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Abstract

In the past decade substantial progress has been made in model-based optimiza-

tion of sampling designs for mapping. This paper is an update of the overview of

sampling designs for mapping presented by de Gruijter et al. (2006). For model-

based estimation of values at unobserved points (mapping), probability sampling is

not required, which opens up the possibility of optimized non-probability sampling.

Non-probability sampling designs for mapping are regular grid sampling, spatial cov-

erage sampling, k-means sampling, conditioned Latin hypercube sampling, response

surface sampling, Kennard-Stone sampling and model-based sampling. In model-

based sampling a preliminary model of the spatial variation of the soil variable of

interest is used for optimizing the sample size and or the spatial coordinates of the

sampling locations. Kriging requires knowledge of the variogram. Sampling de-

signs for variogram estimation are nested sampling, independent random sampling

of pairs of points, and model-based designs in which either the uncertainty about the

variogram parameters, or the uncertainty about the kriging variance is minimized.

Various minimization criteria have been proposed for designing a single sample that

is suitable both for estimating the variogram and for mapping. For map validation

additional probability sampling is recommended, so that unbiased estimates of map
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quality indices and their standard errors can be obtained. For all sampling designs

R scripts are available in the supplement. Further research is recommended on sam-

pling designs for mapping with machine learning techniques, designs that are robust

against deviations of modeling assumptions, designs tailored at mapping multiple soil

variables of interest and soil classes or fuzzy memberships, and probability sampling

designs that are efficient both for design-based estimation of populations means and

for model-based mapping.

Keywords:

spatial coverage sampling, spatial simulated annealing, k-means sampling,

model-based sampling, latin hypercube sampling, kriging, variogram

1. Introduction1

The design of a soil survey scheme is a crucial, first step in digital soil mapping2

(Domburg et al., 1994; de Gruijter et al., 2006). An important element in this design3

process is the choice of the sampling design. This paper describes and illustrates sam-4

pling designs for mapping of soil attributes. A rich plethora of sampling designs for5

mapping is available, from straightforward simple designs to advanced, complicated6

designs. De Gruijter et al. (2006) present an overview of these sampling methods.7

Since 2006 numerous publications have been published on sampling for mapping, es-8

pecially on model-based sampling. The aim of this paper is to present an update of9

the overview of de Gruijter et al. (2006), to illustrate them with real-world case stud-10

ies, and to describe how the sampling designs can be implemented using the popular11

statistical language R (R Core Team, 2016). R scripts are available as a supplement12

to this article at https://github.com/DickBrus/TutorialSampling4DSM.13

The sampling methods are illustrated with four case studies:14
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• Cotton Research Field, Khorezm province, Uzbekistan15

• Hunter Valley, New South Wales, Australia16

• The woredas Alefa, Chilga and Dembia, Ethiopia17

• Xuancheng, Anhui province, China18

The first case study is a survey of the salinity of the soils at the Cotton Research19

Field in Khorezm, Uzbekistan. Electromagnetic induction (EMI) was measured with20

the EM38-MK2 instrument, with receivers at 1 m and 50 cm from the transmitter,21

positioned in the vertical dipole orientation. The effective depth of the measurements22

equals about 1.5 m and 0.75 m, respectively. Details can be found in Akramkhanov23

et al. (2013). This case study is used to illustrate the selection of sampling locations24

for calibrating a multiple linear regression model (section 4.2), and for mapping using25

kriging with an external drift (section 5.2)26

For the Hunter Valley study area we have raster maps of five quantitative covari-27

ates: elevation, slope, aspect, compound topographic index (cti), and normalized28

difference vegetation index (ndvi). This case study is used to illustrate, amongst29

others, k-means sampling (section 3.3) and conditioned Latin hypercube sampling30

(section 4.1)31

The data of the three woredas (administrative regions) in Ethiopia are concen-32

trations of soil organic matter (SOM) in the A horizon. By far the most sampling33

locations are located along roads (convenience sample). Raster maps of near-infrared34

(NIR), visible infrared, land surface temperature, enhanced vegetation index and el-35

evation are available for this study area. This data set is used to illustrate spatial36

infill sampling (section 3.2), model-based optimization of the spacing of a square grid37

(section 5.1) and model-based infill sampling (section 5.2).38
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In Xuancheng SOM concentration in the A horizon was measured at 121 sites.39

Besides the soil data, we have raster maps of elevation, precipitation and slope.40

These data and covariates are used to map SOM in the A horizon by kriging with an41

external drift (KED) and random forests (RF). A stratified simple random sample42

of 62 points is used as an illustration of how to estimate quality indices of the maps43

and how to test hypotheses about these quality indices (section 7).44

2. Probability versus non-probability sampling45

At the highest level one may distinguish random from non-random sampling46

methods. In random sampling a subset of population units is randomly selected47

from the population, using a random number generator. Examples of non-random48

sampling are convenience sampling e.g. along roads, arbitrary sampling i.e. sampling49

without a specific purpose in mind, and targeted sampling. In the literature the term50

random sampling is often used for arbitrary sampling, i.e. sampling without a specific51

purpose in mind. To avoid confusion the term probability sampling was introduced.52

Probability sampling is random sampling fulfilling two requirements. Firstly, all53

units in the population have a positive probability of being selected. No parts of54

the population may be excluded. Secondly, the selection probability of each possible55

sample is known. With arbitrary sampling these two requirements are often not met.56

The choice between probability or non-probability sampling is closely connected57

with the choice between a design-based or model-based approach for statistical infer-58

ence (estimation, hypothesis testing) (de Gruijter and ter Braak, 1990; Papritz and59

Webster, 1995; Brus and de Gruijter, 1997). In the design-based approach units are60

selected by probability sampling. Estimates are based on the selection probabilities61

of the sampling units as determined by the sampling design (design-based inference).62

No model is used in estimation. On the contrary, in a model-based approach a63
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stochastic model is used in estimation, for instance a linear regression or an ordi-64

nary kriging model. As the model already contains a random error term, probability65

sampling is not required in this approach, which opens up the possibility of opti-66

mized non-probability sampling. As an illustration, consider the following model:67

zi = β0 + β1xi + εi with zi the variable of interest of unit i, xi a covariate of that68

unit, β0 and β1 regression coefficients and εi the error (residual) at unit i, normally69

distributed with mean zero and a constant standard deviation σ. The errors are70

independent, so that Cov(εi, εj) = 0 for all i 6= j. Figure 1 shows a simple random71

sample without replacement (SRS) and the sample optimized for the calibration of72

the simple linear regression model. Both samples are plotted on a map of the covari-73

ate (predictor). The standard errors of both regression coefficients (computed for a74

residual standard deviation σ of 2) are considerably smaller for the optimized sample75

(Table 1). The joint uncertainty about the two regression coefficients, quantified by76

the determinant of the variance-covariance matrix of the estimated regression coeffi-77

cients, equals 0.0020 for SRS and 0.00010 for the optimized sample. So, we conclude78

that for mapping with a simple linear regression model, simple random sampling is79

not a good option.80

A model-based approach for sampling and statistical inference does not neces-81

sarily imply model-based sampling. The adjective model-based refers to the model-82

based inference, not to the selection of the locations. In a model-based approach83

sampling locations can be, but need not be selected by model-based sampling. If84

they are, then both in selecting the locations and in mapping a statistical model is85

used. In most cases the two models differ: the sample data are used to update the86

postulated preliminary model used for sampling design. This updated model is then87

used for mapping.88
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3. Geometric sampling designs89

3.1. Regular grid sampling90

A straightforward, popular sampling method for mapping is sampling on a regular91

grid, for instance a square or triangular grid. As opposed to regular grid sampling in92

a design-based approach (systematic random sampling), in a model-based approach93

there is no need to place the grid randomly on the area, but can be placed in such94

way that the coverage of the study area by the grid is optimal.95

When sampling on a regular grid we must decide on the grid-spacing, i.e. the96

distance between neighboring points. This boils down to a decision on the sample97

size, i.e. the number of grid points. There are two options to decide on this spacing,98

either by starting from the available budget or from a requirement on the quality99

of the map. The latter will be explained hereafter, in section 5.1, as this requires a100

model of the spatial variation, and as a consequence this is already an example of101

model-based sampling. Starting from the available budget and an estimate of the102

costs per point, we first compute the affordable sample size. Then, for a square grid103

the grid spacing can be computed by d =
√
A/n with A the size of the area and n104

the affordable sample size. With units of area in m2, the grid spacing is in m.105

Square grids can be selected with function spsample of R package sp (Pebesma106

and Bivand, 2005).107

3.2. Spatial coverage sampling108

With regular grid sampling of irregularly shaped areas the geographical spreading109

of the sampling locations throughout the study area can be suboptimal. In some parts110

of the study area the distance to the nearest sampling point can be relatively large.111

In this case we would like to relax the constraint of sampling on a regular grid.112

We would like to shift grid points a bit into the undersampled areas, so that the113
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spatial pattern becomes irregular. This leads to spatial coverage sampling in which114

a geometric criterion defined in terms of the distances between the nodes of a fine115

discretisation grid and the sampling points is minimized (Royle and Nychka, 1998).116

Brus et al. (2007) proposed to minimize the Mean Squared Shortest Distance (MSSD)117

by k-means. The spatial coordinates of the centroids of the cells of a discretisation118

grid are used as variables in k-means clustering of the grid cells. The centroids of119

the clusters are used as sampling points.120

If one already has measurements at locations with known spatial coordinates121

(legacy point data), and it is safe to assume that the measurements are still valid, it122

can be efficient to use these data in mapping. In this case we do not want to select123

new locations in the neighbourhood of the existing locations, but instead we want124

to fill-in the undersampled areas.125

Figure 2 shows a spatial coverage and spatial infill sample of 100 points for the126

Ethiopia case study area. Legacy data are collected mainly along roads; this is a127

nice example of convenience sampling. The spatial coverage sample does not take128

these legacy data into account; this would be appropriate if we do not want to use129

the legacy data, for instance because the quality of the data is poor. If we do want130

to use the legacy data, a spatial infill sample can be designed. The new sampling131

locations are more in the interior parts of three woredas.132

Spatial coverage and spatial infill samples can be selected with R package spcosa133

(Walvoort et al., 2010a,b), see SpatialCoverageSample.R and SpatialInfillSample.R134

in the supplement.135

3.3. k-means sampling136

In regular grid and spatial coverage sampling the selection of the sampling loca-137

tions is entirely based on the spatial coordinates of the locations. Covariates possibly138
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related to the soil property of interest, are not accounted for in selecting sampling139

locations. This can be suboptimal when the soil property of interest is related to140

covariates of which maps are available, think for instance of remote sensing imagery.141

These maps can then be used in mapping the soil property of interest using, for142

instance using a multiple linear regression model. This subsection describes methods143

for selecting sampling locations on the basis of the covariate values of the grid cells.144

3.3.1. Hard k-means145

In hard k-means sampling the covariates are used to cluster the grid cells by146

the k-means clustering algorithm. Similar to spatial coverage sampling the MSSD147

is minimized, but now the distance is not measured in geographical space but in a148

p-dimensional space spanned by the p covariates (think of it as a multi-dimensional149

scatter plot with the covariates along the axes). In hard k-means each unit can only150

belong to exactly one cluster. Figure 3 shows an example for the Hunter Valley study151

area. The five quantitative covariates elevation, slope, aspect, cti and ndvi were used152

as covariates. The sample of size was set to 20, and so 20 clusters were constructed153

using hard k-means. Note that the number of clusters is based on the required sample154

size (number of clusters equals number of sampling locations), not on the number155

of subregions with a high density of points in the multivariate distribution. The156

covariates are scaled so that their standard deviations become 1. Grid cells with the157

shortest scaled Euclidean distance in covariate-space to the centroids of the clusters158

are selected as the sampling points. Figure 4 shows the selected sample in a scatter159

diagram of elevation versus cti.160

Hard k-means clustering of the units (cells) can be done with function kmeans of161

package stats, see R script KMSample.R in the supplement.162
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3.3.2. Fuzzy k-means163

Contrary to hard k-means, fuzzy k-means (also referred to as soft k-means) allows164

units to belong to one or more clusters. A vector containing k numbers is assigned165

to every unit, with all numbers in the interval [0, 1]; the numbers sum to 1. The166

numbers indicate the degree to which a unit belongs to each cluster. They are167

referred to as membership grades. With fuzzy k-means, the centroid of a cluster is168

the weighted mean of the covariates over all units, using the memberships of that169

cluster as weights. As before, grid cells with the shortest Euclidean distance in170

covariate-space to the centroids of these fuzzy clusters are selected as the sampling171

points. These are the locations with the largest membership in the fuzzy subsets172

1 · · · k.173

K-means clustering is a well-known technique for selecting a subsample from a174

larger sample with NIR and vis-NIR spectroscopy. On the subsample the variable of175

interest is measured (Naes, 1987). For recent applications of fuzzy k-means in soil176

spectroscopy, see Debaene et al. (2014) and Ramirez-Lopez et al. (2014).177

Fuzzy k-means clustering can be done with function FKM of package fclust and178

function runFuzme of R package fuzme. R package fuzme can also be used for179

clustering using Mahalanobis distances. Clustering using Mahalanobis distances can180

also be achieved with function fanny of R package cluster. My experience is that181

computing time with these R packages is prohibitive when we have a large number182

of cells. In that case I recommend the software FuzME, which can be downloaded183

from internet at https://sydney.edu.au/agriculture/pal/software/fuzme.shtml. For184

postprocessing of the memberships to select sampling points, see FKMSampling.docx185

and R script FKMSample_FuzME.R in the supplement.186
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Fuzzy k-means with extragrades. As noted by de Gruijter et al. (2010), with hard and187

fuzzy k-means sampling the selected sampling points will tend to be concentrated in188

those parts of the multivariate distribution where the density of points is largest. The189

multivariate distribution is well represented by the sample, however no points are190

selected in the extremes of the distribution where the density of points is low. These191

points with extreme values, either near the minimum or near the maximum, for all or192

most covariates can have a considerable effect on the quality of the calibrated model.193

To overcome this problem, de Gruijter et al. (2010) proposed fuzzy k-means with194

extragrades. In this clustering method besides the k subsets of points represented by195

a centroid, an extra fuzzy subset is created with multivariate extremes or outliers.196

This fuzzy subset is not represented by a centroid; what the points share is that197

they are all distant from the k centroids. Finally, the k locations with the largest198

membership in the respective regular subsets are selected and completed by one or199

more locations with the largest memberships in the extra subset (de Gruijter et al.,200

2010). I am not aware of applications yet of this sampling design.201

Fuzzy k-means with extragrades can be done with function fkme of R package202

fuzme. Again, computing time can become prohibitive, so that clustering with FuZME203

becomes attractive.204

4. Adapted experimental designs205

This section describes two experimental designs that have been adapted for spa-206

tial surveys. An adaptation was necessary because in contrast to experiments, in207

observational studies one is not free to choose combinations of levels of different fac-208

tors. When two covariates are strongly correlated it may happen that there are no209

locations with a relatively large value for one covariate and a relatively small value210

for the other covariate.211
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In a full factorial design all combinations of factor levels are observed. For in-212

stance, suppose we have only two covariates, e.g. application rates for N and P in213

agricultural experiment, and four levels for each covariate. It is evident that the best214

option is to have multiple plots for all 4 × 4 combinations. This is referred to as215

a full factorial design. With k factors and l levels per factor the total number of216

observations is lk. With numerous factors and/or numerous levels per factor this be-217

comes unfeasible in practice. Alternative designs have been developed that need less218

observations but still provide detailed information about how the variable of interest219

responds to changes in the factor levels. Examples are Latin hypercube samples220

and response surface designs. The survey sampling analogues of these experimental221

designs are now described.222

In a final subsection the Kennard-Stone design is described (Kennard and Stone,223

1969). Although this design was proposed for experiments, this design can be used224

without adaptations as a sampling design in observational research.225

More experimental designs have been applied in soil survey, for instance D-226

optimal designs, see Totaro et al. (2013) for an interesting application of this design.227

4.1. Conditioned Latin hypercube sampling228

Latin hypercube sampling (LHS) is used in designing (computer) experiments229

with numerous covariates and/or factors of which we want to study the effect on the230

output (McKay et al., 1979). With numerous covariates and/or levels per covariate,231

a full factorial design becomes unfeasible. A much cheaper alternative then is an232

experiment with, for all covariates, exactly one observation per level. So in the233

agricultural experiment this would entail four observations, distributed in a square234

in such way that we have in all rows and in all columns one observation. This is235

referred to as a Latin square. The generalisation of a Latin square to a higher number236
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of dimensions is a Latin hypercube.237

Minasny and McBratney (2006) adapted LHS for observational studies; this adap-238

tation is referred to as conditioned LHS (cLHS). For each covariate a series of intervals239

(marginal strata) is defined. The breaks of the marginal strata are chosen such that240

the numbers of pixels in these marginal strata are equal. This can be done by using241

the quantiles corresponding with evenly spaced cumulative probabilities as stratum242

breaks. For instance, for five marginal strata we use the quantiles corresponding243

with the cumulative probabilities 0.2, 0.4, 0.6 and 0.8.244

Minasny and McBratney (2006) developed a search algorithm, based on heuristic245

rules and an annealing schedule, to select a cLHS (see for an explanation of annealing,246

section 5.2 hereafter). The objective function that is minimized is the weighted sum247

of three components, one of which is the sum over all marginal strata of the absolute248

difference between the marginal stratum sample size and targeted sample size (equal249

to 1). A second criterion is the sum over all entries of the matrix with absolute values250

of the difference between the correlation of the covariates in the population and in251

the sample. A third criterion is involved only when we have, besides quantitative252

covariates, categorical variables. This third component is the sum over all classes253

of the absolute difference between the sample proportion of a given class and the254

population proportion of that class.255

With cLHS the marginal distributions of the covariates in the sample are close to256

these distributions in the population. This can be advantageous for mapping methods257

that do not rely on linear relations, for instance in machine learning techniques like258

classification and regression trees (CART), and random forests.259

Figure 3 shows a cLHS sample of 20 points from the Hunter valley study area,260

using the same five covariates as before in k-means sampling. In Figure 4 the cLHS261

sample is plotted in a scatter diagram of elevation against cti. Besides the marginal262
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strata are shown. Ideally, each column and each row contains one sampling point.263

Conditioned LHS is a very popular sampling design in digital soil mapping.264

Roudier et al. (2012) and Mulder et al. (2013) adapted cLHS to make it more suitable265

for areas in which some parts are difficult to access, think of remote and mountain-266

ous areas. Ramirez-Lopez et al. (2014) compared cLHS with fuzzy k-means and267

Kennard-Stone sampling for calibration of models for predicting clay content and268

Ca concentration at the field and regional scale, using soil spectroscopy as input.269

Schmidt et al. (2014) compared an extension of cLHS with fuzzy k-means and re-270

sponse surface sampling for calibration of model for predicting basic soil properties271

at the field scale, using electromagnetic induction (EM38 and EM31) and gamma272

spectroscopy (U, K, Th) data.273

cLHS samples can be selected with R package clhs (Roudier, 2011) and function274

optimCLHS of R package spsann (Samuel-Rosa, 2016). For an application of the275

latter package, see cLHS_spsann.R in the supplement. Both R packages cannot276

be used to design a cLHS sample in the presence of legacy data. When we have277

legacy data we do not want to sample marginal strata that are already covered278

by these legacy sample data. Conditioned Latin hypercube infill sampling can be279

done with function getCriterion.cLHS of Functions4SSA.R, which is called by280

cLHS.R (see supplement). In both functions optimCLHS of R package spsann and281

getCriterion.cLHS of Functions4SSA.R the first and second component of the282

minimization criterion (O1 and O2) are not computed as sums but as means. For283

O2 this mean is computed over the off-diagonal elements of the matrix.284

4.2. Response surface sampling285

With response surface designs we aim at finding an optimum of the response286

within specified ranges of the factors. There are many types of response surface287
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designs, see Myers et al. (2002). A commonly used response surface design is the288

central composite design; the data of this design are used to fit a curved, quadratic289

surface (multiple linear regression model with quadratic terms).290

Lesch et al. (1995) adapted the response surface methodology so that it can291

be applied in observational studies. Several problems needed to be tackled. First,292

when multiple covariates are used, the covariates must be decorrelated. Second,293

sampling locations may show strong spatial clustering, so that the assumption in294

linear regression modelling of spatially uncorrelated model residuals is violated. To295

tackle these two problems Lesch et al. (1995) proposed the following procedure (see296

also Lesch (2005)):297

• Transform covariate matrix into a scaled, centered, de-correlated matrix by298

principal components analysis (PCA)299

• Choose response surface design type. This leads to a set of combinations of300

factor levels, referred to as design-points301

• Select candidate sampling locations based on the distance from the design-302

points in PC-space. Select multiple locations per design-point303

• Select combination of candidate sampling locations with the highest value for304

a criterion that quantifies how uniform the sample is spread across the study305

area306

Lesch (2005) proposed three maximization criteria that can be used in the final307

step: 1. the average separation distance between sampling locations; 2. the geometric308

mean separation distance, and 3. the minimum separation distance. The response309

surface sampling approach is an example of a model-based sampling design. From310

that viewpoint I should have described this sampling design in the next section.311
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With response surface sampling one assumes that some type of low order (linear or312

quadratic) regression model can be used to accurately approximate the relationship313

between the soil variable of interest and the covariates. The sampling locations are314

then selected to implicitly optimize the estimation of this model, subject to satisfying315

one or more explicit spatial optimization criteria (Lesch et al., 1995).316

Note that in linear regression modeling one assumes that the data are indepen-317

dent. Optimization of the sampling design under this model will not prevent the318

locations for spatial clustering, see section 8. However, in reality the assumption319

of independent data might be violated when the sampling locations are spatially320

clustered. For that reason the response surface sampling design selects samples with321

good spatial coverage, so that the design becomes robust against violation of the322

independence assumption.323

This design has been applied for mapping soil salinity (ECe), using electromag-324

netic induction (EMI) measurements and surface array conductivity measurements325

as predictors in multiple linear regression models. For applications, see Corwin and326

Lesch (2005), Lesch (2005), Fitzgerald et al. (2006), Corwin et al. (2010) and Fitzger-327

ald (2010).328

This sampling design is illustrated with the Cotton Research Field in Uzbekistan.329

We used the software ESAP (Lesch et al., 2000) to select a response surface sample330

of 12 points. ECa was measured with the EM device in vertical dipole mode with331

transmitters at 1 m and 50 cm from the receiver, on transects covering the Cotton332

Research Field (Figure 5). The natural logs of the two EM measurements are first333

interpolated to a fine grid by ordinary kriging. These interpolated EM data are334

then used to design the response surface sample. The two covariates are strongly335

correlated, r = 0.73. Figure 5 shows the selected sample plotted on the interpolated336

EM measurements. Figure 6 shows the selected response surface sample, plotted in337
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the space spanned by the two principal components, and in the scatter diagram of338

the two original covariates. The sample sizes that can be chosen in ESAP are 6, 12339

or 20 points.340

4.3. Kennard-Stone sampling341

One of the motivations for this experimental design was that in experiments often342

only part of the space spanned by the factors can be covered by the design points. To343

circumvent this problem the Kennard-Stone design (KS) starts from a finite N × p344

matrix of points that discretise the factor space, with N the number of candidate345

points, and p the number of factors. A geometric criterion is used to select a subset346

of n candidate points that are used as design points. The response is observed for347

the combinations of factors at these design points.348

The selection of the design points goes as follows. First two candidate points are349

selected with a maximum separation distance in factor space. The third point that350

is selected from the N−2 candidate points has maximum distance from the first two351

design points, et cetera. Kennard and Stone (1969) recommends to harmonize the352

dimensions of the factors by scaling them. They also suggest to take correlation of353

the factors into account by transforming the factors into orthogonal variables, and354

measuring distances in this transformed factor space.355

This design is commonly used to select a subsample out of a large sample with356

spectroscopy data (spectral library) to calibrate a model relating a soil property of357

interest to the spectra, see for instance Viscarra Rossel and Brus (2018) and Riedel358

et al. (2018).359

KS samples can be selected with function ken.sto of R package soil.spec (Sila360

et al., 2014).361
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5. Model-based sampling362

5.1. Optimization of grid spacing363

The alternative to deriving the grid spacing from the available budget is to derive364

the spacing from a requirement on the precision of the map. Suppose that the365

maximum variance of the prediction errors may not exceed a given threshold. The366

question then is what is the tolerable grid spacing so that the maximum prediction367

error variance does not exceed this threshold. Ignoring the relatively large variances368

near the border of the study area, we expect the prediction error variance to be369

largest at the centres of the grid cells with the measurements at their corners; these370

points have the largest distance to the points of the sampling grid. The larger the371

grid spacing, the larger the prediction error variances at these centres. The question372

is how large the spacing can be, so that the maximum prediction error variance is373

just below the threshold.374

For finding this maximum grid spacing one must have prior knowledge of the375

spatial variation. First, I consider the situation in which it is reasonable to assume376

that the mean of the study variable in the area is constant, and that we have a prior377

variogram, for instance estimated from existing data from the study area or from378

data of similar areas.379

There is no simple equation that relates the grid spacing to the variance of the380

prediction error (kriging variance). What can be done, is to calculate the kriging381

variance for a range of grid spacings, plot the kriging variances at the cell centres382

against the grid spacing, and use this plot inversely to determine, given a constraint383

on the maximum kriging variance, the maximum grid spacing (Burgess and McBrat-384

ney, 1981; McBratney et al., 1981; McBratney and Webster, 1981).385

For a requirement on the mean kriging variance instead of the maximum kriging386
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variance, I propose the following procedure:387

1. Specify variogram type and parameter values388

2. Select a simple random sample of points389

3. Select a square grid with a given spacing390

4. Compute the ordinary kriging variance at the simple random sample of evalu-391

ation points392

5. Compute the sample average of the kriging variance393

6. Repeat this for other grid spacings394

The simple random sample of step 2 is used to estimate the population mean of the395

kriging variance (MKV). The sample should be large enough, say > 1000 points,396

so that the estimate has high precision. In step 3 the square grid can be selected397

using either a fixed or a random starting point. In the latter case, steps 3 - 5 must398

be repeated several times, leading to multiple values for the estimated MKV for399

each grid spacing. Note that the procedure is very general, and can also be used to400

determine the tolerable grid spacing for, for instance, the P95 of the kriging variance.401

The same procedure can also be used to decide on the tolerable grid spacing for402

kriging with an external drift (KED). In this case the kriging variance is not only403

determined by the spatial coordinates of the grid nodes and evaluation points, but404

also by the covariate values at these points.405

Figure 7 shows graphs of the mean variance for OK and KED versus the grid406

spacing for the Ethiopia case study. The expected sample sizes for the grid spacings407

range from 432 (5 km spacing) to 76 points (12 km spacing). In KED I used elevation,408

NIR, visible infrared, and land surface temperature as covariates. A large part of409

the variation is explained by the four covariates, and as a result for a given required410

MKV the tolerable grid spacing with KED is considerably larger than for OK. For411
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KED up to a spacing of about nine km, corresponding with an expected sample size412

of 134 points, the variance of the error in the interpolated residuals dominates the413

kriging variance. With wider spacings the contribution of the uncertainty in the414

estimated regression coefficients becomes more substantial, explaining the somewhat415

accelerated increase of the MKV beyond a spacing of nine km.416

In practice we do not know the variogram. In the best case we have prior data417

that can be used to estimate the variogram. However, even in this case we are418

uncertain about the variogram type and the variogram parameters. Recently, Lark419

et al. (2017) worked out a Bayesian approach to account for this uncertainty. A420

sample from the multivariate posterior distribution of the variogram parameters is421

obtained by Markov Chain Monte Carlo (MCMC). Each unit of the sample is used422

to compute the kriging variances at the centre of square grid cells where the kriging423

variance is maximum. On his turn, each value of the kriging variance can be used to424

compute a tolerable grid spacing. The same procedure can be used using the mean425

kriging variance as a quality criterion. Figure 8 shows the histogram of the tolerable426

grid spacing for a mean ordinary kriging variance of 0.8 for the Ethiopia case study.427

The posterior distribution of the parameters of a spherical model with nugget was428

sampled by MCMC and differential evolution (ter Braak and Vrugt, 2008). Prior429

distributions for the sill variance, proportion of variance that is spatially structured,430

and range were all uniform with lower bounds equal to zero and upper bounds equal431

to 5 (mg/kg)2, 1 and 100 km. The grid spacing with the largest number of MCMC432

samples equals 8 km, which corresponds with the tolerable grid spacing derived from433

Figure 7. The subfigure on the right in Figure 8 shows the proportion of MCMC434

samples with a MKV smaller or equal to the target MKV of 0.8, as a function of the435

grid spacing. If we require a probability of 80% that the MKV does not exceed the436

target MKV of 0.8, the tolerable grid spacing is about 6.25 km. With a grid spacing437
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of 8 km as determined from Figure 7, the probability that the MKV exceeds 0.8 is438

only about 55%.439

Once we have decided on the required spacing, we may calculate from this the440

required sample size, or with a random start the expected sample size. We then may441

further optimize the design, by relaxing the constraint that the sampling locations442

must be on a square grid, and optimizing the coordinates of the locations. This can443

either be done by computing a spatial coverage sample, see section 2, or by model-444

based optimization of the sampling locations by spatial simulated annealing, see next445

section.446

Function ossfim of package gstat (Pebesma, 2004) can be used for model-based447

optimization of the grid spacing, given a requirement on the maximum ordinary448

kriging variance (kriging variance at centre of cells). For optimizing the grid spac-449

ing given a requirement on the mean ordinary kriging variance or mean variance450

for kriging with an external drift, see ModelBasedGridSpacingOK_MeanKV.R and451

ModelBasedGridSpacingKED_MeanKV.R in the supplement. For the Bayesian ap-452

proach of optimization of the grid spacing, see Bayesian_GridSpacing.R.453

5.2. Optimization of coordinates of sampling locations454

As argued in section 3.2, sampling on a regular grid can be suboptimal. I showed455

how the spatial coordinates of the sampling locations can be optimized by mini-456

mizing a geometric criterion, the MSSD, through k-means. This section describes457

optimization of the spatial coordinates of the sampling points through minimization458

of a criterion defined in terms of the prediction error variance, e.g. the mean krig-459

ing variance. Optimization by k-means as in spatial coverage sampling cannot be460

used for this. Inspired by the potentials of optimization through simulated annealing461

(Kirkpatrick et al., 1983; Aarts and Korst, 1987), van Groenigen and Stein (1998)462
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proposed to optimize the locations by spatial simulated annealing (SSA), see also van463

Groenigen et al. (1999, 2000). This is an iterative, random search procedure, in which464

a sequence of samples is generated. A new sample (proposed sample) is obtained by465

slightly modifying the current sample. One sampling location of the current sample466

is randomly selected, and this location is shifted to a random location within the467

neighbourhood of the selected location. The minimization criterion is computed for468

each sample. If the criterion of the proposed sample is smaller, it is accepted. If469

the criterion is larger, the proposed sample is accepted with a probability that is a470

function of the increase (the larger the increase, the smaller the acceptance probabil-471

ity) and of an annealing schedule parameter, referred to as the temperature, T . The472

larger T , the larger the probability that a proposed sample with a given increase of473

the criterion, is accepted. T is gradually decreased during the optimization, so that474

the acceptance probability of worse samples approaches zero towards the end of the475

optimization.476

Minimization of the mean kriging variance (MKV) for ordinary kriging (OK) by477

SSA leads to a sample that is spread out throughout the area. Brus et al. (2007)478

found that the optimized samples were very similar to spatial coverage samples, and479

that the MKV were nearly equal. Figure 10 shows a model-based infill sample of 100480

points for Ethiopia. The legacy data were used to estimate a variogram for SOM.481

The fitted spherical variogram had a nugget of 0.62, a partial sill of 0.56 and a range482

of 45 km. Comparison with the spatial infill sample of Fig. 2 shows that in a much483

wider zone on both sides of the roads no new sampling points are selected. This can484

be explained by the large range of the variogram.485

Heuvelink et al. (2007) optimized the locations by SSA for kriging with an external486

drift (KED). Remember that in KED we assume that the mean of the variable of487

interest is a linear combination of one or more covariates of which we have a map488
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covering the area. Brus and Heuvelink (2007) showed that the optimized sample489

is a compromise between spreading in geographic space and feature space. More490

precisely, locations are selected by spreading them out throughout the study area,491

while accounting for the values of the covariates at the selected locations, in the sense492

that locations with covariate values near the minimum and maximum are preferred.493

This can be explained by noting that the variance of the KED prediction error can494

be decomposed in the variance of the interpolated residuals and the variance of the495

estimated mean. The contribution of the first variance component is minimized496

through geographical spreading, that of the second component by selecting locations497

with covariate values near the minimum and maximum. Figure 9 shows that the498

smaller the proportion of spatially structured variance, the more the sampling points499

shift towards the left and right side of the square where the covariate (Easting) has500

its minimum and maximum value, respectively.501

Note that for optimizing the sampling locations for KED we must decide on502

the covariates that, we expect, explain part of the variation of the soil variable of503

interest. When one or more covariates are used in sample optimization, but not used504

in KED once the data are collected, the sample is suboptimal for the model used in505

prediction. Reversely, ignoring a covariate in sample optimization while using this506

covariate as a predictor, also leads to suboptimal samples.507

Further, note that a sample with covariate values close to the minima and max-508

ima only is not desirable if we do not want to rely on the assumption of a linear509

relation between the soil property of interest and the covariates. To identify a non-510

linear relation locations with intermediate covariate values are needed. Optimization511

using a variogram with clear spatial structure leads to geographical spreading of the512

sampling locations, so that most likely also locations with intermediate covariate513

values will be selected.514

22



Figure 11 shows a sample of 50 points from the Cotton Research Field in Uzbek-515

istan, optimized for KED of ECe using EMv1m as a covariate. The natural log of516

the EMv1m measurements (Fig. 6) are interpolated first to a square grid, and these517

interpolated values are used as a covariate in KED. The residual variogram for the518

natural log of ECe, the variable of interest, used in SSA is exponential with nugget519

0.1, partial sill 0.075 and a distance parameter of 100 m (practical range 300 m).The520

good spreading in geographic space is immediately clear; a careful look shows that521

preferably locations with either very small or very large values of ln(EMv1m) are se-522

lected, disturbing locally the regular pattern. The pushing of the locations towards523

the margins of the distribution is evident when comparing the population and sample524

histogram of ln(EMv1m) (see Figure 1 in the supplement).525

Function optimMKV of package spsann (Samuel-Rosa, 2016) can be used for526

model-based optimization of the coordinates of sampling locations, both for OK and527

KED, see R script ModelBasedSample_KED_spsann.R in the supplement. In the cur-528

rent version legacy data cannot be accounted for. R scripts ModelBasedSample_SSA_OK.R529

and ModelBasedSample_SSA_KED.R can be used for optimization of the locations530

of an infill sample in situations with legacy data. These R scripts call function531

getCriterion.K in functions4SSA.R.532

6. Sampling for variogram estimation533

For model-based sampling as described in sections 5.1 and 5.2 we need to specify534

the (residual) variogram. In cases we do not have the faintest idea, we might want to535

collect first data with the specific aim of estimating the variogram. This variogram536

is subsequently used to design a model-based sample for mapping. This section is537

about how to design this reconnaissance sample survey for estimating the variogram.538
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The first question is how many observations we need for this. Webster and Oliver539

(1992) gave as a rule of thumb that 150-225 points are needed to obtain a reliable540

variogram when estimated by the method-of-moments. Lark (2000) showed that with541

maximum likelihood (ML) estimation two-third to only half of the observations are542

needed to achieve equal precision of the estimated variogram parameters. Once we543

have decided on the sample size, we must select the locations. Two random sampling544

designs for variogram estimation are described in this section, nested sampling and545

independent sampling of pairs of points.546

6.1. Nested sampling547

Nested sampling can be used to estimate the semivariance at several chosen sep-548

aration distances (Oliver and Webster, 1986; Webster et al., 2006).549

We must first decide on these separation distances. Usually separation distances550

are chosen in a geometric progression, for instance 2, 8, 32, 128 and 512 m. The mul-551

tiplier should be at least three. There are two implementations of nested sampling.552

In the first implementation, in the first stage several main stations are selected in a553

way that they cover the study area well, for instance by spatial coverage sampling.554

In the second stage each of the main stations is used as a starting point to select555

one point at a distance equal to the largest chosen separation distance (512 m in the556

example), in a random direction from the main station. This doubles the sample557

size. In the third stage at each of the points selected in the previous stages (main558

stations of stage 1 plus the points of stage 2) are used as starting points to select559

one point at a distance equal to the second largest separation distance, and so on.560

All points selected in the various stages are included in the nested sample.561

The first stage of the second implementation is equal to that of the first imple-562

mentation. In the second stage each of the main stations serves as a starting point563
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for randomly selecting a pair of points with a separation distance equal to the largest564

chosen separation distance, with the main station halfway. In the third stage each565

of the substations is used to select in the same way a pair of points separated by the566

second largest chosen distance, and so on. Only the points selected in the final stage567

are used as sampling points. Figure 12 shows a nested sample selected by this second568

approach. For illustration purposes, only one main station is selected (halfway the569

two stations with label 1). In total 16 points are selected in four stages. The stations570

that served as starting points in stage 1 to 3 for selecting pairs of points are also571

shown.572

The sample of Figure 12 is an example of a balanced nested sample from the573

Hunter Valley case study area: in all stages all stations selected in the previous stage574

are used to select a pair of points. If in the first implementation of nested sampling575

all points selected in all previous stages are used to select a new point, then this also576

results in a balanced nested sample. The number of pairs of points separated by a577

given distance doubles with every stage. As a consequence, the estimated semivari-578

ances for the smallest separation distance are much more precise than for the largest579

distance. We are most uncertain about the estimated semivariances for the largest580

separation distances. If in the first stage only one pair of points is selected separated581

by the largest distance, then we have only one degree of freedom for estimating the582

variance component associated with this stage. It is more efficient to select more583

than one main station, say about ten, and to select less points in the final stages.584

For instance, with the second implementation we may decide to select a pair of points585

at only half the number of stations selected in the one-but-last stage. The nested586

sample then becomes unbalanced.587

The model for nested sampling with four stages is a hierarchical ANOVA model588
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with random effects:589

Zijk = µ+ Ai +Bij + Cijk + εijkl (1)

with µ the mean, Ai the effect of the ith first stage station, Bij the effect of the jth590

second stage station within the ith first stage station, and so on. Ai, Bij, Cijk and591

εijkl are random quantities (random effects), all with zero mean, and variances σ2
1,592

σ2
2, σ2

3 and σ2
4 respectively.593

For balanced designs the variance components can be estimated by the method594

of moments from a hierarchical ANOVA. The first step is to assign factors to the595

sampling points that indicate the grouping of the sampling points in the various596

stages. The number of factors needed is the number of stages minus 1. To illustrate597

this, in Figure 12 the first factor has two levels (in Eq. 1 i = 1, 2), the second factor598

has four levels (in Eq. 1 j = 1, 2, 3, 4) and the third factor has eight levels (in Eq.599

1 k = 1, 2, · · · , 8). For unbalanced nested designs the variance components can be600

estimated by restricted maximum likelihood (REML) (Webster et al., 2006). REML601

estimation is also recommended if in Eq. 1 iunstead of a constant mean µ the mean602

is a linear combination of one or more covariates (fixed effects). The semivariances at603

the chosen separation distances are obtained by cumulating the estimated variance604

components.605

Random sampling of the points is not strictly needed because a model-based606

approach is followed here (the model of Eq. 1 is a superpopulation model, i.e we607

assume that our population is generated by this model). Papritz et al. (2011), for608

instance, selected the points (using the second implementation) non-randomly to609

improve the control of the nested subareas and the average separation distances.610

Lark (2011) describes a method for optimization of a nested design, given the611

total number of points and the chosen separation distances.612
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The R script NestedSampling_v1.R in the supplement can be used to select a613

balanced nested sample, using the first implementation of nested sampling. The R614

script NestedSampling_v2.R can be used to select balanced and unbalanced nested615

samples, using the second implementation.616

6.2. Independent sampling of pairs of points617

With the nested design the estimated semivariances for the different separation618

distances are not independent. Independent estimated semivariances can be obtained619

by independent selection of pairs of points (IPP sampling) as proposed by Brus and620

de Gruijter (1994). For simple random sampling of point pairs this method is very621

straightforward. For each separation distance a point pair is selected by first selecting622

fully randomly one point from the study area. Then the second point is randomly623

selected randomly from the circle with the first point at its centre and a radius equal624

to the chosen separation distance. If this second point is outside the study area, both625

points are ignored. This is repeated until we have the required point pairs for this626

separation distance.627

The R script SI_PointPairs.R can be used to select simple random samples628

of pairs of points for variogram estimation. In this R script bootstrap samples of629

the samples of point pairs are used to estimate the variances and covariances of the630

estimated semivariogram model parameters.631

6.3. Model-based sampling for variogram estimation632

There is rich literature on model-based optimization of the sampling locations633

for variogram estimation. Several design criteria (minimization criteria) have been634

proposed for optimizing the sample, such as the determinant of the variance co-635

variance matrix of variogram parameters estimated by generalized least squares to the636

27



experimental method-of-moments variogram (Müller and Zimmerman, 1999; Bogaert637

and Russo, 1999), the log determinant of the inverse Fisher information matrix in638

maximum likelihood (ML) estimation of the variogram (hereafter shortly denoted639

by logdet(F−1)) (Zhu and Stein, 2005), and the variance of the kriging variance at640

the centre of square grid due to uncertainty in the ML estimates of the variogram641

parameters (hereafter shortly denoted by V (σ2
K)) (Lark, 2002). This variance is642

approximated by a first order Taylor series, requiring the partial derivates of the643

kriging variance to the variogram parameters. All these minimization criteria are a644

function of the variogram parameters θ, showing that the problem is circular. Using645

a preliminary ‘estimate’ of the variogram parameters, θ̂ leads to a locally optimal646

design at θ̂. For that reason Bogaert and Russo (1999) and Zhu and Stein (2005)647

proposed a Bayesian approach in which a multivariate prior distribution for the648

variogram parameters is postulated, and the expected value over this distribution of649

the criterion is minimized.650

Figure 13 shows for the Hunter Valley case study area samples of 100 points,651

the locations of which are optimized by SSA, using logdet(F−1) (left subfigure) or652

V (σ2
K) (right subfigure) as a minimization criterion. The postulated variogram is653

exponential with a range of 500 m and a nugget-to-sill ratio of 0.2. For both criteria654

the points show strong spatial clustering: nearly all points have one or more points655

at a very short distance (< 2 m).656

R script ModelBasedSample_SSA_EK.R (which calls Functions4SSA.R) in the657

supplement can be used to design a model-based sample for variogram estimation.658

Either logdet(F−1), or V (σ2
K) can be selected as a minimization criterion.659
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6.4. One sample both for estimating model parameters and prediction660

In practice, often a reconnaissance survey for variogram estimation is not feasible,661

and a single sample must be designed that is suitable both for estimating the model662

parameters and prediction with the estimated model parameters. Another reason is663

that in a reconnaissance survey we seldom can afford a sample size large enough to664

obtain reliable estimates of the model parameters. Papritz et al. (2011) found that665

for a sample size of 192 points the estimated variance components with balanced and666

unbalanced nested designs were highly uncertain. For this reason it is attractive to667

use also the sampling points designed for spatial prediction (mapping) for estimating668

the variogram. From this it follows that designing two samples, one for estimating669

the variogram and one for spatial prediction, is suboptimal. Designing one sample670

that can be used both for estimation of the model parameters and for prediction671

potentially is more efficient.672

Finally, with nested sampling and IPP sampling we aim at estimating the vari-673

ogram of the ‘residuals’ of a constant mean (see Eq. 1). In other words, with these674

designs we aim at estimating the parameters of model used in ordinary kriging. In675

situations where we have covariates that can partly explain the spatial variation676

of the soil variable of interest, kriging with an external drift is more appropriate.677

In these situations the reconnaissance survey should be tailored at estimating both678

the regression coefficients associated with the covariates and the parameters of the679

residual variogram.680

Model-based methods for designing a single sample for estimating the model681

parameters and for prediction with the estimated model parameters are proposed,682

amongst others, by Zimmerman (2006), Zhu and Stein (2006), Zhu and Zhang (2006)683

and Marchant and Lark (2007). The methods use a different minimization criterion.684

Zimmerman (2006) proposed to minimize the kriging variance (at the centre of a685
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square grid) that is augmented by an amount that accounts for the additional un-686

certainty in the kriging predictions due to uncertainty in the (residual) variogram687

parameters (hereafter denoted by σ2
K+). The uncertainty in the ML estimates of688

the variogram parameters is estimated by the inverse of the Fisher information ma-689

trix. Marchant and Lark (2007) proposed the same criterion, but following Zhu and690

Stein (2005), accounted for uncertainty in the postulated preliminary variogram by691

adopting a Bayesian approach. Zhu and Stein (2006) proposed as a minimization692

criterion the Estimation Adjusted Criterion (EAC), which is the spatial average of a693

weighted sum of the variance of the prediction error (including a term that accounts694

for uncertainty about the variogram parameters as in Zimmerman (2006)) and the695

variance of the kriging variance (quantified in the same way as by Lark (2002)).696

Computing time for optimization of the coordinates of a large sample, say > 50697

points, can become prohibitively large. To reduce computing time Zhu and Stein698

(2006) proposed a two-step approach. In the first step, for a fixed proportion699

p ∈ (0, 1) the locations of (1− p)n points are optimized for prediction with given pa-700

rameters, for instance by minimizing MKV. This ‘prediction sample’ is supplemented701

with pn points, so that the two combined samples of size n minimize logdet(F−1)702

or V (σ2
K)). This is repeated for different values of p. In the second step EAC is703

computed for the combined samples of size n, and the proportion and associated704

sample with minimum EAC is selected.705

A simplification of this two-step approach is to select in the first step a spatial706

coverage sample (obtained by minimizing MSSD), and to supplement this by a fixed707

number of points whose coordinates are optimized by SSA, using EAC computed708

from both samples (spatial coverage + supplemental sample) as a minimization cri-709

terion. In SSA the spatial coverage sample is fixed, i.e. the locations are not further710

optimized. Lark and Marchant (2018) recommended as a rule of thumb to add about711
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10% of the spatial coverage sample as short distance points. Figure 14 shows for the712

Hunter Valley case study area spatial coverage samples of 90 points, supplemented713

by 10 points optimized by SSA, using σ2
K+ (left subfigure) or EAC (right subfigure)714

as a minimization criterion.715

Figure 14 shows that all, or nearly all supplemental points are very close to a716

point of the spatial coverage sample. Based on this, a very straightforward, simple717

sampling design for estimating the model parameters and for prediction is a spatial718

coverage sample supplemented with randomly selected points in between the points719

of the spatial coverage sample at some chosen, fixed distances. Figure 15 shows an720

example. A subsample of 10 points is selected from the 90 points of the spatial721

coverage sample, using simple random sampling without replacement. These points722

are used as a starting point to select a close distance point in a random direction. R723

script SpatialCoveragePlusSample.R in the supplement can be used to select such724

samples.725

R script ModelBasedSample_SSA_EK.R in the supplement can be used to design726

a model-based sample both for estimation of the variogram and for kriging. The727

core of the sample is a spatial coverage sample, to which a fixed number of sampling728

points is added. The locations of the supplemental sample are optimized given the729

locations of the spatial coverage sample. Both above mentioned minimization criteria730

(σ2
K+ and EAC) are implemented in function getCriterion.EK of Functions4SSA.R731

which is called by ModelBasedSample_SSA_EK.R.732

7. Sampling for validation733

An important step in a mapping project is the validation of the model and eval-734

uation of the quality of the map. As argued by Brus et al. (2011) this can best be735
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done by collecting additional data, not used for mapping, through probability sam-736

pling. This is superior to validation through data splitting or cross-validation, as the737

samples used for mapping, and subsequently for data splitting or cross validation,738

generally are not probability samples. Probability sampling enhances model-free,739

design-based estimation of map quality indices, such as overall and map unit pu-740

rity of categorical maps and the population mean error (ME) and population mean741

squared error (MSE), as well of our uncertainties about these estimates, expressed,742

for instance, as a standard error or a confidence interval.743

I illustrate map validation with the case study Xuancheng. Using 121 observa-744

tions of soil organic matter concentration (g/kg) in the A-horizon, two maps are745

made, one with a random forest model (RF), and one with KED (see Figure 2 in746

the supplement). For the RF model seven covariates are used: planar curvature,747

profile curvature, slope, temperature, precipitation, topographic wetness index and748

elevation. In KED only the two most important covariates in the RF model are used:749

precipitation and elevation. For validating the two maps a stratified random sample750

was selected of 62 units, using eight map units of the geological map as strata (Fig.751

16). The population ME of both maps was estimated by752

M̂E =
L∑
h=1

whM̂Eh (2)

with wh = Nh/N the relative size of stratum h (Nh is number of pixels in stratum753

h, N is total number of pixels in study area), and M̂Eh the estimated mean error of754

stratum h:755

M̂Eh =
1

nh

nh∑
i=1

ehi, (3)

with ehi the error of validation unit i in stratum h: ehi = zhi − ẑhi. Note that M̂Eh756

is simply the unweighted sample average of the errors in stratum h.757
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The variance of the estimated ME was estimated by758

V̂ (M̂E) =
L∑
h=1

w2
hV̂ (M̂Eh) (4)

with V̂ (M̂Eh) the estimated variance of the estimated ME in stratum h:759

V̂ (M̂Eh) =
s2
h(e)

nh
(5)

with s2
h(e) the sample variance of the errors in stratum h. By taking the square root760

we obtain an estimate of the standard error of the estimated ME. The population761

MSE and its standard error can be estimated by the same formulas, replacing the762

errors in Eq. 3 by squared errors.763

A problem in estimating the standard error is that there is one stratum with only764

one observation. Following Cochran (1977) we collapsed this stratum with a similar765

geological map unit stratum. Note that after collapsing the stratum weights wh must766

be adapted, so that they sum to one again.767

The estimated population mean errors were used to test the null-hypothesis768

ME = 0, against the two-sided alternative hypothesis ME 6= 0. In words the769

null-hypothesis states ‘the predictions are unbiased’, or ‘there is no systematic error770

in the predictions’. This hypothesis can be tested with a one-sample t test. The771

number of degrees of freedom can be approximated by n − L, with L the number772

of strata (Lohr, 1999). For both maps the null-hypothesis is not rejected (p-value773

>> α = 0.05), so there is no evidence at all for biased predictions, neither for RF,774

nor for KED (Table 2).775

I also tested the null-hypothesis MSE(KED) = MSE(RF ). As alternative hy-776

pothesis we chose MSE(KED) > MSE(RF ), because in KED only two covariates777

are used as predictors, and besides in KED we assume a linear relation between SOM778

and the covariates, which can be too restrictive (in RF no such assumption is made).779
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This hypothesis is tested by a paired t-test, i.e. for each validation unit the difference780

of the two squared errors is computed: di = e2
i (KED)−e2

i (RF ). The null-hypothesis781

can now be reformulated as MD = 0, with MD the population mean of the pairwise782

differences in squared erors; the alternative hypothesis is MD > 0. In this procedure783

we automatically account for correlation of the two squared errors. To our surprise784

the estimated MSE with KED is smaller than with RF. The t-value is -0.632, with785

a p-value of 0.735. If we test the null-hypothesis against the two-sided alternative786

MSE(KED) 6= MSE(RF ) the p-value equals 0.530, so that we conclude that we787

have no evidence that the population MSE of the RF map is smaller than that of788

the KED map.789

When parts of the mapped area are difficult to access, think of remote areas, rough790

terrain conditions, cost-efficiency of the validation can be increased by accounting791

for these access costs (Yang et al., 2018). In stratified random sampling we may792

take the differences in access costs in allocating the total sample size to the strata.793

Besides, these access costs can be used to construct the strata (Yang et al., 2018).794

Stratified random samples can be selected with function strata of R package795

sampling (Tillé and Matei, 2015). Many other probability sampling designs are im-796

plemented in this R package. These packages select the units from a data.frame,797

which implies that the population is considered finite, whereas in reality we have798

an infinite population of points. In our case the units are often the nodes of a799

fine grid discretising the area, or the cells of a raster map. After the random se-800

lecting of the nodes (raster cells), a random point location is selected within the801

selected raster cells. A simple random sample of units can be selected by the func-802

tion sample.int of the base package. Optimal stratifications can be computed with803

R package stratification (Baillargeon and Rivest, 2014).804

StratifiedRandomSampling.R in the supplement is an R script for selecting a805
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stratified simple random sample. Validation.R is used to estimate the ME and806

MSE of both maps of Xuancheng, and StatisticalTesting.R is used for testing807

the hypotheses about the ME and MSE.808

8. Choosing a sampling design and further research809

8.1. No single best sampling design810

There is no single best sampling design for digital soil mapping. The best design811

depends on the method used for mapping the soil. This is illustrated with Figure812

1. We have seen before that the optimized sample for mapping with a simple linear813

regression model contains the units with the smallest or the largest values of the814

covariate x. In this case the optimized sample shows strong spatial clustering. Spatial815

clustering is not avoided because in a simple linear regression model we assume that816

the data are independent. In the optimized sample for mapping by KED (for KED we817

need many more points, but this is just for illustration purposes) spatial clustering is818

avoided, the selected units are spread throughout the area. At the same time units819

near the minimum (unit with coordinates (13.5, 12.5)) and maximum (unit with820

coordinates (13.5, 6.5)) of x are selected, see also section 5.2. So if we believe that821

the soil can better be mapped by KED instead of simple linear regression, because we822

expect the data to be spatially autocorrelated, the optimized sample largely differs823

from the optimized sample for mapping using a simple linear regression model.824

If we foresee a quadratic relation, zi = β0 +β1xi+β2x
2
i + εi, the optimized sample825

will also include locations with covariate values near the mean of x. And if we expect826

an even more complicated, non-linear relation, stratified sampling using quantiles of827

covariate x as stratum breaks, so that the distribution of x in the sample and in the828

population are similar (as is done in cLHS sampling for multiple covariates) can be829

advantageous (Figure 1).830
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8.2. Rules for choosing831

Table 3 is an attempt to link mapping methods and sampling designs. As one832

can see there is no 1:1 relation; for most mapping methods there are multiple options833

for the sampling design.834

Two situations are distinguished, one in which we have one or more maps with835

covariates, one in which we have none. In the latter case the soil variable of interest836

is necessarily mapped by some spatial interpolation technique, like ordinary kriging837

(OK). For spatial interpolation sampling points must be evenly spread throughout838

the area, which can be achieved by sampling on a regular grid, or even better by spa-839

tial coverage sampling. If one has prior knowledge of the variogram, this variogram840

can be used to optimize the grid spacing, given a requirement on the maximum or841

mean kriging variance or any percentile of the frequency distribution of the kriging842

variance. The tolerable grid spacing leads to a minimum sample size. This sample843

size can subsequently be used to further optimize the locations of the sampling units,844

through minimization of the MSSD by k-means (spatial coverage sample), or min-845

imization of the mean kriging variance by spatial simulated annealing. For OK we846

need a variogram, and therefore I recommend to supplement the sample with short847

distance points as explained in subsection 6.4.848

When we have one or more maps of covariates there are various options for849

mapping. At a high level we may distinguish mapping methods that rely, after850

transformation of the variable of interest and or the covariates, on the assumption851

of a linear relation of the soil variable of interest and the covariates, from methods852

that do not rely on such assumption. The former methods involve, amongst others,853

prediction with a simple or multiple linear regression model (LR) and KED. KED854

mapping requires more observations (higher sampling density) than LR mapping.855

For LR mapping, response surface sampling (RSS) can be a good option. If we have856
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more than two covariates, for RSS with the software ESAP the first two principle857

components can be used only, which can be a limitation.858

For KED, in principle the same sampling options as for OK come into scope:859

regular grids, spatial coverage and model-based sampling. For model-based sampling860

we must decide on the covariates that are used in the optimization. Besides, we must861

specify the residual variogram. Both choices may have an adverse effect on the quality862

of the sample. If one or more covariates are used in designing the sample, but not863

used in prediction because they do not improve predictions, the model-based sample864

is suboptimal. Misspecification of the distance parameter ((effective) range), and865

especially of the nugget-to-sill ratio of the residual variogram also affects the quality866

of the optimized sample. Again, supplementing the sample with short distance points867

for residual variogram estimation is recommended.868

For mapping using machine learning with one or more covariates sampling options869

are (fuzzy) k-means sampling, cLHS and KS sampling.870

8.3. Further research871

More studies into the efficiency of alternative sampling designs for a given map-872

ping method are needed to improve and extend Table 3. Such studies are especially873

needed for mapping with machine learning techniques like random forest, cubist,874

boosted regression, neural networks, support vector machines et cetera.875

In many cases we may not have decided yet on the mapping method at the stage876

of designing the sample. It is more realistic that we postpone this decision to after877

the sample data are collected, so that we can use the data to select an appropriate878

mapping method. In this situation it is important to choose a sampling design that is879

robust against deviations of modeling assumptions. For instance, if we neither want880

to rely on the assumption of a linear relation, nor on the assumption of independent881
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residuals, good options can be (fuzzy) k-means and cLHS sampling in which the882

sampling points are also spread in geographic space. A simple and straightforward883

way of achieving this is to add the spatial coordinates to the set of covariates, see884

Gao et al. (2016) for an example.885

Often interest is not only in a single soil variable, but in multiple soil variables.886

Vǎsát et al. (2010) used a linear model of coregionalisation to optimize the sample size887

and coordinates of sampling locations for mapping with ordinary cokriging. They888

applied the method in a situation where prior data are available to calibrate the889

model, but when no or few prior data are available, the postulated model used in890

the optimization can be rather hypothetical. I welcome more research in this area.891

An alternative to designing a sampling scheme for mapping multiple quantitative892

soil properties, is to design a sampling scheme for mapping soil classes or fuzzy893

memberships. Predicted soil classes or fuzzy memberships can then be used to predict894

the soil properties. Studies into efficient sampling designs for mapping soil classes or895

fuzzy memberships are needed.896

Although probability sampling is not required when the soil is mapped with a897

statistical model of the spatial variation, probability sampling still can be attractive898

for various reasons. When we have a dual aim, both estimating the population899

mean and mapping, it can be attractive to select a probability sample so that the900

population mean can be estimated model-free, by design-based inference. In this901

context the work of Grafström and Tillé (2013) and de Gruijter et al. (2016) is902

of interest. Grafström and Tillé (2013) adapted a sampling algorithm for balanced903

sampling, which is an efficient sampling design for estimating a population mean that904

exploits auxiliary variables, so that the sampling units are well spread throughout905

the study area, see (Brus, 2015) for a detailed description of the algorithm. The906

geographical spreading may increase the precision of the estimated population mean907
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(less redundant information), and besides we may profit from this spreading when the908

balanced sample is used for mapping, for instance by KED. De Gruijter et al. (2016)909

proposed a method in which a map of carbon content with associated uncertainty910

is used to optimize stratified random sampling for soil carbon auditing at the farm-911

scale. Once the data are collected, these data can be used to update the map and912

the stratification. The updated stratification is then used to select new sampling913

locations. In this way a series of samples is obtained that is used both for design-914

based estimation of the population total and for mapping the soil C content. In915

both sampling designs the primary aim seems to be design-based estimation of the916

population mean or total. Studies into probability sampling designs optimized for a917

criterion that is a function of the qualities of both the design-based estimate and of918

the map are recommended.919

Supplement920

R scripts, data sets and supplementary figures are available at https://github.921

com/DickBrus/TutorialSampling4DSM.922
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Table 1: Standard errors of the estimated intercept (β0) and slope (β1) for a simple random sample

(SRS) and the sample optimized for simple linear regression, see Figure 1

β0 β1

SRS 1.51 0.086

Optimized sample 1.08 0.051

Table 2: Estimated population mean error and population mean squared error, with standard errors

in paranthesis; t: outcome of test statistic of hypothesis ME = 0, against two-sided alternative

hypothesis, with p-value in paranthesis

RF KED

M̂E 0.546 (1.306) 0.814 (1.203)

M̂SE 95.9 (26.3) 89.4 (25.5)

t 0.418 (0.678) 0.676 (0.502)

Table 3: Overview of mapping methods and sampling designs; OK: ordinary kriging; LR: linear re-

gression; KED: kriging with an external drift; ML: machine learning techniques; cLHS: conditioned

Latin hypercube sample

Covariate maps available? Mapping method Sampling design Remark

No OK Regular grid Option: optimized grid spacing

Spatial coverage/infill sample

Model-based sample Min. crit: mean or max OK-var

Yes LR Response surface sample

KED Regular grid Option: optimized grid spacing

Spatial coverage/infill sample

Model-based sample Min. crit: mean or max KED-var

ML k-means sample

cond. Latin hypercube sample

Kennard-Stone sample
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Figure 1: From left to right: simple random sample, optimized sample for mapping with simple

linear regression model, optimized sample for kriging with an external drift, and stratified sample

using sixteen equal-sized covariate strata (quantiles of covariate used as stratum boundaries). All

samples are plotted in a map of the covariate.
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Figure 2: Spatial coverage and spatial infill sample in three woredas of Ethiopia, optimized by

minimizing MSSD by k-means.
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Figure 3: Hard k-means (left) and cLHS sample (right) of 20 points in Hunter Valley, using elevation,

slope, aspect, cti, and ndvi as covariates.
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Figure 4: Hard k-means (left) and cLHS sample (right) plotted in scatter diagram of elevation

against compound topographic index. Vertical and horizontal lines in scatter diagram of cLHS are

at breaks of marginal strata.
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Figure 5: Natural log transformed measurements of EMv-1m and EMv-0.5m in Cotton Research

Field, Uzbekistan (top), and response surface sample plotted on ordinary kriging predictions of

ln(EMv-1m) and ln(EM-0.5m) (bottom)
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Figure 6: Design points (dots) and principal component scores (triangles) of selected response sur-

face sample (left), and response surface sample plotted in the scatter diagram of the two covariates

(right)
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Figure 7: Mean ordinary kriging variance (black dots) and mean variance of kriging with an external

drift (red dots) for square grids of variable spacing, selected from the three woredas in Ethiopia.

For each spacing ten grids are selected with a random start.
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Figure 8: Histogram of tolerable grid spacing for a target MKV of 0.8 (left) and proportion of

MCMC samples with a MKV smaller than or equal to a target MKV of 0.8
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Figure 9: Samples optimized by SSA for KED, using Easting as a covariate, for three exponential

residual variograms with a distance parameter of five distance units. The nugget and partial sill

parameters of the residual variogram are 0 and 1 (left), 0.5 and 0.5 (middle), and 1 and 0 (right),

respectively.
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Figure 10: Infill sample optimized by SSA, for ordinary kriging of SOM in three woredas of Ethiopia.

The variogram for SOM estimated from the legacy sample data (triangles) was spherical, with

nugget 0.62, partial sill 0.56, and range 45 km.
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Figure 11: Sample optimized by SSA, for KED of ECe in the Cotton Research Field (Ethiopia),

using interpolated values of natural log of EMv1m as covariate.
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Figure 12: Balanced nested sample from Hunter Valley. In the first stage two stations are selected

with a separation distance of 3000 m (first order stations). In the second stage each first order

station is used to select a pair of second order stations with the second largest separation distance.

In the third stage each second order station is used to select a pair of third order stations. Finally,

in the fourth stage each third order station is used to select a pair of points included in the nested

sample (symbol x). This results in a balanced nested sample of 16 points. The three panels show

the factor levels needed for the hierarchical ANOVA.
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Figure 13: Samples of 100 points optimized for variogram estimation. Minimization criterion:

average of logdet(F−1) (left) and V (σ2
K) (right). Postulated variogram: exponential with distance

parameter of 500 m and nugget to sill ratio of 0.2.
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Figure 14: Spatial coverage sample of 90 points (circles), supplemented by 10 points (triangles)

optimized by SSA. Minimization criterion in SSA: average of augmented kriging variance (left) and

EAC (right). Postulated variogram: exponential with distance parameter of 500 m and nugget to

sill ratio of 0.2.
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Figure 15: Spatial coverage sample of 100 points supplemented with 10 points at a short distance

of randomly selected point of spatial coverage sample.
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Figure 16: Stratified simple random sample of 62 points for validation of two maps of soil organic

matter concentration in A horizon in Xuancheng. Strata are the eight units of a geological map.
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