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Introduction 

Human’s ability to alter and improve plant crop species has been an important tool to keep up with 
the increased food demand. Especially during the current period of global climate change the ability 
to adapt our crops to the changing environment is of critical importance. Nowadays, genetic and 
biotechnological tools play an important role in crop improvement. These methods carry great 
potential, but are limited by our understanding of the link between traits of interest and the 
underlying genetics. Knowing the genetic basis of crop traits of interest can help direct the 
biotechnological tools currently at our disposal. In fact, a better fundamental understanding of the 
link between genotype and phenotype is currently one of the main challenges in plant breeding. 
Understanding the plant regulatory mechanisms behind these phenotypic traits is an important part 
of this. QTL (Quantitative Trait Locus) analysis is a method that effectively links phenotypic traits of 
interest to locations on the genome (QTLs). This method can also be applied to study plant regulatory 
mechanisms, through linking genetic variation and gene expression. Using gene expression as a 
phenotypic trait, QTL analysis can be applied to identify genomic locations influencing gene 
expression (expression QTLs) (Jansen and Nap 2001). eQTLs can be separated in cis- and trans-eQTLs, 
where eQTLs close to the affected genes are referred to as cis-eQTLs, and eQTLs affecting expression 
of distal genes as trans-eQTLs. This enables identification of regulatory relationships between genes, 
and construct regulatory networks. Furthermore, finding locations affecting expression of genes of 
interest, can help identify targets for biotechnological tools.  

Arabidopsis thaliana is a well-studied model plant species, with large amounts of molecular data 
available, generated in high throughput experiments. It is therefore an ideal model species for the 
fundamental study of regulatory mechanisms in plants. In several studies eQTL experiments have been 
performed using recombinant inbred lines (RILs) to map the genetic variation underlying gene 
expression in Arabidopsis thaliana (Keurentjes, Fu et al. 2007, West, Kim et al. 2007, Cubillos, Yansouni 
et al. 2012, Joosen, Arends et al. 2012, Lowry, Logan et al. 2013, Snoek, Terpstra et al. 2013). These 
studies have provided datasets with eQTLs mapped to many genes, which have led to insights in 
regulatory mechanisms in various specific pathways, as well as the characteristics of cis- and trans-
eQTLs and the link between expression and phenotypic traits. The data generated by these studies 
have been made available in the AraQTL platform, simplifying the use of these datasets for further 
research (Nijveen, Ligterink et al. 2017). While these datasets are shown to carry great potential to 
increase our understanding of regulatory networks in plants, their use in recent research has been 
limited. This could possibly be attributed to the low association signal resolution of the RIL-population 
based eQTL studies. While these populations are convenient and useful for QTL studies like these, the 
number of recombination events is a limiting factor in the resolution of the association signal. The 
eQTLs map to a large genomic region containing many genes and variants, complicating biological 
interpretation. To more reliably identify causal genes or variants underlying an eQTL, fine mapping is 
required. However, experimental fine mapping takes time and is expensive, and not feasible if the 
number of candidate genes or variants is too high. 

Therefore, in silico methods that further narrow down the number of candidate genes of interest 
would be an important step towards biological interpretation of eQTL experiments. Several studies 
have shown that the integration of genomic annotations can improve candidate causal variant 
selection (Wang, Rendon et al. 2012, Brown, Mangravite et al. 2013, Das, Morley et al. 2015, GTEx 
Consortium 2017). Furthermore, predictive modelling has been shown to be effective at improving 
selection of candidate variants in several contexts, like the potential of SNPs to affect chromatin 
state and gene expression.(Lee, Gorkin et al. 2015, Zhou and Troyanskaya 2015, Ioannidis, Davis et al. 
2017). This approach of candidate prioritization using prediction models has successfully been used 
to predict variants underlying gene expression in humans (Ioannidis, Davis et al. 2017). This approach 
could reduce the burden for experimental validation by narrowing down the number of candidate 
genes or variants, and help biological interpretation. 



Aside from genomic annotations like chromatin state, more knowledge on characteristics of variants 
underlying eQTL effects could also aid in better selecting candidate causal variants and genes 
underlying expression regulation. While the pathogenicity or deleteriousness of coding SNPs has been 
well-studied, not much is known about their potential to affect gene expression. The effect of coding 
variants on transcript expression levels could be caused by their effect on post-transcriptional 
regulation and longevity of the RNA molecule, as has been suggested in (GTEx Consortium 2017). 
However, it could also be reasoned that variants affecting the protein product can have (indirect) 
effects on expression of the gene coding for the protein (cis-effects) or on other genes (trans-effects). 
For example, non-synonymous variants in transcription factor (TF) genes could affect the expression 
of genes regulated by this TF. Otherwise, in a complex pathway, a mutation causing reduced enzyme 
efficiency could indirectly affect expression through feedback mechanisms in the pathway.   

Thus, the main goal of this study is to study the potential of variant characteristics underlying gene 
expression, so that insights from these results may be leveraged in methods to better select candidate 
variants and genes underlying gene expression differences. This will improve the viability of eQTL data 
as a means to study genetic regulatory mechanisms in plants underlying plant traits of interest for 
agriculture or medicine. To achieve this, we studied the effect of coding variants on cis-eQTL genes, by 
identifying and annotating SNP variants between Arabidopsis Bayreuth and Shahdara accessions, and 
linking these to eQTL studies. These results are then combined with promoter related variants that 
have been previously studied (Luna de Haro 2018). The link between these SNPs and cis-eQTL genes is 
studied by training a machine learning model to predict cis-eQTL genes based on SNP data and other 
gene features. This model is then analysed to identify variant characteristics predictive of cis-eQTL 
genes. In this project we limit the analysis to cis-eQTLs, as this simplifies linking genes to an eQTL 
association signal. As mentioned, an eQTL peak covers a broad area, often encompassing many genes 
and variants.  In the case of an eQTL signal at the location of the gene in question, the assumption can 
be made that this effect is a cis-effect. In the case of trans-eQTLs there is no prior indication of which 
gene underlies the association, complicating the integration of gene and eQTL data. 

 
 
Methods 
 
Variant data 
SNP data was obtained from the 1001 genomes project  (Heazlewood 2008, unpublished) 
http://1001genomes.org/projects/JGIHeazlewood2008 ,(Weigel and Mott 2009), where sequence 
data of Bayreuth and Shahdara Arabidopsis accessions  were aligned against Arabidopsis reference 
accession Colombia(col-0) genome release TAIR10 (Berardini, Reiser et al. 2015). SNPs located in the 
transcribed gene regions were selected for this project. SNP locus base and amino-acid substitutions 
between Bayreuth (Bay-0: CS22633) and Shahdara (Sha: CS22652) Arabidopsis accessions were 
identified using this data. isoform specific annotation of the effect of SNPs on protein sequence 
present in the original data was reduced to gene-level annotation by prioritizing certain variant types 
in cases with differences between isoforms (from high to low priority: Nonsense, Non-synonymous, 
Splice site, Synonymous, Intronic, 5’, 3’, Non-coding). To determine the effect of this prioritization on 
SNP levels, SNP types were also determined using the reverse priority order and the resulting SNP 
counts were compared (supplemental Figure 1). Seperately, promoter variants were determined by 
selecting a region around the gene TSS, of varying sizes. SNPs located in this region not located in the 
transcribed region of a known gene were considered part of the promoter.  

 
 
 
 

http://1001genomes.org/projects/JGIHeazlewood2008


Variant annotation 
To expand on the basic variant annotations present in the original data, SNPs were further annotated 
with various SNP features. SNPs resulting in amino acid differences have been determined from the 
amino acid information present in the original SNP datasets (Heazlewood 2008, unpublished). SNP 
variants can be assigned multiple annotations, as for each possible annotation a SNP receives either a 
value 1 or 0, with 1 indicating it qualifies as true for the corresponding annotation. SNPs with an 
amino-acid substitution with a negative BLOSUM 62 score have been annotated as such. The SIFT4G 
tool was used to predict deleteriousness of SNPs, using the Arabidopsis database available in the 
SIFT4G tool. SNPs annotated by this tool as deleterious were annotated. DNAse Hypersensitive sites 
determined in Arabidopsis seedlings have been collected (Zhang, Zhang et al. 2012). All SNPs located 
within DHSites were annotated with this feature. Furthermore, several annotations were added 
based on the location of the affected amino acid in the protein. Protein regions with prosite patterns, 
prosite profiles and signal peptides were identified using data collected from plant biomart (Kinsella, 
Kähäri et al. 2011). Protein regions that have been predicted to be protein interaction interfaces have 
been collected from Interactome Insider (Meyer, Beltrán et al. 2018). For these protein regions, the 
genomic intervals corresponding to these regions was determined using Araport 11 .gff files (Cheng, 
Krishnakumar et al. 2017). Then, variants located in one of these genomic intervals were annotated 
with the corresponding protein feature. The promoter SNPs determined in the promoter region were 
annotated with several features if they co-locate with certain genomic intervals. Conserved non-
coding sequence intervals were collected (Van de Velde, Heyndrickx et al. 2014).  Furthermore, 
DNAse hypersensitive sites were also determined for the promoter regions (Zhang, Zhang et al. 
2012). Lastly, Chip Seq peaks of AGO4 Transcription factor were collected (Zheng, Rowley et al. 
2013).   
 
 

Gene annotation and eQTL scores 
Aside from SNP annotations, other gene-level annotations were collected from different sources. 
Several SNP based promoter related gene annotations were collected from the work of a previous 
Msc student (Luna de Haro 2018). Furthermore, gene G/C content and Fst score data were gathered 
from Plant Biomart and the 1001 Genomes project respectively (Kinsella, Kähäri et al. 2011, Alonso-
Blanco, Andrade et al. 2016). Details on these features are shown Figure 1. Effect size and LOD score 
data were obtained from an eQTL study performed on a RIL population from Bayreuth and Shahdara 
parental lines (Serin et al, unpublished). The cis-eQTL LOD score and effect size of each gene was 
assigned using the values for the marker closest to the TSS of the gene in question.  
 

Machine learning approach 
The machine learning was implemented in python using the sklearn library (Pedregosa, Varoquaux et 
al. 2011). The SNP-level annotations were converted to gene-level features by taking the total count 
of SNPs with a certain annotation for each gene. To enable comparison of feature coefficient in the 
logistic regression models, the features were scaled before training these models. The features were 
scaled to unit variance using the sklearn built-in standardscaler. The feature data was not centered, 
to retain sparsity of certain features. The sklearn logistic regression model was used, with the penalty 
option set to l1 (lasso regression). The class_weight setting was set to balanced, to improve 
performance when using imbalanced response classes. To investigate the importance of features for 
model accuracy, the features were divided in groups. The models were retrained once for each 
feature group, leaving this set of features out. For each of these model sets, overall accuracy and f1 
scores were determined.  
 



 

 

 

 

 

 

 

 

 

 

 

 

 

  

Promoter/gene  
feature 

description 

Prom_total Total SNP count in promoter 
region (-5000, +1000 from 
TSS) 

Relative_position Position of SNP closest to the 
TSS 

Motifs Total number of TFBS motifs 
in promoter region with 
variation between Bay and 
Sha accessions 

NT_of_motif Total length of TFBS motifs 
that contain variation 
between Bay and Sha 
accessions 

Max_Score Score for each TFBS motif 
which contain SNPs. Score 
between 0-1, measure for 
variation occurring at SNP 
position in motif. Highest 
occurring score in promoter is 
taken. 

GC content Gene GC content % 

Fst score 1135 Genomes Fst score at 
the location of the gene 

 

SNP Annotation SNP count 

 3’ UTR 14007 

5’ UTR 8053 

Intronic 63122 

Non-Synonymous 31296 

Synonymous 39682 

Nonsense 338 

Splice site 145 

Negative BLOSUM62 11709 

Prosite pattern 644 

Prosite profile 11727 

SIFT deleterious 3073 

Interaction Interface 717 

SignalP peptide 13164 

 

Figure 1: SNP and gene feature annotations. Left: SNP annotations counts from SNPs called between Bayreuth 
and Shadara Arabidopsis accessions. A single SNP can have multiple annotations. Right: promoter and gene 
level features with description. Annotations have been obtained from various sources, discussed in the 
methods section 



Results 
 
Integration of variant and eQTL data reveals link between protein-affecting SNPs and cis-eQTL 
genes 
 
SNPs between Bayreuth and Shahdara were 
determined using variant data between these 
accessions and Colombia reference. 175,674 
SNPs located within the transcribed region of 
23,453 known genes have been identified 
between these accessions. These SNPs were 
then annotated with a range of protein and 
genomic features. Details on these annotations 
can be seen in Figure 1.  eQTL LOD score data 
was used to determine cis-eQTL scores for each 
gene, using the Serin et al eQTL studies (Serin 
et al, unpublished). The consistency of cis-
eQTLs across different environmental 
conditions was determined by correlating cis-
eQTL LOD scores (determined as described in 
the methods) between the different Serin et al 
eQTL studies (supplemental figure 2). This 
shows that cis-eQTLs seem to remain 
consistent between different environmental 
conditions, with Pearson correlation 
coefficients between studies ranging from 0.85 
to 0.95 (supplemental Figure 6). The 
“Serin_2017_al” dataset combined expression 
data from all tested conditions.Thus, this 
dataset is based on the highest number of 
samples, while still retaining the majority cis-
eQTLs genes identified in the condition-specific 
eQTL experiments. Therefore, for the 
remainder of this project, the ‘pooled’ Serin 
eQTL study data was used.  
 
To study the link between variants and cis-
eQTL genes, the presence of SNPs across genes 
with increasing cis-eQTL LOD scores was 
determined (Figure 2A). These results show the 
total number of SNPs in the transcribed region per 
gene, where the genes are divided in LOD-score 
bins. The average number of SNPs per gene seems 
to increase in genes with higher LOD scores. To 
investigate whether variants affecting protein 
sequence are overrepresented in cis-eQTL genes, the relative fraction of various SNP types is plotted 
against an increasing LOD score threshold. As the LOD score threshold increases, the relative ratio of 
SNPs with an effect on the protein sequence increase, with more severe effects seemingly increasing 
the most. This suggests that SNPs affecting the protein typically occur more frequently in cis-eQTL 
genes with higher LOD scores, suggesting a link between protein affecting variants and cis-eQTL 
genes.  

Figure 2A: box plot of SNP counts for genes divided in bins based on 
cis-LOD score, for SNPs between Bayreuth and Shahdara Arabidopsis 
accessions. Gene cis-LOD scores have been determined using eQTL 
data from Serin et al (unpublished). The red line is the average count 
per bin. Figure 2B: normalised relative SNP fractions between SNP 
types across a range of LOD score thresholds. At each LOD score 
threshold, the ratio between the SNP types shown has been 
determined. The ratios have been normalised so that at LOD cut-off of 
1 the ratio for each SNP type is equal to 1. The LOD score cut-off 
means exclusion of genes with a cis-LOD score lower than the cut-off.  

A 
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Logistic regression machine learning model predicts cis-eQTL genes 

To test the potential of SNPs and other gene features to predict cis-eQTL genes, these features were 
used to train a logistic regression model. The annotated SNP data discussed in the previous section 
was combined with several other gene features (Figure 1). Gene expression varies across tissues, life 
stages and conditions. Potential cis-eQTL genes, whose expression is cis-regulated in certain tissues 
or conditions might not be detected in this specific eQTL analysis, due to a lack of expression. 
Therefore, to eliminate these potential false-negative cis-eQTL genes, a filtering step is implemented 
where genes with a raw read count lower than 10 in every sample were removed. A high-confidence 
positive set of cis-eQTL genes was determined by selecting genes with a minimum cis-LOD score. A 
range of LOD scores was tested (supplemental Figure 3). As the limit is increased, the accuracy of the 
model improves, but the number of genes in the positive set decreases. For the final model, a LOD 
score limit of 20 was taken. Effect Size was also tested as a metric to determine a positive and 
negative cis-eQTL set, but the predictive power of the resulting models was lacking. A negative set 
was determined by including genes with a cis-LOD score lower than 1. The LOD scores that have been 
assigned to genes as a cis-eQTL score, are the LOD score values from the marker closest to the (TSS of 
the) gene. This is the best approximation of the LOD score at the location of the gene. However, as 
the distance to the marker increases, this approximation becomes more unreliable. Therefore, an 
upper limit was set to the allowed distance from the gene to the nearest eQTL marker. A limit of 
50kb was chosen, as the marker distance increases greatly beyond this limit (supplemental Figure 4) 
 
To prevent over-estimation of model performance due to correlation between genes close to each 
other on the genome, a chromosome-based cross-validation approach was implemented, similar to 
the approach taken in Ioannidis & Davis, 2017. In this approach, a separate model is trained to 
predict each chromosome, which is trained on the remaining chromosomes. To predict cis-eQTLs, a 
logistic regression model was used. A lasso shrinkage penalty was added to improve model 
performance and interpretability (Tibshirani 1996). To compensate for the imbalance between eQTL 
and non-eQTL classes, balanced class weights were used (King and Zeng 2001). The performance of 
the models was tested using the cross-validation approach mentioned earlier, and pooling results for 
each chromosome (Figure 3). 
The models had an overall 
accuracy of 71%, with a 
standard deviation across 
chromosomes of 1.3%. The 
average accuracy on the 
training sets was 70% with a 
standard deviation of 0.1%. 
This shows that the features 
used to train this model carry 
predictive value of cis-eQTL 
genes, as 59% of genes in the 
positive set of cis-eQTL genes 
were correctly predicted.  
 
To test whether the results 
found using the Serin_al eQTL 
study translate to different 
datasets, the model trained on 
these data was also used to 
predict eQTLs based on a 

 
Predicted 
non-eQTL 

Predicted 
eQTL 

 non-
eQTL 

4017 1314 

eQTL 924 1343 
 

Acc:  
71% 

Precision 
__ 

Recall   
___ 

 non-
eQTL 

0.81 0.75 

eQTL 0.51 0.59 
 

 
Predicted 
non-eQTL 

Predicted 
eQTL 

 non-
eQTL 

10002 5687 

eQTL 873 1206 
 

Acc: 
63% 

Precision 
__ 

Recall _  
__ 

 non-
eQTL 

0.92 0.64 

eQTL 0.17 0.58 
 

Figure 3: Logistic regression model performance on gene-sets based on two eQTL studies. 
Left tables show confusion matrix of classification result. Right tables show accuracy 
precision and recall scores. TOP: performance on gene-sets based on Serin et al 
(unpublished) study. BOTTOM: performance on gene-sets based on Joosen et al study 
(Joosen, Arends et al. 2012). 



different study by Joosen et al, 2019. As the LOD score distribution in this study is different from the 
Serin et al study, a different approach for determining the positive and negative set was chosen. A 
LOD score threshold of 2.5 was taken for the positive set of cis-eQTLs, as this resulted in the best 
performance while without shrinking the eQTL gene-set size unnecessarily (supplemental Figure 3). 
Genes with a cis-LOD score lower than 1 were taken as the negative gene set. The results of 
predicting eQTLs based on this dataset are shown in Figure 3. The overall accuracy was 63%. The 
drop in performance when compared to the original eQTL labelling the data was trained on can be 
attributed to several factors. Firstly, the marker density is around 15-fold higher in the Serin et al 
Study when compared to the Joosen et al study, resulting in an average distance from gene to 
marker of 22.8 kb opposed to 49.1 kb in Joosen et al. Furthermore, the LOD score distribution in the 
Serin et al study has a wider range, with higher LOD scores overall, indicating more statistical power 
in this study. This results in cis-eQTL scores assigned to genes are on average located further from 
the genes, increasing the likelihood that the association signal is caused by another gene. 
Furthermore, the reduced statistical power results in a decreased capacity to accurately discern cis-
eQTL genes from non-cis-eQTL genes. The cis-eQTL labelling determined from the Joosen study is 
therefore likely to be less accurate, which can in part explain the reduced model performance on this 
dataset. A random Forest was trained as well using the same data and cross-validation approach. 
While the performance on the Serin study data was similar to the Logistic regression, the 
performance on the alternative Joosen study eQTL labels was inferior to the logistic model 
(Supplemental Figure 5). Therefore, the logistic model was deemed more robust and was used to 
interpret features underlying cis-eQTLs in the next section.   
 

Empirical analysis of logistic model provides insight in features underlying cis-eQTL genes 
 
To gain insight in the characteristics of SNPs and genes underlying cis-eQTLs, the trained logistic 
model was interpreted. The lasso regression penalty in the logistic model assigns a penalty to the 
coefficient of each feature, which can result in the coefficient of a feature reaching zero, effectively 
eliminating it from the model. Before training the models, the features were scaled on their variance, 
to ensure the feature coefficients are comparable between features. The scaled feature coefficients 
for each chromosome-model were summed. Figure 4A shows the summed feature coefficients of the 
scaled features that were not reduced to zero. Features that were collected but didn’t improve the 
model or whose coefficient was reduced to zero are shown in supplemental Figure 6. The scaled 
coefficients illustrate the importance of SNP related features in the model, with the total number of 
SNPs in the transcribed gene and promoter regions having the greatest coefficient values.  An 
increased number of SNPs, especially non-synonymous SNPs, seems to be positively associated with 
cis-eQTL genes. This suggests that variants affecting the protein sequence are associated with cis-
eQTL genes. Fst scores and gene GC content seem to be negatively associated with cis-eQTL genes. 
The Fst score is a measure of genetic differentiation of a genomic region between different 
Arabidopsis accessions. These results suggest that cis-eQTL genes tend to occur more often in 
genomic regions where less differentiation occurs. Furthermore, an increased GC content also seems 
to be negatively associated with cis-eQTL genes. It has been shown that  GC is positively correlated 
with genetic distance and divergence in Arabidopsis and related species (DeRose-Wilson and Gaut 
2007). This underlines the Fst score results, suggesting cis-eQTL genes tend to occur more in genomic 
regions with less diversification across populations.  However, the Pearson correlation coefficient 
between the Fst and GC content features in this study, 0.039, does not suggest strong correlation 
between these features, contradicting earlier findings. 
 
To have empirical evidence of the importance of features for the predictive value of the models a 
complementary approach was taken. Groups of features were removed from the training data, after 
which the models were trained again and performance of the ‘partial’ model was assessed. The 
groups used and loss of performance for each left out group is shown in figure 4B/C. This allows for 
comparison of the effect of leaving out different features or sets of features. Leaving out the 



feature:” total number of transcribed SNPs “results in a loss of accuracy. Leaving out features with 
specific SNP annotations results in a greater loss in performance than leaving out the number of total 
features. This indicates that the specific SNP annotations improve predictive potential over a model 
with just information on SNP presence. However, this difference in loss is small when compared to 
the drop in performance when both these types of SNP information are left out. In other words, the 
majority of predictive potential that is in specific SNP features is also contained in the total SNP count 
feature. This shows that while specific annotations add predictive value, the majority of predictive 
value comes from the presence of SNPs rather than specific SNP characteristics. Removing the ‘gene-
general’ features (GC content, fst score) results in a reduced model performance, in line with their 
scaled coefficients in the models. Removing promoter specific features from the model results in a 
reduced f1 score, while the accuracy does not suffer as much. These results show comparatively 
small  predictive value of promoter related features, while the effect of promoter regulatory 
elements in cis-regulation of expression has been shown to be greater than variation in the coding 
region (Lowry, Logan et al. 2013, GTEx Consortium 2017). The results in this project however, show 
limited predictive potential of the protein features used. This might indicate that the promoter 
features that were used do not fully capture effect of the promoter region.   
 
 
 
 
 



 

 

 

 

 

 

 

 

 

Figure 4: Interpretation of features important for logistic regression model. A: The summed scaled feature 
coefficients from the logistic models trained on each chromosome. Coefficients that have been reduced to 0 are 
left out. B: The feature groups and their members used in the partial model approach. The group names 
correspond to the labels in figure C. C: The loss in overall performance relative to the complete model, for each 
partial model. The label signifies the group of features that were left out. The “all_feats” label shows the base-
level performance of the complete model.  
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Discussion 

In this project, a logistic model to predict cis-eQTL genes was trained using annotated variant data in 
Arabidopsis thaliana, showing the predictive potential of variant characteristics. This model was 
interpreted, which produced valuable insights in gene and variant characteristics underlying cis-
eQTLs. These new insights are a step forward in our fundamental understanding of genome-level 
expression regulation in plants, and can inform new methods to improve candidate prioritization of 
causal genes and variants underlying eQTL signal.  
 
Results from the integration of the variant and eQTL data, as well as interpretation of the machine 
learning model suggest a role of variants affecting the protein in cis-eQTL genes. Mutations affecting 
the protein product could cause a changed (most likely a reduced) functionality of the protein. This 
could in turn through feedback mechanisms result in a change in expression levels of the gene coding 
for this protein. This could either be through positive or negative feedback, depending on the 
underlying mechanisms and the effect of the mutation. Another explanation might be that 
differences in expression between accessions is due to loss of functionality of a gene in one of the 
accessions. This could mean that in one accession, these genes are under reduced negative selection 
pressure, resulting in increased non-synonymous or otherwise deleterious mutations. This could in 
part explain the increased (non-synonymous) variant occurrences found in genes with higher LOD 
scores. To test whether genes with a nonsense mutation in one of two accessions have decreased 
lower expression, direction of effect of expression was determined for these genes. However, 
expression was not found to be typically lower in the accession with the nonsense mutation 
(supplemental figure 5).  
 
Notably, the results indicate a limited predictive value of the promoter-related features for cis-eQTL 
genes, when compared to coding variant features. This could indicate that the promoter-related 
features used in this project do not adequately capture the role of promoter variants in affecting 
gene expression. This is consistent with results found in an analysis of a set of genes showing allele 
specific expression (supplemental section). Alternatively, the set of cis-eQTL genes used in this 
project might partly exclude promoter-regulated genes. The set of genes that was used as positive 
cis-eQTL gene-set for the machine learning section were genes with a LOD score of 20 or higher. This 
is a strict threshold, which does exclude a large number of possible cis-eQTL genes. The feature 
importances learned from a model trained on this positive set might not translate to cis-eQTL genes 
with lower LOD scores, and some features more prevalent in cis-eQTL genes with lower LOD scores 
might be missed. This could explain in part the lack of predictive potential of promoter-related 
features found in this study, as it is possible that variants in the promoter have significant effect on 
expression of genes, but these genes typically have LOD scores below 20. To test whether there were 
variant characteristics or other features related to cis-eQTL effect size, an attempt was made to 
regress effect size using these features with linear (lasso) and random forest regression models. 
However, the performance of these models was deemed insufficient for interpretation (R-squared < 
0.05). 
 
A recurring theme in the results from this project is the strong connection between SNP abundance 
and cis-eQTLs. While specific SNP characteristics are shown to increase prediction potential of cis-
eQTL genes, the majority of this potential can also be captured by only counting SNP abundance. This 
might suggest that the connection between SNPs and cis-eQTL signal is at least in part explained by a 
bias introduced in the eQTL mapping method, rather than biological mechanisms. A possible 
explanation for this is that reads with higher number of variants relative to reference have a reduced 
mapping rate. This could cause differential expression between two accessions caused by the 
method when mapping to reference. Note that this would only affect cis-eQTL genes with variation in 
the exonic regions. A method to test this would be to map the reads from the eQTL analysis not to 



reference, but to genomes of both accessions and determine differential expression between these. 
This would quantify the bias introduced by the effect of variants on read mapping. Another 
explanation for the connection between prevalence of transcribed variants (regardless of effect on 
protein) and gene expression, might be that rather than affecting the protein, the variants have an 
effect on RNA stability. This has been suggested before as an explanation by the GTEx 
consortium(GTEx Consortium 2017). Thus, it remains unclear what part of the results observed in this 
project is the result from a bias in the eQTL mapping method rather than actual biology. As long as 
this is unclear, caution should be taken when interpreting the cis-eQTL results based on eQTL 
mapping experiments. Therefore, an important next step would be to quantify any bias in read 
mapping caused by SNP differences between reads and the reference, using the approach suggested 
here. 

While the approach taken in this project produced valuable insights, there are some things to 
consider. Firstly, the approach taken during this project relies on the assumption that an association 
signal found at the eQTL marker closest to the gene in question is caused by cis-regulating variants. 
However, the marker density, as well as the degree of recombination in the RIL population result in a 
resolution too low to reliably assign eQTL signal to individual genes. eQTL effects considered cis-
regulatory in this study might actually be local trans-eQTL effects, caused by nearby genes. Fine 
mapping is needed to reliably identify causal genes or variants underlying an eQTL signal, which is 
currently not feasible on a genome wide scale. However, the focus of this project was on the effect of 
coding variants. The results show a link between the gene expression and variants affecting the 
gene’s protein product, which in itself suggests cis-regulation of these genes. Secondly, the results 
from this study are based on a single variant dataset, determined between two Arabidopsis 
accessions. To test the robustness of this method, the model was validated on an independent eQTL 
study (Joosen, Arends et al. 2012). Model performance on this eQTL study was lower than the 
performance on the Serin et al study, but this can in part be attributed to the lower resolution and 
statistical power of the Joosen et al study. To more reliably determine the robustness of this method 
however, it would be better to also evaluate the model method on an independent SNP dataset 
between different Arabidopsis Thaliana accessions. This would eliminate any bias introduced by the 
variant calling method and test whether the method translates to other accessions. It is however 
possible that when a new pair of accessions have a different level of genetic differentiation, the 
trained model from this project would not perform as well. An alternative would then be to test the 
effectiveness of the approach used in this project, by retraining the models on the new variant data 
and evaluate the new model performance. 
 

The goal of this project was to take a step towards a computational method to prioritize candidate 
genes and variants underlying eQTL signal. In order to achieve this, the following hurdles need to be 
overcome. We hypothesize the potential of the promoter region to affect gene expression has not 
been adequately captured by the features used in this study. A different approach that better 
captures the expression regulatory potential of the promoter region would be an important next 
step. A possible approach would be to collect chip-seq data on transcription factor binding for a 
range of relevant transcription factors and integrate this information with known TFBS motif 
information. Furthermore, this project focused on the effect of variation on cis-effects on gene 
expression. To get a comprehensive view on expression regulation, the trans-regulatory potential of 
variants should be determined as well. As mentioned, this provides a challenge as it is more difficult 
to identify genes underlying the trans-eQTL when compared to cis-eQTLs. A different approach of 
obtaining a set of trans-regulatory relations where the causal gene can be identified should be used. 
A possibility would be to use known transcription factors, and either identifying known targets, or 
finding candidate target genes using existing Chip-seq experiments performed with these 
transcription factors. Integration of other regulatory interactions obtained independently with eQTL 
analysis could help identify likely trans-regulatory gene pairs. Once a positive set of trans-eQTL genes 



and their regulators is obtained, an approach similar to the one carried out in this study can be used 
to identify variant characteristics typically underlying trans-eQTLs. 

An improved ability to identify genes and variants underlying eQTL signal clears the way to creating 
expression regulatory networks. These can be leveraged to identify regulators controlling plant traits 
of interest. A method to link these regulatory networks to phenotypic traits important for agriculture 
or medicine, would be to integrate these eQTL studies with QTL studies mapping genomic loci to 
these traits. This could reveal the regulatory pathway and mechanisms behind these traits, which can 
help identify interesting targets for plant breeders and biotechnologists. 

 

Code availability: https://git.wur.nl/strie014/Thesis_scripts 
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Supplemental Figure 2: correlation of cis-eQTL LOD scores for all Serin et al 
eQTL studies. Cis-eQTLs LOD scores have been determined by assigning them 
LOD scores at the marker closest to the gene. The different eQTL studies have 
been performed under  a number of environmental conditions. The 
Serin_2017_al study pooled samples from all four environmental conditions. 

Supplemental Figure 1: Difference in SNP type counts, compared between the 
priority order  used to assign SNPs and its reverse, for SNPs determined between 
Bayreuth and Shadara Arabidopsis accessions. Gene level SNP annotations were 
obtained from isoform-specific SNP annotations. To do this, assignment priorities 
have been assigned to SNP types. This figure shows the differences in SNP counts 
between using the chosen priority and its reverse.  



 

 

 

 

 

 

 

 

 

  

 
Predicted 
non-eQTL 

Predicted 
eQTL 

 non-
eQTL 

4039 1292 

eQTL 940 1327 
 

Acc:  
71% 

Precision 
__ 

Recall    
___ 

 non-
eQTL 

0.81 0.758 

eQTL 0.507 0.585 
 

Supplemental Figure 5: Performance of Random 
Forest machine learning model on Serin et al eQTL 
data (unpublished). TOP: accuracy, precision and 
recall scores. BOTTOM: confusion matrix of 
classification result. Random Forest was trained 
using the cross-validation described in the 
methods was used, using the same data as the 
logistic model.Like the logistic model,  the 
class_weight option was set to ‘balanced’. The 
random forests consist of 500 tree estimators.  
The Max_features setting was set to ‘log2’. The 
minimum number of samples allowing a split was 
set to 8, the minimum number of samples at a 
leaf node was set to 5. 

Feature name 

GOSlsim terms gene 

Coding strand gene 

Prosite pattern SNPs 

Prosite profile SNPs 

Intronic SNPs 

Splice site SNPs 

SIFT deleterious SNPs 

Interaction Interface SNPs 

SignalP Peptide SNPs 

SNPs in TFBS motif 

Average TFBS motif score 

Nozero avg TFBS motif score 

Promoter GC content 

DHSites of promoter SNPs 

SNPs in AGO4 Transcription 
factor ChipSeq peaks 

SNPs in conserved non-
coding sequences 

 

Supplemental Figure 6: List of features 
that didn’t improve the logistic 
regression classifier or whose 
coefficient was reduced to zero.   

Supplemental Figure 3: Logistic regression model performance across a range of LOD 
score thresholds for the positive set of cis-eQTL genes. The model accuracy and 
number of cis-eQTL genes in the positive set are shown. TOP: performance results 
for Serin et al eQTL data (unpublished). BOTTOM: performance results for Joosen et 
al eQTL data (Joosen, Arends et al. 2012). 



 

 

 

 

 

 

 

 

 

 

 

 

  

Supplemental Figure 4: Distance of gene to nearest eQTL marker, from Serin et al eQTL study (unpublished). 
Genes have been sorted based on distance to nearest marker.  

Supplemental Figure 5: directional effect size for genes with a nonsense mutation in either Bayreuth or Shadara 
Arabidopsis accessions. The line in which the gene contains a nonsense mutation has been determined. The genes 
containing nonsense mutations have been plotted based on cis-eQTL LOD score and directional effect size. It is unclear 
which line’s expression is positively associated with effect size and which line negatively. However, there is clearly no 
evident connection between direction of effect and the line that contains the nonsense mutation.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplemental Figure 6: 

Heatmap of pearson 

correlation coefficients of 

gene-level features. 



Supplemental section: analysis of genes with allele specific expression 

As an independent method of 
identifying cis-regulated genes, a set of 
genes showing allele specific expression 
(ASE) in the F1 generation from the RIL 
population between Bayreuth and 
Shahdara accessions was determined 
(analysis performed in-house). A gene 
that shows allele specific expression 
indicates that the expression is altered 
due to cis-effects on the same 
chromosome. This means that 
expression is most likely regulated by 
promoter-related variation rather than 
variation affecting the protein product, 
as the former would have an allele-
specific effect and the latter would 
likely not. Thus, aside from an 
independent means of determining cis-
regulated genes, this set of cis-eQTL 
genes is also likely to be promoter-
regulated. This gene-set was analysed by 
comparing difference in feature means 
between this set and genes without 
evidence for ASE. Significantly different features are shown in Supplemental Figure 6. Feature means were 
compared using Welch’s t-test (p<0.05). To correct for multiple testing, Bonferroni correction was applied. 
The expectation was that promoter related features would differ most, while features in the coding region 
would differ less when compared to the positive cis-eQTL gene-set with LOD threshold 20 used in the 
project. This does not seem to be the case however. Features related to transcribed variants are more 
different in the ASE gene-set. This underlines the hypothesis that promoter-related features used in this 
project do not adequately capture the expression-regulatory effect of the promoter region. Furthermore, 
the increased number of transcribed variants in this gene-set, without a clear effect on the protein 
sequence point towards the hypotheses mentioned earlier, that either variation in the reads relative to 
reference causes bias in read mapping rate, or variation in the exonic regions affect RNA longevity.  

 

 

Supplemental Figure 7: Difference (percentage decrease/increase relative to 
non-ASE genes) in feature means between genes showing Allele specific 
expression and other genes. Only features with significantly different means 
are shown (Bonferonni corrected Welch’s t-test: p < 0.05).  


