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Abstract 

Euglycemia is controlled by the human body by the hormones insulin and 

glucagon. The blood glucose (BG) concentration of a Type 1 Diabetes Mellitus 

(T1DM) will be out of range due to the lack of the hormone insulin. This results in 

a BG fluctuation. The aim in controlling T1DM is to be in the euglycemic range. A 

sub-optimal method to control T1DM is to do measurements and administer 

insulin by hand. Finger pricks are used to determine the BG level. After 

calculating the carbohydrates and the number of units of insulin, the insulin is 

administered subcutaneously. 

To enhance patients’ health-related quality of life (HRQoL) an automated artificial 

pancreas (AP) should be realized. In this way, the BG level is monitored and 

controlled around the clock with less patient effort resulting in a better HRQoL. A 

basic AP setup will consist of a subcutaneous continuous glucose monitor (CGM), 

a subcutaneous insulin infusion pump and a control algorithm. The goal of this 

research is to find and calibrate a T1DM patient model using collected patient 

data, after an extensive literature survey of the glucose-insulin models. This 

calibrated model is the first step to designing a control strategy.  

Patient data were collected from the Rijnstate Hospital in Arnhem and from the 

literature survey, the Dalla Man, Rizza, et al. Meal Glucose-Insulin Model was 

examined, adjusted and extended. A T1DM simulation model is developed. After 

a parameter sensitivity analysis, the sensitive model parameters where selected. 

A fast program was used to find identifiable parameter sets. Using a patient CGM 

data and the glucose model outcome, parameter estimation was performed 

based on, the minimization of the sum of squared errors (SSE). The best fit is 

chosen, after calculating the absolute value of the minimization of the SSE. 

The conclusion is that the best fit of the model will follow the glucose trend of the 

reference (CGM data) although lower model glucose values are observable. 

Nevertheless a state of the art calibrating tool set is presented and a solid basis 

is formed for further AP model enhancement. Also the presented model is very 

useful for teaching causalities for diabetics and other educational purposes. 

Keywords: Diabetes, T1DM modelling, Dalla Man, Glucose Regulatory System  
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1 Introduction 

When a meal is consumed a healthy person, the digestive system will break 

down the carbohydrates into glucose, a simple sugar. The pancreas β cells will 

release the hormone insulin. Insulin allows the cells of the human body to 

convert glucose to energy, if needed. If the blood glucose level falls below the 

basal blood glucose level, glucagon is secreted by the pancreas α cells. The liver 

is activated by the glucagon hormone and will release the stored glucose, 

resulting in a steady supply of glucose in the blood plasma (Havard T.H. Chan, 

2017). Around the clock, the pancreas will also release a small amount of insulin. 

This so-called basal insulin secretion will keep the basal blood glucose level 

steady without a meal intake (Harsh, 2013). 

The destruction of the cells β of the pancreas will stop the production of the 

hormone insulin resulting in Type 1 Diabetes Mellitus (T1DM). T1DM will reduce 

the patients’ Health-Related Quality of Life (HRQoL). 

T1DM is a chronic disease and likely starts in childhood (5-7 years of age or near 

puberty). Because of this peak in presence, it is also known as juvenile Diabetes 

Mellitus (DM). The Epidemiology of the disease is not equally divided over the 

world population. Environmental influences affect the incidence rate, the 

underlying mechanisms are however unknown. For example, T1DM scores the 

highest in Finland, over 60 cases per 100.000 people each year, versus the 

lowest rating in China, 0 to 1 cases per 100.000 people each year, visualized in 

Figure 1 and Figure 2 (Atkinson, Eisenbarth, & Michels, 2014; Väisänen, 2015). 
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Figure 1. The incidence of T1DM in children aged 0–14 years, by region. 

The estimated global incidence of type 1 diabetes, by region, in 2011 (Atkinson et al., 2014). 

 

Figure 2. The incidence of T1DM in children aged 0–14 years, over time. 

Time-based trends for the incidence of type 1 diabetes in children ages 0-14 years in areas with 
high or high-intermediate rates of disease (Atkinson et al., 2014). 
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 The Pancreas 

The pancreas consists of different tissues. The major two tissues are the acini 

(exocrine gland) and the islets of Langerhans (endocrine gland). The acini 

produce the digestive enzymes and the islets of Langerhans produce the 

hormones insulin, glucagon and somatostatin. 

1.1.1 Islets of Langerhans 

The German anatomist Paul Langerhans (1847-1888) found islets in the pancreas 

in the year 1869. After his discovery, these islets were named after the founder 

and referred to as the islets of Langerhans. The islets are small groups of cells 

that produce hormones. The alpha cells secrete glucagon, the beta cells secrete 

insulin and amylin and the delta cells secrete somatostatin. Pancreatic 

Polypeptide (PP) is also secreted from the islets of Langerhans. The human 

pancreas has 1 to 2 million islets of Langerhans, which are placed around small 

capillaries through which its cells secrete their hormones (David Darling, 2016; 

Guyton & Hall, 2006). 

 

Figure 3. Islet of Langerhans (David Darling, 2016). 

The pancreatic β cells of the islets of Langerhans will produce the hormone 

insulin as mentioned before. There is a direct cell-to-cell communication between 

the different cells in the islets of Langerhans. Therefore, the production of the 

different hormones will react to the production of the others. The insulin 

production will inhibit the production of glucagon while amylin inhibits the insulin 
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production. Somatostatin will inhibit both insulin and glucagon (Guyton & Hall, 

2006). 

When glucagon is secreted into the bloodstream, the liver will metabolize the 

glycogen to glucose. After insulin is secreted into the bloodstream, the liver and 

muscular tissue will convert and absorb glucose into glycogen. The rest (excess) 

of the glucose will be converted to fat by the stimuli of the hormone insulin 

(Guyton & Hall, 2006). For regulating the fluctuation of the glucose level in the 

blood, a fast and short reacting hormone like insulin is necessary. When insulin is 

secreted into the bloodstream, it has a half-time of about 6 minutes. This is 

important because the blood glucose level is changing fast over a short time. The 

destruction of the pancreatic β cells will result in insulin insufficiency. The lack of 

insulin secretion develops type 1 diabetes mellitus (T1DM), a chronic disease 

(Atkinson et al., 2014). A lifetime of insulin administering treatment is necessary 

and will reduce the HRQoL of the patient. 

1.1.2 The Pancreas and Diabetes Mellitus 

The pancreas, see Figure 4, has two main functions: regulating the blood glucose 

level and releasing enzymes for digesting purposes of the human body. Hereby 

the pancreas is an exocrine as well as an endocrine gland. For regulating the 

blood glucose level or body metabolism, the pancreas produces the hormones 

insulin, glucagon and others (Guyton & Hall, 2006). 

Figure 4. The pancreas (Pharma Tips 2013). 



5 

 

When an abnormality in the production of insulin occurs, the BG (blood glucose) 

level of the human body is not controllable anymore. The blood glucose level will 

increase when an insufficient amount of insulin is present to convert glucose to 

energy by the tissue cells of the human body. This high level of BG and the 

absence of the hormone insulin is called Type 1 Diabetes Mellitus (T1DM), also 

known as insulin dependent diabetes mellitus. 

In general, there are two types of DM: type 1 and type 2. T1DM is caused by the 

destruction of the pancreatic beta cells (β cells) resulting in no more secretion of 

the hormone insulin by the defective β cells of the pancreas. Type 2 diabetes 

mellitus (T2DM) is an increase of insulin resistance of the cells of the human 

body. To reduce the blood glucose level of T2DM, body weight control and 

administering of insulin are essential. 

In the early times, the medical diagnose of DM was by smelling and tasting the 

urine. The urine of the patient will be sweet when tasted, since due to the kidney 

membrane failure, glucose is passing the kidney glomerular basement membrane 

(GBM). If the blood glucose level is too high for a long time, it will damage the 

GBM and other organs in the human body. 

Aretaeus describes the disease Diabetes clearly in 150 AD and referred if to 

‘melting down of the flesh and limb into urine’. Doctor Tomas Willes (1621-1675) 

correlated the sweetness of urine to the illness of Diabetes and renamed the 

disease Diabetes to Diabetes Mellitus. In Greek Mellitus means ‘like honey’, and 

diabetes ‘syphoned out’ (Canadian Diabetes Association, 2017; Gale, 2014; 

Roberts, 2015). 

Symptoms associated with DM are polydipsia (excessive fluid intake), polyphagia 

(excessive hunger) and polyuria (an increase in the production of urine and the 

passage of it). If DM is diagnosed, the blood glucose level is higher than 7 

mmol/L (Atkinson et al., 2014); the human body is not able to control the correct 

blood glucose level of 4-6 mmol/L, also known as normoglycemia. 

 Insulin dose calculations by hand 

Carbohydrates (CHO) are found in cereals, fruit, dairy, bread, cake, soft drinks 

and pastry for example. One gram of CHO yields 16 kJ or 3.75 kcal. To reduce 
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the blood glucose level of T1DM, insulin is administered according to the 

carbohydrate intake by the patient. Patient wise insulin recommendations and 

calculations need to be fine-tuned depending on the patient's resistance to 

insulin. The patient needs to understand its disease and other factors that have a 

positive or negative effect on the treatment of its T1DM. The patient is in the 

lead to maintain its glucose balance at a normal level around the clock. It is like 

standing on a balancing board; stabilizing it means dealing with many internal 

and external factors. This balancing board is depicted in Figure 5. 

Commonly used formulas to create insulin dose recommendations for patients 

will be: the total daily insulin dose, the basal insulin dose, the rule of 500 and 

the rule of 1800 (Kennedy, Bedrich, Gray, Kroon, & Demetsky, 2017). In this 

chapter, these formulas are explained and used as a rule of thumb for patients. 

 

Figure 5. The balancing equation (Väisänen, 2015). 

1.2.1 Total daily insulin dose 

From the total daily insulin dose, 40-50% is used overnight, during the fasting 

period. The other 50-60% is for covering the carbohydrate intake and high 

glucose blood plasma correction. The daily insulin dose rate is usually constant 

(Kennedy et al., 2017). Insulin doses are quantified in units of insulin (UI). The 

total daily insulin requirement (TDI) of a patient is, see equation (1-1).  

𝑇𝐷𝐼 [𝑈𝐼] = 0.55 ∗ 𝑏𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡[𝑘𝑔] (1-1) 
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This can be used as a rule of thumb. Calculation of the basal patient insulin dose 

will be 50% of the total daily insulin requirement, see equation (1-2). When 

using an insulin pump, fast-acting insulin can be used at a constant flow rate. Or 

else long-acting insulin like Glargine or Determir can be administered by an 

injection. 

𝐵𝑎𝑠𝑎𝑙 𝑖𝑛𝑠𝑢𝑙𝑖𝑛 𝑑𝑜𝑠𝑒 = 0.5 ∗ 𝑇𝐷𝐼 (1-2) 

One unit of insulin can cover a certain amount of carbohydrates. The insulin - 

carbohydrate ratio covers the amount of carbohydrates in grams disposed of per 

unit of insulin. The sensitivity to insulin varies among patients. Approximately 

12-15 grams of carbohydrate will be disposed of when one unit of insulin is 

administered (Kennedy et al., 2017). 

The next calculation shows how much insulin is necessary to cover the 

carbohydrate intake. See equation (1-3), the carbohydrate insulin coverage 

dose. 

𝑀𝑐𝑚 = 𝐶𝑎𝑟𝑏𝑜ℎ𝑦𝑑𝑟𝑎𝑡𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑒𝑎𝑙 [𝑔]. 

𝐶𝑢𝑖 = 𝐶𝑎𝑟𝑏𝑜ℎ𝑦𝑑𝑟𝑎𝑡𝑒 𝑑𝑖𝑠𝑝𝑜𝑠𝑒𝑑 𝑏𝑦 𝑜𝑛𝑒 𝑎𝑑𝑚𝑖𝑛𝑖𝑠𝑡𝑒𝑟𝑒𝑑 𝑈𝐼 [𝑔 ∙ 𝑈𝐼−1] . 

𝐶𝐻𝑂𝑖𝑐𝑑 = 𝐶𝐻𝑂 𝑑𝑖𝑠𝑝𝑜𝑠𝑒𝑑 𝑏𝑦 𝑜𝑛𝑒 𝑎𝑑𝑚𝑖𝑛𝑖𝑠𝑡𝑒𝑟𝑒𝑑 𝑈𝐼. 

𝐶𝐻𝑂𝑖𝑐𝑑 =  
 𝑀𝑐𝑚

𝐶𝑢𝑖 
 

(1-3) 

1.2.2 Carbohydrate coverage ratio - the rule of 500 

Carbohydrate coverage ratio by the rule of 500. See equation (1-4). With this 

equation, the amount of insulin is determined that is needed for glucose 

disappearance. 

𝐶𝐻𝑂 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑎𝑡𝑖𝑜 =
500

𝑇𝐷𝐼 
 

(1-4) 

When this formula is used, a constant response of the patient body to insulin is 

assumed. As mentioned before there is a certain fluctuation in patient’s insulin 

sensitivity during the day. Other factors like stress or sports activity will have an 

influence on insulin sensitivity. So the insulin to carbohydrate ratio may vary 

daily (Kennedy et al., 2017). 

When a high blood glucose is measured, fast-acting insulin is needed. The 

plasma glucose level decrease will be approximately 50 mg/dL (2.8 mmol/L) to 
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one unit of insulin. Nevertheless, the range of 15-100 mg/dl to one unit of insulin 

is possible depending on other factors, like stress, illness and other hormones 

(Kennedy et al., 2017). 

When a high actual blood glucose level, Cag mg/dL is measured, the patient is off 

target. A correction dose of insulin is needed, which we call the high blood 

glucose correction dose. The patient has a target blood glucose level, Ctg mg/dL 

(for example 120 mg/dL). It can be calculated how many units of insulin (UI) are 

needed to get on target again with equation (1-5). As mentioned before, the 

individual insulin sensitivity factor (ISF) can vary according to the time of the 

day. The ISF is also known as the patient blood glucose correction factor. The 

patient needs to know on which part of the day insulin resistance occurs, and 

likewise, when he is more sensitive to the administered insulin. (Kennedy et al., 

2017). 

𝐼 =
𝐶𝑎𝑔 − 𝐶𝑡𝑔

𝐼𝑆𝐹
 

(1-5) 

The values found in equations (1-3) and (1-5) are added, resulting in patients 

total meal insulin dose, Itid, see equation (1-6). This is the amount of insulin the 

patient should be administering to stay on the target blood glucose level. 

𝐶𝐻𝑂𝑖𝑐𝑑 = 𝐶𝐻𝑂 𝑖𝑛𝑠𝑢𝑙𝑖𝑛 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑜𝑠𝑒 [𝑈𝐼] 

𝐼ℎ𝑔𝑐 = ℎ𝑖𝑔ℎ 𝑏𝑙𝑜𝑜𝑑 𝑔𝑙𝑢𝑐𝑜𝑠𝑒 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑑𝑜𝑠𝑒 [𝑈𝐼] 

𝐼𝑡𝑖𝑑  = 𝐶𝐻𝑂𝑖𝑐𝑑  + 𝐼ℎ𝑔𝑐 

(1-6) 

1.2.3 High blood sugar correction factor - the rule of 1800 

When a high blood glucose level is found by testing the patients’ blood, the need 

for reducing its blood glucose level to target is highly desirable. The next 

equation (1-7) will give the correction factor of the patients’ high blood glucose. 

After administering insulin, the blood glucose level of the patient will reduce to a 

certain lower value. 

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 =
1800

𝑇𝐷𝐼
 

(1-7) 

E.g. for a patient with a total daily insulin dose of 40 units of insulin, the 

correction factor is 45 mg/dL per unit of insulin. This means that when one unit 

of insulin is administered the blood glucose level will drop by 45 mg/dL. 
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As mentioned before, all the calculations are rules of thumb. There are many 

variations of insulin therapy but the stated formulas (1-3) to (1-7) are the initial 

best guesses for controlling the patients’ target blood glucose level (Kennedy et 

al., 2017). 

 Goal 

As mentioned in the previous sections, T1DM will ask a lot of the patient's effort 

to control the BG in euglycemia range. Every time before eating, the following 

routine starts: cleaning the hands followed by a finger prick, collecting a drop of 

blood on a test strip for sampling the glucose contents. After counting the CHO 

content of the meal, the insulin bolus is calculated and injected. After this 

procedure, the patient can finally eat. After approximate 1.5 – 2 hours, the 

patient will measure the BG level again, for a possible insulin correction bolus. 

To enhance patients’ health-related quality of life (HRQoL) an automated artificial 

pancreas (AP) should be realized. In this way, the BG level is monitored and 

controlled around the clock with less patient effort resulting in a better HRQoL 

and  a desirable blood glucose level near euglycemia. A basic AP setup will 

consist of a subcutaneous continuous glucose monitor (CGM), a subcutaneous 

insulin infusion pump and a control algorithm (Bon, 2013). The core of the AP is 

the control algorithm. 

1.3.1 Research questions 

Currently the Dalla Man, Rizza, et al. model is on the cutting edge of T1DM 

modelling. To validate the model using real patient data, insulin pump data from 

T1DM patients’ is collected in co-operation with the Rijnstate hospital located in 

the city of Arnhem. The following research questions were set forth: 

1. Which information is available to modulate the glucose and insulin kinetics 

of a human? 

2. Which building blocks are needed to build a state of the art T1DM model? 

3. Using the patients’ and CGM sensor data, is this accurate enough for 

predicting BG outcome by the state of the art T1DM model? 

4. Is it possible to enhance accuracy of the model, by using parameter 

estimation?  
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2 Mathematical models of the glucose and insulin system 

To find, improve and judge the treatment of TD1M disease, mathematical models 

describing and explaining the glucose and insulin system are most important. 

Apart from providing explanations, these models enable prediction of glucose 

levels in TD1M patients depending on insulin injection and other external and 

internal factors. This is crucial for the support and monitoring of treatment and 

ultimately leads to the ability to perform automatic control of insulin injection. 

The model predictions can be graphically represented to give patients insight into 

their glucose metabolism. A validated model of sufficient accuracy may replace in 

vivo tests in the future. Also for the design and evaluation of glucose sensors, a 

model could be used. 

In this section, the base of diabetes modelling is described. The starting point is 

the model of a normal patient without DM. The glucose disappearance models 

and insulin kinetics are combined. Every patient will have a metabolic portrait 

within a certain patient’s specific range (persons will react differently on insulin 

and CHO intake). Later the model of glucose, the model of insulin and the 

patient's metabolic portrait are combined to make an overall model. 

 The minimal modelling approach 

Combining an insulin kinetics model and the glucose disappearance model is 

called the minimal modelling approach by (Pacini & Bergman, 1986), abbreviated 

to MINMOD. The differential equations of the MINMOD model are (2-1), (2-2) for 

the glucose disappearance and (2-3) for the insulin kinetics. 

𝑑𝐺

𝑑𝑡
= −𝑋(𝑡) ⋅ 𝐺(𝑡) + 𝑝1 ⋅ (𝐺𝑏 − 𝐺(𝑡)) 

(2-1) 

𝑑𝑋

𝑑𝑡
= −𝑝2 ⋅ 𝑋(𝑡) + 𝑝3 ⋅ (𝐼(𝑡) − 𝐼𝑏) 

(2-2) 

𝑑𝐼

𝑑𝑡
= −𝑛 ⋅ 𝐼(𝑡) + 𝛾 ⋅ (𝐺(𝑡) − ℎ) ⋅ 𝑡 

(2-3) 

 

The basal plasma glucose concentration is denoted by Gb with associated unit 

mg/dL. According to equation (2-1), glucose will enter the plasma compartment 

when the plasma glucose level G(t) is below the basal plasma glucose level Gb. 

Glucose will leave the plasma compartment when its level is above Gb. These in 
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and out fluxes of glucose are proportional to the difference between G(t) and Gb. 

The insulin activity in the interstitial tissue X(t) will decrease the plasma glucose 

level (glucose will enter the cell on an insulin stimulus and is converted to energy 

when needed). 

If the insulin level I(t) is above the basal plasma insulin concentration, (denoted 

by Ib, and associated unit in µU/mL), insulin will enter the interstitial tissue 

compartment as described by equation (2-2). If the level of insulin falls below Ib, 

insulin will leave the interstitial tissue compartment. 

The glucose effectiveness, SG equals parameter p1 in equation (2-1). The ratio 

p3/p2 equals the insulin sensitivity index S1. SG and S1 will be further explained in 

section 2.2. The fractional insulin clearance parameter is denoted by n in 

equation (2-3) with an associated unit of min-1. It is also called the insulin 

disappearance time constant. The glucose threshold level is denoted by h, see 

equation (2-3). The second phase secretion of insulin Ф2 (Appendix A) is 

proportional to γ until the glucose level exceeds the threshold value of h 

(Bergman, Phillips, & Cobelli, 1981). 

Using the MATLAB code and for the input the Frequently Sampled Intravenous 

Glucose Tolerance (FSIGT) dataset, the MINMOD model is simulated. The model 

simulation outcome is visualized in Figure 6 and Figure 7. It can be clearly seen 

in Figure 6 that the model outcome (red line) will follow the trend of the 

experimental test data, although in the first 10 minutes a lower glucose model 

outcome is simulated. At approximate 80 minutes, a higher glucose level is 

simulated by the model. 
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Figure 6. Minimal modelling approach with normal FSIGT data. 

The artificial model compartment of the interstitial insulin X(t) is displayed in 

Figure 7. Negative influx of insulin at approximate 140 minutes is not 

representative for humans. In the publication of van Riel (Riel, 2004) the same 

issue arises. 

 

Figure 7. Interstitial insulin curve from normal FSIGT data. 

The model will present a good start for modelling glucose characteristics, but the 

shortcomings are visible in the figures. The model will not exactly follow the 

experimental test data plus a negative influx of insulin is not possible. 

 Metabolic portrait of an individual 

To compute the metabolic portrait of an individual patient, the insulin sensitivity 

index S1, equation (2-4), the glucose effectiveness SG, equation (2-5) and 

pancreatic responsiveness Ф1, Ф2, equation (2-6) are calculated (Bergman et al., 

1981). More information about Ф1, Ф2 and S1 is found in Appendix A. The 
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metabolic portrait is further explained below and relates to the model equations 

(2-1) and (10-1). 

• Insulin sensitivity (S1): the capability of insulin to increase glucose 

disposal to muscles, liver and adipose tissue. 

• Glucose effectiveness (Sg): the ability of glucose to enhance its own 

disposal at basal insulin level. 

• Pancreatic responsiveness (Ф1, Ф2): the ability of the pancreatic β-cells 

to secrete insulin in response to glucose stimuli. Cited from (Andersen & 

Højbjerre, 2002, p. 1). 

𝑆1 = −
𝑝3

𝑝2

 
(2-4) 

𝑆𝐺 = 𝑝1 (2-5) 

𝜙1 =
𝐼𝑀𝐴𝑋 − 𝐼𝑏

𝑛 ⋅ (𝐺0 − 𝐺𝑏)
 

𝜙2 = 𝛾 ∗ 104 

(2-6) 

 

As mentioned in Appendix A, the hyperglycaemia provokes an excessive release 

of insulin, see lower panel of Figure 27 located in Appendix A, with the maximum 

peak value observable at 4 minutes with a value of 130 µU/mL. This maximum 

insulin peak is called IMAX and used in equation (2-6). The glucose level at t(0) is 

denoted by G0 in mg/dL. 

 T1DM modelling 

For normal glucose disposal in tissue (e.g. no impaired glucose tolerance), three 

major kinetic processes are needed (Andersen & Højbjerre, 2002). These 

processes are: 

• Tissue needs to be sensitive to insulin 

• Glucose could be disposed at a basal insulin level 

• β cells of the pancreas secrete insulin to a glucose stimuli 

As mentioned before, in a T1DM patient the β cells are defective and no insulin is 

secreted anymore. To model a patient with T1DM, the insulin secretion related to 

glucose stimuli needs to be removed from the model equations. Consequently, 

external insulin input is required. 
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The dynamics of the Bergman’s advanced minimal model (Farmer Jr, Edgar, & 

Peppas, 2009) are described by the following ordinary differential equations 

(2-7), (2-8) and (2-9). The Bergman’s advanced minimal model has been 

programmed in MATLAB (Saglibene, 2015). The simulation results and parameter 

values of this model are found in Appendix C. 

 

𝑑𝐺

𝑑𝑡
= −𝑝1 ⋅ (𝐺(𝑡) − 𝐺𝑏) − 𝐺(𝑡) ⋅ (𝑋(𝑡) − 𝑋𝑏) + 𝐷(𝑡) 

(2-7) 

𝑑𝑋

𝑑𝑡
= −𝑝2 ⋅ (𝑋(𝑡) − 𝑋𝑏) + 𝑝3 ⋅ (𝐼(𝑡) − 𝐼𝑏) 

(2-8) 

𝑑𝐼

𝑑𝑡
= −𝑛 ⋅ 𝐼(𝑡) +

𝑈(𝑡)

𝑉
 

(2-9) 

 

The plasma insulin level is denoted by I, in mU/L, X represents the active insulin 

in the interstitial space, proportional to the plasma insulin level, in min-1. As 

mentioned before, X is an artificial model compartment. G represents the plasma 

glucose in mmol/L. U is the insulin administering input in mU/min. D is the CHO 

input in mmol/L/min (Saglibene, 2015).   
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3 Dalla Man model 

During an extensive literature survey, see chapter 9, several models are 

examined. The major limitation of these models is that they are validated only on 

plasma glucose concentrations. Therefore the physiology of the biochemical 

phenomena needs to be updated. The next step is to collect information on blood 

glucose levels in conjunction with the patient's food intake and administering of 

subcutaneous (exogenous) insulin. 

Basu et al. presented a meal dataset of 204 normal individuals in the age of 

56±2 years and a body weight of 78±1 kg. From this dataset, the time course of 

all relevant glucose and insulin fluxes during a meal is obtained (Basu et al., 

2003). Next, the dataset is used to develop a meal simulation model of the 

glucose-insulin system (Dalla Man, Rizza, & Cobelli, 2007). A block diagram of 

this model is depicted in Figure 8. Simulation results of a normal individual and a 

T2DM patient are visualized Figure 9 and Figure 10. These figures follow the 

trend of the model outcome which is presented by Dalla Man, Rizza, et al. 

 

Figure 8. Scheme of the glucose-insulin control system (Dalla Man, Rizza, et al., 2007). 
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Figure 9. Model simulation of the Glucose-Insulin System using normal patient parameters. The 
presented results follow the model outcome of Dalla Man, Rizza, et al. 

 

Figure 10. Model simulation of the Glucose-Insulin System using T2DM patient parameters. The 
presented results follow the model outcome of Dalla Man, Rizza, et al. 

During the extensive literature survey a total T1DM model solution was not 

found. Therefore combining formulas from different publications was the only 

solution. This is a major contribution to my research to an AP. 
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The presented Dalla Man model is converted to a T1DM model by combining 

formulas found in the following literature: The glucose-insulin dynamics from 

Meal Simulation of the Glucose-Insulin System (Dalla Man, Rizza, et al., 2007), 

The digestion dynamics of glucose from A System Model of Oral Glucose 

Absorption: Validation on Gold Standard Data (Dalla Man, Camilleri, & Cobelli, 

2006), The subcutaneous insulin administering from GIM, Simulation Software of 

Meal Glucose-Insulin Model and the UVA/PADOVA Type 1 Diabetes Simulator: 

New Features (Dalla Man et al., 2014; Dalla Man, Raimondo, Rizza, & Cobelli, 

2007). 

Using state space methods, the model is implemented in MATLAB. All states, 

parameters, in- and outputs are listed in the state space mapping table, see 

Table 1 below. 

Table 1. State space mapping of the Dalla Man, Rizza, et al. model. 

State 
Space 
Notation 

 

Application 
Field 

Sub 
Category 

Explanation Unit 

x1 Gp(t) States 
 

Glucose mass in plasma and 
rapidly equilibrating tissues 

mg/kg 

x2 Gt(t) Glucose mass in slowly 
equilibrating tissues 

mg/kg 

x3 Il(t) Insulin mass liver pmol/kg/min 

x4 Ip(t) Insulin mass plasma pmol/kg/min 

x5 Id(t) Delayed Insulin pmol/L 

x6 Ipo(t) Amount Insulin in the portal vein pmol/kg 

x7 Ione(t) Delayed insulin signal pmol/L 

x8 Qsto1(t) Amount of glucose mass in the 
stomach 

mg 

x9 Qsto2(t) Amount of glucose mass in 
stomach liquid phase 

mg 

x10 Qgut(t) Amount of glucose mass in the 
intestine 

mg 

x11 X(t) Remote insulin pmol/L 

x12 Y(t) Secretion of high plasma glucose pmol/kg/min 

x13 Isc1(t) Nonmonomeric insulin in the 
subcutaneous space 

pmol/kg 

x14 Isc2(t) Monomeric insulin in the 
subcutaneous space 

pmol/kg 

p1 k1 Glucose 
kinetics 

 

Rate parameter 1/min 

p2 k2 Rate parameter 1/min 

p3 VG Distribution volume of glucose dL/kg 

p4 m1 Insulin 
kinetics 

 

Rate parameter 1/min 

p5 m2 Rate parameter 1/min 

p6 m4 Rate parameter 1/min 

p7 VL Distribution volume of insulin L/kg 

p8 m5 Rate parameter min kg/pmol 

p9 m6 Rate parameter unitless 
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p10 HEb Endogenous 
Production  

Extraction of insulin unitless 

p11 kp1 Endogenous Production mg/kg/min 

p12 kp2 Liver glucose effectiveness rate 
parameter 

1/min 

p13 kp3 Endogenous Production mg/kg/min/pmol/l 

p14 kp4 Endogenous Production mg/kg/min/pmol/kg 

p15 ki Endogenous Production rate 
parameter 

1/min 

p16 kgri Rate of 

Appearance 
 

Rate parameter 1/min 

p17 a Rate parameter 1/min 

p18 kabs Rate parameter 1/min 

p19 f The fraction of intestinal 

absorption which actually 
happens 

unitless 

p20 BW Body weight kg 

p21 kmax Max. emptying rate 1/min 

p22 kmin Min. emptying rate 1/min 

p23 b Decrease percentage of kempt unitless 

p24 c rate maximum 1/mg 

p25 d Increase percentage of kempt unitless 

p26 Fcns Utilization 
 

Glucose uptake by brain mg/kg/min 

p27 p2u Peripheral glucose 1/min 

p28 Ib Basal insulin pmol/L 

p29 Vm0 Michaelis 
Menten 
 

Transport rate mg/kg/min 

p30 Vmx Maximum transport rate mg/kg/min/pmol/L 

p31 Km0 Constant for glucose disposal mg/kg 

p32 Kmx Peripheral insulin sensitivity mg/kg/min 

p33 K Secretion 
 
 

Pancreatic response to glucose 
rate of change 

pmol/kg/ mg/dL 

p34 α The delay between the glucose 
signal and insulin secretion 

1/min 

p35 β Pancreatic responsivity to glucose pmol/kg/min mg/dL 

p36 γ Transfer rate constant between 

portal vein and liver 

1/min 

p37 Sb Secretion basal rate pmol/kg/min 

p38 ke1 Renal 

excretion 

Glomerular filtration rate 1/min 

p39 ke2 Renal threshold of glucose mg/kg 

p40 h Secretion  Pancreatic responsivity to glucose mg/dL 

p41 kd Exogenous 
insulin 
infusion  

Insulin dissociation 1/min 

p42 ka1 Nonmonomeric insulin absorption 1/min 

p43 ka2 Monomeric insulin absorption 1/min 

d1 D Inputs 

 

CHO food intake mg 

d2 IIR(t) Exogenous insulin infusion rate pmol/kg/min 

y1 Ra(t) Outputs 

 

Glucose rate of appearance mg/kg/min 

y2 G(t) Plasma glucose concentration mg/dL 

y3 Vm(X(t)) Michaelis Menten insulin kinetics mg/kg/min 

y4 Km(X(t)) Michaelis Menten insulin kinetics mg/kg 

y5 Uid(t) Insulin dependent utilization mg/kg/min 

y6 E(t) Glucose renal excretion mg/kg/min 

y7 EGP(t) Endogenous glucose production mg/kg/min 

y8 S(t) Insulin secretion pmol/kg/min 

y9 I(t) Plasma insulin concentration pmol/L 

y10 HE(t) Hepatic extraction unitless 

y11 m3(t) Insulin kinetics time-varying 
parameter 

unitless 

y12 U(t) Total glucose utilization mg/kg/min 
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 The glucose subsystem of the Dalla Man 

The glucose subsystem in Figure 8 consists of two compartments and is depicted 

in Figure 11. Gp is the glucose mass in plasma, in mg/kg. The total glucose mass 

in plasma depends on: 

• Ra, the rate of glucose appearance from the gastrointestinal tract in 

mg/kg/min. 

• EGP, the endogenous glucose production by the liver in mg/kg/min. 

• E, the renal excretion of glucose by the kidneys in mg/kg/min. 

• Uii, the insulin-independent glucose utilization by the brain and 

erythrocytes in mg/kg/min. 

• k1 and k2, the patient-specific transfer rates in min-1, between the plasma 

glucose and the glucose mass in the rapidly and slowly equilibrating 

tissues. 

The glucose mass in mg/kg in the slowly equilibrating tissues is denoted by Gt. 

The total glucose mass Gt, depends on: 

• Uid, the insulin-dependent utilization by muscle and adipose tissue in 

mg/kg/min. 

• k1 and k2 in min-1 are the patient-specific transfer rate parameters. 

 

Figure 11. Glucose subsystem (Dalla Man, Rizza, et al., 2007). 
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The following model equations (3-1), (3-2) and (3-3) define the glucose 

subsystem. G(t) is the plasma glucose concentration in mg/dL. The distribution 

volume of glucose is VG in dL/kg. 

 

 The insulin subsystem of the Dalla Man model 

The insulin subsystem is depicted in Figure 12 and consists of two 

compartments. The insulin plasma mass in pmol/kg is denoted by Ip and the liver 

insulin mass in pmol/kg is denoted by Il. The distribution volume of insulin is VI 

in L/kg. The plasma insulin concentration is denoted by I, pmol/L. The insulin 

subsystem rate parameters are m1, m2 and m4 in (min-1). 

 

Figure 12. Insulin subsystem (Dalla Man, Rizza, et al., 2007). 

A large part of the insulin S(t) (pmol/kg/min) secreted by the pancreas, will be 

extracted by the liver, m3(t) and is time-varying. This is described by equations 

(3-4) and (3-5) and called the hepatic extraction, denoted by HE(t). In steady 

state, up to 60% of the insulin flux (from the portal vein) is cleared by the liver 

(Dalla Man, Rizza, et al., 2007). The unit of parameter m5 is min·kg/pmol and 

parameter m6 is unitless. 

𝑑𝐺𝑝(𝑡)

𝑑𝑡
= 𝐸𝐺𝑃(𝑡) + 𝑅𝑎(𝑡) − 𝑈𝑖𝑖(𝑡) − 𝐸(𝑡) − 𝑘1 ⋅ 𝐺𝑝(𝑡) + 𝑘2 ⋅ 𝐺𝑡(𝑡) 

(3-1) 

𝑑𝐺𝑡(𝑡)

𝑑𝑡
= −𝑈𝑖𝑑(𝑡) + 𝑘1 ⋅ 𝐺𝑝(𝑡) − 𝑘2 ⋅ 𝐺𝑡(𝑡) 

(3-2) 

𝐺(𝑡) =
𝐺𝑝

𝑉𝐺

 
(3-3) 

𝐻𝐸(𝑡) = −𝑚5 ⋅ 𝑆(𝑡) + 𝑚6 (3-4) 
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The following model equations (3-6), (3-7) and (3-8) will define the insulin 

subsystem. I(t) is the plasma insulin concentration in pmol/L and Vl is the 

distribution volume of insulin in L/kg. 

 Endogenous glucose production 

As mentioned before, the blood glucose (Gp) level needs to be as stable as 

possible. If the Gp is lower than the basal endogenous blood glucose production 

(EGPb), the glucagon stimulus will trigger the liver to release more internally 

stored glucose to keep the blood glucose level as constant as possible. The liver 

compartment is visualized in Figure 13. 

The liver compartment inputs are the glucose and insulin plasma concentration. 

The endogenous glucose production (EGP) is the liver compartment output. 

 

Figure 13. The liver compartment (Dalla Man, Rizza, et al., 2007). 

The following model equations (3-9), (3-10) and (3-11) describe the dynamics of 

the liver compartment. The extrapolated endogenous glucose production is kp1 in 

mg/kg/min. The liver glucose effectiveness is denoted by kp2, min-1. Insulin 

action by the liver is denoted by kp3 in mg/kg/min per pmol/l. The portal vein 

insulin action on the liver is denoted by kp4, mg/kg/min per pmol/kg. The delay 

rate parameter between the insulin signal and insulin action is ki, min-1. The 

endogenous glucose production (EGP) is constrained to be non-negative (Dalla 

Man, Rizza, et al., 2007, p. 1744). Ipo(t) is the amount of insulin in the portal 

𝑚3(𝑡) =
𝐻𝐸(𝑡) ⋅ 𝑚1

1 − 𝐻𝐸(𝑡)
  

(3-5) 

𝑑𝐼𝑙(𝑡)

𝑑𝑡
= −(𝑚1 + 𝑚3(𝑡)) ⋅ 𝐼𝑙(𝑡) + 𝑚2 ⋅ 𝐼𝑝(𝑡) + 𝑆(𝑡) 

(3-6) 

𝑑𝐼𝑝(𝑡)

𝑑𝑡
= −(𝑚2 + 𝑚4) ⋅ 𝐼𝑝(𝑡) + 𝑚1 ⋅ 𝐼𝑙(𝑡) 

(3-7) 

𝐼(𝑡) =
𝐼𝑝

𝑉𝑙

 
(3-8) 
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vein in pmol/l. Id (pmol/l) is the delayed insulin signal realised by equations 

(3-10) and (3-11). 

 Glucose rate of appearance 

The gastrointestinal tract is modelled using three differential equations. 

Equations (3-13) and (3-14) are used for describing the stomach and (3-15) for 

describing the gut. The glucose rate of appearance, Ra(t) in mg/kg/min is 

calculated by using equation (3-16). 

 

Figure 14. The gastrointestinal tract (Dalla Man, Rizza, et al., 2007). 

The carbohydrates enter the compartment (Figure 14) and are described by the 

solid glucose stomach phase, Qsto1 (mg). The second phase is the stomach 

grinding phase (or the glucose liquefying phase) and is indicated by Qsto2 (mg). 

After the glucose is liquefied, the glucose enters the gut. This is the final phase 

and indicated by Qgut (mg). Equations (3-12)-(3-17) describe the dynamics of the 

gastrointestinal tract. Parameter kgri is the rate of grinding in min-1. The gastric 

emptying rate parameter is kempt in min-1. The rate constant of intestinal 

absorption is kabs in min-1. The CHO food intake, D (mg) is the input to the 

system. The body weight of the patient in kg is denoted by BW. The fraction of 

glucose that appears in the blood plasma is denoted by f. For further details 

about parameters kmax, kmin, b, d, α and β, refer to a system model of oral 

glucose absorption (Dalla Man et al., 2006). 

𝐸𝐺𝑃(𝑡) = 𝑘𝑝1 − 𝑘𝑝2 ⋅ 𝐺𝑝(𝑡) − 𝑘𝑝3 ⋅ 𝐼𝑑(𝑡) − 𝑘𝑝4 ⋅ 𝐼𝑝𝑜(𝑡) (3-9) 

𝑑𝐼1(𝑡)

𝑑𝑡
= −𝑘𝑖 ⋅ (𝐼1(𝑡) − 𝐼(𝑡)) 

(3-10) 

𝑑𝐼𝑑(𝑡)

𝑑𝑡
= −𝑘𝑖 ⋅ (𝐼𝑑(𝑡) − 𝐼1(𝑡)) 

(3-11) 

𝑄𝑠𝑡𝑜(𝑡) = 𝑄𝑠𝑡𝑜1(𝑡) + 𝑄𝑠𝑡𝑜2(𝑡) (3-12) 
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 Glucose utilization 

The utilization of glucose consists of insulin dependent and insulin independent 

glucose utilization. The brain and the erythrocytes will utilize the glucose (Uii = 

Fcns) at a constant rate. Thereby the brain and the erythrocytes glucose uptake 

are the insulin-independent glucose utilization. Muscle and adipose tissue will 

utilize glucose after an insulin stimulus, so-called the insulin-dependent glucose 

utilization. Glucose utilization is depicted in Figure 15. 

 

Figure 15. Glucose utilization (Dalla Man, Rizza, et al., 2007). 

The glucose-dependent utilization is nonlinear and described with the Michaelis 

Menten (MM) enzyme kinetics model. For further details about the MM 

parameters (Vm, Km, Vm0, Vmx, Km0, Kmx) refer to (Dalla Man, Rizza, et al., 2007). 

Equations (3-18)-(3-21) describe the dynamics of the glucose utilization 

compartment. The remote insulin is denoted by X(t) in pmol/l. Insulin-dependent 

utilization by Uid(t) in mg/kg/min. The plasma insulin is denoted by I, suffix b 

denotes the basal state. Peripheral glucose utilization rate constant is denoted by 

p2U (min-1). 

𝑑𝑄𝑠𝑡𝑜1(𝑡)

𝑑𝑡
= −𝑘𝑔𝑟𝑖 ⋅ 𝑄𝑠𝑡𝑜1(𝑡) + 𝐷 ⋅ 𝑑(𝑡) 

(3-13) 

𝑑𝑄𝑠𝑡𝑜2(𝑡)

𝑑𝑡
= −𝑘𝑒𝑚𝑝𝑡(𝑄𝑠𝑡𝑜) ⋅ 𝑄𝑠𝑡𝑜2(𝑡) + 𝑘𝑔𝑟𝑖 ⋅ 𝑄𝑠𝑡𝑜1(𝑡) 

(3-14) 

𝑑𝑄𝑔𝑢𝑡

𝑑𝑡
= −𝑘𝑎𝑏𝑠 ⋅ 𝑄𝑔𝑢𝑡(𝑡) + 𝑘𝑒𝑚𝑝𝑡(𝑄𝑠𝑡𝑜) ⋅ 𝑄𝑠𝑡𝑜2(𝑡) 

(3-15) 

𝑅𝑎(𝑡) =
𝑓 ⋅ 𝑘𝑎𝑏𝑠 ⋅ 𝑄𝑔𝑢𝑡(𝑡)

𝐵𝑊
 

(3-16) 

𝑘𝑒𝑚𝑝𝑡(𝑄𝑠𝑡𝑜) = 𝑘𝑚𝑎𝑥 +
𝑘𝑚𝑎𝑥 − 𝑘𝑚𝑖𝑛

2
⋅ tanh(𝑎 ⋅ (𝑄𝑠𝑡𝑜 − 𝑏 ⋅ 𝐷)) 

 −tanh(𝛽 ⋅ (𝑄𝑠𝑡𝑜 − 𝑑 ⋅ 𝐷)) + 2 

(3-17) 

𝑈𝑖𝑑(𝑡) =
𝑉𝑚(𝑋(𝑡)) ⋅ 𝐺𝑡(𝑡)

𝐾𝑚(𝑋(𝑡)) + 𝐺𝑡(𝑡)
 

(3-18) 
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 Glucose renal excretion 

If there is no insulin stimulus, the blood glucose level of the patient will rise 

when CHO is digested. At a certain threshold, the kidneys will excrete the 

glucose, E(t) into the urine through the kidneys GBM in mg/kg/min. The glucose 

renal excretion is modelled by equation (3-22). It depends linearly on the blood 

glucose level. 

Where ke1 (min-1) is the glomerular filtration rate and ke2 (mg/kg) is the renal 

threshold of glucose (Dalla Man, Rizza, et al., 2007). 

 Insulin secretion 

The insulin secretion by the pancreatic β cells is described by equations (3-23)- 

(3-25). The insulin secretion compartment is visualized in Figure 16. 

 

Figure 16. Insulin secretion (Dalla Man, Rizza, et al., 2007). 

As mentioned in appendix A, insulin is secreted in two phases. Phase one is the 

fast insulin secretion which is glucose dependent. The second phase is glucose-

independent insulin secretion, at a lower insulin secretion rate. The insulin 

secretion is denoted by S(t) in pmol/kg/min, the transfer rate (min-1) between 

portal vein and liver is denoted by γ. Pancreatic responsivity is denoted by K and 

is in pmol/kg per mg/dl. Secretion of insulin at high plasma level is denoted by 

Y(t) in pmol/kg/min. For further details about the parameters α, β, and h refer to 

𝑉𝑚(𝑋(𝑡)) = 𝑉𝑚0 + 𝑉𝑚𝑥 ⋅ 𝑋(𝑡) (3-19) 

𝐾𝑚(𝑋(𝑡)) = 𝐾𝑚0 + 𝐾𝑚𝑥 ⋅ 𝑋(𝑡) (3-20) 

𝑑𝑋(𝑡)

𝑑𝑡
= −𝑝2𝑈 ⋅ 𝑋(𝑡) + 𝑝2𝑈(𝐼(𝑡) − 𝐼𝑏) 

(3-21) 

𝐸(𝑡) = {
𝑘𝑒1 ⋅ (𝐺𝑝(𝑡) − 𝑘𝑒2) 𝑓𝑜𝑟 𝐺𝑝(𝑡) > 0

0                                 𝑓𝑜𝑟 𝐺𝑝(𝑡) ≤ 0
 

(3-22) 
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meal simulation model of the glucose-insulin system (Dalla Man, Rizza, et al., 

2007, p. 1745). 

 Exogenous insulin administering 

The subcutaneous insulin kinetics will be used instead of the insulin secretion 

mode mentioned in chapter 3.7. Through intensive literature survey it was finally 

found how to transform the Dalla Man, Rizza, et al. model to a T1DM model. A 

new diagram of the model is presented in Figure 17. The simulated patient is 

assumed to be in good control, subsequently the rest of the model parameters of 

the normal patient will be used (Dalla Man, Raimondo, et al., 2007, p. 325; 

Visentin, Dalla Man, Kovatchev, & Cobelli, 2014). The next equations will 

describe the T1DM secretion module (Dalla Man et al., 2014). Equation (3-25) 

will be set to zero when T1DM model simulations are performed. 

 

The amount of nonmonomeric insulin in the subcutaneous space (SCS) is 

denoted by Isc1 in pmol/kg, and the monomeric insulin in the SCS is denoted by 

Isc2 in pmol/kg. The exogenous insulin infusion rate is denoted by IIR(t) in 

pmol/kg/min. The rate parameters (min-1) of the insulin dissociation, 

nonmonomeric and monomeric insulin absorption are kd, ka1 and ka2, respectively 

(Dalla Man, Raimondo, et al., 2007). Finally the insulin delivery rate of 

appearance in plasma is denoted by Ri(t) in pmol/kg. 

𝑆(𝑡) = 𝛾 ⋅ 𝐼𝑝𝑜(𝑡) (3-23) 

𝑑𝐼𝑝𝑜(𝑡)

𝑑𝑡
= −𝛾 ⋅ 𝐼𝑝𝑜(𝑡) + 𝑆𝑝𝑜(𝑡) 

𝑆𝑝𝑜(𝑡) = {
𝑌(𝑡) + 𝐾 ⋅

𝑑𝐺(𝑡)

𝑑𝑡
+ 𝑆𝑏  for 

𝑑𝐺

𝑑𝑡
> 0

𝑌(𝑡) + 𝑆𝑏                        for 
𝑑𝐺

𝑑𝑡
≤ 0

 

(3-24) 

𝑑𝑌(𝑡)

𝑑𝑡
= {

−𝛼 ⋅ (𝑌(𝑡) − 𝛽 ⋅ (𝐺(𝑡) − ℎ)) for 𝛽 ⋅ (𝐺(𝑡) − ℎ) ≥ −𝑆𝑏

−𝛼 ⋅ 𝑌(𝑡) − 𝛼 ⋅ 𝑆𝑏                   for 𝛽 ⋅ (𝐺(𝑡) − ℎ) < −𝑆𝑏

 
(3-25) 

𝑑𝐼𝑠𝑐1(𝑡)

𝑑𝑡
= −(𝑘𝑑 + 𝑘𝑎1) ⋅ 𝐼𝑠𝑐1(𝑡) + 𝐼𝐼𝑅(𝑡) 

(3-26) 

𝑑𝐼𝑠𝑐2(𝑡)

𝑑𝑡
= 𝑘𝑑 ⋅ 𝐼𝑠𝑐1(𝑡) − 𝑘𝑎2 ⋅ 𝐼𝑠𝑐2(𝑡) 

(3-27) 

𝑅𝑖(𝑡) = 𝑘𝑎1 ⋅ 𝐼𝑠𝑐1(𝑡) + 𝑘𝑎2 ⋅ 𝐼𝑠𝑐2(𝑡) (3-28) 
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Figure 17. Scheme of the glucose-insulin system with exogenous insulin delivery (Visentin et al., 
2014). 
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4 Patient data 

For research purposes and getting hands-on experience, a one-day traineeship at 

the Rijnstate Paediatric Diabetic Department has been followed. Data is collected 

from individual patients and is released in accordance with the rules of Rijnstate 

Hospital Arnhem the Netherlands. Data stored in patients’ insulin pumps (for 

example the Medtronic MiniMed 640G) was extracted and converted for correct 

data usage in MATLAB. This data is used for estimating certain model 

parameters, using a nonlinear least squares search method explained in section 

5.3. 

 Patient data explained 

In Figure 18 one-day of T1DM patient data is displayed. The horizontal black 

lines give an indication of the patients eating time bandwidth during breakfast, 

lunch and dinner. The numerical values under the horizontal black lines indicate 

the CHO intake in grams. 

 

Figure 18. 24-hour T1DM patient data. 

The glucose sensor will measure the interstitial glucose level. This sensor data is 

depicted by the light blue line in the figure in mmol/L. The glucose sensor data is 

ideal for pattern and trend watching, instead of individual value measurements, 
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and should not be used for insulin bolus calculation (Medtronic International 

Trading Sarl™, 2018). 

Accurate real-time measurements, for calculating the insulin correction bolus and 

calibrating the glucose sensor, finger pricks are needed. The blood glucose finger 

prick measurements in mmol/L are depicted by blue squares in the figure. 

The insulin bolus calculation depends on the CHO intake and the blood glucose 

finger prick measurement and not on the interstitial glucose sensor data as 

mentioned before. The pump calculates the amount of insulin needed, and 

delivers it to the patient after patients approval. The insulin correction bolus is 

depicted as an orange circle in the figure with the corresponding y-axis on the 

right side. 

Because the brain, red blood cells and other tissue will need a consistent basal 

level of insulin (to keep the vital parts of the human body alive), a constant small 

delivery of insulin is required by the insulin pump. This is depicted by a 

horizontal green line: the basal insulin dose, with the corresponding y-axis on 

the right side. 

 Patient data quality 

Patient data may be inaccurate. Effort, accuracy and discipline in taking 

measurements are needed to control T1DM in the euglycemia range. To achieve 

this, correct carbohydrate information is crucial to calculate the insulin dose 

correctly. Sometimes patients will lack effort in controlling T1DM, resulting in 

incorrect data. 
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Figure 19. T1DM patient data on day 6 with the model simulation without estimated parameters. 

In Figure 19, the model prediction is presented by a red line. From the start of 

the measurements (time stamp 0 minutes) until approximately midday (700 

minutes), there is no correlation between the patient's sensor data and the 

predicted blood glucose outcome of the model. It can be clearly seen that there 

are moments of insulin administering and blood glucose finger prick 

measurements. The assumption is that the patient did not fill the carbohydrate 

intake in the insulin pump. 

As a result of the assumed lack of carbohydrate input until midday and the 

insulin administering, the simulated blood glucose by the model will decline. 

Consequently, no correlation is visible between the sensor data and the model 

outcome. The quality of the patient data is essential for parameter estimation! 

 The accuracy of the glucose sensors 

Till today the glucose sensors are used for monitoring purposes only (Clarke et 

al., 2005; Medtronic International Trading Sarl™, 2018). Patients can still not 

fully rely on continuous glucose sensors. This is because the sensor has a bad 

accuracy in the hypoglycaemic range (Kropff J. et al., 2015). Furthermore, there 

is a time lag between the venous blood glucose level (e.g. the finger prick 
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measurement) and the measured interstitial glucose value by the sensor (Clarke 

et al., 2005). The mean time lag measured at the abdominal region is 7.94 ± 

6.48 min compared to 11.70 ± 6.71 min at the buttocks area for a Medtronic 

Enlite interstitial fluid glucose sensor (Keenan et al., 2011, p. 225). A time delay 

can prevent proper estimation of model parameters. A remedy for this is to 

estimate the time delay too. Figure 20 displays a single patient under cardiac 

surgery with different glucose measuring devices. In this figure, the differences 

between arterial blood gas, intravascular microdialysers, subcutaneous 

measurements, and glucose measurements (point-of-care) can be seen. The 

intravascular microdialysers CGM (continuous glucose monitor) glucose values 

followed the reference method (arterial blood gas) very well. The subcutaneous 

CGM and point-of-care glucometer glucose values also followed the trend of the 

reference method, although lower glucose values were measured. The Mean 

Absolute Relative Difference (MARD) (Bon, 2013; Vanstraelen, 2014, p. 7) of this 

patient was 5.03% for the intravascular microdialysers CGM system, 42.8% for 

the subcutaneous CGM system, and 17.4% for the point-of-care function of the 

sensor-reader. (Schierenbeck, Franco-Cereceda, & Liska, 2016). 

 

Figure 20. Arterial blood gas analysis vs. microdialysis CGM, subcutaneous CGM and point-of-care 
(Schierenbeck et al., 2016). 
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The glucose sensors are evaluated by the International Organization of 

Standardization (ISO) criteria for blood glucose analysing devices 

ISO15197:2013. The ISO norm stated that 95% of the readings are ±15% within 

the reading of the reference value, if this value is above 99 mg/dL (5.5 mmol/L) 

and ±14 mg/dL (0.78 mmol/L) under 99 mg/dL (5.5 mmol/L) (Schierenbeck et 

al., 2016). 
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5 Sensitivity analysis, parameter estimation and model 

calibration 

Model calibration concerns the use of measurement data to estimate unknown or 

ill-known model parameters to improve model accuracy. Model accuracy benefits 

most from estimating unknown parameters to which the model is sensitive. To 

determine this, parameter sensitivity analysis is needed (Briggs et al., 2012; 

Cohen & van Essen, 1991; van Willigenburg, 2014). When initial state variables 

are also (partially) unknown, these may also be considered as unknown 

parameters. After performing parameter sensitivity analysis on a patient model 

with nominal parameter values, using a dataset (CGM sensor) obtained from a 

single patient, the most sensitive parameters are estimated resulting in a 

calibrated model of this patient. Prior to estimating parameters their 

identifiability is established using a fast algorithm. Identifiability of parameters in 

a model ensures that they are uniquely determined by the measured data (if 

model and measurement uncertainty are discarded). 

 Sensitivity Analysis 

To find out the most sensitive parameters, a parameter sensitivity analysis is 

necessary (van Willigenburg, 2014). This sensitivity analysis (SA) should be done 

only on ill-known parameters. Parameters p10, p16, p17, p24 and p26 are fixed and 

consequently require no SA. The parameters of the glucose rate of appearance 

(p18, p19, p21 - p23 and p25), endogenous glucose production (p11 - p15) and 

glucose utilization (p26, p27-p29 and p31) are estimated within precision (Dalla 

Man, Rizza, et al., 2007). Also, these parameters do not require a SA. 

To carry out the SA, a selected parameter value is changed by 5% and after the 

model simulation from time zero until a final time tf, the absolute normalized 

value Δx(tf) of each state variable is recorded. See equation (5-1), where xpert(tf) 

is the outcome of the state variable after a parameter change, xnom(tf) is the 

nominal outcome and xmax the maximum value attainable by that state variable. 

A low value of Δx(tf) indicates that this state variable of the Dalla Man et al. 

model is not very sensitive to the selected parameter. If Δx(tf) is significant, the 

state variable is sensitive to the selected parameter. 
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A small part of the parameter SA outcome, i.e. values Δx(tf) of a normal 

individual, are displayed in Figure 21. 

 

Figure 21. Parameter sensitivity analysis, the absolute normalized values Δx(tf) of different state 
variables for different selected parameters. 

From Figure 21 it can be seen that state variables x2-x4, x6 and x12 are sensitive 

to parameters p1-p6, p8 and p9. This follows from the numbers and corresponding 

colour bars that are lighted in increasing gradations of red while the grey 

quadrant indicators are filled proportion wise. Also it can be seen that the 

sensitivities of state variables x8-x10 are zero. Those states represent food intake. 

During this parameter SA no food is ingested (model input is zero) so therefore 

these state values are zero. As mentioned before p10 is a fixed parameter value, 

so SA gives a zero outcome. In appendix D the MATLAB routine used to perform 

the SA is explained. More results of the SA can be found in Appendix E and 

Appendix F. 

In total 21 runs were conducted with different simulation time lengths, to 

understand which Δx(tf) responses are observable at the specified end time in 

conjunction with the changed parameter value. 

From the observed data, it can be concluded that the length of simulation time 

does not have a big influence on the Δx(tf) outcome of the glucose parameters. 

∆𝑥(𝑡𝑓) = |
𝑥𝑝𝑒𝑟𝑡(𝑡𝑓) − 𝑥𝑛𝑜𝑚(𝑡𝑓)

𝑥𝑚𝑎𝑥

| 
(5-1) 
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During the first 10 minutes, there is at time-delayed response in the insulin 

kinetics parameters. This is visualized in Table 2 on the next page. 

 

Table 2. Parameters that are sensitive, x indicates multiple sensitive states Δx(tf) at the specified 
end time. Bold x indicates a higher degree of sensitivity. Red parameters (p1-p3) indicate 
the glucose kinetics, green (p4-p9) indicates the insulin kinetics and blue (p35-p40) 
indicates the insulin secretion kinetics. 

     Min 
 
 
 

Par 
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1
0
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0
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5
 

3
0
 

3
5
 

4
0
 

4
5
 

5
0
 

5
5
 

6
0
 

7
0
 

9
0
 

1
0
0
 

1
4
4
0
 

P1 k1   X X X X X X X X X X X X X X X X X X 

P2 k2 X X X X X X X X X X X X X X X X X X X X 

P3 VG X X X X X X X X X X X X X X X X X X X X 

P4 m1     X X X X X X X X X X X X X X X X 

P5 m2     X X X X X X X X X X X X X X X X 

P6 m4      X X X X X X X X X X X X X X X 

P7 VI           X X X X X X X X X X 

P8 m5    X  X X X X X X X X X X X X X X X 

P9 m6   X X X X X X X X X X X X X X X X X X 

P35 β X X X X X X X X X X X X X X X X X X X X 

P36 γ X X X X X X X X X X X X X X X X X X X X 

P37 Sb    X X X X X X X X X X X X X     

P40 h X X X X X X X X X X X X X X X X X X X X 

 

The conclusion is that states x1-x4, x6, and x12 are most sensitive to parameter 

changes. In Table 2, parameters p1-p9, and p35-p40 appear to be good candidates 

for parameter estimation. Additional details about the parameters are explained 

in Table 1. 

 Identifiability 

Parameters can only be estimated properly if they are locally structural 

identifiable. Using a fast algorithm (exidghm.m) presented by (Stigter & 

Molenaar, 2015), we will first check the local structural identifiability of sets of 

sensitive parameters. 

The next parameter vector example is tested for identifiability: 

pes = [m1 m2 m4 m5 m6 HEb kmin kmax Vm0 Vmx]’ 

The outcome is displayed in Figure 22. 
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Figure 22. Identifiability of a parameter vector of 10 elements. Parameter 4, 6 – 8 are not 
identifiable.  

It can be seen in the left panel of Figure 22 that a gap is present, distinguished 

with two black stars, so four of the 10 parameters are not identifiable. From the 

right panel of the figure the parameters 4, 6, 7 and 8 are not identifiable, 

respectively: m5, HEb, kmin and kmax in this vector of 10 parameters. 

 

Figure 23. Two parameter sets that are identifiable. No gap present. 

Identifiable parameter vectors in Figure 23 (no gap present) pes = [VG k1 k2 ka1]’ 

on the left panel, and on the right panel, pes = [VI m1 m6]’ respectively. Table 3 

records the result showing identifiable parameter sets of sensitive model 

parameters. 

Table 3. Identifiable parameter sets used for calibrating (curve fitting) the model outcome on 
retrieved patient data. 

Set Parameter 

1 m2 m1 m6  

2 ka1 ka2 kd  

3 VG k1 k2 ka1 

4 ka1 ka2 k1 k2 

5 VI m1 m6  

6 m2 m1 m6  

7 VI kd ka1 ka2 
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 Parameter estimation using least squares with patient data 

The parameter estimates are obtained from a nonlinear least squares search 

method represented by Figure 24. (Cohen & van Essen, 1991; van Willigenburg, 

2014). 
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Figure 24. Parameter estimation through minimization of the sum of squared errors. (van 
Willigenburg, 2014). 

By minimizing the sum of squared errors V(p) between the Dalla Man model 

outcome y(k|p) and measured data z(k) (the observations of the collected 

patient data and CGM sensor), see Figure 24, parameter estimates collected in 

the vector 𝑝̂ are obtained. The search in Figure 24 is performed by MATLAB 

function ‘fminsearch’ (Lacouture & Cousineau, 2008; The MathWorks Inc, 2018). 

In ‘fminsearch’,  the Nelder-Mead algorithm was chosen, because it suffers much 

less from local minima, caused partly by measurement errors. Using the physical 

and physiological meaning of model parameters, their search was restricted to a 

meaningful range. The patient dataset z(k) was obtained from the Rijnstate 

Hospital Arnhem. As mentioned in section 3.8, the insulin section module 

(normal patient) will be replaced by the subcutaneous insulin kinetics to transfer 

the model to a T1DM model. The parameters of subcutaneous insulin kinetics 

(p41–p43) are used for parameter estimation as well as the parameters (p1–p9) 



37 

 

from Table 2. Computations revealed that it is important to also estimate the 

time-lag of the measurement data to obtain reasonable data fits. 

 Result parameter estimation 

Results obtained from different parameter estimation runs concerning different 

parameter sets and datasets from different days are recorded in Table 4. The 

values in this table equal, formula (5-2). 

Formula (5-2), may be loosely interpreted as the average absolute error between 

the model and measurement data. 

Table 4. 𝑽̂𝒎𝒊𝒏 values calculated, using the different patient-data and parameter-sets. Values in 

green indicate the best optimal fits found. 

            Set 
 
 

Day number 

1 2 3 4 5 6 7 

1 7.89 7.75 7.54 7.68 7.88 7.89 7.6 

7.09 6.37 6.30 6.23 6.69 7.09 6.32 

6.40 5.70 5.10 5.00 6.07 6.40 5.28 

6.04 5.94 5.92 5.93 6.04 6.04 5.88 

6.52 5.98 5.96 5.29 6.03 6.52 5.81 

5.29 4.39 4.71 4.16 4.92 5.29 4.05 

6.03 6.00 3.44 3.48 3.99 6.03 3.90 

3.25 3.06 2.30 2.26 2.40 3.25 2.31 

4.17 3.31 3.34 2.93 3.60 4.17 3.06 
 

2 

3 

4 

5 

6 

7 

8 

9 

 

𝑉̂𝑚𝑖𝑛 = √
𝑉(𝑝)𝑚𝑖𝑛

𝑘(𝑛)
 

(5-2) 
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Figure 25. Patient and model outcome simulated on day 4. The Red line is the model simulation 
outcome using the estimated parameter set 4, with a model time delay of 58 minutes. 

In Figure 25, the model outcome will give the best possible fit on the interstitial 

glucose trajectory of the patient with respect to the CHO intake and administered 

insulin. The first approximate 1250 minutes the model outcome follows the trend 

of the CGM. The first and second low glucose levels at approximate 320 and 620 

minutes of 2.3 and 2.8 mmol/L respectively are not followed by the model 

prediction and are in the hypoglycaemia range (≤ 3.8 mmol/L). At around 740 

minutes the model prediction is ahead on the CGM. This could be due to the 

different insulin sensitivities during the day. After 1250 minutes the model 

outcome is not representative any more. It can be cleary seen that finger pricks 

are taken and insulin is administered at 1330 and 1400 minutes. Likely, the 

patient had some late night snack, but no CHO intake was registered in the 

insulin pump by the patient, resulting in this mismatch in the model outcome. 

Using the estimated parameter-set 4 of day 4 on a different day, will give some 

indication about the quality of the estimated parameter-set 4. This is called cross 

validation. In Figure 26, parameter set 4 is used for the model simulation of day 

10. 
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Figure 26. The simulated model outcome of day 10 using the estimated parameter values of set 4. 

From Figure 26 it can be seen that no unwanted hypocalcaemia’s occur during 

the day. Around 1070 minutes the patient measures its blood glucose level, and 

after administering the calculated amount of insulin, the patient will eat 

something, containing 89 grams of CHO. Comparing the CGM curve with the 

simulated model outcome the large peak at 1100 minutes of the model outcome 

is not observable. This model mismatch could again be due to the different 

insulin sensitivities during the day or an exercise-induced hypoglycaemia (Bon, 

2013). An exercise-induced hypoglycaemia will occur during a sports activity 

when the human body needs more energy than available. A sudden drop in the 

blood glucose level is then observable. 
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6 Conclusions 

Currently the patients’ blood glucose is mostly measured using CGM sensors for 

the sensor-augmented insulin pump (SAP). The next step is to convert the SAP 

to an AP (artificial pancreas). Nevertheless a CGM will give the AP an unwanted 

delayed interstitial glucose level. Therefore a CGM alone is not really suitable for 

the AP control strategy. From different publications (Kropff J. et al., 2015; 

Schierenbeck et al., 2016), the arterial blood glucose level is higher than the 

GCM sensor measured value, in a range of 21.3%. Nevertheless, the CGM will be 

calibrated on the BG value of the finger prick measurements. This calibration will 

not remove the delay between blood glucose level and the interstitial glucose 

level of the patient (Keenan et al., 2011). 

Currently mainly CGM sensors are used for registration of the blood glucose. 

Glucose sensors have a moderate accuracy (shown in Figure 20), and the 

measured glucose value is lower than the finger prick measurements as 

mentioned before. From (Schierenbeck et al., 2016) a glucose sensor will have a 

MARD between 12.0% to 52.1%. A realistic MARD value of an Enlite Medtronic 

glucose sensor is 21.3% (Vanstraelen, 2014, p. 9). 

An artificial pancreas will enhance the HRQoL of the patient. To control T1DM 

using an AP, the model needs to accurately predict the glucose level and control 

the exogenous insulin release by the pump. Currently, a lot of input information 

is needed from the patient to predict the right AP control strategy. Control of 

T1DM using only patients’ CHO intake and CGM data is insufficient in home based 

situations and could lead to unwanted dangerous situations like coma or even 

death. Only in the Clinical Research Centre several AP’s worked in controlled 

conditions and with limited CHO intake by the patient (Zisser et al., 2015). 

When controlling T1DM using AP model predictions only, unwanted issues arise. 

For instance unregistered CHO intakes by the patient will result in erroneous 

model predictions and no exogenous insulin delivery. Thereby the patient's 

hyperglycaemia range may not match the model predictions as displayed in 

Figure 25.  
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Also time-variable parameters are missing in the model, such as different values 

of the patients’ insulin sensitivities during the day. More information on the 

patients’ biomedical reactions is needed. So, more biosensors, with different 

fields of interest are needed without decreasing the patients HRQoL. 

Sports activity and other hormone interactions like stress should be added as 

model inputs. Also, different types of CHO labelling are required, because 

different types of carbohydrates will have different effects on the patients’ blood 

glucose fluctuations. Now there is no differentiating between fast and slow 

carbohydrates. This should be added as an extension in the T1DM model 

dynamics. 

The lack of real-time patient data will result in an insufficient control strategy. 

The T1DM patient using an AP with only the CGM data and patients’ CHO intake 

patterns as input will lead to inaccurate control. An improved interstitial glucose 

sensor is first necessary, when thinking about safely controlling an AP in the 

future, in home based situations. 

Overall, T1DM models need to be more accurate in the lower region of the blood 

glucose level (≤ 3.8mmol/L or 70 mg/dL, (Kropff J. et al., 2015)). 

Hypoglycaemia is dangerous when no appropriate care is taken. Therefore, 

models need to react fast and accurately on the signs of a hypoglycaemia. More 

research is needed in this area to improve the model and the CGM. 

A lot of articles and publications about models of DM are present, with the 

peculiar aspect that minimal information about model calibration is given, and 

also no real patient data is used to calibrate the T1DM model. Often simulated 

patient data (data generated by an artificial patient model) is used to compare 

the T1DM model outcome (Harsh, 2013). 

Another odd aspect is that no clear statements are given on how the control 

algorithm works. Likewise model details are not or only partly described. 

Nevertheless, these are crucial for a flawless operating AP. 

Models suitable for an AP should be calibrated using data from real patients. 

Rather surprisingly, model calibrations performed in the literature are rare and if 

performed at all they almost exclusively use data generated by advanced models 
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rather than data obtained from real patients. Moreover they lack a parameter 

sensitivity analysis as well as an analysis concerning identifiability of parameter 

sets. All these are necessary to conduct a proper T1DM model calibration using 

data from real patients. In this thesis all of these have been successfully 

performed which is the major contribution of this thesis. Thereby this thesis 

enables enhancement of the model quality as required for a AP which therefore is 

not considered a Utopia. 

From the sensitivity and identifiability analysis, a selection of parameters is found 

that is suitable for calibrating the model outcome on patient data. These 

parameters may be T1DM patient specific, and are divided into three groups: 

glucose, insulin and exogenous insulin kinetics. The parameter sets suitable for 

calibration are defined in Table 3.  

Finally, after calibrating the model, an independent data set of the same patient 

is used to compare the model outcome. This is an important, severe test that 

provides insight into the quality of the model after calibration. Parameter set 4, 

with the associated parameters of the exogenous insulin kinetics (ka1 and ka2) 

together with the glucose kinetics (k1 and k2) gives the best model calibration 

result. During parameter estimation search bounds are set for the to be 

estimated parameters. They were set to be ten times bigger and ten times 

smaller than the nominal parameter value. No parameter clipping was observed. 

After the parameter estimation, the rate constant parameters of the absorption 

of insulin (insulin kinetics) has decreased and the rate parameters of the glucose 

kinetics has increased. The relative  changes from the nominal parameter values 

were as follows: ka1 = -0.77,  ka2 = -0.31  k1 = 1.15 and k2 = 1.44 respectively.  

The result of the model outcome compared with an independent data set is 

depicted in Figure 26. This is the first result of the presented T1DM model 

obtained in this research, having a moderate model accuracy. This accuracy 

needs to be improved in the future using the procedures developed in this thesis 

as well as improvements summarized below.  

Model improvement should not only be obtained from calibrating the model on 

specific patient data but also more inputs are needed from the human body. For 

example an accelerometer, to detect human sport activity, or a sweat detection 
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sensor that could be used to detect the human stress level (Marques, Silverman, 

& Sternberg, 2010) could be added. These sensors will provide vital input 

information to the model of the AP. These two sensors are already on the 

marked and should be easy implemented in the design of the AP. 

An accelerometer will enhance the reduction of a sports induced hypoglycaemia 

(Bon, 2013). The control system then knows the patient's state of exercise and 

another control strategy could be chosen by the AP when necessary. A possible 

exercise-induced hypoglycaemia is present in Figure 26 at about 1100 minutes, 

and should be detected in the future by the control algorithm. 

The patients’ stress level will have an effect on the patients’ insulin sensitivity. 

The AP control algorithm can adapt the insulin sensitivity parameter in the 

future.  

Having concluded that an artificial pancreas is not a utopia, the search will 

continue for an AP in home based situations. With the presented T1DM model 

and calibrating tools presented in this thesis, a solid basis is formed for further 

AP model enhancement. Finally the T1DM model simulation outcomes presented 

in this thesis can also be employed as a learning instrument for patients to better 

understand the pathogenesis of their disease. 
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7 Recommendations 

The calibration procedures based on data from real patients, as developed and 

presented in this thesis, should be adopted in future research to enhance the 

quality of models that are central to an AP. 

Accurate (interstitial) glucose and insulin sensors need to be engineered. Today’s 

CGS sensors are not accurate enough (Clarke et al., 2005; Kropff J. et al., 2015; 

Schierenbeck et al., 2016; Vanstraelen, 2014). Furthermore, the CGS sensor will 

induce a time lag and is sensor position relevant on the patient’s body and 

patient-specific (Keenan et al., 2011). 

In this research, a T1DM model is presented based on the Dalla Man et al. meal 

simulation model of the glucose and insulin system. The very preliminary 

outcome is that this model may not be accurate enough to estimate patient 

glucose levels for an AP. The next step could be, to research the S2008 

UVA/PADOVA (Dalla Man et al., 2014), model. It is more extensive than the 

model presented in this thesis. As mentioned in (Visentin et al., 2014, p. 432) 

the UVA/PADOVA Type 1 diabetes simulator model will be more accurate because 

it counter-acts the insulin stimulus by modelling the release of the hormone 

glucagon. By using the two hormones insulin and glucagon, the AP can control 

the hyper- and hypoglycaemia range better. When a hypoglycaemia occurs, a 

glucagon stimulus will release the stored glucose in the liver resulting in a higher 

BG level. More research on glucagon delivery is required. Subsequently, in the 

future, an insulin and glucagon delivery pump could be designed as well. And to 

counteract the limitations of the AP, extended Kalman filtering could be used for 

AP control (Wang et al., 2014). 
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8 Useful Abbreviations and Nomenclature 

AP  Artificial Pancreas  
BG  Blood Glucose 

CGM  Continuous Glucose Monitoring 
CHO  Carbohydrate 
DM  Diabetes Mellitus 

FSIGT  Frequently Sampled Intravenous Glucose Tolerance 
GBM  Glomerular Basement Membrane 

GRS  Glucose Regulatory System 
ICD  Implantable Cardioverter Defibrillator 
IM  Intramuscular 

IV  Intravenous 
IVGTT  Intravenous Glucose Tolerance Test 

KG  Kinetics of Glucose – Glucose Kinetics 
MARD  Mean Absolute Relative Difference 
MINMOD Minimal Model 

MM  Michaelis Menten 
PP  Pancreatic Polypeptide 

SA  Sensitivity Analysis 
SAP  Sensor-augmented insulin pump 
SCS  Subcutaneous Space 

SSE  Sum of Squared Errors 
T1DM   Type 1 Diabetes Mellitus 

T2DM  Type 2 Diabetes Mellitus 
TDI  Total Daily Insulin 
HRQoL Health-Related Quality of Live 
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10 Appendices 

A. Bergman minimal glucose model 

Bergman (Bergman, Ider, Bowden, & Cobelli, 1979) evaluated seven glucose 

mathematical models to estimate insulin sensitivity. A catheter was placed 

through the jugular vein into the right atrium of dogs and an intravenous glucose 

tolerance test (IVGTT) was performed. From the obtained data, glucose-

disappearance, as well as pancreatic insulin release curves, ware made. The 

insulin data set is later used as the input for the system models. The output of 

the models is the plasma glucose disappearance. Berman et al. proposed the 

seven models and after comparison, Bergman concluded that they found 

meaningful parameter estimates for model VI. Model VI was adopted as the ideal 

glucose kinetics (KG) model to estimate insulin sensitivity in those days, see 

Figure 28. This Bergman’s model VI is frequently used as the basis for further 

model development (Väisänen, 2015). 

Gathering glucose and insulin data 

After fasting period a glucose injection to an animal or man is given. Blood is 

frequently sampled and after centrifugation the blood sample, the plasma is 

analysed by a laboratory to reveal the glucose and insulin levels at specified 

sample time. From this frequently sampled intravenous glucose tolerance 

(FSIGT) data (Pacini & Bergman, 1986), the dynamic response of pancreatic β 

cell insulin release and glucose disappearance are found for that specific subject. 

An FSIGT data file is presented in Appendix B. A MATLAB script is used for the 

simulation of the minimal KG model, developed by van Riel (Riel, 2004). With 

minor modifications for better graphical output results, the FSIGT is visualized, 

see Figure 27.  
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Figure 27. Frequently sampled intravenous glucose tolerance data-set, visualized. 

An FSIGT (or IVGTT with frequent sampling) starts with a smooth glucose 

injection in an antecubital vein, with a duration of 60 seconds and a mass of 300 

mg/kg glucose at time t = 0 after an overnight fast. The sample duration of the 

IVGTT is 182 minutes (Bergman et al., 1981). From the obtained data, a typical 

shape is depicted in Figure 27. After injecting the glucose, hyperglycaemia 

occurs. A large glucose peak (350 mg/dL) is observable after 2 minutes. In the 

next 60 minutes after the injection, the plasma glucose level will decrease to the 

normal baseline plasma glucose level of approximate 92 mg/dL or 5 mmol/L. 

The hyperglycaemia provokes an excessive release of insulin, with the maximum 

peak value observable at 4 minutes (130 µU/mL). In literature (Bergman et al., 

1981) this release of insulin is called the first phase Ф1. The second release of 

insulin, at a lower secretion rate (note, a slower decline in the plasma insulin 

level) is noticeable and called the second phase Ф2. The two insulin release 

phases Ф1 and Ф2 are caused by the response of the β cells to glucose. Ф1 and Ф2 

together with the patient’s insulin sensitivity (S1), will form the integrated 

metabolic portrait of that particular patient (Bergman et al., 1981; Pacini & 

Bergman, 1986). 
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Bergman’s model VI setup 

The blood glucose level in this model is defined as an output of the physiological 

system. From the patient IVGTT data set, the insulin time course is defined as 

the input to the system (Bergman et al., 1979). The Bergman’s model figure is 

depicted in Figure 28. The ordinary differential equations for the KG are 

presented in equations (10-1) and (10-2). 

𝑑𝐺

𝑑𝑡
= (𝑝1 − 𝑋(𝑡)) ⋅ 𝐺(𝑡) + 𝑝4 

(10-1) 

𝑑𝑋

𝑑𝑡
= 𝑝2 ⋅ 𝑋(𝑡) + 𝑝3 ⋅ 𝐼(𝑡) 

(10-2) 

 

 

Figure 28. Glucose kinetics model VI (Bergman et al., 1979) 

The blood plasma glucose concentration in mg/dL is represented by G(t). The 

plasma glucose rate of change over time is represented by dG dt⁄ . The remote 

insulin compartment is represented by X(t). This remote insulin compartment is 

related to tissue cells that will respond to an insulin stimulus. These tissue cells 

are also called insulin bounding peripheral tissue and increases the glucose 

disappearance linear, min-1, after an insulin stimulus. I(t) is the blood plasma 

insulin input concentration in µU/mL, formed from the FSIGT data set. The 

independent model variable t is the time in minutes. 

The glucose disappearance (the ability of the cells to convert glucose to energy 

and by an insulin stimulus that results in a glucose uptake by the cells) is 

encouraged by insulin concentration I(t) through the second term on the right in 

equation (10-2). The glucose production and glucose uptake by the liver is 
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grouped together. A net liver glucose balance is modelled (Bergman et al., 

1979). 

In addition, the Bergman’s minimal model estimated parameter values, matching 

the FSIGT dataset, are found in Table 5. 

Table 5. Model VI parameter values (Bergman et al., 1979) 

p1 p2 p3 p4 

-4.90 

±0.97x10-2 

-9.10 

±1.20x10-2 

8.96 

±1.88x10-5 

4.42 

±0.74 
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B. Frequently sampled intravenous glucose tolerance data set 

Glucose injection, 0.3 g/kg at time t = 0 lasting for 60 s (Pacini & Bergman, 1986, p. 

118). 

T = time [minutes]  G = glucose level [mg/dl]  I = insulin level [µU/ml] 

 

  



55 

 

C. Simulation result Bergman model and parameter values 

The stated figures below are found in the thesis report of Saglibene (Saglibene, 

2015, p. 10). 

 

The stated table below from thesis report of Saglibene (Saglibene, 2015, p. 8). 

 

  



56 

 

D. Sensitivity analysis 

The parameters and states of the T1DM model are increased with 5%. In this 

T1DM model, there are 12 states and 40 parameters. This requires 53 model 

simulations. One model simulation with the nominal parameters and initial state 

variables and 52 modified ones. 

( ) ( ) ( )f pert f nom fx t x t x t = −  is calculated 

It is essential to know the behaviour of all the states after an impulse, as 

described in the introduction. This state information is visualized and will tell for 

example, how stable the states after a perturbation are and how sensitive the 

states are to a change. As well as the trajectory of the state response. For 

example to depict when a steady state occurs. 

To visualize the behaviour of all the states for analysing the state behaviour, one 

master figure is made. In this master figure for every state, one subplot is made. 

In Appendix, F the total overview of the master figures are included. 

As mentioned before 52 simulations are performed, one MATLAB simulation 

duration costs 4300 seconds (for a 24-hour model simulation) so a sensitivity 

analysis it is a time-consuming procedure. 

  

A=[x0 p];            % Initial states and parameter vector 

Adelta=A*(per/100);  % Percentage of change in states and parameters 

B=ones(nx+np); 

C=B*diag(A,0);       % fill matrix with initial states and parameter values 

N=C+diag(Adelta,0);  % Add the percentage of change to the states and parameters 

 

M=[A;N];             % First row of matrix M: the nominal values of the model 
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E. Sensitivity analysis of a normal patient 

Simulation time length of 1 minute 
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Simulation time length of 30 minutes 
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Simulation time length of 60 minutes 
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Simulation time length of 100 minutes 
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Simulation time length of 1440 minutes 
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F. Figures sensitivity analysis of a normal patient 

Delta state figures of the first ten parameters and the first four states of a 

normal patient with a simulation duration of 100 minutes. 
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