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Abstract 
The human gut microbiota, in particular that of the colon, have previously been shown to play a significant 
role in the host’s health and homeostasis. Compositional imbalances are known to participate in disease 
onset and development. Knowing the importance of the colonic microbiome, it would be of higher interest 
to examine the small intestinal microbiome considering the organ’s crucial act in metabolism and 
immunity.  
Here, the ileal microbiomes of four ileostomy subjects across four timepoints have been explored in terms 
of function and composition. Their metatranscriptomes were functionally analyzed by comparing protein 
domain and enzyme abundances and, besides functionality, the metatranscriptomic reads provided insight 
in the phage content. The metagenomes of the ileal samples were compared using genera and species 
counts.  
The core domainome and enzymome were enriched for pathways and processes involved in growth, 
maintenance and carbohydrate metabolism and uptake. With regard to the composition, the following 
genera were present in all subjects: Clostridium, Escherichia, Streptococcus, Ruminococcus, Romboutsia, 
Haemophilus, Eubacterium, Lachnospira and Mycobacterium. Remarkably, the genus Veillonella was 
absent in the core. Phages known to infect Escherichia, other Enterobacteria and Streptococcus were found 
in all subjects. Species, phage, and functional diversity varied greatly between and within subjects. An 
increasing functional diversity could partly be explained by an increasing species diversity. Furthermore, a 
negative correlation was found between species and phage diversity. Differences between subjects in 
terms of functionality and composition were thought to be mainly due to dietary and other lifestyle-
concerning differences. Still, the relative contribution of species of unknown/uncultured genera was 
strikingly high, expressing the need to further research the small intestinal microbiota.  
Concludingly, it was shown here that the small intestinal microbiota differed between subjects and even 
fluctuated within subjects both functionally and compositionally. These observations could be explained 
by e.g. the rapid small intestinal luminal flow and the effect of diet and lifestyle. Changes in functional 
diversity could be partly explained by changes in species diversity. The commensal relationship concerning 
lactate production and consumption might actually involve other genera than previously thought.  
 

Introduction 
The composition of the colonic microbiota has already been associated with a wide variety of diseases. 
Compositional alterations have been shown to have profound roles in the onset, development and severity 
of the following inflammatory bowel diseases (IBD): Crohn's disease, ulcerative colitis, and inflammatory 
bowel syndrome (IBS) (Becker et al., 2015). The intestinal microbial community is greatly affected by our 
diet (Patman, G., 2015) and lifestyle, and this is also reflected by the fact that the intestinal microbiota has 
been linked with so-called lifestyle diseases e.g. colorectal cancer (Irrazábal et al., 2014), obesity, and 
diabetes (Miele et al., 2015). Even the gut-brain axis is influenced by gut microbiota as links were found 
with autism and depression (Dinan et al., 2015).  
Since most of these studies are based on phylogenetic analyses of colonic or fecal samples, little is known 
about the small intestinal microbial composition or its functional landscape. Three regions can be 
distinguished in the small intestines in this order: the duodenum, jejunum, and ileum. The duodenum is 
connected with the stomach separated by the pyloric sphincter. Bile and pancreatic enzymes enter the 
duodenum via the ampulla of Vater and therefore the duodenum is the main place of enzymatic 
breakdown of food. The jejunum has a very large surface area through the presence of (micro)villi, making 
it the ideal location for absorption of nutrients. The ileum is he small intestinal terminal part and its main 
function is inducing immune responses reflected by the presence of gut-associated lymphoid tissue (GALT) 
and Peyer's patches (Aidy et al., 2015). 
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The small intestinal bacterial density is less, gradually increasing from 103 to 108 bacteria g-1, compared to 
the colonic density (1012 bacteria g-1). This is caused by rapid luminal flow, high acidity (originating from 
the stomach), secretion of bile and production of antimicrobial peptides. The latter serve to protect the 
highly permeable intestinal epithelium from putative pathogens. The small intestinal microbiota consists 
predominantly of Streptococcus, Veillonella, Escherichia, Clostridium and Turicibacter species, where the 
first two always coexist in a commensal relationship with, respectively, lactate production and 
consumption (Aidy et al., 2015). 
Considering the significance of the small intestines to the host's metabolism and immune system, it might 
be of much more interest to explore the small intestinal microbiota functionally and phylogenetically. 
However, sampling of the small intestines is still an obstacle to overcome. Fasting, which affects the 
microbial composition, is required before sampling using naso-ileal catheters. Moreover, placement of 
these catheters needs supervision of gastro-enterologists further complicating sampling. Another means 
of obtaining small intestinal samples is to cooperate with ileostomy subjects enabling sampling over time 
(Aidy et al., 2015). 
Metagenomic analysis on ileal samples in patients with Crohn's disease has already shown associations 
between depletion of specific Firmicutes and Bacteroidetes taxa, and expansion of Proteobacteria and the 
severity of the disease (Haberman et al., 2014). Furthermore, in the study of Zoetendal et al., from 2012 it 
was shown that Streptococcus, Escherichia, Clostridium and Gram-positive organisms with high GC-content 
are most abundant in the small intestines. Genes related to uptake (phosphotransferase system) and 
metabolism of simple carbohydrates were highly expressed in the small intestinal samples. It was 
concluded that the ileal microbial community is depending on the ability of fast uptake and metabolism of 
simple carbohydrates, and adaptation to fast changing nutrient availability (Zoetendal et al., 2012). 
A metatranscriptomics analysis pipeline has already been proposed and tested on a part of the data that 
was used in this study (Leimena et al., 2013), a BLASTX-based method was used successfully to touch upon 
the functionality of the small intestinal microbiome. Recently, (Meta)SAPP was developed for de novo-
based functional annotation of metatranscriptomes. SAPP (Semantic Annotation Platform with 
Provenance) was designed to support FAIR de novo computational genomics but can also be used to 
process and analyze existing genome annotations. Modules are available for prediction of genetic 
elements and protein annotation. Besides annotation information, it also stores associated dataset- and 
element-wise provenance by using a HDT (Header, Dictionary, Triples) format. SPARQL querying can be 
used to interrogate the SAPP databases (Koehorst et al., 2018).  
This study aimed to further explore functional and phylogenetic diversity in the human small intestines by 
making use of ileostoma effluent samples. Therefore, here, BLASTX-, BLASTN- and de novo-based methods 
were compared for functional  analysis of metatranscriptomics data of the human ileum. Hereafter, the 
method considered most suitable was used to identify the core domainome and enzymome across 
subjects, to identify the differences in domainome and enzymome between subjects, to compare 
functional and compositional diversity over time and to identify bacterial phages affecting compositional 
and/or functional diversity.  
 

Methodology 
The methodology encompasses sections on: data description and preprocessing, comparison of three 
methods, and both phylogenetic and functional analyses to analyze metatranscriptomics data. Whenever 
settings are not specified for the tools used, default settings were used. The workflow, specific commands 
and SPARQL queries can be found below in appendices 1, 6 and 7. Most graphs were made with ggplot2 
(Wickham, 2009) in the R programming language (R Core Team, 2017), whereas the rest of the methods 
have been implemented in the Python programming language (Python Software Foundation, 
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http://www.python.org/). Other than ggplot2, the following R packages have been used: reshape2 
(Wickham, 2007), ggfortify (Tang et al., 2016), VennDiagram (Chen, 2018) and vegan (Oksanen et al., 2018). 
 

Data description and preprocessing 
The dataset included 16S rDNA, 16S rRNA and mRNA profiling where the first two were sequenced with 
pyrosequencing and the latter with Illumina sequencing. All profiling was done for two male and two 
female ileostomy subjects (age 66 ± 9.0 years) for four timepoints. The subjects were colectomized at least 
five years prior to the sampling period, are clinically considered to be healthy, and have normal functioning 
small intestines. Ileostoma effluent was sampled on day one and day three both in the morning and 
afternoon.  As to the Illumina sequencing, all samples were sequenced in single end, however paired end 
sequencing was applied for female subject four. Replicates for two samples (male subject one, day three 
morning and female subject 2, day one morning) were sequenced at a lower coverage. During the sampling 
period, no standardized diet was prescribed to the subjects. The datasets of male subject one and female 
subject four were already analyzed and published in a study in which the effect of lower coverage 
sequencing and single-end versus paired-end sequencing was investigated to propose a 
metatranscriptome analysis pipeline (Leimena et al., 2013). Here, only the 16S rRNA and mRNA profiling 
datasets were used. An overview of the data can be found in appendix 2. 
All raw FASTQ files of the mRNA profiling were subjected to FastQC v.0.11.7 (Andrews S., 2010) to assess 
quality before and after trimming. Adaptors and low quality reads were removed or trimmed with 
Trimmomatic v0.36 (Bolger et al., 2014) with default settings for both single end and paired end reads with 
the Illumina TruSeq3 adaptors file. Reads originating from rRNA were removed with SortMeRNA v2.1b 
(Kopylova et al., 2012) by using the default settings and the following included SILVA rRNA databases 
(Quast et al., 2013): bacterial 23S, archaeal 16S, archaeal 23S, eukaryotic 18S, eukaryotic 28S, rfam 5S and 
rfam 5.8S. Reads originating from human mRNA were removed with the latter software program as well 
by using the default settings and a database of transcripts of the human genome version GRCh38.p12.  
All raw FASTQ files of the 16S rRNA profiling were subjected to FastQC v.0.11.7 (Andrews S., 2010) to assess 
quality before and after trimming. Low quality reads were removed or trimmed with QTrim v1.1 (Shrestha 
et al., 2014) with default settings. 
 

Comparison of BLASTX-, BLASTN- and de novo-based methods 
The mRNA profiling datasets were analyzed with three different approaches followed by comparison. 
Hereafter, the three different approaches will be explained. All approaches led to Pfam domain and EC 
number counts per sample.  
The trimmed non-human mRNA reads were queried with DIAMOND v0.9.21.122 (Buchfink et al., 2015) 
against the proteins (a total of 56,263,754 unique protein sequences) in the database containing 
approximately 100,000 bacterial genomes annotated with SAPP (Koehorst et al., 2018). The genetic code 
specific for Bacteria, Archaea and plant plastids was used for translation and only one target sequence was 
kept. Thresholds were applied for the DIAMOND results, an e-value lower than 10-6 and a bit score higher 
than 74, adapted from what was found in the study of Leimena et al., in 2013. Protein counts were 
converted to Pfam domain (database v31.0) (Finn et al., 2014) and EC number (Bairoch A., 2000) counts 
by using the functional annotation information predicted by InterProScan v5.25-64.0 (Jones et al., 2014) 
and EnzDP v1.0 (Nguyen et al., 2015) of the SAPP-based annotated bacterial genomes. Thresholds were 
set for the likelihood score and max bit score of EnzDP, 0.1 and 74 respectively. Furthermore, only full EC 
number were kept. The default thresholds for InterProScan were used. 
For the BLASTN-based method, trimmed non-human mRNA reads were queried with MegaBLAST enclosed 
within the NCBI BLAST+ package v2.7.1 (Camacho et al., 2009) against the genes (a total of 150,492,747 
unique gene sequences) in the database containing approximately 100,000 bacterial genomes annotated 

http://www.python.org/
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with SAPP (Koehorst et al., 2018). Again, only one target sequence was kept per query read and gene 
counts were converted to Pfam domain and EC number counts as described for the BLASTX-based method. 
The same BLAST thresholds were applied for e-value and bit score, as well as the same EnzDP and 
InterProScan thresholds. 
At last, trimmed non-human mRNA reads were functionally annotated with MetaSAPP (Koehorst et al., 
2018). The following SAPP modules were applied in this order: MEGAHIT v1.1.2 (Li et al., 2014) for 
metatranscriptomic assembly, Prodigal v2.6.3 (Hyatt et al., 2010) for bacterial gene prediction, 
InterProScan v5.25-64.0 (Jones et al., 2014) for Pfam domain prediction and EnzDP v1.0 (Nguyen et al., 
2015) for enzyme prediction. Prodigal was run using the genetic code for Bacteria, Archaea and plant 

plastids with the option -meta specific for metatranscriptomes (and metagenomes). All other modules 
were run with default settings. The predicted genes and their sequences were extracted by a SPARQL 
query, against which the trimmed non-human mRNA reads were blasted with BLASTN contained within 
the NCBI BLAST+ package v2.7.1 (Camacho et al., 2009) to extract gene counts. The latter were converted 
to Pfam domain and EC number counts as previously described. Again, the same BLAST thresholds were 
applied for e-value and bit score, as well as the same EnzDP and InterProScan thresholds. 
Pfam domain and EC number count matrices resulting from the three different methods were compared 
with a principal component analysis (PCA) on the count matrices and visualized with Venn-diagrams for 
the presence/absence matrices. Rarefaction analyses provided insight in sequencing depth. The most 
suitable method for this dataset was chosen based on the following rules. The method should not be an 
outlier in the PCA, and the highest percentage of Pfams and ECs must have been found with the other two 
methods as well.  
 

Functional analysis: protein domains and enzymes 
After choosing the most suitable method for this dataset, the core domainome and enzymome (those 
Pfam domains and EC number present at least once in all subjects) were determined. The core Pfam 
domains were extracted and mapped against Gene Ontology (GO) biological process terms (The Gene 
Ontology Consortium, 2017) with the Pfam2GO (May 2018) mapping generated from data supplied by 
InterPro (Hunter et al., 2009). The GO biological process terms with the most Pfam domains (with a 
minimum of 10 Pfam domains) mapped were considered the core domainome. The core EC numbers were 
extracted and mapped against KEGG pathways. A hypergeometric test with Benjamini-Hochberg (BH) 
multiple testing correction was performed to determine significantly (adjusted p-value smaller than 0.05) 
enriched KEGG pathways (Kanehisa et al., 2000) in the core enzymome.   
The functional differences between the subjects' small intestinal microbiota were identified as follows. 
The Pfam domains and EC numbers present in only one of the subjects were extracted and sorted based 
on the number of times the domains and enzymes were present in the subject. Those Pfam domains and 
EC numbers, that are uniquely present within a subject and were having the highest counts, were further 
investigated. Finally, the functional diversity within and between the subjects were analyzed by calculating 
and visualizing the domain and enzyme Shannon index and richness on Pfam domain and EC number 
counts. A Pearson’s correlation coefficient (PCC) was calculated for the Shannon indexes and richness.  
 

Compositional analysis: species and phages 
The 16S rRNA profiling datasets were queried with MegaBLAST embedded in the NCBI BLAST+ package 
v2.7.1 (Camacho et al., 2009) against the SILVA v132 SSU Ref NR 99 database (Quast et al., 2013). Only the 
best hit per read was kept and a threshold of 95% and 97% for the sequence similarity was applied to filter 
the MegaBLAST results, for respectively genera and species. Species diversity was analyzed by calculating 
the Shannon index and richness over time on species counts. Microbial composition on genus level was 
visualized in a relative stacked bar plot with each sample represented by a different bar.  
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The trimmed non-human mRNA datasets were queried as described above with MegaBLAST against a 
bacterial phages database. The database was made by collecting all phages with Bacteria as hosts from 
NCBI (link) and extracting their RefSeq coding nucleotide sequences in FASTA format (link). Again only the 
best hit per read was kept and thresholds for e-value and bit score were applied, respectively, lower than 
10-6 and higher than 110. Phage diversity was analyzed and visualized by calculating the Shannon index 
and richness over time on phage counts. 
For both species and phage count data, PCAs and Venn-diagrams were calculated and constructed for 
comparison between subjects. A PCC was calculated for the Shannon indexes and richness. Furthermore, 
the top five most abundant species and phages uniquely present per subject were analyzed. 
 

Source code 
All written code can be found on https://github.com/lottewitjes/MSc_minor_thesis. 
 

Results 
Data preprocessing  
A total of 666,717,901 raw RNA reads were generated during the metatranscriptomic profiling. After 
adaptor and low quality trimming 554,799,063 reads were left. However, after the removal of reads 
originating from ribosomal RNA and human mRNA, a total number of 61,785,193 reads turned out to be 
non-human mRNA reads of sufficient quality. More information, regarding read numbers, can be found in 
supplemental table 1 of appendix 2. Figure 1 shows a visual representation of the read counts per sample. 
It can be concluded that the number of mRNA reads greatly varied between the different subjects as well 
as within subjects, furthermore a substantial number of reads was discarded due to low quality and rRNA 
origin. 
The number of trimmed 16S rRNA reads ranged from 4,539 to 24,467 per sample with a total of 222,231 
reads. Here, again, the total number of reads varied significantly between samples and more information 
can be found in supplemental table 2 of appendix 2.  
 

https://www.ncbi.nlm.nih.gov/genomes/GenomesGroup.cgi?taxid=10239&host=bacteria
https://www.ncbi.nlm.nih.gov/nuccore?term=Viruses%5bOrganism%5d+AND+srcdb_refseq%5bPROP%5d+NOT+wgs%5bPROP%5d+NOT+cellular+organisms%5bORGN%5d+NOT+AC_000001%3AAC_999999%5bPACC%5d+AND+(%22vhost+bacteria%22%5bFilter%5d
https://github.com/lottewitjes/MSc_minor_thesis
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Figure 1 An overview of the number of reads per sample after adaptor and low quality trimming (dark green), after removal of 
rRNA (light green), and after removal of human mRNA (dark blue). The light blue coded part of the bar are the reads that are 
effectively used. The coding of the samples is as follows: gender, subject number, day number and day part. Those samples 

containing “rep” are technical replicates sequenced at lower depth. 

Comparison of BLASTX-, BLASTN- and de novo-based methods 
Three different methods were compared for functional analysis of the mRNA profiling datasets: a BLASTN-
based, a BLASTX-based and a de novo-based method. The methods were compared based on the resulting 
Pfam domain and EC number count matrices.  
Figure 2 shows the results of the PCAs on both count matrices (figure 2A: Pfam domains, figure 2B: EC 
numbers). Individual samples analyzed with the different methods were plotted on the first and second 
principal component (PC1 and PC2). For both PCAs and their first two PCs, the accompanying proportions 
of variance explained (PVE) were 10.77% and 7.39% for Pfam counts and 13.98% and 8.5% for EC number 
counts. This suggested that the variance between the methods could be better explained by EC numbers, 
and that the datasets showed variability. Clustering of the samples analyzed with the same method can 
be observed in both figures, but is more prominent in figure 2B. The latter graph implied that the results 
of the BLASTN- and BLASTX-based methods were more alike than the MetaSAPP results, indicating that 
the latter de novo-based method might be an outlier.  
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Figure 2 PCAs on Pfam domains (A) and EC numbers (B) visualized by plotting the second principal component (PC2) against the 
first principal component (PC1) with the accompanying proportions of variance explained (PVE). The green dots represent the 

samples analyzed with BLASTN, the orange dots with BLASTX, and the dark blue dots with MetaSAPP. 

When zooming in on the unique Pfam domains and EC numbers that were found by each method, again 
dissimilarities can be noticed. Figure 3 shows the Venn-diagrams representing the Pfam domains (figure 
3A) and EC numbers (figure 3B) found with each method. Ample Pfams and ECs are found by all methods, 
respectively 3,658 and 1,184. Still, significant numbers of Pfams and ECs are only found with one method. 
BLASTX had the highest percentage of Pfam domains found also covered by other methods, namely 
92.75%, compared to 90.58% and 87.13% for BLASTN and MetaSAPP, respectively. In addition, BLASTX had 
the highest percentage of EC numbers found also covered by other methods, namely 99.31%, compared 
to 93.37% and 63.59%. This might suggest that the BLASTX-based method had the least false positives in 
comparison with the other methods. The latter and the fact that BLASTX was not an outlier in the previous 
PCAs, made BLASTX appear the most suitable method to functionally analyze the metatranscriptomes in 
this study. 
 

 
Figure 3 Venn-diagrams representing the Pfam domains (A) and EC numbers (B) found with the three methods. The numbers in 

overlapping circles represent Pfam domains or EC numbers found with both or all methods. The orange circle represents 
BLASTX, the green circle BLASTN, and the blue circle MetaSAPP.  

Finally, rarefaction analyses were carried out for BLASTX results to assess sequencing depth. Figure 4 
shows plots of the number of unique Pfams (A) and EC numbers (B) plotted against the number of usable 
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mRNA reads. The black dots represent the samples and an asymptote is expected, meaning that eventually 
a platform will be reached where no new unique Pfam domains and EC numbers are found with increasing 
sequencing depth (number of reads). Still, for both graphs the plotted exponential functions (blue line with 
gray area) have not yet reached the expected platform. Therefore, it can be concluded that the sequencing 
depth was not sufficient in this study. A significant number of Pfam domains and EC numbers might have 
been missed. 
 

 
Figure 4 Rarefaction analyses of Pfam domains (A) and EC numbers (B) analyzed with BLASTX. For both figures, the number of 

unique Pfam domains and EC numbers were plotted against the number of mRNA reads. The black dots represent the different 
samples on which an exponential function is fitted (blue line with grey area). 

Functional analysis: protein domains and enzymes 
Having chosen the most suitable method to functionally analyze the subjects’ metatranscriptomes, namely 
BLASTX, it is now time to dig deeper into the (dis)similarities between the subjects and timepoints in terms 
of function. The metatranscriptomes were compared based on the resulting Pfam domain and EC number 
count matrices.  
Figure 5 shows the results of the PCAs on both count matrices (figure 5A: Pfam domains, figure 5B: EC 
numbers). The individual samples colored per subject were plotted on the first and second principal 
component (PC1 and PC2). For both PCAs and their first two PCs, the accompanying proportions of 
variance explained (PVE) were 21.05% and 12.79% for Pfam counts and 22.06% and 10.14% for EC number 
counts. Contrary to the PCA on the different methods, this suggested that the variance between the 
subjects could be better explained by Pfam domains, and that the datasets were less variable between 
subjects compared to between methods. Clustering of the samples of the same subject can be observed 
in both figures, but is more prominent in figure 5A. The latter graph implied that the metatranscriptomes 
of subject one, two and four were more similar to each other than to subject three, with subject three 
being an outlier. However, this observation is less obvious in figure 5B, where clustering appeared to a 
lesser extent.  
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Figure 5 PCAs on Pfam domains (A) and EC numbers (B) visualized by plotting the second principal component (PC2) against the 

first principal component (PC1) with the accompanying proportions of variance explained (PVEs). The differently colored dots 
represent the different subjects: light blue for male 1, light green for female 2, dark blue for male 3, and dark green for female 4. 

When zooming in on the unique Pfam domains and EC numbers that were found in each subject, again 
dissimilarities can be noticed. Figure 6 shows the Venn-diagrams representing the Pfam domains (figure 
6A) and EC numbers (figure 6B) found within each subject. Total numbers of 5019 Pfam domains and 1306 
EC numbers were found, of which a generous number of Pfams and ECs were found in all subjects’ 
metatranscriptomes, respectively 2,290 and 734. These can be seen as the core domainome and core 
enzymome, and will be analyzed and described later. More Pfam domains are found in comparison to EC 
numbers due to the possible presence of multiple domains in one enzyme. Apart from what is similar 
amongst the subjects, it can be noticed in figure 6 that a lot of Pfam domains and EC numbers were 
uniquely present in different subjects. A total number of 66, 55, 485 and 434 Pfam domains were found 
uniquely in respectively subject one, two, three and four. For the EC numbers, a total number of 21, 27, 
54 and 129 enzymes could be found uniquely in respectively subject one, two, three and four. These 
observations indicated that the metatranscriptomes of the different subjects varied.  
 

 
Figure 6 Venn-diagrams representing the Pfam domains (A) and EC numbers (B) found within the subjects’ metatranscriptomes. 

The numbers in overlapping circles represent Pfam domains or EC numbers found within two, three or all subjects. The 
differently colored circles represent the different subjects: light blue for male 1, light green for female 2, dark blue for male 3, 

and dark green for female 4. 

Knowing that the small intestines have a rapid luminal flow and therefore might have a highly fluctuating 
microbial composition, it is interesting to see if this was also reflected in the functional diversity over time. 
Figure 7 shows graphs of the Shannon diversity and richness of Pfam domains and EC numbers over time. 
It can immediately be noted that the functional diversity and richness was varying in all subjects, and 
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interestingly varied more in subject one, three and four. The trends observed for Pfam domains (for both 
Shannon diversity and richness) matched to some extent the trends observed for EC numbers. No clear 
patterns regarding morning and afternoon rhythm could be seen. The previous observation that there are 
more Pfam domains than EC numbers is reflected in these graphs too. Supplemental figure 2 and 3 in 
appendix 5 show networks of PCCs calculated from Shannon indexes and richness for Pfam domains, EC 
numbers, species and phages. The PCC for correlation between Shannon Pfam domain diversity and 
Shannon EC number diversity was 0.7996, indicating that an increase in domain diversity resulted in an 
increase in enzyme diversity. The PCC for correlation between Pfam and EC richness was 0.8020, reflecting 
the same relationship.  
 

 
Figure 7 Shannon diversity and richness over time of the different subjects’ metatranscriptomes based on Pfam domain and EC 

number counts. Figure A and B visualize the changes in Shannon diversity for Pfam domains and EC numbers over time, whereas 
figure C and D visualized the changes in richness. The differently colored lines represent the different subjects: light blue for 

male 1, light green for female 2, dark blue for male 3, and dark green for female 4. 

The core domainome and enzymome consisted of respectively 2,290 and 734 Pfam domains and EC 
numbers. The core Pfam domains were mapped against GO biological process terms and those terms with 
a number of mapped Pfam domains higher than ten are shown in table 1. The core enzymes were mapped 
on KEGG pathways and tested for enrichment with a Benjamini-Hochberg corrected hypergeometric test, 
the significantly enriched pathways are shown in table 2. As was shown in the study of Zoetendal et al., 
from 2012, the core was enriched for processes and pathways related to carbohydrate uptake and 
metabolism. Moreover, processes and pathways related to growth and maintenance were enriched as 
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well. More specialized pathways were detected in the core too, e.g.: streptomycin biosynthesis, 
selenocompound metabolism, and pantothenate and CoA biosynthesis.  
 

Table 1 The core domainome across all four subjects mapped against GO biological process terms, those GO terms with a 
minimal of ten mapped Pfam domains are shown. 

GO biological process Mapped Pfam 
domains 

Oxidation-reduction process 120 

Carbohydrate metabolic process 47 

Metabolic process 42 

Regulation of transcription, DNA-templated 34 

Transmembrane transport 33 

Proteolysis 30 

Translation 28 

DNA replication 19 

DNA repair 15 

Transcription, DNA-templated 15 

Biosynthetic process 14 

Phosphoenolpyruvate-dependent sugar phosphotransferase system 13 

 
Table 2 The core enzymome across all four subjects mapped against KEGG pathways and tested for enrichment with a 

Benjamini-Hochberg corrected hypergeometric test. Only significantly enriched KEGG pathways are shown. 

KEGG pathway Mapped ECs ECs in pathway BH-corrected 
p-value 

Peptidoglycan biosynthesis 17 19 1.345e-09 

Aminoacyl-tRNA biosynthesis 23 31 2.019e-09 

Pyrimidine metabolism 31 65 1.893e-05 

Arginine biosynthesis 17 28 3.197e-05 

Purine metabolism 43 110 1.226e-04 

Glycolysis/gluconeogenesis 23 48 1.900e-04 

Pyruvate metabolism 29 67 2.175e-04 

Alanine, aspartate and glutamate metabolism 23 50 3.067e-04 

Carbon fixation pathways in prokaryotes 23 50 3.067e-04 

Other glycan degradation 7 9 3.778e-04 

Starch and sucrose metabolism 30 77 1.239e-03 

Lysine biosynthesis 14 28 1.621e-03 

Valine, leucine and isoleucine biosynthesis 8 14 5.278e-03 

Drug metabolism – other enzymes 12 25 5.278e-03 

Citrate cycle (TCA cycle) 12 25 5.278e-03 

Fatty acid biosynthesis 9 17 6.004e-03 

D-Alanine metabolism 4 6 1.489e-02 

Galactose metabolism 18 48 1.925e-02 

Metabolic pathways 384 1649 2.030e-02 

Phenylalanine, tyrosine and tryptophan biosynthesis 15 39 2.410e-02 

Streptomycin biosynthesis 8 18 3.384e-02 

One carbon pool by folate 10 24 3.384e-02 

Selenocompound metabolism 8 18 3.384e-02 

Pantothenate and CoA biosynthesis 12 31 3.735e-02 

 
Supplemental table 3 and 4 of appendix 3 show the top five uniquely found Pfam domains and EC 
numbers per subject, sorted on average count. The unique Pfam domains and EC numbers of subject one 
were not considered due to low average abundance. The unique Pfam domains will be analyzed first. A 
sialidase enzyme penultimate C terminal domain (PF12135), uniquely observed in subject two, is found in 
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the toxin-producing Clostridium perfringens (Adams et al., 2008). Furthermore, a tetracycline repressor C-
terminal all-alpha domain (PF16295) was observed, matching the fact that the most abundant genera in 
the small intestines are resistant to tetracyclines (Grossman, 2016). Lastly for subject two, an ADP-
ribosyltransferase exoenzyme (PF03496) was found which is known to be involved in the production of 
the iota-toxins in C. perfringens (Tsuge et al., 2003). Subject three had some unique Pfam domains related 
to carbohydrate metabolism. A glycogen synthesis protein domain (PF089761) which is known to be 
expressed in Escherichia coli in response to starvation (Kozlov et al., 2004). A maltose transport system 
permease protein MalF P2 domain (PF14785), and an oligogalacturonate-specific porin protein (PF06178) 
involved in the uptake of pectin derivatives (Blot et al., 2002). The metatranscriptome of subject four 
uniquely contained the domain of CIA30 (PF08547), this domain is present in the mitochondrial complex I 
in human and mouse. Interestingly, the domain family is also present in Schizosaccharomyces pombe 
(Janssen et al., 2002). A bacteriocin domain related to lactococcin 972 (PF09683) was found as well as a 
CRISPR-associated protein Csn2 subfamily domain (PF16813). Lactococcin 972 is known to be produced by 
Lactococcus lactis and is bactericidal to sensitive strains (Martínez  et al., 1996), whereas Csn2 subfamily 
domains are found in e.g. Streptococcus and Enterococcus species and play a role in prokaryotic immunity 
(Lee et al., 2012).  
Having analyzed the unique Pfam domains, let’s now focus on the unique EC numbers per subject. In the 
metatranscriptome of subject two appeared a cyanophycin synthase (EC 6.3.2.30) which functions in 
nitrogen storage in Cyanobacteria, however recent studies found this enzyme to be expressed in C. 
perfringens and might there play a role in spore assembly (Lui et al., 2016). Lastly, subject three had CDP-
abequose synthases (EC 1.1.1.341) which are expressed in Yersinia pseudotuberculosis (Kessler et al., 1991) 
and Salmonella enterica (Wyk et al., 1989) conferring antigen specificity.  
 

Compositional analysis: species and phages 
After functionally analysis of the subjects’ metatranscriptomes with BLASTX, it is now time to dig deeper 
into the (dis)similarities between the subjects and timepoints in terms of composition. The metagenomes 
and metatranscriptomes were analyzed with BLASTN against the latest version of the SILVA SSU rRNA 
database and a phage database, and were compared based on the resulting genera, species and phage 
count matrices.  
Figure 8 shows the relative contribution of the genera per sample. The coding of the sample names is as 
follows: gender, subject number, day number, and part of day. The fraction of “Uncultured” bacteria was 
remarkable, reflecting the limited knowledge on the small intestinal microbiota. The genera, that were 
present in all subjects at some timepoint being the core genera, were: Clostridium, Escherichia, 
Streptococcus, Ruminococcus, Romboutsia, Haemophilus, Eubacterium, Lachnospira and Mycobacterium 
(albeit the latter in very low numbers). Contrary to what was found by previous studies, the genus 
Veillonella turned out to be not as abundant. Besides the commonalities, figure 8 shows a striking drop in 
the relative contribution of the Clostridium genus in the last two samples from subject four (f.s4.d3.mrn 
and f.s4.d3.aft), in comparison with the first two samples of subject four (f.s4.d1.mrn and f.s4.d1.aft). 
Furthermore, it seemed that a distinction could be made between an Escherichia-based and a Clostridium-
based microbiota. In conclusion, the genera composition varied notably between subjects and even within 
subjects. 
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Figure 8 Relative contribution of genera per sample based on the 16S rRNA reads. The coding of the samples is as follows: 

gender, subject number, day number, and part of day. The category “Other” represents all genera together that were not in the 
top ten most abundant genera. 

Figure 9 shows the results of the PCAs on both count matrices (figure 9A: species, figure 9B: EC phages). 
The individual samples colored per subject were plotted on the first and second principal component (PC1 
and PC2). For both PCAs and their first two PCs, the accompanying proportions of variance explained (PVE) 
were of considerable amount, being 13.04% and 10.83% for species counts and 15.42% and 12.28% for 
phage counts. This suggested that the variance between the subjects could be better explained by phage 
counts. Clustering of the samples of the same subject can be observed in both figures. Both graphs implied 
that of subject one and two were more similar to each other than to the other subjects, with subject three 
and some samples of subject four being outliers. Interestingly, subject three and four being outliers was 
also observed in the functional PCAs.  
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Figure 9 PCAs on species (A) and phages (B) visualized by plotting the second principal component (PC2) against the first 
principal component (PC1) with the accompanying proportions of variance explained (PVE). The differently colored dots 

represent the different subjects: light blue for male 1, light green for female 2, dark blue for male 3, and dark green for female 4. 

When zooming in on the unique species and phages that were found in each subject, again dissimilarities 
can be noticed. Figure 10 shows the Venn-diagrams representing the species (figure 10A) and phages 
(figure 10B) found within each subject. Total numbers of 138 species and 204 phages were found, of which 
a number of species and phages were found in all subjects’ meta- genomes and transcriptomes, 
respectively 13 and 19. These can be seen as the core species and core phages, and will be analyzed and 
described later. Apart from the similarities, it can be noticed that quite some species and phages were 
uniquely present in different subjects. A total number of 13, 31, 25 and 7 species were found uniquely in 
respectively subject one, two, three and four. A total number of 16, 51, 27 and 5 phages could be found 
uniquely in respectively subject one, two, three and four. These observations indicated that the meta- 
genomes and transcriptomes of the different subjects varied compositionally. 
 

 
Figure 10 Venn-diagrams representing the species (A) and phages (B) found within the subjects’ meta- genomes and 

transcriptomes. The numbers in overlapping circles represent species or phages found within two, three or all subjects. The 
differently colored circles represent the different subjects: light blue for male 1, light green for female 2, dark blue for male 3, 

and dark green for female 4. 

As the small intestines have a highly fluctuating microbial composition in comparison to the colonic 
microbiome, it is interesting to see if this is also confirmed by this study. Figure 11 shows graphs of the 
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Shannon diversity and richness of species and phages over time. It can immediately be noted that the 
compositional diversity and richness was varying in all subjects, and interestingly varied more, as was seen 
with the functional diversity and richness, in subject one, three and four. No clear patterns regarding 
morning and afternoon rhythm could be seen. The sudden drop in the relative contribution of the 
Clostridium genus in subject four as was previously described, is reflected in figure 11A and 11C as well. 
One could note a drop in Shannon species diversity and species richness here too for subject four (dark 
green line). The Shannon phages diversity stayed close to constant for the latter subject, but an increase 
in phage richness could be observed in figure 11D. Supplemental figure 2 and 3 in appendix 5 show 
networks of PCCs calculated from Shannon indexes and richness for Pfam domains, EC numbers, species 
and phages. The PCC for correlation between Shannon species diversity and Shannon phage diversity was 
-0.3508, indicating that an increase in phage diversity resulted in a decrease in species diversity. The PCC 
for correlation between species and phage richness was 0.4865, indicating that an increase in species 
richness resulted in an increase in phage richness. This shows that the negative correlation between the 
Shannon diversity indexes could be explained by a change in evenness since the Shannon index is affected 
by both evenness and richness. The PCC for Shannon species diversity and Shannon Pfam diversity was 
0.3914, whereas the PCC for Shannon species diversity and Shannon EC diversity was 0.4318. The PCC for 
species richness and Pfam richness was 0.4465, whereas the PCC for species richness and EC richness was 
0.4278. The latter correlations indicated that an increase in compositional diversity and richness resulted 
in an increase in functional diversity and richness. 
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Figure 8 Shannon diversity and richness over time of the different subjects’ meta- genomes and transcriptomes based on 

species and phage counts. Figure A and B visualize the changes in Shannon diversity for species and phages over time, whereas 
figure C and D visualized the changes in richness. The differently colored lines represent the different subjects: light blue for 

male 1, light green for female 2, dark blue for male 3, and dark green for female 4. 

The compositional core consisted of respectively 13 and 19 species and phages and those are shown in 
table 3 and 4. As in the genera composition graph, species were present in the core of the following genera 
or families: Escherichia, Clostridiaceae, Ruminococcus, Streptococcus, Lachnospiraceae, Haemophilus, 
Eubacterium and Mycobacterium (albeit the latter in very low numbers). Again, a large part of the small 
intestinal core microbiome was unknown or “Uncultured” and no species of the genus Veillonella was 
present in the core. The presence of these genera and families was echoed in the core phages since various 
Escherichia, Enterobacteria and Streptococcus phages were found. The presence of various Stx2 converting 
phages was remarkable. These phages, when present in certain Escherichia coli strains, can result in 
pathogenic Shiga toxin 2 (Stx2)-producing E. coli that can cause severe illness (Beutin et al., 2012). The 
Shigella phage SfIV infecting Shigella flexneri is thought to be an important determinant for pathogenesis 
in shigellosis (Jakhetia et al., 2013). Overall, the most abundant core phages infect E. coli and Streptococcus 
species.  
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Table 3 The core species and their rounded average read 
counts across all samples. Whenever there is “bacterium” 
in the species name, only the genus or family name was 
known.  

Core species Average counts 

Uncultured 7211 

Escherichia coli 1365 

Clostridiaceae bacterium 839 

Ruminococcus bacterium 66 

Streptococcus salivarius 48 

Streptococcus bacterium 24 

Streptococcus parasanguinis 16 

Streptococcus sanguinis 11 

Lachnospiraceae bacterium 8 

Streptococcus infantis 4 

Haemophilus parainfluenza 4 

Eubacterium bacterium 2 

Mycobacterium tuberculosis 1 

 
 
 
 

 
Table 4 The core phages and their rounded average read 
counts across all samples. 

Core phages Average counts 

Stx2 converting phage II 1918 

Enterobacteria phage lambda 588 

Streptococcus phage 7201 177 

Streptococcus phage Abc2 127 

Shigella phage SfIV 122 

Streptococcus phage YMC-2011 103 

Streptococcus phage 5093 59 

Phage cdtI 52 

Streptococcus virus 9872 42 

Stx2 converting phage 1717 26 

Enterobacteria phage WA13 16 

Stx2 converting phage 86 15 

Salmonella phage SJ46 6 

Streptococcus phage Sfi21 5 

Lactococcus phage CB13 3 

Streptococcus phage PH10 3 

Streptococcus phage SM1 2 

Lactococcus phage P680 2 

Streptococcus phage M102AD 2 

Supplemental table 5 and 6 of appendix 4 show the top five uniquely found species and phages per 
subject, sorted on average count. The unique presence of Clostridium beijerinckii and Clostridium diolis in 
subject four immediately stood out. C. beijerinckii, formerly Clostridium acetobutylicum, is known to 
ferment dietary fibers to alcohols (Lütke-Eversloh, 2014), whereas C. diolis is known to produce 1,3-
propanediol by fermentation of glycerol and lignocellulosic hydrolysates (Xin et al., 2016). It turned out 
that especially these two species were present in high numbers in the first two samples of subject four 
(f.s4.d1.mrn and f.s4.d1.aft) but totally disappeared in the last two samples (f.s4.d3.mrn and f.s4.d3.aft) 
causing the trends in Shannon diversity and richness as previously described, however no sudden increase 
in Clostridium phages could be found. The increase in phage diversity and richness for this subject could 
be caused by increasing abundances of several Streptococcus and Stx2 converting phages. In subject three, 
Serratia marcescens and Pantoea agglomerans appeared uniquely with considerable abundances. The first 
is shown to be injurious to intestinal epithelial cells causing diarrhea (Ochieng et al., 2014) and P. 
agglomerans is a plant pathogen that can cause disease in humans (Cruz et al., 2007). The functional 
analysis of subject two showed domains and enzymes unique for Clostridium perfringens, and the latter 
species was also found in the metagenome of subject two. 
Concerning the uniquely present phages, the Shigella phage Ss-VASD that was uniquely present in subject 
three, is a Shiga toxin 1a converting phage of Shigella sonnei that resembles Stx2 converting phages of E. 
coli and might be horizontally transferred from E. coli. These Shigella phages were isolated from stool 
samples of subjects with diarrhea and abdominal discomfort (Carter et al., 2016). Subject one contained 
unique Lactococcus and Lactobacillus phages. The metatranscriptome of subject two had hits with coding 
sequences of Haemophilus influenzae phages HP1 and HP2. The top five most abundant unique phages in 
subject four were all phages of Streptococcus species. The Streptococcus phage ALQ13.2 phage had been 
shown to be a virulent phage of Streptococcus thermophilus (Guglielmotti et al., 2009), just as the 
Streptococcus phage 2972 (Lévesque et al., 2005).   
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In conclusion, all analyses indicated that the ileal microbiota and its functionality greatly varied between 
and within subjects. Some variation in functionality could be explained by compositional variation and vice 
versa.  Differences between subjects in terms of functionality and composition might be a result of dietary 
differences. Still, there were some culprits and limitations as will be discussed in the next section.  
 

Discussion 
Finding more and more evidence for the profound role of the colonic microbiome in disease and host 
overall well-being, has risen questions with regard to the role of the small intestinal microbiome. The latter 
is of higher interest as the small intestines are mainly responsible for metabolism and gut-associated 
immunity. The goal of this study was to explore the similarities and differences in the ileal microbiota of 
four subjects across four timepoints in terms of functionality and composition. All in all, the results showed 
that there was ample variation between subjects and within subjects. However, core processes, pathways, 
genera and phages were identified as well. Furthermore, some of the functional variation could be 
explained by compositional variation and vice versa. This section will discuss some remarkable discoveries, 
limitations and propose future work. 
The varying low mRNA sequencing depth might have been a limitation for the de novo-based assembly 
and annotation with MetaSAPP, that caused this method to be an outlier in comparison with the BLASTN- 
and BLASTX-based methods. In general, higher coverage is better for de novo assembly. The generated 
number of mRNA reads could have been higher if the rRNA removal was more efficient.  Besides limitations 
for the method comparison, the varying low sequencing depth might also have partly caused the 
differences in the number of unique protein domains, enzymes, species and phages that were found in 
the functional and compositional analyses. As was seen in figure 4, the number of uniquely found Pfam 
domains and EC numbers increased with an increasing sequencing depth. Still, these differences could 
have also been caused by actual differences in compositional and functional diversity in the ileal 
microbiota. This culprit could have been solved by the use of biological replicates: multiple effluent 
samples at the same timepoint processed and sequenced independently. Trends in compositional and 
functional diversity (e.g. morning and afternoon rhythm) could have been discovered with the availability 
of biological replicates and the correlations could have been substantiated with more certainty. Finally, 
the additional application of a standardized diet could have provided more insight into the effect of the 
host and diet on the small intestinal microbiome. Yet, the core domainome, enzymome and genera were 
as expected except for the absence of Veillonella in the core genera. The latter was a remarkable discovery 
since it was previously known that Veillonella species are in commensalism with Streptococcus species in 
lactate consumption and production, respectively. It might be that this commensal relationship comprises 
different genera than Veillonella. From figure 8, it could be observed that the genera Streptococcus-
Clostridium and Turicibacter-Clostridium coincided. Streptococcus salivarius is known to produce lactic acid 
(Aidy et al., 2015) and was present in all metagenomes. The putative lactate fermenter might be 
Clostridium bartletti which appeared in high abundance in those samples with Streptococcus-Clostridium 
coincidence and is able to produce acetic acid in fermentation processes (Song et al., 2004), like Veillonella 
species. This hypothesis, however, needs confirmation since still little is known about C. bartletti. This 
organism may also play a role in the putative commensal relationship with a Turicibacter species as the 
lactate provider. Turicibacter sanguinis might be a candidate for lactic acid provision by fermentation 
(Bosshard et al., 2002) and was present in high abundance in those samples with Turicibacter-Clostridium 
coincidence. Another observation was the seemingly distinction between Clostridium-based and 
Escherichia-based metagenomes but this might change radically when the “Uncultured” section is 
unraveled. Further research is needed to confirm this distinction and to resolve the underlying causes. 
With regard to subject-specific findings, it was remarkable that subject two’s metatranscriptome had 
protein domains and enzymes associated with Clostridium perfringens and that this organism was also 
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present in the metagenome. Knowing that C. perfringens causes gastroenteritis (inflammation of the 
stomach and small intestines) in humans (Adams et al., 2008), it might actually be that subject two suffered 
from the latter disease caused by this toxin-producing organism. The metatranscriptome of subject four 
showed the presence of a CIA30 protein domain known to be part of the mitochondrial complex I in 
humans and mouse, but is also known to occur in Schizosaccharomyces pombe and therefore might 
originate from the latter probably due to consumption of fermented food (Janssen et al., 2002). This 
hypothesis could not be backed up by the metagenomic composition since S. pombe was not found there. 
Lastly, there was a coincidence of Clostridium beijerinckii and Clostridium diolis in high abundances in the 
first two samples of subject four where after in the last two samples these two species completely 
disappeared. Since C. beijerinckii is known to ferment dietary fibers to alcohols (Lütke-Eversloh, 2014) and 
C. diolis carries out fermentation of glycerol and lignocellulosic hydrolysates thereby producing 1,3-
propanediol (Xin et al., 2016). It might be that the rapid decline of these putative commensals was caused 
by a sudden change in the consumption of dietary fibers (and lignocellulosic material) by subject four as 
no prominent clues were found in the phage analysis. However, for subject four some unique lytic or 
virulent phages were found for Streptococcus thermophilus and it might be that these also played a role in 
the sudden disappearance of the latter Clostridium species. Still, it can be concluded that subject four 
might have had some health-related problems due to the virulent phages. The latter examples showed 
that dietary habits could be inferred from the metatranscriptome and, vice versa, that diet affects the 
small intestinal microbiome. 
With regard to metagenomics based on 16S rRNA similarity, the cut-offs used can be found arbitrary. Here, 
cut-offs of 95% and 97% sequence similarity for genera and species assignment were used, respectively. 
In the study of Fournier et al., from 2015 a sequence similarity cut-off for 16S rRNA-based species 
assignment of 98.7% was proposed, indicating the uncertainty of this method with the rapidly increasing 
16S rRNA databases. The latter culprit might have caused the introduction of false positive species in the 
compositional analysis. A potential false positive might be the Mycobacterium tuberculosis present in the 
core species as none of these subjects had been diagnosed with (abdominal) tuberculosis, the disease that 
can be caused by this species (Debi et al., 2014). 
Despite limitations and possible improvements, it was shown here that the ileal microbiota varied greatly 
between and within subjects. The core genera turned out to have a different composition than was known 
before. Clues in the unique presence of protein domains, enzymes, species and phages in the subject’s 
microbiomes could be used to hypothesize about putative infections and dietary habits.  
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Appendices  

1. Workflow 

 
Supplemental figure 1 General workflow of this study. 
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2. Data overview 
Supplemental table 1 Overview of mRNA FASTQ files and number of reads after each preprocessing step. 

Filename Sample name Raw reads Reads after 
trimming 

Reads after 
removing 
rRNA 

Reads after 
removing 
human mRNA 

Subject 1 

NG-5593_1A.fastq m.s1.d1.mrn 31,180,479 29,217,597 525,202 524,336 

NG-5593_1B.fastq m.s1.d1.aft 19,781,634 18,597,481 734,478 733,191 

NG-5593_1C.fastq m.s1.d3.mrn 25,962,452 17,420,062 402,456 399,740 

NG-5593_1D.fastq m.s1.d3.aft 54,015,995 50,698,152 3,515,667 3,505,943 

Subject 2 

NG-5593_2A.fastq f.s2.d1.mrn 29,709,279 28,095,191 5,075,173 5,072,197 

NG-5593_2B.fastq f.s2.d1.aft 37,354,030 34,968,648 2,896,022 2,893,578 

NG-5593_2C.fastq f.s2.d3.mrn 46,532,673 43,666,664 3,832,310 3,827,546 

NG-5593_2D.fastq f.s2.d3.aft 24,112,121 22,661,045 2,060,021 2,056,295 

Subject 3 

NG-5593_3A.fastq m.s3.d1.mrn 21,557,933 19,826,309 2,013,325 2,004,724 

NG-5593_3B.fastq m.s3.d1.aft 28,695,216 26,925,707 1,818,640 1,814,236 

NG-5593_3C.fastq m.s3.d3.mrn 73,247,937 68,509,930 6,661,618 6,651,942 

NG-5593_3D.fastq m.s3.d3.aft 15,237,944 14,329,235 1,163,205 1,162,144 

Subject 4 

NG-5593_4A_read_1.fastq f.s4.d1.mrn 42,211,887 31,448,423 5,278,308 5,261,776 

NG-5593_4B_read_1.fastq f.s4.d1.aft 18,762,398 12,621,142 1,720,827 1,714,002 

NG-5593_4C_read_1.fastq f.s4.d3.mrn 26,866,251 13,997,320 3,520,452 3,508,987 

NG-5593_4D_read_1.fastq f.s4.d3.aft 32,664,709 23,554,625 3,892,675 3,855,731 

NG-5593_4A_read_2.fastq f.s4.d1.mrn 42,211,887 31,448,423 5,278,308 5,261,776 

NG-5593_4B_read_2.fastq f.s4.d1.aft 18,762,398 12,621,142 1,720,827 1,714,002 

NG-5593_4C_read_2.fastq f.s4.d3.mrn 26,866,251 13,997,320 3,520,452 3,508,987 

NG-5593_4D_read_2.fastq f.s4.d3.aft 32,664,709 23,554,625 3,892,675 3,855,731 

Low depth replicates 

NG-5450_A.fastq m.s1.d3.mrn 9,368,635 8,499,689 547,599 538,786 

NG-5450_B.fastq f.s2.d1.mrn 8,951,083 8,140,333 1,929,310 1,919,543 

 

Total 666,717,901 554,799,063 61,999,550 61,785,193 
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Supplemental table 2 Overview of 16S rRNA reads per sample after trimming. 

Filename Sample name Reads after 
trimming 

Subject 1 

SRR882257.fastq m.s1.d1.mrn 6,597 

SRR882256.fastq m.s1.d1.aft 17,079 

SRR882259.fastq m.s1.d3.mrn 13,514 

SRR882258.fastq m.s1.d3.aft 24,467 

Subject 2 

SRR882263.fastq f.s2.d1.mrn 7,375 

SRR882260.fastq f.s2.d1.aft 6,514 

SRR882265.fastq f.s2.d3.mrn 9,054 

SRR882264.fastq f.s2.d3.aft 8,866 

Subject 3 

SRR882267.fastq m.s3.d1.mrn 9,966 

SRR882266.fastq m.s3.d1.aft 12,561 

SRR882269.fastq m.s3.d3.mrn 11,768 

SRR882268.fastq m.s3.d3.aft 16,258 

Subject 4 

SRR882271.fastq f.s4.d1.mrn 4,539 

SRR882270.fastq f.s4.d1.aft 23,606 

SRR882273.fastq f.s4.d3.mrn 13,901 

SRR882272.fastq f.s4.d3.aft 8,140 

 

Total 194,205 

 

3. Functional analysis: protein domains and enzymes 
Supplemental table 3 The top five most abundant Pfam domains present uniquely in each subject. The average counts are 

between brackets. Protein domains named with “DUFXXXX” are Domains of Unknown Function. 

Subject 1 male Subject 2 female Subject 3 male Subject 4 female 

PF14461: Prokaryotic E2 family 
B (1) 

PF12135: Sialidase enzyme 
penultimate C terminal domain 
(16) 

PF08971: Glycogen synthesis 
protein (98) 

PF08547: Complex I 
intermediate-associated 
protein 30 (CIA30) (86) 

PF07875: Coat F domain (1) PF16295: Tetracycline 
repressor, C-terminal all-alpha 
domain (9.5) 

PF14785: Maltose transport 
systems permease protein 
MalF P2 domain (91.75) 

PF09683: Bacteriocin 
(Lactococcin_972) (21) 

PF02686: Glu-tRNAGln 
amidotransferase C subunit 
(0.75) 

PF03496: ADP-
ribosyltransferase exoenzyme 
(3.25) 

PF07351: DUF1480 (44.5) PF16813: CRISPR-associated 
protein Csn2 subfamily St 
(17.75) 

PF04422: Coenzyme F420 
(de)hydrogenase, beta subunit 
N-term (0.75) 

PF13282: DUF4070 (1.75) PF13808: DDE_Tnp_1-
associated (31.25) 

PF10665: Minor capsid protein 
(8.75) 

PF04432: Coenzyme F420 
(de)hydrogenase, beta subunit 
C terminus (0.75) 

PF04511: Der1-like family 
(1.75) 

PF06178: Oligogalacturonate-
specific porin protein (KdgM) 
(26.75) 

PF15515: MvaI/BcnI restriction 
endonuclease family (8) 

... ... ... ... 
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Supplemental table 4 The top five most abundant EC number present uniquely in each subject. The average counts are between 
brackets. 

Subject 1 male Subject 2 female Subject 3 male Subject 4 female 

5.1.1.5: Lysine racemase (0.5) 6.3.2.30: Cyanophycin 
synthase (L-arginine-adding) 
(7.5) 

3.2.1.49: Alpha-N-
acetylgalactosaminidase 
(11.75) 

1.1.1.47: Glucose 1-
dehydrogenase (NAD(P)(+)) 
(13.5) 

3.2.1.82: Exo-poly-alpha-
galacturonosidase (0.5) 

6.3.3.3: Dethiobiotin synthase 
(1.75) 

2.8.3.19: CoA:oxalate CoA-
transferase (11.5) 

1.1.1.251: Galactitol-1-
phosphate 5-dehydrogenase 
(5.5) 

2.1.1.113: Site-specific DNA-
methyltransferase (cytosine-
N(4)-specific) (0.5) 

6.2.1.14: 6-carboxyhexanoate-
CoA ligase (1.5) 

3.5.3.9: Allantoate deiminase 
(9.25) 

2.4.2.45: Decaprenyl-
phosphate 
phosphoribosyltransferase 
(5.25) 

3.5.5.1: Nitrilase (0.5) 4.1.99.2: Tyrosine phenol-lyase 
(1.5) 

1.1.1.341: CDP-abequose 
synthase (5.75) 

1.10.2.2: Quinol-cytochrome-c 
reductase (4.25) 

3.1.11.6: 
Exodeoxyribonuclease VII (0.5) 

3.2.1.n1: Blood group B 
branched chain alpha-1,3-
galactosidase (0.75) 

1.3.8.9: Very-long-chain acyl-
CoA dehydrogenase (3) 

1.5.5.2: Proline dehydrogenase 
(4) 

... ... ... ... 

 

4. Compositional analysis: species and phages 
Supplemental table 5 The top five most abundant species present uniquely in each subject. The average read counts are 

between brackets.  

Subject 1 male Subject 2 female Subject 3 male Subject 4 female 

Streptococcus dentirousetti 
(7.25) 

Veillonella atypica (2.75) Serratia marcescens (16.25) Clostridium beijerinckii 
(1819.25) 

Bifidobacterium lactis (4.25) Bifidobacterium 
pseudocatenulatum (1.75) 

Pantoea agglomerans (15.75) Clostridium diolis (200.50) 

Romboutsia lituseburensis (1) Turicibacter bacterium (1) Streptococcus sobrinus (4.50) Escherichia fergusonii (3.75) 

Erysipelotrichaceae bacterium 
(1) 

Eubacterium tenue (0.50) Clostridium clostridioforme 
(4.25) 

Haemophilus sputorum (3.50) 

Lactobacillus fermentum (0.75) Streptococcus cristatus (0.25) Enterobacteriaceae bacterium 
(3.75) 

Streptococcus australis (1) 

... ... ... ... 

 
Supplemental table 6 The top five most abundant phages present uniquely in each subject. The average counts are between 

brackets. 

Subject 1 male Subject 2 female Subject 3 male Subject 4 female 

Lactococcus phage jj50 (4.25) Haemophilus phage HP2 (4.75) Shigella phage Ss-VASD (51.50) Streptococcus phage 858 (26) 

Lactococcus phage 712 (3.75) Haemophilus phage HP1 (1) Escherichia phage TL-2011c 
(17.75) 

Streptococcus phage ALQ13.2 
(22.50) 

Lactobacillus phage J-1 (0.50) Streptococcus prophage 315.4 
(0.50) 

Enterobacteria phage phiP27 
(17.50) 

Streptococcus phage 2972 (16) 

Lactococcus phage phiLC3 
(0.50) 

Gordonia phage Bantam (0.25) Enterococcus phage 
VB_EfaS_IME196 (11.75) 

Streptococcus phage 
phiARI0468-2 (2.50) 

Streptococcus phage DCC1738 
(0.50) 

Streptococcus phage 
phiARI0031 (0.25) 

Enterobacteria phage T4 (6.25) Streptococcus prophage 315.2 
(2) 

...  ... ... 
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5. PCC networks of Pfam domain, EC number, species and phage Shannon indexes and 

richness 

 
Supplemental figure 2 Pearson Correlation Coefficient (PCC) network of Shannon indexes between all samples in terms of Pfam 

domains, EC numbers, species and phages. 

 

 
Supplemental figure 3 Pearson Correlation Coefficient (PCC) network of richness between all samples in terms of Pfam domains, 

EC numbers, species and phages. 

6. Commands 
Data preprocessing 
fastqc NG-5450_A.fastq -o NG-5450_A  

 
Trimmomatic-0.36.jar SE -threads 4 -phred33 NG-5450_A.fastq NG-

5450_A_trimmed.fastq ILLUMINACLIP:TruSeq3-SE:2:30:10 LEADING:3 TRAILING:3 

SLIDINGWINDOW:4:15 MINLEN:36  

 
Trimmomatic-0.36.jar PE -threads 4 -phred33 NG-5593_4A_read_1.fastq  NG-

5593_4A_read_2.fastq NG-5593_4A_read_1_paired.fastq NG-
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5593_4A_read_1_unpaired.fastq NG-5593_4A_read_2_paired.fastq NG-

5593_4A_read_2_unpaired.fastq ILLUMINACLIP:TruSeq3-SE:2:30:10 LEADING:3 TRAILING:3 

SLIDINGWINDOW:4:15 MINLEN:36  

 

fastqc NG-5450_A_trimmed.fastq -o NG-5450_A_trimmed  

 

indexdb_rna --ref ./rRNA_databases/silva-bac-16s-id90.fasta,./index/silva-bac-16s-db:\  
./rRNA_databases/silva-bac-23s-id98.fasta,./index/silva-bac-23s-db:\  
./rRNA_databases/silva-arc-16s-id95.fasta,./index/silva-arc-16s-db:\  
./rRNA_databases/silva-arc-23s-id98.fasta,./index/silva-arc-23s-db:\  
./rRNA_databases/silva-euk-18s-id95.fasta,./index/silva-euk-18s-db:\  
./rRNA_databases/silva-euk-28s-id98.fasta,./index/silva-euk-28s:\  
./rRNA_databases/rfam-5s-database-id98.fasta,./index/rfam-5s-db:\  
./rRNA_databases/rfam-5.8s-database-id98.fasta,./index/rfam-5.8s-db  

 
sortmerna --ref ./rRNA_databases/silva-bac-16s-id90.fasta,./index/silva-bac-16s-

db:./rRNA_databases/silva-bac-23s-id98.fasta,./index/silva-bac-23s-

db:./rRNA_databases/silva-arc-16s-id95.fasta,./index/silva-arc-16s-

db:./rRNA_databases/silva-arc-23s-id98.fasta,./index/silva-arc-23s-

db:./rRNA_databases/silva-euk-18s-id95.fasta,./index/silva-euk-18s-

db:./rRNA_databases/silva-euk-28s-id98.fasta,./index/silva-euk-

28s:./rRNA_databases/rfam-5s-database-id98.fasta,./index/rfam-5s-

db:./rRNA_databases/rfam-5.8s-database-id98.fasta,./index/rfam-5.8s-db --reads NG-

5450_A_trimmed.fastq --num_alignments 1 --fastx --aligned NG-5450_A_trimmed_rRNA --

other NG-5450_A_trimmed_mRNA --log –v –a 4  
 

sortmerna --ref ./rRNA_databases/silva-bac-16s-id90.fasta,./index/silva-bac-16s-

db:./rRNA_databases/silva-bac-23s-id98.fasta,./index/silva-bac-23s-

db:./rRNA_databases/silva-arc-16s-id95.fasta,./index/silva-arc-16s-

db:./rRNA_databases/silva-arc-23s-id98.fasta,./index/silva-arc-23s-

db:./rRNA_databases/silva-euk-18s-id95.fasta,./index/silva-euk-18s-

db:./rRNA_databases/silva-euk-28s-id98.fasta,./index/silva-euk-

28s:./rRNA_databases/rfam-5s-database-id98.fasta,./index/rfam-5s-

db:./rRNA_databases/rfam-5.8s-database-id98.fasta,./index/rfam-5.8s-db --reads NG-

5593_4A_trimmed_merged.fastq --num_alignments 1 --fastx --aligned NG-

5593_4A_trimmed_merged_RNA --other NG-5593_4A_trimmed_merged_mRNA --paired-in --log –v 

–a 4  

 
indexdb_rna --ref GRCh38_latest_rna.fna,GRCh38_transcripts_db –v  

 
sortmerna --ref 

/scratch/lottewitjes/GRCh38_latest_rna.fna,/metagenomics/lottewitjes/programs/sortmerna

-2.1b/index/GRCh38_transcripts_db --reads NG-5450_A_trimmed_mRNA.fastq --

num_alignments 1 --fastx --aligned NG-5450_A_trimmed_human_mRNA --other NG-

5450_A_trimmed_nonhuman_mRNA --log -v -a 4 

 

sortmerna --

ref /scratch/lottewitjes/GRCh38_latest_rna.fna,/metagenomics/lottewitjes/programs/sortm

erna-2.1b/index/GRCh38_transcripts_db --reads NG-5593_4A_merged_trimmed_mRNA.fastq --

num_alignments 1 --fastx --aligned NG-5593_4A_trimmed_merged_human_mRNA –other NG-

5593_4A_trimmed_merged_nonhuman_mRNA --paired-in --log –v –a 4  
 
BLASTX-based against SAPP protein database 
diamond makedb --in protein_unique.fasta -d protein_SAPP  

diamond blastx --threads 16 --db SAPP_protein.dmnd --out NG-

5593_1A_trimmed__nonhuman_mRNA.tsv --outfmt 6 --query NG-

5593_1A_trimmed_nonhuman_mRNA.fastq --max-target-seqs 1 --query-gencode 11  

 
BLASTN-based against SAPP gene database 
makeblastdb –in SAPP_gene.fasta -dbtype nucl –parse_seqids –out SAPP_gene  

 
makembindex -input SAPP_gene -iformat blastdb -output SAPP_gene   
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blastn –task megablast –db SAPP_gene –query NG-5593_1A_trimmed_nonhuman_mRNA.fasta -

out NG-5593_1A.tsv –outfmt 6 –max_target_seqs 1 –num_threads 12  

 
MetaSAPP de novo assembly and prediction 
java –jar /metagenomics/lottewitjes/programs/SAPP/assembly.jar -threads 4 -megahit –

identifier NG-5593_1A –output NG-5593_1A_assembly.hdt -read1 NG-

5593_1A_trimmed_nonhuman_mRNA.fastq  

 
java –jar /metagenomics/lottewitjes/programs/SAPP/assembly.jar -threads 4 -megahit –

identifier NG-5593_4A –output NG-5593_4A_assembly.hdt -read1 NG-

5593_4A_read_1_trimmed_nonhuman_mRNA.fastq -read2 NG-

5593_4A_read_2_trimmed__nonhuman_mRNA.fastq  

 
java -jar /metagenomics/lottewitjes/programs/SAPP/Conversion.jar -merge -input NG-

5593_1A_assembly.hdt,NG-5593_1B_assembly.hdt,NG-5593_1C_assembly.hdt,NG-

5593_1D_assembly.hdt -output NG-5593_1_assembly.hdt  

 
java –jar /metagenomics/lottewitjes/programs/SAPP/genecaller.jar -prodigal –meta –codon 

11 –input NG-5593_1_assembly.hdt -output NG-5593_1_prodigal.hdt  

 
java –jar /metagenomics/lottewitjes/programs/SAPP/InterProScan.jar -input NG-

5593_1_prodigal.hdt -output NG-5593_1_interproscan.hdt  

 
java –jar /metagenomics/lottewitjes/programs/SAPP/EnzDP.jar -input NG-

5593_1_interproscan.hdt -output NG-5593_1_enzdp.hdt 

 
makeblastdb –in NG-5593_1A.fasta -dbtype nucl –parse_seqids –out NG-5593_1A  

 
blastn –task blastn –db NG-5593_1A –query NG-5593_1A_trimmed_nonhuman_mRNA.fasta -

out NG-5593_1A.tsv -outfmt 6 –max_target_seqs 1 –num_threads 1  
 
MegaBLAST against phage database 
makeblastdb –in bacteria_phage_refseq_CDS.fasta -dbtype nucl –parse_seqids –

out bacteria_phage_refseq_CDS  

 
makembindex -input bacteria_phage_refseq_CDS -iformat blastdb -

output bacteria_phage_refseq_CDS   

 

blastn –task megablast –db bacteria_phage_refseq_CDS –query NG-

5593_1A_trimmed_nonhuman_mRNA.fasta -out NG-5593_1A.tsv -outfmt 6 –max_target_seqs 1 –

num_threads 1  

 

7. SPARQL queries 
BLASTX 
SPARQL query to make the SAPP-based protein database 
PREFIX gbol: <http://gbol.life/0.1/>  

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>  

SELECT DISTINCT ?protein ?sequence WHERE {   

    ?protein a gbol:protein .  

    ?protein gbol:sequence ?sequence 

}   

 
SPARQL query to make SAPP-based Sha384-key – Pfam look-up table 
PREFIX gbol: <http://gbol.life/0.1/>   

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>   

SELECT ?protein ?acc WHERE {  

    VALUES ?db {<http://gbol.life/0.1/db/pfam>} .  

    ?protein a gbol:protein .   

    ?protein gbol:xref ?xref .   

    ?xref gbol:db ?db .  



Page 32 of 33 
 

    ?xref gbol:accession ?acc . 

} 

 
SPARQL query to make SAPP-based Sha384-key – EC look-up table 
PREFIX gbol: <http://gbol.life/0.1/>   

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>   

SELECT ?protein ?acc WHERE {  

    VALUES ?db {<http://gbol.life/0.1/db/ec>} .  

    ?protein a gbol:protein .   

    ?protein gbol:xref ?xref .   

    ?xref gbol:db ?db .  

    ?xref gbol:accession ?acc . 

} 

 
BLASTN 
SPARQL query to make the SAPP-based gene database 
PREFIX gbol: <http://gbol.life/0.1/>  

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>  

SELECT DISTINCT ?gene ?lcsequence WHERE {   

    ?gene a gbol:Gene .  

    ?gene gbol:transcript ?transcript .  

    ?transcript gbol:sequence ?sequence  

    BIND (lcase(?sequence) as ?lcsequence 

} 

 
SPARQL query to make SAPP-based gene – protein sequence database 
PREFIX gbol: <http://gbol.life/0.1/> 

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 

SELECT DISTINCT ?gene ?sequence WHERE { 

    ?gene a gbol:Gene . 

    ?gene gbol:transcript ?transcript . 

    ?transcript gbol:feature ?cds . 

    ?cds gbol:protein ?protein . 

    ?protein a gbol:Protein . 

    ?protein gbol:sequence ?sequence 

} 

 
SPARQL query to make SAPP-based gene – Pfam look-up table 
SELECT DISTINCT ?gene ?acc WHERE {  
    VALUES ?db {<http://gbol.life/0.1/db/pfam>} .  
    ?gene a gbol:Gene .   
    ?gene gbol:transcript/gbol:feature ?cds .  
    ?cds gbol:protein ?protein .  
    ?protein gbol:xref ?xref .   
    ?xref gbol:db ?db .  
    ?xref gbol:accession ?acc .  
}  

SPARQL query to make SAPP-based gene – EC look-up table 
PREFIX gbol: <http://gbol.life/0.1/>   
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>   
SELECT ?gene ?acc WHERE {  
    VALUES ?db {<http://gbol.life/0.1/db/ec>} .  
    ?gene a gbol:Gene .   
    ?gene gbol:transcript/gbol:feature ?cds .  
    ?cds gbol:protein ?protein .  
    ?protein gbol:xref ?xref .   
    ?xref gbol:db ?db .  
    ?xref gbol:accession ?acc .  
}  

 
MetaSAPP 
SPARQL query to extract Pfam counts per sample predicted with MetaSAPP 
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PREFIX gbol: <http://gbol.life/0.1/>   
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>   
SELECT ?sample ?acc (COUNT(?acc) as ?acc_count)WHERE {  
    VALUES ?db {<http://gbol.life/0.1/db/pfam>}  
    ?sample a gbol:Sample .  
    ?dnaobject gbol:sample ?sample .  
    ?dnaobject gbol:feature ?gene .  
    ?gene a gbol:Gene .    
    ?gene gbol:transcript/gbol:feature ?cds .  
    ?cds gbol:protein ?protein .  
    ?protein gbol:xref ?xref .   
    ?xref gbol:db ?db .  
    ?xref gbol:accession ?acc .  
}  
GROUP BY ?sample ?acc  
ORDER BY ?sample ?acc  

 
SPARQL query to extract EC counts per sample predicted with MetaSAPP 
PREFIX gbol: <http://gbol.life/0.1/>   
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>   
SELECT ?sample ?acc (COUNT(?acc) as ?acc_count)WHERE {    
    VALUES ?db { <http://gbol.life/0.1/db/ec> }  
    ?sample a gbol:Sample .  
    ?dnaobject gbol:sample ?sample .  
    ?dnaobject gbol:feature ?gene .  
    ?gene a gbol:Gene .    
    ?gene gbol:transcript/gbol:feature ?cds .  
    ?cds gbol:protein ?protein .  
    ?protein gbol:xref ?xref .  
    ?xref gbol:db ?db .  
    ?xref gbol:accession ?acc .  
}   
GROUP BY ?sample ?acc  
ORDER BY ?sample ?acc  

 

SPARQL query to extract genes with sequences for every sample predicted with MetaSAPP 
PREFIX gbol: <http://gbol.life/0.1/>   
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>   
SELECT DISTINCT ?gene ?lcsequence WHERE {  
    VALUES ?sample {<http://gbol.life/0.1/NG-5450_A>}  
    ?sample a gbol:Sample .  
    ?dnaobject gbol:sample ?sample .  
    ?dnaobject gbol:feature ?gene .  
    ?gene a gbol:Gene .   
    ?gene gbol:transcript ?transcript .   
    ?transcript gbol:sequence ?sequence .  
    BIND (lcase(?sequence) as ?lcsequence) .  
}  

 
 


