23 
solcap_snp_c1_11535 10 49553136 4.01 2.14 0.07 0.07 0.20 
solcap_snp_c1_11556 2 28040094 3.98 1.77 0.01 0.01 0.08 

Table 1. Significance and explained variance (R2) of markers associated with tuber shape and eye depth (using LMM, 
additive model) 

To gain more insight in putative minor-effect QTL we used cofactor analyses (Kang et 
al. 2008; Segura et al. 2012), to correct for the major effect of the chromosome 10 locus 
on associations elsewhere in the genome.  For all significant markers on chromosome 10 
cofactor analysis were performed, and in line with expectations the previously observed 
minor-effect QTL on chromosome 2 showed an increased significant association , while 
simultaneously the significance of marker-trait associations at the Ro locus was 
diminished. 

Surprisingly, cofactor analysis using the chromosome 10 markers, did not cancel the 
effect of the chromosome 10 locus. Even using a cofactor on the most significant SNP 
(PotVar0111787) did not completely cancel out the effect of the Ro locus, but identified 
an additional marker-trait association with solcap_snp_c2_57634,  located 0.6 Mb distal 
of PotVar0111787,  with -10logP  of 4.9 (previously -10logP of 3.88), having allele 
frequency of 2% (Figure S5).  All other cofactor analyses only partially cancelled the 
chromosome 10 QTL, whereas other markers surrounding the Ro locus either show a 
decreased or increased p-value, suggesting the occurrence of allelic heterogeneity, or a 
causal haplotype that is only partially represented by all SNPs (or multiple SNPs).  

To investigate how much of the phenotypic variation was explained by SNPs located in 
the major QTL region, a multi-locus stepwise regression with backwards selection was 
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performed on markers located in the neighbourhood of the major QTL on chromosome 
10. A total of 168 markers were selected, and pairwise correlations between these markers 
were calculated. From each set of highly correlated markers (r2 > 0.9) one representative 
marker was selected, resulting in a total of 127 independent markers. Using this approach 
a total of 41% of the phenotypic variance was explained, by a total of 17 SNPs within the 
Ro locus. In addition we performed the multi-locus regression on the top 20 significant 
markers (-10logP > 4), resulting in 7 markers, explaining a total of 36.7% of the variation 
(Table S5). In addition, a weak putative minor QTL was identified on chromosome 4 (-
10logP 3.3), for which associations were found in the single SNP LMM, although only one 
SNP was identified with -10logP higher than 3.7.  

Based on these results we conclude that in this comprehensive variety panel a small 
number of SNPs show a highly significant association with tuber shape. These SNPs 
localize in a 2.4 Mb region delimited by PotVar0132241 and solcap_snp_c1_11535 at 
PGSC coordinates chr10:694962745 to 697359607, indicating the physical position of the 
major-effect Ro locus. In addition of this locus, a minor effect QTL was found in 
proximity of the QTL location reported by Prashar et al. (2014). 

Haplotype blocks at the Ro locus on chromosome 10.  

For each marker on chromosome 10 we calculated the Pearson’s r2 between SNP allele 
dosages. First, we explored the haplotype structure flanking the most significant marker 
on chromosome 10 (PotVar0111687). This revealed one haplotype block in which all 
observed marker trait associations are present. This block represents a physical distance 
of 2.3 Mb from PGSC0003DMB000000673 to PGSC0003DMB000000446 (Figure 4B, 
Figure 5) Subsequently we looked at pairwise distances of markers significantly 
associated with tuber shape, disentangling these 20 markers to  a total of 5 distinct 
haploblocks. 
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Figure 4. Haploblock structure of a 2.3 Mb region of chromosome 10  flanking the Ro locus. Linkage disequilibrium 
(LD) plot of markers located the chromosome 10 QTL. Manhattan plot of 168 markers suggesting that all significant 
markers are located in only one haploblock. 

 

Figure 5.  UPGMA plot of correlations between SNP markers significantly associated with tuber shape. 
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Integration of superscaffold DMB773 in the physical map comprising the Ro-
locus 

The most significant markers on chromosome 10 identified in  the association analyses 
are located on superscaffold DMB385, but this provides little information on the 
boundaries the physical and genetic interval comprising the Ro locus, as between each 
superscaffold in the potato genome a (artificial) gap is inserted. In our GWAS a marker-
trait association was observed on a unanchored scaffold DMB773 with marker 
solcap_snp_c2_56344 showing an association of  -10logP value of 4.58 using a kinship-
corrected GWAS. 

To explore the contiguity of the candidate region we compared the  candidate region 
spanning DMB385 to DMB4446 using ENSEMBLCOMPARA (Vilella et al. 2009). to the 
tomato synteny. These observations suggested that unanchored scaffold DMB773 might 
be linked with scaffold DMB385 and belong to the candidate region for the Ro locus 
(Figure S9). In an effort to investigate the gaps and connections between PGSC 
superscaffolds, we used gap-spanning BAC end sequences from the RHPOTKEY and 
DM BAC library (Xu et al. 2011)  = PGSC). A total of four BAC clones were found that 
connect DMB385 to DMB773, but none of these  BAC clones connect DMB773 to 
DMB546 (Table S6).  

In addition dot plot analysis suggests that repeat structures in and DMB385 and DMB773 
overlap (nonspecific lipid transfer proteins). Flanking nonspecific lipid transfer proteins 
(DMG31237 and DMG 31236) at the end of DMB385 display 99% similarity to NSLTPs 
(DMG11951 and DMG11952) at the start of scaffold DMB773. Likewise two peroxidase 
genes were found in DMB773, which have high similarity to the peroxidase cluster on 
DMB546 (Table S7).  

High resolution mapping and marker saturation  

To fine map the region containing the Ro locus, we developed markers LS_B446 and 
495_499, spanning an interval of 2.7 Mb on chromosome 10 which comprise the 
complete haplotype block observed above. These boundaries were chosen at ample 
distance from scaffold DMB385, where the most highly associated SNPs were identified, 
to ensure inclusion of the tuber shape locus. Genotypic data collected from 1472 



 Potato tuber shape 

35 
 

seedlings with the marker loci LS_B446 and 495_499 allowed us to identify 142 maternal 
and 31 paternal recombinants (5.9 cM averaged).  

Subsequently a fine mapping study was done in the CxE diploid population. Initially 
1070 seedlings were grown and we identified 142 maternal and 31 paternal 
recombinants. After three months of growing, late maturing recombinants did not have 
tubers, hence the final number of informative meiosis, including double recombinants, 
was 105 and 27 respectively in the female and male parent. Tuber formation on these 
replanted recombinant seedlings allowed an initial visual classification of round and long 
descendants.  

Another set of seven HRM markers  in the 2.7 Mb interval between LS_B446 and 
495_499 allowed to fine map the Ro locus and to count maternal and paternal 
recombination events in each interval as shown in Figure 3B. No recombination events 
were observed between tuber shape and markers Asp6678 and Per20801. Therefore the 
flanking markers PhoTr31222 and Amt241073 were used to screen the second batch of 
1000 seedlings to improve the genetic resolution in the remaining 1.1 Mb interval 
between PhoTr31222 and Amt241073. The second batch provided 19 maternal and 10 
paternal recombinants in 798 informative descendants. These additional recombinants 
allowed to map the Ro locus between markers Asp6678 and Per20801, which both reside 
on superscaffold DMB546. 

 
Figure 5. Overview of the region containing the Ro locus. A) Recombinants and B) Physical map of a 3 Mb region 
chr10:46970612-49818972 showing DMB scaffold numbers and positions of PCR markers for recombinant analysis. 
C) The majority of gene annotations found within the 280 kb region underlying the Ro locus belong to the large 
gene family of peroxidases. 

Phenotypic analysis of tuber shape in the CxE  
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Within the CxE progeny two different shape categories were found; round and 
elongated.  Visual assessment of harvested tubers allows classification of descendants 
into two groups, but compressed phenotypes (LW <1) can also be distinguished.  After 
senescence the 173 recombinant seedlings were phenotyped, however due to effects of 
maturity only 128 genotypes did tuberize. The fact that all of these genotypes co-
segregated with tuber shape allowed us to estimate the effects of different genotypic 
classes on tuber shape.  

 The batch of 128 co-segregating recombinant offspring segregated in 90 round and 36 
long descendants, fitting a 3:1 Mendelian ratio (Chi-square= 0.86; p =  0.35, p > 0.05) 
according to the model  Ro/ro × Ro/ro → Ro/∙ : ro/ro.  

These 128 recombinant seedlings were also classified according to the melt curves of 
HRM markers into four groups AB : AC : BB : BC which descend from a cross between 
AB × BC parents. The comparison between phenotypes scored by length/width ratio to 
visual assessment, misclassification is  possible between a length/with ratio of 1.2 and 1.5. 
The BB group with average L/W 1.08 coincides with offspring with long tubers. The 
compressed phenotypes typically belong to the AC group with average LW<1. Using the 

four genotypic classes  (Ro♀Ro♂ :Ro♀ro♂ :ro♀Ro♂ :ro♀ro♂) as identified from classification 
with HRM, a significant difference between the recessive long (ro/ro) and genotype 
classes having a dominant Ro allele (Ro/ro). An analysis of variance (ANOVA) indicated 
that Ro/Ro in general is distinguishable from categories with one Ro allele. Also no 
significant difference between the effects of both round alleles was found (Table 2).  

Genotype Mean  Tukey 

Ro♀Ro♂   0.85  a 

ro♀Ro♂ 0.94  ab 

Ro♀ro♂   1.08  b 

ro♀ro♂   1.69  c 

Table 2. Phenotypes per genotypic class based on batch CE2013-aprwith 128 recombinant seedlings 

The recombination landscape of the genomic region near tuber shape  

In the first batch of 1500  seedlings 105 maternal recombinants were observed between 
flanking markers. The physical distance corresponds to a region of 2.7 Mb, which relates 
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to a genetic distance of 10 cM. Relating this to the physical distance, on average  one 
recombination event occurred every 25 kb. Less recombinants were identified in the male 
parent, where in this 2.7 Mb large region only 27 recombinants were identified, 
corresponding to a genetic distance of 2.5 cM. However in the 280 kb large region 
between markers Asp6678 and Per20801 no recombination events were observed. 
Recombinant analysis in the second batch was performed on a smaller interval of 1.1 Mb, 
resulting in distance of 2 cM in the female parent, and 1.3 cM in the male parent. The 
region of 280 kb corresponds to a genetic distance of 0.62 cM in the female parent and 
0.12 cM in the male parent in the second batch. However in the first batch cosegregation 
was found for this region, resulting in an average genetic distance of  0.267 cM and 0.054 
cM in respectively female and male parent. All information about fine mapping can be 
found in Table S8.  

Candidate genes underlying the Ro locus 

DNA sequence analysis of the candidate region of the tuber shape locus in DM identified  
two repeat clusters within scaffold DMB546, consisting out of number of cell wall type 
III peroxidases (Figure 5), three genes with unknown function (DMG35649, DMG20797, 
DMG45482), a non-specific lipid protein (DMG40954),  a polyprotein (DMG39458), 
and an aspartate aminotransferase (DMG6678). 

Gene expression data from Massa et al. (2011) and the Potato Genome Sequencing 
Consortium (2011) was checked for expression of these candidate genes in DM 
(elongated tubers) and RH (oval tubers).  Based on this analysis the prediction of 
DMG35649, DMG45482 and DMG39458 is not supported by expression. A domain-
search on polyprotein DMG39458 suggests that this gene is in fact an incorrectly 
annotated transposon.  

Inspection of the dot-plot self-alignment of the DMB546 scaffold showed additional 
tandem arrays of unannotated sequences with homology to annotated peroxidase genes 
(Figure 5C). For these unannotated sequences a gene prediction was made using 
FGENESH (Salamov et al. 2000). Alignment of these new predictions with existing 
peroxidase genes from scaffold DMB546 supported the prediction of additional 
peroxidase genes. Information of genes and location of unannotated genes can be found 
in SI table 2,3.  
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Discussion 
Tuber shape is an important morphological trait for potato breeders, relevant for 
utilization further down the product chain, but also intriguing from a fundamental 
perspective. We used an comprehensive association study in a large variety panel, 
coupled with fine mapping in a bi-parental population to narrow down the region in 
which the major QTL for tuber shape on chromosome 10 is found (van Eck et al. 1994). 
Despite all efforts no plausible minor QTLs were identified in our variety panel. The high 
resolution mapping significantly narrowed the genetic of the Ro locus to approx. 0.5 cM 
anchored within a 280kb region within DMB546 enriched for peroxidase genes.  

The major QTL on chromosome 10 observed in our association panel is certainly at the 
same position as reported by Van Eck et al. (1994), Li et al. (2005), Prashar et al. (2014), 
Lindqvist-Kreuze et al. (2015). Using the most significant markers as cofactors does 
nullify the effect of the chromosome 10 QTL, but allows the detection of a minor QTL 
on chromosome 2. Intriguingly all marker trait associations in this regions are ‘old’ 
variation, introduced in the oldest variety (Yam), indicating that most functional 
variation for tuber shape is already present long time in the potato germplasm and is not 
due to recently introgressed haplotypes. The presence of minor alleles  leads to an 
increase in roundness of the tuber shape.   

Recently an association study was published by Rosyara et al. (2016) in 187 varieties, 
resulting in an association for tuber shape for the same chromosomal location at SNP 
solcap_c1_8019 using the solCAP diversity panel (Felcher et al. 2012), whereas tuber 
shape had a broad-sense heritability of 0.94. No additional minor QTLs were detected 
for shape, which might be explained by the small panel size (N=187) of this GWAS. 

In addition the putative minor effect QTL involved in tuber shape on chromosome 2 at 
28.04Mb maps at only 0.79 Mb distance from the QTL involved in tuber shape as 
identified by Prashar et al. (2014) and possibly Sliwka et al (2008). The most significant 
SNPs  (solcap_snp_c1_5091 at 28.83Mb and solcap_snp_c2_51115 at 29.67Mb) as 
reported by Prashar et al. (2014) were not associated with tuber shape in our material, 
although based on co-localization, it is very likely that this QTL is the same position as 
previously reported. Prashar et al. 2014 speculates that introgressed late blight resistance 
originating from S. demissum, the elongating long allele on the chromosome two minor 
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QTL might originate from S. demissum. Nevertheless, the most significant marker 
within the  chromosome 2  (solcap_snp_c1_11556) QTL does have a moderate MAF of 
0.08, and in our panel this SNP is present in both old heirloom, as modern varieties (i.e. 
old variation) (Vos et al. 2016).  

Relation with Eye Depth 

We report the correlation between eye depth and tuber shape, both co-localizing on 
chromosome 10. Previously this correlation was observed before in mapping populations 
(Li et al. 2005; Prashar et al. 2014), and could be interpreted as the result of two closely 
linked genes or due to a pleiotropic effect of a single locus (van Eck 2007).   

Haplotype structure; cryptic variation 

Following on the association mapping we looked at the Linkage Disequilibrium (LD) 
patterns within this region. Using all markers from a 3.1 Mb region flanking the most 
significant QTL we observe a single haplotype block in which all significant markers trait 
associations were found, spanning a region of ~2.3 Mb. This large haploblock is not 
unexpected, as is postulated by Vos et al. (2016) that average LD is extensive in potato, 
where D1/2 ranges from 600 Kb to 2.5 Mb in respectively old and recent varieties, 
suggesting that long haplotype blocks should be the norm in potato. In addition we 
observed that the significant marker-trait associations for eye depth are also present 
within this single large haploblock, suggesting the co-localization of both the Eyd (Li et 
al. 2005), and Ro locus within this region of 3.1 Mb.  

To further understand patterns of variation among this haploblock we investigated the 
haplotype structure within the most significant markers, disentangling these 20 
significant markers (Table 1) into 5 distinct haploblocks based on pairwise correlation 
between markers. Cofactor analyses suggest that within this haploblock we see cryptic 
variation in the form of multiple alleles at a locus. Nevertheless, a high correlation 
between SNPs could be due to other factors than presence of SNP alleles within the same 
haplotype. At this moment we cannot disentangle bi-allelic SNP information in their 
constituent alleles, limiting our understanding of the haplotype structure at this locus.  
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GWAS in potato 

In this study we used Linear mixed models  (LMM) with correction for population 
structure, as in previous papers, extensive population structure was acknowledged 
(D’hoop et al. 2010; Hirsch et al. 2013; Malosetti et al. 2007; Rosyara et al. 2016) (Vos et 
al. 2017). Using simple linear regression models resulted in strong P-value inflation, 
whereas using population-structure corrected using a kinship (K) corrected LMM 
effectively reduced confounding (see  Figure 3) (Kang et al. 2008). Our analyses reaffirm 
the need for population structure correction to avoid an excess of false positive 
associations. This is also supported by Rosyara et al. (2016) where different Q 
(subpopulations) + K (kinship) model was used for structure-corrected GWAS. In their 
analysis the Q+K approach leads to the best structure correction, although the 
differences in performance between the Q+K model and the K -model are marginally. 
Strikingly the QTL on chromosome 2 is not observed using the ‘general’ model as used 
in GWASpoly (data not shown), but is observed using an additive model of trait 
variation. Previously Rosary et al. (2016) demonstrated severe loss of statistical power 
due to the loss of degrees of freedom, using the ‘general’ model, explaining the lack of 
power for QTL detection.  

Missing Heritability – explained variation in phenotypes 

Despite the occurrence of highly significant associations in the chromosome 10 region 
the highest explained variation for a single marker is 26%. Using a multi-locus stepwise 
regression with backwards selection we could explain up to 41% of the phenotypic 
variation including all significant markers within the chromosome 10 QTL region.  
Using the same approach with the top 20 significant markers we could only explain 36% 
of the variation in phenotype. In contrast, the broad-sense heritability (H2) is estimated 
to be 0.8 (D’hoop et al. 2014), suggesting that a considerable part of the genetic variance 
is not explained in this study. A part of this so-called missing heritability might be 
explained by allelic heterogeneity (i.e. multiple alleles with similar or distinct phenotypic 
effects), which given the observation of different causal alleles for tuber shape is an likely 
explanation.   

Indeed, the investigation of  linkage disequilibrium  (LD) patterns among between pairs 
of significant markers, identified five groups of highly correlated markers occur within 
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this region. At the moment we cannot conclude this, as phenotypic variation is explained 
not only by the alleles at this locus, but also similar alleles might have different effects 
depending on genetic background, potentially obscuring a marker-trait association.  

Fine mapping of the major QTL on chromosome 10 

In the potato germplasm the decay of linkage disequilibrium on average spans 5 cM 
(D’hoop et al. 2008, Vos et al. 2016), limiting the maximum resolution an  association 
study can achieve. In our study we identified the most significant associations with tuber 
shape in a large haploblock of 2.3 Mb, where markers at the end of scaffold DMB385 
showed association to tuber shape, but later fine mapping refined the locus to a region 
~300 kb downstream (or south), but still within this haploblock. Within the 2.19 Mb 
region downstream of DMB385 only 13 additional markers were found, from which 
none in the 280 kb large candidate region on DMB546, suggesting an unfavourable 
marker density in this region. 

Fine mapping allowed further mapping of the Ro locus to a region of 280 Kb, enriched 
for a cluster of cell wall III peroxidases. Initially within a region of 3.1 Mb a total number 
of 105 (female) and 27 (male) recombinants were identified, suggesting a unfavourable 
ratio of physical distance to genetic distance. In the second batch a total of six 
recombinants were found between marker Asp6678 and Per20801, although this 280 Kb 
region only spans a genetic distance of at most 0.62 cM in the female and  0.12 cM in the 
male parent. This limited genetic distance implies that a large population should be 
screened to find more informative recombinants to refine this interval further.  

Candidate genes underlying the major QTL for tuber shape. 

Within the candidate region of 280 Kb amongst 14 functional genes, a total of eight 
annotated peroxidase genes were located. Expression of other genes residing in this 
candidate region show that all other genes are not expressed, except one unknown 
protein (PGSCDMG20797). Repeat analysis identified three more peroxidase genes. 
Putative function of the peroxidase genes suggest that this peroxidase cluster is most 
likely to be involved in regulating tuber shape. Previously the involvement of peroxidases 
in organ size or shape was reported (Francoz et al. 2014, Passardi et al. 2005). In 
Arabidopsis peroxidases were found to influence root elongation (Passardi et al. 2006, 
Pedreira et al. 2011). Peroxidases are also found to be involved in shape variation within 
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the Brassicaceae genus, where enormous differences in organ morphology are explained 
by copy number variation in peroxidase genes in the pan-genome (Lin et al. 2014). The 
peroxidase cluster within this region is most likely to be candidate for modulating potato 
tuber shape, although none of the other genes can definitively be excluded. Subsequent 
studies using positional cloning and functional complementation are required to 
confirm the causative gene underlying this major effect QTL.  

Multiple alleles 

The association mapping suggests that continuous variation in potato tuber shape is 
almost exclusively regulated by the Ro locus, located in a region of 280 Kb on 
chromosome 10 for which multiple alleles were identified. Hence potato tuber shape is 
determined by multiple combinations of different causal alleles. Intuitively a continuous 
phenotype would imply a polygenic inheritance according to the infinitesimal model of 
Fisher (1918). However already in 1929 Sirks proposed that a single gene model with 
multiple alleles, each having a different effect, could explain quantitative trait variation. 
It might be argued that this strict Mendelian view of trait variation is an simplification, 
as trait variation cannot be seen independent from  genetic background and 
environment, however the fact that tuber shape has a high heritability of 0.8-0.95 
(D’hoop et al. 2008, 2011) suggests that the contribution of environmental factors is 
limited.  

In our GWAS analysis we demonstrated the occurrence of cryptic variation at the Ro 
locus, suggesting the occurrence of multiple alleles for tuber shape, which was supported 
by Van Eck et al. (1994) and reaffirmed in this study. As potato varieties are characterized 
by a high heterozygosity, where many variants do have a low allele frequency 
(Uitdewilligen et al. 2013). Binary SNP markers will not capture all the allelic diversity 
occurring in the potato genepool (i.e. can only distinguish two alleles), and might be 
present on two or more alleles with similar or opposite effects (i.e. allelic heterogeneity) 
(Bergelson et al. 2009), leading to a reduced statistical power in association mapping 
(Schaid, 2004).  

In addition to this, it is expected that when gene action is matched by the marker model 
the power of detection of QTLS is increased, which was demonstrated recently by 
Rosyara et al. (2016) using a simulation study. However identifying accurate gene action 



 Potato tuber shape 

43 
 

models will be problematic for traits were multiple alleles contribute to trait variation, 
and  when multiple QTLs with multiple alleles jointly explain phenotypic variation, 
limiting the use of these marker models in GWAS. For example, considering the alleles 
in the C × E experimental population we could postulate that tuber shape should have a 
dominant gene action (round over long). In contrast considering only round alleles, 
subtle additive effects can be found as two Ro alleles lead to compressed potato tubers.  

Intriguingly, not only tuber shape displays the occurrence of multiple causal alleles 
contributing to trait variation. Previous research into other well-studied potato traits, 
like plant maturity and starch metabolism has identified multiple causative alleles at 
QTLs. Like tuber shape, differences in plant maturity are explained by allelic variation at 
a single locus, StCDF1 (Kloosterman et al. 2013). Starch accumulation and metabolism 
has been found to be influenced by many genes, although only 15 QTLs were identified. 
Subsequent investigation of the identified QTLs revealed multiple causal alleles 
(Schreiber et al. 2014). Other examples are the GBSS I  locus, determining the amount of 
amylose, where multiple causal alleles were identified (Van de Wal et al. 2001). Moreover 
starch phosphorylation in potato tubers is mediated by four genes (GWD, SBEI SBEII, 
SSIII), for which multiple alleles were identified (Uitdewilligen et al. 2013; Carpenter et 
al. 2015). Thus, trait variation might also be attributed to the occurrence of combinations 
of multiple causal alleles at a QTL position. 

At the moment we do not know how many alleles for the Ro locus can be identified  in 
the gene pool, nor their effects. Likewise we cannot estimate the effect of allelic 
heterogeneity, as we do not know the haplotype structure underlying these SNP markers. 
In the future the use of haplotype-specific markers (or combinations of these markers) 
will allow us to identify more adequately the underlying genetic architecture of tuber 
shape as well as improve the detection of functional alleles and their effect. 
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Additional files 
Table S1: Phenotypic data of 537 varieties for potato tuber shape and eye depth 

Table S2: PCR markers for recombinant analysis 

Table S3: Tuber shape is significantly confounded with structure group  

Table S4: Eye depth is significantly confounded with structure group  

Table S5: backward elimination – multi-locus regression 

Table S6: GAP-spanning BAC clones 

Table S7: Genes (predominantly peroxidases) annotated in DMB546 

Table S8: Results of fine mapping using recombinant screening.  

Figure S1: High resolution melting analysis of marker Per20801 allows full genetic 
classification of C x E offspring in four Mendelian classes. 

Figure  S2:  Distribution of tuber shape. Best Linear Unbiased Estimators (BLUEs) for 
tuber shape in a panel of 537 tetraploid potato varieties and advanced breeding clones, 
recorded on an ordinal scale (1=long, 3=long/oval, 5=oval, 7=round/oval, 9=round), 
display a normal distribution. 

Figure S3: Distribution of eye depth. Best Linear Unbiased Estimators (BLUEs) for eye 
depth in a panel of 190 tetraploid potato varieties, recorded on an ordinal scale (4=very 
deep, 5= deep, 6=intermediate, 7=shallow, 8=very shallow), display a skewed 
distribution, as deep eyes are unmarketable. 

Figure S4: Manhattan plot naive GWAS of tuber shape and eye depth 

Figure S5: Co-factor corrected Manhattan plots of markers associated with tuber shape
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Abstract 
Background: Identifying large numbers of bi-allelic SNPs can nowadays be achieved 
easily, but disentangling these into haplotypes is challenging as no linkage information 
between multiple SNPs is retained. To estimate these haplotypes, we developed a 
haplotype inference algorithm for polyploids. Our approach reconstructs haplotypes 
using un-phased genotype calls from GBS data or SNP arrays. Existing software for 
polyploid haplotyping, such as ShesisPlus, SATlotyper, and PolyHap, lack the ability to 
process the large amounts of SNPs present in highly heterozygous polyploid crops such 
as potato. The major improvement of our approach relies on a novel approach for joining 
short haplotype segments (estimated with the EM algorithm), allowing to scale haplotype 
inference to larger SNP numbers.  

Results: Our results show that this approach is able to reconstruct high-quality 
haplotypes with a low number of phasing errors. Application of our approach to a dataset 
of un-phased SNPs derived from amplicon sequences demonstrated that most alleles 
could be reconstructed with high accuracy. In addition, we apply our algorithm on 
genotypic data from the potato 15K SNP array. 

Conclusion: We present a scalable approach that accurately reconstructs haplotypes in 
polyploid crops. The resulting haplotypes are instrumental for analysing the haplotype 
composition of the potato gene pool, and haplotype based QTL discovery.  

Key words: 
Haplotype inference, polyploid, SNP, potato, haplotypes, allele diversity 
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Introduction 
Genotyping platforms such as SNP arrays provide an efficient and accurate way to 
interrogate bi-allelic SNPs. In diploids it is sufficient to distinguish between homozygous 
or heterozygous genotype calls. In polyploids, SNP arrays should also assess allele dosage 
with high accuracy. Nowadays, high-density SNP arrays are available for genotyping of 
allele dosage in heterozygous polyploids such as potato, rose and chrysanthemum (Vos 
et al. 2015; Vukosavljev et al. 2016; Van Geest et al. 2017), and allows to characterize 
genetic variation in either bi-parental populations or association panels. These large 
datasets require the development of new tools able to handle the high marker numbers 
in polyploid genetic analysis such as linkage mapping (Hackett et al. 2008, Bourke et al. 
2017), GWAS (Rosyara et al. 2016), and to facilitate the detection of marker-trait 
associations polyploid crops.  

One of the limitations of genotyping data is the lack of information about linkage phase 
between SNP-alleles present across the many homologous chromosomes in polyploids, 
hereafter referred to as haplotypes or alleles. Whereas bi-allelic SNP arrays discriminate 
between two alleles at a single locus, haplotypes offer greater resolution to study the 
genetics in polyploids. For example, haplotypes instead of single SNP markers were used 
to detect marker-trait associations (Schaid et al. 2004, Buntjer et al. 2005). Another 
application would be the use of haplotypes in marker-assisted breeding in polyploid 
crops, which likely will improve the reliability of the marker-trait prediction. 

Haplotype reconstruction in polyploids 
So far a small number of successful studies have demonstrated the utility of haplotype 
information in polyploid crops, such as potato (Chapter 3, Bourke et al. 2017) and 
chrysanthemum (Geest et al. 2017), but also in diploid crops like maize (Huang et al. 
2015). In most outbreeding polyploid crops, the determination of haplotypes is 
challenging, because haploids or homozygous inbred lines cannot be obtained easily. In 
general two approaches are used for haplotype reconstruction. Firstly, haplotype 
reconstruction can be performed by using physical linkage of variants jointly present in 
a single sequencing read (Aguiar et al. 2013, Berger et al. 2014, Motazedi et al. 2017), 
which will result in accurate haplotypes, but haplotype length is limited by sequencing 
characteristics such as insert size and read length (Chapter 3). Secondly, statistical 
methods can infer haplotype composition by exploiting SNP genotyping information 
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from a panel of unrelated varieties or from segregating bi-parental populations. These 
methods generally require moderate to large panels, but allow the phasing of SNPs into 
haplotypes over much longer distances.   

From genotyping data to haplotype 
The first challenge in polyploids, related to haplotype construction, is to achieve highly 
accurate SNP genotype  calls, where fluorescent signal intensities from the SNP array are 
converted into an allele dosage. In diploids genotype calling is easy, because only three 
genotypic classes are expected (0 (AA), 1 (AB), 2 (BB), allowing to discriminate the 
heterozygous class from homozygous classes. In contrast, genotype calling in tetraploids 
needs to discriminate between nulliplex (AAAA), simplex (AAAB), duplex (AABB), 
triplex (ABBB) and quadruplex (BBBB). With higher ploidy levels, or with null-alleles 
even more genotype classes can be expected.  Several R-packages have been developed 
for genotype calling using SNP array data in polyploid organisms, such as fitTetra and 
ClusterCall (Voorrips et al. 2011, Carley et al. 2017). When sequencing reads are used 
for genotype calling, other software such as Freebayes, QualitySNP or GATK can be used 
(Garrison & Marth 2012; Tang et al. 2006; McKenna et al. 2010).  

Genotype calls obtained from sequencing data are error-prone, unless the read depth is 
adequately high. Previously it was determined that a read depth of 48× is necessary to 
obtain genotype calls with an accuracy of 95% (Uitdewilligen et al. 2013, Bastien et al. 
2018), where at the moment most sequencing datasets fall short on this requirement. 
However in experimental data, read depth might vary between samples, resulting in 
varying error percentages for SNPs or between samples, suggesting that the accuracy of 
calls determined from sequencing data is substantially lower than the error rate of 
conventional SNP-array calls.  

Progress in diploids 
In diploids, many approaches have been published for haplotype inference using un-
phased genotypes. One of the first approaches was introduced by Clark (1990), where 
the most parsimonious set of haplotypes consistent with the genotype data is estimated. 
Later, statistical approaches have been developed, assuming random mating, by using a 
probabilistic model to compute the likelihood of assignment of haplotypes to a genotype 
via the use of an Expectation Maximization algorithm (EM) or a Gibbs sampler 
algorithm (GS). Subsequent development of HMM-based models in Phase (Scheet and 
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Stephens 2001), FastPhase (Browning and Browning, 2007), Shapeit (Delaneau et al. 
(2008), and their widespread adaptation, suggest that HMM-based models are the most 
accurate to infer haplotypes. A likely reason why these HMM-based haplotype inference 
models are successful compared to regular haplotype inference models, is potentially due 
to better handling of erronous or the use of improved models for modelling haplotype 
diversity (Browning and Browning 2011). Nevertheless, others have questioned the 
added value of these methods due to similar performance of both likelihood based and 
HMM-based methods (Stephens and Donnely, 2003).  

Polyploid haplotype inference 
Haplotype phase inference in polyploids has been largely neglected by the research 
community. Zheng et al. (2016) describe a method suitable for tetraploid phase 
estimation in bi-parental populations, where an HMM-approach is used to first estimate 
parental homologs, and subsequently a probability is assigned whether this homolog is 
present in any given progeny (Zheng et al. 2016). In a F1 population phasing is less 
complex, as only a maximum of eight unique homologs is expected, and hence only 36 
genotypes (bivalent model) or 100 genotypes with the inclusion of double reduction.  

In contrast, a panel with distantly related varieties might comprise a higher haplotype 
diversity, depending on the gene pool and composition of the panel. In the previous 
decade a few approaches for haplotype inference have been developed, but all lack the 
ability to phase larger numbers of markers into one haplotype. SATlotyper allows to 
reconstruct haplotypes by extending the Boolean satisfiability problem (SAT) approach 
to polyploids in order to solve the haplotype inference problem by minimizing the 
number of haplotypes explaining all SNPs (Neigenfind et al. 2008). Another package 
‘PolyHap’ applies an HMM-approach to infer ancestral clusters for each haplotype, and 
subsequently assign an ancestral allele to each individual (Su et al. 2008). A more recent 
contribution is ShesisPlus, which uses a partition-ligation EM- algorithm to compute 
haplotypes in polyploids (Shen et al. 2015).  

Aim of this study 
We aim to improve the methodology for haplotype estimation, and use much larger 
numbers of SNPs to reconstruct haplotypes. Such haplotypes may span a large (e.g. gene 
sized) interval in species with a high nucleotide diversity. To achieve this, we developed 
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a heuristic algorithm that constructs longer haplotypes using a divide-and-conquer 
strategy. This strategy joins short haplotype segments that are estimated using a naïve 
EM-based haplotype inference. We performed a validation study using a set of 
haplotypes for the StGWD1 gene as obtained with Sanger sequencing. In addition, we 
performed haplotype inference in a panel of 537 potato genotypes to explore the 
haplotype composition in intervals with high marker density. Our results show that the 
potato genome is characterized by few common and many rare alleles. 

Material and methods 
Genotype datasets 
Data grouped into SNP dense intervals: A set of 537 tetraploid varieties was genotyped 
using the 15K SNP array (Vos et al. 2015). Details on the composition of the variety panel 
can be found in D’hoop et al. (2008) and details on the SNPs in Vos et al. (2015). The 
array includes dispersedly located SNPs from the SolCAP array (Hamilton et al. 2011), 
along with densely clustered ‘PotVar’ SNPs, which were obtained after a targeted 
resequencing of 807 genes (Uitdewilligen et al. 2013). Due to the physically uneven 
distribution of SNPs we could define SNP dense intervals. To delineate these intervals a 
distance cut-off between adjacent SNPs was used. A new interval is defined when the 
next SNP is at >10 kb distant from the previous SNP. For all intervals the SNP calling 
data was used as input to reconstruct haplotypes. 

Validation data: Sanger sequences of two amplicons of approximately 0.6 kb were 
available from the StGWD1 gene across a variety panel of 430 clones (Uitdewilligen et al. 
2013). The resulting dosage calls (file S1) of 78 sequence polymorphisms were used as 
input data for haplotype reconstruction with our algorithm. For multi-allelic SNPs all 
alternative alleles were grouped. From these 78 SNPs three show complete linkage 
disequilibrium. Manual reconstructions (Uitdewilligen et al, 2013) resulted in 16 
haplotypes with allele frequencies ranging from 31.8 to 0.1%, whereas here haplotypes 
A1, A2, A3, A4 are grouped into one haplotype (A), resulting in 12 haplotypes. Across the 
430 potato varieties, four haplotypes per variety were assigned (file S2). The haplotypes 
shown in file S2 can be seen as ground-truth haplotypes and were used to benchmark the 
performance of our algorithm.  
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Problem formulation & implementation  

Description of the algorithm 
Our two step approach (Figure 1) consists of (1) linkage phase estimation between all 
SNP pairs using the EM algorithm described by Excoffier and Slatkin (1994), and (2) 
stitching these pairwise phasings into full-length haplotypes with a new iterative 
algorithm. The method can phase genotype calls either from SNP arrays as well as from 
sequencing. Genotype calls from sequencing will only reach the required data quality 
when polyploids are sequenced at great read depths.  

Problem formulation 
The genotype of a bi-allelic SNP, with alleles 0 and 1, indicating the reference and 
alternative allele, is described by the dosage of the alternative allele. In tetraploids the 
SNP dosage is defined as the sum of the alternative alleles (0, 1, 2, 3 and 4), and is referred 
to as nulliplex, simplex, duplex, triplex and quadruplex, respectively. With a set of n bi-
allelic SNPs the total possible haplotypes is 2n haplotypes. At ploidy level k every 
individual may carry between 1 up to k possible haplotypes out of 2n, ignoring null-
alleles.  

The aim of haplotype inference is to find the set of 1 up to k haplotypes that best explains 
the individual SNP dosages within each individual. Phasing of a SNP in a haplotype is 
unambiguous if the SNP is homozygous (dosage = 0 or k), or when this SNP is the only 
heterozygous locus. Between two or more heterozygous SNPs, the inference of the 
linkage phase requires estimation. In polyploids ‘linkage phase’ needs to be specified 
across multiple haplotypes. Coupling phase refers to linkage between SNP alleles 
belonging to one haplotype, and implies multiple repulsion phase linkages with the SNP 
alleles at other haplotypes. In this paper we avoid coupling and repulsion, but use the 
term ‘linkage phase’ to indicate one connection between two SNP alleles in one 
haplotype, being a 00, 01, 10 or 11 connection.  
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Figure 1. Schematic overview of the haplotype inference method, which uses as input for phasing genotype calls 
from either re-sequencing data or genotype calls from SNP arrays. 

 

Method description 

Pairwise phasing 
When assuming random mating, the Hardy-Weinberg equilibrium (HWE) can be 
expected. At HWE the probability of observing a genotype is equivalent to the product 
of underlying haplotype frequencies (Excoffier and Slatkin, 1995). Hence, an estimation 
of the haplotype frequencies would allow computing the probability of observing a 
particular haplotype combination in a certain individual. The problem of estimating 
haplotype frequencies, and determining the linkage phase of the SNPs in each individual 
can be solved by applying the EM-algorithm, as was shown in diploids (Excoffier and 
Slatkin, 1995), and generalized to polyploids by Shen et et al. (2016). Here, the EM 
algorithm as proposed by Shen et al. (2016) was used to compute the pairwise linkage 
phases between all SNP pairs. In our dataset missing data were imputed by assigning an 
equal probability to any marker dosage. When sequencing data are used, our 
implementation of the EM-algorithm does allow to use not only discrete genotype calls, 
but also genotype likelihoods. 
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Each run of the EM algorithm on a randomly drawn subset (e.g. 50%) of the individuals 
returns different haplotype estimates, because of different haplotype frequency 
estimates. Usually ten runs of the EM algorithm on subsets of individuals is sufficient to 
distinguish between pairwise linkage phases that are robust to subsampling. Only those 
linkage phases that were observed in the majority of sampling runs  are used as input for 
the joining step.  

Joining step 
Although, the EM-algorithm allows to compute linkage phases for more than two SNPs, 
the downside of this algorithm is, that computation time scales exponentially with the 
number of SNPs included in a haplotype. Although this can be sped up with using 
approximations of the EM-algorithm (Shen et al. 2016), in practice haplotype 
reconstruction with a moderate number of  SNPs (e.g. 10 - 20 SNPs) requires enormous 
computational resources. To circumvent this, we employ a stepwise strategy, which uses 
the robust pairwise linkage phases to determine the haplotype composition in one 
individual.  

Consider a set of three SNPs in a tetraploid individual, then 23 = 8 putative haplotypes 
are possible, resulting in a total of 330 possible combinations of haplotypes, whereas only 
four haplotypes can be expected to be true. These four haplotypes are inferred by joining 
the EM derived linkage phase information of three pairs of SNPs as shown in Figure 2. 
Often there is not one solution when joining two SNP pairs, but the triangle of three SNP 
pairs will always deliver a unique solution. Erroneous haplotype solutions do not result 
from this joining step, but from an erroneous linkage phase estimate in one of the 
underlying SNP pairs. 

Figure 2 assumes three linkage phase estimates (00, 01 10, 11), (00, 10 01, 11) and (00, 
00, 11, 11) between SNP pairs 1-2, 2-3 and 1-3. The unique solution (000, 010, 101, 111) 
is not yet obtained by extending linkage phase information of SNP pair 1-2 with 2-3, but 
only after the information of pair 1-3 is integrated (Figure 2C). Also, the linkage phases 
between SNP2 and SNP3 are congruent with the solution. In principle one unique 
solution is expected (e.g. all linkage phases are in agreement with the set of four 
haplotypes), but when linkage phases result in equal support for multiple solutions, then 
one solution is reported that has minimum mismatches.  
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Figure 2. Joining of linkage phases into full-length haplotypes A) Three duplex SNPs are visualized as nodes, whereas edges represent 

the EM estimated linkage phases between these SNPs. B) In the first step a single arbitrary linkage phase is selected (in this case SNP 
pair 1-2). C) This haplotype of 2 SNPs is extended with a single SNP. To select the best solution the number of mismatches is 

calculated of all linkage phases of this SNP (2-3, 1-3). The solution with minimum mismatch is reported.  

Implementation  
To reconstruct full-length haplotypes we first select a random seed-SNP from an interval. 
In each subsequent step the haplotype solution is extended with one randomly chosen 
SNP. Each addition results in up to 4! = 24 possible linkage phases between alleles (or 
haplotypes) between the previous SNP (or haplotype) and the newly added SNP. A 
mismatch is a contradiction between a linkage phase estimate and a reconstructed 
haplotype. Mismatches may arise due to errors in genotype calling and/or EM estimation 
of linkage phases and result in building of incorrect haplotypes. Minimisation of 
mismatches is a step allowing the selection of the best solution out of the possible linkage 
phases. 

By adding a single SNP in each extension step, we minimize the computational 
complexity caused by the large number of solutions in long haplotypes. More precisely, 
this stepwise method evaluates 24n solutions for haplotypes of n SNPs, where otherwise 
(2n+3)!/4!(2n-1)! solutions are to be considered, assuming tetraploidy.  

Because the joining algorithm is input-order dependent, we might obtain slightly 
different haplotypes after each run. When the algorithm is run multiple times (e.g. 100 
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times, but proportional to the number of SNPs), we assume that the most frequently 
observed haplotyping solution is the most likely haplotype configuration given all 
pairwise EM phase-estimates. To quantify the likelihood of this best solution, we 
calculate the ratio between the frequency of the best and the 2nd best solution. This 
‘Phase-ratio’ allows to discard potentially unreliable haplotype before downstream 
analyses. We recommend to discard solutions with Phase-ratio less than 5. 

Evaluation of haplotyping solutions 
To compare inferred haplotypes with ground-truth haplotypes several measures are 
available to assess the performance of our software. These measures assess different 
aspects of the quality of the haplotype construction and cannot be directly compared.  

− Reconstruction Rate: Measures the proportion of haplotypes that are correctly 

estimated (Motazedi et al. 2017).  

− Switch Error: Measures the proportion of heterozygous SNPs whose phase is 

wrongly inferred relative to the previous heterozygous site (Neigenfind et al, 2008). 

In contrast to Reconstruction Rate the Switch Error is not inflated, but scales 

proportional with increasing haplotype length. 

Availability of software 
The procedure is available, implemented in a set of Python scripts, whereas both pairwise 
phasing (EM) as subsequent joining procedure are used to reconstruct haplotypes. As 
input a matrix with marker scores on rows (0-k ploidy), and columns corresponding to 
varieties. The scripts can be found on the Gitlab repository located at: 
https://git.wageningenur.nl/wille094/Happy-haplotype-inference/tags/0.8.2.  

Results 
Haplotype reconstruction in StGWD1 and algorithm validation 
We developed an approach for haplotype inference which first estimates two-locus SNP 
linkage phases using population data. Subsequently, these linkage phase estimates are 
used to join SNP alleles into full-length haplotypes within an individual. For validation, 
dosage calls of 78 sequence polymorphisms (file S1) from two PCR amplicons of 
approximately 600 bp length were used. Our software detected a total of 24 haplotypes 
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across 380 varieties, of which eight were found more than five times in the whole dataset. 
The complete results are shown in file S3. When comparing our inferred haplotypes with 
the 12 ground-truth haplotypes (Uitdewilligen et al. 2013) ten haplotypes were correctly 
reconstructed, and correctly assigned to the varieties, and with the correct allele dosage. 
These included six haplotypes (A, B, C, D, E, F) with an allele frequency above 5%, as 
well as four out of six haplotypes with an allele frequency below 5% (G, H, J, K). Only 
haplotypes I (0.2%) and  L (0.1%) were not reconstructed. Our software reconstructed 
eight erroneous haplotypes with allele counts of  1-4, (e.g. MAF of  0.1% to 0.25%) often 
chimeric due to incorrect linkage phase estimates.  

The accuracy of the haplotypes as judged by the reconstruction rate was 98%, resulting 
in only 56 cases with haplotypes that were erroneous, but these errors were distributed 
among 14 varieties. A more stringent setting of the threshold of the Phase-ratio 
parameter, from 2-5, resulted in an increase of accuracy, and at Phase-ratio of 5 resulted 
in a near perfect reconstruction rate (0.998). The disadvantage of a more stringent Phase-
ratio of 5 is that approximately 10% of varieties are not inferred. The calculated switch 
error, indicative of chimeric haplotypes, was 0.45%, and is predominantly contributed 
due to chimaeras and not due to dosage errors. The reconstruction of haplotypes from 
these 78 SNPs in 438 varieties took only 5 minutes on a conventional desktop computer, 
suggesting that we can proceed with our genome wide high-density SNP datasets.  

Haplotype reconstruction in tetraploid potato 
From the above-presented validation of our haplotype inference approach, we conclude 
that the inference approach is sufficiently reliable and can be used to detect haplotypes. 
Subsequently we applied this method on SNP data originating from a potato variety 
panel. Before phasing, the 14389 SNP markers were divided into 3217 intervals with high 
marker density and spaced <10kb. From the total of 3217 intervals, 1738 containing a 
single isolated SNP, and did not require haplotype reconstruction (File S4). The average 
number of SNPs within the remaining 1479 intervals is 8.4, ranging from 2 to 63 SNPs. 
The average length of an interval is 3217 bp, ranging from 1 to 29978 bp.  Within the 
1479 intervals, we estimated the phasings of SNP pairs and performed haplotype 
inference by using these pairwise phasings as input.  

Subsequently, for each interval we calculated the haplotype diversity in number of alleles 
and allele frequency of each allele. As expected from the exponential frequency spectrum 
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of the SNPs, our haplotype reconstructions resulted in a similar distribution of haplotype 
frequencies. Most loci have a moderate number of common haplotypes (MAF ≥ 0.05) 
and larger number of rare haplotypes. The average number of common haplotypes is 3.6 
per locus, ranging from 1 to 8 (Figure 3C). The cumulative allele frequency of common 
haplotypes is usually high, and only starts to drop for intervals with large numbers of 
SNPs (File S4). On average across all loci the common haplotypes cumulatively explain 
92% of the allele diversity.   
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Figure 3. Correlation analysis between haplotype length and haplotype diversity. A) Correlation between number 
of SNPs and number of haplotypes. B) Correlation between physical distance (bp) and number of haplotypes. C) 
Haplotype diversity, as measured by the number of alleles related to interval size D) Number of common haplotypes 
correlated to interval length.  

 

Figure 4. Genome-wide distribution of haplotype blocks. A) Genome-wide density of intervals used for haplotyping 
B) Frequency of the most common haplotype. C) Number of haplotypes per interval D) Proportion of (common) 
haplotypes with MAF > 0.05. E) Number of SNPs within an interval.   

In total 20492 haplotypes were constructed across 1478 loci with on average 13.9 
haplotypes per locus. The number of reconstructed haplotypes per locus correlated with 
the length of the interval (R2 = 0.2035), as well as with the number of SNPs per interval 
(R2 = 0.7451). The distribution of the number of haplotypes per locus is far from uniform. 
One tail of the distribution shows that 20% of all loci have no more three haplotypes, but 
this merely reflects the low average density of 2.09 SNP in those intervals. The other 20% 
tail of the distribution shows that these 295 loci have at least 8 up to 63 SNPs per interval 
(on average 18.6 SNPs) resulting in at least 24 up to 86 haplotypes (on average 36.0 
haplotypes per interval), which merely reflects that besides true haplotypes also 
erroneous haplotypes accumulate both with interval size and number of SNPs (Figure 
3C). In the absence of ground-truth haplotype information we cannot know the upper 
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limit, but the potato gene pool is both diverse and has accumulated mutational load. 
Therefore it is our impression that e.g. 24 haplotypes per locus is far from exceptional. 
Haplotypes with very low frequencies are not necessarily erroneous. Given the large 
number of wild potato species, used for introgression breeding for disease resistance, 
many haplotypes with an allele frequency below 1% can be expected. Among these low 
frequent haplotypes we expect new haplotypes due to introgression breeding and 
recombination events. 

After a description of the number of haplotypes per locus and their allele frequencies, we 
studied the distribution of haplotype diversity across the genome. Figure 4 shows that 
pericentromeric regions are less diverse in the number of SNPs or haplotypes per interval 
than the gene rich distal regions. Furthermore, based on our input data from the SNP 
array, most intervals are located in gene rich regions for obvious reasons. Therefore we 
cannot conclude that genetic diversity is higher in gene rich regions. As visualized in 
Figure 4 haplotype diversity varies per locus and location across the genome. 

PVY-resistance allele 
To provide a more in-depth case study of the applicability of the haplotype inference 
method we tried to reproduce earlier work on a specific haplotype on chromosome 11, 
introgressed from the wild potato species S. stoloniferum (CPC 2093), conferring 
resistance to two PVY strains, PVYO and PVYNTN (Van Eck et al. 2017). This 
introgression segment is present in a few varieties only. Phasing should identify a 
haplotype in the same varieties containing the introgression segment. In the previous 
study, this introgression segment was characterized using seven haplotype-specific SNPs 
(hs-SNPs), which were shared only between EOS, Y 66-13-636, and Festien, in a panel of 
83 potato varieties. Subsequently genotypic information of these SNPs, in the panel of 
537 potato varieties showed that 16 varieties should contain this introgression segment. 
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Y 66-13-
636 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 
Y 66-13-
636 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Y 66-13-
636 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 
Y 66-13-
636 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

Figure 5. Haplotype composition of Y 66-13-636. The grey boxes indicate seven SNPs specific for the haplotype 
conferring PVY resistance. Allele one is the most rare allele. 

We employed the haplotype inference method on all 27 SNPs spanning a 0.53 Mb 
interval flanked by PotVar0063974 to PotVar0064578 on chromosome 11 (Figure 5) and 
obtained the haplotype composition of all 537 varieties. For genotype Y 66-13-636 we 
reconstructed four different haplotypes. All seven haplotype-specific SNPs were linked 
to one haplotype, which also comprise the common SNP PotVar0064473, which is 
present in multiple haplotypes (Figure 5). For all other 19 SNPs present in the potato 
gene pool the reference allele was observed in the allele conferring resistance. We also 
studied the haplotypes in a pedigree structure with variety Cupido (resistant) and its 
parents W 72-22-496 (resistant) and Estima (susceptible). Figure 6 shows that the 
inferred haplotypes of Cupido are fully concordant with its parental varieties. To 
summarize, we could identify one haplotype for PVY resistance, among 36 inferred 
haplotypes, from an interval with 27 SNPs. All SNPs that specify this haplotype are 
identical by descent and trace back to the donor of the resistance, clone Y 66-13-636, 
except the SNP PotVar0064473. This common SNP has high allele frequency (47%) and 
was first observed in Pink Fir Apple (1850) and its polymorphism represents homoplasy 
caused by random nucleotide substitutions accumulating over time across potato 
species.  
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Cupido 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 R 

Cupido 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 S 

Cupido 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 S 

Cupido 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 S 

                                                                       

Estima 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 S 

Estima 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 S 

Estima 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 S 

Estima 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 S 

                                                                       

W 72-22-496 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 R 

W 72-22-496 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 S 

W 72-22-496 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 S 

W 72-22-496 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S 

Figure 6. Validation of inferred haplotypes with variety Cupido (resistant) descending from W 72-22-496 (resistant 
mother) and Estima (susceptible father). The ‘S’ refers to susceptible alleles, and the ‘R’ referes to resistance alleles. 

Discussion 
We developed an approach to reconstruct haplotypes from un-phased SNP genotyping 
data from polyploids. In this study, we present a scalable approach which allows 
estimating haplotypes in intervals containing a large number of SNPs. Existing software, 
such as ShesisPlus (Shen et al. 2016), SATlotyper (Neigenfind et al. 2008) and polyHap 
(Su et al. 2008)., allow to compute haplotypes up to 10-20 SNP length, but require 
substantial computational resources to reconstruct longer haplotypes. A recent 
publication by Shen et al. (2016) estimated that both SATlotyper and polyHap require a 
unfeasible computation time to compute haplotypes for larger SNP numbers, and 
proposed the PL-EM algorithm for polyploids. Their approach implements a EM 
algorithm for haplotype inference, but uses a partition-ligation strategy to incrementally 
build larger haplotypes, avoiding the need to consider all possible haplotypes at a locus.  
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Here we explore the use of a stepwise approach, that uses partial phase information as 
estimated by the EM algorithm to reconstruct longer haplotypes. The first step computes 
all pairwise phasings that are possible for a set of SNPs. Increasing this number would 
result in n-1 additional pairwise phasings to be computed, where n is the total number 
of markers in a segment. Subsequently, we use these pairwise phasings as input, and 
construct the full-length haplotypes SNP by SNP. This allows the scaling of our approach 
up to arbitrary SNP numbers.  

Correct estimation of haplotypes depends on two factors: Firstly, the correct assignment 
of the allele dosage during genotype calling, and secondly the correct estimation of the 
linkage phase by applying the EM-algorithm. Although the error percentage for a single 
SNP is low for SNP array data, we clearly need to consider this. For instance, considering 
a segment of 20 SNPs, and a high genotyping accuracy of 0.99 for each SNP locus, we 
will observe that only 0.9920  = 81% of the varieties have completely accurate genotype 
calls. Hence, phasing errors will be inevitable. Likewise, phasing errors can occur due to 
ambivalence in assigning haplotype frequencies. The combination of dosage errors and 
phasing errors will greatly influence the ability to accurately reconstruct haplotypes.  

To improve our haplotype reconstruction and to avoid errors, we repeat our haplotype 
reconstruction method multiple times. As each iteration chooses a different order in 
adding SNPs, this will result in slightly different haplotype reconstructions. After 
multiple iterations, the confidence of a certain haplotype reconstructions can be assessed 
and the solution can be discarded if a user-defined threshold is not reached. This was 
illustrated with the StGWD1 amplicons, consisting of 78 SNPs. Without filtering 
approximately 98% of the reconstructed haplotypes are correctly estimated. With 
filtering, we could increase this to 100%, however in that case, approximately 10% of the 
genotypes were not inferred. The accuracy and missing call rate depends on the choice 
of the user-defined thresholds.   

As any of the reconstructed haplotypes can contain a switch or base flips, validation of 
haplotypes is important. One approach to further validate haplotypes is the use of 
pedigree related samples (Figure 6), where identity-by-descent (IBD) allows to filter or 
to correct erroneous haplotypes. Filtering on frequency allows to reduce the number of 
phasing errors, as phasing errors are likely to occur randomly, resulting in low frequent 
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haplotypes, as exemplified by the reconstruction of alleles within the StGWD1 
amplicons, where erronous haplotypes have a low allele frequency.  Likewise true 
haplotypes which occur at low frequency often escape detection, and cannot be 
differentiated from erroneous haplotypes.  

Haplotypes in potato 
Earlier studies in diploid organisms have shown that haplotype-based association studies 
have improved statistical power for QTL detection (Bakker et al. 2005, Schaid et al. 2008), 
or facilitate better design of haplotype-specific markers for use in marker-assisted 
breeding (MAB) (Buntjer et al. 2008).  

In potato, it has been shown that haplotype blocks (as defined by historical 
recombination events) are large (> 0.5Mb < 2.5 Mb)in comparison with other plant or 
animal species, where LD is decayed after < 100 kb (Vos et al, 2017). One of the 
explanations for having such a long-range decay of LD is the limited number of (meiotic) 
recombination events that potato underwent since domestication. Based on LD decay 
estimates, of a simulated potato variety panel, it was previously suggested that a limited 
number of founder haplotypes (6-12) should suffice to generate the allelic diversity as 
present currently in the potato genepool (Vos et al. 2017). Here we reconstructed 
haplotypes across small intervals (< 30 kb), showing that a large number of haplotypes 
are reconstructed. Within these intervals, commonly, a restricted set of haplotypes with 
MAF > 0.05 cumulatively explains most of the haplotype diversity (92%), indicative of 
presence of only few haplotypes.  

We used our haplotype reconstruction approach on 1478 intervals with 2-63 SNPs. Based 
on our reconstructions, we observe that the distribution of allele frequencies follows an 
exponential distribution. While this is to be expected in a random mating population, 
this is less likely within a population that arguably represents selected material. Genome-
wide distribution of haplotype diversity shows that this estimate varies per locus and 
location (Figure 4). 

In this study we reconstructed haplotypes which can be used to improve genetic studies 
in tetraploid diversity panels. So far many studies have only used single SNP markers to 
perform association mapping (Vos et al. 2015, Chapter 5, Rosyara et al. 2016). Each of 
these studies would benefit from the additional information that is present within the 
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haplotypes, primarily because of knowledge about haplotype-specificity of individual 
SNP markers.  

Application of haplotype inference often lacks resolution to discover haplotypes that 
have low frequency (e.g. novel recombinants, introgressions), and differentiate between 
these and erroneous phasing results. Here we reconstructed haplotypes with 27 SNPs 
near the Ny(o,n)sto locus conferring resistance to Potato Virus Y. We identified a haplotype 
with frequency of 0.5% that is absent in susceptible varieties, but indicative of resistant 
varieties. By using pedigree relations within our variety panel we could demonstrate 
correct haplotype reconstruction. This indicates that the use of pedigree relations allows 
to verify the presence and correct reconstruction of rare alleles.  

Further development of haplotype inference methodology is required.  
Despite our focus on tetraploid potato we developed a method that can be applied 
irrespective of the ploidy level. Genotypic data of other species with a different ploidy 
level can be used as well as input for our algorithm. Opposed to SATlotyper and Polyhap, 
of which application allows to reconstruct haplotypes only for limited SNP numbers, our 
new algorithm can reconstruct haplotypes over arbitrary length. So far we only used a 
genotyping dataset of 14K markers, and were able to  processed intervals containing up 
to 78 SNPs. A downside of our algorithm is that it is highly dependent on the quality of 
underlying dosage calls. This limits the application to dosage calls originating from next-
generation sequencing data with inadequate read depth or allele bias.  

To make this algorithm suitable for the use of error-prone genotyping data such as 
sequencing-based dosage calls, an improvement could be achieved by modelling 
ambivalence in dosage assignment in the  joining step. Last but not least, in many diploid 
studies, it is suggested that the use of IBD relations greatly improves haplotype accuracy 
(Garg et al. 2016; Motazedi et al. 2017). This will provide information about the 
inheritance or expected segregation patterns of alleles. For instance, haplotype 
reconstruction accuracy could be improved by only allowing haplotype solutions that are 
in agreement with the pedigree structure. This likely would result in greater power to 
determine the correctness of low-frequent alleles. In our case, we likely could implement 
this by penalizing haplotype solutions that are not in agreement to genetic relationships 
present within the whole panel.  
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Concluding remarks 
So far a scalable approach for polyploid haplotype inference was not available, limiting 
application of haplotypes in polyploid genetic studies. This study demonstrates that 
accurate haplotype inference can be achieved by using un-phased genotype information 
from polyploid species. Our approach uses a simple EM-based estimation step to 
estimate linkage phases, coupled with a stepwise joining algorithm that allows 
computing haplotypes of arbitrary lengths, in a stepwise at SNP by SNP. Our results 
indicate that haplotype inference is useful to obtain more information about the 
haplotype composition of regions for which only SNP data is available. In potato we 
observe few common alleles, explaining a large proportion of the allele diveristy, and 
many rare alleles. To distinguish between phasing errors and correctly estimated low-
frequent rare alleles pedigree data can be used. Previously it has been suggested that for 
application of marker-assisted selection in potato breeding markers should be haplotype-
specificity. The application of this tool will therefore provide a valuable contribution for 
successful application of maker-assisted selection in potato.  
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Abstract 
A potato diversity panel composed of 537 tetraploid potato varieties was analysed for 
significant allele-phenotype associations using inferred haplotypes. So far genetic 
analysis in tetraploid potato has been performed using single-marker association 
analysis, because the underlying haplotype structure was unknown. Here we use 
haplotype information in autotetraploid potato to revisit previously observed QTLs for 
four representative traits. 

The detected QTLs not only confirmed the outcomes of earlier studies (i.e. for plant 
maturity, flesh color and tuber shape), but also led to the identification of novel putative 
QTLs for plant maturity and flesh color.  Based on the haplotype structure at these QTLs 
we link phenotypic variation to specific alleles of known candidate genes. In addition, on 
the basis of our results, we propose that knowledge of allele composition, and haplotype-
specificity of single SNPs is crucial to QTL discovery and to correctly understand and 
interpret association analysis. The advantages and disadvantages of haplotype-based 
genetic analysis are discussed, and we suggest to combine both analyses in order to 
successfully identify alleles involved in agronomical traits, as a prerequisite for successful 
implementation of marker assisted breeding in a polyploid species.  
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Introduction 
Genome-wide association studies (GWAS) have been performed successfully in potato, 
identifying loci involved in monogenic traits such as plant maturity (Kloosterman et al. 
2013), tuber shape (Chapter 2, Sharma et al. 2018), yellow flesh color (Vos et al. 2017; 
Rosyara et al. 2016) and disease resistances such PVY resistance (Van Eck et al. 2017). 
Likewise, also for more complex polygenic traits such as glycoalkaloid content (Vos et al. 
2017) and other agronomical traits multiple QTLs were discovered (D‘hoop et al. 2014; 
Rosyara et al. 2016; Malosetti et al. 2007; Urbany et al. 2011). Each of these association 
mapping experiments used a variety panel of varieties, and identified significant marker-
trait associations. These markers can subsequently be applied in marker-assisted 
selection to accelerate breeding progress. However, the application and interpretation of 
these marker-trait associations are challenging as often the underlying haplotype 
structure is unknown. The individual SNP marker allele(s) may be specific for one 
haplotype (e.g. a so-called haplotype-specific SNP (hs-SNP)), or could be present across 
multiple haplotypes, which collectively might result in a series of multiple alleles. In 
Figure 1 a scenario is visualised where individual SNP markers are present in multiple 
alleles, with as consequence, diminishing the predictive value of these SNPs for presence 
of a specific allele. Each of these alleles can have its own contribution to the trait value 
(Uitdewilligen  et al. 2012). Some examples of these allelic series were previously 
observed in potato (van Eck et al. 1994; Uitdewilligen et al. 2012; Schreiber et al. 2013), 
suggesting that all haplotypes at a locus should be considered jointly during association 
mapping. In other crops, examples are found for presence of allelic series such as in the 
diploid apple (Di Guardo et al. 2017) and hexaploid chrysanthemum (van Geest et al. 
2017). 

In an association mapping study, several factors influence the statistical power to detect  
QTLs. Firstly, genetic variation at different loci could lead to similar phenotypes (genetic 
heterogeneity), and secondly, distinct alleles at the same locus could lead to similar 
phenotypes (Bergelson and Roux, 2013). This so-called allelic heterogeneity will likely 
influence the power to detect QTLs, with individual SNP markers, because the 
underlying multiple alleles, are not modelled during QTL detection. Thirdly the power 
of QTL detection is for the most part determined by the genetic architecture of the trait 
(Ingvarsson & Street,  2011). Some traits are largely monogenic, and controlled by major 
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effect QTLs, allowing rapid detection of QTLs, whereas others are controlled by a large 
number of minor effect QTL, requiring large genotype panels to achieve enough 
statistical power for QTL discovery.  

As crops often display extensive population structure, the interpretability of association 
studies, is hindered by false positive associations, due to correlation of a trait with 
population structure, and to counteract this a correction for population structure is 
required (Kang et al. 2008, Malloseti et al. 2005).  

 

Figure 1. Haplotypes have more discriminatory power to detect alleles than individual SNPs. A) H1 is the causal 
allele. In this case the QTL (star) is not genotyped, but SNP1-4 are. B) Discriminative power of individual SNPs for 
haplotypes. Only SNP1 and SNP4 are haplotype-specific. To discriminate between the causal H1 allele and other 
non-functional alleles a combination of SNPs is needed.  

Reconstructing haplotypes 

The successful application of haplotypes for QTL discovery in polyploids depends on 
having accurate haplotype information. Conventional genotyping platforms provide 
genotypic information of individual SNPs, but do not allow to obtain linkage between 
SNP-alleles. So far most studies in potato that apply allele-phenotype association 
methods have focused on allele identification from PCR amplicons (Simko et al. 2004; 
Schreiber et al. 2013; Uitdewilligen et  al. 2012), which subsequently are used to detect 
significant marker trait associations. However, in a previous study we introduced an 
approach for haplotype inference for polyploids which allows to compute haplotypes for 
multiple adjacent bi-allelic SNP markers (Chapter 3). This approach relies on an 
Expectation-Maximization (EM)-based approach for determining the linkage phase 
between alleles of adjacent SNPs, considering the haplotype frequency within all 
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varieties, followed by a SNP-by-SNP extension of each haplotype within a single variety. 
This haplotype inference method is sensitive to genotyping error. Dosage errors will 
result in one or multiple erroneous phased haplotypes. With increasing haplotype length 
or SNP numbers, the probability of a genotyping error increases, as well as the amount 
of erroneous haplotypes.  Therefore it is expected that haplotype-based GWAS is affected 
by the uncertainty of haplotype reconstruction (Stram and Seshan, 2012).  

This study 

In this paper we explore the comparison of a GWAS with single SNPs and a GWAS using 
haplotypes as substitute for these single markers, to test if haplotypes provide greater 
discriminatory power to detect QTLs. Knowledge of haplotype-specificity of each SNP 
within a haplotype allows us to investigate the question if haplotype-specificity is 
important for adequate marker-trait association within this genotype panel. For all 
markers within a QTL region we can subsequently determine the suitability of  these 
markers to tag the underlying alleles. We subsequently discuss the insights gained and 
propose a balanced use of haplotype-based analysis in combination with single marker 
GWAS to improve genetic analysis in polyploids. Here we show that identification of  
haplotype-specificity of SNP-alleles will be instrumental for the application of marker-
assisted selection.  

Methods 

Genotypic and haplotype datasets 

A panel of 537 potato varieties was genotyped using with the SOL-STW Infinium SNP 
array (Vos et al. 2015). In short, genotyping was performed using fitTetra (Voorrips and 
Maliepaard, 2008), using raw signal intensities as input. These genotype calls were used 
to obtain a total of 15K informative SNP markers. We reconstructed haplotypes with the 
approach described Chapter 3.  Haplotypes were reconstructed over a sliding window 
comprising 10 SNPs. Each of these segments of 10 SNPs is considered a separate 
haplotype block and was used in association mapping.  

We used largely monogenic traits such as flesh color, tuber shape and plant maturity 
(daylight-dependent tuberization) as model traits to validate our approach. In addition 
we evaluated  potato tuber uniformity as an example of a polygenic trait. Phenotypes 



Chapter 5 

104 
 

were scored as described in ‘d Hoop et al. (2008, 2014), over multiple years and locations, 
and for each trait, the best linear unbiased estimates (BLUEs) were estimated. Uniformity 
was estimated by sorting tubers on sizes, and measuring average sizes in classes 0-30, 30-
40, 40-50, 50-60, 60-70 and 70+ mm. The mean tuber size of each class was multiplied 
by the number of tubers present in each class, and all values were summed, resulting in 
a single value for uniformity. These values are divided by the total number of tubers per 
variety.  

Association mapping 

Single marker GWAS was performed with GWASpoly (Rosyara et al. 2016), with 
correction for population structure. For haplotype-based association we modified 
GWASpoly to allow the inclusion of haplotypes as predictor variables. Hence we 
modelled quantitative trait variation by considering the contributions of each of the 
possible haplotypes present at a locus. At any locus the contributions of the ith allele can 
be represented by a dummy variable Xi, where i E (1, 2 … k). If Xi = 0 then the haplotype 
is not present in an individual, if Xi is larger than 1, this implies that the allele is present 
with a dosage more . The model that was used can be described as: 

𝑦𝑦𝑖𝑖𝑖𝑖 =  𝜇𝜇 + 𝑋𝑋𝑖𝑖 + 𝐾𝐾 +  𝜀𝜀𝑖𝑖𝑖𝑖     (𝑖𝑖 = 1 … 𝑘𝑘 ; 𝑗𝑗 = 1. .𝑛𝑛) 

Where yj is the phenotype value of an individual, 𝜇𝜇 is the overall mean, K represents 
population structure determined by the kinship matrix, and 𝜀𝜀𝑖𝑖𝑖𝑖 is the residual error term 
(genotypic association). We subsequently used a general F-test to test if any of the 
haplotypes have an effect significantly different from zero. To estimate which haplotype 
has an influence on trait variation, the regression model was performed by using a single 
haplotype in the regression model (allelic association). To determine how much of the 
phenotypic variation is explained, we also calculated the squared correlation of each SNP 
or haplotype to each phenotype. 

Haplotype-based association mapping 

We conducted GWAS analyses using the panel of 537 genotypes for all traits with both 
a naïve GWAS analysis, and GWAS with correction for population structure. We 
explored if haplotype-based GWAS does identify more QTLs than single SNP GWAS. 
For each trait this results in three association mapping models that were performed in a 
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single haplotype block of 10 SNPs (Table 2). Firstly, regression analysis of  15K single 
SNP markers. Secondly multiple regression of all haplotypes at 15K loci. Thirdly allelic 
regression of a single haplotype on phenotypes for all haplotypes present at all 15K 
haplotype blocks.  

Description Hypothesis Statistical tests per 
block 

Single marker regression H0: no effect 
H1: effect 

10 

Multiple haplotype regression H0: no effect 
H1: one or more haplotypes 
has significant effect 

1 

Allelic regression H0: no effect 
H1: haplotype has effect 

 # haplotypes 

Table 1. Three models for association mapping were used and evaluated 

We defined a putative QTL if any of the above specified analysis results in a clear QTL 
peak with multiple markers/haplotypes at a threshold of –log10(p) of 4.0, which appeared 
adequate for control of  false-positive associations. For monogenic traits with a major-
effect QTLs, a more detailed analysis was performed by comparing the most significant 
haplotype blocks to the marker trait associations of SNPs present within these QTLs.  
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Demographic history of alleles 

Previously each SNP was dated by using the year of market release of the oldest variety 
that first displayed the presence of this minor SNP allele (Vos et al. 2015). Here we apply 
the same procedure to give a date to haplotypes. The year of introduction was based on 
year of market release as found in the potato pedigree database (Van Berloo et al. 2007; 
https://www.plantbreeding.wur.nl/PotatoPedigree/). This procedure allows to 
determine which haplotypes are recently introgressed from wild species, and probably 
display identity-by-descent (IBD) (post-1945) and haplotypes that represent old 
standing genetic variation (pre-1945).  

Results 

Analysis of phenotypic data  

Substantial phenotypic variation was observed for all traits, which for maturity has a 
broad-sense heritability of 0.85, for tuber shape 0.74 and for flesh color 0.63 (D’hoop et 
al. 2014). Potato tuber uniformity has a heritability of 0.46 and is significantly correlated 
with  ‘year of release’ of a variety. We explored correlations between traits and three 
structure groups (rest, starch, processing) as defined by D’hoop et al. (2011) and Vos et 
al. (2016). In view of previous association analysis, presented in Chapter 2, we conclude 
that tuber shape is correlated with structure groups, as varieties used by the starch 
industry are significantly more round  (6.84 ± 0.14), than in other structure groups Agria 
(5.01 ± 0.18) and Rest (4.98 ± 0.08). The same pattern is observed for maturity, where 
the ‘Starch’ group generally has a longer growing season (4.84 ± 0.15), than varieties that 
belong to Agria (6.29 ± .10) and Rest group (6.29 ± 0.05). For flesh color similar values 
are found for two groups, ‘Rest’ and ‘Starch’, and only the Agria group has more yellow 
flesh color (6.71 ± 0.05). Potato uniformity  has lower scores for uniformity (5.91 ± 0.08) 
in ‘Starch’ potato varieties, compared to varieties that belong to ‘Agria’ (6.33 ± 0.037) 
and ‘Rest’ group (6.48 ± 0.52), which largely can be explained by the lack of selection 
criteria for uniformity within starch breeding programmes.  
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Traits Complete 
(n=537) 

Starch (n=59) Rest (n=407) Agria (n=71) 

Shape 5.93 ± 0.07 6.84 ± 0.14 4.98 ± 0.08 5.01 ± 0.18 
Maturity 6.14 ± 0.05 4.84 ± 0.15 6.29 ± 0.05 6.29 ± 0.10 
Flesh 
Colour 

6.08 ± 0.04 5.67 ± 0.1 6.71 ± 0.05 6.02 ± 0.08 

Uniformity 6.30 ± 0.02 6.41 ± 0.07 6.88 ± 0.45 6.70 ± 0.03 

Table 2.  Averages of traits for the complete panel and sub-populations 

Haplotype data analysis 

As input for haplotype-based association mapping we used haplotype blocks over a 
sliding window, comprising 10-SNPs, resulting in 14409 blocks that partially overlap. 
The justification of choosing 10 SNPs as window length is made as results from earlier 
analyses show that haplotype reconstruction accuracy is influenced by number of 
included single SNP markers, and computational speed. Each block was filtered on MAF 
< 0.01 and haplotypes with low confidence were discarded. Within these blocks an 
average of 8.5 unique haplotypes was observed, from which 54% (MAF > 0.05) can be 
considered haplotypes that are common haplotypes and 46% are alleles that can be 
considered rare (MAF < 0.05). 

Figure 2. Allele frequency distribution of reconstructed alleles (N=121K). Most alleles have an allele frequency < 
0.05 (54%), whereas a smaller proportion has a allele frequency > 0.05 (46%).  
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Association mapping 

The haplotype-based analysis was performed for all traits. Based on these analysis we 
conclude that most QTLs were detected in both single marker analysis as haplotype-
based association mapping. In addition to the location of the QTL we identified which 
haplotype(s) have a significant effect on the phenotype. Here we describe these results in 
more detail. We restrict the detailed analysis to the findings for traits with a simple 
genetic architecture (plant maturity, tuber shape, flesh color), and provide an overview 
of the findings for uniformity. As potato exhibits strong population structure, and 
diagnostic Q-Q plots (File S1) show substantial p-value inflation in absence of  kinship-
correction, we only report the kinship-corrected results. 

Flesh color 
A well-characterized trait in potato is (yellow) flesh color, which is known to be largely 
regulated through allelic variation within the StCHY2 gene (Wolters et al. 2010). Single 
marker association without kinship correction, identified a very strong QTL on 
chromosome 3 at two markers:  PotVar0070260 and PotVar0120627  with -log10(p) of 
17.9  and 19.86 respectively. The location of these SNPs is 43921937 and 48550473 on 
potato chromosome 3, respectively. With multiple haplotype regression, the most 
significant association was found at similar position, where block_4027 
(St4.03ch03:43631694-43922172), approximately 200 kb upstream of PotVar0070260 
had the strongest association with flesh color with -log10(p) = 26.5 . This haplotype block 
contains 10 haplotypes, and the presence of all 10 haplotypes of block 4027 explains 48% 
of the phenotypic variation. Strikingly, the application of allelic regression showed that 
the strongest allele-phenotype association is observed for a single haplotype within 
block_4246 (St4.03ch03:48792194-49236778) with -log10(p) = 25.1, explaining 37.1% of 
the phenotypic variation. This block is located at considerable distance downstream of 
block_4027 (+ 4.8 Mb).  The presence of the StCHY2.1 haplotype of block_4246 allows 
to predict yellow and white flesh color (Figure 4), although for varieties that have 
increased dosages of this allele (>2) a darker yellow flesh color is observed, suggesting 
incomplete dominance. Within our panel we could not observe a significant effect of the 
5 remaining haplotypes. 
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Figure 4. Distribution of phenotypic scores for flesh color related to haplotype composition at the StCHY2 gene. 
Each boxplot represents a genotypic class. Only genotypic classes with more than two observations are visualized.  

In contrast, single marker association at PotVar0070260 and PotVar0120627 explains 
52% and 51% respectively of the variation in flesh color. Judged from the haplotype 
structure of these blocks, PotVar0070260 and PotVar0120627 represent haplotype-
specific SNPs that tag the StCHY2.1 allele. Inspection also revealed that blocks in close 
vicinity of PotVar0070260 all  show a single haplotype that is significantly associated with 
flesh color, with similar frequency. Although decay of linkage disequilibrium between 
overlapping haplotype blocks is not known, this likely represents the same allele. As 
already determined by Vos et al. (2015) PotVar0070260 was first seen in variety ‘Yam’. 
From figure 5B we observe that allele (StCHY2.1) is present predominantly in  more 
recent introduced varieties (> 1945) which  have a higher dosage of this allele, compared 
to old varieties (< 1945). 



Chapter 5 

110 

Table 3. Haplotype-based QTLs detected for flesh color, tuber shape and plant maturity, only kinship-corrected 
results are shown. These blocks were selected because they display the strongest association in haplotype-based 
regression.  

Trait Position -log10(p ) Name MAF -log10(p)
Effect of  allelic 

association
Flesh Color ST4.03ch03 16.59 StCHY1.1 0.29 19.48 0.50

48791760-48793081 StCHY1.2 0.21 0.01 0.00
block_4027 StCHY1.3 0.13 0.67 -0.08

StCHY1.4 0.13 1.42 -0.13
StCHY1.5 0.05 2.41 -0.26
StCHY1.6 0.04 0.33 -0.08
StCHY1.7 0.03 4.79 0.47
StCHY1.8 0.02 1.04 -0.22
StCHY1.9 0.02 0.09 -0.04
StCHY1.10 0.02 1.09 0.34

Flesh Color ST4.03ch08 7.78 CHR8.1 0.28 7.94 -0.41
47377310-47376238 CHR8.2 0.20 2.18 0.24

block_10355 CHR8.3 0.19 0.88 0.09
CHR8.4 0.09 1.08 0.27
CHR8.5 0.09 0.27 0.17
CHR8.6 0.04 0.02 -0.16
CHR8.7 0.02 1.21 0.46
CHR8.8 0.02 1.92 0.60
CHR8.9 0.01 1.88 0.91

Tuber shape ST4.03ch10 16.00 Ro1 0.70 15.38 -0.94
48717669-48593621 Ro2 0.20 2.63 0.51

block_12201 Ro3 0.03 4.00 1.24
Ro4 0.03 1.98 1.47

Tuber shape ST4.03ch02 3.84 Ro2.1 0.25 0.26 -0.14
29093511-28751201 Ro2.2 0.21 2.64 -0.32

block_2353 Ro2.3 0.17 0.07 -0.07
Ro2.4 0.11 0.30 0.32
Ro2.5 0.06 0.33 0.22
Ro2.6 0.05 0.25 0.21
Ro2.7 0.03 1.49 -0.77
Ro2.8 0.02 3.01 0.71
Ro2.9 0.02 0.24 0.85
Ro2.10 0.01 0.66 0.35
Ro2.11 0.01 2.43 1.02

Plant maturity ST4.03ch05 20.25 StCDF1.2 0.27 20.70 0.81
4489590-4488075 StCDF1.1.11 0.23 0.60 -0.17

block_6650 StCDF1.1.12 0.19 3.15 -0.26
StCDF1.1.13 0.09 1.19 0.00
StCDF1.1.14 0.07 2.35 -0.45
StCDF1.1.15 0.06 3.29 -0.51
StCDF1.1.16 0.02 0.30 -0.04
StCDF1.1.17 0.02 0.91 0.63
StCDF1.1.18 0.02 0.44 0.04

Plant maturity ST4.03ch03 4.99 CHR3.1 0.27 1.06 -0.09
43921286-43326982 CHR3.2 0.25 5.18 0.49

block_4021 CHR3.3 0.12 0.13 -0.14
CHR3.4 0.11 0.01 -0.10
CHR3.5 0.05 1.17 -0.39
CHR3.6 0.03 3.30 -0.94
CHR3.7 0.03 1.11 -0.21
CHR3.8 0.01 0.00 0.32
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Apart from the major effect QTL co-localizing with StCHY2, a  minor effect QTL was 
observed on chromosome 8. Significant marker-trait associations were observed for a 
region of 3 Mb located at 45 to 48Mb, with the most significant association at 
PotVar0103331 (CHR8:47376966) with -log10(p) of 5.4 and explaining 19% of the 
phenotypic variation. The multiple haplotype regression identified the strongest 
association  (-log10(p) = 7.78 ) at block_10355, located at interval CHR8: 47.376.238-
47377310. The combination of all haplotypes at this block explains 22% of flesh color 
variation. Within this haplotype block the allelic regression identified a single allele with 
frequency of 0.17, which on its own explains  17% of the phenotypic variation. The 
increase in dosage of this allele results in more white flesh color (Figure 5A), although 
the peak significant allele-phenotype association was found in block_10357 with -
log10(p) of 11.7 and explained variance of 19%. Like with the StCHY2.1 allele, this 
haplotype is present in higher dosages in recent varieties (Figure 5C). The joint presence 
of the StCHY2.1 allele, and this allele at block_10357, explain together 48% of the 
phenotypic variation, which given the individual contributions of both alleles (37.1% and 
17%) is increased (File S2, Figure 5).  

Figure 5.  Distribution of trait values of Flesh color for all genotypic classes observed for the joint presence of the 
CHR3 QTL (StCHY2.1) and chromosome 8 QTL. B) Phenotypic distribution of  significant allele-trait association 
at StCHY2.1. C) Phenotypic distribution of  significant allele-trait association at CHR8.1 QTL.  

A 

B C 
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Potato tuber shape 

For tuber shape two QTLs were detected: a major QTL on chromosome 10 and a minor 
QTL on chromosome 2, in line with previous studies (Prashar et al. 2014, Chapter 2). 
Both QTLs have been found using haplotype-based analysis and single marker analysis 
(Figure 11). With single SNP association mapping we observed the most significant 
association for PotVar0111687 with log10(p) of 18.7 in the kinship-corrected analysis. 
The haplotype-association did identify this QTL in block_12201, where four haplotypes 
were reconstructed. This block also contained PotVar0111687.  

In this block four haplotypes (Ro1, Ro2, Ro3, Ro4), were found with frequency 0.71, 0.20, 
0.026 and .025 respectively. Only Ro1 was found to have a negative effect on tuber shape 
(-0.89), implying that tuber varieties that contain this haplotype are significantly more 
elongated. For the three remaining haplotypes we determined the phenotypic effect, and 
presence of these other haplotypes result in rounder tuber shape, although the magnitude 
of their effects is different (Ro2 + 0.51, Ro3 + 1.24, Ro4 + 1.47). The combination of these 
alleles explains 30% of the phenotypic variation. Allele Ro1, conferring long tuber shape, 
explains 25% of the variation, whereas individual alleles Ro2-4 explain 5%, 5%, 7% of the 
variation respectively. From Figure 6A we observe that allele (Ro1) conferring long tuber 
shape, exhibits a slight recessive effect, where quadruplex scores of this allele lead to 
substantial longer tuber shape. In addition, the first two alleles (Ro1, Ro2) represent old 
variation, whereas the third and fourth allele (Ro3, Ro4) represent recently introgressed 
haplotypes (Figure 6B). 
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Figure 6. Haplotype analysis for chromosome 10 QTL for tuber shape (0=long and 9=round): A) Dosage effect of 
haplotype Ro1-4 on tuber shape, B) The first two alleles (Ro1, Ro2) represent old variation, whereas the third and 
fourth allele (Ro3, Ro4) represent recently introgressed haplotypes.  

On chromosome 2 Prashar et al. (2014) andpreviously identified a minor QTL for tuber 
shape was identified. The most significant association was found within an interval 
between 27.60 and 28.04 Mb using single marker GWAS, at  PotVar0123847 with -
log10(p) = 3.58 and solcap_snp_c1_11556 with -log10(p) = 3.99. With haplotype-based 
analysis we identified an association at block_2353 with -log10(p) = 3.84 (Table 3). 
Surprisingly the allelic association did not result in any individual haplotypes associated 
with tuber shape.   
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Figure 7. Distribution of phenotypic scores for tuber shape (0=long, 9=round) related to haplotype composition at 
the Ro locus. Each boxplot represents a genotypic class. Only genotypic classes with more than two observations 
are visualized.  

Plant maturity 

Previously it was postulated that for the major-effect QTL for early maturity, on 
chromosome 5, two alleles of the StCDF1 locus contribute to the differences in plant 
maturity (Kloosterman et al. 2013). Here the most significant marker associated with 
plant maturity is PotVar0079081, which is 50kb upstream the StCDF1 gene. In the 
kinship-corrected analysis single marker analysis a -log10(p) of 23.38 is found for this 
SNP. This marker is present in block_6650 which was found to have the strongest 
association while using multiple regression of haplotypes. The combination of all 
haplotypes explains 31% of the phenotypic variation. From the 9 haplotypes in this block, 
only one (StCDF1.A) has a strong effect on earliness and explains 26% of the phenotypic 
variation (Figure 8A).  

In addition to the major effect QTL localized at the StCDF1 gene, haplotype-based 
GWAS identified a second QTL, located on chromosome 3 within block block_4021. 
This QTL was not observed in the association mapping results using single SNP markers. 
The multiple regression resulted in an association with –log10(p) of 4.98, explaining 18% 
of the phenotypic variation. Within this block 8 haplotypes are reconstructed, from 
which only a single allele has an effect on maturity with –log10(p)  = 5.18, and explains 
13% of the phenotypic variation.  This single allele has a frequency of 0.25 and has a 
positive effect on earliness (Figure 9AC). Surprisingly none of the SNPs present within 
this interval tag this allele. 

We subsequently used the two significant alleles of both QTLs, respectively StCDF1.1 
and CHR3.1 to express plant maturity as a combination of these haplotypes (Figure 10). 
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The combination of both QTLs explains 33% of the phenotypic variance. In addition a 
significant interaction was found of these alleles (p-value < 0.0043) (File S2).  

Figure 8. Haplotype analysis for chromosome 5 QTL for plant maturity (3 being late 8 early): A) Dosage effect of 
haplotype StCDF1.A on plant maturity, B) Haplotype StCDF1.A is present in both old and newly introduced 
varieties. C) Average phenotype scores per class. The ‘1’ represents the allele that is responsible for earliness. Absence 
of this allele leads to late tuberization.   
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Figure 9. Haplotype analysis for chromosome 3 QTL for plant maturity (3 late and 9 early): A) Dosage effect of the 
significant haplotype on plant maturity, B) This haplotype is present in both old as well as newly introduced varieties. 
C) Average phenotype scores per class. The ‘1’ represents the allele that is responsible for earliness. Absence of this 
allele leads to later tuberization.   

 

 
Figure 10. Distribution of trait values of Maturity for all genotypic classes observed for the joint presence of the 
CHR5 QTL (StCDF1.A) and chromosome 3 QTL. 
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Uniformity  

We performed a GWAS for uniformity. As judged from Q-Q plots, the naive regression 
analysis showed high p-value inflation, and therefore only results for the kinship-
corrected GWAS were reported. If a region is significant in either of the three different 
association mapping results, it is reported as a QTL. For each of these QTL regions we 
report the most significant SNP marker-trait association, and haplotype associated with 
the respective QTL (Table 4). 

QTL Model SNP/block 
chromosom
e location -log10(p) Effect 

I single SNP PotVar0041675 ST4.03ch01 74695176 4.10 -1.39 

I Multiple haplotype block_1226 ST4.03ch01 76913651-76505319 3.92   

I Allelic regression block_1006 ST4.03ch01 70697501-70097516 4.08 -0.16 

II single SNP PotVar0029766 ST4.03ch03 53739571 3.67 -0.31 

II Multiple haplotype block_4551 ST4.03ch03 56604264-56501523 4.02   

II Allelic regression block_3632 ST4.03ch03 5430320-6354080 5.95 -0.54 

III single SNP PotVar0111512 ST4.03ch04 67171388 2.91 -0.22 

III Multiple haplotype block_5800 ST4.03ch04 66149755-66147380 4.33   

III Allelic regression block_5800 ST4.03ch04 66149755-66147380 5.03 -0.49 

IV single SNP PotVar0073869 ST4.03ch06 57893874 4.51 -0.99 

IV Multiple haplotype block_8370 ST4.03ch06 54084559-53989730 4.33   

IV Allelic regression block_8370 ST4.03ch06 54084559-53989730 5.21 -0.58 

V single SNP PotVar0058084 ST4.03ch10   4.56 -0.63 

V Multiple haplotype block_12114 ST4.03ch10 34303305-33324341 3.42   

V Allelic regression block_12210 ST4.03ch10 48863048-48717669 4.89 -0.35 

VI single SNP PotVar0063968 ST4.03ch11 284050 2.89 0.17 

VI Multiple haplotype block_12820 ST4.03ch11 7258676-7360405 4.03   

VI Allelic regression block_12799 ST4.03ch11 5532981-6513747 4.73 -0.28 

VII single SNP PotVar0053743 ST4.03ch12 2200740 4.37 -0.30 

VII Multiple haplotype block_13616 ST4.03ch12 1882025-1882952 3.04   

VII Allelic regression block_13627 ST4.03ch12 1951258-2200740 3.37 -0.34 
Table 4. Overview of QTLs found for potato tuber uniformity. For each QTL the strongest association of each 
evaluated model is selected. 

The Manhattan plot clearly identifies the complex genetic architecture of this trait 
(Figure 11). In total seven QTLs were defined based on a threshold of –log10(p) of 4.0 
(Table 4). Only the chromosome 6 QTL was identified in all three analysis. QTLs present 
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on chromosome 2, 3 and 11 were only found with haplotype-based analysis and not with 
single SNP association mapping. In contrast, the chromosome 12 QTL was only found 
using single SNP association mapping, and not with haplotype-association mapping.  

 

Figure 11. Manhattan plots of kinship-corrected association mapping, for tuber shape, flesh color, maturity and 
uniformity. The blue line is at the threshold of –log10(p) = 4. A) Single SNP analysis (N=14420). B) Multiple 
regression of all haplotypes (N=14409). C) Allelic regression of a single haplotype (N=122K). 
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Discussion 
In this study, we report the comparison of haplotype-based genetic analysis to 
autotetraploid potato. Previously individual SNP markers were used to identify marker-
trait  associations for traits such as tuber shape, plant maturity (Kloosterman et al. 2013) 
and glycoalkaloid content (Vos et al. 2017). Here we were able to identify haplotypes with 
significant effect on phenotypic variation, whereas previous analyses have only identified 
bi-allelic SNP markers that are associated with phenotypic variation. A disadvantage of 
analyses with single SNPs, is the lack of knowledge of haplotype-specificity of each SNP-
allele, which will be detrimental for the successful application of these markers in 
markers-assisted selection.  From that perspective, the use of  haplotypes as substitute 
for single SNP markers has clear advantages. So far a complicating factor was the 
reconstruction of haplotypes, which is challenging in polyploid crops such as potato. 
Previously we reported the development of a suitable approach for haplotype inference 
suitable for polyploid crops (Chapter 3). Application of this approach allowed us to 
reconstruct haplotypes of 10-SNP length, and subsequently use these haplotype blocks 
in association mapping of four traits within a potato variety panel, comprising 537 potato 
varieties.  

In this study we investigated four traits with different underlying genetic architecture 
and performed both haplotype-based as single SNP association mapping. The found 
QTLs were to co-localize with results of previous studies, whenever such comparisons 
are possible. We first discuss our findings, and subsequently provide steps on how to use 
haplotype-based genetic analysis to  improve the interpretation of association mapping 
experiments done in polyploid crops such as potato.  

Association mapping confirms QTL positions 

Flesh color 
Arguably potato flesh color is a trait with a simple genetic architecture. Here we 
identified in agreement to earlier studies (Wolters et al. 2010; Bourke et al. 2018; 
Uitdewilligen et al. 2013) a single QTL, where presence of a single haplotype, allows to 
obtain varieties with yellow flesh color. This QTL is located in proximity of the StCHY2 
gene. In addition a minor effect QTL was found on chromosome 8, for which a putative 
candidate gene may be the StCCD4 gene that was reported by Campbell et al. (2010).   
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Previously also the StZEP1 gene was implicated in flesh color (Wolters et al. 2010), 
however here no significant association was found with SNPs or haplotypes in vicinity 
of the ZEP gene. In our variety panel we could not confirm the chromosome 9 QTL 
reported by Campbell (2014).  

Plant maturity 
For plant maturity we could confirm the major effect QTL reported by Kloosterman et 
al. (2013). Here we observe a single allele located in close proximity of this gene that 
explains nearly 24% of the phenotypic variation. In addition we identified a second QTL 
on chromosome 3 that explains 18% of the phenotypic variation. Between these two 
QTLs a significant interaction was found (p < 0.01), suggesting that differences in plant 
maturity are modulated by multiple loci. Surprisingly the chromosome 3 QTL was not 
observed with single SNP analysis and did not identify any association, but haplotype-
based GWAS identified the significant association. 

Tuber shape 
For potato tuber shape, two QTLs were identified, from which one is the major QTL on 
chromosome 10 reported by (van Eck et al. 1994; Chapter 2) and the other QTL on 
chromosome 2 (Prashar et al. 2014). Previously we grouped highly correlated markers as 
identified with single SNP association mapping, to identify non-redundant associations 
(Willemsen et al. in preparation). As expected those correlations are coinciding with the 
haplotype structure at this locus. For instance PotVar0111687 has high correlation with 
solcap_snp_c2_25485, and lower correlation with solcap_snp_c1_8021. Indeed, both 
PotVar0111687 & solcap_snp_c2_25485 are present within all three round haplotypes 
(Ro2-4), whereas solcap_snp_c1_8021 is only present in one of these (Ro2). Here we 
would expect that PotVar0111687 has higher association than solcap_snp_c1_8021 as 
the former has higher predictability for the elongating allele (Ro1). Indeed, this was 
confirmed by our single SNP analysis, where the highest association is observed at 
PotVar0111687 -log10(p) of 18.7), and  solcap_snp_c1_8021 has a lower association 
signal of -log10(p) = 5.86.  

Potato tuber uniformity  
Arguably flesh color, tuber shape and plant maturity represent examples with simple 
genetic architecture, where major effect QTLs were easily identified. In contrast, potato 
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tuber uniformity represents a highly polygenic trait, for which minor-effect QTLs were 
observed (Figure 11, Table 3).  

Evaluation of haplotype-based analysis 

QTL discovery with haplotype-based association mapping 
Numerous examples have demonstrated the power of GWAS for dissection of 
quantitative trait variation, both in diploids (Huang and Han, 2014), but also in 
polyploid crops such as potato (Rosyara, 2016; D’hoop 2014; Vos et al. 2017; Sharma et 
al. 2018). Nevertheless, it is known that bi-allelic SNPs present on SNP arrays inherently  
contain less  information compared to previously used SSR marker systems, or amplicon-
derived allele information (Schönhals et al. 2016; Schreiber et al. 2014). So far haplotype-
based  association mapping has been applied to many crops. For example, in maize 
multiple haplotypes were identified for a CO-like gene, responsible for differences in 
flowering (Yang et al. 2013). Also in other crops such as wheat (N’ Daiye et al. 2017), 
soybean (Contreras-Soto et al. 2017) and oat (Bekele et al.  2018) successful application 
of genome-wide haplotype-based association analysis has led to the discovery of novel 
QTLs.  

From a theoretical perspective haplotype-based association should result in higher power 
for QTL discovery (Schaid et al. 2002, Zaykin et al. 2002, Dudbridge, 2003), which in 
other words can be explained as the loss of power for QTL discovery due to unobserved 
haplotypes (Clark et al. 2004). Indeed several studies have shown that in general power 
for QTL detection increases if using haplotypes as substitute for single SNP markers 
(Akey et al. 2001, Morris and Kaplan, 2002), although these applications of haplotype-
based GWAS are in human genetics, and might have little bearing on the results in 
outbred polyploid crops.  

In our study the application of haplotype-based GWAS did overlap completely with 
single marker association mapping, with as exemption the detection of a novel QTL for 
plant maturity on chromosome 3, whereas for other traits (shape, flesh color) the same 
QTLs were detected. On basis of results for these traits, we can define several scenarios 
how application of haplotypes influence the results of association mapping.  



Chapter 5 

122 
 

Haplotype-specificity of SNP markers present at StCHY2 for StCHY2.1 allele 
Firstly, in case of the chromosome 3 QTL for flesh color bi-allelic SNP markers were 
found that are specific for the StCHY2.1 allele. In that case we expect a one-to-one 
relation between individual haplotype-specific markers and phenotypes, implying that 
usage of haplotypes does not improve the association analysis, which is confirmed by our 
analysis as all  analysis (bi-allelic SNP, haplotype, allelic), resulted in similar strength of 
associations.  

Lack of haplotype-specific SNPs for chromosome 3 QTL for maturity 
Secondly, we identified a novel QTL for plant maturity on chromosome 3. With 
individual markers this QTL was not detected, but haplotype-based analysis identified a 
second QTL. Compared to the strong association of the chromosome 5 major effect QTL 
at the StCDF1 gene, this QTL has a weaker association (R2 = 18%). The most likely reason 
why this QTL escaped detection with single SNP analysis is the lack of haplotype-specific 
markers for this allele, suggesting that for this QTL haplotype-based regression has a 
clear benefit, due to higher distinguishing power of haplotypes compared to single SNP 
markers. 

Tuber shape: Clear relation with haplotype specificity and significance.  

Thirdly, for tuber shape a different scenario is observed, where the most significant SNP 
(PotVar0111687) groups all round alleles (Ro2-4), allowing to disentangle the elongating 
allele (Ro1) from al round alleles. In contrast, other marker such as 
(solcap_snp_c1_8021),  are specific to Ro2, and as a result have lower significance, clearly 
due to the lower haplotype-specificity of this bi-allelic SNP marker. Indeed, if breeders 
were to apply these markers for marker-assisted selection, knowledge about haplotype-
specificity of  individual SNP will allow to select markers that best tag existing alleles. 
One of the challenges that remain is the disentanglement of if all three alleles, conferring 
a round tuber shape, have different effects (Figure 7). 

Polygenic traits are still difficult to interpret 
Last but not least, most of the traits considered so far (plant maturity, flesh color & tuber 
shape) are traits with relatively simple genetic inheritance. As these examples might 
represent a oversimplified view of trait architecture, we also used potato tuber uniformity 
which displays a polygenic inheritance, with low broad-sense heritability (H2 = 0.45). 
Both individual marker association mapping and haplotype-based association mapping 
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revealed several minor-effect QTLs (Figure 11, Table 3), which are only partly 
overlapping between the three analyses. As several QTLs were only detected with 
haplotype-based analysis and not in the individual marker association, and vice versa, 
the combination of all analysis allows to identify all six QTL regions, implying that the 
combined use of all three methods might be necessary to detect all QTLs.  

Knowledge of haplotype composition is important for marker-assisted selection 
In conclusion, the use of haplotype-based analysis has in general not led to the 
identification of multiple new QTLs. Nonetheless, the discovery of a novel QTL for plant 
maturity was only possible by using haplotype analysis. In addition we observe that 
knowledge of haplotype composition at a locus allows to improve the interpretation of 
genotypic data. In context of association this does not lead to a higher detection power, 
but from the perspective of a breeder this application of haplotypes should allow the 
selection of SNPs that are more reliable. An example of this is the major-effect QTL on 
chromosome 5 (located at the StCDF1 gene) a single common allele was identified with 
strong positive effect on earliness (Figure 8). Most likely this allele represents the 
StCDF1.2 or StCDF1.3 allele as identified by Kloosterman et al. (2013). From the single 
SNP association mapping the most significantly associated SNP is PotVar79081, located 
45kb upstream of the StCDF1 gene. The haplotype data as generated here, allowed to 
determine that Potvar79081 is haplotype-specific for the for the earliness allele. In 
addition when examining the haplotype structure of markers present in close proximity 
–or within – the StCDF1 gene no haplotype-specific markers can be found, suggesting 
that combinations of SNPs are needed to obtain the best correlation between trait and 
marker information.  

Influence of genetic architecture 
The lack of discovery of multiple novel QTLs might not be because we do not increase 
statistical power to detect QTLs, but might be coupled with the simple genetic 
architecture of these traits. Indeed, haplotype-based GWAS may result in higher  power 
of QTL discovery in case of more complex traits, as suggested by Hamblin et al. (2011). 
Here, in case of potato tuber uniformity, we observed that haplotype-based GWAS 
discovered most QTLs in both analyses, whereas several  QTLs were detected in either 
single SNP analysis or haplotype-based analysis. Based on the lack of coherence signals 
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between discovered QTLs between these analysis would suggest that both analysis need 
to be combined, to give a comprehensive overview of all putative QTL locations.   

Specifics of the SOL-STW panel 

Here we used the SOL-STW panel which deliberately was designed to capture the wide 
genetic variation of the commercial potato genepool (Uitdewilligen et al. 2013, Vos et al. 
2015), and therefore has a good representation of markers with low allele frequency 
(more likely to be haplotype-specific) and an under representation of markers with 
relatively high frequency (more likely to be present in alleles that are common/ not be 
haplotype-specific), suggesting that a large proportion of the SNP markers that were used 
here are largely haplotype-specific. The application of haplotype-based regression 
analysis might yield more results for SNP arrays that lack such haplotype-specific SNPs. 
For instance, the  8303 Illumina Infinium SNP array (Felcher et al. 2012), displays a 
different allele frequency distribution, where the majority of SNPs have minor allele 
frequencies higher than 10% (Sharma et al. 2018),  suggesting that less haplotype-specific 
markers are present on this array. 

Genotyping-by-sequencing  

 In future, whole-genome sequencing data will rapidly become available, which might 
contain all causative variants that influence a trait, which likely will be specific for the 
causative allele.  However, even if all genetic variation present in a population is known, 
the capricious relation between LD and neutral versus causative variants still remains 
(Korte and Farlow 2013). In the end, the frequency of each individual haplotype is 
determined by the demographic  history of the population, where for instance if a 
haplotype represents old ‘standing’ variation, it is more likely that recombination has 
produced recombinant alleles with moderate frequencies. If no or limited, markers are 
present within a small distance of the causative variant,  recombinant alleles are expected 
to contain less haplotype-specific SNPs, with as consequence a loss of power to detect 
any significant allele-phenotype association. The opposite might be true for 
introgression segments, where often SNPs are introgressed that are previously not found 
in the  genepool, allowing to rapidly find association  with a phenotype. 
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Reconstruction accuracy influences the results of haplotype-based analysis 

One aspect that plays a role in haplotype-based analysis is the reconstruction certainty 

(Stram and Seshan, 2012). Most likely genotyping error can generate false associations, 

especially for SNP markers with low minor allele frequency. Previously it was found that 
marker  scores from the SOL-STW array, as used here, are highly accurate, with 0.02% 
errors were found between replicated diploid samples (Vos et al. 2016). In contrast 
existing methodologies for haplotype assignment often report an error percentage 
between 5-10% (Neigenfind et al. 2013; Shen et al. 2016; Chapter 4). Previously we 
determined that for the approach introduced in Chapter 4, most phasings errors can be 
discarded using a simple cut-off in allele frequency, as reconstruction error mainly 
results in low frequent haplotypes. These errors will mainly in the varieties, where 
haplotypes are considered absent, but in reality they are  present (i.e. there is loss of 
heterozygosity in the direction of the major allele). The necessity of accurate phase 
reconstruction is also shown in QTL mapping studies in bi-parental populations, as the 
result of IBD-based QTL mapping is greatly influenced by the genotypic information 
content (Bourke et al. 2018).  

Prospects and future application of haplotype-based analysis.  

The application of association mapping to crops has shed light on the genetic 
architecture of many important agronomical traits. Here, we explore a new layer of 
information, which allows to link trait variation directly with allelic diversity present at 
the QTL. Addition of haplotype-based genetic analysis to the repertoire of the geneticist 
will allow to increase the QTL detection power, by increasing the one-to-one relation 
that is expected between allele and phenotype. For the routine application of haplotype-
based association mapping the availability of fast and accurate phasing algorithms is 
necessary. Given that the application of genotyping-by-sequencing data is rapidly 
increasing, further research is needed into optimizing existing phase inference methods 
to cope with these data sources. Likewise more insight is needed into adequate statistical 
methods for association mapping within polyploid species. As haplotype inference will 
lead to an addition of uncertainty to genotypic data, we propose to use haplotype-based 
association analysis in combination with single marker analysis. The knowledge of 
haplotypes will improve the interpretation of QTLs, and allows potato breeders to 



Chapter 5 

126 
 

optimize selection of haplotype-specific markers, and apply these in marker-assisted 
selection.  
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Abstract 
Poly-Imputer is a tool to assign known haplotypes to individuals for which only 
unphased genotypic data is available. In polyploids, SNP phasing is challenging and 
requires extensive computational resources. However, if a reference library of high-
quality curated haplotypes are known, disentangling of genotypic data of one individual 
into their respective haplotypes becomes trivial. While assigning these haplotypes to 
individual samples, missing data and errors in allele dosages can be corrected, resulting 
in more complete and accurate haplotypes. We developed a method to assign reference 
haplotypes to un-phased genotypic data. Here we described three applications of this 
tool: 1) Impute parental haplotypes to a segregating full-sub population, 2) Assign 
haplotypes in a panel of unrelated potato varieties, based on sequencing data haplotypes. 
3) Refine and curate haplotypes that are obtained by haplotype inference. The 
application of this tool allows to quickly screen additional samples for the occurrence of 
haplotypes that are present in a reference haplotype library.   

 

 

 

 

 

 

 

 

 

Keywords 
Solanum tuberosum, haplotype imputation, polyploids, phasing 



 Haplotype imputation 

129 
 

Introduction 
For outbreeding autopolyploid crops such as potato (Vos et al. 2015; Hamilton, 2011; 
Felcher et al. 2012) chrysanthemum (van Geest et al. 2017) and rose (Vukosavljev et al. 
2016) high-density SNP genotyping platforms are being adopted quickly. This is coupled 
with the development of tools to accommodate these high marker densities for use in 
linkage map construction (Hackett et al. 2003; Bourke et al. 2016), QTL mapping 
(Bourke et al. 2018), or genome-wide association studies (Rosyara et al. 2016). Likewise, 
in recent years a shift can be seen from the use of bi-allelic markers towards the adoption 
of haplotype markers in genetic analysis. A single bi-allelic marker offers incomplete 
information about the allele composition in case of multiple alleles in a polyploid 
individual. The use of multiple bi-allelic SNP markers will allow to reconstruct 
haplotypes and enable researchers to obtain full classification of a locus.  

Much progress has been made in recent years in reconstructing haplotypes from either 
sequencing data (Aguiar et al. 2013; Berger et al. 2014; Chapter 3), or by using statistical 
phasing methodology (Neigenfind et al. 2008; Su et al. 2008; Shen et al. 2016, Chapter 4). 
A downside of the application of these methods is the large computational requirements, 
especially if a genotype panel comprises many individuals, or large numbers of markers. 
Also, every time new samples are genotyped, phasing needs to be repeated, whereas in 
most cases no new haplotypes will be discovered. In case of ‘unrelated’ material, 
genotyping errors are difficult to spot, further complicating phasing efforts. In some 
cases, pre-existing haplotype information is already available. For instance parental 
phasing in a full-sib population is achieved by linkage mapping, providing knowledge 
over segregating alleles, or when inbred individuals are genotyped.  

A practical solution to obtain accurate inference of haplotypes, without much effort, 
would be to exploit the use of a library of curated high-quality haplotypes and to establish 
the allelic configuration of additional unphased samples. The simplest approach to 
achieve this is with use of haplotype-specific or tag-SNPs. These bi-allelic SNPs are 
known to distinguish a single haplotype from all other haplotypes. This allows 
identification of haplotypes on basis of a single SNP, that acts as proxy for the complete 
haplotype (Johnson et al. 2001). Nevertheless, in many cases a single SNP will not 
uniquely tag only one allele, is not specific for other haplotypes. To recognise other 
haplotypes, the use of multiple (partially) haplotype-specific SNPs is required. 
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Many approaches have been developed that perform haplotype phasing and imputation 
in diploid organisms. In spite of these developments, most approaches cannot be applied 
directly to autopolyploid crops such as potato. Generally, these imputation methods are 
divided into two categories: tools that make use of linkage disequilibrium information 
and those using pedigree and or linkage information. The first category includes tools 
such as fastPHASE (Sheet and Stephens, 2006), MacH (Li et al. 2010), Beagle (Browning 
and Browning 2009) and Impute2 (Howie et al. 2009), whereas the second category 
includes plantImpute (Hickey et al. 2015) and pediHaplotyper (Voorrips et al. 2016). 

To our knowledge no publicly available algorithm has been explicitly designed for 
haplotype imputation in polyploid crops, although studies have used haplotype 
imputation by use of individual tag-SNPS (Uitdewilligen et al. 2012, Wolters et al. 2010) 
to disentangle the allelic configuration of tetraploid potato cultivars. The use of these 
imputation strategies would potentially allow minimization of missing genotype data 
and therefore improve QTL detection accuracy, as demonstrated by results observed in 
pigs (Hickey et al. 2011, Hickey et al. 2012), maize (Huang et al. 2014) and tomato (van 
Binsbergen et al. 2014).  

To identify haplotypes, conventionally haplotype assembly (e.g. haplotype 
reconstruction based on sequencing data), or haplotype inference is applied (e.g. 
haplotype reconstruction based on SNP genotyping data). The output haplotypes will 
contain a mixture of correctly reconstructed haplotypes and erroneous haplotypes, 
which need to be filtered and curated. In case of short read sequencing-based haplotype 
assembly, the result is often a fragmented haplotype assembly, where full haplotype 
information is only available for a small proportion of all haplotyped varieties (Chapter 
3). Likewise, haplotype inference depends crucially on the genotype accuracy of input 
data, and the composition of the genotyped samples. Moreover, in case of dosage errors, 
erroneous haplotypes will be reconstructed (Chapter 4). Subsequent downstream genetic 
analysis needs rigorous post-processing of haplotypes  to avoid the use of erroneous 
haplotypes.  

Approach 
The need for complete, high-quality haplotype information in genetic studies, 
irrespective of whether haplotypes originated from sequencing-based haplotype 
reconstruction, or application of haplotype inference to genotypic data of seemingly 
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unrelated varieties, has motivated us to develop a tool that allows to impute haplotypes 
based on a set of high-quality reference haplotypes. In general the procedure involves 
three steps: 1) For a set of SNPs haplotype reconstruction is performed, 2) Manual 
curation of these haplotypes based on pedigree relations, allele frequency and additional 
quality criteria and reconstruction of a reference haplotype library, 3) Haplotype 
imputation in other individuals that for which SNP phasing failed or resulted in partial 
phasings. In this paper, we do not provide tools to perform step 1 and 2, but describe a 
method to achieve haplotype imputation (step 3). 

Material and methods 
As input for our algorithm a pre-existing haplotype library and genotypic data of each 
individual are used. The complete method employs three steps: (1) Determination of 
possible haplotype configurations given the set of reference haplotypes. (2) 
Determination of allelic configuration that are consistent with genotypic data of a single 
individual (3) Assignment of specific haplotypes to each individual.  

 

Figure 1. Schematic overview of Poly-Imputer approach.  

Step 1: Determining possible allelic configurations.  
Before imputation we determine all possible allelic configurations that can occur in each 
individual given the set of input haplotypes (i.e. all combinations of four haplotypes out 
of all haplotypes in case of tetraploids) and ploidy level. For each of these allelic 
configurations we calculate the expected genotype frequency using the assumption of 
random mating. For n distinct alleles in tetraploids, the expected genotype frequencies 
for each allelic configuration can be calculated under assumption of Hardy-Weinberg 
equilibrium by the individual terms in the multinomial expansion of (𝑝𝑝1 + ⋯+  𝑝𝑝𝑛𝑛)𝑘𝑘. 
In case the assumption of random mating is not valid, for the selected population, we 
assume that each phasing configuration has equal expected genotype frequency and gets 
assigned equal probability.  
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Figure 2. Typical imputation scenario where a library of reference haplotypes (h1-h5) is projected on genotyping 
data (g1-g5) The joint presence of multiple SNPs allows to identify which combination of haplotypes is present in 
each sample. 

Step 2: Calculating of consistency between a allelic configuration and observed 
allele dosages. 
After determination of the set of possible haplotype configurations and their expected 
frequency in the population, we score for each individual which haplotype 
configurations can explain the dosages of the individual SNPs. For instance, a two-locus 
genotype containing two simplex SNPs at each locus (11) can be disentangled into a 
phasing configuration 11|00|00|00 or 10|01|00|00, as summation of the allele dosages of 
individual SNPs for both allelic configurations results in 11. Therefore, a simple 
approach to determine consistency is to compute a genotype vector for each allelic 
configuration (g’), and compare this with the observed allele dosages of a single 
individual (g). The comparison of these scores allows to score consistency (e.g. number 
of mismatches) between an allelic configuration and a genotype by computing the 
hamming distance. The simultaneous presence of multiple (partial) haplotype-specific 
SNPs allows to determine the best allelic configuration explaining the pattern of dosages 
observed in a single genotype.  

An example of calculating this consistency measure is given in Figure 2. A segment of 25 
adjacent genotyped SNPs (g1) is compared to the summation of dosages of a theoretical 
phasing configuration, consisting out of h1-h4. Summation of dosage of this haplotype 
configuration results in a genotype (g’). In this case, in the whole segment of 25 SNPs a 
hamming distance of 0.95 (21/22) is observed between g’ and g, as only SNP4 has a 
mismatch. Note that missing values might be present at any of the genotyped SNPs (NA). 
A missing value present in a segment of SNPs is not used for calculating consistency.  
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Figure 3. Determination of consistency between marker dosages and an allelic configuration of multiple reference 
haplotypes. A single haplotype configuration (h1-h4) is checked for consistency with dosage data obtained in an 
individual (g1). The + represents a consistent dosage score between g’ and g1. The – represents an inconsistent 
dosage score. Here consistency is ranked 0.95 (21/22).  In case there are missing values (NA) we discard these SNPs.  

One of the advantages of haplotype imputation is the ability to also impute missing 
genotype calls, provided that most SNPs in an interval are genotyped. The downside of 
a high amount of missing genotype calls is that imputation will become less reliable, 
which can be mediated by specifying the maximum amount of missing data that is 
allowed during imputation. Here we determine the consistency score for each allelic 
configuration we calculate the consistency score. If there are no consistent solutions, 
imputation does not proceed. 

Step 3: Assigning the most likely solution to un-phased individuals. 
At this point, we have for each individual a set of likely allelic configurations, but still 
need to assign the best solution to each individual. In some cases a single configuration 
might be consistent with the genotype data (e.g. genotype 410 can only originate from 
configuration 110|100|100|100), which can be reported directly. In other cases more than 
one allelic configuration are consistent with dosage data, where multiple combinations 
of haplotype result in the same genotype vector. The determination which allelic 
configuration is the most likely is subsequently decided by using the expected genotype 
frequencies, which are calculated by the underlying haplotype frequencies. If no 
population-allele frequencies are known, we either report the solution with the highest 
consistency, or produce output with all consistent phasings.  

As our method for imputation does not generate new haplotypes, but rather assigns 
known haplotypes to unphased genotypes, a haplotype assignment might conflict with 
genotypic data. This can occur because of several reasons: (1) Recombination can lead to 
alleles not present in the current set of reference haplotypes, (2) Dosage errors will lead 
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to erroneous genotype vectors, and therefore result in faulty haplotype assignment. For 
instance, if genotype vector 11 contains a dosage error at the first SNP, resulting in 
genotype 21, the allelic configurations that are in agreement with are  10|10|01|00 and 
11|10|00|00 instead of 11|00|00|00 or 10|01|00|00.  

Implementation 
Poly-Imputer is implemented in Python2.7 and can be executed on any system for which 
Python is available. Haplotype imputation is handled by a command-line script (File S1). 
The formats of the input and output files are detailed in the readme file and example 
dataset.  

Datasets 
F1 population: The offspring of a full-sib population with 233 individuals, previously 
genotyped with a SNP array and originating from the cross between ‘Altus’ and 
‘Colomba’ was used for imputation. This population was previously used to generate a 
high-density linkage map (Bourke et al. 2016). For each progeny linkage phase was 
reconstructed using tetraorigin (Zheng et al. 2016). Here we binned all  segregating 
markers in windows of 1 cM, and in each interval haplotype imputation was performed. 
Expected haplotype frequencies were obtained by using the counts of unique haplotype 
across the two parents (i.e. SxS = 0.25, SxN = 0.125, and so forth).  

Haplotypes of the StGWD1 locus: A library of reference haplotypes were previously 
reconstructed using the sequencing reads of Uitdewilligen et al. (2013) for a region of 
300 bp comprising 18 SNPs (Chapter 3). Imputation was performed using sequencing-
based dosages obtained with Freebayes (Garrison et al. 2008).   

Haplotypes of a potato variety panel: Previously haplotypes were generated using the 
haplotype inference method described in chapter 4, over a sliding window of 10 SNPs, 
resulting in 14K intervals. Each of the intervals was used for association mapping 
(Chapter 5). For the purpose of this study we extracted the haplotype block with the most 
significant  association to plant maturity (interval  6650). From this interval with 10 
SNPs,  31 unique haplotypes were extracted and allele frequencies were calculated.  
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Results 
Application 1: Identifying alleles in progeny of a bi-parental F1 population 
In this study, we used genotype data collected with a SNP array, from a tetraploid bi-
parental F1 mapping population to assess the allele assignment using Poly-Imputer. In a 
previous study, all eight homologous chromosomes were reconstructed with use of 
conventional linkage mapping. In the progeny phasing was achieved with tetraOrigin 
(Zheng et al. 2016). To allow the comparison of imputed haplotypes with tetraOrigin 
based IBD probabilities (Bourke et al. 2018), these probabilities were converted to 
discrete haplotype information. As Poly-Imputer only works in absence of 
recombination we divided all twelve potato chromosomes in bins of 1 cM. In each of 
these 1cM intervals (n=644), we employed Poly-Imputer and assigned which parental 
haplotypes were transmitted to each of the 235 progeny. Comparison with phasing 
results from tetraOrigin showed an high concordance of on average 98% between 
phasings, which increases with considering more SNPs in an interval (See Figure 4A).  

 

Figure 4. A) Imputation accuracy in 664 intervals of 1 cM over 12 potato chromosomes in the bi-parental AxC 
population. B) Example of a haplotype comprising a library of 6 haplotypes over 10 SNPs.  

Application 2: Identifying alleles from GBS dosage calls.  
Previously we assembled haplotypes using sequencing reads for 2400 regions in 800 
potato genes in 83 tetraploid potato varieties with short-read Illumina sequencing data 
(Chapter 3). This resulted in a fragmented assembly, as a single region is often broken 
into multiple discontinuous haplotype blocks. For instance, we determined the 
haplotype structure for a 300bp fragment of the StGWD1 gene, where over all 
informative varieties, 12 unique haplotypes were reconstructed (Figure 5A). However, 
from the total of  83 varieties, 14% did not contain full-length haplotypes and were split 
into multiple disjoint haplotype blocks. Between these  adjacent haplotype blocks, no 
linkage phase is known. Here we use the 12 complete haplotypes that were reconstructed 
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in 63 varieties as reference haplotypes and apply Poly-Imputer to identify which 
haplotypes are present in varieties that contain partial haplotype information. To judge 
the quality of imputation, the concordance between full-length haplotype solutions in 
the remainder of varieties, and imputed solutions was calculated, resulting in a 
concordance of 98%. The 2% erroneous imputation can occur due to errors in dosage of 
individual SNPs. After imputation, the allele composition of 80 varieties could be 
determined (File S3).  Three varieties were not imputed, as multiple allelic configuration 
had equal support.   

 

Figure 5. Example of haplotype imputation for haplotype blocks present in the StGWD1 gene. A) List of haplotypes 
obtained from 71 varieties. B) Genotypes of variety Kerpondy (P2PEM04) and entland Dell (P2PEM07). C) 
Imputation in variety Kerpondy D) Imputation in variety Pentland Dell.  

Application 3: Refine haplotypes 
In a previous study haplotypes were reconstructed over a sliding window of 10 SNPs, 
using genotypic data of 14K usable SNP markers from 537 varieties (Chapter 5).These 
haplotypes still contain missing data and erroneous haplotypes. Phasing errors often 
occur by loss of heterozygosity in the direction of the major allele (e.g. an allele is not 
present where it should be present). To demonstrate the improvement that can be 
achieved by application of haplotype imputation we refined the haplotype composition 
at a single block of 10 SNP markers (PGSC4.03 CHR05: 4488075-4489590). Within this 
position a total of 31 unique haplotypes were found, with frequencies ranging from 
0.005% to 27.5%, but only one haplotype showed a significant association to potato plant 
maturity.  In addition 16 out of 537 genotypes were not haplotyped as individual SNP 
dosages were missing.  
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We applied Poly-Imputer by using the library of 31 reference haplotypes as input and 
imputed these haplotypes in each of the 537 varieties (File S3). Previously we determined 
that the causative allele had a allele frequency of 0.27, which after imputation increased 
to 0.29. In addition we observe that 13 out of 31 haplotypes were removed after 
imputation. These unused haplotypes had frequencies ranging from 0.0005-0.01 before 
imputation and likely represent erroneous haplotypes. In terms of allele composition, 
approximately 429 genotypes had the same allele composition as before imputation, 
whereas 106 genotypes were different after imputation.  

The use of imputed haplotypes in an association analysis allowed to revisit the 
association of haplotypes with  plant maturity. Here, the association with plant maturity 
slightly increased from a –log10(P) of 38 to a –log10(P) of 40.6 using the imputed 
haplotypes. The explained phenotypic variation by this association increased from 27.1% 
to 28.9%, showing only a marginal improvement. Nevertheless the use of haplotype 
imputation to be preferred as it imputes missing data. Here, for the 14 out of the 16 
genotypes with missing genotypic values at one or more SNPS, we could determine the 
configuration of haplotypes. For instance, previously we could not determine the 
occurrence of the early haplotype in a progenitor clone (P8WUR045), where a missing 
value was observed at PotVar0079086. Clearly, this variety contains PotVar0079038 and 
PotVar0079081, indicative of the presence of the early allele and this variety has an early 
maturity type. This suggested that this variety should contain the early allele. Once 
imputation was performed, the imputation allowed to resolve the missing dosage score 
at PotVar0079081. 

Discussion 
Haplotype reconstruction errors, whether or not caused by dosage errors or the quality 
of sequencing data,  seriously hamper the application of haplotype data in genetic studies. 
For successful application of haplotypes in genetic studies, these errors have to be 
removed. We developed an approach that uses a curated set of reference haplotypes and 
performs haplotype imputation in genotyped material, which has not undergone 
haplotype detection, or in which only partial genotype information is present. Haplotype 
reconstruction requires considerable computational resources, but application of Poly-
Imputer allows to quickly screen large numbers of samples and determine their 
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haplotype composition. Our approach is based on predicting which haplotypes are 
present, based on dosage information of (multiple) individual SNP markers.  

The haplotype imputation approach as used in this study requires the availability of a 
library of reference haplotypes, which needs to be produced with other software. In this 
study we made use of existing haplotype data that was generated using sequencing data 
(Chapter 3), or by means of haplotype inference on bi-allelic SNP markers obtained from 
SNP array data (Chapter 4, 5). In contrast, phasing in the tetraploid full-sib population 
was achieved by traditional linkage mapping (Bourke et al. 2016; Bourke et al. 2018), 
followed by phase reconstruction within each tetraploid progeny (Zheng et al. 2016). The 
accuracy of haplotype imputation depends on how well these original haplotypes were 
estimated, which might depend on marker density, relatedness, sample size and 
demographic history of each allele. Any imperfection in the haplotype library limits the 
accuracy of imputation, suggesting that the reference haplotype library needs to be 
carefully reconstructed. A drawback of our proposed method is the assumption that 
there is no recombination within a single haploblock. If a recombinant allele is present, 
an erroneous assignment will be performed, or no assignment at all.  

Arguably our approach does not allow to generate new haplotypes, and depends on the 
assumption that an initial reference panel contained most or all occurring allelic 
variation. Increasing the panel size will soon result in a diminishing return as most of the 
genetic diversity is already observed in a limited set of cultivars. This is exemplified by 
results of Uitdewilligen et al. (2013), where it was estimated that after sequencing a 
random subset of 20 cultivars most genetic variation was already discovered (See Figure 
2 Uitdewilligen et al. 2013). In fact even in small panels a haplotype with allele frequency 
of 1% can be found (see Figure 6). 
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Figure 6. Probability of observing a haplotype with varying allele frequency at least one time in panels of 10, 20, 40 
and 80 tetraploid varieties. Probabilities are calculated using a binomial model.  

In this study, we applied Poly-Imputer to 231 full-sib offspring of a cross between two 
tetraploid potato varieties. As parental haplotypes are phased during linkage mapping 
(Bourke et al. 2016), and for each segment of 1 cM, the transmission of alleles to offspring 
is known, the expected allele frequencies across the 231 progeny could be calculated. We 
compared these results to the ground-truth as provided by tetraOrigin-based phases in 
all progenies. In all 644 windows of 1 cM, this resulted in an agreement of 98%, 
suggesting that our approach is able to reliably assign these haplotypes to each 
descendent. In addition, we also employed haplotype imputation to a haploblock 
comprising 10 SNPs located in close proximity to the StCDF1 gene, and revisited existing 
haplotype-trait association to plant maturity. The application of Poly-Imputer allowed 
to refine existing haplotype solutions and impute missing genotype calls. With respect 
to haplotype phasing, most errors can be detected by using a allele frequency cut-off (i.e. 
errors are not systematic), or by selecting varieties for which haplotypes are likely to be 
true (e.g In agreement with IBD). Application of Poly-Imputer could lead to stronger 
QTL detection power if performed over all reconstructed haplotypes. 
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Improving sequencing-based haplotypes 
One of the main reasons for the development of this haplotype imputation approach is 
the discontinuity in haplotype blocks obtained from sequencing-based haplotype 
reconstruction. Any single individual haplotype assembly method will result in full-
length haplotypes for only in a subset of all varieties. Each of the those varieties, could 
contain good quality variants, while haplotype reconstruction results in multiple 
discontinuous haplotype blocks. Between these blocks linkage phase is unknown (Figure 
4B). To test whether haplotype imputation can improve the contiguity of sequencing-
based haplotypes, we reconstructed haplotypes in a segment of 300 bp of the StGWD1 
gene. Before imputation for 12% of the varieties no haplotypes were known. However, 
after imputation almost all varieties were assigned four haplotypes. The high  
concordance between the non-imputed haplotypes and imputed haplotypes (98%), 
suggests that Poly-Imputer is successful in improving the contiguity of the haplotype 
assembly and can be used in conjunction with haplotype assembly methods.   

What is next for Poly-Imputer? 
At its core Poly-Imputer executes a simple routine which involves determining all 
possible haplotype configurations (Step 1), followed by the comparison of the sum of 
dosages of this configuration, to the observed dosage calls (Step 3). Subsequently, the 
best haplotype configuration is assigned to each sample, given the underlying allele 
frequencies. One of the advantages of Poly-Imputer is that it is not dependent on 
population structure or availability of pedigree data.  If such data is known, these genetic 
relations may constrain the solutions for haplotype imputation. Arguably this study 
present only anecdotal examples of possible applications of haplotype imputation, and a 
more rigorous evaluation of factors influencing imputation accuracy are needed.  

Conclusion 
In conclusion, Poly-Imputer can be applied to identify haplotypes using unphased 
genotypic data from both sequencing-based genotyping or dosage calls originating from 
SNP arrays (Application 1,3). In addition, it also can be used to improve contiguity of 
sequencing-based haplotype blocks (Application 2). In combination with any phasing 
software this tool will allow refining existing haplotypes, and quickly screen un-phased 
individuals for the presence of these haplotypes. The routine application of Poly-Imputer 



 Haplotype imputation 

141 
 

could decrease the computational resources that are needed for building a complete 
haplotype map of any polyploid crop. 
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Abstract 
Large differences in potato plant maturity are mediated by a major effect QTL on 
chromosome 5. Previously the causative gene StCDF1 was mapped and three alleles were 
found in a diploid F1 population: StCDF1.1, StCDF1.2, StCDF1.3. The StCDF1.3 allele 
contained a 865bp transposon insertion, whereas the StCDF1.2 allele contained a 7bp-
footprint originating from a transposon excision event. Both mutations cause a 
truncated protein due to a premature stop codon and act as a dominant early allele 
unable to delay tuberization until short day lengths. In this study we determined the 
intra-gene allele diversity of a part of the StCDF1 gene, using haplotypes originating 
from next-generation sequencing data from 83 potato varieties. We observed that one 
allele has a significant effect on early plant maturity. The presence of the transposon 
and/or footprint allele was recorded for each variety. Association analysis between these 
haplotypes and plant maturity verified the significance of StCDF1.3 transposon allele on 
early maturity, but failed to identify a significant effect of the footprint allele (StCDF1.2).  
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Introduction 
Potato plant maturity is considered a quantitative trait for which a major effect QTL 
located on potato chromosome 5 modulates differences in plant maturity, and thus day-
light dependent tuberization. Early maturity allows the cultivation of the short-day 
potato under long-day conditions. Different market segments require different maturity 
classes, which phenotype is generally recorded by breeders by observing foliage 
senescence, termination of flowering, prostrate stems, and/or inactive apical meristems 
as a proxy for tuberization. Previously this major effect QTL was mapped to the StCDF1 
gene, PGSC0003DMG400018407 (Kloosterman et al. 2013). A diploid mapping 
population segregating for plant maturity (Visker et al, 2003) allowed to associate late 
maturity to homozygosity for the wild type StCDF1.1 allele. This functional allele shows 
100% sequence identity with the StCDF1 gene of the DM reference genome. Early 
maturity was associated with the presence of the allelic variants StCDF1.2 and/or 
StCDF1.3. 

Genomic information present in sequenced BAC clones of RH-89-039-16 allowed to 
determine that the StCDF1.3 allele contained a transposon insertion, whereas the 
StCDF1.2 allele displays a transposon excision event, where only a footprint (TSD; 
Target Site Duplication) of 7bp remained. In the StCDF1.2 allele, this insertion results in 
a frame-shift introducing a premature stop codon. Both these alleles lead to an early 
phenotype. The molecular characterization of these alleles showed that the lack of the 
terminal domain III allows these proteins to evade post-translational degradation by the 
complex of FKF1-GI light receptors. An accumulation of the StCDF1 protein 
subsequently leads to an early phenotype.  

So far the allelic variation present at this locus has not been characterized in commercial 
potato germplasm. Previous reports have only characterized allelic variation in a number 
of primitive landraces, which comprises only few tetraploid potato genotypes (Hardigan 
et al. 2017), but failed to assess allele diversity within a large set of tetraploid potato 
genotypes. To facilitate marker-assisted breeding we describe a catalogue of different 
StCDF1 haplotypes, their allele frequency, and extent to which this allelic variation 
explains the differences in maturity. The results in this study show that the StCDF1 
displays a large number of haplotypes, from which only one haplotype is significantly 
associated with plant maturity. We correlated the presence of this intra-gene haplotype 
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with the presence of the transposon and footprint allele, but we are unsuccessful to 
completely tag the causative polymorphisms. In addition we defined haplotype-specific 
SNPs that can be used to distinguish between late and early alleles, which can be applied 
in marker-assisted breeding.  

Materials and methods 
Targeted enrichment sequencing 
Targeted re-sequencing of the StCDF1 was performed using an in-solution enrichment 
with RNA bait capture (Uitdewilligen et al. 2013). In short, baits were designed on the 
sequences of the StCDF1 gene (disregarding the intron) ordered as a customised 
SureSelect bait library (Uitdewilligen et al. 2013). The bait design included also an 
additional set of genes, including the neighbouring genes of the StCDF1 gene. The use 
of this bait library allowed to predominantly collect sequencing reads that belong to these 
genes, and therefore read depths of 60× – 100× were achieved. The sequenced panel 
comprised 83 potato varieties, representative for the global gene pool of commercial 
potato, both heirloom and contemporary varieties. Sequencing reads were mapped to 
the reference genome (V3.4, PGSC, 2011) and genotyping was performed with FreeBayes 
(Erikson et al. 2008). After genotyping, variants with genotype quality (GQ) of  > 26 were 
retained and low-quality variants were discarded. More details on the composition of 
this dataset can be found in Uitdewilligen et al. (2013) and supplementary file S1.   

Haplotype assembly 
Haplotype assembly was performed after read alignment and variant calling. To facilitate 
haplotype assembly, only bi-allelic SNPs were retained from the two exons of StCDF1.  
Read alignment data of each sample was processed separately, and haplotypes were 
reconstructed using the approach described in Chapter 3. In short, first haplotypes were 
reconstructed using only heterozygous variants in each cultivar. Subsequently 
monomorphic SNPs were inserted in the haplotypes, allowing to compare haplotypes 
between individuals. After haplotype reconstruction in each individual, the results were 
aggregated and the collection of reconstructed haplotype blocks were compared between 
individuals.  
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Pedigree-informed haplotype assembly and haplotype imputation  
The fragmented haplotype assembly was improved by using genetic relationships, that 
were present within these 83 varieties. Within this panel, 26 varieties had a parent that 
was genotyped. In addition for variety Markies both parents were genotyped. In Figure 
1 an example of how pedigree-informed haplotype assembly is performed. Here, 
Ackersegen is a descendant of Hindenburg and Allerfrüheste Gelbe. Between these two 
varieties haplotype blocks partially overlap. Linkage between these blocks can be resolved 
because two alleles are shared between both varieties, in absence of double reduction. 
The number of options for extending linkage between blocks was decreased by 
discarding haplotype configurations that are not fully in agreement with this allele flow. 
If based on this, reconstruction of the complete  haplotype with 35 SNPs was not 
achieved, read alignments were manually inspected for presence of sequencing 
fragments that uniquely link alleles of separate blocks. In most cases the complete 
haplotype among these 35 SNPs can then be reconstructed. For the remaining varieties 
for which no genetic relations are present in this dataset, only alignment information 
was used to link haplotype blocks and improve the length of the reconstructed 
haplotypes. Based on these results we reconstructed a reference library of haplotypes, 
and application of Poly-imputer (Chapter 6) allowed to assign combinations of these 
reference alleles to each genotype. The final results after imputation were used for 
downstream analysis.  

Identification of the footprint and transposon allele in sequencing data 
Previously the StCDF1.3 allele was found to contain a transposon insertion, whereas the 
StCDF1.2 allele originated by excision of the same transposon, resulting in a 7bp 
footprint allele, which otherwise shows 100% sequence identity. Here we identified the 
occurrence of this footprint in read alignment of each genotype, by pattern matching: 
First, the sequence of the StCDF1.3 allele was retrieved from BAC clone RH048D11 
(Genbank: AC238025.1). Within this sequence the transposon insertion was identified, 
and flanking sequences of the transposon insertion site were extracted and used to screen 
all sequencing fragments for the occurrence of the transposon (StCDF1.3) and/or 
footprint allele (StCDF1.2). The presence of the transposon was determined by 
calculating the number of k-mers (k=10) originating from the 865 bp transposon insert 
that is located within the StCDF1.3 allele. A positive match for occurrence of the 
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transposon was defined if multiple k-mers (≥ 3) were present in a single read. The 
presence of the footprint was identified by pattern matching using flanking sequences of 
the insertion site, allowing for presence of a 2-10 bp insertion, using the following 
pattern: ‘ACTAGG.{2,10}TATCAGGAAT’ and reverse complement  
‘ATTCCTGATA.{2,10}CCTAGT’. 

 

Figure 1. Example of pedigree-informed haplotype assembly variety Ackersegen (parent) and Hindenburg 
(offspring). A) The haplotype assembly resulted in a total of three disjoint blocks in Ackersegen and four disjoint 
blocks in Hindenburg. B) For block 1, 2 and 3 based on inheritance shared haplotype segments can be determined. 
In grey shared segments between Ackersegen and Hindenburg are visualized. C) These shared haplotype segments 
allow to diminish the potential haplotype linkages between blocks, which subsequently are solved at the level of 
individual reads. D) The resulting assembly over all 35 SNPs.  
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Association analysis 
Phenotypic data for maturity of each of the 83 tetraploid varieties was previously 
described in D’hoop et al. (2008) and scored in a multi-year multi-location field trail. 
Plant maturity was evaluated on an ordinal scale (1=early, 9=late), based on visual field 
observations at the end of July-September. Adjusted phenotype means were obtained 
according to the description in D’hoop et al. (2011). Genome-wide Association mapping 
was performed in Genstat using linear regression, with including population structure 
as cofactor, using a strict additive model. For haplotype-based regression of intra-locus 
haplotypes, only linear regression was used, disregarding the effect of population-
structure. In addition, multi-allelic regression was performed including all reconstructed 
haplotypes at the StCDF1 gene. Subsequently, backwards selection was performed to 
obtain the best fit. In this procedure the least significant marker is removed until all 
markers are  (p < 0.05) contributing to the final model.  

Results 
Haplotype analysis 
A panel consisting out of 83 tetraploid potato varieties was used to identify allelic 
variation in the StCDF1 gene. Previously analysis of the sequences of the StCDF1 gene 
resulted in the identification of 63 sequence polymorphisms in the two exons of this gene 
(Uitdewilligen et al. 2012). Here we performed haplotype assembly using the short-reads 
(100 paired end sequencing) provided in this dataset, resulting in partial haplotype 
(blocks) across these exons. The first exon was not sequenced at high read depth, 
resulting in a large proportion of fragmented haplotype blocks. At higher read depth, a 
highly contiguous haplotype assembly was observed (2nd exon: PotVar0079590-
PotVar0079635). Therefore, were able to obtain partial haplotype information for the 2nd 
exon of the StCDF1 gene (Figure 2).  
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Figure 2. Haplotype assembly results in fragmented haplotype(-blocks) in the StCDF1 gene. Haplotype assembly 
resulted in larger blocks in the 2nd exon of the gene. The first exon of the StCDF1 gene had lower read depth, resulting 
in shorter haplotype blocks. In the right panel black indicates presence of smaller haplotype blocks.  

After initial haplotype assembly, pedigree relations were used to manually generate 
longer haplotypes in 47 out of 83 varieties. If pedigree data did not allow the 
reconstruction of more contiguous haplotypes, read alignments were inspected if 
sequencing fragments uniquely linked homologous alleles within two adjacent haplotype 
blocks. In that case, read information was used to improve the haplotype assembly. The 
use of both pedigree data and read alignments resulted in 20 haplotypes across 35 SNPs, 
comprising 1100 bp of the 2nd exon of the StCDF1 gene.  

To obtain full-length haplotypes in the remainder of 37 varieties, which only contain 
fragmented haplotype blocks,  we employed Poly-Imputer (Chapter 6). The application 
of Poly-Imputer does not discover new haplotypes, but tries to decompose genotypic 
data into the best combination of four, out of the 20 haplotypes. To execute Poly-Imputer 
we used the set of 20 haplotypes as input and performed imputation of all 83 varieties, 
including the 47 for which manually haplotypes were reconstructed. After imputation, 
12 of the above mentioned 20 haplotypes were found in the dataset, but 8 were not 
observed. These eight haplotypes represent low-frequent haplotypes (1-5 counts), and 
likely represent haplotype reconstruction errors, that occurred during haplotype 
assembly or through manual processing of haplotype blocks. The reason why Poly-
Imputer assigned other haplotypes to these varieties, is that a different combination of 
four haplotypes better explains the observed dosages of a variety, given the observed 
population allele frequency. After imputation, 8 out of 12 haplotypes have allele 
frequencies above 1% (Table 1, Figure 4), and 3 have allele frequencies below 1%. Among 
the haplotypes a SNP density of 1 SNP every 32 bp was found. In terms of allele 
composition for 22 varieties a quadrigenic (abcd) configuration was observed, whereas 
the numbers for trigenic (aabc), digenic-duplex (aabb), digenic simplex (aaab) and 
monogenic (aaaa) are 47, 10, 1 and 0, respectively. Hence most varieties contained three 
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unique alleles and an average number of unique alleles of  3.1. The numbers of 
observations per unique genotypic class ranges from 1-5, indicating that most varieties 
contained a unique allele composition. For the complete allele composition in each 
variety see File S2. To test deviations from Hardy-Weinberg equilibrium, we employed 
a chi-squared (χ2) test for each allele with count > 5, by comparing expected genotypic 
frequencies to observed genotypic frequencies. This test showed that all reconstructed 
haplotypes were in close agreement of Hardy-Weinberg equilibrium. 
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H1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 
H2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
H3 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 1 
H4 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 0 1 1 1 0 1 1 1 0 0 1 1 0 1 0 0 0 
H5 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 0 1 1 1 0 1 1 0 0 0 0 1 0 1 0 0 0 
H6 0 1 0 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 1 1 1 1 1 1 0 0 0 1 1 0 1 0 0 0 
H7 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 
H8 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 1 
H9 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 0 0 1 
H13 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 
H16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 
H17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

 

Table 1. Haplotype composition in 83 varieties. The cells with black border are tag-SNPs for that specific haplotype.  

Association analysis 
The genome-wide association analysis identified a major-effect QTL on chromosome 5, 
as previously reported in Kloosterman et al. (2013), coinciding with the presence of the 
StCDF1 gene. The most significant association was found with PotVar0078096 at 
PGSC4.03 coordinate chr05:4408254, located 130 kb distal of the StCDF1 gene with  –
log10(P) of 14.98. The best association within the StCDF1 gene was found with 
PotVar0079616 at PGSC4.03 coordinate chr05:4541104, with –log10(P) of 13.02. These 
two SNPs explain 43% and 31.59% of the phenotypic variation, respectively (File S3).  

 

Figure 3. Correlation between the most significant SNPs (PotVar0079616 and PotVar0078096) and maturity index. 
Note that PotVar0079616 is positively correlated with the presence of the reference allele, whereas PotVar0078096 
is negatively correlated with the presence of the reference allele.  
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An important issue is to compare the power of GWAS based on individual SNPs with 
the power of a haplotype-based GWAS analysis. To identify which haplotype has an 
effect on plant maturity, an association analysis was done with all 12 haplotypes. This 
identified a single haplotype (H2) that is significantly associated with −log10(P)  = 8.78 to 
plant maturity, where presence of the alternative allele leads to early tuberizing varieties 
(Figure 4A). This haplotype contains for all SNPs the reference SNP-allele, therefore 

similar to the DM S. tuberosum group Phureja DM1-3 516 R44 StCDF1 
allele. The allele frequency of haplotype H2 is 0.36. This single allele explains 41% of 
the phenotypic variation.  For all other 11 haplotypes, no significant association was 
found.  

Figure 4. A) Correlation between plant maturity and dosage of haplotype H2 B) Frequencies of haplotypes observed 
in the StCDF1 gene. The orange haplotype leads to an early tuberization response.  

Presence of transposon and/or footprint allele 
Previously two mutant alleles were identified that lead to early maturity (Kloosterman et 
al. 2013). The StCDF1.3 allele contains a 865 bp long transposon insertion, whereas the 
StCDF1.2 allele originated through an excision event, and only contains a insertion of 
7bp. Both these inserts cause a premature stop codon resulting in truncated proteins, 
and should lead to a similar phenotypic effect. In this study we identified the presence of 
either transposon or footprint with pattern matching that identified portions of the 
transposon or footprint in sequencing reads. From the 83 varieties, 67 varieties contained 
sequencing reads with the presence of a 7 bp insertion at the transposon- insertion site. 
Analysis of transposon-containing sequencing fragments identified 47 varieties that 
contain one or more copies of the transposon insertion (File S2). Here, we could not 
estimate discrete dosages of this allele, but we associated the proportion of reads (as 
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proxy for dosage), originating from either transposon or footprint as predictor for early 
maturity. We observed a significant association between the proportion of transposon-
containing reads and plant maturity of −log10(P)  = 8.94 (Figure 5A). Surprisingly, no 
association was observed between occurrence of the footprint allele and plant maturity 
(Figure 5B).   

 

Figure 5. Correlation between plant maturity and proportion of reads originating from (A) transposon or (B) 
footprint allele. 

Correlation analysis 
To understand which of the reconstructed haplotypes contains the transposon insertion 
or footprint, the squared correlation coefficient (r2) between proportion of reads per 
sample and dosages of a single haplotype was used. From all haplotypes, only H2 has a 
strong correlation to the presence of transposon-containing reads (r2 of  0.29), as 
visualized in Figure 6. In addition also haplotype H1 (AF=0.26; r2 = 0.1) showed a weak 
correlation with presence of the transposon, whereas all other haplotypes have no 
substantial correlation to the presence of the transposon. We also evaluated the 
correlation between presence of the proportion of reads originating of the transposon 
allele and all SNPs within the haplotyped region, from which we observed only for 
PotVar0079616 a significant correlation with r2 of 0.26. We also evaluated the correlation 
to the (distal) SNP PotVar0078096, resulting in a r2 of 0.36. In addition, the presence of 
the 7bp-footprint excision motif was correlated with H2 (r2 = 0.13) and haplotype H3 (r2 
=  0.68). The latter haplotype is not associated with plant maturity (−log10(P)  = 0.46). 
Here we also observed a correlation between H3 and H2 (r2 =  0.18), and between  H1 
and H2 (r2 =  0.18).  

R² = 0.4004
0

2

4

6

8

10

0.00 0.10 0.20 0.30 0.40

Pl
an

t m
at

ur
ity

 (1
=l

at
e,

 
9=

ea
rly

)

Proportion of reads

Transposon (StCDF1.3)

R² = 7E-06

0

2

4

6

8

10

0.00 0.10 0.20 0.30 0.40 0.50

Pl
an

t m
at

ur
ity

 (1
=l

at
e,

 
9=

ea
rly

)

Proportion of reads

Footprint (StCDF1.2)



 Haplotype diversity StCDF1 

155 
 

 

Figure 6. Correlation matrix between haplotypes and occurence of footprint/transposon. ‘FP’ indicates footprint 
occurence and ‘Tr’ indicates presence of transposon. In the lower triangle, the results of correlation between 
haplotypes, and between haplotypes and ‘Tr’ and ‘FP’. The upper panel reflects the correlation between ‘FP’ and ‘Tr’ 
and individual SNPs.  

To investigate the possible contribution of multiple alleles we employed multi-allelic 
regression using the twelve reconstructed haplotypes (H1-H12). The use of all 
haplotypes in a single regression model resulted in an explained 56% of the phenotypic 
variation. The application of forward and backward regression allowed to define a model 
with only nine haplotypes, resulting in a similar explained variation of 55.6%. This model 
contained H1,  H3, H4, H5, H6, H7, H8, H9, H11, but not H2, H10 and H12, effectively 
selecting against presence of H2. 

Discussion 
In this study we used next-generation sequencing to identify haplotypes within the 
StCDF1 gene, a major regulator of daylight-dependent tuberization, colloquially known 
as plant maturity. In total, 20 haplotypes were identified in 47 tetraploid varieties  for the 
2nd exon of the StCDF1 gene. After manual curation, and imputation, 12 haplotypes were 
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retained, whereas eight haplotypes were discarded as these likely represent erroneous 
assembled haplotypes. To each variety the best combination of four out of these eight 
haplotypes were assigned, allowing to determine the haplotype composition of all 83 
varieties. Of these eight haplotypes, only one haplotype displays a significant association 
with plant maturity. The dosage variation of this haplotype explains 40% of the 
phenotypic variation in plant maturity.  

Haplotype analysis 
From the reconstructed haplotypes we can conclude that the StCDF1 gene is 
characterized by an enormous allele diversity. Previous studies have identified 
haplotypes based on Sanger-sequencing for other genes such as the PHO1a and StGWD1 
gene, indicating that commercial potato contains between 9-16 haplotypes (Schreiber et 
al. 2014, Uitdewilligen et al. 2012), which is roughly similar as the amount of alleles (12) 
discovered here. Likewise in a previous study we estimated that on average 15 unique 
haplotypes are present within a segment of 25 SNPs, based on haplotype analysis of 800 
genes (Chapter 3). Typically these haplotypes display a frequency spectrum that follows 
an exponential distribution, with a few common haplotypes and a larger tail of rare 
haplotypes. The rare haplotypes with an allele frequency below 1% might represent 
recent wild species introgression segments, which can be validated with pedigree 
information, as these haplotypes show identity-by-descent. Otherwise, the rare 
haplotypes are erroneous due to genotyping errors or haplotype reconstruction errors. 

So far most studies that have reported on haplotype analysis in potato have made use of 
amplicon-sequencing, which is suitable for small scale investigations of allele diversity at 
a single or a few loci (Rickert et al. 2002, Schönhals et al. 2008, Schreiber et al. 2012, 
Uitdewilligen et al. 2012). Interpretation of amplicon sequences allows SNP calling, but 
reconstruction of the underlying haplotypes requires sub-cloning of the PCR product 
and colony sequencing. (Uitdewilligen et al. 2012). In this study we used short-read 
sequencing technology to collect linkage phase information between the SNP alleles as 
contained by the reads (read-pairs) to reconstruct haplotype diversity at a single locus. 
In contrast to PCR amplicon-based strategies, the length of a reconstructed haplotype is 
not limited by the length of the PCR amplicon, but rather by sequencing characteristics 
such as read depth, library insert size and read length (Chapter 3). A downside of this 
sequencing-based approach is that fragmented haplotype blocks are recovered initially, 
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for which no linkage between adjacent haplotype blocks is known. Improvement of these 
solutions requires either manual haplotype reconstruction, or the use of other sources of 
haplotype information. In this paper we improved the contiguity of the haplotypes by 
manual phasing, or pedigree relations, as well as by manual assignment of sequencing 
reads. After obtaining a haplotype library, imputation with Poly-Imputer (Chapter 6) 
was performed, allowing to quickly screen additional genotypes for the presence of these 
haplotypes. 

Association analysis 
Strikingly the position of the SNP marker PotVar0078096 with the most significant 
association with plant maturity was at 130 kb distance from the causative StCDF1 locus. 
This SNP allowed to explain 43% of the phenotypic variation. In contrast, the most 
significant marker residing within the StCDF1 gene explains only 31.6% of the 
phenotypic variation (PotVar0079616), which indicates that this marker does not tag the 
causative allele unambiguously. Association with haplotype H2 allows to explain 41% of 
the variation, and judged from the haplotype composition, the SNP PotVar0079616 is 
not completely haplotype-specific for the H2 allele (e.g. the reference allele is present in 
H16 and H17), which likely explains the difference in strength of association to maturity 
differences between H2 and PotVar0079616.  

In our study none of the other 12 alleles within the STCDF1 have a significant correlation 
to maturity, indicating that differences in plant maturity are likely to be mediated by a 
single allele at the StCDF1. The H2 allele allowed to explain 40% of the phenotypic 
variation. The use of all haplotypes at this locus increased this to 55%. In view of the high 
broad sense heritability (H2 = 0.85 - 0.9) of plant maturity (D’hoop et al. 2009, 2011), a 
considerable part of the genetic variation is not explained by this locus, suggesting an 
important role for epistatic and allele interactions and potentially a lack of QTL detection 
for other minor QTLs. Previously we identified a QTL for plant maturity on 
chromosome 3, which was only detected using haplotype-based GWAS, and was not 
found in this study (Chapter 5). In this study the chromosome 3 QTL was not detected, 
possibly because of the small sample size (N=83). Another reason could be that single 
SNP markers fail to adequately tag the causative chromosome 3 allele, which 
subsequently can escape QTL detection (See Chapter 5).  
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Kloosterman et al. (2013) showed that multiple variants of the StCDF1 gene could lead 
to early maturity. We identified the presence of transposon and/or footprint alleles in 
each sequenced variety. Correlation analysis show that presence of the transposon is 
associated (r2= 0.29) with presence of haplotype H2 (Figure 5), and also exhibits a weak 
correlation with haplotype H1 (r2 = 0.1). If these two haplotypes would perfectly tag the 
presence of the transposon we would expect a correlation that is close to 1.0. Here we 
observe that the correlation between H2 is much lower than expected, which likely can 
be explained by the lack of discrete dosage assignment of transposon presence.  

Surprisingly no association was observed between early plant maturity and the presence 
of the footprint (StCDF1.2). Based on correlation analysis the presence of the footprint 
is strongly correlated to presence of H3, and also H2. In a previous study an allele 
containing the footprint excision event displayed a strong phenotypic effect. Notably 
within in the C×E population (See S1 Kloosterman et al. 2013), clones originating from 
the C×E population containing a single copy of the StCDF1.2 clearly show an early 
phenotype (Kloosterman et al. 2013). In addition complementation tests of this allele in 
Solanum andigenum and late maturing C×E progeny, both led to early tuberization 
(Koosterman et al. 2013). In this study we could not find an association between presence 
of 7bp-insertion and plant maturity, which is at odds with previous knowledge.  

Is H2 the causative allele that contains the transposon insertion? 
For marker-assisted breeding haplotype-specific markers are required. So far, the best 
marker is the 130 kb distal of the StCDF1 gene (PotVar0078096), as judged from the 
association analysis, and this marker is also correlated to the presence of the transposon. 
As judged from the correlation analysis the intra-gene H2 haplotype correlates strongly 
to the transposon presence, and is correlated weakly with occurrence of the footprint or 
wild type alleles. This suggest that H2 should be split into a H2- (without transposon) 
and H2+ (with transposon). The presence of H2 could be detected with a combination of  
PotVar0079616, PotVar0079625 and PotVar0079626 can be applied for use in marker-
assisted selection, whereas at this moment no distinction can be made between H2- and 
H2+. The separation of these two alleles can likely be achieved by either constructing 
longer haplotypes, or by developing a  marker specifically targeting the presence of the 
transposon.  
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Conclusions 
In this study we identified a single allele of the StCDF1 gene that explains differences in 
plant maturity, and likely contains the transposon insertion. This haplotype does not 
distinguish completely between alleles containing a transposon and alleles that do not 
contain the transposon insertion. Therefore we postulate the presence of a H2-  (without 
transposon) and H2+ (with transposon). We fail to understand why presence of the 
footprint has no correlation with plant maturity. In this study we demonstrated that 
next-generation sequencing allows to characterise haplotype diversity of a single locus. 
The use of genetic relations and haplotype imputation allows to build complete 
haplotypes in all sequenced varieties.  
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This thesis deals with two aspects important in potato breeding and genetics. Firstly, the 
development of methods and tools to identify haplotypes in tetraploid potato. Secondly, 
application of these methods and tools to reconstruct haplotypes and use of these 
haplotypes in genetic studies. In the second chapter, I started with a genome-wide 
association mapping study (GWAS) for potato tuber shape, which identified a major 
effect QTL on potato chromosome 10. Subsequent fine mapping in an experimental 
diploid potato population (C × E), refined this locus to a region of ~200 kb. Within this 
population, multiple alleles, conferring round or long tuber shape were found to 
segregate and jointly explained phenotypic trait variation. However, within an 
association panel, consisting of 537 varieties, no knowledge was available about 
haplotype composition, limiting our understanding of the genetic architecture of potato 
tuber shape. To overcome the lack of knowledge of haplotype composition, tools were 
developed to identify haplotypes, starting with the development of a computational 
method that reconstructs short-range haplotypes from short read sequencing data 
(Chapter 3). Subsequently, a method for long-distance haplotyping was developed, 
which uses SNP genotyping data (Chapter 4). This tool was applied to SNP data of a 
potato association panel, comprising 537 tetraploid varieties (Chapter 5). Because the 
results from the methods for haplotype reconstruction that were introduced in chapter 
3 and 4 often are incomplete or contain errors,  I explored the use of a curated library of 
reference haplotypes to impute those haplotypes on unphased genotypes (Chapter 6).  

Once these tools were developed, I explored the use of reconstructed haplotypes in an 
association mapping experiment. In Chapter 6, previously identified QTLs for tuber 
shape (Chapter 2), maturity (Kloosterman et al. 2013) and flesh colour (Wolters et al. 
2010) were re-evaluated with haplotype-based association mapping. This had the goal to 
link these QTLs to allelic information. Also, Chapter 7 describes an in-depth study to 
uncover allelic variation of the StCDF1 gene, a key regulator of day-light dependent 
tuberization.  

In this general discussion, I will discuss the relevance of findings that were obtained in 
the six experimental chapters, and try to place these in a broader scientific context. Here 
I will focus on the discussion of aspects that encompass haplotype detection methods, 
and implications of using haplotypes for QTL discovery, specifically in the context of an 
association mapping panel. Last but not least, I will discuss the application of haplotypes 
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in marker-assisted breeding, and steps that need to be taken to include knowledge about 
haplotypes in a practical potato breeding program.   

Prologue 
In science, no discovery is made in solitude, and that is certainly true for this thesis. Most 
of the presented findings in this thesis evaluate existing ideas. This thesis builds further 
on research that was performed in three previous PhD projects (D’hoop, 2008; 
Uitdewilligen, 2013; Vos, 2017), which were executed at the department Plant Breeding 
of Wageningen University & Research. Almost a decade ago, D’hoop et al. (2009) 
performed association mapping in a large set of potato varieties, using AFLP technology 
to identify marker-trait correlations with agronomical traits. Later, a broader panel was 
genotyped with the SOL-STW SNP array, comprising 15K usable SNP markers (Vos et 
al. 2015). Part of these SNP markers were found in a SNP discovery study in 2013, where 
targeted resequencing of 800 potato genes allowed to characterize 135,000 DNA 
sequence variants (Uitdewilligen et al. 2013). Re-sequencing showed the enormous 
genetic diversity of the potato genome and led to the understanding that sequencing 
reads could be used to perform haplotyping in potato (Chapter 3). The SNPs identified 
in this set of varieties allowed to construct the high-density SNP array that was previously 
mentioned (Vos et al. 2015) and generated insights related to agronomical traits in potato 
(Kloosterman et al. 2013; Vos et al. 2016). The application of association mapping using 
data from this SNP array led to the understanding that haplotype information is crucial 
for application of markers in potato breeding. In this thesis, I provide tools that allow to 
routinely interrogate both the sequencing dataset of Uitdewilligen (2013) and the SNP-
array data (Vos et al. 2015) to obtain a catalogue of naturally occurring haplotypes, and 
explore the application of these haplotypes in genetic studies.  

Genomics in polyploids: Development of sequencing technologies 
In recent years, much progress has been made in plant genomics due to development of 
platforms that generate long reads and increasing sequencing capacity (Goodwin et al. 
2016). Whereas in the previous decade it was only possible to reconstruct a single 
reference genome with a lot of efforts (PGSC, 2011; ITAG, 2009), nowadays the 
construction of multiple references has become feasible, even for small research groups. 
Examples of plants for which multiple reference genomes are available are Arabidopsis 
thaliana (Gan et al. 2011; Jiao et al. 2017) and tomato (The 100 Tomato Genome 
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Sequencing Consortium, 2014). The increased availability of these fully phased reference 
assemblies indicates that the reconstruction of such an assembly poses fewer challenges 
than before: For instance, a de novo assembly of the wild tomato species Solanum penneli 
was reported using only Nanopore sequencing data (Schmidt et al. 2017). Likewise, 
phased assemblies have been reported for crops such as pepper and grape (Hulse-Kemp 
et al. 2018; Minio et al. 2017). In polyploids, such as potato, progress has lagged behind. 
For instance, already in 2011, the potato genome was sequenced, using a doubled 
monoploid, whereas, at that time, assembly of the heterozygous diploid clone RH89-
039-16 failed due to excessive heterozygosity (PGSC, 2011).  

Almost seven years later, a fully phased tetraploid potato assembly has yet to be reported. 
For other polyploid crops such as the heterozygous hexaploid sweet potato recently a 
partial phased assembly was published (Yang et al. 2017). In the case of the sequencing 
of sweet potato, partial phasing was achieved by using a reference-based phasing 
procedure (Yang et al. 2017). Likewise in the tetraploid rose (Rosa chinensis) a reference 
genome was still constructed from a doubled haploid line (Hibrand et al. 2018). These 
reports show that sequencing highly heterozygous polyploid species is still a challenge. 

A pre-requisite for the efforts to generate a fully phased assembly is the availability of 
efficient phase reconstruction methods. Indeed in diploids, a key development for 
obtaining fully phased assemblies was the development of reliable tools that allow 
disentangling the two alleles in highly heterozygous diploid genomes (Jiao and 
Schneeberger, 2017). In this thesis, a start was made with the development of such 
methods for polyploids. Here we developed a reference-guided haplotype assembly 
method (Chapter 3), as at that time this seemed the most suitable approach to explore 
the reconstruction of haplotypes, and because only short reads were available of a 
targeted resequencing effort of 83 potato varieties (Uitdewilligen et al. 2013).  

A reference-guided haplotype assembly method 
Accurate phase detection in polyploids can be divided into two stages. Firstly, the 
detection of haplotypes given a set of reads. Secondly, the determination of the dosage of 
these haplotypes. In Chapter 3, I introduced an approach that allows achieving these 
goals simultaneously, using high quality paired-end short-read sequences, originating 
from Illumina sequencers. Phase reconstruction was achieved with a probabilistic model 
that models sequencing errors and haplotype dosages. At reasonable read depth (> 40×) 
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highly accurate short haplotype blocks were reconstructed, suitable for downstream 
application in genetic studies.  

Discontinuity of phasing solutions  
One of the insights I obtained during development of the haplotype assembly method is 
that the output of haplotype assembly, as performed within a single individual, is not 
easily comparable between different genotypes. Phasing often results in a set of 
discontinuous haplotype blocks that are only partly overlapping between individuals 
(Chapter 3, Figure 7; Chapter 7, Figure 2). A single region is then split into many 
discontinuous haplotype blocks. Indeed, sequence polymorphisms are not randomly 
placed across the four homologous chromosomes, and also not uniformly distributed 
across genes or chromosomes. As a result, these haplotype blocks are only fully 
haplotyped in a subset of all genotypes, which poses a challenge to how to apply these 
blocks in for example association mapping.  

Using identity-by-descent to improve accuracy and completeness of haplotype 
solutions. 
A potential strategy to cope with this fragmentation, apart from increasing the quality of 
the sequencing data, is to use genetic relations that occur between individuals (pedigree 
relations). These relations can be used to improve phase estimation, as the assumption 
of identity-by-descent (IBD) implies that individuals share multiple haplotypes. The 
advantage of incorporating this information to estimate haplotypes can be seen in a 
recently proposed method uses IBD to phase a polyploid father-mother-child trio 
(Motazedi et al. 2017). Provided that both parents and progeny are selected for 
sequencing, this allows to improve phasing continuity, but at the expense of needing to 
genotype multiple related individuals. In Chapter 7 an example can be seen of this. 
Initially, a highly fragmented haplotype assembly was obtained. The use of genetic 
relations allowed to improve this assembly to achieve full-length phasing over a region 
of 1100 bp of the StCDF1 gene.  

Limits for haplotype assembly in polyploid crops  
In general,  the length of sequencing-based haplotypes is limited by the length of the used 
sequencing reads, or in other words, the maximum distance between variants, that is 
spanned by a set of paired-end sequencing fragments. Only if enough sequencing reads 
span between SNPs, accurate phase estimation can be achieved. As a consequence 
haplotype assembly is not very well suited for crops with low SNP density, and more 
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suitable for highly heterozygous crops such as potato. In Chapter 2, I used a sequencing 
dataset with a limited insert size (~270 bp) and short read length (100 bp), obviously not 
ideal to obtain long haplotypes. Several strategies are available to improve the length of 
these haplotypes or contiguity of the haplotype assembly. For instance, longer haplotypes 
can probably be reconstructed by increasing the read length, and at the same time, 
increasing the fragment insert size distribution. However given that conventional 
Illumina sequencing can only accept up to 1 kb of inserts, it will be a big challenge to 
obtain gene-scale haplotypes. An alternative strategy to achieve a similar goal is by using 
a cocktail of short and long reads. In that case, short reads can provide short-range phase 
information, whereas long reads will allow the reconstruction of bigger haplotypes.  

Long reads will allow the reconstruction of longer haplotypes 
At the beginning of my PhD, I never envisioned the rise of third generation long read 
sequencing technologies. A few years ago, PacBio sequencing could already achieve a 
maximum length of 20kb with high error rates but only allowed low-throughput 
sequencing. The new kid on the block, Oxford nanopore sequencing was only in the first 
stage of development and generated extremely long sequencing reads with base accuracy 
ranging from  60-80%. Currently, both sequencing technologies allow to generate vast 
amounts of reasonably high quality (95-98% base accuracy) long-read (> 100 kb) 
sequencing data.  

For sequencing data originating from these technologies, a  more suitable approach for 
haplotype reconstruction might be to first detect all unique (partial) haplotypes, which 
requires less computational resources, but more importantly, less read information, 
followed by the quantification of the dosage of each haplotype. The application of an 
equivalent approach has yielded completely phased Arabidopsis genomes (Chin et al. 
2016) with a combination of the FALCON genome assembler, followed with phase 
detection with FALCON-unzip. In short, this approach creates an assembly graph 
allowing to assemble contigs (FALCON), followed by phasing of heterozygous variants, 
and for each separate allele a so-called ‘haplotig’ is generated (FALCON-unzip). An 
advantage of these approaches is that not only single nucleotide polymorphisms (SNPs) 
are phased, but also structural re-arrangements, insertions and deletions are processed 
during phasing. As copy-number variations occur with high frequency in potato (Pham 
et al. 2017), the need for such approaches is obvious.  
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Phasing in absence of physical proximity (statistical phasing). 
Long-distance phasing typically is not achieved by using sequencing reads, but rather 
with statistical estimation of linkage phase between SNPs. In chapter 4, I developed an 
approach which allows to achieve long-range phasing, using population-wide genotypic 
data. The usage of this haplotype reconstruction method allowed to generate haplotypes 
for almost 15K markers, with good predictability for haplotypes that have high allele 
frequency, but lacks resolution for the reconstruction of alleles with low frequency (i.e. 
low frequent alleles are often erroneous). The downside of statistical phasing is that if the 
population is highly skewed in terms of population structure, haplotype phasing will 
likely result in erroneous haplotypes. This implies that great care is required for the 
selection of an adequate variety panel to assess haplotype diversity using statistical 
phasing.    

Hybrid approach for haplotype reconstruction 
The results of Chapter 3 (haplotype assembly) and Chapter 4 (haplotype inference) 
indicated to me that both strategies for haplotype reconstruction have their own merit. 
Single individual haplotype assembly results in short haplotype blocks but can identify 
alleles with low frequency with equal confidence as haplotypes that have a high allele 
frequency. Statistical phasing allows to generate long-distance linkage phases in absence 
of sequencing data. To make use of advantages of both methods, a good strategy may be 
to develop a hybrid approach that uses sequencing reads to support the presence of 
haplotypes within an individual. In case of lack of sequencing support, population-wide 
haplotype phasing allows to infer phases. Such an approach will likely result in 
haplotypes that are reconstructed with greater confidence, and result in a more complete 
haplotype: Commonly occurring alleles will be reconstructed with greater confidence, as 
they are seen multiple times in a population. Low-frequent alleles can be verified, because 
of support in sequencing fragments.   

A set of known reference haplotypes allow quick screening of allele diversity  
In Chapter 3 and Chapter 4, I developed a method that allows to reconstruct haplotypes 
in tetraploid potato varieties and a start was made in obtaining a catalogue of haplotypes 
present in the potato gene pool. Once this was achieved, I subsequently asked a different 
question: Given a set of known haplotypes, how can we identify which of these 
haplotypes are present in other unphased genotypes? Indeed, if most or all haplotypes 
and their frequencies are known, the identification of haplotypes in un-phased (new) 
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genotypic data is trivial. Previous reports have used individual tagSNPs or haplotype-
specific SNPs to identify haplotypes (Johnson et al. 2001). An example of this can be 
found in Uitdewilligen et al. (2012) where haplotypes in parts of the StGWD1 gene were 
identified with the use of conventional Sanger sequencing. After building an initial set of 
haplotypes (i.e. sub-cloning of PCR amplicons), each subsequent variety was 
interrogated for the presence of haplotype-specific SNPs. Presence or absence of these 
haplotype-specific SNPs, allowed to resolve the allelic configuration of other samples. 

In Chapter 5, therefore, I introduced an approach that allows to use existing haplotype 
data as input to impute haplotypes on unphased genotypic data. This procedure works 
by determining if a haplotype configuration is consistent with un-phased SNP calls. A 
very logical application of this approach is to use this in a bi-parental population. After 
linkage mapping, order and location of markers is known and each SNP allele is assigned 
to its homologous chromosome, and haplotype information can be extracted. Each 
progeny should contain a combination of these parental homologous chromosomes. 
Application of Poly-Imputer allowed to score these haplotypes in the progeny with an 
accuracy of 98%. In this case, imputed haplotypes were compared to haplotypes 
reconstructed with tetraOrigin, which models recombination as well. A disadvantage of 
the current implementation of Poly-Imputer is the requirement of segments for which 
limited or no recombination is observed.  

Another application of this tool was to improve the contiguity of haplotype solutions 
obtained by haplotype assembly (Chapter 3). As mentioned above, the haplotype 
assemblies originating from sequencing data are highly fragmented. In some individuals, 
reasonable length haplotype blocks are found. The use of these blocks as reference 
haplotypes allowed to impute haplotypes on the remainder of the varieties. 

What length of haplotypes is required? 
Arguably for most applications in plant breeding phasing does not need to be on a 
chromosome-level and even fragmented solutions, such as obtained in Chapter 3 may be 
sufficient. Here we define a haplotype as: ‘a  segment of multiple adjacent SNPs that are 
present in only one homologous chromosome’. Commonly an allele can be defined as ‘a 
variant of a gene or locus’. Hence the word ‘haplotype’ is used in a more comprehensive  
way than the word ‘allele’. Theoretically, the boundaries of a haplotype can be defined as 
a function of historical recombination events. This is commonly done in human genetics, 
where low-recombining haplotype blocks were defined on the basis of patterns of linkage 
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disequilibrium (Gabriel et al. 2003; Wall and Pritchard, 2003). Obviously, such estimates 
cannot be directly applied in polyploids, because estimates for linkage disequilibrium are 
notoriously difficult to interpret if marker-alleles are in repulsion phase (Vos et al. 2017). 
If recombination occurs between two loci, the linkage between loci decreases (linkage 
decay), and multiple haplotypes will occur in the population. However, in potato it was 
estimated on patterns of LD decay, that on average 6-10 unique founder alleles are 
present, coupled with a haplotype block length of 2-4 Mb (Vos et al. 2016). These results 
indicate that to obtain fully informative markers (i.e. detecting all segments of founder 
haplotypes), only a limited number of SNPs might be needed. Arguably some loci might 
show extreme nucleotide diversity, and other loci will show increased levels of 
homozygosity. As a result of this, the minimum requirement of SNPs to obtain a 
comprehensive view of haplotype variation at a locus is very difficult to assess. 

Haplotype diversity in potato 
The gene pool of commercial potato is characterized by a high nucleotide diversity, 
arranged in a limited set of haplotypes. In Chapter 3 we interrogated > 800 gene regions 
and identified haplotypes in 83 potato varieties. From these results it was concluded that 
on average 13 haplotypes are observed in this population, considering a segment of 15 
SNPs. However, if this window was increased to 25 SNPs, on average 15 haplotypes were 
observed. Clearly, a pattern of diminishing returns is observed, which is in line with the 
above-mentioned suggestion that for accurate assessment of haplotype diversity within 
a potato genotype panel there is no need to haplotype hundreds of SNPs, but a moderate 
number (25-50) would be sufficient to capture most of the (common) allelic diversity at 
a single locus. On the contrary, to identify all alleles that are low-frequent, a larger 
number of SNPs might be needed.  

The extremely high allele diversity as observed in this thesis is in line with previous 
results in potato, where the number of haplotypes in a part of a gene ranges between 5 
and 20 (Uitdewilligen et al. 2012; Wolters et al. 2010). Each individual variety seemingly 
contains 3.1 unique alleles. Likewise, we observed an exponential decrease of allele 
frequencies, where only a limited set of haplotypes with moderate to high frequency, 
cumulatively explain most of the allelic variation, and a large amount of rare haplotypes 
that have low allele frequencies. This, is also expected given the high inter-connectively 
of the potato gene pool (van Berloo et al. 2013), where each potato variety is likely to be 
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composed of a mosaic of common haplotypes. The large amount of rare alleles might be 
explained by recent introductions of introgression segments, or be due to phasing errors.  

Building a haplotype map of tetraploid potato 
In this thesis, we started with the development of tools to assess haplotype diversity in 
potato. The resulting haplotype data was fragmented (Chapter 3), but does provide a 
good overview of haplotype diversity in potato. This provides an excellent starting point 
to start building a reference collection of haplotypes, especially if large amounts of 
sequencing information of many varieties will become available in the near future.  

To succeed in building a complete haplotype map of potato I propose the following 
strategy: 

1. Select a comprehensive set of modern varieties, accompanied by important 
founders (i.e. resistance donors, progenitors, landraces) and perform high depth 
re-sequencing.  

2. Perform haplotype assembly within regions of high-quality sequencing data, 
and perform long-distance phasing, using a haplotype inference method.  

3. Subsequently, sequence a large collection of other genotypes with low coverage.  
4. The reconstructed haplotypes of step 2 can be imputed on the low-read depth 

re-sequenced varieties.  

If such a ‘core’ collection is large enough, it likely covers most of the allelic variation 
present in most commercial potato (i.e. common alleles). Certainly, such a collection will 
not contain all naturally occurring alleles (i.e. rare alleles), hence new haplotype variation 
might be added in a later stage to the catalogue if needed. This resource will allow to 
quickly characterise the allelic diversity of a candidate gene or find haplotype-specific 
markers for application in marker-assisted selection.  

The use of a catalogue of alleles in genetics and potato breeding 

Expression of genes 
From a molecular perspective phase information is necessary to understand how cis-and 
trans-acting variants can affect the expression of genes. Reports in human genetics have 
shown that binding affinities of different homologous alleles result in substantial 
variation in expression (Kasowaki et al. 2010). There is no reason to assume that this will 
not the case in the highly heterozygous potato. Indeed, a recent study showed that allele-
specific expression is widespread in potato (Pham et al. 2016), and a large number of 
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genes display allele-specific expression. The results of that study were based on single 
nucleotide polymorphisms, but only with phase information it can be fully determined 
which allele is preferentially expressed.  

Allele-dosage effects 
Looking at studies in diploid crops such as tomato, we clearly see examples of allele-
dosage effects. For example in tomato fruit size is regulated partly by an allele of the fw2.2 
gene, where more copies lead to bigger tomato fruit size (Frary et al. 2000). This 
phenomenon of dosage-dependent phenotypic effects is likely to be a key player in 
control of quantitative traits, as suggested by Birchler et al. (2001). In this thesis, we 
observed these effects for traits such as tuber shape (Chapter 2 and Chapter 5) and plant 
maturity (Chapter 5). For instance, the responsible allele for earliness, StCDF1.2, was 
long-time thought to exhibit dominant gene action. Indeed, given the molecular action 
of the StCDF1, we might expect that lack of degradation of the protein should display a 
dominant effect (Kloosterman et al. 2013). However, in our analysis, this allele is found 
to exhibit incomplete dominance (Chapter 4, Figure 5). Another example of a dosage-
phenotype relation in potato was previously found for the StGWD1 gene, involved in 
starch phosphorylation (Uitdewilligen et al. 2012), but also other genes such as GBSS, 
involved in the production of amylose (van der Wal et al. 2001; Flipse et al. 1996). In 
these studies, dosage-effects were observed for GBSS activity,  but strikingly, the 
increased activity of GBSS did not result in a linear increase in amylose content, but 
rather the activity of GBSS was not limited anymore for the production of amylose. These 
examples suggest that dosage-phenotype interactions, such as the ones described above 
are common in potato. 

Multiple alleles 
A central theme throughout this thesis is the occurrence of multiple alleles and their joint 
effect on plant phenotypes. Most of these questions still remain. If these multiple alleles  
would occur, what would their contribution be to quantitative trait variation? How 
widespread is multi-allelism in reality? And can we disentangle the effects of these alleles? 
Such discussion is only warranted if we look back in history:  In 1918, Fisher proposed 
to use the infinitesimal model for trait variance and postulated that genetic variance in a 
population was strictly due to a large number of Mendelian factors, each with a small 
additive contribution to their respective traits (Fisher 1918). During the previous 
century, this model has become the basis for many applications in genetics and breeding. 
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Nonetheless, in recent years others have questioned parts of this model, as it might 
represent a simplified view of the biological reality (Orr et al. 2005; Nelson et al. 2013; 
Hill et al. 2009), whereas aspects such as missing heritability, allelic heterogeneity, 
epigenetics, and occurrence of variance quantitative trait loci (vQTLs) are known to 
influence trait variation, but are neglected with a strict additive modelling of trait 
variation.  

Strikingly this reservation with using the infinitesimal model as assumption, was already 
addressed in the early 20th century. In 1927 Sirks postulated that multiple ‘allelomorphs’ 
at a single locus could also lead to quantitative trait variation as opposed to multiple 
factors. For instance potato tuber shape is modulated by a major effect QTL at the Ro 
locus, which displays multiple alleles (van Eck et al. 1994; Chapter 2). Likewise from a 
theoretical standpoint a combination of different alleles at a single locus can lead many 
genotypic classes, and cause a wide range of phenotypic variability (Figure 1). For 
instance, a single locus with three functional alleles results in 9 phenotypic classes, which 
depending on the genetic contribution to the trait,  will result in a nearly continuous 
phenotype distribution(Figure 1C).  
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Figure 1. Expected phenotype classes for several genetic scenarios of multiple allelism. A) Two alleles B) Three 
alleles with distinct effects C) Three alleles, where B and A have equal effect. 

Therefore, the idea of multiple allelism is still as relevant as it was almost 90 years ago. 
Especially in polyploids with a high allelic diversity, combinations of distinct alleles at a 
limited set of loci should suffice to generate continuous phenotypic variation. When 
looking at quantitative trait variation, the tendency to immediately jump to the 
conclusion of a complex genetic architecture, might come back in a later stage as a 
boomerang. While multiple alleles are clearly difficult to detect (as can be seen in this 
thesis), a combination of a few loci with multiple functional alleles that have different 
effects, will be able to explain most or all trait variation. 

Knowledge of QTN(s) is needed to assess contributions of individual alleles 
To assess the contributions of each individual allele on phenotypes, and show if these are 
caused by different causal polymorphisms, knowledge is needed about the quantitative 
trait nucleotide (QTNs). Indeed series of functional alleles could lead to a multitude of 
phenotypic classes (Figure 1C), showing quantitative trait variation. Only with 
haplotypes, sets of alleles sharing the same QTL can be defined, and their molecular 
action can be verified. But even with using haplotypes, a different causal polymorphism 
might be present in one or multiple haplotypes, diminishing the extra discriminatory 
power of haplotypes versus single SNP markers.  

Multiple alleles and plant maturity 
A similar situation is observed for plant maturity where haplotype-based GWAS found 
a single haplotype in the region surrounding the StCDF1 gene. Previously this QTL was 
known to be mediated by multiple alleles (Kloosterman et al. 2013). Here we could not 
verify that observation which was done in a full-sib diploid population. In fact, using a 
small genotype panel in Chapter 7, no association was found between the presence of the 
StCDF1.2 allele and maturity index, and only the occurrence of the transposon showed 
a strong association. Based on the results as presented in this thesis, we cannot conclude 
that multiple alleles have significant effects, nor exclude the possibility that multiple 
functional variants are present for this gene. The use of only haplotypes did not reveal 
this, as footprint allele and transposon allele are both likely tagged by the reconstructed 
haplotype.  
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Multiple alleles and tuber shape 
In Chapter 2 it was observed that the major-effect QTL on chromosome 10 (Chapter 2) 
exhibits multiple functional alleles. Within the C×E diploid population only one allele 
conferring an elongating effect (ro), and two round alleles with slightly different effects 
were found (ro♂, ro♀). For the same QTL, the results of the association mapping indicated 
that only one has an elongating effect (Ro1), but three alleles were identified with 
rounding effects (Ro2-4). If any of these alleles, conferring roundness is present, the 
phenotypes are similar. From a molecular perspective, the putative round alleles may 
represent similar (functional) alleles, whereas the elongating allele could represent a null-
mutation. This finding was done in an association panel, and the causative region as 
defined by fine mapping is 300 kb downstream of the location of these reconstructed 
haplotypes. Given the extend of linkage decay it is very likely that recombination between 
the causative mutation and the haplotype locus could have taken place, seemingly 
resulting in new alleles, whereas they have a similar molecular mechanism.  

For this major-effect QTL for tuber shape multiple scenarios are possible. Firstly, the 
three alleles confering roundness as found in Chapter 5 are recombinant alleles, as the 
region in which the Ro locus is found is located approximately 300 kb downstream of the 
markers used in association mapping (Figure 2B). Given the linkage decay in potato (Vos 
et al. 2017), it is likely that recombination has occurred between these SNPs and the 
causative gene. Such recombinant alleles intuitively point towards multiple allelism 
(Figure 2A), but just as likely this could point towards the occurrence of recombinant 
alleles (Figure 2B). Hence, lack of knowledge of functional polymorphisms hinders the 
interpretation of these haplotypes.  
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Figure 2. The haplotype structure of the Ro locus. Two scenarios are possible. A) Three functional alleles conferring 
round tubers. B) Due to linkage decay the causative alleles has recombined, and only a single causative 
polymorphism is responsible for differences between round and long tubers.  

Such observations have been made previously in the context of association mapping in 
Arabidopsis, where conclusive evidence that multiple alleles at  the FRIGIDA gene, 
involved in flowering, was only found after positional cloning of the gene, followed by 
the identification of nine different loss-of-function mutations as basis for differences in 
flowering time (Gazzani et al. 2003). Later analysis by Atwell et al. (2010), followed a 
similar approach as done in Chapter 2 and Chapter 6, and used association mapping to 
detect presence of multiple alleles by cofactor analysis, but it could not be demonstrated 
that they were due to the presence of multiple (dis)-functional alleles at the FRI gene. 
Likewise, association mapping for sodium accumulation in Arabidopsis identified a 
strong association at the AtHKT1 gene, but multiple SNPs in this region had a strong 
association, suggesting either allelic heterogeneity or the presence of one or more 
untyped variants that are partially represented by the used SNPs (Segura et al. 2012). 
Also, in this case, an earlier study identified multiple alleles influencing sodium 
accumulation (Baxter et al. 2010). 
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In conclusion, knowledge of haplotypes in LD with QTN(s) allows the identification 
of these QTN(s) and their effects. In the case of potato tuber shape, to investigate the 
functional effects of the Ro-locus, further fine mapping and/or positional cloning is 
needed to demonstrate which gene is responsible for variation in shape. Subsequent 
investigation of allelic variants, followed by complementation tests will allow to 
disentangle the effect of each allele.  

Towards Marker-assisted breeding 
For PhD students working in potato genetics is it a tradition to include a part in the 
discussion about the possible application of markers in marker-assisted breeding (van 
Eck et al. 1995; Uitdewilligen et al. 2013; D’hoop et al. 2013; Vos et al. 2017). Obviously, 
the success of the application of marker-assisted selection can only be judged from the 
goal of the breeding program. If breeders have as goal to select for resistance genes, 
maturity or tuber shape, such goals are relatively easy to achieve. But what if one was to 
use markers for breeding of highly polygenic traits? An example of a highly polygenic 
trait is uniformity (Chapter 5), for which it is non-trivial to detect high confidence-QTLs, 
as a many minor effect QTLs influence trait variation. Each of these QTLs may need to 
be validated before use in marker-assisted selection.  

Haplotype-specificity is key to understanding allele-phenotype associations 
An  aspect of haplotype reconstruction is haplotype-specificity of individual SNPs. 
Previously it was suggested by Vos et al. (2017) that knowledge of haplotype-specificity 
of each SNP is needed before application of marker-assisted breeding in potato. As 
correctly concluded by Vos et al. (2017) any SNP that is not haplotype-specific, might 
lead to irreproducibility of GWAS results. In some cases haplotype-specific SNPs are 
found easily (e.g. see results for  flesh colour, maturity in Chapter 5). In other cases it is 
more difficult to determine the haplotype-specificity of each SNP. The determination of 
haplotype-specificity requires the reconstruction of haplotypes, which by application of 
the approaches described in Chapter 2 and Chapter 3, can be achieved routinely. From 
these haplotypes, a subset of haplotype-defining SNPs can be selected, and used to screen  
breeding material for occurrence of (a) haplotype (s), and perform marker-assisted 
selection. From this thesis it clearly can be seen that information about haplotype-
specificity improves the understanding of allele-phenotype associations. Generally, SNPs 
that are  less haplotype-specific exhibit a weaker association than more haplotype-
specific SNPs (as shown in Chapter 5). A haplotype marker will improve haplotype-
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specificity and therefore will de-convolute an association signal to a ‘real’ allele-
phenotype relation. Nonetheless, the improved correlation between the causative allele 
and marker, does not automatically imply that a haplotype-specific marker will improve 
prediction of traits. In case of minor-effect QTLs, the contribution of a single marker is 
limited, and as a result the effect of using a haplotype-specific marker will be limited as 
well.  

Genomic selection seems a suitable choice for polygenic traits.  
Genomic selection is an implementation of marker-assisted selection in which genome-
wide marker data is used to select progeny and/or parents, based on the joint 
contribution of all markers to trait variation. The reasoning behind genomic prediction 
is that all QTLs segregating in a population are in linkage disequilibrium with at least 
one marker (Meuwissen et al. 2007; Goddard et al. 2003), implying that all markers can 
be used to predict trait values. In contrast, marker-assisted selection makes use of 
markers of only a subset of markers that are previously found to be associated with the 
phenotype. For marker-assisted selection haplotype-specificity is important, but for 
genomic prediction, it is likely that if genome-wide marker data is used, most or all alleles 
are captured adequately by joint presence of multiple SNPs. In that case, it is likely that 
the use of haplotype-specific markers will improve this as well, but improvements are 
likely to marginal. 

Studies in potato applying genomic prediction, show that traits with simple genetic 
inheritance, such as maturity, have good prediction accuracies of 0.77 (Slater et al. 2014; 
Slater et al. 2016), whereas complex traits such as breeders visual preference, yield and 
boiling colour show lower prediction accuracies of respectively 0.33, 0.19 and 0.44. Other 
reports applied genomic prediction in the same manner, but included previously 
obtained significant marker-trait correlations as cofactor in their statistical model, 
increasing the prediction accuracy in many cases (Stich & Ingelandt, 2018). One of the 
reasons for this improvement might be that most genomic prediction models assume 
that most markers have small phenotypic effects. This is likely to be a simplification, as 
most traits exhibit a large number of QTLs with small effect, but also a small to moderate 
number of major-effect QTLs influencing trait variation (Bernardo et al. 2014). In case 
of inclusion of these major-effect QTLs, haplotype-specificity of markers (that are 
included in the model), is still of importance.  
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Phenotyping might be just as important as the availability of a “hapmap” 
Successful application of marker-assisted selection does not only depend on having 
haplotype-specific SNPs but potentially more on the amount and resolution of 
phenotypic data (Fiorani & Schurr, 2013), which is outside the scope of this thesis. For 
some, this is considered the next frontier, where for instance, the application of marker-
assisted selection to a polygenic trait such uniformity would require to quantify all 
subcomponents of uniformity, that disentangle the effects of trait heterogeneity. 
Likewise, subtle differences between allelic combinations, present at major effect QTLs  
for tuber shape and plant maturity might only be found if phenotyping can measure these 
differences.  

Marker-assisted selection in potato: How to proceed? 
In view of a practical potato breeding program, marker-assisted selection can be done at 
progeny level or at parent level. The latter seems more efficient, as it requires less 
extensive phenotyping, and can avoid costly genotyping at the progeny level. A breeder 
can select which beneficial trait alleles are preferred, and gradually enrich the existing 
gene pool for desired traits. However the usability of haplotypes versus single SNP 
markers could easily be overestimated. A reliance on notions of ‘genetic’ gain through 
statistical models, could simplify the complexity of a set of interconnected traits, and lead 
to poor decision-making in a breeding program. In my opinion, marker-assisted 
selection will require a catalogue of natural occurring allelic variation (Figure 3), coupled 
with a catalogue of QTL (-alleles). This can help a plant breeder to select parents for 
crossing. Genotyping needs to be performed on a wide gene pool, using either high-
density SNP arrays or whole genome sequencing, to allow the reconstruction of almost 
all alleles, that segregate in a population. After detection of QTLs, haplotype-specific 
markers for each associated allele can be developed, facilitating marker-assisted 
breeding. 
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Figure 3. Schematic overview of application of haplotypes in marker-assisted selection. 

Concluding remarks 
This thesis has made contributions to the development of methods to identify haplotypes 
in the heterozygous autotetraploid potato. The reconstructed haplotypes improved our 
understanding of the haplotype composition of tetraploid potato. The haplotype 
resources generated in this study will likely result in the improvement of application of 
markers in practical potato breeding. The investigation of allelic diversity in potato has 
just started, and hopefully the methods and insights as presented in this thesis will 
contribute to this.  
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Summary 
The identification of haplotypes in tetraploid potato allows to improve genetic studies 
and facilitate marker-assisted selection. For many years, only bi-allelic molecular 
markers were used for application in genetic studies and they undoubtedly improved our 
understanding of the inheritance of important agronomical traits. However, these 
undertakings are complicated by the lack of knowledge about linkage between these 
SNPs and thus their underlying haplotype structure. The inability of geneticists to 
achieve haplotype reconstruction was mainly due to complications of the higher ploidy 
level of cultivated potato (2x =  4x = 48), as a single potato variety contains four copies 
of each chromosome (tetraploid). In this thesis, methods are described that allow 
haplotype reconstruction in tetraploid potato, either from sequencing data of a single 
variety or by use of SNP information over multiple varieties. We employed these 
methods on genotypic data of potato varieties and used the reconstructed haplotypes to 
detect which alleles influence traits such as plant maturity, tuber shape and flesh color.  

The starting point of this thesis was a genetic study of the inheritance of potato tuber 
shape and eye depth. In Chapter 2 we identified a strong marker-trait association for 
tuber shape on potato chromosome 10 (Ro locus), that co-localises with a major effect 
QTL for eye depth. Subsequent fine mapping in a diploid full-sib potato population (C 
× E) refined the associated region of 3.1 Mb to a small region of 280 Kb. In this region, a 
repeat cluster of peroxidase genes is located.  

In Chapter 3 we started with the development of methods for haplotype reconstruction. 
We introduced a novel method to use short-read DNA sequencing data to reconstruct 
haplotypes. A previous study genotyped ~800 potato genes in 83 tetraploid varieties 
using Illumina short reads. This information was used as input for our haplotype 
reconstruction pipeline and allowed us to generate haplotype blocks of  413 bp average 
in tetraploid potato, and estimate the haplotype diversity in potato. In addition, we 
performed a simulation study, which showed that our approach had superior accuracy 
compared to competing approaches.  

A disadvantage of haplotype reconstruction with sequencing data is that only short-
range haplotypes can be reconstructed. To facilitate the construction of long-range 
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haplotypes, we developed in Chapter 4 a method that allows estimating haplotypes on 
basis of genetic information over multiple samples. This was achieved by first 
reconstructing linkage phase between SNP pairs, followed by the joining of these linkage 
phases into full-length haplotypes. We validated this method by use of pre-existing 
haplotypes of the StGWD1 gene. This validation study indicated that haplotype 
reconstruction is highly accurate. In addition, we employed our method on genotypic 
data of potato. The results show that the haplotype diversity in potato is extensive, but 
that a few common haplotypes are responsible for the majority of allelic variation.  

In Chapter 5 we subsequently used these haplotypes to explore the application of 
haplotypes in a haplotype-based GWAS. Conventionally, GWAS is only performed with 
bi-allelic SNP markers, but knowledge of haplotype-specificity is required to interpret 
the resulting marker-trait associations. Here we performed haplotype-based GWAS and 
compared this to the results of single marker GWAS. We linked specific alleles to potato 
traits such as plant maturity, tuber shape, flesh color and potato tuber uniformity. 

In Chapter 6 we report the development of Poly-Imputer. This tool allows to perform 
haplotype imputation and is based on the intuition that if the most or all segregating 
alleles are known it becomes trivial to assign four of these haplotypes to any individual. 
As input, we used a library of reference haplotypes and dosage calls of each variety. 
Application of this tool allowed to perform phasing of SNPs in progeny of a full-sib 
population, but more importantly also refine and improve haplotype solutions that are 
reconstructed with sequencing data and haplotypes based on dosage data.  

Chapter 7 involves the determination of haplotype diversity at the StCDF1 gene, a key 
regulator of the tuberization response in potato. In this study, we performed haplotype 
assembly for the 2nd exon of this gene, followed by manual assignment of haplotypes by 
use of sequencing reads and genetic relations. In this study, we could demonstrate a 
significant phenotypic effect of only one StCDF1 allele.   

In the final chapter, we discuss the findings of the previous six chapters. In conclusion, 
this thesis provides a significant step for routine investigation of haplotype diversity in 
tetraploid potato. Hopefully, the methods and tools provided in this thesis will facilitate 
the use of haplotypes in marker-assisted selection and increase our understanding of 
allele-phenotype interactions in potato.  
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