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Propositions 
 
 
1. Environmental transmission causes avian influenza outbreaks. 

(this thesis) 
 
2. Migratory birds cannot lose avian influenza viruses via migratory 
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3. Applying what we know to explore unknowns, does not ensure 
truthful knowledge. 
 

4. Invasive species are not disrupting the ecosystem. 
 

5. Data ownership limits research. 
 

6. Given the assumptions underlying models, the amount of time 
for the presentation of modelling work should be doubled for 
effective communication. 
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Short introduction of migration 

Many animals, including birds, mammals, insects and fishes, undertake seasonal movements 

between their breeding and wintering sites (Dingle and Drake 2007). Although the 

fundamental causes for migration are still debated, the most plausible hypotheses suggest 

adaption to spatially and temporally fluctuating resources or climate, or avoiding predation 

(McKinnon et al. 2010). Biologists have been fascinated by bird migration for decades 

(Alerstam and Lindström 1990; Moreau 1972). For example, Bengt Berg (1885-1967) 

followed migrtaory common crane Grus grus from Europe to find out their southmost 

wintering site in Africa in the 1920s. 

Some bird species can undertake an incredibly long distance migration, and have excellent 

navigation skills, which allow them to re-find habitats at more or less the same time from 

year to year. For example, arctic terns Sterna paradisaea migrate 80,000 km each year from 

pole to pole despite their small size of only 100g (Egevang et al. 2010). Bar-tailed godwit 

Limosa lapponica migrate 11,000 km from Alaska to New zealand, which is the longest non-

stop migration we known so far (Battley et al. 2012). Another particular fascinating case is 

the bar-headed goose Anser indicus, a medium-sized goose species (Takekawa et al. 2017), 

with an estimated global population size of 52,000-60,000 birds (Mundkur et al. 2017). Most 

bar-headed geese breed in specific wetlands in northern Mongolia (Takekawa et al. 2009), 

and seasonally cross the Qinghai-Tibet plateau to winter in the Lhasa region, some of them 

even fly over the Himalayas to winter in southern India (Takekawa et al. 2017). This single-

season migration is approximately 3000-5000 km long at an average height of about 5-8 km 

(Takekawa et al. 2017). 

Bird migration has ecological, evolutionary and social consequences (Altizer et al. 2011; 

Newton 2007). It has direct trophic effects, such as changing trohpic relationships by 

providing consumers and competitors, and indirect vector effects such as transporting 

diseases, nutrients, seeds and energy (Thomas et al. 2003). For example, the seasonal visit of 

migratory waders in Plymouth (USA) significantly decrease local prey density (Schneider 

and Harrington 1981). Eleanora’s Falcon Falco eleonorae can disperse seeds over hundreds 

kilometres, transporting seeds from mainland to islands (Viana et al. 2016). Moreover, 

seasonal migration can cause physiological and phenotypical evolution and adaption in 

migratory birds (Owen and Moore 2006; Thomas et al. 2003). For example, bar-headed geese 

have relatively larger lungs compared to other migratory waterfowl species and can increase 
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their breathing rate up to 7 times the normoxic resting rate when exposed to severe hypoxia 

(Scott and Milsom 2007; Black and Tenney 1980; Scott et al. 2011). These adaptions can 

help them efficiently take in and transport O2 while flying at extremely high altitude, and 

may contribute to their rapid elevation climbing (Hawkes et al. 2011). Finally, the seasonal 

visit of migratory bird species may cause human-animal conflicts. For example, visiting of 

migratory geese and swans in Europe and America caused conflicts with farmers by foraging 

on agriculture land (Fox et al. 2016; Silke Bauer et al. 2018). 

Migration affects pathogen dynamic 

Among these various consequences of bird migration (Seebacher and Post 2015), pathogen 

dispersal and host-pathogen interaction have attracted a lot of attention because they affect 

both wildlife and human health (Khatchikian et al. 2015; Boulinier et al. 2016; Reed et al. 

2003). For example, a new strain of West Nile Virus was first isolated at Romania in 1996, 

and it was successively isolated in the Middle East and other European countries including 

Morocco, Tunisia, Israel and Italy in 1997 (Sejvar 2003). In 1996, it emerged in New York, 

and was subsequently dispersed across the United States, reaching California and Florida 

within 4 years. West Nile Virus has caused more than 45,000 confirmed human infection 

cases in United States in 1999-2016 (https://www.cdc.gov/westnile/statsmaps/cumMapsData. 

html#one), and their rapid dispersal was correlated strongly with bird migration (Di 

Giallonardo et al. 2016). 

For a better understanding of how bird migration affects pathogen dispersal and infection 

prevalence dynamics, empirical studies such as tracking bird migration (Rappole et al. 2000; 

Prosser et al. 2009, 2016), analysing spatial and temporal correlation between bird movement 

and infection outbreak (Si et al. 2009; Verhagen et al. 2014), phylogenetic relationships 

among infection outbreaks (Tian et al. 2015; Chen et al. 2005) and theoretical modelling 

(Breban et al. 2009; Rohani et al. 2009) have been carried out.  

On the one hand, the West Nile Virus example illustrated that bird migration can facilitate 

pathogen dispersal and infection prevalence. Another well-known example is the dispersal of 

Avian Influenza Viruses (AIVs). For example, the global dispersal of H5 subtype is spatially 

and temporally correlated with bird migration (Verhagen et al. 2015; Si et al. 2009; Xu et al. 

2016). Furthermore, previous studies have also shown that the arrival of migratory waterfowl 

species such as mallard Anas platyrhynchos, greater white-fronted goose Anser albifrons, and 

whooper swan Cygnus cygnus on their overwintering site can amplify AIVs infection 
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prevalence (Verhagen et al. 2014; Yin et al. 2017; Newman et al. 2009). 

On the other hand, bird migration, especially long-distance migration, can reduce 

pathogen dispersal and infection prevalence by so-called migratory escape or migratory 

culling (Altizer et al. 2011). The migratory escape means that, if a pathogen can persist in the 

environment and be infectious (e.g., helminths, ectoparasites, and microbial pathogens), 

migration allows the host to escape from infectious sites and relocate to sites with lower 

infection risk (Loehle 1995). For example, lesser black-backed gulls Larus fuscus with a 

long-distance migration have a lower seroprevalence of AIVs compared to those with shorter 

migration distances (Arriero et al. 2015). 

Migratory culling means that, if a pathogen can cause negative impacts on host conditions 

(e.g., reducing intake rate, and thereby reduce body mass, increasing mortality and/or 

reducing migration capacity), the infected hosts can be separated from the population, and 

thereby, reducing the infection prevalence (Loehle 1995; Altizer et al. 2011). For example, 

bewick’s swans Cygnus columbianus bewickii infected with low pathogenic AIVs (LPAIVs) 

delayed their migration and showed a reduced migration distance compared with healthy 

individuals (van Gils et al. 2007). Migratory escape and culling have been observed not only 

in migratory birds, but also in other migratory animals such as reindeer Rangifer tarandus 

(Folstad et al. 1991) and monarch butterflies Danaus plexippus (Bradley and Altizer 2005). 

Overall, previous efforts showed that bird migration affects pathogen dispersal and 

infection dynamics in migratory populations, but its effects may vary from one host-pathogen 

interaction to another (Altizer et al. 2011; McKay and Hoye 2016). Due to the huge potential 

threats for wildlife and human health, better understanding of how bird migration affects 

pathogen dispersal and pathogen infection dynamic in a migratory population is urgently 

needed, especially of generalist pathogens that infect multiple species. 

Spatio-temporal migration patterns 

Resting on stopover sites is a crucial feature for most migratory birds to complete their 

seasonal migration (Bowlin et al. 2010; Zhao et al. 2017; Yamaguchi et al. 2008), because 

these stopover sites are the places where they can refuel and prepare for the next bout of 

migration (Navedo et al. 2010). It is especially true for migratory goose species, which 

commonly have a long-distance migration and follow a capital breeding strategy, i.e., 

migratory birds store their body mass along migration for maximizing their breeding success 
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(Stephens et al. 2009; Si et al. 2018). 

Stopover sites, together with breeding site and overwintering sites, are connected in a 

migration network by bird movement among the sites. Birds migration show a spatial pattern, 

selecting some stopover sites over others, and thereby influence the network configuration. 

For example, migratory birds tend to use the same stopover sites successively during their 

autumn migration to minimize migration duration and arrive at their overwintering sites on 

time, but they tend to use different stopover sites in a parallel network configuration during 

their spring migration to track food availability along their migration route and reduce 

competition (Kölzsch et al. 2016; Si et al. 2009).  

Apart from the various network configurations, migratory birds from one population vary 

in  their timing of departure as well (i.e. synchrony of departure) due to e.g., differences in 

body condition, competition for limited resources, and optimization of mating opportunities 

(Morbey and Ydenberg 2001; Muraoka et al. 2009). Field observations revealed that 

departure synchrony for spring migration varies from weeks to months among waterfowl 

species such as common teal Anas crecca, bar-headed goose, greylag goose Anser anser and 

mallard (Gupta et al. 2010; Hornman et al. 2015).  

These spatial configurations and the levels of temporal synchrony in departure may 

influence pathogen dispersal and infection prevalence in migratory populations by affecting 

contact probabilities among birds, aggregation size and resting periods at stopover sites. For 

example, synchronized migration (i.e., birds migrate together in large flocks) might be 

associated with higher infection prevalence, because these birds have more frequent contacts 

with each other (Buehler and Piersma 2008; Gaidet et al. 2012; Altizer et al. 2011). However, 

the influences of different spatial and temporal migration strategies on pathogen dispersal and 

infection prevalence in migratory populations have not been examined yet. 

Furthermore, spatial and temporal patterns of goose migration depend on external 

variables. The spatial configuration largely depends on habitat availability along migration 

routes, however, habitat availability is declining in some areas. For example, 30% of habitat 

of migratory waterfowl has been lost in 1990-2000 in areas of southeast China (Gong et al. 

2010; Zhang et al. 2015; Navedo et al. 2010). Moreover, the departure synchrony is 

influenced by, e.g., ambient temperature (Seebacher and Post 2015; Fox and Walsh 2012). It 

has been observed that greylag goose, eurasian wigeon Anas penelope and pale-bellied brent 

goose Branta bernicla hrota have either advanced their spring migration timing or delayed 
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their autumn migration timing due to warming ground temperatures (Clausen and Clausen 

2013; Lehikoinen and Jaatinen 2012). 

The effects of spatial configuration and temporal migration synchrony have rarely been 

examined. Therefore, I used various modelling techniques to examine their effects on 

pathogen dispersal and infection prevalence in a migratory population. 

From a network perspective 

In the last decade, network analysis has been become a new approach to study the 

mechanisms of dispersal, such as human transport over the world airport network and goods 

transportation in the global cargo network (Guimerà and Amaral 2004; Kaluza et al. 2010), 

because network characteristics affect the likelihood of dispersal (Banks et al. 2015).  

Network approaches have been used to study pathogen dispersal as well. For example, 

contact networks were used to simulate the dispersal of severe acute respiratory syndrome 

(Meyers et al. 2005), networks of cattle and sheep farms were used to analyse foot-and-

mouth disease outbreaks, and transportation networks of poultry animals were used to 

analyse dispersal of HPAI H5N1 (van Kerkhove et al. 2009). 

The most discussed network characteristics that have huge impacts on pathogen dispersal 

are scale-free and small-world networks (Banks et al. 2015). Scale-free networks are 

heterogeneous since most sites possess few links and a few sites possess many links 

(Barabási and Albert 1999). A network is classified as a scale-free network when its log-

transformed degree distribution (i.e., number of links a site has) follows a power law 

distribution (Silk et al. 2017). Small-world networks are homogeneous since sites have 

approximately the same number of links, but a small-world network possesses characteristic 

shortcuts and high clustering, so that any site can be reached from any other site in just a few 

steps (Barabási and Albert 1999; Banks et al. 2015).  

In a scale-free network, pathogens can be quickly dispersed over the whole network when 

a hub site (i.e., site with a relatively high degree) is infected. In a small-world network, 

pathogens can be quickly dispersed over the whole network because the pathogen can easily 

infect other sites in just a few steps. These two network types allow a pathogen to be 

dispersed efficiently, even if it is not highly infectious or well adapted for long-distance 

dispersal (Banks et al. 2015). 
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Most real life networks possess both scale-free and small-world characteristics, e.g., world 

airport network (Guimerà and Amaral 2004) and trade network (Kaluza et al. 2010; Caton et 

al. 2006). These characteristics of real life networks may be the result of how links were 

generated, namely by preferential attachments to a well-connected site, or by preferential 

attachments to nearby sites (Barthélemy 2011; Li et al. 2012). For example, a company that 

wants to expand its business prefers to join such an organization of other companies and 

preferably cooperates with one company that already has well-established business 

partnerships (Li et al. 2012). 

Bird migration networks may also possess these scale-free and small-world characteristics. 

However, the characteristics of bird migration networks have rarely been examined in 

empirical studies or in theoretical work, although it can provide a better understanding of the 

pathogen dispersal mechanism. 

Short introduction of avian influenza virus 

AIVs is a type of influenza virus that is adapted to infect birds, especially waterfowl, i.e., 

ducks, geese and swans. AIVs infect mainly birds, but in some cases, it can also infect 

mammals such as swine, horses, whales, bats and humans (Tong et al. 2013; Webster et al. 

1992; Olsen et al. 2006). AIVs have many subtypes due to the antigenic properties of two 

glycoproteins (i.e., haemagglutinin and neuraminidase) on the surface of the viral particle 

(Webster et al. 1992; Ellis et al. 2004). To date, 16 HA subtypes (H1 to H16) and 9 NA 

subtypes (N1 to N9) were isolated from wild birds, and the combinations of one HA and one 

NA result in various subtypes of AIVs (Olsen et al. 2006). Furthermore, AIVs can be 

classified into two groups: low pathogenic AIVs (LPAIVs) and highly pathogenic AIVs 

(HPAIVs) based on the illness that they cause in chickens. In most cases, LPAIVs infection 

in wild birds only causes mild symptoms. However, LPAIV subtypes H5 and H7 can mutate 

to HPAIVs when multiple LPAIV subtypes co-infect one host, especially in poultry farms 

with low bio-security and high density of domestic birds (Alexander 2007; Takekawa et al. 

2010). 

AIVs outbreaks, especially HPAIVs outbreaks, attract public concerns for animal and 

human health (Zhou et al. 2017; Ligon 2005). A well-know example is the outbreak of HPAI 

H5N1 at Qinghai Lake region in 2005, during which more than 6000 wild birds, such as bar-

headed goose, great black-headed gull Larus ichthyaetus and brown-headed gull Larus 

brunnicephalus, were found dead (Chen et al. 2005). Moreover, HPAI H5N1 has caused 
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more than 850 confirmed human cases since 2013, with a nearly 50% fatality rate (WHO 

2018). Another subtype HPAI H7N9 has caused more than 1500 confirmed humans cases 

with a 40% fatality rate (WHO 2018; Kile et al. 2017). Furthermore, HPAIV outbreaks in 

poultry farms can cause substantial economic losses. For example, at least 150 million 

poultry birds were culled for preventing HPAI H5N1 spreading during 2015-2017 

(www.oie.int). 

Since the risks for HPAIVs outbreaking are high when the HPAIVs are dispersed into a 

new location, a better understanding of their dispersal mechanisms is urgently needed for 

planning better field surveillance programs (van Dijk 2014; Verhagen et al. 2015; Xu et al. 

2013) and predicting HPAIV outbreaks (van Dijk 2014; Prosser et al. 2013). Meanwhile, 

since LPAIVs are predecessors for HPAIVs, understanding of their dispersal mechanisms is 

urgently necessary as well (Cappelle et al. 2014; Verhagen et al. 2014; Yin et al. 2017). 

AIVs travel the world 

Bird migration, poultry production practices, legal and illegal wildlife and domestic bird 

trade, and human travel have all been suggested being responsible for AIVs dispersal (Choi et 

al. 2016; Takekawa et al. 2010). Among these factors, migration of waterfowl species is one 

of the most discussed. First of all, waterfowl species are the main hosts for AIVs in the wild 

(van Dijk 2014; Kleijn et al. 2010; Munster et al. 2007). Moreover, migratory waterfowl 

species travel over vast areas regularly twice a year (Rappole 2013), and some of them, such 

as several duck species, can be asymptomatic carriers of AIVs (van Dijk et al. 2015; Kida et 

al. 1980). Therefore, migration of waterfowl species provides good opportunities for a rapid 

dispersal of AIVs. However, the following questions are not fully understanded yet: Are 

migratory waterfowl able to migrate while infecting with AIVs? Are the migratory waterfowl 

responsible for AIVs dispersal? Can a migratory population sustain AIVs infection during 

migration? 

AIVs can be transmitted between infected and susceptible birds via airborne secretions by 

direct contact, but faecal-oral transmission is more common and efficient, especially for 

dabbling ducks such as mallard that shed AIVs contaminated faeces into the water (Kleijn et 

al. 2010; Hoye et al. 2011; van Dijk 2014). A susceptible bird can be infected by ingesting 

water that was contaminated with AIVs (Webster et al. 1992). Seasonal dynamics of AIVs 

infection prevalence in mallard is relatively well studied: it increases immediately after the 

breeding season when there are a lot of immunological naïve juvenile birds in the population, 



Chapter 1 General Introduction 

 
15 

and gradually decreases during autumn migration, reaching its lowest level during spring 

migration (Latorre-Margalef et al. 2014). This pattern suggests that migratory duck species 

are infected with AIVs at their northern breeding sites, and they can disperse these AIVs 

during their southward autumn migration (Galsworthy et al. 2011; Gunnarsson et al. 2012; 

Gilbert et al. 2006; Hulse-Post et al. 2005). However, the seasonal dynamics of AIVs 

infection prevalence in other waterfowl species, such as in several geese species, is relatively 

less studied (Kleijn et al. 2010). Thereby, tt is not clearly known what role migratory geese 

play in dispersing AIVs. 

Furthermore, few studies have compared HPAIV outbreak patterns that occurred in 

different waterfowl species. For example, swan goose Anser cygnoides and bar-headed goose 

are two congeneric species with large overlapping breeding areas, and they can produce 

fertile offspring (Ottenburghs et al. 2016). However, HPAIVs outbreaks were rarely reported 

in swan goose, but frequently reported in bar-headed goose (Chen et al. 2005; Takekawa et 

al. 2010). This may relate to different contact with HPAIVs outbreaks areas along their 

migration routes, or with different contacts with domestic birds which are possibly a source 

of HPAIVs (Fearnley 2015; Takekawa et al. 2010). A better understanding about why these 

congeneric species have distinctive outbreak patterns may provide more insights into the 

interaction between HPAIVs and migratory waterfowl species, and thereby the mechanism of 

HPAIVs dispersal. 

Thesis outline 

Year-round surveillance of migratory duck species suggested that they are infected with 

AIVs at their breeding sites, and that they can disperse these AIVs along their autumn 

migration. However, similar year-round surveillance in migratory goose species is rare. It has 

been suggested that migratory goose species are rarely infected with AIVs at their breeding 

sites, but are infected with AIVs at their overwintering sites (Kleijn et al. 2010). This may 

indicate that migratory goose species have less opportunity to be exposed to AIVs in the 

north and that they play less of a role in dispersing AIVs during their autumn migration. 

However, migratory goose species may still get infected on their overwintering sites, and 

disperse the AIVs from there. 

In Chapter 2, I analyse LPAIVs infection data that were collected from three migratory 

goose species (i.e., bean goose Anser fabalis, barnacle goose Branta leucopsis and greater 

white-fronted goose) from their breeding sites, stopover sites and overwintering sites. I 
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examine LPAIVs spatial-temporal dynamic of infection prevalence in these migratory goose 

species and discuss their role in dispersing AIVs. I aim to answer:  

1) whether LPAIVs infection in migratory goose species is absent on their breeding sites? 

2) whether the infection prevalence increases over time on wintering sites? 

3) whether the prevalence of infection reduces to intermediate levels on spring stopover 

sites? 

In Chapter 3, I examine the effects of spatial and temporal migration patterns on dynamic 

of LPAIVs infection prevalence in a migratory population. I apply a discrete-time SIR 

(Susceptible-Infected-Recovered) model (de Jong et al. 1995), with environmental 

transmission and migration, to various migration strategies, including networks with serial, 

and/or parallel stopover sites, and with various levels of migration synchrony. I aim to 

answer:  

1) how does the configuration of a migration network affect infection prevalence?  

2) does high synchrony in timing of migration increase infection prevalence?  

3) is there a specific migration pattern, regarding the number of stopover sites and 

migration synchrony that minimizes pathogen infection? 

As previously mentioned, characteristics of migration networks, especially scale-free and 

small-world networks, are efficient in dispersing pathogen. Habitat loss, however, may 

change the network characteristics and consequently affect the pathogen dispersal and 

infection prevalence in migratory populations by confining migratory birds to fewer 

remaining sites. In Chapter 4, I generate migration networks of greater white-fronted goose 

in the East Asian- Australasian Flyway with various habitat loss scenarios. I use Agent-based 

models, with SIR-type infection dynamics, to examine infection prevalence and pathogen 

dispersal among sites in various migration networks. I aimed to answer:  

1) whether sites loss facilitates infection prevalence in migratory birds? 

2) whether sites loss increases the probability of pathogen infecting in remaining sites? 

In Chapter 5, I summarize the historical HPAIV outbreaks in swan goose and bar-headed 

goose and compared their contact opportunities with HPAIV outbreaks sites and domestic 
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birds in their migration corridors. I also discuss the possible influences of historical exposure 

to domestic birds and migration strategy on their HPAIV outbreak patterns. Their migration 

corridors were estimated from GPS tracking data by using a dynamic Brownian Bridge 

Movement Model (dBBMM). 

Finally, in Chapter 6, I discuss my main findings from each chapter, and generalize the 

findings to a broader context that related to the general understanding on pathogen dispersal 

and host-pathogen interaction.
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Abstract 

Low pathogenic avian influenza virus can mutate to a highly pathogenic strain that causes 

severe clinical signs in birds and humans. Migratory waterfowl, especially ducks, are 

considered the main hosts of low pathogenic avian influenza virus, but the role of geese in 

dispersing the virus over long-dsusceptistances is still unclear. We collected throat and cloaca 

samples from three goose species, bean goose Anser fabalis, barnacle goose Branta leucopsis 

and greater white-fronted goose Anser albifrons, from their breeding grounds, spring 

stopover sites, and wintering grounds. We tested if the geese were infected with low 

pathogenic avian influenza virus outside of their wintering grounds, and analysed the spatial 

and temporal patterns of infection prevalence on their wintering grounds. Our results show 

that geese were not infected before their arrival on wintering grounds. barnacle geese and 

greater white-fronted geese had low prevalence of infection just after their arrival on 

wintering grounds in the Netherlands, but the prevalence increased in successive months, and 

peaked after December. This suggests that migratory geese are exposed to the virus after their 

arrival on wintering grounds, indicating that migratory geese might not disperse low 

pathogenic avian influenza virus during autumn migration.  
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Introduction 

Pathogens can strongly influence host populations by reducing activity, reproduction or 

survival (De Crespigny and Wedell 2006; Burthe et al. 2008; Bradley and Altizer 2005). 

Many pathogens are capable of infecting more than one host species. The avian influenza 

viruses (AIVs), for example, are highly infectious to a wide range of wildlife, domestic 

animals, and humans (van Dijk et al. 2015; WHO 2018; Chen et al. 2005; Claas et al. 1998). 

In 2016, a highly pathogenic AIV (HPAIV) H5N8 was isolated from water birds in Russia, 

rapidly followed by isolations in India and Europe (World Organization for Animal Health 

2017). The highly infectious and fast spread of AIV has boosted research into the presence 

and dynamics of this pathogen in wild birds.  

Based on their ability to cause disease in chickens, AIVs are characterized by two types: 

HPAIV, such as the one isolated in 2016, and low pathogenic AIV (LPAIV). The latter 

occurs more frequently in wild birds. When they are infected with LPAIV, wild birds do not 

show any clinical signs. Therefore, the migration of wild birds might contribute to the 

dispersal of LPAIV. Insights into the dynamics of LPAIV infection in migratory wild birds 

can help us to better understand and predict the spatial and temporal distribution of LPAIV 

outbreaks. 

Most of what is known about the ecology of LPAIV prevalence is based on information 

from duck species such as mallard Anas platyrhynchos. Ducks are considered the main hosts 

of LPAIV, because their aquatic habits facilitate transmission, spread, and persistence of 

LPAIV (Webster et al. 1992; Garamszegi and Møller 2007). Previous studies from Northern 

Hemisphere have shown that LPAIV circulates year-round in ducks, and the infection peaks 

just after the breeding season when the population comprises many immunologically naive 

juveniles (Krauss et al. 2004; Wallensten et al. 2007). LPAIV prevalence typically declines 

after the breeding season, from as high as 60% during the post-breeding migration to as low 

as 0.25% during spring migration (Olsen et al. 2006). Many ducks are long-distance 

migrants. They encounter migratory birds from other flyways and aggregate in large numbers 

at stopover sites during migration. Aggregation may facilitate outbreaks of LPAIV infection 

because the virus can be more rapidly transmitted between individuals that occur in high 

density (Krauss et al. 2004; Gaidet et al. 2012). Long-distance migrations, encounters with 

other birds, and aggregation of many duck species such as mallard could provide an 
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explanation for why AIV disperse over long distances so fast (Keawcharoen et al. 2008; 

Gilbert et al. 2006).  

However, it is unlikely that all migratory waterfowl have a similar role in the dispersal of 

LPAIV. Other waterfowl, such as geese, might only be secondary hosts (Kleijn et al. 2010). 

Geese may become infected after exposure to LPAIV from a primary host, but lose the 

LPAIV rapidly (Kleijn et al. 2010). Furthermore, some species, such as greater white-fronted 

goose, breed at higher latitudes than mallard. These more northerly distributed geese may be 

less unlikely to be exposed to LPAIV. Therefore, it has been proposed that geese are not 

infected with LPAIV during their breeding phase  (Kleijn et al. 2010), which means that they 

might have no LPAIV infection when they start their autumn migration, and thereby, play a 

limited role in dispersing LPAIV from their breeding grounds along the migratory flyways. 

However, year-round studies of LPAIV prevalence in goose species are rare and we still lack 

robust evidence that LPAIV is absent in geese during part of their annual cycle. 

Here, we examined prevalence of LPAIV infection in three arctic-breeding goose species, 

bean goose Anser fabalis, barnacle goose Branta leucopsis and greater white-fronted goose 

Anser albifrons. These species have been identified as hosts of AIV (Munster et al. 2007), 

and they are abundant wintering goose species in central-western Europe where they 

aggregate in large numbers and share stopover sites and wintering grounds with high 

densities of a wide variety of ducks. We studied these three goose species that breed in tundra 

and high-latitude boreal forest wetlands from approximately June to September. After the 

breeding season, a large part of the population migrates to the Netherlands for overwintering. 

Bean geese and greater white-fronted geese also winter in large numbers in Hungary 

(Underhill et al. 2001). Bean geese and greater white-fronted geese arrive in large numbers at 

the Netherlands in November-December, and leave in February-March, while barnacle geese 

arrive in October and leave in March (Underhill et al. 2001). During the winter of 2012-2013, 

there were more than 190,000 bean geese, 750,000 barnacle geese and 760,000 greater white-

fronted geese overwintering in the Netherlands (Hornman et al. 2015). 

We compared the prevalence of LPAIV infection in these three species on their breeding 

grounds, wintering grounds, and spring stopover sites. As these goose species might be 

merely secondary hosts of LPAIV, we expect them to be largely free of LPAIV on the 

breeding grounds, and we expect high prevalence of LPAIV on the wintering grounds, and 

then especially to the middle or later part of their wintering period, as the LPAIV is assumed 
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to be transmitted only after arrival at these wintering grounds. In a previous study carried out 

in Snow geese Chen caerulescens from North America, prevalence of AIV infection declined 

in 4 out of 5 spring migrations. Therefore, we also expect an intermediate level of infection in 

spring migration (Samuel et al. 2015). We specifically tested 1) if LPAIV infection in all 

three goose species is absent on their breeding grounds; 2) if the prevalence of infection 

increases over time on wintering grounds; 3) and if the prevalence of infection reduces to 

intermediate level on spring stopover sites. As we know that factors such as age, body 

condition, and sex may influence prevalence of LPAIV infection in geese (van Dijk et al. 

2015; Kleijn et al. 2010), we also included these factors into our analyses to compare their 

effects with that of temporal patterns. 

Methods 

Ethics statement 

The Animal Ethics Committee of the Erasmus Medical Center (Stichting DEC Consult) 

approved these studies permit number 122-07-09, 122-08-12, 122-09-20, 122-10-20 and 122–

11–31. 

Samples 

We used data of LPAIV infection in bean geese, barnacle geese and greater white-fronted 

geese that were collected between 2002 and 2013 within the framework of AIV surveillance 

programs (Verhagen et al. 2014). Geese were caught and tested for AIV infection on their 

breeding grounds, spring stopover sites, and wintering grounds. All sampled geese were also 

weighed, aged and sexed, and wing length and head length were measured. All individuals 

were ringed before release. Samples from wintering grounds were mainly taken in the 

Netherlands, one of the most important wintering grounds for migratory waterfowl in central-

western Europe (Madsen and Cracknell 1999). Dutch samples (n=8,196) were from geese 

caught in November-February between late 2006 and early 2013. Other samples (n=764) 

were obtained from their breeding grounds, wintering grounds outside the Netherlands and 

spring stopover sites between 2002 and 2013. Samples from the wintering grounds outside 

the Netherlands were mainly from Hungary, another important wintering ground for 

migratory birds (Madsen and Cracknell 1999). Samples from breeding grounds were mainly 

from the Kolguev Island, Russia, where the largest Russian breeding population of greater 

white-fronted geese and a significant proportion of the barnacle geese can be found. Samples 
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from spring stopover sites were mainly from Kologriv, Russia, an important spring stopover 

site of migratory geese. The breeding grounds and the spring stopover sites are located on the 

flyway of the greater white-fronted geese population that winters in the Netherlands (Kölzsch 

et al. 2016). The sampled geese were caught by means of live decoys, mechanical clap-nets, 

cannon nets, or standing nets. A small part of our data had been analysed in previous studies 

(Lewis et al. 2013; Kleijn et al. 2010). 

Virus detection 

Sterile cotton swabs were used to collect cloaca, throat or combined cloaca-throat samples 

from each individual goose. Samples were stored in transport medium at 4 °C for maximally 

two weeks until transported to the laboratory, where samples were stored at -80 °C until 

testing (Kleijn et al. 2010). RNA was isolated by the Magna-Pure LC system with the 

Magna-Pure LC total nucleic acid isolation kit (Roche Diagnostics, Almere, the Netherlands), 

and the AIVs were detected by a generic real-time reverse transcriptase PCR (RRT-PCR) 

assay targeting the matrix (M) gene (M RRT-PCR). Amplification and detection were 

performed on an ABI 7700 machine with a TaqMan EZ RT-PCR core reagents kit (Applied 

Biosystems, Nieuwerkerk aan den IJssel, the Netherlands) and 20 µl of RNA eluate in an end 

volume of 50 µl. A more detailed method description can be found in previous studies 

(Munster et al. 2009; Kleijn et al. 2010). 

Data analysis 

The prevalence of infection was expressed as the percentage of positive samples in each 

group of interest (e.g., species or season). As the sample sizes from outside the Netherlands 

were low, we used straight-forward proportion tests on the total number of samples from each 

location to examine if prevalence of infection differed among breeding grounds, spring 

stopover sites, wintering grounds in Hungary, and wintering grounds in the Netherlands.  

To determine if the prevalence of infection on the wintering grounds was significantly 

lower directly after the arrival of migratory geese compared to later months, we only used the 

dataset from the Netherlands. Because sample size varied dramatically among years, we 

furthermore restricted our analysis to the years with more than 200 samples. Sample size in 

each year is shown in Table S2.1.  

We constructed Generalized Linear Models (GLMs) for each species, assuming a binomial 
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error distribution, and using a logit link function. The response variable was infection status 

(binomial), and the predictor variables included year (categorical), month (categorical), sex, 

age, body condition, interaction between year and age, and interaction between year and body 

condition. Body condition index was calculated as described in a previous study (Schulte-

Hostedde et al. 2005). We used the first principle component (PC1) of a PCA analysis of 

wing length and head length as an index of body size. Next, the index of body size and log-

transformed body weight were included in an ordinary least squares (OLS) regression to 

calculate the residuals. The residuals were used as an index of body condition, and the 

individual with a greater and positive residual was considered to have a better body condition 

than those with a lower residual (Schulte-Hostedde et al. 2001). 

We used a multi-model inference approach to determine the best set of models to describe 

the variation in prevalence of infection. In total, 52 models were ranked with ascending AICc 

(Akaike information criterion corrected for small sample size) scores for each species. The 

top model sets were selected, using the criterion AICc<2 (Grueber et al. 2011). To account 

for model selection uncertainty, model averaging was carried out using the full-model 

method (Scheper et al. 2014). For barnacle geese and greater white-fronted geese, we chose 

the top model to predict the prevalence of infection and examine the effect of month. For 

bean geese, we chose the second model form the rank because it includes the variable month. 

Tukey’s post hoc test was used to test for differences in prevalence among years and months. 

Effect of age on prevalence of LPAIV infection in greater white-fronted goose was examined 

in each year separately. All statistical and modelling analyses were carried out in R 2.11.0 (R 

Development Core Team 2016). 

Results 

LPAIV infection in different parts of the flyway 

Out of the 268 samples collected on breeding grounds and 297 on spring stopover sites, none 

tested positive for LPAIV. LPAIV infection, however, was detected in samples from 

wintering grounds in both the Netherlands and Hungary (Table 2.1). Proportion test 

confirmed that prevalence of infection on the wintering grounds (both in Hungary and the 

Netherlands) was significantly higher than that on the breeding grounds or spring stopover 

sites (df=3, Z score=8.69, P<0.001).
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Table 2.1 Prevalence of LPAIV infection and sample sizes (N positive/N total) of bean goose 
Anser fabalis, barnacle goose Branta leucopsis and greater white-fronted goose Anser albifrons 
at breeding grounds, spring stopover sites and wintering grounds in Hungary and the 
Netherlands. 

Locations bean goose barnacle goose greater white-
fronted goose 

Total 

Breeding grounds 0 (0/22) 0 (0/9) 0 (0/237) 0 (0/268)a 

Spring stopovers 0 (0/10) 0 (0/2) 0 (0/285) 0 (0/297)a 

Wintering grounds 
(Hungary) 27% (6/22) 0 (0/7) 11% (18/170) 12% (24/199)b 

Wintering grounds 
(Netherlands) 2% (12/508) 12% (173/1404) 13% (798/6374) 12% (983/8286)b 

a and b refer to the statistical differences at ! = 0.05 (proportion test, df=3, Z score=8.69, P<0.001). 

Infection variation on the wintering grounds 

The multi-model inference approach revealed that prevalence of LPAIV infection was 

associated with different variables for different species. For bean geese, only year was 

included in the top model set (Table 2.2). 
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Table 2.2 Summarized results of the multi-model inference approach.  

Species Model Year Month Sex Age BC Year×BC Year×Age ⍵m ∆AICc 

bean goose 

1 -1.29       0.44 0.00 

2 -1.33 +      0.22 1.41 

3 -1.28  0.27     0.18 1.81 

4 -1.25   0.29    0.17 1.83 

β -1.29 + -1.29 0.05      

⍵p 1.00 0.21 0.18 0.17      

barnacle goose 

1 + +  0.29 0.64 +  0.44 0.00 

2 + +   0.62 +  0.37 0.32 

3 + +  -0.33 0.61 + + 0.19 1.71 

β +** +**  0.07 0.63 + +   

⍵p 1.00 1.00  0.63 1.00 1.00 0.19   

greater white-
fronted goose 

1 + +  -2.32 0.71 + + 0.73 0.00 

2 + + -0.01 -2.32 0.71 + + 0.27 1.98 

β +*** +*** -0.01 -2.32*** 0.71 + +*   

⍵p 1.00 1.00 0.27 1.00 1.00 1.00 1.00   

The candidate models were ranked in order of increasing difference of AICc (∆AICc<2); The parameter estimates for males as compared to zero for females. 
The parameter estimates for adults as compared to zero for juveniles. The parameter estimates in each candidate model are given in columns. β indicates the 
averaged estimates. ⍵p indicates the relative importance. ⍵m indicate the probability that the model is the best approximating model in the set. BC refers to 
body condition. + indicates this factor variable was included in the model. asterisks refer to the statistical difference (*, P<0.05; **, P<0.01; ***, P<0.001).
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We included the variable month in the model to examine the variation of prevalence over 

months. The subsequent tests showed that the prevalence of LPAIV infection was slightly 

higher in 2008-2009 compared to 2009-2010 (Figure 2.1A; Z value=-1.94, P=0.052), and the 

prevalence slightly increased over the months (Figure 2.2A; Z value>0.77, P>0.267), but the 

differences were not statistically significant at the α = 0.05 level. For barnacle geese, year, 

month, age, body condition and the interaction between year and body condition were 

included in the top model (Table 2.2). The prevalence in the last two years was higher than in 

the previous years, and peaked in 2012-2013 (Figure 2.1B; Z value>3.12, P<0.01). 

Prevalence of LPAIV infection increased dramatically over the months with the highest 

values in January and February (Figure 2.2B; Z value>2.92, P<0.016). For greater white-

fronted geese, year, month, age, body condition, the interaction between year and body 

condition, and the interaction between year and age were included in the top model. Similar 

to barnacle goose, greater white-fronted geese had a higher prevalence in the last two years 

(Figure 2.1C; Z value>3.44, P<0.01). Prevalence of LPAIV infection in December-February 

was higher than in November (Figure 2.2C; Z value>7.37, P<0.001).  

 
Figure 2.1 Predicted prevalence of LPAIV infection (±95% confidence interval) in each year for 
three species, separately. (A) bean geese; (B) barnacle geese; (C) greater white-fronted geese. a, b 
and c refer to the statistical difference at α = 0.05. 
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Figure 2.2 Predicted prevalence of LPAIV infection (±95% confidence interval) in each month 
for three species, separately. (A) bean geese; (B) barnacle geese; (C) greater white-fronted geese. a, 
b and c refer to the statistical difference at α = 0.05. 

The differences in prevalence of LPAIV infection between juvenile and adult greater 

white-fronted geese differed among sampling years, as juvenile birds had higher prevalence 

than adults in 2006-2007 (Figure 2.3; Z=-3.47, P=0.005), 2008-2009 (Z=-2.87, P=0.004) and 

2009-2010 (Z=-3.13, P=0.002), but not in others (Z value>-1.95, P>0.05). 

 
Figure 2.3 Predicted prevalence of LPAIV infection (±95% confidence interval) over years in 
adult and juvenile greater white-fronted geese. 
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Discussion 

The large distances covered by migratory geese and the mixing of different flyway 

populations during parts of their annual cycle cause concerns about the dispersion of AIV 

across continents. We found no LPAIV infection in three goose species on their breeding 

grounds or spring stopover sites. The prevalence of LPAIV infection was low just after their 

arrival on wintering grounds in the Netherlands but increased during successive months to 

peak after December. These results suggest that the studied migratory goose species are free 

of LPAIV infection on their high-latitude breeding grounds, and only become infected after 

exposure to LPAIV on their wintering grounds.  

The lack of any LPAIV infection in the three goose species on their breeding grounds 

(Table 2.1) is in line with a previous study that found geese might have no LPAIV infection 

during autumn migration (Samuel et al. 2015; Jonassen and Handeland 2007). Furthermore, a 

study on LPAIV infection of pink-footed geese Anser bachyrhynchus over their flyway gave 

a similar result, namely infection was only found on their wintering grounds (Hoye et al. 

2011). These findings indicate that migratory geese can lose LPAIV in some phases of their 

annual cycle, and strongly suggest that migratory geese do not carry LPAIV from their 

breeding grounds to their wintering grounds. This contrasts with ducks such as mallards, 

which can preserve LPAIV in the population over their entire annual cycle (van Dijk et al. 

2015). Compared to ducks, geese are less restricted to wetland habitat, and they mainly 

forage on land and defecate in compact droppings. These different traits reduce the chance 

for faecal-oral transmission (Kleijn et al. 2010), and reduce environmental transmission, 

which is important for LPAIV to persist in a waterfowl population (Breban et al. 2009; Wang 

et al. 2012; Rohani et al. 2009). This could be one factor explaining why geese, but not 

ducks, are free of LPAIV during part of their annual cycle. 

Migratory waterfowl are generally considered asymptomatic carriers of LPAIV because 

they do not show serious disease signs when infected. Consequently, they are potentially 

important in dispersing LPAIV over long distances (Kida et al. 1980). If migratory waterfowl 

carry LPAIV during autumn migration, prevalence of LPAIV infection should have been 

stable or decreased after their arrival on the wintering grounds. However, LPAIV prevalence 

in the examined geese was low upon their arrival in October-November (Figure 2.2). Only 

after November, did prevalence of infection increase in wintering geese. This suggests that 

migratory geese were exposed to LPAIV that circulated on wintering grounds. This is 
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consistent with the idea that migratory birds more likely amplify local LPAIV infection, 

because they may not be immune to a locally circulating virus and may have reduced 

immunocompetence because of physiological costs of migration (Latorre-Margalef et al. 

2009; Altizer et al. 2011). 

Although barnacle and greater white-fronted geese had a relatively high prevalence of 

infection in February (Figure 2.2B and C), they did not show any infection on spring stopover 

sites in Russia (Table 2.1). This refutes our supposition that the prevalence of LPAIV 

infection is intermediate on spring stopover sites. In Canada geese Branta canadensis, virus 

shedding after infection with HPAIV takes up to 6 days (Pasick et al. 2007). Assuming 

barnacle and greater white-fronted geese have a similar shedding period to that of Canada 

geese, they had plenty of time to recover from the infection during the spring migration. The 

absence of LPAIV infection, especially in greater white-fronted geese, on spring stopover 

sites suggests that these geese do not maintain the virus within their own population and that 

they are not being exposed to new LPAIV during spring migration. However, sample sizes 

from spring stopover sites were low, and analyses based on larger sample sizes are required 

to confirm this tentative conclusion.  

Variations of LPAIV infection among years are commonly reported in wild birds (Latorre-

Margalef et al. 2009; Wallensten et al. 2007; Kleijn et al. 2010). In our study, prevalence of 

LPAIV infection significantly increased in the last two years in barnacle geese and greater 

white-fronted geese (Figure 2.1B and C). High prevalence of LPAIV infection is frequently 

associated with a large proportion and number of juveniles in the population, because they 

are immunological naïve (Scott Krauss et al. 2004). However, the proportions of juvenile 

barnacle geese and juvenile greater white-fronted geese in the last two years were not 

consistently higher than those in previous years (Hornman et al. 2013, 2015). Moreover, 

prevalence of infection in greater white-fronted geese did not differ between juveniles and 

adults in these last two years (Figure 2.3; P>0.05). Therefore, the proportion of 

immunological naive juveniles in the population alone cannot explain the variations in the 

prevalence of LPAIV infection in this study, which also begs for further study. 

Our findings, which are largely based on data from greater white-fronted geese, suggest 

that migratory geese are free of LPAIV infection before their autumn migration, and exposed 

to LPAIV after their arrival on the wintering grounds. It indicates that migratory geese are 

secondary hosts of LPAIV, that they are free of LPAIV infection during certain parts of their 
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annual cycle. Therefore, there is no evidence that migratory geese disperse AIV over their 

migration flyways. More likely, migratory geese arriving and aggregating on their wintering 

grounds amplify the infection of local LPAIV, instead of introducing novel strains from afar. 
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Appendix to Chapter 2 

Table S2.1 Sample size of each species in successive winters in the Netherlands. 

Winter bean goose barnacle goose greater white-fronted goose 

2006-2007 71 43 282 

2007-2008 91 171 1,050 

2008-2009 235 61 1,522 

2009-2010 274 380 987 

2010-2011 62 372 811 

2011-2012 45 385 1,058 

2012-2013 13 267 664 

total 508 1,404 6,284 
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Table S2.2 Mean estimated goose population size in the Netherlands from July 2006-May 2013. 

Species July Aug. Sept. Oct. Nov. Dec. Jan. Feb Mar. Apr. May June 

bean goose 33 1 15 13,660 87,663 335,280 176,431 127,608 662 24 1 2 

barnacle goose 15,853 14,893 30,172 118,412 314,670 420,221 503,470 549,122 458,145 262,323 102,150 8,665 

greater white-
fronted goose 

102 129 1,645 223,681 616,648 655,524 764,731 667,125 366,123 3,658 102 42 

Total 15,988 15,023 31,832 355,753 1,018,981 1,411,025 1,444,632 1,343,856 824,930 266,005 102,253 8,708 

The numbers of geese are averaged with the actual counting of each month from 2006/2007 to 2012/2013; All the data are from Sovon reports Watervogels in 
Netherland in 2006/2007, 2007/2008, 2008/2009, 2009/2010, 2010/2011, 2011/2012 and 2012/2013 (https://www.sovon.nl/sovonrapporten). 

Table S2.3 Sample collection and virus detection for avian influenza virus from three samples goose species. 

https://doi.org/10.1371/journal.pone.0177790.s003
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Abstract 

Migration can influence dynamics of pathogen-host interactions. However, it is not clearly 

known how migration pattern, in terms of the configuration of the migration network and the 

synchrony of migration, affects infection prevalence. We therefore applied a discrete-time 

SIR model, with environmental transmission and migration, to various migration networks, 

including networks with serial, parallel, or both serial and parallel stopover sites, and with 

various levels of migration synchrony. We applied the model to the infection of avian 

influenza virus in a migratory waterfowl population. In a network with only serial stopover 

sites, increasing the number of stopover sites reduced infection prevalence, because with 

every new stopover site, the amount of virus in the environment was lower than that in the 

previous stopover site, thereby reducing the exposure of the migratory population. In a 

network with parallel stopover sites, both increasing the number and earlier appearance of the 

stopover sites led to an earlier peak of infection prevalence in the migratory population, 

because, with multiple parallel stopover sites, the migratory population is exposed to larger 

total amount of virus in the environment, speeding-up the accumulation of infections. 

Furthermore, higher migration synchrony reduced the average number of cumulative 

infection because the majority of the population can fly to a new stopover site where the 

amount of virus is still relatively low and has not been increased due to virus shedding of 

infected birds. Our simulations indicated that if migratory species have a migration pattern 

with multiple serial stopover sites and with high migration synchrony, they can reduce their 

infection prevalence.  
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Introduction 

Many species migrate between their wintering and breeding grounds (Dingle and Drake 2007) 

in response to seasonal changes in resources and habitat conditions, such as due to seasonal 

changes in food availability (Berthold 1997; Altizer et al. 2011). However, migration can also 

facilitate pathogen transmission, as migratory animals can disperse pathogens over long 

distances (Altizer et al. 2011), or trigger infection outbreaks by exposing the population to 

pathogens in novel habitat (van Dijk et al. 2015; Verhagen et al. 2014). For example, migration 

of passerine birds has contributed to the spread of the West Nile Virus across North America 

(Owen et al. 2006; Rappole et al. 2000), and the migration of waterfowl has contributed to the 

global spread of the highly pathogenic avian influenza virus (HPAIV) H5N1 and H5N8 (Si et 

al. 2009; Xu et al. 2016). 

Migration, however, can also reduce infection in a migratory population by so-called 

migration escape (Loehle 1995; Satterfield et al. 2015). It describes that, if the amount of 

pathogen in the environment accumulates during the staying of the hosts, migration allows the 

hosts to ‘escape’ from the accumulated pathogen in the habitat. For example, lesser black-

backed gulls Larus fuscus with a long migration distance have a lower seroprevalence of avian 

influenza virus compared to gulls with a short migration distance (Arriero et al. 2015). Most of 

the studies, however, focused on spatial-temporal and phylogenetic correlations between 

animal movements and infection outbreaks (McKay and Hoye 2016; Xu et al. 2016; Tian et al. 

2015), whilst other aspects of migration that might affect infection prevalence have not yet 

been investigated, such as the configuration of the migration network and the synchrony in 

timing of migration.  

Migratory animals, particularly migratory birds, can use stopover sites in serial 

configuration, in which all individuals use the same stopover sites successively and the number 

of these stopover sites varies among species. For example, sandpiper Calidris mauri and black 

turnstone Arenaria melanocephala use stopover sites more frequently and spend less time to 

refuel on each site than dunlin Calidris alpine, red knot C. canutus or bar-tailed godwit Limosa 

lapponica (O’Reilly and Wingfield 1995; Iverson et al. 1996; Yamaguchi et al. 2008). On the 

other hand, migratory birds, such as swan goose Anser cygnoides, bar-tailed godwit, brent 

goose Branta bernicla and greater white-fronted goose Anser albifrons can use stopover sites 

in a more parallel configuration (Battley et al. 2012; Kölzsch et al. 2016; Green et al. 2002; 

Batbayar 2013; Batbayar et al. 2011), in which all individuals split to use multiple stopover 
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sites at the same time over a wider front. Hence, there are potentially many distinct network 

configurations with respect to the use of serial and parallel stopover sites. ie configuration of 

a migration network is expected to influence the aggregation of migratory birds and their 

exposure to pathogens at these stopover sites (Buehler and Piersma 2008; Rohani et al. 2009). 

Apart from different configurations of migration network, migration synchrony (i.e., timing 

of migration) also varies among migratory individuals, due to e.g., differences in body 

condition, competition for limited resources, and optimization of mating opportunities 

(Morbey and Ydenberg 2001; Muraoka et al. 2009). For example, a population of swan geese 

Anser cygnoides might take weeks to leave a habitat, whereas a population of barnacle geese 

might take months. iis variation in migration synchrony might also influence infection 

dynamics because it regulates bird abundance at stopover sites. For example, previous studies 

proposed that high migration synchrony might be associated with high infection prevalence as 

individuals have increased contact probabilities in these larger migratory flocks (Buehler and 

Piersma 2008; Gaidet et al. 2012). However, no study has investigated how configuration of 

migration network and synchrony of migration affects the infection prevalence in a migratory 

population. 

In this study, we applied a time-discrete SIR (Susceptible-Infected-Recovered) model to 

various scenarios of spring migration to explore how variations in configuration of migration 

network and synchrony of migration affect the infection prevalence. ie model and scenarios 

were applied to infection of low pathogenic avian influenza virus in migratory waterfowl 

species, since the outbreaks of avian influenza virus caused concerns but the relationship 

between waterfowl migration and virus dispersal is not fully understood (Ren et al. 2016; 

Takekawa et al. 2010; Yin et al. 2017). We aimed at answering the following questions: (1) 

How does the configuration of a migration network affect infection prevalence? (2) Does high 

synchrony in timing of migration increase infection prevalence? (3) Is there a specific 

migration pattern, regarding the number of stopover sites and migration synchrony that 

minimizes pathogen infection? 

Methods 

We first designed a simulation model that represents a migratory waterfowl population 

(10,000 birds). Furthermore, we applied an SIR model to simulate the virus transmission 

during migration (Figure 3.1). Since the wild waterfowl usually keep a certain distance 

between each other, the densities of the waterfowl on stopover sites might be constant. 
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Therefore, we assumed that the transmission of avian influenza virus is independent to bird 

density (Yin et al. 2017). Furthermore, we included environmental transmission process into 

the SIR model (Figure 3.1) because, if a pathogen can persist in environment for an extended 

period of time, it significantly contributes to infection prevalence (De Rueda et al. 2015), and 

determines the persistence of the pathogen in a migratory population (Rohani et al. 2009; 

Breban et al. 2009; Stallknecht et al. 2015). 

 
Figure 3.1 Illustration of the SIR model. S, I, R are the susceptible, infected, recovered birds, 
and V is the virus in the environment. The dashed circles mean that the number of stopover sites 
varies in different scenarios. The superscript letters w, s, and b denote wintering ground, stopover 
sites, and breeding ground, respectively. The dashed lines denote the transition of the infectious 
status. The thick solid lines denote the movement of birds. The thin solid lines denote the dynamics of 
the virus in the environment. 

We only simulated the spring migration to exclude the influence from other factors, such 

as breeding. The simulation started with a virus-free population exposed to virus in their 

wintering grounds, and the simulation ended when all birds completed their migration. To 

avoid the complex dynamics of infection and cross-immune responses to multiple virus 

strains, we assumed that the migratory birds were exposed to single strain of avian influenza 

virus. We further assumed that migratory birds had no severe responses to the infection, and 

that they obtained permanent immunity after their recovery. The model variables are 

summarized in Table 3.1. The model parameters are mainly obtained from migratory goose 

species, and they are summarized in Table 3.2.  
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Table 3.1 The variables of the model, with their abbreviation, definition, and units. 

Variable Definition Unit 

Si
t number of susceptible birds bird 

Ii
t number of infected birds bird 

Ri
t number of recovered birds bird 

Ni
t number of birds bird 

Sij
t+t/w number of susceptible birds after the flying from habitat i to j bird 

Iij
t+t/w number of infected birds after the flying from habitat i to j bird 

Rij
t+t/w number of recovered birds after the flying from habitat i to j bird 

mi
t the number of birds that migrate - 

µi mean day of the migration departure date - 

i denotes the location along the migration network, either wintering ground, stopover site, or breeding 
ground. t denotes the time step. t denotes the total number of flying days from the wintering ground to 
the breeding ground. w denotes the number of stops.
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Table 3.2 The parameters of the model with their abbreviation, definition, value, and units. 

Parameter Definition Value Unit Reference 

N0 population size 10,000 bird - 

b transmission rate parameter 0.064 (0.05 – 0.27) day-1 (Rohani et al. 2009) 

g recovery probability 0.14 day-1 
(Webster et al. 1992; 

King et al. 2010) 

6s 
the length of the migration 

synchrony 
0-13 week - 

h 
virus decaying rate in the 

environment 
0.03 (0.25 – 0.01) - (Rohani et al. 2009) 

d migration distance 3900 km (Kölzsch et al. 2016) 

v flying speed 1680 (864 - 3888) km day-1 (Kölzsch et al. 2016) 

t total number of flying days 2.32 day  

w number of stops 0-10 - - 

e virus shedding rate  - virus bird-1 (Breban et al. 2009) 

Vi0 / e 

initial amount of virus in 

environment per shedding 

rate (in scale of bird) 

300 bird (Breban et al. 2009) 

T 
total number of refuelling 

days 
80 days (Kölzsch et al. 2016) 

 

SIR model 

In our time-discrete SIR model, susceptible birds cannot be infected during flying due to 

absence of direct transmission or environmental transmission. Infected birds can recover 

from infection and obtain immunity (Figure 3.1). 

The number of susceptible birds (S), the number of infected birds (I), the number of 

recovered birds (R), and the number of total birds (N) was calculated in each site according 

to the following difference equations: 
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where b is the transmission rate parameter (day-1), g is the recovery rate parameter (day-1), 

mit-1 is the number of birds (bird) that migrate, Vit is the amount of virus that is shed by birds 

per day (virus day-1, for the difference equation see below), e is the virus shedding rate (virus 

bird-1), t is the discrete day, i is the site.  

Equations (3.5 - 3.8) depicted infection dynamics while flying between stopover sites. 
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w is the number of stops in the migration network, t is the total number of flying days 

(day) from wintering to breeding ground, d is the total migration distance (km), and v is the 

averaged flying speed (km day-1). 

Since the migratory birds share stopover sites in their migration, and the avian influenza 

virus can persist in water for an extended period of time (Samuel et al. 2015; Brown et al. 

2009), we assumed that the stopover sites were contaminated at a very low level (Vi0) before 

arrival of the migratory birds. The amount of virus in the environment (Vit) was calculated by 

the following difference equation: 

D"
# = D"%&

# − ED"%&
# + F7"%&

# − EF7"%&
#     (3.9) 

where h is the virus decaying rate in the environment. We divided equation (9) by 

shedding rate e (virus bird-1) to obtain the following equation: 
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which allows us to use vit / e (bird), i.e. the amount virus shed per infectious bird, instead 

of Vit to estimate the amount of virus in the environment (Breban et al. 2009). 

Migration networks 

We designed three different configurations of the migration network, networks with serial 

stopover sites (Figure 3.2, network S), networks with parallel stopover sites (Figure 3.2, 

network P), and networks with both serial and parallel stopover sites (Figure 3.2, network 

PSS, SPS and SSP). In the parallel configurations, birds distributed evenly over all stopover 

sites.
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Figure 3.2 Illustrations of different migration networks with serial stopover sites (S), parallel 
stopover sites (P), and serial-parallel stopover sites (PSS, SPS, or SSP, the position of P indicates 
the position of parallel stopover sites in the network). The wintering ground, stopover sites, and 
breeding ground are depicted in red, green, and blue, respectively. The dashed circles mean that the 
number of stopover sites varies in different scenarios.  

Migration synchrony 

Field observations showed that the arrival and departure of waterfowl generally follow a 

unimodal patterns (Gupta et al. 2010; van Gils et al. 2007). Therefore, we used a truncated 

Gaussian distribution to calculate the number of population that migrate at each time step: 
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  (3.11) 

where µi is the mean day of the migration departure date from habitat i, s is the spread of 

the distribution around the mean. As can be seen from the truncation, we assumed that the 

whole population departs from (and arrive at) a site within 6s days. Therefore, the migration 

synchrony can be increased or decreased by changing the parameter 6s. A greater 6s 

represents a lower synchrony of migration, and vice versa. 

Migration patterns 

To examine whether there is an optimal migration pattern that minimizes infection 

prevalence, we combined various migration networks and various levels of migration 

synchrony (6s=0, 1, 2…13). Since the migration synchrony influences the abundance of 

birds on successive stopover sites, we only considered the migration networks with serial 

stopover sites (number of stopover site=0, 1, 2, 3… 10). Totally, we evaluated 154 scenarios 

to test their impacts on infection prevalence dynamics.  



Chapter 3 Migration Patterns Influence Pathogen Prevalence 

 
45 

Results 

Environmental transmission 

Although the environmental transmission contributed more than 70% to the total infection 

prevalence (Figure 3.3), its contribution decreased, however, with an increasing number of 

serial stopover sites, as the migratory birds move to next stopover site where the amount of 

virus was still relatively low. 

 
Figure 3.3 Simulated environmental contributions to the total prevalence of infection. The 
moment of arrival at a stopover site is visible in the graph by a sudden sharp drop in environmental 
contribution. These results are obtained from migration networks with 0, 1, 5, and 10 serial stopover 
sites. All the birds migrate at the same time (6s=0). 

Network configuration 

In networks with only serial stopover sites, an increasing number of sites reduced both 

infection prevalence (i.e. number of infected birds) and cumulative prevalence (i.e. sum of 

recovered birds and infected birds) in the migratory population (Figure 3.4A and B). 

Whereas, in networks with parallel sites, both an increasing number of parallel sites and 

earlier use of parallel stopover sites led to a faster accumulation of infections, and therefore, 

an earlier infection peak in the migratory population (Figure 3.4C and D, and Figure 3.5). 

Similar patterns were observed when we varied the initial amount of virus in the 

environment. The infection always peaks earlier in a migration network with 10 parallel 

stopover sites than that in a migration network with 5 parallel stopover sites. Furthermore, the 
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difference in day of infection peak increases along with increasing the initial amount of virus 

in the environment (Figure S3.1). 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Simulated prevalence of infection (A, C) and prevalence of cumulative infection (B, 
D). These results are obtained from migration networks with 0, 1, 5 and 10 serial stopover sites (A, 
B), and with 5, 10 parallel stopover sites (C, D). All birds migrate at the same time (6s=0). 

 

Figure 3.5 Simulated prevalence of infection (dashed lines) and prevalence of cumulative 
infection (solid lines). These results are obtained from migration networks with 1 pair of parallel 
stopover sites and 2 serial stopover sites. The position of P in the legend indicates the positions of the 
parallel stopover sites in the migration networks. All birds migrate at the same time (6s=0). 



Chapter 3 Migration Patterns Influence Pathogen Prevalence 

 
47 

Migration synchrony and migration pattern 

Unexpectedly, decreasing migration synchrony led to an increasing in the number of 

cumulative infections (Figure 3.6). Furthermore, we also calculated the average number of 

cumulative infections over the period of infection development (i.e., from the beginning of 

infection till new infections are no longer recorded), showing that decreasing migration 

synchrony generally facilitated cumulative infection (Figure 3.7). A migration strategy with 

multiple serial stopover sites (n=10) and high migration synchrony (6s=0) led to the lowest 

average number of cumulative infections. The effect of migration synchrony on the average 

number of cumulative infections interacted with the effect of the number of stopover sites, 

because the number of serial stopover site had the largest effect only when the migration 

synchrony was highest (Figure 3.7). 

 
Figure 3.6 Simulated prevalence of cumulative infection at the end of migration. These results 
are obtained from migration networks with 5 serial stopover sites, and with various levels of 
migration synchrony (6s=1,2,3… …13). 
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Figure 3.7 Simulated average number of cumulative infections during the development of 

infection. These results are obtained from various migration patterns that vary in number of serial 

stopover sites (n=0, 1, 2, 3…10) and timing of migration synchrony (6s=1,2,3… …13). 

Discussion 

In our simulation, we found that the configuration of the migration network and the 

synchrony in timing of migration affected the infection dynamics in a migratory population. 

Specifically, we found that migration can reduce the infection prevalence in the population, 

which is in agreement with migratory escape (Loehle 1995; Satterfield et al. 2015). 

Furthermore, high migration synchrony did not increase infection prevalence, whereas low 

migration synchrony led to a larger infection prevalence in a migratory population. This 

brings us a new insight into the possible relationships between animal movement pattern and 

pathogen infection. 

Avian influenza virus can accumulate in the environment and can persistent for weeks and 

even month. Thereby, staying in habitats for long period increases risks for exposing to the 

virus in the environment. This is illustrated by that the infection prevalence in resident 

waterfowl is year-round (Wilcove 2008), but the infection prevalence in migratory waterfowl 

can decrease to very low level (Yamaguchi et al. 2008; Yin et al. 2017). According to our 

simplified model of one-strain and permanent acquired immunity, however, structure of 

migration network with serial stopover sites can reduce the infection prevalence. This is 

because, when migratory birds start arriving at a habitat where has very low or even no 

accumulation of virus in the environment, environmental transmission contribute relatively 
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little to the infection. This is in line with the concept of migratory escape (Loehle 1995; 

Altizer et al. 2011), which has also been supported by empirical studies. For example, in 

reindeer Rangifer tarandus herds, migration can significantly reduce the abundance of larval 

Hypoderma tarandi in the population (Folstad et al. 1991). 

On the contrary, parallel stopover sites facilitated the number of cumulative infections. 

Although the use of parallel stopover sites reduced the abundance of migratory birds in each 

stopover site, it did not influence the direct transmission probability in our density-

independent transmission model. However, when the migratory population used parallel 

stopover sites, especially at the early stage of the migration, it was exposed to larger total 

amount of virus that existed in the environment, which sped-up the accumulation of 

infections. It indicates that the infections accumulate faster when the migratory population 

encounters more virus in the environment. 

The fast accumulation of infections that is associated with earlier parallel sites in the 

migration network might contribute to the absence of avian influenza virus infection in these 

migratory waterfowl when they arrive at their breeding ground (Yin et al. 2017). For 

example, the greater white-fronted goose migrate over a broad front in the early stages of 

their spring migration (Kölzsch et al. 2016), the infection might develop so fast that the 

majority of the population have recovered from the infection before arriving at their breeding 

grounds. Many other migratory species, such as snow geese Anser caerulescens, sandhill 

cranes Antigone Canadensis and demoiselle cranes Grus virgo, trek over a broad front as well 

(Samuel et al. 2015; King et al. 2010; Takekawa et al. 2017; Prins and Namgail 2017). We 

predict that, in these species, infection peaks at an earlier stage of their migration than that of 

similar species with a relatively unidirectional migration, such as barnacle geese (Eichhorn et 

al. 2006; Shariatinajafabadi et al. 2014). To test this prediction, more empirical studies, 

involving outbreak monitoring and GPS tracking of bird migration, are necessary.  

Stopover sites are essential for many migratory waterfowl to complete their migration 

successfully (Dingle and Drake 2007), especially for migratory waterfowl (i.e. ducks, geese 

and swans) which are the main wild host for avian influenza virus. For example, mallard, 

greater white-fronted goose and whooper swan Cygnus cygnus take multiple stopover sites 

along their migration for refuelling. The availability of stopover sites, however, is threatened 

by human activities (Wilcove 2008). For example, suitable stopover sites in the East Asian-

Australian flyway experienced dramatic loss during the past 20 years, especially for the 
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stopover sites located in China (Breban et al. 2009; Stallknecht et al. 2015). This may change 

the configuration of migration network. One of the possible consequences is that the 

migration distance becomes shorter due to the loss of habitats, which may facilitate the 

infection prevalence of avian influenza virus in a migratory population. To obtain a better 

understanding of the effects of habitat loss on the infection dynamics in migratory 

populations, more studies that take a network perspective are required, studying effects such 

as those triggered by habitats loss on infection dynamics. 

Previous studies have suggested that animal movements in large flocks might facilitate 

infection prevalence, and cause outbreaks due to more frequent contact among animals in 

dense aggregations (Altizer et al. 2011). This idea does not hold in our simulation since we 

assumed that, in migratory waterfowl population, the transmission of avian influenza virus 

was density-independent. However, our simulation showed that a larger migrating flock with 

a higher synchrony of migration can negatively affect infection prevalence, because when the 

migratory birds migrated together (e. g., 6s=0), they experienced a lower infection risk at 

new stopover sites due to the lower amounts of viruses present in the environment. However, 

when the birds migrate with a lower migration synchrony (e.g., 6s=13), they experienced a 

higher infection risk because the amount of viruses in the environment has been elevated by 

infected birds that arrived earlier. 

Migratory waterfowl have distinct migration patterns in terms of number of stopover sites 

and migration synchrony. For example, swan geese take about 13 stopover sites with a 

relatively high migration synchrony in about 5 weeks (Batbayar et al. 2011), mallard Anas 

platyrhynchos take about 3 stopover sites with a relatively high migration synchrony in about 

5-7 weeks (Yamaguchi et al. 2008), whereas barnacle geese often take a single stopover site 

(Tombre et al. 2008) with an extremely low migration synchrony in about 4 months 

(Hornman et al. 2015). Our simulation showed that migration pattern influenced infection 

dynamics, and that multiple serial stopover sites with high migration synchrony minimized 

the average number of cumulative infections (Figure 3.7). It indicates that decisions with 

regard to the migration network and migration synchrony can minimize transmission of avian 

influenza virus during migration. 

In general, our simulations demonstrate that migration patterns can affect infection 

dynamics in a migratory population. Although our study focused on a system with single 

avian influenza virus strain and migratory waterfowl, the findings can be extended to other 
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migratory host species, and other pathogens that can persist in the environment. We call for 

more studies on animal migration that analyse the effects of network configuration, timing of 

migration (e.g., under influence of global climate change), and movement patterns on disease 

dynamics. Application of mathematical modelling of animal movements over a migration 

network can be greatly helpful in understanding mechanisms related to pathogen dispersal.
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Appendix to Chapter 3 

 
Figure S3.1 Simulated difference in the day of infection peak between networks with 10 parallel 
stopover sites and 5 parallel stopover sites. All birds migrate at the same time (6s=0).
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Abstract 

Habitat loss can extensively affect migration networks, and thereby influence host-pathogen 

interactions. For such an intensive impact, we constructed migration networks of a migratory 

waterfowl population in the East Asian-Australasian Flyway, integrated with an agent-based 

model, bird migration behaviour, and SIR-type infection dynamics. We studied prevalence 

dynamics of pathogen infection in a migratory population and pathogen dispersal over the 

migration network, under three scenarios of site loss. Site loss was mainly observed in the 

southern part of the East Asian-Australasian Flyway. Migration allowed the birds to escape 

from contaminated sites and temporally reduce their infection prevalence. In the network 

with severe site loss, however, birds migrated over a shorter distance and aggregated in a 

single wintering site, which facilitated pathogen infection. In addition, sites that received 

more connections from other sites and were visited by more birds were more prone to be 

infected by the pathogen, and site loss increased this probability. Our findings suggest that 

habitat loss facilitates disease outbreak in a migratory population and increases the 

probability for pathogen dispersal. 
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Introduction 

Migration influences the dynamics of pathogen-host interactions (Altizer et al. 2011). For 

migratory birds, although some migratory species undertake nonstop migration, most 

migratory species need to refuel on stop-over sites during their migration (Navedo et al. 

2010; Kölzsch et al. 2016). Bird migration is a point of attention for emerging zoonotic 

pathogens such as avian A influenza viruses (AIVs) (Verhagen et al. 2015), West Nile virus 

(Paz 2015), B. burgdorferi-infected ticks (Khatchikian et al. 2015) and even drug-resistant 

enteropathogens (Palmgren et al. 1997), since birds can carry pathogens over their long-

distance migration. Migration can facilitate infection prevalence in migratory birds by 

increasing exposure risk to pathogens that persist in stop-over sites (Krauss et al. 2010), or 

facilitate pathogens dispersal by introducing pathogens from one stop-over site to another 

(Verhagen et al. 2015). However, migration can also allow host species to escape from 

infected habitats where infection has built up over time through migration escape (Altizer et 

al. 2011). However, availability of suitable stop-over sites in the East Asian-Australasian 

Flyway decreased, especially in China, where 30% of natural wetlands were lost between 

1990 to 2000 (Gong et al. 2010; Zhang et al. 2015; Navedo et al. 2010). Consequently, 

migratory animals are restricted to fewer remaining stop-over sites. This more intensive use 

of remaining sites might increase infection prevalence in migratory birds and the probability 

of stop-over site infection. Stop-over site loss can thus have a large impact on pathogen-host 

interactions and pathogen dispersal. A better understanding of how stop-over loss influences 

host-pathogen interaction and pathogen dispersal is urgently needed for monitoring and 

controlling avian-borne (zoonotic) diseases. 

Long-distance migration of birds is often over a network of connected stop-over sites, in 

which two sites are connected through bird migratory movements, linking site A with site B. 

The relative importance of sites and links can be weighed on basis of the number of birds that 

use a particular stop-over site or that move over a link. Migrating birds nearly always carry 

pathogens, and migration networks can thus be studied by mathematical models to explore 

the effects of network properties, such as network topology and network metrics, on infection 

prevalence and spatial dispersal of pathogens. For example, link density, i.e. the fraction of 

existing links over the total number of possible links, reflects the connectivity of the network, 

which is commonly used to indicate the capability of the network for pathogens dispersal. 

Various studies analysed networks of human and animal movements for infection percolation 
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(Keeling et al. 2010), such as the global trade networks (Banks et al. 2015), the livestock 

trade networks (Motta et al. 2017), and social contact networks of animals (Silk et al. 2017). 

Networks, such as real-world trade and transport networks, are often found to be scale-free 

(Banks et al. 2015). The scale-free topology facilitates dispersal of pathogens in the network  

due to cascading infection patterns from well-linked hubs (Watts and Strogatz 1998). When 

extensive site disappears in a network, migratory birds become increasingly confined to 

fewer and fewer remaining stop-over sites, so that the scale-free topology could disappear, 

which could make the pathogen dispersal less effective. Alternatively, the infection 

prevalence in migratory birds and the probability of pathogen infection among remaining 

sites might increase. However, no study so far tested the effects of site loss on infection 

prevalence and pathogen dispersal in a migration network. 

We therefore modelled infection of the avian influenza virus in a migratory waterfowl 

population that, like most avian influenza viruses in wild birds, causes no or only mild 

symptoms. We used modelled behaviour of migratory birds over a network of connected sites 

and virus infection to test whether sites loss 1) facilitates infection prevalence in migratory 

birds; and 2) increases the probability of pathogen infecting in remaining sites. 

Methods 

We selected a widely distributed migratory waterfowl species, the greater white-fronted 

goose Anser albifrons. Their distribution range in the East Asian-Australian Flyway covers 

large area form 70° N in Russia to 29° N in China, including Mongolia, Japan, Korea and 

Yangtze River Basin. Locations of suitable wetlands were obtained from predicted 

probabilities from a logistic regression model, testing the relationships between 

presence/absence (binomial) of greater white-fronted geese and environmental factors, 

including water body area, elevation, longitude, and foraging area. The foraging area was 

defined as grassland and cropland within maximum foraging distance of greater white-

fronted geese (Johnson et al. 2014). We selected those wetlands where the predicted 

probability of use exceeded 75%. Additionally, we calculated the percentage of area loss for 

selected wetlands based on the sum of water body area and surrounding grassland area 

between 1992 and 2012, in order to generate various networks under different scenarios of 

habitat loss. 
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Each selected wetland was a site in the migration network, and each site was given 

geographic coordinates, area size, percentage of area loss, and site type (either breeding site, 

stop-over site or wintering site; Table S4.1). During simulations, we also assigned three state 

variables to each site, infectious stage (healthy/infectious), the amount of pathogen in the 

environment (Eti) and site attractiveness (Ati). The Ai refers to the conditions at site i that 

drive the orientation of movements (Taylor et al. 2016). In our model, Ai was calculated as:  

a#
" = ^b-

*
       (4.1) 

where lti is the bird density on site i at time step t. 

Since the spatial-temporal patterns of avian influenza outbreaks matched well with autumn 

migration (Xu et al. 2016; Si et al. 2009), we focused on autumn migration of greater white-

fronted geese. We constructed directional links between sites at higher latitudes to sites at 

lower latitudes if their geographical distance was smaller than the maximum migration 

distance without stopping (Fcapability) observed for greater white-fronted geese in autumn 

migration (Kölzsch et al. 2016). We gave each link a geographic distance (Dij). During 

simulations, we also assigned two state variables to each link, migration resistance (Rij) and 

migration flow (MFtij). These state variables were calculated as (Taylor et al. 2016): 

9#> = ^k×c-d       (4.2) 

ef#>
" =

gd
*%g-

*

:-d
      (4.3) 

where k is a scale parameter. 

Furthermore, we used three scenarios with different levels of site loss: a complete 

migration network with all sites; a migration network with moderate site loss, and migration 

network with severe site loss (see below). 

A total of 10,000 greater white-fronted geese were simulated as agents in our model. Each 

bird had several state variables, including infection stage (either susceptible, infected, or 

recovered), body mass (mt), and infection route (either not infected, infected via direct 

contact or infected via indirect contact). The original body mass of each bird was randomly 

assigned according to a Gaussian distribution N(µ, s2), where µ is the average body mass of 
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the migratory birds, and s the standard deviation (Allen et al. 2006). For simplification, we 

did not include any demographic events such as birth, mortality, or goal-oriented behaviour.  

Each bird accumulates body mass when it is in a site. When the body mass reaches the 

migration threshold (j) the bird migrates. First of all, among all the out-going links whose Dij 

is larger than Dmini from the current site, such a bird selects the one with the largest MFtij as 

target link for migration, where Dmini = Dns/n, Dns is the geographic distance between the 

northernmost site and the southernmost site, and n is the expected numbers of refuelling 

during migration, i.e., the expected number of stop-over sites. If none of the out-going links 

has a large enough Dij, the bird selects one with the largest MFtij. 

Moreover, the site on the other end of the target link is the target site where the bird 

migrates to. Since variation and uncertainty in using stop-over sites are commonly observed 

from satellite telemetry studies (Batbayar et al. 2011; Kölzsch et al. 2016), in our model, each 

bird also has a small probability (p) to randomly select a link from all the out-going links for 

migration. 

After the selection of target link and target site, the bird moves to the target site if Dij of 

the target link is smaller or equal to the flying speed (km/day), otherwise the bird moves 

along the target link towards its target site with the length of flying speed. After movement, 

the body mass is updated as mt=mt-1+a-cd, where a is the body mass accumulation rate 

(g/day) when bird refuelling on a site, c is the body mass consumption rate (g/km); d is the 

distance of its movement (km). 

A bird can be either susceptible, infected, or recovered in our model. A susceptible bird 

can become infected via either direct contact (i.e., contact between susceptible bird and 

infected bird) or indirect contact (i.e., contact between susceptible bird and pathogens in the 

environment). An infected bird recovers when its infected period was longer than the 

infection period (T), after which it could not become infected or susceptible again. We 

assume that a density independent transmission captures transmission among birds (de Jong 

et al. 1995). The infection probability during a time step (rti) for each susceptible bird at site i 

and time step t was calculated as:  

r#
" =

((/-
*0h-

*)

4-
*       (4.4) 



Chapter 4 Habitat Loss Facilitates AIV Dispersal and Prevalence 

 
59 

where b is the transmission rate parameter (day-1), I is the number of infected birds, N the 

number of birds. We used Eti (bird-1) to estimate the amount of viruses per bird unit (Breban 

et al. 2009): 

i#
" = (1 − E)i#

"%& + (1 − E)7#
"%&      (4.5) 

where h is the pathogen decaying rate.  

We calculated the effective reproduction number R0 for each site at each time step. The 

effective R0 was defined as the sum of the average number of new infections caused by direct 

contact from one infected bird, R0direct, and the average number of new infections caused by 

indirect contact, R0indirect (De Rueda et al. 2015):  

9X
B#klm" = no

)-
*

4-
*      (4.6) 

9X
#pB#klm" = no(

&

q
− 1)

)-
*

4-
*      (4.7) 

where S is the number of susceptible birds, and T is the infection period. 

In each network scenario, we initiated the model, with all birds at the northernmost site, 

and 1% of all birds being infected. All sites are healthy sites at the beginning of the 

simulations. In the models, one simulation time step is equivalent to one day. The simulations 

ended after 150 simulation time steps, so that we captured the full prevalence dynamics from 

the entire autumn migration, i.e. from the breeding sites to the wintering sites. For each 

network scenario, the simulation ran over 200 repetitions and outputs were averaged. For 

each time step, bird decisions are illustrated in Figure 4.1. Parameters and variables are 

summarized in Table 4.1 and Table 4.2, respectively. The agent-based model was built in 

NetLogo 6.0.1 (Wilensky 1999).   
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Figure 4.1 Diagram of bird decisions (dashed rectangles) and processes (solid rectangles) within 
a single time step. The left diagram illustrates the decisions and behaviour processes, the right 
diagram illustrates the susceptible-infected-recovered processes.
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Table 4.1 Parameters in the agent-based model, with their abbreviation, definition, value and unit. 

Parameter Definition Value Unit Reference 

N population size 10,0000 individual (Rohani et al. 2009) 

µ body mass average of the migratory population 2075 (2075-3000) g (Dunning and John 2008) 

s standard deviation of body mass average 220 (218-220) g ( Dunning and John 2008) 

j migration threshold 15% - - 

a body mass accumulation rate 38 (22.5-88.0) g day-1 (Madsen and Klaassen 2006) 

c body mass consumption rate 0.5 (0.2-0.5) g km-1 (Madsen and Klaassen 2006) 

s flying speed 486 (475.2-492.5) km day-1 (Kölzsch et al. 2016) 

n expected number of stop-over sites 7 (0-10) - - 

Dns 
geographic distance between the northernmost site 

and the southernmost site 4509.709 km Table S4.1 

p random movement probability 0.001 - - 

Fcapability maximum migration distance without stop 1201.2 km (Kölzsch et al. 2016) 

f percentage of the initial infection 1% - - 

b transmission rate parameter 0.1 (0-1.3) day-1 (Breban et al. 2009) 

h virus decaying rate in environment 0.1 (0.01-0.25) - (Rohani et al. 2009) 

T infection period 7 day (Webster et al. 1978) 

k scale parameter for migration resistance 0.1 - - 
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Table 4.2 Variables in the agent-based model, with their abbreviation, their owner and 
definition. 

Variable Owner Definition 

N site the local number of birds 

E site the amount of virus in the environment 

Ai site site attractiveness 

Dij link geographic distance 

MPij link migration pressure of a link  

m bird body mass 

infection stage bird bird can be either susceptible, infected or recovered 

infection route bird 
bird can be either not infected, infected by direct 

contact or infected by indirect contact 

R0 site sum of R0
direct and R0

indirect 

R0
direct site 

average number of new infections caused by direct 

contact to one infected bird 

R0
indirect site 

average number of new infections caused by contact 

to the virus that was shed by one infected bird 

li site Bird density 

Rij link migration resistance of a link  

p site infection probability to each susceptible individual 

HP site site popularity 

 

At each time step, target links and target sites were recorded into an output file, which 

were used to generated migration networks that were visited by our simulated birds. We 

calculated the frequency for each target site and used the frequency as index of site 

popularity. We calculated site-level network metrics (Banks et al. 2015; Dubé et al. 2011; 

Silk et al. 2017), including weighed in-degree and unweighed in-degree, and calculated 

network-level metrics, including number of sites, number of links, and link density. In 

addition, we also checked whether the networks were scale-free on the basis of the power-law 

degree distribution (Banks et al. 2015). 

In order to study the dynamics of the infection prevalence in our migratory birds, we 

calculated the number of infected birds, the cumulative number of infected birds, the number 

of infected birds via direct contact, and the number of infected birds via indirect contact at 

each time step. We also performed sensitivity analyses on the number of infected birds by 
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varying transmission rate parameter b and the pathogen decaying rate in environment h, 

separately.  

In order to study the pathogen dispersal among sites, we classified a site as healthy site if 

its effective R0<1. A site was classified as infectious site if its effective R0>1. In order to 

explore the infection probability for sites in our migration networks, we constructed 

Generalized Linear Models (GLMs) assuming a binomial distribution, using a logit link 

function. The response variable was the whether a site was classified as uninfected or 

infected, and the predictors were weighed in-degree, unweighed in-degree, and site 

popularity, respectively. All analyses were done in R 2.11.0 (R Development Core Team 

2016). 

Results 

98 wetlands were selected by the logistic regression and were selected as sites for 

constructing the migration networks. Among these sites, except for 47 sites that did not lose 

any area, 4 sites lost a large proportion of their area (30%-50%) and 47 sites lost relatively 

small proportion of their area (0%-30%; Table S4.1). The area loss in the migration networks 

of greater white-fronted geese had a spatial heterogeneous pattern (Figure 4.2), as most of the 

sites with area loss were located in eastern China and Japan, where rapid urbanization and 

economic development occurred since 1992 (Seto 2005). We constructed a migration 

network with moderate site loss by removing sites with 30%-50% area loss, and with severe 

site loss by removing all sites with area loss (Figure 4.2D, E and F; Table 4.3). The number 

of visited sites by migrating birds was slightly lower than the total number of available sites 

in in each network scenario (Table 4.3). Due to extensive site removal, birds migrated over a 

shorter distance (3682 km) in the network with severe site loss, compared with the migration 

distance (4423 km) in the complete network and the network with moderate site loss (Figure 

4.2D, E and F; Table 4.3). 
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Figure 4.2 The migration networks under different scenarios of site loss. The networks in the top 

panels are the complete migration network with all sites, A; the migration network with moderate site 

loss, B; the migration network with severe site loss, C. The networks in the bottom panels are the 

corresponding visited networks D, E, and F. The site colours in the top panels indicate percentage of 

area loss. The site colours in the bottom panels indicate the maximum effective R0. The yellow shaded 

areas represent the breeding sites, while the blue shaded areas represent wintering sites.
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Table 4.3 Description of constructed migration networks, and the visited migration networks. 
CMN: complete migration networks, MMN: migration network with moderate site loss, SMN: 

migration network with severe site loss. 

Description 
Constructed migration networks Visited migration networks 

CMN MMN SMN CMN MMN SMN 

Total number of sites 98 94 47 92 87 42 

Number of breeding sites 4 4 2 2 2 1 

Number of passage sites 67 65 36 63 61 32 

Number of wintering sites 27 25 9 27 24 9 

Number of links 1385 1314 436 417 386 165 

Link density 0.15 0.15 0.20 0.05 0.05 0.10 

Migration distance (km)* 4423 4423 3682 4423 4423 3682  

Percentage of infectious 

sites (i.e. effective R0>1)  
  33% 36% 49% 

* The migration distance is calculated as the geographic distance between the northernmost and the 

southernmost sites (1° in latitude = 111 km). 

In all scenarios, the degree distribution of migration network followed a power-law 

distribution (Kolmogorov-Smirnov test, P>0.05; Figure S4.1). Furthermore, the link density 

increased from 0.05 in the complete network and the network with moderate site loss to 0.1 

in the network with severe site loss, while the percentage of infectious sites increased from 

33% in the complete network to 49% in the network with severe site loss (Table 4.3). 

Overall, the three network scenarios generated similar patterns of infection dynamics in 

birds, with two infection peaks and an extremely low prevalence between peaks (Figure 

4.3A). These infection peaks are temporally consistent with infection peaks that were caused 

via direct contact and indirect contact, and infection peaks are mainly dominated by indirect 

contact (Figure 4.3C and D). Moreover, the infection prevalence from the migration network 

with severe site loss had a faster growth rate, with an earlier and higher infection peak 

compared with that in the other two networks (Figure 4.3A, C and D).  
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Figure 4.3 Simulated infection dynamics in migratory populations. The number of infected birds, 

A; the cumulative number of infected birds, B; the number of infection via direct contact, C; the 

number of infection via indirect contact, D. Green lines: complete migration network; yellow lines: 

migration network with moderate site loss; red lines: migration network with severe site loss. 

Generally, the infection prevalence grew slower, with a delayed and lower infection peak, 

with a decreasing transmission rate parameter, b (Figure 4.4A). The reduction effect on the 

number of infected birds during the first infection peak was relatively linear with a decrease 

in b. However, the reduction effect became less linear during the second peak (Figure 4.4A), 

partly due to the lower number of susceptible birds as many birds became infected during the 

first peak. In contrast, with an increase in the pathogen decaying rate in the environment, h, 

the infection prevalence grew slower, with delayed and lower infection peak (Figure 4.4B). 

The reduction effects were generally linearly related to the change in h in both the first and 

second infection peak. The infection prevalence reduced to zero when no virus could persist 

in the environment (i.e., h=1; Figure 4.4B).  
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Figure 4.4 Sensitivity analyses of the effect of the transmission rate parameter, b (A), and the 
pathogen decaying rate in the environment, h (B), on the number of infected birds. The colours 

represent various levels of b and h. All simulations were performed in the complete migration 

network with all sites.  

Infection probability for sites was strongly correlated with weighed in-degree, unweighed 

in-degree and site popularity (Figure 4.5), i.e. sites that received more connections and more 

birds had higher probability to be infected. Moreover, in the network with severe site loss, 

sites became earlier infectious compared with sites in other networks, especially in terms of 

the relationships with weighed in-degree and unweighed in-degree, respectively (Figure 4.5A 

and B). 
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Figure 4.5 Logistic regression results between infection probability for sites and log-transformed weighed in-degree (A), unweighed in-degree (B), 
and site popularity (C). The grey shaded areas represent the 95% CIs. Green lines: complete migration network; red lines: migration network with severe 
site loss. The comparison among all three scenarios is illustrated in Figure S4.5. 
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Discussion 

We build an agent-based model of bird migration, combined with pathogen transmission and 

migration network to provide insights into the consequences of habitat loss on infection 

prevalence in migratory animals, and long-distance pathogen dispersal. Our simulations 

clearly indicate that migration allows migratory birds to escape from pathogens that persist in 

the environment, thereby temporally reducing the infection prevalence in the migratory 

population. Extensive habitat loss, however, can decrease the migration distance, and 

consequently, migratory birds shifted their overwintering sites northwards. This shift can 

cause a faster growth of pathogen infection after migration. Furthermore, the fewer remaining 

stop-over sites under severe site loss are more likely to become hotspots of infection 

outbreak.  

Migratory birds spent nearly the same amount of time for refuelling on sites during their 

migration in the three migration networks (Figure S4.2), due to the linear dynamic of body 

mass in our model. As birds use stop-over sites for a similar amount of time, their infection 

prevalence may not differ over the three scenarios of site loss (Figure 4.3). The birds in the 

network with severe site loss, however, migrated a shorter total distance (Figure 4.2C and E; 

Table 4.3), due to spatial heterogeneous site loss (Figure 4.2A), and consequently, the birds 

terminated their migration approximately 10 days earlier than birds from other networks 

(Figure S4.3), which facilitates infection growth on their wintering sites (Figure 4.3, Figure 

S4.3). 

Apart from the site loss, reduced migration distance can also be caused by other factors 

such as climate. Migratory waterfowl aggregate along the 0° isotherm for overwintering (Xu 

et al. 2016; Reperant et al. 2010), a strategy that enables them to forage on unfrozen water 

body and preserve energy from migrating longer distances (Reperant et al. 2010). Therefore, 

in warmer winters, migratory birds may terminate their migration at higher latitudes (La 

Sorte and Thompson 2007; Lehikoinen et al. 2013; Jensen et al. 2008), resulting thereby in a 

reduced migration distance that can trigger a faster growth of infection prevalence. 

Large bird aggregations in a network with severe site loss also increased the growth of 

infection prevalence. In the other two networks, birds terminated their migration at two 

separate wintering sites (i.e., site 96 in southern Japan and site 98 in the Yangtze River Basin; 

Figure S4.4), but in the network with severe site loss, birds aggregated in a single site (i.e., 

site 86) at the end of migration. Although this pattern was generated by a simplified 
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migration decision algorithm (Taylor et al. 2016), empirical studies showed that greater 

white-fronted geese that breed in Siberia indeed overwinter in multiple areas, including 

southern Japan and Yangtze River Basin (BirdLife & Nature Serve 2014). Suitable habitats in 

Japan and Yangtze River Basin, however, decreased over the past 20 years (Table S4.1), and 

removal of these sites can result in an intensive aggregation, leading to an earlier and higher 

infection peak (Figure 4.2). 

In our three scenarios, infection prevalence was extremely suppressed during migration 

(Figure 4.2A), which is in line with migration escape (Altizer et al. 2011), which has also 

been observed in other species, including reduced warble fly transmission in reindeer 

Rangifer tarandus, reduced seroprevalence of avian influenza virus in lesser black-backed 

gulls Larus fuscus, and reduced infection prevalence of a protozoan parasite Ophryocystis 

elektroscirrha in monarch butterfly (Altizer et al. 2011; Arriero et al. 2015; Satterfield et al. 

2015). Infection prevalence, however, increased again when the migratory birds aggregated 

at their overwintering sites. It is unlikely that migratory birds can completely get rid of the 

pathogens in our model, because pathogens shed by previous birds can be picked up by birds 

arriving later, a so-called ‘relay effect’ (Gaidet et al. 2010; Prosser et al. 2011). For future 

studies, a stochastic process should be considered for exploring whether pathogen infection 

can be lost in a migratory population, especially during periods of infection suppression. This 

is crucial for understanding pathogen perpetuation of in a migratory population and the 

mechanism of long-distance dispersal (Verhagen et al. 2015).  

Simulated migration networks were scale-free, either with or without site removal. This 

scale-free topology is determined by the pattern of bird migration since the birds always 

migrate from a site, which was linked with previous visited sites to new sites. This pattern of 

link generation in a migration network is similar to that in a network of real-world trade or 

transportation, also called ‘preferential attachment’ (Li et al. 2012; Barthélemy 2011). This 

scale-free topology increases the likelihood of pathogen dispersal (Banks et al. 2015), 

especially when the ‘hub’ sites that contain a large number of links are infected; pathogens 

may not need to be very infectious to infect a large amount of sites due to cascading effect 

(Bigras-Poulin et al. 2007; Banks et al. 2015). Different clades of avian influenza viruses 

from two flyways were traced back to one ancestor virus in the common breeding habitat of 

two migratory species, which is highly connected to numerous habitats (Tian et al. 2015). 

The ‘hub’ sites in a network correspond to that are used by migratory birds arriving from 

various previous sites such as those at junctions of different flyways or common breeding or 
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wintering sites. These sites should receive a high priority when monitoring infection dynamic 

in wild migratory birds for better understanding the global dispersal of pathogens. 

Moreover, our simulations are in line with our expectation that migratory birds use stop-

over sites more intensively under severe site loss, which increases the percentage of infected 

sites and the probability of site infection (Table 4.3, Figure 4.5 and Figure S4.5). Therefore, 

site loss in a migration network favours the dispersal of pathogens. Many empirical studies 

that are trying to understand the dispersal of pathogens over long-distances focused on the 

spatial-temporal correlations and phylogeographic correlations among migratory birds, 

poultry trade, poultry distribution and distribution of infection outbreaks (Si et al. 2009; Tian 

et al. 2015; Gilbert et al. 2014). However, our simulations suggested that habitat loss in a 

migration flyway can affect long-distance pathogen dispersal. Therefore, we call for more 

studies using a network approach to better understand pathogen dispersal. 

In our study, we assumed a constant population size under different levels of habitat loss, 

however, habitat loss can also cause population declines (Berger et al. 2008; Newton 2007; 

Xu et al. 2018). Since pathogen transmission among birds depends on population size, 

especially for density independent transmission, further studies should include the impact of 

changing population sizes. Furthermore, we only focused on suitable habitats of the greater 

white-fronted goose, which has a narrow, long distribution in the East Asian-Australian 

Flyway. Other migratory species, however, have different distributions. For example, the 

Swan goose has a broad, short distribution over the same flyway (BirdLife & Nature Serve 

2014). Therefore, habitat loss, especially with a spatial heterogeneous pattern, will have 

different effects on the configurations of the migration network of other species, changing 

infection prevalence dynamics and pathogen dispersal.
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Appendix to Chapter 4 

Table S4.1 Descriptions of the sites selected for generating networks 

ID Longitude Latitude Water (92) Grass (92) Water (12) Grass (12) Location Type 

1 134.3 69.1 110.2 43.1 120.4 61.9 Russia B 
2 143.1 68.7 291.7 312.8 300.4 300.7 Russia B 
3 143.8 67.7 1359.5 1062.3 1368.6 1441.5 Russia B 
4 153.1 67.5 898.3 363.1 836.7 373.2 Russia B 
5 159.3 66.5 238.6 857.4 238.6 913.1 Russia S 
6 151.1 66.4 612.2 128.0 597.1 132.3 Russia S 
7 156.4 65.9 3.0 165.5 3.0 145.7 Russia S 
8 160.3 65.2 40.4 169.5 40.4 175.2 Russia S 
9 138.7 64.9 52.9 196.1 52.9 415.8 Russia S 
10 152.4 64.7 226.3 236.5 233.8 174.2 Russia S 
11 161.5 64.4 43.4 706.8 43.4 766.7 Russia S 
12 153.9 63.9 104.5 74.1 107.8 71.7 Russia S 
13 149.9 63.4 4.8 80.3 4.8 165.4 Russia S 
14 147.8 63.1 200.9 374.7 203.1 753.6 Russia S 
15 154.0 63.1 2.8 129.5 2.8 162.0 Russia S 
16 152.5 62.5 114.8 100.4 123.3 139.5 Russia S 
17 149.3 62.1 298.3 91.5 294.3 139.5 Russia S 
18 159.8 61.9 160.6 1762.1 160.5 1840.2 Russia S 
19 154.5 61.5 15.9 120.9 15.9 148.5 Russia S 
20 140.4 61.1 423.8 629.1 424.7 641.1 Russia S 
21 149.3 60.5 966.0 2950.1 963.3 3862.5 Russia S 
22 143.4 60.5 16.9 102.4 16.9 131.3 Russia S 
23 145.1 60.2 45.6 104.6 45.6 109.2 Russia S 
24 143.6 59.6 218.4 1275.6 226.4 1346.0 Russia S 
25 160.5 59.5 19.4 61.2 19.4 76.4 Russia S 
26 136.1 58.9 0.6 18.0 0.6 16.6 Russia S 
27 159.4 58.6 33.3 1069.9 33.3 1112.9 Russia S 
28 161.7 57.6 58.9 136.2 58.9 127.5 Russia S 
29 158.7 57.4 53.8 1533.5 53.1 1491.7 Russia S 
30 131.8 57.4 146.1 28.2 146.1 24.9 Russia S 
31 156.4 56.6 248.2 4604.6 244.9 4655.9 Russia S 
32 135.6 56.5 45.1 294.8 45.1 360.7 Russia S 
33 160.9 56.4 399.8 629.3 397.7 584.5 Russia S 
34 130.6 56.0 109.9 61.5 109.9 89.7 Russia S 
35 159.5 55.7 43.2 112.7 43.2 96.2 Russia S 
36 156.9 55.4 5.3 365.7 5.3 359.6 Russia S 
37 159.7 54.9 280.2 268.0 280.2 280.8 Russia S 
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ID Longitude Latitude Water (92) Grass (92) Water (12) Grass (12) Location Type 

38 155.8 54.5 124.3 2486.0 124.3 2590.4 Russia S 
39 127.9 54.3 2340.9 646.2 2408.9 695.9 Russia S 
40 134.2 54.3 54.8 136.1 54.8 59.8 Russia S 
41 132.7 54.0 14.7 92.5 14.7 77.6 Russia S 
42 134.9 53.8 0.5 53.1 0.5 42.8 Russia S 
43 139.9 53.5 565.4 979.1 619.7 1216.1 Russia S 
44 158.1 53.1 93.7 221.3 93.4 236.5 Russia S 
45 136.4 52.8 14.8 915.7 14.7 819.8 Russia S 
46 156.6 52.3 428.2 1535.5 422.9 1588.9 Russia S 
47 140.0 51.8 1221.0 4397.8 1457.6 5155.5 Russia S 
48 136.5 51.8 589.2 2953.7 597.2 2861.1 Russia S 
49 127.9 50.5 447.6 14007.3 458.4 12995.4 Russia S 
50 119.2 50.4 18.5 3455.7 18.5 3523.9 China S 
51 115.8 50.0 1073.0 7833.9 552.1 8040.4 Russia S 
52 129.7 49.5 228.8 7303.7 238.5 7009.2 Russia S 
53 123.7 49.2 2.6 1799.9 2.6 1673.3 China S 
54 135.8 49.2 2891.7 25034.9 3206.1 24557.5 Russia S 
55 114.4 48.6 86.3 430.2 63.2 411.3 Mongolia S 
56 115.5 48.5 1.7 330.1 1.7 325.1 Mongolia S 
57 126.3 48.2 212.3 21725.0 247.9 21275.7 China S 
58 132.7 47.9 395.9 7746.0 472.1 7672.1 China S 
59 118.0 47.6 3968.6 44776.6 3413.3 46352.4 Mongolia S 
60 142.7 47.4 45.6 1.6 45.6 1.0 Russia S 
61 143.0 46.7 403.4 27.5 402.6 28.4 Russia S 
62 131.7 46.0 5412.5 39431.6 5481.1 39660.9 China S 
63 134.7 45.9 9.0 392.9 9.0 579.5 Russia S 
64 141.9 45.2 65.0 19.5 64.3 22.0 Japan W 
65 123.7 44.5 5253.1 173233.3 5839.2 171488.4 China S 
66 128.6 43.7 152.8 3644.4 160.8 4031.6 China W 
67 122.8 43.6 21.2 2134.6 21.2 2094.2 China W 
68 116.7 43.3 244.5 3868.9 245.3 3852.0 China S 
69 132.0 43.3 138.4 349.7 136.1 398.1 Russia S 
70 142.7 43.2 993.1 506.0 996.8 549.2 Japan W 
71 143.5 42.6 54.2 33.5 54.2 34.2 Japan W 
72 130.6 42.5 228.4 1071.9 231.6 1241.7 Russia W 
73 120.7 41.1 24.9 2861.4 23.9 2756.1 China W 
74 122.7 41.0 690.4 4993.9 622.6 4989.0 China W 
75 119.7 40.7 6.3 1198.0 6.3 1201.2 China W 
76 115.7 40.3 61.2 3170.9 45.6 2906.3 China S 

77 125.0 40.1 2530.3 39241.6 2519.5 42828.9 North 
Korea W 

78 119.2 39.8 134.2 2296.1 112.0 2106.4 China W 
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ID Longitude Latitude Water (92) Grass (92) Water (12) Grass (12) Location Type 

79 127.5 39.8 92.5 1254.6 91.4 1345.1 North 
Korea W 

80 117.7 39.1 2700.4 21360.9 2537.7 19341.0 China W 
81 139.9 38.9 4.9 36.0 4.9 34.2 Japan W 
82 140.3 38.2 1322.2 2350.8 1352.8 1335.7 Japan W 
83 118.9 37.9 481.9 1465.2 530.8 1397.4 China W 
84 115.6 37.6 35.9 1894.4 35.9 1725.3 China S 
85 116.1 36.1 185.5 2428.8 211.5 2039.0 China W 

86 127.7 35.9 1285.2 23804.2 1255.4 26494.7 South 
Korea W 

87 136.8 35.7 1098.1 1699.7 1090.9 799.8 Japan W 
88 133.1 35.4 205.3 44.8 204.9 19.2 Japan W 
89 110.6 34.9 61.2 2853.9 90.1 2512.9 China S 
90 135.3 34.7 34.9 286.2 32.0 135.4 Japan S 
91 134.1 34.4 342.7 784.4 322.5 387.6 Japan W 
92 120.2 34.2 252.1 182.2 265.3 149.4 China W 
93 130.7 33.5 315.0 424.2 311.3 311.3 Japan W 
94 114.2 33.0 60.2 62.6 78.1 37.0 China S 
95 118.2 33.0 21414.6 42342.3 20521.7 37730.7 China W 
96 131.3 32.0 73.6 60.4 73.5 46.5 Japan W 
97 112.4 30.4 395.3 28.5 395.7 26.8 China W 
98 112.8 29.3 3827.7 1004.1 3169.1 1418.3 China W 

Water (92), Grass (92), Water (12), Grass (12) are the sizes of water body and grassland in 1992 and 
2012, separately. Location indicates the country where the site located. B, S, W represent for breeding 
site, wintering site and stopover site.
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Figure S4.1 Degree distributions of visited migration networks. Top panels are the degree 
distributions from complete migration networks; middle panels are the degree distributions from 
migration networks with moderate site loss; bottom panels are the degree distributions from migration 
networks with severe site loss. From left to right, panels are the degree distributions of log-
transformed out-degree, log-transformed in-degree, and log-transformed total degree, respectively.
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Figure S4.2 The number of average refueling days during migration. The lines are the average of 
all birds in the same migration network. 

 

 
Figure S4.3 The number of birds on wintering sites. The lines are the sums of birds in all wintering 
sites (blue shaded area in Figure 4.2).
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Figure S4.4 The log-transformed number of birds on each site at every time step. 
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Figure S4.5 Logistic regression results between infection probability for sites and log-transformed weighed in-degree (A), unweighed in-degree (B), 
and site popularity (C). The grey shaded areas represent the 95% CIs. Green lines: complete migration network; red lines: migration network with severe 
site loss
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Abstract 

Due to potential threats for wildlife and human health, dispersal of highly pathogenic avian 

influenza viruses and interactions between the viruses and migratory waterfowl have attracted 

large attention. Swan goose and bar-headed goose are congeneric species with overlapping 

breeding grounds but separated migratory routes. Since outbreaks of highly pathogenic avian 

influenza virus are frequently recorded in bar-headed goose but rarely recorded in swan 

goose, we presume that bar-headed goose has a larger probability of coming into contact with 

the outbreak areas during migration. We therefore compared distances between outbreak 

areas and individual locations of GPS-tracked geese. We found that, in contrast to our 

expectations, swan geese were more likely to come into contact with outbreak areas of highly 

pathogenic avian influenza virus, but had a lower chance of being infected. Moreover, bar-

headed geese were less likely to come into contact with outbreak areas of highly pathogenic 

avian influenza virus but have been infected multiple times. We proposed two possible 

explanations for this pattern: 1) frequent contact and long contact history with domestic 

ducks causes higher levels of innate immunity in swan goose, and/or 2) the migration strategy 

of bar-headed goose compromises immunity, so that bar-headed geese are more vulnerable to 

highly pathogenic avian influenza virus infection.
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Introduction 

Highly pathogenic avian influenza viruses (HPAIVs) have attracted lots of attention due to 

their rapid and wide-ranging dispersal and threats to animals and humans (Verhagen et al. 

2015; WHO 2018). For example, the HPAI H5N1 was first detected in Hong Kong in 1997, 

then surfaced several times in poultry and wild birds in Asian countries, followed by 

subsequent detections in Europe, the Middle East, Africa, and North America (Verhagen et 

al. 2015). The infection of HPAI H5N1 outbreak in Qinghai Lake in 2005 caused the death of 

more than 6000 wild migratory waterfowl, of which more than 90% was bar-headed geese 

Anser indicus (Chen et al. 2005; Liu et al. 2005). Besides, more than 860 human cases of 

HPAI H5N1 infection have been confirmed since 2013, with a nearly 50% mortality. Another 

subtype, HPAI H7N9, has caused more than 1500 human cases with 40% mortality (Kile et 

al. 2017; WHO 2018). Due to these impacts, efforts have been made to understand the 

dispersal of HPAIVs and the interactions between migratory waterfowl hosts and HPAIVs 

(Tian et al. 2015; Verhagen et al. 2015). 

It has been suggested that high density of domestic ducks and aggregations of migratory 

waterfowl delineate the risk areas of HPAIV outbreaks (Gilbert et al. 2012; Cappelle et al. 

2014). Previous studies suggested that HPAIVs originated from domestic ducks, especially in 

environment with high densities and low bio-security when one co-infected with multiple 

subtypes of low pathogenic avian influenza viruses (LPAIVs) (Fearnley 2015; Takekawa et 

al. 2010). Moreover, the domestic ducks are one of the main natural reservoirs of HPAIVs 

(Hill et al. 2012) and their habitat facilitates virus persistence in the environment and 

transmission between hosts (Hénaux and Samuel 2011; Stallknecht et al. 1990; Prosser et al. 

2016). Therefore, areas with high densities of domestic ducks, such as southeast China, are 

considered HPAIV outbreak hotspots (Prosser et al. 2013).  

Furthermore, migratory waterfowl may be infected with HPAIVs from domestic ducks 

when they contact each other (Prosser et al. 2016; Takekawa et al. 2010). Although the direct 

evidence is rare, indirect evidence from LPAIVs outbreaks showed that arrival of migratory 

waterfowl amplifies infection prevalence of local circulating LPAIVs (Verhagen et al. 2015; 

Lisovski et al. 2018). Moreover, since wild migratory waterfowl infected with HPAIVs 

migrate over long distances (Gilbert et al. 2012), migratory waterfowl can disperse HPAIVs 

from one location to another (Verhagen et al. 2015; Altizer et al. 2011). 
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Previous studies about HPAIVs dispersal and interactions between migratory waterfowl 

and HPAIVs have focused on the spatial-temporal correlations between waterfowl migration 

and HPAIV outbreaks (Si et al. 2009; Newman et al. 2009; Verhagen et al. 2014), 

phylogenetic relationships among outbreaks (Xu et al. 2016; Tian et al. 2015), and various 

outbreak drivers (Gilbert et al. 2007; Prosser et al. 2013). Few studies, however, have 

compared HPAIV outbreak patterns in different but genetically related migratory waterfowl 

species, which could improve our understanding of the HPAIVs dispersal, and the 

interactions between migratory waterfowl species and HPAIVs. 

Swan goose Anser cygnoides and bar-headed goose are two congeneric species, and they 

can interbreed producing fertile offspring (Ottenburghs et al. 2016). Both goose species breed 

in Mongolia (Batbayar et al. 2011), with overlapping breeding areas, but separate migration 

routes (Batbayar 2013). Swan goose use the Yalu River Estuary as stopover site, and migrate 

to Poyang Lake in southeast China for overwintering via the East Asian-Australasian Flyway 

(Batbayar et al. 2011), while bar-headed goose that breed in Mongolia use Qinghai Lake as 

stopover site, and migrate to Tibet or India for overwintering via the Central Asian Flyway 

(Takekawa et al. 2017).  

HPAIV outbreaks in swan goose are rarely recorded, neither in passive nor active 

surveillance (Welte and Terán 2004), on the contrary, HPAIV outbreaks in bar-headed goose 

were continuously recorded in 2004-2017 (Chen et al. 2005; Takekawa et al. 2010). In this 

study, we compared HPAIV outbreak patterns between swan goose and bar-headed goose and 

discuss possible mechanisms that result in the difference between their outbreak patterns. Since 

HPAIV outbreaks in migratory waterfowl require contacts with HPAIV outbreaks in domestic 

birds or wild birds, the possible explanation is that bar-headed goose is more likely to contact 

HPAIV outbreaks during migration.  

However, the influences of other facts such as historical exposure to domestic ducks and 

migration strategy are discussed as well, since they might influence immune defense in 

migratory birds, and thereby, influence their vulnerability to HPAIVs.
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Method 

GPS tracking data 

We obtained GPS tracking data of swan goose, bar-headed goose and whooper swan Cygnus 

Cygnus from the United States Geological Survey (USGS) and Department of Earth System 

Science at Tsinghua University in China. The whooper swan population was included in 

order to examine whether HPAIV outbreak patterns are correlated with densities of domestic 

ducks, and cannot be attributed to a species effect. A total of 63 swan geese, 38 bar-headed 

geese and 10 whooper swans were captured and fitted with GPS transmitters in either their 

overwintering area or breeding area (Table 5.1). The weight of transmitters was < 3% of the 

tracked birds’ body mass. The transmitters were programmed to record GPS locations at a 2-

h interval for swan goose and whooper swans and a 4-h interval for bar-headed goose. More 

details about the capture and transmitters are available in Table 5.1 and previous studies (S. 

H. Newman et al. 2009, 2012; Batbayar 2013).
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Table 5.1 Information of satellite telemetry for each population. 

Population Number of 
individual 

Tracking 
duration (days) Capture time Capture location Transmitter Source 

Swan goose 

Anser cygnoides 
18 1211 2006, 2008 

Khaichiin Tsagaan Lake, 

Khorin Tsagaan Lake and 

Khokh Lake, Mongolia 

solar-powered Argos-

GPS platform 

transmitter terminals
1
 

USGS 

Swan goose 

Anser cygnoides 
45 435 July 2015, 2016 Poyang Lake and Wulanpao, China 

GPS-GSM solar-

powered loggers
2
 

Tsinghua 

University 

Whooper swan 

Cygnus cygnus 
10 820 August 2006 

Khorin Tsagaan Nuur and Delger Tsagaan 

Lake, Mongolia 

solar-powered Argos-

GPS platform 

transmitter terminals
1
 

USGS 

Bar-headed goose 

Anser indicus 
38 788 July 2008, 2009 

Terkhiin Tsagaan Lake, Mongolia 

Chilika Lake, east India 

Koonthankulum Bird Sanctuary, south 

India 

solar-powered Argos-

GPS platform 

transmitter terminals
1
 

USGS 

1
PTTs: Microwave Telemetry, Inc., Columbia, MD, USA. 

2
Global Positioning System − Global System for Mobile Communications. The loggers are necked IBIS series, Ecotone Telemetry, Gdynia, Poland and 

necked HQNG series, Hunan Global Messenger Technology Co. Ltd., Xiangtan, China.  
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Estimating migration route 

We used dynamic Brownian Bridge Movement Models (dBBMMs) to estimate utilization 

distributions (UDs) of the tracked populations. The dBBMMs assumes behaviourally 

heterogeneous GPS tracks from animal, and thereby, it estimates UDs with a sliding window 

of GPS locations for detecting behavioural changes (Kranstauber et al. 2012). 

For all individuals, we calculated their UDs at the same spatial extent at a resolution of 10 

km, with sliding window size of 23 locations, a margin of 11 locations and a location error of 

23 m (Palm et al. 2015). We set the time step at 8 for swan goose and whooper swan and at 4 

for bar-headed goose, due to different GPS recording intervals. 

Since the tracking duration varied among individuals, we weighed their individual UDs, 

multiplying all raster values by elapse of their tracking days, separately. Furthermore, the 

population level UDs were the sum of weighed individual UDs. We generated 90% 

cumulative probability contours to represent their main sites, includes breeding areas, 

stopover sites and overwintering areas, and used 99% cumulative probability contours to 

represent the migration routes (Palm et al. 2015). 

Apart from available GPS data from a tracked whooper swan  population that migrates 

between Mongolia and South Korea (with high poultry densities), data from another whooper 

swan population that migrates between Russia and Japan (with low poultry densities) were 

available (Shimada et al. 2014). We extracted coordinates of main sites (i.e., wintering sites, 

stopover sites and breeding sites) of this latter whooper swan population via geo-referencing, 

and created buffer zones around each of these geo-referenced sites with a radius of 32.5 km, 

i.e., the maximum foraging distance of waterfowl (Johnson et al. 2014). 

Poultry density  

To evaluate the differences in contact probability with domestic ducks among migratory 

populations, we summarized densities of domestic ducks from each raster cell in the main 

sites and in migration routes. The differences in poultry densities between different migratory 

populations were tested with Bonferroni corrected post- hoc at the significance level of 

a=0.05. We obtained densities of domestic ducks from the Livestock Geo-Wiki 

(https://livestock.geo-wiki.org). 
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HPAIV outbreaks 

We obtained confirmed HPAIV outbreaks in 2004-2017 in Asia from EMPRES-i Global 

Animal Disease Information System (Welte and Terán 2004). We assumed an outbreak 

window of 30 days  (i.e., the outbreak observation date is the median date), during which the 

virus can be transmitted to wild migratory birds that visiting the range of outbreaks (Si et al. 

2009). Furthermore, we extracted GPS locations of tracked individuals during each outbreak 

window and examined the distributions of distances between individual locations and HPAIV 

outbreaks. The differences among the empirical cumulative distribution of these distances 

were tested with a Kolmogorov-Smirnov test at the significance level of a=0.05. 

We ran all analysis in R 3.4.3 (R Development Core Team 2016) and QGIS 2.18 (QGIS 

Development Team 2015). 

Ethics statements 

This study was carried out in accordance with the recommendations of the Ornithological 

Council ‘Guidelines to the Use of Wild Birds in Research’. Transmitter weights were less 

than 3% of the body mass of animals, as recommended by the ornithological council (Gaunt 

et al. 1997). Capture permits were obtained from the relevant government authority in India, 

China and Mongolia. Procedures for capture, handling, and marking were approved by a U.S. 

Geological Survey Animal Care and Use Committee and the University of Maryland 

Baltimore County Institutional ACUC (Protocol EE070200710), by the Jiangxi Provincial 

Forestry Bureau (reference number: Ganlinban201514 and 201570) and by the Animal ethics 

committee at Tsinghua University (reference number: IACUC15-SYL1). 

Results  

Overall, our estimated main sites and migration routes for swan goose and whooper swan fell 

into the spatial extent of East Asian-Australasian Flyway, and the main sites and migration 

route for bar-headed goose fell into the Central Asian Flyway (Figure 5.1) (Palm et al. 2015).  
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Figure 5.1 Estimated main sites and migration corridors of bar-headed goose, swan goose and 
whooper swan. The black shade represents the density of domestic ducks and geese. Black star 

represents important site for the migratory goose, including Qinghai Lake (QHL), Yalu River Estuary 

(YLRE), Poyang Lake (PYL), and Lhasa region (LS). Orange circle represents for HPAIVS outbreaks 

in bar-headed goose. Blue circle represents for HPAIVS outbreaks in whooper swan. Red dots are the 

confirmed HPAIVs outbreaks in wild birds and domestic birds. 

The two swan goose populations (n=18 and n=45) both bred in northeast Mongolia, used 

Yalu River Estuary (YLRE) at the China-North Korea border as a stopover site and 

overwintered in Poyang Lake (PYL; Figure 5.1A and B). The bar-headed goose population 

bred at northwest Mongolia and migrated over the Gobi Desert and Qinghai-Tibetan Plateau 

(Figure 5.1A and B). 8 of these 36 bar-headed geese crossed the Himalayas and overwintered 
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in India, whereas the rest geese overwintered in Lhasa region (LS), China (Figure 5.1A and 

B). The tracked whooper swan population bred at the Mongolia-Russia border and migrated 

to southern South Korea for overwintering, whereas the geo-referenced sites for the other 

whooper swan population located in northeast Russia and south Japan (Figure 5.1C and D).  

There were no HPAIV outbreaks in swan goose in the EMPRES-i database in 2004-2017, 

but there were 11 HPAIV outbreaks in bar-headed goose and 42 HPAIV outbreaks in 

whooper swan (Table 5.2). The HPAIV outbreaks in bar-headed goose occurred in Mongolia, 

Qinghai Lake region and Lhasa regions, while HPAIV outbreaks in whooper swan occurred 

mainly in Japan (Figure 5.1A and C). 

Table 5.2 Number of HPAIVs outbreaks in swan goose, bar-headed goose and whooper swan, 
and number of outbreaks in their migration corridors. 

Population Number of outbreaks1 
Number of outbreaks in 

migration corridor2 

Swan goose (USGS) 

0 

20 

Swan goose (Tsinghua) 20 

Bar-headed goose 11 48 

Whooper swan 0 67 

Whooper swan (Russia-Japan) 37 44 

1
 outbreaks in swan goose, bar-headed goose or whooper swan.  

2 
outbreaks in wild birds and poultry birds. 

Consistently, there were less HPAIV outbreaks, i.e., outbreaks in domestic and wild birds, 

in swan goose migration route compared with that of the other species. A total of only 20 

HPAIV outbreaks occurred in the migration route of swan goose, whereas 48 outbreaks 

occurred in the migration route of bar-headed goose (Table 5.2). Furthermore, a total of 67 

outbreaks occurred in the main sites of the tracked whooper Swan, and 44 outbreaks occurred 

in the geo-referenced sites of whooper swan in Russia-Japan (Table 5.2).  

During these outbreaks, swan geese were much closer to the outbreak locations than bar-

headed geese and whooper swans, especially within a radius of 500 km (Figure 5.2). 

Furthermore, the densities of domestic ducks in both main sites and migration routes of swan 

goose were higher than those for bar-headed goose (Figure 5.3). Moreover, the densities of 

domestic ducks in the main sites (i.e., 90% cumulative probability contours) of the tracked 
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whooper swan population was higher than that for the other whooper swan population in 

Russia-Japan (Figure 5.4). 

 
Figure 5.2 Cumulative density distribution of geographic distances between migratory geese 
and HPAIVs outbreaks. 

 

 
Figure 5.3 Differences among densities of domestic ducks and geese in stopover sites (A) and 
migration corridors (B) of swan goose (SG) and bar-headed goose (BHG). Letters indicate 

significant different groups on the basis of a Bonferroni corrected post hoc test. 
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Figure 5.4 Differences among densities of poultry ducks and geese in stopover sites, migration 
corridors, and geo-referenced sites of whooper swan. Letters indicate significant different groups 

on the basis of a Bonferroni corrected post hoc test. 

Discussion 

By comparing HPAIV outbreak patterns between two congeneric species, i.e., swan goose 

and bar-headed goose, our results showed (1) there are no recorded HPAIV outbreaks in 

swan goose, but multiple recorded HPAIV outbreaks in bar-headed goose and whooper swan 

populations; (2) during HPAIV outbreaks, swan geese were closer to outbreaks than bar-

headed goose and whooper swan; (3) densities of domestic ducks in and around the main 

sites and migration routes of swan goose were significantly higher than those for bar-headed 

goose and whooper swan. 

Although most of the HPAIV outbreaks fell in our estimated migration routes, a few 

outbreaks were located outside these routes (Figure 5.1A and C). This probably resulted from 

a limited capturing and tracking effort which does not cover all populations of each species. 

For example, there is another bar-headed goose population that breed at Qinghai Lake region 

and overwinters in Lhasa, China (Prosser et al. 2009; Namgail et al. 2017). Including more 

tracking data can definitely contribute to more accurate estimations of migration route and to 

better understand the dispersal of HPAIVs and the interactions between migratory waterfowl 

host and HPAIVs. Nevertheless, our estimated migration routes cover the well-known 
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overwintering sites and stopover sites such as Qinghai Lake, Lhasa region, Poyang Lake and 

Yalu River Estuary and majority of the outbreaks of these migratory goose species (Figure 

5.1). 

During the HPAIV outbreaks, swan geese were much closer to the outbreak locations 

(Figure 5.2), and hence it can be suggested that swan geese were more likely to contact 

HPAIV infected birds, and be infected with HPAIVs during migration than the other species. 

This result is in contrast to our presumption that bar-headed goose had a closer and more 

contacts with HPAIV outbreaks. However, the difference in HPAIV outbreak patterns 

between swan goose and bar-headed goose might be explained by differences in their contact 

histories with domestic ducks and differences in migration strategies.  

Firstly, frequent contacts with domestic ducks might trigger a higher level of innate 

immunity in swan goose. Previous study revealed that migratory birds have large innately 

immunological organs compared with resident birds, probably, due to their frequent 

exposures to diverse pathogens along migration routes. We found that the densities of 

domestic ducks are significantly higher on the East Asian-Australasian Flyway (Figure 5.1 

and Figure 5.3), especially for the Poyang Lake region where approximately 14 million 

domestic ducks were produced every year (Cappelle et al. 2014), and the ratio of domestic 

ducks to wild birds is approximately 5:1 (Takekawa et al. 2010). It suggests that the contact 

probability between swan geese and domestic ducks, and the transmission risk for avian 

influenza viruses are substantially high (Wang et al. 2013; Cappelle et al. 2014).  

Besides the densities of only domestic ducks, we also compared the distribution of swan 

geese with the densities of domestic birds (i.e., domestic ducks and chickens), and the results 

again showed that swan geese had a larger contact probability with these domestic birds 

(Figure S5.1). Moreover, the whooper swan population that had a higher probability of 

coming into contact with domestic ducks had no HPAIV outbreak records, whereas the 

whooper swan population that had a lower probability of coming into contact with domestic 

ducks was associated with more HPAIV outbreaks (Table 5.2, Figure 5.4). This is consistent 

with the difference between swan goose and bar-headed goose, namely that wild birds with a 

higher probability to contact domestic birds had fewer HPAIV outbreaks, which might result 

from a higher level of innate immunity, induced by frequent contacts between domestic and 

wild birds. 
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Furthermore, swan geese have a longer contact history with domestic ducks in the East 

Asian-Australasian Flyway, which may result in their higher level of innate immunity as 

well. Documentation of raising domestic ducks can even be found in Qi Min Yao Shu, which 

was written in 544 A.D. (Darwin 1859). Moreover, in the Ming dynasty (1368-1644 A.D.), 

domestic ducks were also used for pest control in Chinese rice paddies (Niu 2016). This long 

contact history might be a selective driver for a higher level of innate immunity in swan 

goose, since exposure to diverse pathogens during migration may result in larger immune 

organs in birds (Møller and Erritzøe 1998). Hence, swan goose has fewer HPAIVs outbreaks 

than bar-headed goose (Table 5.2). 

Second, the migration strategy might affect immune defences of bar-headed goose. 

Migration is the most energetically costly activity in birds’ life history, which even can lead 

to 10 times higher metabolic rate than the basal rate (Battley and Piersma 2005). This 

energetic cost, however, has to be balanced against other expenses such as immunity (van 

Dijk and Matson 2016; Altizer et al. 2011). For example, migratory barn swallows Hirundo 

rustica (Møller and Erritzøe 1998), thrushes Catharus ustulatus, C. fuscescens and 

Hylocichla mustelina were all immunocompromised compared with non-migratory 

conspecifics (Owen and Moore 2006).  

Our tracked bar-headed geese migrated 3000km-5000km, and some of the individuals 

even crossed the Himalayas (Figure 5.1A and B). This long-distance and high-altitude 

migration strategy is energetically challenging (Hawkes et al. 2011). Although another bar-

headed goose population migrates over shorter distances between Qinghai Lake and Lhasa 

region, i.e., approximately 850km, the population has to allocate more energy for 

withstanding the harsh climate in Tibet, China (Takekawa et al. 2017), which may also be 

energetically costly. This intensive energetic challenge might suppress immune defenses (van 

Dijk and Matson 2016), and the bar-headed goose becomes more vulnerable to HPAIVs 

infection during migration. 

This migration induced immunosuppression in bar-headed goose may be supported by 

experimental infection studies. Although bar-headed goose is a well-known victim of 

HPAIVs outbreak in wild (Chen et al. 2005; Takekawa et al. 2010), only 2 of 8 bar-headed 

geese died in experimental HPAI H5N1 infection (Nemeth et al. 2013; Brown et al. 2008). 

This mortality rate (25%) is lower compared with other waterfowl species such as ruddy 

shelduck Tadorna ferruginea (100%, n=3), cackling goose Branta hutchinsii (75%, n=4), 
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black swan Cygnus atratus (100%, n=5), trumpeter swan Cygnus buccinator (100%, n=5), 

whooper swan (100%, n=4) and mute swan Cygnus olor (100%, n=5) (Nemeth et al. 2013; 

Brown et al. 2008), indicating that bar-headed goose is less vulnerable to HPAI H5N1 

infection compared to other waterfowl species. Hence, its high mortality in the wild can be 

due to migration induced immunosuppression.  

This study largely depends on accuracy and representativeness of HPAIV outbreak 

records in the EMPRES-i database (Welte and Terán 2004). After the detection of HPAI 

H5N1 outbreak in wild migratory birds at Qinghai Lake in 2005 (Liu et al. 2005; Chen et al. 

2005), field surveillance and monitoring efforts have been improved in both the Central 

Asian Flyway and the East Asian-Australasian Flyway (Yong et al. 2015). Furthermore, field 

surveillance and monitoring are more easily carried out in the East Asian-Australasian 

Flyway than that in the Central Asian Flyway. Moreover, the EMPRES-i database 

incorporated outbreak reports from various official sources, such as country or regional 

projects, field missions, Non-Governmental Organizations, and unofficial sources such as in-

country assistance projects, and personal contacts with NGOs and other institutions (Welte 

and Terán 2004). With all these efforts, missing HPAIV events will still exist, but the 

outbreak records in the EMPRES-i database is expected to reflect general differences in 

outbreak patterns between swan goose and bar-headed goose. 

In general, we found an unexpected HPAIVs outbreak pattern between swan goose and bar-

headed goose, suggesting that, although swan geese were more likely to contact HPAIV 

outbreaks during migration, they had a lower chance of being infected with HPAIVs. 

Whereas bar-headed geese were less likely to contact HPAIVs outbreaks during migration, 

but had multiple HPAIV outbreaks. We proposed two possible explanations for this 

distinctive pattern: 1) frequent contact and long contact history with domestic ducks might 

cause greater levels of innate immunity in swan goose; 2) migration strategy of bar-headed 

goose compromises immunity, and thereby bar-headed goose is more vulnerable to HPAIVs 

infection. 

We are calling for comparative studies that examine innate immunological differences 

among migratory waterfowl species, testing whether the densities of domestic ducks that they 

encountered during migration stimulate the selection of higher level of innate immune 

reactions against HPAIVs. Furthermore, we are also calling for physiological studies that 

examine variations in immunological conditions of migratory waterfowl before and during 
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their migration, testing whether migration strategies result in different levels of suppression 

of immune defences. These efforts can be helpful for understanding the HPAIV outbreak 

pattern between swan goose and bar-headed goose, and thereby, also improve our 

understanding of pathogen dispersal via interactions between migratory host and pathogen.
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Appendix to Chapter 5 

 
Figure S5.1 Differences among densities of domestic ducks and chickens in stopover sites (A) 

and migration corridors (B) of swan goose (SG) and bar-headed goose (BHG). Letters indicate 

significant different groups on the basis of a Bonferroni corrected post hoc test.
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Migratory waterfowl disperse highly pathogenic avian influenza viruses 

Highly pathogenic avian influenza viruses (HPAIVs) H5N1 were first detected in wild birds 

in 2004 in China, and these viruses rapidly dispersed over the globe (Verhagen et al. 2015). 

The time and direction of the dispersal is correlated with bird migration (Verhagen et al. 

2015; Xu et al. 2016; Si et al. 2009; Newman et al. 2012). For example, some migratory duck 

species such as mallard can asymptomatically be infected with HPAIVs during migration 

(Gaidet et al. 2010; Jeong et al. 2014; Chen et al. 2006; Kou et al. 2005; Kilpatrick et al. 

2006; Keawcharoen et al. 2008; Olsen et al. 2006), and it has been suggested that some duck 

species can carry HPAIVs over long distances. However, HPAIVs infection commonly 

causes severe symptoms in migratory goose species, resulting in negative effects on their 

migration capability and even increase mortality rates (Chen et al. 2005; Takekawa et al. 

2010). Therefore, it has been suggested that long-distance dispersal of HPAIVs by migratory 

goose species largely depends on the relay effect, which means that successive infection of 

migratory birds during migration leads to long-distance dispersal, rather than direct dispersal 

(Gaidet et al. 2010). 

However, some migratory goose species might be more resistant to HPAIVs infection, and 

thereby, possibly be able to contribute to long-distance HPAIVs dispersal directly (Chapter 

5). The asymptomatic infection of mallard to HPAIVs may be the result of co-evolution 

between HPAIVs and mallard (Hill and Runstadler 2016). Similar co-evolution might occur 

between HPAIVs and migratory goose species as well, if migratory goose species have a long 

contact history and/or frequent contact with domestic birds, which are the origin of HPAIVs 

(Takekawa et al. 2010). The co-evolution may lead to higher levels of innate immunity, 

which results in a mild disease in migratory geese (Webster et al. 1992; Brunham 1993; 

Møller and Erritzøe 1998). 

Co-evolution is frequently observed in host-pathogen systems. A well-known example is 

the European rabbit–myxoma virus system, where the rabbits built up resistance to the lethal 

infection of the myxoma virus (Fenner and Fantini 1999). More examples have been 

described in other host systems such as bacteria (Weitz et al. 2005; Koskella and Brockhurst 

2014), plants (Dodds and Rathjen 2010; Jousimo et al. 2014), invertebrates (Ebert 2008; 

Morran et al. 2011), and vertebrates (Kerr 2012). Therefore, I propose that a long contact 

history and higher contact frequency with HPAIVs can result in higher levels of immunity in 

migratory geese (Figure 6.1). Future studies that examine goose immunity can bring more 
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insights into the interactions between migratory waterfowl and HPAIVs, and mechanisms of 

HPAIVs dispersal. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 An illustration of the effect that long contact history and higher contact frequency 
with HPAIVs can lead to higher levels of innate immunity. 

Migratory waterfowl disperse low pathogenic avian influenza viruses 

Migratory waterfowl can disperse low pathogenic avian influenza viruses (LPAIVs) during 

their seasonal migration (Kleijn et al. 2010; Lisovski et al. 2018; Olsen et al. 2006), but the 

roles of ducks and geese may differ over seasons. Since infection prevalence peaks after 

breeding season in migratory duck species, and gradually decreases during autumn migration, 

ducks are likely to be responsible for southward dispersal of LPAIVs (Latorre-Margalef et al. 

2014). However, migratory goose species develop their infection prevalence of LPAIVs on 

wintering sites, and the infection peaks before spring migration, so that migratory goose 

species probably facilitate northward dispersal (Y. Xu et al. 2016; Kleijn et al. 2010) 

(Chapter 2; Figure 6.2). It has been suggested that their different behaviours such as 

defecating in water or on land, and dependence on open water, contribute to their seasonal 

differences in dispersing LPAIVs (Kleijn et al. 2010), although these suggestions have rarely 

been investigated. Thus, duck and goose migration together accomplish the north-south 

dispersal of avian influenza viruses (AIVs). 
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Figure 6.2 Diagram for generally summarizing the processes that can increase (red text and 
lines) or decrease (blue text and lines). The ovals are breeding site and wintering sites. The 

polygons are stopover sites.  

Moreover, it is well-known that AIVs can persist in the environment at breeding sites 

(Stallknecht et al. 1990; Brown et al. 2009) where migratory waterfowl from different 

migration corridors can  mix (Batbayar 2013; Ely et al. 2013). However, goose populations 

cannot preserve LPAIVs infection over the breeding season (Ely et al. 2013; Kleijn et al. 

2010; Yin et al. 2017) (Figure 6.2). It is not clear whether this is related to the environmental 

conditions, physiological condition, and/or nesting preference (colonial or dispersed nesting). 

Future studies for examining AIVs persistence in migratory geese, especially during their 

breeding season, are required to better understand the mechanisms for global LPAIVs 

dispersal. 

Although migration allows hosts to escape contaminated habitat sites and thereby reduce 

infection prevalence in the population, spring and autumn migration may have different 

efficiencies in escaping due to different migration patterns. Satellite telemetry revealed that 

migratory geese usually migrate over a wide front (i.e., using parallel stopover sites) in spring 

migration, probably because they need to wait for plant development in spring (Si et al. 2015) 

and this broad migration front reduces competition among each other. These migratory geese 
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consequently stay longer on their stopover sites, and thereby have higher infection risks 

(Figure 6.2). During autumn migration, on the other hand, migratory geese usually migrate 

over a narrow front (i.e., using serial stopover sites), probably because there is no food 

limitation along their migration route (Kölzsch et al. 2016), and they need to arrive at their 

wintering sites as soon as possible due to decreasing temperatures. The migratory geese 

thereby stay relative short on their stopover sites (Kölzsch et al. 2016), and have more 

opportunities to escape habitat sites contaminated with AIVs, leading to a lower infection 

risk. Therefore, autumn migration might be more efficient in reducing infection risk 

compared to spring migration. 

Although migration allows a population to reduce its infection risk via escaping, it seems 

unlikely that a migratory population can lose AIVs infection completely during migration 

because resting individuals can be infected with the viruses from the environment (Bengtsson 

et al. 2016), especially for a population with low migration synchrony (Chapter 3; Figure 

6.2). In my simulations, the brought-in viruses, which were introduced by migratory 

waterfowl, cause new infection outbreaks in the arriving migratory population (Chapter 4). 

However, empirical studies suggested that brought-in viruses act as materials for gene flow 

rather than causing large outbreaks (Hill et al. 2012). Hence, the frequently observed increase 

in infection prevalence associated with arrival of migratory birds is more likely caused by an 

amplified infection of locally circulating viruses (Newman et al. 2009; Verhagen et al. 2014). 

Future studies focusing on whether the brought-in viruses can cause new infection outbreak, 

can provide a new angle to examine the roles of bird migration in dispersing of AIVs and 

causing infection outbreaks. 

Network analysis as a promising approach  

My simulations showed that the configuration of a migration network affects infection 

dynamics in migratory populations (Chapter 2; Figure 6.2), and habitat loss facilitates the 

AIVs dispersal (Chapter 3; Figure 6.2). Moreover, previous modelling and empirical studies 

showed that, if an infection decreases migration capacity or increases mortality, migration 

can reduce the infection prevalence by separating healthy from infected individuals in the 

population (Bradley and Altizer 2005; Satterfield et al. 2015), hence, a shortened migration 

distance can lead to a higher infection prevalence after migration (Figure 6.2), as infected and 

healthy individuals have less opportunities to be separated (Bowlin et al. 2010; Zhao et al. 

2017; Yamaguchi et al. 2008). These findings indicate that having a holistic perspective of 
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migration, rather than focusing on single sites, can be more relevant to capture AIVs 

dispersal and infection dynamics.  

Furthermore, whether birds visit a habitat site depends on various factors such as distance 

between sites, wind speed, wind direction and food availability at sites (Newton 2007; 

Rappole 2013). It is necessary to integrate these effects for understanding why and why not 

birds visit a particular stopover site, and thereby obtain a better understanding of AIVs 

dispersal and ultimately be able to predict AIVs dispersal, especially under influences of 

habitat availability changes. 

Network analysis is a promising framework, and it is able to integrate these factors for 

studying AIVs dispersal under influence of host migration (Newman 2003; Bauer and Hoye 

2014). The impacts of the mentioned factors can be analysed by calculating, e.g., weighed 

network metrics (Newman 2003; Bauer and Hoye 2014). For example, distance between 

sites, wind speed and wind direction can be integrated through calculating link weights, while 

food availability on sites can be integrated by calculating site weights. The various migration 

patterns may be represented by weighed network metrics. For instance, migratory populations 

in autumn tend to use a shorter migration route (Kölzsch et al. 2016). This preference can be 

expressed as a weighed path length between breeding and wintering sites (Silk et al. 2017). 

The preference for a short migration route can be simulated by ranking the weighed shortest 

path lengths. The various path lengths can be used as elements in the decision-making 

process by analysing their selections on some stopover sites over others (e.g., via pattern-

oriented modelling). This approach can contribute to a better understanding of empirical 

observed migration pattern, and hence, we can study bird aggregations, the residence time at 

stopover sites, and the probability and spatial pattern of AIVs dispersal. 

Improving field surveillance 

AIVs can travel around the world by hitchhiking on migratory birds. Their wide-range 

dispersal seems nearly impossible to be prevented from happening. Thereby, a field 

surveillance plan that captures infection dynamics in wild birds is necessary for monitoring 

the emerging of HPAIVs outbreaks and mitigating these outbreaks in time.  

The goal of gaining better surveillance on infection dynamics of AIVs in wild birds can be 

achieved by better integration of host and virus sampling efforts (Hill and Runstadler 2016). 

Traditional field surveillance is mainly relying on passive surveillance that examines samples 
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from dead birds, and active surveillance that examines samples from live birds for research 

purposes. Since some migratory goose species may be ‘silent’ (i.e., resistant) for HPAIVs 

infections, traditional field surveillance plans may not be able to capture a representative 

HPAIVs infection dynamic in wild migratory waterfowl. Furthermore, AIVs can persist in 

water for a long period of time (Brown et al. 2007, 2009; Shoham et al. 2012), and the 

amount of AIVs in the environment can be even higher than that in faeces (Leung et al. 

2007). These features lead to a potential for AIV outbreaks via environmental transmission. 

However, traditional field surveillance does not consider the potential contribution from 

AIVs in the environment.  

Therefore, I am advocating more efforts for active surveillance that covers not only the 

well-known, routinely sampled waterfowl species such as bar-headed goose, but also species 

which are less often found dead due to HPAIVs infection such as swan goose. This 

surveillance should take place in both wintering season and spring migration because geese 

and ducks are likely to be responsible for HPAIVs dispersal in different seasons. Moreover, I 

am also advocating more efforts for monitoring virus dynamics in the environment, such as 

water bodies at stopover sites. These efforts can compensate for the knowledge gaps of 

traditional plan which based on sampling live birds and carcasses. 

From geese to butterflies 

My findings broaden our knowledge of the interactions between migratory waterfowl hosts 

and AIVs, especially of the mechanisms for migration induced AIVs dispersal. Although I 

studied the interactions between host migration and infectious pathogens in a goose-AIVs 

system, my findings can be generalized to other host-pathogen systems as well. 

Every year, billions of animals migrate over large areas pursuing better foraging 

opportunities, improved safety, and/or higher reproductive output (Bauer and Hoye 2014). 

Potentially, migratory animals, not only birds but also insects, fishes, and mammals transport 

parasites and pathogens from one location to another (Bauer and Hoye 2014; Altizer et al. 

2011). For example, songbird migration contributed to the northward dispersal of tick borne 

Lyme disease and the dispersal of West Nile virus in North America (Leighton et al. 2012; 

Rappole et al. 2000). Wildebeest Connochaetes taurinus migration contributed to the 

dispersal of rinderpest, brucellosis and foot-and-mouth disease in the Serengeti (Holdo et al. 

2009; Sinclair and Norton-Griffiths 1981; Holdo et al. 2009). And green sea turtles Chelonia 

mydas disperse tumour-forming herpes virus and spirorchid cardiovascular flukes via their 
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seasonal migration (Luschi et al. 2003; Meylanet al. 1990; Ene et al. 2005; Raidal et al. 

1998). 

My findings can be generally applied to the interaction between monarch butterflies 

Danaus plexippus and a protozoan parasite Ophryocystis elektroscirrha. The spores of 

Ophryocystis elektroscirrha can accumulate on milkweed, which is the main food for 

monarch butterflies. In southern Florida, the milkweed pants are available year-around, and 

the monarch butterflies are non-migratory (Altizer 2001). A previous study has showed that 

the infection prevalence of Ophryocystis elektroscirrha in the resident monarch butterfly 

population is much higher compared with that in a migratory population due to migratory 

escape and culling (Satterfield et al. 2015). Moreover, the monarch butterflies in eastern 

North America seasonally migrate to Mexico, generally showing a serial pattern, the monarch 

butterflies in western North America, on the other hand, seasonally migrate to California, 

over a broad front with a parallel pattern (Altizer et al. 2011). Since Ophryocystis 

elektroscirrha can persist in the environment (Satterfield et al. 2015; Altizer et al. 2011), I 

expect that the eastern North America population that follows a serial migration pattern may 

have more opportunities to escape from Ophryocystis elektroscirrha compared with the 

western North America population that follows a parallel pattern, although this expectation 

needs future empirical studies to examine. 

Finally, as Leonardo da Vinci (1452-1519) once said: Realize that everything connects to 

everything else. The beauty of ecology is built on understanding the complex interactions 

among biotic and abiotic factors in the world. The study of how goose migration disperses 

pathogens over long-distances, fundamentally shows that different locations and the 

organisms that live in these locations are connected. 
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Summary 

Millions of birds undertake seasonal migration between breeding and wintering sites. Bird 

migration causes various ecological effects such as affecting local predator-prey relationships 

and transporting pathogens, seeds and energy. Among these effects, pathogen dispersal has 

caused a large debate, including how migratory birds disperse pathogens, and how migratory 

birds interact with pathogens during their migration. A better understanding of pathogen 

dispersal is urgently needed because it is relevant to both wildlife and human health. 

Therefore, empirical studies such as spatial-temporal correlations between infection 

outbreaks and migration trajectories, genetic studies between outbreaks and infection 

dynamics in migratory populations, and theoretical modelling have been carried out. 

Although previous studies suggested that bird migration can disperse pathogens along 

migration route of birds, however, bird migration may also reduce infection prevalence and 

limit pathogen dispersal by so-called ‘migratory escape’ and ‘migratory culling’. Therefore, 

migration can affect pathogen dispersal and infection prevalence in a population, but its 

effects may vary among host-pathogen systems. 

Most migratory bird species use stopover sites where they refuel and rest during their 

migration. The movement of birds connects these stopover sites, together with their breeding 

and wintering sites, in a migration network. Some stopover sites are selected over others, and 

this selection varies between species, and over time and space within a certain species, so 

configurations of migration network change, and can be characterised by ‘serial stopover 

sites’ (when the birds are migrating over a narrow front) or ‘parallel stopover sites’ (when 

migration occurs over a broad front). These patterns have been clearly observed by previous 

studies through satellite telemetry tracking.  

Apart from various spatial configurations, migratory birds vary their timing of departure 

as well, and this synchrony in departure can vary from weeks to months. The combinations of 

the various patterns in network configuration and departure synchrony influence aggregation 

size, resting duration at stopover sites, and contact probabilities among individuals. However, 

the effects of network configuration and migration synchrony on pathogen dispersal and 

infection dynamic has not been fully examined yet. 

Furthermore, although stopover sites are crucial for migratory birds to complete their 

migration, the availability of suitable stopover sites in the East Asian-Australasian Flyway 
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decreased, especially in China, where 30% of natural wetlands were lost over the last two 

decades. In reaction to this wetland loss, the migration network becomes restricted to fewer 

remaining sites, and bird abundance on the remaining sites correspondingly increases. This 

intensive use of remaining sites may increase the probability of site infection and infection 

prevalence in the population. However, the impact of wetland loss on infection dynamics has 

not been investigated before. 

Network analysis is a promising tool to analyse pathogen dispersal by migratory birds. For 

example, it was used to study the dispersal of severe acute respiratory syndrome, and foot and 

mouth disease. Real world networks such as trade networks and transport networks, are often 

recognized as scale-free networks. Such networks are very efficient in dispersing pathogens 

over the network. When extensive habitat loss occurs, however, the scale-free topology could 

disappear, which can make pathogen dispersal among sites less effective. Alternatively, the 

infection prevalence in migratory birds might be increased due to larger aggregations at 

remaining sites. However, the topologies of bird migration networks have rarely been 

examined in empirical studies or in theoretical work, although it could provide a better 

understanding of the variables that influence pathogen dispersal.  

In this study, I focused on avian influenza viruses (AIVs), an influenza virus that is 

adapted to infect birds, especially waterfowl, such as many duck, goose and swan species. It 

infects mainly birds, but in some cases, it can also infect mammals such as swine, horses, 

whales, bats and humans. Avian influenza viruses can be classified into two groups: low 

pathogenic avian influenza viruses (LPAIVs) and highly pathogenic avian influenza viruses 

(HPAIVs), based on the severity of the illness that they cause in chickens. Infection of 

LPAIVs in wild birds only causes mild symptoms, however, subtypes H5 and H7 can mutate 

to HPAIV when multiple low pathogenic avian influenza subtypes co-infect one host, 

especially in poultry farms with low bio-security and large numbers of domestic birds.  

HPAIV attracted a lot of attention due to their rapid dispersal and large impacts. For 

example, the highly pathogenic avian influenza H5N1 was for the first time detected in a 

domestic goose in 1996 in Guangdong, China, and then detected in wild birds in 2002 in 

Hong Kong, China. It suggested that migratory wild birds were infected with avian influenza 

virus from domestic birds. Furthermore, a H5N1 outbreak was detected in wild birds in 2005 

at Qinghai Lake, China, killing more than 6000 birds. Within a few months, the H5N1 was 

detected in Europe, Middle East and Africa. Although intensive studies have focused on 
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dispersal of avian influenza virus, most of these were carried out in duck species such as 

mallard. Few studies have examined the role of other migratory waterfowl, such as goose 

species. Since HPAIV can spill-over to humans and could cause high mortality rates, it is 

urgent to understand the mechanism of avian influenza virus dispersal. 

Overall, the aim of this study is to obtain a better understanding of the impact of migration 

on dispersing avian influenza virus by combining modelling and spatial-temporal statistical 

approaches.  

In chapter 2, I examined the infection dynamic of LPAIV in migratory goose species. I 

analysed throat and cloaca samples that were collected from three species from their breeding 

sites, stopover sites and wintering sites. I examined the infection prevalence on these sites, 

and analysed the temporal patterns in infection prevalence. My results showed that migratory 

geese were probably not infected with LPAIVs before arrival on their wintering sites, as they 

had a relatively low infection prevalence just after the arrival, but the prevalence increased 

over the winter period. My results suggest that migratory geese were exposed to the LPAIV 

shortly after their arrival, indicating that they might not disperse the virus during autumn 

migration, but more likely disperse it during spring migration.  

In chapter 3, I examined the effects of spatial and temporal migration patterns on the 

dynamics of low pathogenic avian influenza infection prevalence. I applied a discrete-time 

SIR (Susceptible-Infected-Recovered) model, with environmental transmission and 

migration, to various migration strategies, including networks with serial, and/or parallel 

stopover sites, and with various levels of migration synchrony.  My results showed that both 

an increase in the number of serial stopover sites and an increase in the synchrony of 

departure timing reduces the infection prevalence due to ‘migratory escape’. Whereas 

increasing the number of parallel stopover sites increases the infection prevalence, because 

the migratory population is exposed to a larger total amount of virus in the environment, 

speeding-up the accumulation of infections. Furthermore, my simulations suggest that if 

migratory species adopt a migration pattern with multiple serial stopover sites and with high 

migration synchrony, the AIV transmission becomes less efficient in the population, and 

thereby lead to a low infection prevalence. 

In chapter 4, I tested whether habitat loss facilitates pathogen dispersal and infection 

prevalence in a migratory population. I identified all potential stopover sites of greater white-

fronted geese in the East Asian-Australasian Flyway, and constructed migration networks 
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with various habitat loss scenarios. I used Agent-based models to simulate bird migration 

over various migration networks, and integrated these with SIR-type infection dynamics to 

simulate epidemiological processes. I studied the dynamic of infection prevalence in 

migratory populations and the infection probability at stopover sites under various habitat 

loss scenarios. Consistent with my previous findings, I found that migration can reduce 

infection prevalence in a population due to migratory escape. However, the population cannot 

lose infection completely due to a relay effect that resting birds can be infected with avian 

influenza viruses that were shed by previous resting birds. Moreover, under severe levels of 

habitat loss, i.e., removing all sites with area decrease, geese start aggregating earlier in the 

fewer remaining sites, and thereby facilitate infection. In addition, habitat loss increases the 

infection probability for the remaining sites due to a larger amount of visiting birds, which 

potentially carry the virus. These results thus suggest that habitat loss facilitates outbreak of 

avian influenza virus infection in a migratory population and increases the probability for 

pathogen dispersal. 

In chapter 5, I summarized the historical HPAIV outbreaks in swan goose and bar-headed 

goose and compared their contact opportunities with avian influenza outbreaks areas and with 

the distribution areas of domestic birds in their migration corridors. Their migration corridors 

were estimated from GPS tracking data, using a dynamic Brownian Bridge Movement 

Models (dBBMMs). I found that swan geese were more likely to come into contact with 

outbreak areas, but fewer outbreaks occurred in their population. In contrast to swan geese, 

bar-headed geese were less likely to come into contact with outbreak areas, but more 

outbreaks occurred in their population. Moreover, I found that the densities of domestic 

ducks in the migratory corridor of swan geese were higher compared with those of bar-

headed geese. On the basis of these findings, I proposed two possible explanations for these 

contrast infection patterns. First, frequent contact and a long contact history with domestic 

ducks may have caused higher levels of innate immunity in swan goose. Second, the 

migration strategy of bar-headed goose may compromise immunity, so that bar-headed geese 

are more vulnerable to HPAIV. 

These studies broaden the knowledge of bird species’ roles in affecting avian influenza 

virus infection dynamic and the virus dispersing during seasonal migration. The 

environmental transmission plays an important role in keeping the virus circulating in a 

migratory population, and I therefore recommend increasing the efforts for monitoring virus 

concentrations in water bodies used during migration. Moreover, since swan goose may have 
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higher levels of innate immunity and be more resistant to infection by HPAIVs, I also 

recommend increasing active surveillance that covers not only the well-known affected goose 

species such as bar-headed goose, but also goose species which are less often found dead due 

to infection with HPAIVs. 

Although this study focused on the interactions between host migration and infectious 

pathogens in the goose-AIVs system, the findings can be generalized to other migratory host-

pathogen systems such as butterflies-parasite systems, if the pathogen can persist in the 

environment.  
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Samenvatting 

Miljoenen vogels ondernemen seizoengebonden migratie tussen broed- en 

overwinteringsplaatsen. Vogelmigratie veroorzaakt verschillende ecologische effecten, zoals 

het beïnvloeden van lokale predator-prooi relaties, en het verspreiden van pathogenen, zaden 

en energie. Van deze effecten heeft de verspreiding van pathogenen tot een groot debat 

geleid. Een belangrijke vraag is hoe trekvogels pathogenen verspreiden en hoe trekvogels 

tijdens hun migratie interacteren met ziekteverwekkers. Een beter begrip van de verspreiding 

van pathogenen is dringend nodig omdat het relevant is voor zowel dieren in het wild als de 

menselijke gezondheid. Daarom zijn empirische studies uitgevoerd die correlaties in tijd en 

ruimte onderzochten tussen infectie-uitbraken en migratieroutes. Ook zijn er genetische 

studies gedaan omtrent uitbraken en de infectiedynamica in migrerende populaties, alsmede 

theoretische modellering. 

Eerdere studies suggereerden dat pathogenen verspreid kunnen worden via de 

migratieroute van trekvogels. Vogelmigratie kan echter ook de prevalentie van infecties 

verminderen en de verspreiding van pathogenen beperken via zogenaamde 'migratoire 

ontsnapping' en 'migratoire ruiming'. Daarom kan migratie van invloed zijn op de 

verspreiding van pathogenen en de prevalentie van infecties in een populatie, maar de 

effecten ervan kunnen per systeem verschillen. 

De meeste trekvogelsoorten gebruiken stopplaatsen waar ze bijtanken en rusten tijdens 

hun migratie. De migratie van vogels verbindt deze stopplaatsen, samen met hun broed- en 

overwinteringslocaties, in een migratienetwerk. Sommige stopplaatsen worden bij voorkeur 

gekozen boven andere, en deze voorkeur varieert tussen soorten en in tijd en ruimte binnen 

een bepaalde soort. Dus, de configuratie van migratienetwerken verandert en wordt 

gekenmerkt door 'seriële stopplaatsen’ (wanneer de vogels migreren over een breed front) of 

'parallelle stopplaatsen’ (wanneer migratie over een smal front plaatsvindt). Deze patronen 

zijn duidelijk waargenomen in eerdere studies dankzij satelliettelemetrie. 

Afgezien van verschillende ruimtelijke configuraties, varieert ook de vertrektijd van 

trekvogels en deze synchronie in het vertrekmoment kan variëren van weken tot maanden. De 

combinaties van de verschillende patronen in netwerkconfiguratie en synchronie in het 

vertrekmoment beïnvloeden de aggregatiegrootte, de rustduur op stopplaatsen, en de kans op 

contact tussen individuen. De effecten van netwerkconfiguratie en migratiesynchronie op de 

verspreiding van pathogenen en infectiedynamiek zijn echter nog niet volledig onderzocht. 
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Hoewel stopplaatsen cruciaal zijn voor trekvogels om hun migratie te voltooien, is de 

beschikbaarheid van geschikte plaatsen in de Oost-Aziatische Australazische trekroute 

afgenomen, vooral in China, waar 30% van de natuurlijke wetlands in de afgelopen twee 

decennia verloren zijn gegaan. Als reactie op dit verlies aan wetlands wordt het 

migratienetwerk beperkt tot minder stopplaatsen en neemt het aantal vogels op die locaties 

aanzienlijk toe. Dit intensieve gebruik van de resterende stopplaatsen kan de kans op infectie 

in zo’n stopplaats en de prevalentie van infecties in de populatie vergroten. De impact van het 

verlies van wetlands op de infectiedynamiek is echter nog niet eerder onderzocht. 

Netwerkanalyse is een veelbelovend hulpmiddel om de verspreiding van pathogenen door 

trekvogels te analyseren. Het werd bijvoorbeeld gebruikt om de verspreiding van het ‘ernstig 

acuut respiratoir syndroom’ (SARS) en mond- en klauwzeer te bestuderen. Netwerken zoals 

handelsnetwerken en transportnetwerken worden vaak erkend als schaalvrije netwerken. 

Dergelijke netwerken zijn zeer efficiënt in het verspreiden van pathogenen binnen het 

netwerk. Wanneer echter ernstig habitatverlies optreedt, kan de schaalvrije topologie 

verdwijnen, waardoor de verspreiding van pathogenen tussen locaties minder effectief wordt. 

Aan de andere kant kan de infectieprevalentie bij trekvogels juist toenemen als gevolg van 

een grotere aggregatie van individuen op de resterende locaties. De topologieën van 

vogelmigratienetwerken zijn echter zelden onderzocht in empirische studies of in theoretisch 

werk, hoewel ze kunnen bijdragen aan een beter begrip van de variabelen die van invloed zijn 

op de verspreiding van pathogenen. 

In deze studie heb ik gefocust op vogelgriepvirussen (AIV's), een groep van virussen die 

zijn aangepast om vogels te infecteren, vooral watervogels zoals eenden, ganzen en zwanen. 

Vogelgriep infecteert voornamelijk vogels, maar in sommige gevallen infecteert het ook 

zoogdieren zoals varkens, paarden, walvissen, vleermuizen en mensen. Vogelgriepvirussen 

kunnen worden ingedeeld in twee groepen: laag-pathogene vogelgriepvirussen (LPAIV's) en 

hoog-pathogene vogelgriepvirussen (HPAIV's), een indeling die is gebaseerd op de ernst van 

de ziekte die zij bij kippen veroorzaken. Infectie van LPAIV's bij wilde vogels veroorzaakt 

slechts milde symptomen, maar subtypes H5 en H7 kunnen muteren naar HPAIV wanneer 

meerdere laag-pathogene AIV-subtypen één gastheer co-infecteren, met name in 

pluimveebedrijven met geringe biologische veiligheid en grote aantallen vogels. 

HPAIV heeft veel aandacht getrokken vanwege de snelle verspreiding en grote impact. Zo 

werd het hoog-pathogene vogelgriepvirus H5N1 voor het eerst waargenomen in een gans in 
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Guangdong, China in 1996, en vervolgens weer in 2002 in wilde vogels in Hongkong, China. 

Dit suggereerde dat trekvogels besmet waren met het vogelgriepvirus van tamme vogels. In 

2005 werd een H5N1-uitbraak geconstateerd bij wilde vogels in Qinghai Lake, China, 

waarbij meer dan 6000 vogels werden gedood. Binnen een paar maanden werd H5N1 

gedetecteerd in Europa, het Midden-Oosten en Afrika. Hoewel intensieve studies zich hebben 

toegespitst op de verspreiding van het vogelgriepvirus, werden de meeste daarvan uitgevoerd 

bij verschillende soorten eenden zoals de wilde eend. Weinig studies hebben de rol van 

andere migrerende watervogels onderzocht, zoals die van ganzen. Omdat HPAIV kan 

overslaan naar mensen en hoge sterftecijfers kan veroorzaken, is er urgentie bij het beter 

begrijpen van de variabelen die de verspreiding van vogelgriepvirussen beïnvloeden. 

Het doel van deze studie is om een beter inzicht te krijgen in de impact van migratie bij 

trekvogels op het verspreiden van het vogelgriepvirus door modellering en ruimtelijk-

temporele statistische benaderingen te combineren. 

In hoofdstuk 2 onderzocht ik de infectiedynamiek van LPAIV in migrerende ganzen. Ik 

analyseerde keel- en cloacamonsters die werden verzameld van drie soorten ganzen uit hun 

broedplaatsen, stopplaatsen en overwinteringsplaatsen. Ik onderzocht de infectieprevalentie 

in deze locaties en analyseerde de temporele patronen in de infectieprevalentie. Mijn 

resultaten tonen aan dat migrerende ganzen waarschijnlijk niet besmet waren met LPAIV’s 

vóór hun aankomst op hun overwinteringsplaatsen, omdat ze een relatief lage 

infectieprevalentie hadden net na hun aankomst, maar de prevalentie steeg tijdens de 

winterperiode. Mijn resultaten suggereren dat migrerende ganzen kort na hun aankomst 

werden blootgesteld aan LPAIV, wat er op kan duiden dat ze het virus niet verspreiden 

tijdens de herfstmigratie, maar waarschijnlijk tijdens de voorjaarstrek. 

In hoofdstuk 3 onderzocht ik de effecten van migratiepatronen in tijd en ruimte op de 

dynamiek van de infectieprevalentie van LPAIV. Ik heb een SIR (Susceptible-Infected-

Recovered)-model met discrete tijd toegepast, met indirecte transmissie en migratie via de 

omgeving, en verschillende migratiestrategieën, inclusief netwerken met seriële en / of 

parallelle stopplaatsen en met verschillende niveaus van migratiesynchronisatie. Mijn 

resultaten toonden aan dat zowel een toename van het aantal locaties met seriële stopplaatsen 

als een toename in de synchronie van de timing van vertrek de infectieprevalentie vermindert 

als gevolg van 'migratoire ontsnapping'. Een toename in het aantal parallelle stopplaatsen 

verhoogt de infectieprevalentie echter, omdat de migrerende populatie wordt blootgesteld aan 
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een grotere totale hoeveelheid virus in het milieu, waardoor de accumulatie van infecties 

wordt versneld. Verder suggereren mijn simulaties dat als migrerende soorten een 

migratiepatroon aannemen met meerdere seriële stopplaatsen en met een hoge 

migratiesynchronie, de AIV-transmissie minder efficiënt wordt in de populatie en daardoor 

leidt tot een lage infectieprevalentie. 

In hoofdstuk 4 heb ik getest of habitatverlies de verspreiding en infectieprevalentie van 

pathogenen in een migrerende populatie bevordert. Ik identificeerde alle potentiële 

stopplaatsen van kolganzen in de Oost-Aziatische Australazische trekroute en modelleerde 

migratienetwerken met verschillende scenario's voor habitatverlies. Ik gebruikte ‘agent-

based’ modellen om vogelmigratie over verschillende migratienetwerken te simuleren, en 

integreerde deze met infectiedynamica van het SIR-type om epidemiologische processen te 

simuleren. Ik bestudeerde de dynamiek van de infectieprevalentie in migrerende populaties 

en de infectiekans op stopplaatsen onder verschillende scenario’s van habitatverlies. In 

overeenstemming met mijn eerdere bevindingen, ontdekte ik dat migratie de 

infectieprevalentie in een populatie kan verlagen als gevolg van ‘migratoire ontsnapping’. De 

populatie kan de infectie echter niet volledig verliezen als gevolg van een relaiseffect, 

waarbij rustende vogels kunnen worden besmet met het vogelgriepvirus dat werd 

achtergelaten door eerdere rustende vogels. Bovendien zullen ganzen onder ernstige niveaus 

van habitatverlies, d.w.z. het verwijderen van alle plaatsen met oppervlakteafname, eerder 

aggregeren in de paar plaatsen die over blijven, waardoor infectie kan toenemen. Bovendien 

verhoogt het verlies van habitat de infectiekans voor de resterende locaties vanwege een 

groter aantal vogels in die locaties, die mogelijk het virus bij zich dragen. Deze resultaten 

suggereren dus dat habitatverlies de uitbraak van vogelgriepvirus in trekvogels 

vergemakkelijkt en de kans op verspreiding ervan vergroot. 

In hoofdstuk 5 vat ik de historische HPAIV-uitbarstingen in zwaanganzen en Indische 

ganzen samen en vergelijk hun contactmogelijkheden met gebieden waar vogelgriepvirussen 

zijn uitgebroken en met het verspreidingsgebied van gedomesticeerde vogels in hun 

trekroute. De trekroutes werden geschat op basis van GPS-trackinggegevens, met behulp van 

dynamische Brownian Bridge Movement Models (dBBMM's). Ik vond dat zwaanganzen 

eerder in contact kwamen met uitbraakgebieden, maar dat er minder uitbraken voorkwamen 

in hun populatie. In tegenstelling tot zwaanganzen, hadden de Indische ganzen minder kans 

om in contact te komen met de uitbraakgebieden, maar er deden zich meer uitbraken voor in 

hun populatie. Bovendien vond ik dat de dichtheden van gedomesticeerde eenden in de 



Samenvatting 

 
133 

trekroute van zwaanganzen hoger waren in vergelijking met die van de Indische ganzen. Op 

basis van deze bevindingen, kwam ik met twee mogelijke verklaringen voor deze 

contrasterende infectiepatronen. Ten eerste kan frequent contact en een lange 

contactgeschiedenis met eenden een hogere mate van aangeboren immuniteit bij 

zwaanganzen hebben veroorzaakt. Ten tweede kan de migratiestrategie van de Indische gans 

hun immuniteit verminderen, zodat Indische ganzen kwetsbaarder zijn voor HPAIV. 

Deze studies verbreden de kennis van de rol van verschillende soorten vogels bij het 

verspreiden van vogelgriepvirussen tijdens seizoensgebonden migratie. De overdracht van 

vogelgriepvirussen via de omgeving speelt een belangrijke rol bij het in stand houden van de 

circulatie van deze virussen in migrerende populaties, en daarom pleit ik voor meer 

inspanning voor het monitoren van virusconcentraties in waterlichamen die tijdens de 

vogeltrek worden gebruikt. Aangezien zwaanganzen mogelijk een hogere mate van 

aangeboren immuniteit hebben en daardoor meer resistent zijn tegen infectie met HPAIV's, 

raad ik ook aan om actieve surveillance te verhogen die niet alleen betrekking heeft op de 

bekende ganzensoorten, zoals Indische ganzen, maar ook soorten die minder vaak dood 

worden aangetroffen als gevolg van infectie met HPAIV's. 

Hoewel deze studie zich richtte op de interacties tussen migratie van ganzen en 

vogelgriepvirussen, kunnen mijn bevindingen worden gegeneraliseerd naar andere systemen 

van migrerende gastheren en hun pathogenen, zoals vlinders en hun parasieten, als het 

pathogeen ook in het milieu kan blijven bestaan. 
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Ȋ)1"*7Tȋ۵ିࡓࣜఈ༣	-1"*7T
ǴߌљǷ۵ିࣜఈ༣ϩதуҘൿԔ

ধܧܤǷۮ֊)� ࡓ )� գ౹֖৸༣ੳ֓ϩЕൿԔЕ۪ǷԢӹҼొڵЕ՝ऻ֓ڡ
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ढ߳౹֖ઌײ࢜ӯ்ିࣜఈ༣Ƿܭլ۵Щӯਂ࿆М்ੑ࢛ංਾఛؖљࠨԻ

ӯǴ�

்ିࣜఈ༣ҼҞլ๕ܷڵќЈ֯ۀߚၧǷԽՉࡏМϲஙഹײӯ৸Ј႐

্ǴتǷ���� ֤Ƿ்ିࣜఈ༣)�/� ਜ਼ױլљࠡНӉপఛੑЈฉљమಛ੮Բ

ϽЀǷඔګ ���� ֤լљࠡ৴ລುӯԐљమಛ੮ࠏǴܭҼొЪྜࠞ౾ುӯԐࡴ

१ି்ࣜఈ༣)�/� যӝఛ֯ੳǴ���� ֤Ƿ்ିࣜఈ༣)�/� լޛంວ

ලգି؟ഌԐљЈᅷԻǷ֫ ���� ӞԐոОǴୄ౾լТ϶ЕѾљǷ்ିࣜ

ఈ༣)�/� ڬլࠅǶљӉҞМࠐᅷԻǴਗ਼ϲХमԽఈ༣ऺ֯ၧ

աࡉдϹЈภݙǷۮЈѺ࣌ݙլୌǷتඪԞୌȊ"OBT�QMBUZSIZODIPTȋǴ

ਗ਼ϲݙਘіߌ࣌ӽ֫ഌԐԽఈ༣ऺ֯ၧգ႐্Ƿ֫تഌЈฉǴӝ

Ѐ்ିࣜఈ༣ొഢ༣ੳϲǷҘ଼்ոОൃǷ�֖փǷԽЀఈ༣ऺ֯ၧМ

�ѓǴϬѺݙ႐্֖Шॾߌ

ඨЌ߰ࡴǷҺאૂݙऻٹМ࣪ڵѺߨѡ৻ǷםլݙԐ֫ഌҍԽ

ఈ༣֯ၧ႐্Ǵ�

լϫഽљǷۡѺߨϹу֓֫ഌЈฉࡏ৵৵࿃ќ۵ିࣜఈ༣༣ੳൃ࣪ڵՉ

ǴۡӹԽࠄ �Еу֓Јฉࡏ৵৵࿃Ȋڠฉ"OTFS�GBCBMJTǶӻญ็ฉ�#SBOUB�MFVDPQTJT Ҟ

Мӻაฉ"OTFS�BMCJGSPOTȋǷѺۗլߌᅃชՖǶഅངՖҞМයԏՖќࡼϹЕ۪ЎМ

նǷ֫ഌЈฉլࠧޟࠟૂݙ༣ੳఈ༣ऺǴڧЕ۪যࠕܭಛ੮ชଡҺǷࣂ

ᅃชՖǶഅངՖљ༣ߌઝࠧ֫ഌЈฉլܭಹ۵ǴࠐǷ৵࿃ќఈ༣༣ੳൃڵයԏՖߌ

ੳఈ༣ҼొࣜࠐಹЍǴփԍǷլයԏූܷǷఈ༣༣ੳൃଶ൙ЌѥǷܭҼొઝ

ࠧǷ֫ഌЈฉࡴ༣ੳఈ༣ऺԔউྨׅЀයԏՖǷܭЪྜࠞ౾Ƿ֫ഌЈฉҼొ

уլߌ৶֫ࡔഌգљ֯ၧఈ༣ऺǷॾѳǷ֫ഌЈฉҼొլळ֫ࡔഌգљ؟

ିఈ༣ऺӋ֯ၧǴ�
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լϾഽљǷۡգऻٹ੮࣮Ϲ֫ഌ࣪ڵ್ԽЈฉ৵࿃ќ۵ିࣜఈ༣

༣ੳՉࠄ႐্Ǵۡૂאේܷڵ 4*3Ȋ4VTDFQUJCMF�*OGFDUFE�3FDPWFSFEȋऻǶޙ֯

ၧҞМ֫ഌҍǷ߭ࣾϹ֫ഌ�֯ੳऻǷਹऻܬԃࠏу֓֫ഌ࣪ڵ್൮สǷ

Ԓॏۈෘ֢ૉ�Ƕ֢ڬૉǶ֢ڬۈૉҞМу֓֫ഌ֓ࣜڮǴૂࠟࠧޟǷӝЀȶ֫ഌ

ਜȷޝഡկլǷۈෘ֫ഌ֢ૉљഅངՖЕྟၬԷҞМ֫ഌ֓ࣜڮၬԷି؟

৵࿃ќ༣ੳൃІऑǴփԍǷ֢ڬૉљഅངՖЕྟၬԷି؟༣ੳൃЌѥǷܭ

য֖ҍǷ࡛֓ڵԃףЕഅངՖǷି؟৵࿃լ֫ഌգљЊףڝկுլޙљఈ༣

ऺྌǷمհၬԷ༣ੳ҂ભǴࠧޟڨݙǷ֊֫ഌ৵࿃ۣԃףЕۈෘഅངՖǷ֓ڵ

ܬऑ۵ǷѶհ࡛৵࿃ќ༣ੳൃॾၧൃ֯Ƿఈ༣լ৵࿃ќڵഌ֫ࣜڮ்֓ߍࡼ

ІऑǴ�

լӮഽљǷۡݙϹഅངՖ߲ӱযڧਃمఈ༣ऺܷ֯࣪ၧҞМ֫ഌ৵

࿃ќ༣ੳൃЌѥǴਜ਼֦ǷۡৱϹӻაฉլӉ՝�ჇЈۣ՝֫ഌཎठЌࡴծჂլ৲

ࣦഅངՖǷۣԃࠕܭഅངՖ߭ࣾϹ֫ഌ֢ૉǴ֓ڵǷۡଢഅངՖগ߲ӱ

ਾǷѺۗ߭ࣾϹу֓କՖ߲ӱ൮สІ֫ഌ֢ૉǴփԍǷۡࡼԃȶЕ۪ҍҺऻ

Ȋ"HFOU�#BTFE�.PEFMTȋȷٹ৵࿃լу֢֓ૉ൮สљ֫ഌգǴۡࡼԃϹ 4*3 ऻ

ٹ৵࿃լу֓֫ഌ֢ૉ൮І༣ੳՉࠄǷѺߨϹఈ༣ऺమ१مϳഅངՖ

৵࿃ќ༣ੳൃІି؟կլǷ֫ഌҼҞǷӝЀȶ֫ഌਜȷգࠧޟ༟ൃǴૂࠟ

ऑǴհǷ֫ഌ৵࿃уొգȶ֫ഌਜȷݕګഠఈ༣ऺǷܭԔউ֖ҍǷ

ஙഹЕնࠏචǷհܷڵկு଼ѧљޙऺլࢯࡴ༣ੳЕ۪ࡾնࠏڝ

۪լഅངڵǷࡩգޙ֯ၧհࠏࡾ༣ੳȊܬȋǴփԍǷլพڇ৸അང

Ֆ߲ӱ൮สІȊݭબࡴծগІऑഅངՖȋǷ֫ഌЕ۪ууڝഅѕ֫ߌഌǷ

ऺլ֫ഌЕ۪ܷ֯ၧǴمਃ৵்ංਾܭіྟഅངՖЌǷհլկு

փԍǷӝЀЈภЕ۪љլіྟկுഅངՖЌǷمհି؟ఈ༣ऺమ१مϳկ
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ுഅངՖ༟ൃڝЈǴ֖փǷഅངՖ߲ӱҼొਃمఈ༣ᅷԻǷҼొව்ఈ

༣ऺمϳޝկഅངՖ༟ൃǴ�

լрഽљǷۡਫ਼ૂϹ்ିࣜఈ༣լൔฉȊTXBO�HPPTFȋǶනԞฉȊCBS�

IFBEFE�HPPTFȋљчӠᅷԻྟǷё଼ϹڡЕࡏ৵լ֫ߌഌཎࡳЌЊ்ିࣜఈ

༣ᅷԻǶఛྌ҂ભЈЍǴ֫ഌཎࡳ۩မ౹ЀЩস႔ྟǷאૂϹՉࠄӂ

థଙًՉऻȊEZOBNJD�#SPXOJBO�#SJEHF�.PWFNFOU�.PEFMTȋǴૂࠟࠧޟǷൔฉլ֫ߌ

ഌཎࡳљࠨڝЊ்ିࣜఈ༣ᅷԻྌǷି்ۮࣜఈ༣ڗіլൔฉ৵࿃љᅷ

ԻǴॾѳǷනԞฉլ֫ߌഌཎࡳљуࠨЊ்ିࣜఈ༣ᅷԻྌǷߌۮ৵࿃љٺम

ಹᅷԻ்ିࣜఈ༣Ǵ֓ڵǷլൔฉ֫ഌཎࡳљǷఛංਾ்وЀනԞฉ֫ഌཎ

ǷۡԽൔฉЊනԞฉլ்ିࣜఈ༣чӠᅷԻྟޝఛංਾǴ౹ЀҞЌԻљࡳ

ЌؠǷවԲܘڡഉؘǴਜ਼֦ǷൔฉЊఛТ்ܷ༴ਾǶѧූՖྌчӠҼొ

ǷනԞฉѧǶ்ంާױߌǴܒж֦ӯ଼ײൔฉԽЀ்ିࣜఈ༣ି؟

֫ഌ್ǷҼొܒି؟ϻІऑǷمհି؟නԞฉլ்ିࣜఈ༣ऺ༣ੳІϬ

ѺலాǴ�

ҞЌޥݙϹۡӹԽЀ֫ഌԐլఈ༣֯ၧգљ۱ԃྍౕǴӝЀޙ֯

ၧլඤिఈ༣ऺլ֫ഌ৵࿃ќЕ۪ܷ֯ၧљࠏ৸উ۱ԃǴ֖փǷۡࣾԨԷԽ

֫ഌࡔҹܷഅངՖѝ۪ఈ༣ऺਾುԍୃ੮ǴփԍǷ֖ҍൔฉԽЀ்ିࣜ

ఈ༣Ҽొծ଼்ܒϻǷࣾԨѸುԍୃ੮уѰѰ࣌լࠨ༣ࡏ৵৵࿃ȊتනԞ

ฉȋǷ֓ୃڵ੮ԽЀ்ିࣜఈ༣ࠝծ଼ࡏࣜٮح৵৵࿃ȊتൔฉȋǴ�

ҺݙљԣؔϹ֫ഌЈฉЊఈ༣ऺТܷॾђ۱ԃܡǷۮլߌӽൿ

Ԕ�۪ऻљǷࠟت۪ҼҞլൿԔ۪ԍկੰǷҺؔૂݙЪ֓ଡ৲ԃǷت

႖႕Њൽӯ֏ऻǴ�
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