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Abstract16

Many different types of multiparental populations have recently been produced to increase ge-17

netic diversity and resolution in quantitative trait loci (QTL) mapping. Low coverage geno-18

typing by sequencing (GBS) technology has become a cost effective tool in these populations,19

despite large amounts of missing data in offspring and founders. In this work, we present a20

general statistical framework for genotype imputation in such experimental crosses from low21

coverage GBS data. Generalizing a previously developed hidden Markov model for calculating22

ancestral origins of offspring DNA, we present an imputation algorithm that doesn’t require23

parental data and that is applicable to bi- and multiparental populations. Our imputation al-24

gorithm allows heterozygosity of parents and offspring as well as error correction in observed25

genotypes. Further, our approach can combine imputation and genotype calling from sequenc-26

ing reads, and it also applies to called genotypes from single nucleotide polymorphism (SNP)27

array data. We evaluate our imputation algorithm by simulated and real datasets in four dif-28

ferent types of populations: the F2, the advanced intercross recombinant inbred lines (AI-RIL),29

the multiparent advanced generation intercross (MAGIC), and the cross pollinated (CP) popula-30

tion. Because our approach uses marker data and population design information efficiently, the31

comparisons with previous approaches show that our imputation is accurate at even very low32

(< 1×) sequencing depth, in addition to having accurate genotype phasing and error detection.33
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Introduction34

Genotype imputation describes the process of imputing missing genotypes in study individuals,35

most often using a high density reference panel of genotypes. For human populations, HapMap36

(FRAZER et al. 2007) and the 1000 genome project (ALTSHULER et al. 2012) provide reference37

panels including millions of SNPs. Genotype imputation has become a key step in the genome38

wide association studies of human populations to increase the power of QTL detection and39

to facilitate meta-analyses of studies at different sets of SNPs (LI and FREUDENBERG 2009;40

MARCHINI and HOWIE 2010).41

Genotype imputation leverages haplotype sharing between study individuals and reference42

panels. Along chromosomes, the pattern of haplotype sharing changes due to historical re-43

combination. A crucial component of most genotype imputation methods is to infer the local44

haplotype clustering and the ancestral haplotypes from reference panels and study individuals45

(HOWIE et al. 2009; LI et al. 2010; BROWNING and BROWNING 2016). The accuracy of im-46

putation depends on how well reference panels match study individuals in terms of ancestral47

haplotypes (PEI et al. 2008; ROSHYARA et al. 2016).48

Next-generation sequencing technology has become an attractive and cost effective tool for49

QTL mapping in non-human populations (SPINDEL et al. 2013; HEFFELFINGER et al. 2014;50

KIM et al. 2016), and genotype imputation is essential for low coverage sequencing. The focus51

of this paper is on experimentally designed populations, particularly for plants, where study52

individuals are produced by multi-generation crossing from two or more founders. Many such53

multiparental populations have recently been created (e.g. KOVER et al. 2009; BANDILLO et al.54

2013; MACKAY et al. 2014; SANNEMANN et al. 2015), aiming at increasing genetic diversity55

due to many founders and QTL mapping resolution due to accumulated recombination break-56

points over multiple generations.57

The founders of multiparental populations are naturally used as the reference panel for geno-58

type imputation. However, there are typically many missing founder genotypes particularly59

when both founders and offspring are genotyped by low coverage sequencing, and some of the60

founders may even be missing completely (THEPOT et al. 2015). In such cases, the population-61

based imputation methods (HOWIE et al. 2009; LI et al. 2010; BROWNING and BROWNING62
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2016) are not optimal. Alternatively, pedigree-based genotype imputation methods (ABECASIS63

et al. 2002; CHEUNG et al. 2013) are computationally intensive if not impossible, because of the64

large breeding pedigree being often partially or wholly unavailable, and most or all genotypes65

being missing in intermediate generations.66

Recently, several imputation methods were proposed for experimental crosses. XIE et al.67

(2010) described a parent-independent genotyping method for two-way recombinant inbred68

lines (RILs), where parental genotypes were obtained using a maximum parsimony of recom-69

bination. SWARTS et al. (2014) described a Full-Sib Family Haplotype Imputation (FSFHap)70

method for biparental populations, where parental haplotypes were identified by a custom clus-71

tering method over non-overlapping windows with a window size of 50 loci along chromo-72

somes. FRAGOSO et al. (2016) described a Low-Coverage Biallelic Impute (LB-Impute) algo-73

rithm for biparental populations, where parental genotypes were imputed only after offspring74

genotypes were imputed using a modified Viterbi algorithm over a sliding window (of size 775

loci) along chromosomes. See also HICKEY et al. (2015) for genotype imputation in biparental76

populations in plant breeding.77

In experimental crosses, genotype imputation methods have mainly focused on biparental78

populations. There remain challenges for more complicated experimental designs. HUANG79

et al. (2014) described a genotype imputation method called mpimpute, which is however re-80

stricted to the funnel scheme 4- or 8-way RILs. In the funnel scheme, the founders of each line81

are randomly permuted. In this paper, we present a general statistical framework of genotype82

imputation from low coverage GBS data, applicable to many scenarios in experimental crosses.83

First, it applies to both bi- and multiparental populations. Second, it is parent-independent so84

that it applies even if some founders’ genotypes are not available. Third, it integrates with85

parental phasing and thus applies to mapping populations with outbred founders. Last but not86

least, it integrates with genotype calling to account for the uncertainties in identifying heterozy-87

gous genotypes due to low read numbers.88

Our imputation algorithm is called magicImpute, building on a hidden Markov model (HMM)89

framework that extends our previous work (ZHENG et al. 2014; ZHENG 2015; ZHENG et al.90

2015, 2018). We first evaluate magicImpute with simulated data in four populations: the F2,91
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the AI-RIL, the funnel scheme 8-way RILs, and the CP. Then we analyze four sets of real data:92

the maize F2 (ELSHIRE et al. 2011), the maize AI-RIL (HEFFELFINGER et al. 2014), the rice93

MAGIC (BANDILLO et al. 2013), and the apple CP (GARDNER et al. 2014). The term MAGIC94

has been used for many different types of breeding designs, and the rice MAGIC is essentially95

a set of funnel scheme 8-way RILs (BANDILLO et al. 2013). In the evaluations by simulation96

and real data, we perform comparisons among magicImpute, Beagle v4.1 (BROWNING and97

BROWNING 2016), LB-impute (FRAGOSO et al. 2016) and mpimpute (HUANG et al. 2014),98

investigating, among other things, how imputation quality depends on amount of missing data,99

level of homozygosity and coverage of sequencing.100

Methods101

Overview of model102

Consider a mapping population derived from a number nF ≥ 2 of founders. We assume that103

linkage groups (chromosomes) are independent, and thus consider only one group. The geno-104

typic data matrix of sampled offspring is denoted by yO = {yti}t=1...T,i=1...N , with element yti105

representing the genotype at locus t in offspring i . The founder genotype matrix is denoted106

by yF = {yFt }t=1...T , with element yFt being the genotypes at locus t in all founders. We con-107

sider only bi-allelic markers, and denote the two alleles by 1 and 2. We model either the called108

genotypes from SNP array or GBS data, or the allelic depths of GBS data. The called unphased109

genotype at a locus can take one of six possible values: 11, 12, 22, 1U , 2U , or UU , where U110

denotes an uncertainty allele. For allelic depth data, the genotype is measured by read counts111

for each of two alleles. The ordering and genetic locations of markers are assumed to be known.112

We build an integrated hidden Markov model for the genotypic data yO and yF , but impute113

missing founder genotypes and missing offspring genotypes separately. The imputation diagram114

and the overview of the HMM are shown in Figure 1. Here the hidden founder haplotype matrix115

hF = {hFt }t=1...T , where element hFt is similar to yFt except that it contains information on116

missing genotypes and genotype phases at locus t in founders. See an example in the following117

section on the genotype model. Conditional on estimated ĥ
F

, the genotypic data for each118
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offspring are analyzed independently by a sub-HMM, with xti being the hidden ancestral origin119

state at locus t in offspring i. The hidden Markov model will be further explained in the process120

model. See Table 1 for a list of symbols and their brief explanations.121

The genotype model122

Called genotype: The genotype model corresponds to the vertical relationships (arrows) in the123

directed acyclic graph of the HMM (Figure 1). Since the genotypes are independent condi-124

tional on the hidden states, we consider a single locus t. We first model the prior probability125

P (hFt |yFt ), which is assumed to follow a discrete uniform distribution over all possible com-126

binations under the constraint of called parental genotypes yFt . Consider an example of four127

inbred founders with genotypes at locus t denoted by 11, 22, UU , and UU , respectively. We128

use 12UU as a shorthand for the four homozygous genotypes. Then hFt can take one of four129

possible values 1211, 1212, 1221, 1222 with equal probability. Consider the second example130

of a cross pollinated population, and the genotypes of two outbred parents are denoted by 12131

and UU . Then hFt can take one of eight possible values 1211, 1212, 1221, 1222, 2111, 2112,132

2121, and 2122, where the last four values account for the alternative phase of the first parent’s133

genotype. The founder haplotype matrix hF is known if all parental genotypes are observed134

and phased.135

The hidden founder haplotype hFt is not the true founder haplotype, and it accounts for136

unknown phasing and missing values of called founder genotypes, but not allelic errors. The137

errors in called genotypes can be accounted for in the likelihood lti = P (yti|hFt , xti, εO, εF )138

at locus t in offspring i, where εO and εF are the allelic error probabilities for offspring and139

founders, respectively. The calculation of likelihood lti has been described in detail in ZHENG140

et al. (2015). We describe it briefly as follows. We calculate lti by summing over the hidden141

true genotype zti, and it holds that142

lti =
∑
zti

P (yti|zti, εO)P (zti|dti, xti, εF ),

P (zti|dti, xti, εF ) ∝ P (dti|zti, xti, εF )P (zti|xti),
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where dti denotes the derived genotype that is obtained from xti and hFt in a deterministic way.143

We assign an uninformative prior to P (zti|xti), and calculate P (yti|zti, εO) and P (dti|zti, xti, εF ),144

assuming that typing errors occur independently and the observed allele is the alternative one145

if an error occurs with probability εO or εF . Here the derived genotype dti is the same as true146

genotype zti if there are no errors in observed founder genotypes (εF = 0).147

Allelic depth: We next consider the case that genotypes are represented by allelic depths of148

GBS data. We calculate prior probability P (hFt |yFt ) with yFt being called from founder allelic149

depths, where the genotype calling will be described in the next section. For likelihood lti at150

locus t in offspring i, only the calculation of P (yti|zti, εO) is different from the case of called151

genotypes. We introduce ε as the sequencing error probability that is given by ε = 10−phred/10,152

where phred is Phred quality score. The genotype yti is represented by (r1, r2), the number of153

reads for alleles 1 and 2, respectively. It holds that154

P ((r1, r2)|z′ = 11, ε) ∝(1− ε)r1εr2 ,

P ((r1, r2)|z′ = 12, ε) ∝(1/2)r1+r2 ,

P ((r1, r2)|z′ = 21, ε) ∝(1/2)r1+r2 ,

P ((r1, r2)|z′ = 22, ε) ∝εr1(1− ε)r2 ,

(1)

conditional on hidden genotype z′ (XIE et al. 2010).155

We interpret εO as a depth-independence allelic error probability, for example, due to the156

mis-assignment of reads to the reference genome. And we assume that z′ results from the true157

genotype zti with error probability εO. Thus, P (yti|zti, εO, ε) can be calculated by summing158

over z′ as follows159

P (yti = (r1, r2)|zti, εO, ε) =
∑
z′

P ((r1, r2)|z′, ε)P (z′|zti, εO)

where P (z′|zti, εO) is similar to P (yti|zti, εO) in the case of called genotypes, except that z′160

is phased. Specifically for zti = 11, we have P (z′|zti = 11, εO) = (1 − εO)
2, (1 − εO)εO,161

εO(1 − εO), and ε2O for z′ = 11, 12, 21, and 22, respectively. And similarly for zti = 12, 21,162

and 22. When there are no ambiguities, we suppress the dependence of ε for allelic depth data163
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in the description of the imputation algorithm.164

Single genotype calling: We perform single genotype calling for founder allelic depths of GBS165

data before imputation, and for detecting potential erroneous genotypes among offspring during166

the last stage of imputation. For single genotype calling from allelic depths, we do not consider167

depth-independence errors. The calling is based on the following posterior probability168

P (zti|yti = (r1, r2), ε) ∝P (yti|zti, ε)P (zti),

where P (yti|zti, ε) is given by Equation 1 and P (zti) = 1/4, 1/2, and 1/4 for zti = 11, 12,169

and 22, respectively. Note that zti is unphased only in case of single genotype calling, and it is170

phased elsewhere. The genotype with posterior probability being greater than threshold Pcall is171

called. If no genotype is called, we calculate the posterior probability172

P (zti = 1U |yti, ε) =P (zti = 11|yti, ε) + P (zti = 12|yti, ε),

P (zti = 2U |yti, ε) =P (zti = 22|yti, ε) + P (zti = 12|yti, ε).

The genotype 1U is called if P (zti = 1U |yti, ε) > Pcall and P (zti = 1U |yti, ε) > P (zti =173

2U |yti, ε), and similarly for genotype 2U . The genotype is set to UU if no calling occurs.174

The process model175

The process model corresponds to the horizontal relationships (arrows) in the directed acyclic176

graph of the HMM (Figure 1). It has been described in detail (ZHENG et al. 2014; ZHENG177

2015; ZHENG et al. 2015), and we give a brief summary in the following. The process {xti}Tt=1178

for offspring i describes how the ancestral origins change along chromosomes. At a locus t,179

let xti = (xmti , x
p
ti) be the ancestral origins on the maternally (m) and paternally (p) derived180

chromosomes. If offspring i is fully inbred, we have xmti = xpti so that the ancestral origin181

process along the maternally derived chromosome is the same as the process along the pater-182

nally derived chromosome, and it is thus termed "depModel". On the other hand, if offspring183

i is completely outbred, the ancestral origin process along the maternally derived chromosome184

{xmti }Tt=1 is independent of the process {xpti}Tt=1 along the paternally derived chromosome, and185
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it is therefore termed "indepModel". In the general model called "jointModel", xmti and xpti are186

modeled jointly. We have kept the model terms (e.g. "jointModel") consistent with ZHENG187

et al. (2015).188

In all three models, the ancestral origin process along two chromosomes is assumed to189

follow a Markov process, so that the ancestral origins xti at locus t depends only on xt−1,i at190

locus t− 1 but not on the previous {xt′,i}t−2t′=1. Thus, the joint prior distribution of {xti}Tt=1 can191

be specified by the initial distribution π(x1i) and the transition probability P (xti|xt−1,i) at t =192

2, ..., T . The initial distribution π(x1i) is specified by the stationary distribution of the Markov193

process, so that the prior process model does not depend on the direction of chromosomes.194

The initial distribution π(x1i) and transition probability P (xti|xt−1,i) can be specified from the195

breeding design of a mapping population, that is, how the sampled offspring is produced from196

the founders; the transition probability also depends on inter-marker distances. See ZHENG197

et al. (2014), ZHENG (2015), and ZHENG et al. (2018) for the details of calculating π(x1i) and198

P (xti|xt−1,i) under various breeding designs.199

Founder imputation200

Because the state space of the HMM exponentially increases with the number N of sampled201

offspring, the exact inference of the founder haplotype matrix hF is computationally intractable,202

even using the forward-backward algorithm (RABINER 1989). In the following, we describe203

an approximate forward-backward procedure for maximum likelihood estimation of hF . Our204

forward algorithm calculates recursively the posterior probabilities γ(hFt ) and α(xti|hFt ) for205

offspring i = 1, ..., N , conditional on genotypic data up to locus t. It proceeds as follows:206

A0 Initialize at t = 1207

α̃(x1i|hF1 ) =P (y1i|hF1 , x1i, εO, εF )π(x1i),

γ(hF1 ) ∝P (hF1 |yF1 )
N∏
i=1

∑
x1i

α̃(x1i|hF1 ),

α(x1i|hF1 ) =α̃(x1i|hF1 )/
∑
x1i

α̃(x1i|hF1 ).
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A1 For t = 2, ..., T208

α̃(xti|hFt ) =P (yti|hFt , xti, εO, εF )
∑
xt−1,i

P (xti|xt−1,i)
∑
hF
t−1

γ(hFt−1)α(xt−1,i|hFt−1),

γ(hFt ) ∝P (hFt |yFt )
N∏
i=1

∑
xti

α̃(xti|hFt ),

α(xti|hFt ) =α̃(xti|hFt )/
∑
xti

α̃(xti|hFt ),

where α̃(xti|hFt ) is an unnormalized probability, and the normalization constant for γ(hFt ) is209

not shown. The key approximation comes from the independence of offspring in the calcula-210

tion of γ(hFt ). ZHENG et al. (2016) have described a similar forward algorithm for haplotype211

reconstruction in tetraploid populations.212

The maximum likelihood estimation of founder haplotypes is based on the posterior prob-213

abilities α(xti|hFt ) and γ(hFt ) from algorithm A. The maximization proceeds backwardly as214

follows:215

B0 Initialize at t = T : ĥFT = argmax γ(hFT ) and x̂T,i = argmax α(xT,i|hFT ) for i = 1, ..., N .216

B1 For t = T − 1, ..., 1217

β(xti|hFt ) =α(xti|hFt )P (x̂t+1,i|xti),

ĥFt =argmax γ(hFt )
N∏
i=1

∑
xti

β(xti|hFt ),

x̂ti =argmax β(xti|ĥFt ).

It is possible that multiple argument values correspond to the same maximum. If such ties218

occur, we randomly choose one of these values. FRIEL and RUE (2007) have described a219

similar backward maximization algorithm for general factorisable models.220

Preliminary simulations showed that our forward-backward procedure is occasionally less221

accurate on the left end of chromosomes in case of sparse data. We overcome this problem222

by two rounds of maximization. Specifically, we fix the founder haplotypes on the right-half223

chromosomes (t > T/2) after the first round of maximization, and then perform the second224
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round with reversed chromosome direction.225

Offspring imputation226

Conditional on the imputed founder haplotype matrix ĥ
F

, all the offspring are independent.227

For each offspring, we first perform the posterior decoding algorithm to calculate the posterior228

probabilities of ancestral origins at all loci (RABINER 1989; ZHENG et al. 2015). Then we229

calculate the posterior probabilities of true genotypes, from which missing genotypes can be230

imputed.231

We obtain P (zti|yO, ĥ
F
, εO, εF ) by marginalizing the following joint posterior probability232

P (zti, xti|yO, ĥ
F
, εO, εF ) =P (zti|dti, xti, εF )P (xti|yO, ĥ

F
, εO, εF ),

where the posterior probability P (xti|yO, ĥ
F
, εO, εF ) can be calculated by the function magi-233

cReconstruct in the RABBIT software (ZHENG et al. 2015), which has been extended to analyze234

allelic depths of GBS data. Here the derived genotype dti is completely determined by xti and235

ĥFt , and the calculation of P (zti|dti, xti, εF ) has been described in the genotype model.236

From the marginal posterior probability P (zti|yO, ĥ
F
, εO, εF ), we perform both imputation237

and error detection for offspring i. For imputation, the missing genotype in offspring i at lo-238

cus t is imputed to be ẑti if its marginal posterior probability is larger than a given threshold239

Pimpute. For error detection, the observed called genotype yti is corrected if the most probable240

genotype is different from yti and the maximal marginal posterior probability is larger than a241

given threshold Pdetect.242

Data simulation243

We simulate sequence data, mimicking real data in the following mapping populations: the AI-244

RIL, the F2, the MAGIC(funnel scheme 8-way RIL), and the CP. These populations differ in245

the number of founders and the heterozygosity level of founders and offspring (Table 2). For246

each type of mapping population, we simulate independently three sample sizes: 100, 200, and247

500, that is, the number of sampled offspring in the last generation. Independently for each type248
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of population with a given sample size, we first simulate the breeding pedigree according to the249

corresponding real data. The AI-RIL consists of five generations of random mating starting250

from the F1 generation and six generations of selfing; the size of the random mating population251

is set to 1000. For each offspring of the MAGIC, the founders are randomly permuted so that252

the number of funnels equals the sample size.253

Given a breeding pedigree for each mapping population, we assign a unique founder genome254

label (FGL) to each inbred founder or to the haploid gamete of each outbred founder. We255

simulate only one linkage group. Each offspring gamete is a random mosaic of FGL blocks256

determined by chromosomal crossovers between two parental chromosomes. The number of257

crossovers in a gamete follows a Poisson distribution with mean being the chromosome length258

in Morgan, and the positions of crossovers are uniformly distributed across the chromosome.259

We set true founder haplotypes based on the founders imputed from the available real data260

(see Table 2), and obtain the true offspring genotypes by replacing FGLs with the true founder261

haplotypes. We apply the same error model to the true founder haplotypes with εF = 0.005 and262

to the true offspring genotypes with εO = 0.005.263

We simulate read count data for each obtained founder or offspring genotype. Indepen-264

dently for each allele of a genotype, the number of reads is assumed to follow an exponential265

distribution with mean being λ/2, where we set λ = 8; the number of erroneous reads follow266

a binomial distribution with probability ε = 0.001, and the erroneous read corresponds to the267

alternative allele. The allelic depths of genotypes are obtained by combining reads of the two268

alleles. The allelic depths of founder and offspring genotypes are re-set to be missing with prob-269

abilities 0.25 and 0.15, respectively. We obtain 12 full datasets, 3 population sizes for each of270

the four mapping populations, with average offspring read depth 6.8. To study the dependence271

of sequencing coverage, we retain the same founder reads and randomly sample offspring reads272

with probability 2−i for i = 0, 1, ..., 10, resulting in a total of 132 test datasets.273

Real data274

Table 2 shows a summary of real data after filtering. For the maize AI-RIL (HEFFELFINGER275

et al. 2014) and the maize F2 (ELSHIRE et al. 2011), we use the GBS data that have been276
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prepared by FRAGOSO et al. (2016) as the input data of LB-Impute. For the rice MAGIC277

(BANDILLO et al. 2013), we use the called genotypes that have been prepared by HUANG et al.278

(2014) for mpimpute. For the apple CP (GARDNER et al. 2014), we filter the original allelic279

depth data by removing markers with the missing fraction of called genotypes larger than 50%,280

and removing markers with segregation distortion at significant level 0.01. During the filtering281

process, a single genotype is called with threshold Pcall = 0.99 and 0.95 for founders and282

offspring, respectively, as described in the previous section on single genotype calling. And the283

quality score is set to phred = 30 so that the sequencing error probability ε = 10−phred/10 =284

0.001.285

To calculate imputation accuracy, we mask a subset of high-confidence genotypes and use286

them as the pseudo-true genotypes. For the GBS data, the genotypes are first called with a very287

large threshold Pcall = 0.9999 and the quality scores being 30 and 40 for apple and maize,288

respectively. The called genotypes (excluding UU , 1U and 2U ) are masked with probability289

being 0.25 and 0.05 for founders and offspring, respectively. After masking, the fractions of290

founder genotypes without reads are 0.23, 0.24, and 0.19 for the maize AI-RIL, the maize F2,291

and the apple CP, respectively. And the fractions of offspring genotypes without reads are 0.77,292

0.16, and 0.095. For each of three masked full datasets, we retain the same founder reads293

and randomly sample offspring reads with probability 2−i for i = 0, 1, ..., 10, resulting in 33294

real sequencing datasets. For the called genotypes of the rice MAGIC, the missing fraction of295

founder genotypes after masking is 0.3. From this masked dataset, five datasets are produced296

independently by masking called offspring genotypes to give missing fractions from 0.5 to 0.9297

at step size 0.1.298

Algorithm evaluation299

To set up the algorithm magicImpute, we perform sensitivity analysis of Pimpute, Pdetect, and300

εO. For each mapping population with size 200 and read depth 0.85, we impute the simulated301

dataset with the input data being called genotypes and the first two founders’ genotypes being302

not available. By default, we set εF = 0.005, and the input genotypes are called from allelic303

depths with threshold Pcall = 0.99 and 0.95 for founders and offspring, respectively. Figures304
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S1&S2 show that the accuracies of imputation and error detection increase slightly with Pimpute305

from 0.6 to 0.95, while the fractions of imputation and error detection decrease slightly. Figures306

S1&S2 also show that the performances of imputation and error detection often become a bit307

worse when εO increases by a factor of 10. The effects of these parameters are marginal in308

general. Thus we set somewhat arbitrarily Pimpute = 0.9, Pdetect = 0.9, and εO = 0.005 in the309

following evaluations. The algorithm magicImpute also outputs the posterior probabilities of310

all possible genotypes for all offspring at all markers, from which we can perform imputation311

and error detection with different Pimpute and Pdetect.312

We evaluate magicImpute by both simulated and real data in the four types of mapping313

populations. For each of the simulated datasets and the real GBS datasets, we run magicImpute314

in the four combinations: the first two founders’ genotypes are available or not, and the input315

data are allelic depths or called genotypes. Here the quality scores are 30 for the simulated data316

and the real maize GBS data, and 40 for the real apple GBS data. For the real rice data, we317

run magicImpute in the two combinations: the first two founders’ genotypes are available or318

not. Results of magicImpute are compared with those of Beagle v4.1 in all populations. We319

run Beagle v4.1 for the called genotypes in two ways: without reference panels and use the320

founder haplotypes imputed by magicImpute as the reference panels. Additionally, we run LB-321

Impute for the biparental populations AI-RIL and F2 with the input data being allelic depths,322

and run mpimpute for the MAGIC population with the input data being called genotypes. LB-323

Impute and mpimpute do not work if some founders’ genotypes are not available. The running324

settings of magicImpute, Beagle v4.1, LB-Impute, and mpimpute are described in Supporting325

Information, File S1. See SWARTS et al. (2014) and FRAGOSO et al. (2016) for comparisons of326

FSFHap with Beagle and LB-Impute.327

Data availability328

The algorithm magicImpute is implemented in Mathematica 11.0 (WOLFRAM RESEARCH329

2016), and it has been included as a function in the RABBIT software. RABBIT is available330

at https://github.com/chaozhi/RABBIT.git, and it is offered under the GNU Af-331

fero general public license, version 3 (AGPL-3.0). Example scripts for simulating genotypic332
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data are included. The real maize AI-RIL and F2 data have been described by HEFFELFINGER333

et al. (2014) and ELSHIRE et al. (2011), respectively, and they have been prepared by FRAGOSO334

et al. (2016) for LB-Impute. The rice MAGIC data have been described by BANDILLO et al.335

(2013), and they have been prepared by HUANG et al. (2014) for mpimpute. The apple CP data336

are available from GARDNER et al. (2014).337

Results338

Simulation evaluation339

Figures 2-4 and Figures S3-S7 show the comparisons among magicImpute, Beagle, LB-Impute,340

and mpimpute in terms of imputation accuracy, error detection, and genotype phasing. All341

results are obtained from the simulated populations of size 200, except Figure S4 that shows the342

effects of population size.343

Imputation accuracy: Figures 2 and S3 show the comparisons of imputation accuracy. One344

of the most striking patterns is that there exist break points for magicImpute and Beagle but not345

for LB-Impute and mpimpute. As shown in Figure 2 for the imputation accuracy of offspring346

genotypes, the break points of magicImpute are 0.053, 0.11, 0.21, and 0.21 read depth for the347

AI-RIL, the F2, the MAGIC, and the CP, respectively, much lower than the break points of 0.42,348

3.4, 0.85, and 3.4 read depth for Beagle. As shown in the left panels of Figure S3, the break349

points of magicImpute for founder imputation are the same as those for offspring imputation;350

Beagle does not impute founder genotypes.351

As for mpimpute and LB-Impute, they perform slightly worse than magicImpute. The im-352

putation accuracy of mpimpute is ∼ 1.7% lower than that of magicImpute when read depth >353

0.21 (Figure 2C). The imputation accuracies of LB-Impute at the highest read depth are similar354

to those of magicImpute, but they decrease gradually with decreasing read depth. In addition,355

the imputation fractions of LB-Impute at the highest read depth are around 0.8, much smaller356

than those of magicImpute (Figure S3B&D).357

The unavailability of the first two founders’ genotypes has no noticeable effects on the358

performance of magicImpute for the AI-RIL, the F2, and the MAGIC, as long as read depth is359
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higher than the break point. However for the CP, the availability of the two outbred founders’360

genotypes results in ∼ 2% lower accuracy of imputing founder genotypes (Figure S3G), due361

to the calling errors in the available founder genotypes. As a result, the imputation accuracy of362

offspring genotypes is ∼ 4% lower (Figure 2D).363

Whether the input data are allelic depths or called genotypes has little influence on the364

performance of magicImpute. However for the almost homozygous populations AI-RIL and365

MAGIC, the ceiling limit of imputation accuracy decreases with increasing read depth instead366

of leveling off (Figure 2A&C). This is due to the assumption of homozygosity during the prior367

genotype calling, and the information on residual heterozygosity is lost after transforming al-368

lelic depths into called genotypes. The percentage of heterozygotes among missing genotypes369

increases with increasing read depth, and they are always missing and wrongly imputed.370

Figure S4 shows that the main effect of population size is shifting the break points of the371

imputation accuracy obtained by magicImpute and Beagle.372

Error detection: We evaluate the error detection of magicImpute in the case of the input data373

being called genotypes. A suspicious genotype error is detected by magicImpute when the most374

probable true genotype is different from the input called genotype and the maximum posterior375

probability is larger than the default threshold Pdetect = 0.9. As shown in Figures 3 and S5,376

the unavailability of the first two founders’ genotypes greatly improve the error detections for377

the F2, the CP, and the AI-RIL, but it has little effects on the MAGIC with multiple founders.378

This indicates that the errors in the available founder genotypes adversely affect the detection379

of offspring genotypes.380

Figures 3 and S5 show that the error detection in the almost homozygous populations AI-381

RIL and the MAGIC is much worse than in the F2 and the CP. This is due to the homozygosity382

assumption under which the input genotypes are being called for the AI-RIL and the MAGIC;383

most offspring genotype errors are heterozygous and they cannot be detected and corrected384

when the heterozygosity information is lost during the prior genotype calling. Figure S6 shows385

that the error detection in the AI-RIL and the MAGIC is much better when homozygosity is not386

assumed.387

Genotype phasing: We evaluate the phasing accuracy for the heterozygous populations F2 and388
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CP obtained by magicImpute and Beagle; mpimpute and LB-impute do not perform phasing.389

The phasing accuracy is measured in two ways: the switch accuracy is defined as one minus the390

number of switches divided by the number of opportunities for switch error, and the heterozy-391

gous accuracy denotes the percentage of correctly phased heterozygous genotypes. A switch392

error occurs if the heterozygous genotype at a site has phase switched related to that of the393

previous heterozygous site.394

As shown in Figures 4 and S7, the phasing accuracy has similar patterns and the same break395

points as those of the imputation accuracy (Figure 2) for magicImpute and Beagle, so that the396

phasing of magicImpute is more robust to missing data. For the CP, the switch accuracy and the397

heterozygous accuracy of magicImpute are close to 1 when read depth is higher than the break398

point, whereas the heterozygous accuracy of Beagle is less than 0.8. The difference between399

switch and heterozygous accuracy indicates that the wrongly phased heterozygous genotypes400

occur in blocks and they could be corrected by a few switches between the two haplotypes401

within an offspring.402

Figures 4 and S7 show that the availability of the two founders’ genotypes are unimportant403

to genotype phasing. The phasing accuracy of Beagle increases slightly when read depth is404

higher than the break point. However for magicImpute in the CP, the ceiling limit of phasing405

accuracy decreases a bit, consistent with the decrease of ceiling imputation accuracy because of406

the errors in the available founder genotypes.407

Evaluation by real data408

Figures 5 and S8 show the results of genotype imputation obtained from the real data in the409

four mapping populations. Error detection and genotype phasing cannot be evaluated since true410

genotypes and phases are not available; the imputation accuracy is calculated based on masked411

genotypes. Figure 5 shows the patterns similar to those of the simulation evaluation. The break412

points for magicImpute are at much lower read depths or larger missing fractions than those of413

Beagle. The magicImpute accuracy is slightly larger than that of mpimpute, and it is always414

high until the break point. In contrast to that, the LB-Impute accuracy decreases gradually with415

read depth.416
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Maize AI-RIL and F2: Figure 5A&B and Figure S8A-D show the results of genotype im-417

putation in the real biparental populations AI-RIL and F2. For magicImpute, the offspring418

imputation accuracies at the highest read depth are higher than 0.980 in the AI-RIL and 0.987419

in the F2. The corresponding accuracies are 0.970 and 0.986 for Beagle, whereas they are 0.917420

and 0.986 for LB-Impute. The imputation fractions at the highest read depth for both magicIm-421

pute and Beagle are larger than 0.960, whereas for LB-Impute they are 0.720 in the AI-RIL and422

0.906 in the F2.423

FRAGOSO et al. (2016) obtained the imputation accuracies 0.970 for the AI-RIL and 0.946424

for the F2, and the differences may be due to the masking of founder genotypes and the usage425

of a small genotype error probability for magicImpute.426

Rice MAGIC: Figure 5C shows that the imputation accuracies of magicImpute and mpimpute427

are almost independent of missing fraction of the input offspring genotypes in the range from428

0.5 to 0.9. On average, the offspring imputation accuracy of magicImpute is higher than that429

of mpimpute by 2.5%. The Beagle imputation accuracy is comparable to that of magicImpute430

when the missing fraction is no greater than the break point of 0.7.431

Figure S8E shows that the founder imputation accuracies are around 0.94 and 0.89 for432

mpimpute and magicImpute, respectively, whereas they are close to 1 in the simulation eval-433

uation. The imputation fraction of founder genotypes for mpimpute gradually decreases from434

0.947 to 0.922 with increasing missing fraction (Figure S8E); magicImpute imputes all missing435

founder genotypes. As a result, the offspring imputation fraction of mpimpute decreases rapidly436

from 0.92 to 0.6, whereas it is always around 0.96 for magicImpute (Figure S8F).437

Apple CP: Figure 5D shows the results of offspring imputation accuracy obtained from the real438

apple data. The imputation accuracy of magicImpute decreases from 0.94 to 0.88 when read439

depth decreases from 15 to 0.46, in comparison with the almost constant accuracy of 0.96 in440

the simulated results in Figure 2D. The Beagle imputation accuracy is comparable to that of441

magicImpute, when read depth is no less than the break point of 3.7.442

As shown in Figure S8G, the founder imputation accuracy of magicImpute at the highest443

read depth is around 0.96 when the two founders’ genotypes are available, whereas it decreases444

to 0.75 when the two founders’ genotypes are missing. The low accuracy is very likely because445
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of the mix up of the imputed genotypes between the two founders.446

Running time: The running times for the four real datasets at the highest read depths or the447

smallest missing fractions are given in Table 1. Beagle is fastest in all populations. For the448

biparental populations, LB-Impute is much slower than magicImpute. And for the rice MAGIC,449

mpimpute is similar to Beagle, and faster than magicImpute.450

The main computational load of magicImpute is the first two steps for founder imputation451

and phasing (Figure 1). The founder imputation of mpimpute and LB-impute is based on the452

decoding algorithm of the sub-HMM for each offspring, corresponding to the third step of453

magicImpute.454

Discussion455

We have implemented an HMM framework magicImpute for genotype imputation from low456

coverage sequence or SNP array data. The evaluations by simulation and real data in the four457

types of mapping populations demonstrate that magicImpute is accurate and flexible, despite458

the population being multiparental, founders being missing, founders being heterozygous, off-459

spring being heterozygous, or sequencing coverage being low. The simulation evaluations also460

demonstrate the good performance of magicImpute for error detection and genotype phasing.461

Although the dependence of imputation accuracy on sequence coverage varies with popu-462

lation size, marker density, and distribution of reads, magicImpute performs much better than463

Beagle, LB-Impute, and mpimpute at very low coverage. Beagle breaks down at much higher464

read depth in heterozygous populations than in almost homozygous populations, probably be-465

cause of unsuccessful pre-phasing of Beagle imputation for heterozygous populations. Alter-466

native pre-phasing methods might increase the follow-up imputation accuracy (WHALEN et al.467

2017). The LB-Impute accuracy in biparental populations decreases with decreasing read depth,468

probably because the number of markers in the Markov trellis window is only 7 by default (large469

window size would result in dramatic increases in running time). The lower LB-Impute accu-470

racy in the real AI-RIL than in the simulated AI-RIL may be due to the heavy tailed distribution471

of read depth in the real data and its inability of borrowing distant marker information.472

Low coverage sequencing can be represented as allelic depths or called genotypes for the473
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input of magicImpute. The simulation and real evaluations show that the prior transformation of474

allelic depths into called genotypes has no appreciable effects, if homozygosity is not assumed475

for the transformation in almost homozygous populations. It indicates that little information476

is lost in the prior transformation, where the two half called genotypes (1U and 2U ) keep se-477

quence read information efficiently. Genotype likelihoods, a probabilistic representation of low478

coverage sequencing, have been alternatively used in many imputation methods such as Beagle479

v4.1.480

It is implicitly assumed by magicImpute that sequencing reads are too short to cover more481

than two polymorphic sites, and the phasing information of long reads is ignored. Thus magicIm-482

pute would not rely on long reads. For very low coverage sequencing, the distances between483

detected neighbor polymorphic sites are expected to be too long, and very long reads are thus484

required to keep the phasing information. On the other hand, our HMM imputation framework485

provides a solid step for the extension to utilize phasing information.486

One key assumption of magicImpute is no segregation distortion, when incorporating breed-487

ing design information into the HMM. The assumption is not expected to be a problem for bi-488

parental populations with only two inbred founders, as confirmed in our real data evaluation.489

For the MAGIC and the CP, the founder imputation accuracies in the real data evaluations are490

lower than simulation results, probably because of segregation distortion in the real data. For491

real MAGIC, magicImpute has higher offspring imputation accuracy and lower founder impu-492

tation accuracy than mpimpute, indicating that the offspring imputation is not affected by the493

possible segregation distortion.494

Secondly, magicImpute assumes that the input genetic map is correct, as do Beagle, LB-495

Impute, and mpimpute. The assumption contributes to the differences of ceiling offspring impu-496

tation accuracy between simulation and real data evaluations. For the real apple CP, GARDNER497

et al. (2014) estimated the proportion of markers that are inconsistent with the physical grouping498

is as high as 18.3%, which might explain why the accuracy is relatively low (from 0.88 to 0.94)499

when read depth is no less than the break point (Figure 5D). See for example MONEY et al.500

(2015) and RUTKOSKI et al. (2013) for map-independent imputations in association panels.501

Another assumption of magicImpute is on the conditional independence of offspring. In the502
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approximate forward algorithm for founder imputation, offspring are assumed to be independent503

given the posterior probabilities up to the current time. This approximation is well validated by504

the very accurate founder imputation in the simulation evaluations. Conditional on the imputed505

founder haplotypes, offspring are assumed to be independent, which is not always true because506

these offspring share parents in the intermediate generations. The algorithm magicImpute partly507

accounts for this relationship by the pre-calculated HMM parameters based on available breed-508

ing pedigrees, and thus the offspring imputation utilizes the marker information of the others509

indirectly via the founder imputation.510

In conclusion, we have demonstrated that magicImpute is more accurate and robust to low511

sequencing depth than the current methods, because magicImpute can incorporate experimental512

design and utilize marker data efficiently. Furthermore, magicImpute is not restricted to specific513

experimental designs, and it can perform parental imputation and phasing in situations where514

most current methods are incapable.515
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Figure 1: Overview of the imputation algorithm. The left panel shows the diagram of magicIm-

pute. The right panel shows the directed acyclic graph of the HMM for N offspring at T loci,

where the arrows denote probabilistic relationships that are described in the method section.

See Table 1 for the symbols in the right panel. In the left panel, the second step of founder

imputation results in the estimate of hFt and the third step of posterior decoding results in the

posterior probability of xot , conditional on genotypic data yot and yFt for t = 1...T and o = 1...N .
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Figure 2: Simulation evaluation on the accuracy of imputing offspring genotypes. Panels A-D

show the results for the AI-RIL, the F2, the MAGIC, and the CP, respectively. In the fig-

ure legend on the right side, "_AD" denotes that the input data are allelic depths rather than

called genotypes, "_NoP" denotes that the first two founders’ genotypes are not available, and

"_Ref" and "_NoRef" denotes whether Beagle uses founder haplotypes as reference panels or

not. When the input data are called genotypes, complete homozygosity is assumed for the AI-

RIL and the MAGIC, and thus their missing fractions on the top axes are smaller than those of

the F2 and the CP at the same depths.
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Figure 3: Simulation evaluation on the error detection in offspring genotypes. Panels A-D show

the results for the AI-RIL, the F2, the MAGIC, and the CP, respectively, which are obtained by

magicImpute with the first two founders’ genotypes being unavailable and the input data being

called genotypes. The false detection rate ( ) denotes the percentage of estimated suspicious

genotype errors being not true errors, the true correction rate ( ) denotes the percentage of

estimated suspicious genotype errors being true and being corrected into the true genotypes,

and the undetected rate ( ) denotes the percentage of true genotype errors being not detected.
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Figure 4: Simulation evaluation on the offspring genotype phasing. Panels A and B show the

results obtained by magicImpute and Beagle for the F2 and the CP, respectively. For magicIm-

pute, the first two founders’ genotypes are unavailable ("_NoP"), and for Beagle there are no

reference panels ("_NoRef"). The solid lines denote the switch accuracy ("_Switch"), one mi-

nus the percentage of switch errors to obtain the true haplotype phase; the dashed lines denote

the percentage of correctly phased heterozygous genotypes ("_Hetero").
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Figure 5: The accuracy of imputing offspring genotypes from real data. Panels A-D show the

results for the AI-RIL, the F2, the MAGIC, and the CP, respectively. The figure legend on the

right side is the same as that of Figure 2. Allelic depth data are not available for the MAGIC. The

extreme large missing fraction or low read depth shows how genotype imputation approaches

random imputation with decreasing amount of the input data. In panel A, the large variation of

imputation accuracy of LB-Impute at low read depths is due to the corresponding imputation

fraction being close to 0 (Figure S8B).
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Table 1: List of symbols and their brief descriptions

Symbol Description

nF Number of founders
N Number of offspring
T Number of markers (loci)
hFt Hidden founder haplotype at locus t
hF Hidden founder haplotype matrix hF = {hFt }t=1...T

xti Hidden ancestral origins at locus t in offspring i
xmti , x

p
ti xti = (xmti , x

p
ti) on maternally (m) or paternally (p) derived chromosome

dti Genotype at locus t in offspring i that is completely determined by xti and hFt
zti Hidden true genotype at locus t in offspring i
yti Observed genotype at locus t in offspring i
yO Observed offspring genotype matrix yO = {yti}t=1...T,i=1...N

yFt Observed genotypes for all founders at locus t
yF Observed founder genotype matrix yF = {yFt }t=1...T

1U, 2U,UU Genotypes containing uncertain allele U
r1, r2 Number of reads for alleles 1 or 2
εO Allelic error probability for offspring, independent of read depths
εF Allelic error probability for founders, independent of read depths
phred Phred quality score
ε Sequencing error probability ε = 10−phred/10

π(x1i) Prior probability of x1i at locus 1 in offspring i
P (xti|xt−1,i) Prior transition probability from xt−1,i to xti
lti lti = P (yti|hFt , xti, εO, εF , ε) likelihood at locus t in offspring i
α(xti|hFt ) Posterior probability of xti conditional on hFt and genotypic data from loci 1 to t
α̃(xti|hFt ) Unnormalized conditional posterior probability of xti
γ(hFt ) Posterior probability of hFt conditional on genotypic data from loci 1 to t
ĥFt , x̂ti, ẑti Hats denote maximum likelihood estimates
Pcall Single genotype call if probability of most probable genotype > threshold Pcall

Pimpute Impute if probability of most probable genotype is > threshold Pimpute

Pdetect Correct if probability of most probable genotype > threshold Pdetect
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Table 2: The running time (in seconds) of genotype imputaton for the four real datasets.

Population Maize AI-RIL Maize F2 Rice MAGIC Apple CP

Number of SNPs 13,912 127,059 37,240 13,493
Founder type inbred inbred inbred outbred
Offspring type inbred outbred inbred outbred
Number of founders 2 2 8 2
Number of offspring 275 87 178 87
magicImpute 784 212 3170 627
Beagle v4.1 178 31 445 39
LB-Impute 3698 3579 NA NA
mpimpute NA NA 406 NA
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File S1628

Running setups of imputation packages629

magicImpute630

The Mathematica command line of magicImpute is given by631

magicImpute[inputfile, model, popdesign, options]632

where inputfile specifies the input genotypic data. Here model is set to be {"depModel",633

"jointModel"} for the population types AI-RIL and MAGIC, so that "depModel" is used634

for parental imputation, and "jointModel" is used for offspring imputation. And it is set to635

be "jointModel" for the population types F2 and CP, so that "jointModel" is used for636

both parental imputation and offspring imputation. See the online manual for details.637

popdesign specifies the breeding design information that is used to compute the process638

parameter values of the HMM. For the F2, it is set to be {"Pairing","Selfing"}. For the639

AI-RIL, it is set to be {"RM1-NE-1000","RM1-NE",...,"RM1-NE","Selfing",640

...,"Selfing"} where "RM1-NE" is repeated for 5 times, and "Selfing" is repeated641

for 6 times. For the MAGIC, it is set to be {"Pairing", "Pairing", "Pairing",642

"Selfing", ..., "Selfing"} where "Selfing" is repeated for 4 times. For the CP,643

it is specified in terms of a pedigree file.644

There are many options for magicImpute. The option imputingTarget -> All so645

that we by default impute both founder and offspring. The options founderAllelicError646

-> 0.005 and offspringAllelicError -> 0.005 specify εF and εO, respectively.647

The option isFounderInbred -> True specifies that the founders are inbred for the F2,648

the AI-RIL, and the MAGIC, and isFounderInbred -> False is used for the CP. The649

option imputingThreshold -> 0.9 specifies Pimpute, The option detectingThreshold650

-> 0.9 specifies Pdetect. The option minPhredQualScore -> 30 specifies that the qual-651

ity score phred so that ε = 10−phred/10. The option priorFounderCallThreshold ->652

0.99 specifies the prior genotype calling threshold Pcall when the input parental data are allelic653

depths.654
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Beagle v4.1655

The command line used for Bealge v4.1 is given by656

java -jar beagle.21Jan17.6cc.jar ne=100657

where the effective population size is fixed to be 100. In addition, The gt option is used to658

specify input offspring genotype data, and the ref option is used to specify the imputed phased659

founder genotypes as the reference panel. We run Beagle with and without the reference panel.660

LB-Impute661

The command line used for LB-Impute is given by662

java -jar LB-Impute.jar -method impute -readerr 0.001663

-genotypeerr 0.01 -recombdist 10000000 -window 7664

-parentimpute -offspringimpute665

Here the−readerr option specifies the sequencing error, and it is set to be 0.001 corresponding666

to the quality score 30. The −genotypeerr option specifies the genotype error to be 0.01,667

corresponding to the depth-independence allelic error probability of 0.005 in magicImpute.668

The two founder names are specified by the−parents option, and the input and output files are669

specified by the options −f and −o, respectively.670

mpimpute671

The R command line used for mpimpute is given by672

mpimpute(object,what="both",threshold=0.5,calls="discrete")673

Here the what option is set so that we impute both founders and offspring, and input genotypic674

data and pedigree information are specified by the object.675
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Supplementary figures676
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Figure S1: Sensitivity analysis of imputation threshold Pimpute for the algorithm magicImpute.

Panels from top to bottom denote the results for the AI-RIL, the F2, the MAGIC, and the CP,

respectively. The solid and dashed lines denote the results corresponding to input parameter

εO = 0.005 and 0.05, respectively. The left and right panels denote the results for imputation

accuracy and imputation fraction, respectively, which are obtained from the simulated datasets

with the input data being called genotypes at read depth 0.85 and the first two founders’ geno-

types being not available.
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Figure S2: Sensitivity analysis of error detection threshold Pdetect for the algorithm magicIm-

pute. Panels from top to bottom denote the results for the AI-RIL, the F2, the MAGIC, and the

CP, respectively. The solid and dashed lines denote the results corresponding to input parameter

εO= 0.005 and 0.05, respectively. The left, middle and right panels denote false detection rate,

true corretion rate, and undetected rate, respectively. For each simulated dataset with population

size 200 and read depth 0.85, the results are obtained with the input data being called genotypes

and the first two founders’ genotypes being not available.
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Figure S3: Simulation evaluation on the accuracy of imputing founder genotypes (left panels)

and imputation fraction of offspring genotypes (right panels). Panels A&B, C&D, E&F, and

G&H denote the results for the AI-RIL, the F2, the MAGIC, and the CP, respectively. The

dashed lines in panel E denotes the mpimpute imputation fraction of founder genotypes. Beagle

and LB-Impute do not impute founder genotypes, and magicImpute always imputes all the

founder genotypes.
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Figure S4: Dependencies of genotype imputation on population size. Panels from top to bottom

denote the results for the AI-RIL, the F2, the MAGIC, and the CP, respectively. For magicIm-

pute, the input data are called genotypes and the first two founders are missing; no reference

panels for Beagle imputation. The plot markers "1", "2", and "5" denote population sizes 100,

200, and 500, respectively.
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Figure S5: Similar to Figure 3 for the error detection by magicImpute but with the first two

founders’ genotypes being available.
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Figure S6: Similar to Figure 3 for the error detection by magicImpute but without assuming

homozygosity for the almost homozygous populations AI-RIL (A) and MAGIC (B).
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Figure S7: Similar to Figure 4 for the offspring phasing but for magicImpute with the first two

founders’ genotypes being available and for Beagle with the founder haplotypes (imputed by

magicImpute) being the reference panels.
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Figure S8: Evaluation on the accuracy of imputing founder genotypes and imputation fraction

of offspring genotypes by real data. Panels A&B, C&D, E&F, and G&H denote the results for

the AI-RIL, the F2, the MAGIC, and the CP, respectively. The dashed lines in panel E denotes

the mpimpute imputation fraction of founder genotypes.
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