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1.1 Background 

Carbon dioxide is an important greenhouse gas affecting our climate, making our planet 

inhabitable for flora and fauna. Carbon is exchanged between the biosphere, lithosphere, 

atmosphere and hydrosphere in a natural biogeochemical cycle (Berner, 2003). The 

carbon reservoirs have a turnover time of several years (e.g. the atmosphere) to 

thousands of years (e.g. the deep ocean). The feedbacks in the carbon cycle ensure that 

the temperature on our planet remains within certain limits (Riebeek, 2011). In that 

respect the carbon cycle can be considered to be in equilibrium. However, large and 

persistent perturbations can distort the equilibrium for a long period of time while the 

feedbacks strengthen or weaken to restore the equilibrium. 

The largest perturbation of the atmospheric carbon content in recent history is the 

addition of fossil CO2 by anthropogenic combustion (Ballantyne et al., 2012). Since the 

fossil fuel emission is only partly compensated by an increase in terrestrial and oceanic 

uptake, the amount of CO2 in the atmosphere has increased rapidly from about 280 ppm 

before the industrial revolution to 400 ppm nowadays (IPCC, 2013). The time to restore 

the equilibrium is estimated to be tens of thousands of years (Hausfather, 2010) under the 

restriction that no more fossil fuel CO2 is added to the atmosphere. The effects of the rise 

in atmospheric CO2 levels will be plentiful, from sea level rise to extreme precipitation 

events and heat waves (IPCC, 2013).  

Therefore, efforts are made to reduce the future impacts of human-induced climate 

change by limiting anthropogenic emissions from fossil fuel combustion. In 2015, 195 

countries agreed on an extensive climate action plan known as the Paris Agreement, 

including climate mitigation and adaptation efforts, with the aim to limit global warming 

to 1.5-2.0°C (UNFCCC, 2015). Besides setting climate targets and implementing climate 

actions all parties involved are obliged to monitor and report their progress. This requires 

methods to objectively monitor (trends in) emissions and the impact of specific policies. 

Moreover, parties are encouraged to collaborate and exchange information about best 

practices and failures related to emission reduction policies. As such, emission monitoring 

is a key factor for successfully reducing emissions worldwide. 

 
Figure 1.1: Schematic illustration of the dispersion of an air pollutant emitted from a stack. 
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An emission is simply the amount of CO2 that is released to the atmosphere. A simple 

method to estimate fossil fuel emissions is to calculate it from fossil fuel consumption, 

based on the amount of fuel that is consumed and the amount of carbon each fuel type 

contains (emission inventory). Emissions can also be measured directly with CO2 flux 

measurements. There are several instruments capable of measuring fluxes, although they 

usually only cover a small area. Therefore, often a more indirect method is used, namely 

observing changes in the atmospheric CO2 levels that are the result of CO2 fluxes. The 

relationship between a stack emission and the atmospheric concentration is depicted in 

Fig. 1.1. The CO2 is released to the atmosphere where a plume forms, which becomes 

wider and higher when it is transported further away from the stack by the wind. This 

process is called dispersion, which causes the amount of CO2 per volume of air 

(concentration) to decrease (lighter grey in Fig. 1.1). To connect measurements in the 

atmosphere to fluxes that occurred elsewhere at the surface atmospheric transport 

models can be used. A transport model takes prescribed CO2 fluxes and calculates the 

transport and dilution of the emitted CO2, resulting in an atmospheric CO2 concentration 

at a measurement site. The prescribed fossil fuel fluxes often come from an emission 

inventory. In case the transport is calculated correctly, the difference between the 

modelled and observed atmospheric concentrations can be attributed to an error in the 

prescribed fluxes and thus the emissions can be improved. Such a combined method is 

called inverse modelling or data assimilation (DA) (these terms will be used 

interchangeably in this thesis). It has been applied successfully to constrain biogenic fluxes 

of CO2 by combining continental monitoring networks (like the Integrated Carbon 

Observation System) with regional to global transport models, leading to flux estimates at 

large spatiotemporal scales (0.5 to 10° and weeks to seasons) (e.g. (Basu et al., 2016; 

Broquet et al., 2013; Liu and Bowman, 2016; Meesters et al., 2012; Peters et al., 2007; 

Peters et al., 2010; Ray et al., 2014; Rödenbeck et al., 2009; Tolk et al., 2011; Van der Laan-

Luijkx et al., 2015; Van der Laan-Luijkx et al., 2017)). However, most of the anthropogenic 

CO2 emissions come from cities and therefore monitoring should be done at much smaller 

scales. Therefore, inverse modelling has recently been applied to urban areas as well 

(Bréon et al., 2015; Brioude et al., 2012; Brioude et al., 2013; Lauvaux et al., 2013; Lauvaux 

et al., 2016). This introduces some additional challenges as much smaller scales (1 km and 

sub-hour) need to be resolved. 

An additional challenge related to monitoring the effect of emission reduction policies is 

that most policies focus on specific source sectors, such as the industry or road traffic. A 

trend in overall fossil fuel CO2 fluxes can be the sum of different processes, making the 

interpretation of trends in observed concentrations complicated. Whereas emission 

inventories often estimate emissions per source sector, all sectors emit the same CO2 and 

no distinction can be made based on observed CO2 concentrations. However, all source 

sectors also emit other trace gasses, like CO or NOx, in a ratio that is specific for that sector 
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and measuring atmospheric concentrations of co-emitted gases could thus help to 

attribute atmospheric CO2 to specific source sectors. 

In this thesis I explore the possibility to monitor (trends in) emissions at the (sub-)urban 

scale. A combination of (semi-)urban observation networks and regional atmospheric 

transport models is applied to investigate the complex relationship between urban 

anthropogenic emissions and observed CO2 mixing ratios at (sub)urban measurement 

sites. This requires resolving small scale processes that affect the observed mixing ratios, 

which is challenging with current state-of-the-art transport models. Moreover, additional 

trace gases are monitored and modelled to support source attribution. Besides 

quantifying the CO2 emissions themselves, I also try to attribute atmospheric CO2 signals 

to specific source sectors. This step is especially useful when operationalising this method 

for actual emission reporting and verification. 

The aim is to increase our understanding of how observed CO2 mixing ratios can provide 

information on multiple source sector emissions and of the monitoring requirements to 

obtain this source sector specific information. With this knowledge, an inverse modelling 

framework can be developed that is suited to urban scales and to attribute emissions to 

specific source sectors. In the next sections, we shortly describe the carbon cycle and 

more specifically the role of (urban) fossil fuel emissions therein, how fossil fuel emissions 

are currently estimated and the limitations of these methods, and finally a range of 

techniques that can be used to monitor urban fossil fuel emissions. 

1.2 The carbon cycle 

The carbon cycle is very important for our planet. Although the Earth's climate can vary 

over time due to perturbations, moving from ice ages to interglacial periods, the Earth's 

temperature always remains within certain limits in which life is preserved. The 

temperature is mainly determined by the radiative balance, in which CO2 also plays a role. 

Due to its characteristics, atmospheric CO2 traps longwave radiation and increases the 

temperature at the Earth's surface (Lacis et al., 2010). This is the natural greenhouse 

effect. Without the greenhouse effect Earth would be too cold for human life to exist. 

The exchange of carbon in the carbon cycle is depicted in Fig. 1.2. Carbon is exchanged 

between reservoirs (arrows in Fig. 1.2). Some exchange processes are faster than others, 

depending on the gradient between the reservoirs and the ease with which the exchange 

can take place. For example, the transport of atmospheric CO2 to the deep ocean is slow, 

because the ocean is layered and transport between layers is relatively difficult. The pace 

of this exchange determines how long carbon is stored in each reservoir. In its pre-

industrial state, the carbon cycle is in quasi steady-state with small changes in the 

reservoirs over time-scales of a century. The exchange processes ensure that the carbon is 

distributed over the reservoirs and that a disturbance in one of the exchanges or 

reservoirs is counteracted by another exchange mechanism.  
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Figure 1.2: Schematic representation of the carbon cycle, where the numbers between brackets indicate the 
storage size of the carbon reservoirs and the numbers with the arrows indicate carbon fluxes (in Petagrams 
(Pg) of carbon per year). The circled +3 and +2 indicate changes in the fluxes due to human emissions. Figure 
adapted from https://earthobservatory.nasa.gov/Features/CarbonCycle. 

Naturally, fossil carbon is transported to the atmosphere by volcanic activity and rock 

weathering over millions of years (Lacis et al., 2010). But due to human activity, fossil 

carbon is now released to the atmosphere at a much higher pace, perturbing the carbon 

cycle (Berner, 2003). Currently, about 9 Petagrams (Pg = 10
12

 kg) of carbon is emitted to 

the atmosphere in one year by human activities (Fig. 1.2), of which 3 Pg is taken up 

additionally by the biosphere and 2 Pg by surface waters (Le Quéré et al., 2018). The 

remainder is accumulated in the atmosphere where it affects the radiation balance. The 

deep ocean and the soil could potentially store a lot of this carbon, but given the slow 

transfer of atmospheric carbon to these large carbon reservoirs this process will take a 

long time. Anthropogenic emissions are therefore an important factor in forcing our 

climate at decadal to centennial timescales. Due to the increased level of CO2 in our 

atmosphere, the temperature increases. But the higher CO2 level will also affect many 

other aspects of our climate and (indirectly) other physical and biological processes. One 

example is that rising temperatures cause melting of ice caps and glaciers, that affects 

oceanic transport (IPCC, 2013). Another example is the acidification of the ocean waters 

due to the increased uptake of CO2 that poses a threat to marine life that in turn can 

impact the exchange of CO2 between the ocean and atmosphere. Hence, knowledge on 

the carbon cycle and its perturbations is crucial to understand our future climate. 
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1.3 Fossil fuel emissions 

In order to understand the impact of human activities on our climate, fossil fuel emissions 

need to be quantified. Fossil fuels are used for many human activities, such as industrial 

processes, transportation, and heating of buildings. Since fossil fuel emissions are so 

strongly linked with human activities, urbanized areas contribute approximately 70% to 

the global fossil fuel CO2 emissions according to the International Energy Agency (IEA, 

2008). Therefore, recent monitoring efforts focus on urban areas. The importance of 

urbanized areas is also clearly visible on a European emission map, where major cities like 

Paris, Madrid and Moscow stand out (Fig. 1.3). The variability in combustion processes 

results in a large spatiotemporal variability in emissions at the urban scale, which makes it 

difficult to quantify the impact of mitigation measures. 

 
Figure 1.3: Gridded CO2 fossil fuel emissions from the TNO-CAMS emission inventory. Source: Denier van der 
Gon et al. (2017). 

Emissions are often estimated from activity data (e.g. total fuel consumption) and 

emission factors (e.g. the amount of CO2 emitted per amount of fuel consumed). For 

developed countries the annual national emissions of CO2 are relatively well-known with 

an uncertainty of less than 8% (Nassar et al., 2013). Larger uncertainties of up to 50% exist 

for countries with a poorly developed infrastructure (Andres et al., 2012). These 

uncertainties are related to the emissions that are considered in the accounting method, 

while assumptions in the accounting method (e.g. about which sectors should be included) 

might result in much larger uncertainties (Ciais et al., 2010). 

More detailed knowledge on fossil fuel emissions is often gathered in so-called emission 

inventories. A wide range of inventories is available, varying in the domain covered, 
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resolution, amount of detail and approach. Inventory builders can use the annual 

emissions at the national level and disaggregate them using statistical data (e.g. 

population density) to reach higher spatiotemporal resolution, a so-called “scale-down” 

approach. Also temporal downscaling, e.g. from annual to hourly emissions, can be done 

using statistical data such as traffic counts. These are averaged over several years to make 

the time profiles applicable for multiple years. As such, these emission inventories contain 

a larger uncertainty than the annual total emissions due to errors introduced during 

downscaling (Ciais et al., 2010; Nassar et al., 2013). Examples are the limited 

representativeness of a proxy used for disaggregation and the allocation of point sources 

to a gridded emission map (Hogue et al., 2016). These uncertainties increase further when 

going to higher resolutions. 

Another method to build an emission inventory is the “scale-up” approach, which makes 

use of local data such as local activity data and emission factors or reported values from 

specific industrial/power plants. Although both the “scale-down” and “scale-up” approach 

can be used on their own, often emission inventories are built with a mixture of both 

methods. The reason is that not all data are available at the local level and consistency 

with annual, national emissions is often desired. An advantage of combining both 

methods is that the “scale-up” data can partly offset the errors in the downscaling. It is 

therefore mostly relevant for high-resolution inventories that often cover a specific region 

(a country or even a single city). For example, instead of using large-scale and long-term 

average traffic counts we can use the specific traffic counts for Rotterdam. This adds more 

detailed information, although these activity data can also be highly uncertain (Olivier et 

al., 2009). The uncertainty in high-resolution, local emission inventories is not well-known, 

as there are no direct measurements to compare the estimates to. However, some studies 

have used inverse modelling at urban scales and have estimated the total fossil fuel CO2 

emissions for the urban areas to have an uncertainty of 20-50% for a period of several 

hours to several days (Bréon et al., 2015; Brioude et al., 2012; Lauvaux et al., 2016). 

Table 1.1: Overview of SNAP (Selected Nomenclature for sources of Air Pollution) categories. 

SNAP categories 

1 Combustion in energy and transformation industries 
2 Non-industrial combustion plants 
3+4 Industrial processes (Combustion in manufacturing industry; Production processes) 
5 Extraction and distribution of fossil fuels and geothermal energy 
6 Solvent and other product use 
7 Road transport 
8 Other mobile source and machinery 
9 Waste treatment and disposal 
10 Agriculture 
11 Other sources and sinks 
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Most emission inventories divide the emissions over different source sectors, for 

example following the SNAP (Selected Nomenclature for source of Air Pollution) 

categories listed in Table 1.1. Sometimes these categories are further subdivided, for 

example by fuel type or vehicle type for road transport. Moreover, some inventories 

distinguish between area sources and point sources. Point sources are mostly related to 

industrial processes and emissions come from elevated stacks, like shown in Fig. 1.1, 

although their height is often not included in the inventories. Area sources have a larger 

horizontal extent and often emit at ground level. 

Figure 1.4 shows the distribution of fossil fuel CO2 emissions over the different source 

sectors in 2011 for Europe and some European countries based on an emission inventory 

from the Monitoring Atmospheric Composition & Climate (MACC) project (Kuenen et al., 

2014). Not all sectors distinguished in Table 1.1 are relevant for CO2 and only the largest 

contributors are shown in Fig. 1.4. The European fossil fuel emissions are strongly 

dominated by (energy) industry. Also road transport and non-industrial combustion are 

significant sources of CO2. However, economic activities, climate conditions, and the 

implementation of new clean technologies can differ per country, which leads to large 

differences between countries. For example, Fig. 1.4 suggests a relatively small fraction of 

centralized energy production in Hungary and less heating of buildings (non-industrial 

combustion) in Spain. Also within a country the spatial variability can be large, because 

industrial plants are often clustered in industrial areas.  

 
Figure 1.4: Relative contribution of several source sectors to the total fossil fuel CO2 emission in 2011 for 
Europe, Netherlands, Hungary and Spain. Source: MACC III emission inventory. 

While existing emission inventories can provide valuable insight in the emission 

landscape of a country or urban area, there are also some downsides. Large 



CHAPTER 1 

16 

 

inconsistencies can exist between inventories due to large uncertainties in different 

attribution methods (Denier van der Gon et al., 2012). Moreover, emission reporting takes 

some time and therefore emission inventories which make use of such reports appear 

with a lag of several years. In other words, knowledge on current emissions will be 

available only several years from now. This complicates monitoring of emission trends and 

the effectiveness of emission reduction policies.  

1.4 Monitoring of urban fossil fuel emissions 

In the previous sections we have established that there is an urgent need for techniques 

that can monitor emission trends in detail and in near real-time. Current emission 

inventories are not suitable for this task as they are too coarse (based on yearly data) and 

have a lag of several years. Therefore, other techniques are required that make use of 

higher resolution and more up-to-date information. In this thesis we explore the use of 

atmospheric measurements in urban fossil fuel monitoring, we identify the advantages 

and limitations of different network and model configurations, and we explore new 

opportunities by combining several existing and new techniques. Therefore, the main 

research question is: 

Main RQ: What are the monitoring requirements to constrain fossil fuel CO2 emissions 

from an urban area at source sector level? 

This section discusses relevant monitoring techniques and the related research 

questions addressed in this thesis. 

1.4.1 Observations 

Observations play an important role in monitoring emissions, as they provide an objective 

top-down constraint on emissions and they can be available in near real-time. There are 

several important considerations when choosing an instrument or measurement 

technique: 

1) The temporal resolution and scale: how often does the instrument do a 

measurement and what time frame does it cover. 

2) The spatial resolution and scale: how large is the area that affects the measurement 

(its footprint) and how much detail can be separated within that footprint. 

3) The accuracy/precision of the measurement. 

4) The measured quantity: what exactly is measured, for example fluxes versus 

concentrations. 

For urban applications the spatial and temporal resolution are very important, because 

there is a lot of small-scale variability that needs to be resolved. Figure 1.5 gives an 

overview of processes that are relevant for understanding the urban carbon budget. Their 

location in the diagram indicates at which spatial and temporal scale they cause variations 

in atmospheric CO2 levels. We see that time scales of less than an hour and spatial scales 
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of 10-100m are of importance for the urban carbon cycle and therefore instruments are 

needed that can capture this small-scale variability.  

 
Figure 1.5: The spatial and temporal scale at which different processes affect atmospheric CO2 concentrations 
(coloured rectangles). The circles represent the resolution of different types of instruments. 

Different types of instruments are also displayed in the diagram with the scales that they 

can resolve. Note that the temporal resolution and the covered time frame are not 

necessarily the same, because high-resolution measurements that are done continuously 

for several years can also resolve seasonal and yearly variations. Similarly, an instrument 

with a high spatial resolution often covers a smaller domain. The domain can be extended 

by using multiple instruments. As such, each method has its pros and cons and therefore 

all these techniques have been used to monitor urban CO2 fields and emissions. For 

example, aircraft measurements can cover an entire urban area or transects up- and 

downwind of a city (Mays et al., 2009). This gives information on the spatial variability of 

CO2 concentrations. However, flights only cover a limited time window. In contrast, eddy-

covariance measurements (or flux measurements) can be used continuously (Kleingeld et 

al., 2017), but such measurements often have a limited footprint (i.e. they are affected by 

a small area and are thus not representative for an entire urban area). A promising 

method for the future might also be the use of satellite data (Kort et al., 2012; Silva et al., 

2013), although currently there are still some limitations in the resolution and accuracy. 

In this thesis we used an alternative method based on in-situ measurements of 

atmospheric concentrations. Our in-situ measurements are continuous, providing a long 

time series of concentration measurements at high temporal resolution. Therefore, a wide 
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range of temporal scales can be resolved. The covered domain is highly dependent on the 

location of the instrument. In the scientific literature there is an ongoing debate about the 

best location for in-situ measurements. On the one hand, in-city sites are extremely 

influenced by local sources (100-1000 m) and therefore provide a lot of information, but 

on the other hand they have a limited footprint. Therefore, a lot of instruments are 

needed to cover the entire urban area. Moreover, in-city sites are prone to large model-

data mismatches due to the complex transport processes in the city that are not easily 

resolved with regional transport models (Bréon et al., 2015). On the other hand, 

measurement sites outside the city are less often impacted by the city, depending on the 

wind direction (Kort et al., 2013). Yet they potentially have the entire city in their 

footprint, providing a constraint on the entire area of interest albeit with a lower spatial 

resolution. Moreover, elevated measurements (i.e. towers) also have a larger footprint 

and are less affected by local sources.  

Although in this thesis the focus is on CO2 emissions, this work can also be useful to 

monitor other co-emitted species. These are trace gasses that are emitted during fossil 

fuel combustion, similarly to CO2. Well-known co-emitted species are CO and NOx 

(NO+NO2) which are both emitted in relatively high quantities by road traffic and shipping, 

but also SO2 is considered in this thesis. Since CO2 and co-emitted air pollutants result 

from the same combustion processes the emission reduction policies will also affect air 

pollution levels. Therefore, it is beneficial to monitor CO2 and co-emitted species 

simultaneously to provide information for climate projections, but also for policies aiming 

to reduce air pollution. Moreover, the presence of co-emitted tracers indicates the 

presence of fossil fuel combustion so that these tracers can help separate between 

biogenic and fossil fuel signals of CO2 (Djuricin et al., 2010; Lopez et al., 2013; Turnbull et 

al., 2006). 

Another advantage of combining information on multiple species is that the co-emitted 

species can help attribute observed CO2 to specific source sectors. CO2 and co-emitted 

species are emitted in a specific ratio that is dependent on the conditions under which 

combustion takes place, but also on the technology (e.g. sometimes specific species are 

filtered from the exhaust). For example, modern power plant combustion is relatively 

clean and their emission only contains very small levels of co-emitted species. In contrast, 

road traffic emits a relatively large amount of CO and NOx. Monitoring these species 

simultaneously and looking at the concentration ratios can thus provide information on 

the dominant combustion processes that took place in the footprint of a measurement. 

This tracer method has only seen limited application for source attribution (Lindenmaier 

et al., 2014). The reason is that the emission ratios need to be accurately known, while 

these can be variable in space and time. We will explore this method in more detail in this 

thesis. 

Besides co-emitted species isotopes can provide valuable information. Isotopes are 

different variants of an atom that only differ in the number of neutrons. Specific isotopes 



INTRODUCTION 

19 

 

are more or less abundant in specific fuels and can therefore give information about 

dominant fuel types (Djuricin et al., 2010; Lopez et al., 2013). Moreover, carbon isotopes 

can be used to separate the fossil fuel signal from the influence of other CO2 sources and 

sinks, shown in Fig. 1.2. The carbon in atmospheric CO2 can contain either 6, 7 or 8 

neutrons and the most abundant isotope is the one with 6 neutrons (called 
12

C because of 

the number of neutrons and number of protons (6) adds up to twelve). The 
14

C isotope 

with 8 neutrons is much less abundant in the atmosphere but is nevertheless present in 

organic materials. Interestingly, 
14

C is radioactive, meaning it decays over time, and 

therefore no 
14

C is left in fossil fuels that have been buried for millions of years. Therefore, 

combustion of fossil fuel causes a detectable decrease in 
14

C in the atmosphere that can 

help to constrain the total fossil fuel signal of CO2. 

These considerations related to the optimal configuration of monitoring sites and tracers 

lead to the first research question that will be addressed in Chapters 2, 3 and 5: 

RQ 1: What are the (dis)advantages of different observation networks and combinations 

of tracers in monitoring urban fossil fuel CO2 emissions per source sector? 

1.4.2 Atmospheric transport modelling 

Atmospheric concentrations are the result of a wide range of processes, such as emission, 

transport, dilution, and uptake. In order to relate observed concentrations to emissions 

these processes need to be quantified, using simple parameterisations (Chapter 2) and/or 

transport models (Chapter 3). Basically, a transport model is a simulation of the reality and 

tries to explain how air pollutants are transported through the atmosphere. Because the 

exact description of each process that occurs in the atmosphere is often complex or 

unknown, a model consists of simplified descriptions of these processes called 

parameterisations.  

 
Figure 1.6: Examples of model output from a Lagrangian model (the OPS model). The left panel shows results 
from a simulation in forward mode, giving CO2 concentrations resulting from point source emissions. The right 
panel shows results from a simulation in backward mode, giving the contribution of each discrete (Eulerian) 
grid cell to the concentration at a specific measurement site (black star). 
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Transport models can be divided roughly into two categories: Eulerian and Lagrangian 

models. Eulerian models provide grid-box average concentrations (usually around 10x10 

km2 to 1x1 km2 for (sub)national applications) which makes them efficient when large 

domains need to be covered. However, comparing a grid-box average with a point 

observation results in a significant model-observation mismatch (Houweling et al., 2000; 

Karamchandani et al., 2011; Peters et al., 2004). Moreover, a tracer from a point source 

which is emitted into a grid box becomes instantly mixed throughout the full volume of 

the grid boxes of the model. This causes an underestimation of the local and downwind 

simulated concentration.  

Lagrangian models make use of trajectories to predict a concentration at a certain 

measurement location: they release a pollutant from a source and follow the plume as it is 

transported with the wind. This can be done in forward mode to calculate the dispersion 

of all emissions over the domain (Fig. 1.6, left panel) or in backward mode to determine 

the footprint of a specific measurement site (Fig. 1.6, right panel). Note that the prevailing 

wind on this day was easterly. In the latter case the transport is reversed and the 

contribution of each grid cell to the total concentration is calculated. Lagrangian models 

have no horizontal or vertical discretization, which makes them very suitable for 

transporting pollutants from sources with a small spatial extent (i.e. point sources). 

However, using them over a large area is computationally expensive, and the accuracy of 

transport still depends on the accuracy and resolution of the available meteorological 

information. Finally, Lagrangian models contain relatively simple parameterisations 

compared to most Eulerian models, resulting in less realistic estimates of dispersion and 

mixing. 

In a complex urban environment, transport plays an important role in determining CO2 

concentrations. However, most regional transport models have no parameterisations to 

correctly represent small-scale urban transport, such as the effect of street canyons on 

turbulent mixing. This makes it difficult to correctly quantify such transport processes, 

causing potentially large discrepancies between observed and modelled concentrations. 

Therefore, it is important to identify the most suitable modelling framework to reduce 

transport errors as much as possible. This leads to the second research question: 

RQ 2: How well can different types of modelling frameworks represent observed 

atmospheric CO2 concentrations at multiple monitoring sites? 

1.4.3 Emission modelling 

As mentioned before, a downside of emission inventories is that they may have large 

uncertainties and often lag several years. Such inventories often downscale emissions 

using large-scale and long-term averaged activity data. The uncertainty of these high-

resolution inventories is so far unknown. However, an increasing amount of high-

resolution data is becoming available that can be used to downscale emissions more 

accurately. Therefore, we aimed at developing a dynamic emission model (Chapter 4). The 
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model calculates total yearly emissions from emission factors (the amount of CO2 emitted 

per amount of fuel consumed), total yearly activity and the relation between activity and 

the amount of fuel consumed (energy efficiency). For example, the emissions from 

residential heating strongly correlate with the outside temperature, such that the average 

temperature over a year can be used as a proxy for the total emissions from residential 

heating (activity). The emission factor of natural gas used for heating is relatively well-

known and the energy efficiency is dependent on for example the amount of insulation. 

So we try to estimate emissions, which we do not know, from physical drivers of these 

emissions (like temperature) which can be measured easily. Similarly, we calculate the 

emissions for each source sector. We then downscale the yearly emissions to hourly and 

1x1 km
2
 resolution using proxy data. The temporal variability of residential heating can be 

estimated from daily variations in the outside temperature, while the spatial distribution 

can be estimated using population density. So in principle the idea behind an emission 

model is quite similar to that of an emission inventory, i.e. using activity data and proxies 

to calculate emissions. Yet, the dynamic emission model makes use of more localized data 

with a high temporal resolution. Moreover, the emission model offers an alternative 

computation of the national annual emissions.  

The dynamic emission model has several advantages over an emission inventory. First, 

the model is very flexible and can be adapted to the area under study. It can also be used 

for different species, which is useful when attributing CO2 emissions to source sectors 

using tracer ratios. Second, the model can be more easily transported to regions where 

currently no information is available about emissions. An example is that a model 

developed for the coastal regions of the Netherlands might be used in coastal cities in Asia 

as well, where emission data is simply not reported and emission inventories do not yet 

exist. Third, instead of having emission fields the model consists of a wide range of 

parameters with a physical meaning. It therefore gives more insight in the underlying 

processes that determine the emissions. Fourth, the model makes use of typical 

parameter values that can have a wide range due to differences in technology. This 

information allows us to estimate the uncertainties in high-resolution emissions caused by 

uncertainties in these model parameters. With the dynamic emission model we can thus 

address the following research question: 

RQ 3: Can we predict hourly emissions per source sector in an urban environment using 

proxy data and what are the uncertainties? 

1.4.4 Inverse modelling 

All of the previous methods (observations, transport model, emission model) can be 

combined in an inverse modelling system. Inverse modelling is a way to optimize a 

parameter by minimizing the difference between observations and model output. In the 

case of CO2 monitoring, inverse models try to minimize the difference between observed 

and simulated concentrations by scaling a first estimate of the emissions (the prior), taking 
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into account uncertainties in the emissions, transport models and observations. For this 

purpose the following cost function is optimized: 

 

              
 
                                  (1) 

 

Here, x is a vector containing all emissions that are optimized (the state vector, where x
b
 is 

the prior state vector).   is the model that returns simulated concentrations given a 

certain emission field (observation operator), which in this thesis is a combination of 

Eulerian and Lagrangian (in backward mode, see Fig. 1.6) transport models. y
0
 is a vector 

containing all observations. R and P
b
 contain information about the uncertainties in the 

transport model/observations and the prior state vector, respectively. Together they 

determine the weight given to the observations and the prior estimate. The uncertainty of 

the optimized state vector can also be estimated (P
a
). 

Often, the state vector consists of gridded emissions from an emission inventory that are 

optimized to be in better agreement with observations. In this thesis we use the dynamic 

emission model as a first estimate of the emissions, similar to the set-up of the Fossil Fuel 

Data Assimilation System (FFDAS) with global coverage (Raupach et al., 2010; Rayner et 

al., 2010). Our dynamic emission model allows us to estimate parameters inside the 

dynamical emission model instead of the total fluxes. This means that these parameters 

are in the state vector x and that the observation operator   also includes the dynamic 

emission model to return CO2 mixing ratios as a function of the parameters to be 

estimated. The methodology of optimising model parameters has been applied before to, 

for example, biosphere models (Tolk et al., 2011). However, the application to a fossil fuel 

emission model is new. Our inverse modelling system also makes use of multiple tracers in 

order to attribute changes in CO2 emissions to specific source sectors, namely CO, NOx and 

SO2.  

The challenge with inverse modelling is that the total mismatch between observed and 

modelled concentrations can have different causes. The error in the emissions is what we 

are interested in. But the model parameterisations would cause a model-data mismatch 

even if the exact emissions are known and used, because the model transport is not 

perfect. This is especially relevant at higher resolutions as the urban atmospheric 

transport is very complex to model. As such, the transport errors are identified as a major 

challenge for urban inversions and often lead to the selection of well-mixed daytime 

conditions (Boon et al., 2016; Bréon et al., 2015; Brioude et al., 2013; Lauvaux et al., 2013; 

McKain et al., 2012). Moreover, in our system we only optimize fossil fuel fluxes, while 

other sources and sinks of CO2 (inflow from outside the model domain and biospheric 

fluxes) are also uncertain and cause part of the model-data mismatch. Therefore, a good 

representation of the errors is essential to get reliable emission estimates and the 

dynamic emission model can help with that. 
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This leads to the following research question: 

RQ 4: How well can we constrain urban emissions per source sector given (systematic) 

errors in the emission and transport model? 
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Abstract 

Large networks of expensive instruments are often used to independently quantify and 

monitor urban CO2 emissions with sufficient level of detail. However, many developing 

regions cannot afford such a monitoring effort. We explore the use of a simple, less costly 

method to constrain urban emissions using only two measurement sites, one upwind and 

one downwind of the city of Rotterdam in the Netherlands. This provides an interesting 

dataset of concentration gradients of multiple combustion tracers over an urban-industrial 

complex. We find clear emission signals from three source sectors, mainly related to 

industrial activities in the port and from residential areas. We estimate the anthropogenic 

CO2 emissions for three footprints from our observations and find them in reasonable 

agreement with the Dutch National Emission Registration (NER) database after accounting 

for biogenic fluxes. The large confidence interval for one of the footprints illustrates that 

the presence of point sources complicates the flux estimates. Additionally, we were able 

to pinpoint a limitation in the emission database using observed fossil fuel CO:CO2 ratios, 

although the applicability of this method is limited for the footprint with a large influence 

from point source emissions. There is also a large variability in the observed ratios per 

footprint, which indicates that the dominant source type varies over time. Finally, we 

show that the fossil fuel CO concentration can be used to calculate fossil fuel CO2 if their 

emission ratio is well-known. 
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2.1 Introduction 

Urban areas are densely populated and have a wide range of anthropogenic activities – 

such as transportation, industry and residence – that result in emissions of many different 

pollutants. Although urban areas only cover a small land area, they contribute about 70% 

to the global greenhouse gas (GHG) emissions due to human activities (Font et al., 2014; 

Järvi et al., 2012). By monitoring a small hotspot of anthropogenic activity it is possible to 

get insight in the spatiotemporal variability of emissions, identify emission sources, and 

detect emission trends. Therefore, monitoring urban anthropogenic emissions of CO2 and 

CH4, two of the most important GHGs, is receiving increasing attention (Bréon et al., 2015; 

Font et al., 2014; Peischl et al., 2015; Turnbull et al., 2015). 

Ciais et al. (2014) stress the importance of different types of GHG observations and the 

deployment of GHG observation networks around megacities worldwide to identify the 

magnitude and spatiotemporal variability of emissions. Effective GHG observation 

networks could assist in establishing the effectiveness of emission-reduction policies 

(Turnbull et al., 2015). Over the past years different types of monitoring strategies have 

been used to constrain urban emissions, each with their own (dis)advantages, and several 

lessons that can be learned from these studies. First, if the footprint of an instrument is 

small – like with eddy-covariance flux towers (Bergeron and Strachan, 2011; Buckley et al., 

2014) – many measurements are needed to constrain an entire urban area due to the 

spatial heterogeneity (Grimmond et al., 2002). In contrast, a large footprint makes it 

difficult to identify the emissions of a particular source sector, for example when using 

one observational site and a large wind sector (Levin et al., 2011). The footprint is also 

related to the location of the measurement site. Whereas in-city observations provide 

valuable information on local emissions (Gratani and Varone, 2005; Zimnoch et al., 2010), 

they are only sensitive to part of the urban area. In contrast, remote sites are only 

occasionally affected by the urban emissions, but do see a larger part of the urban area. 

So the location and footprint of the measurement need to be considered carefully. 

Second, the spatial and temporal resolution of the measurements is important, especially 

in a heterogeneous urban-industrial environment. While several studies have used 

satellite retrievals of CO2 columns to constrain urban emissions (Kort et al., 2012; Silva et 

al., 2013), this method provides too little spatial detail for source attribution. Similarly, 

using 
14

C flask or plant samples to identify the fossil fuel contribution to the total CO2 

signal (e.g. (Bozhinova et al., 2014; Djuricin et al., 2010; Lopez et al., 2013; Turnbull et al., 

2015)) is expensive and time-consuming (Djuricin et al., 2010). Therefore, the temporal 

resolution of this method is generally limited. Methods in which ratios of multiple tracers 

are measured continuously (Levin and Karstens, 2007; Lopez et al., 2013; Vogel et al., 

2010) seem promising, with the main challenge to delineate the relations between 

different emission sources from the observed mole fraction ratios. 



INTERPRETING CONTINUOUS IN-SITU OBSERVATIONS 

29 

 

In addition, most of these studies have used long-term observations and/or an extensive 

observational network. Although the required number of monitoring sites depends on the 

size, population density, and complexity (heterogeneity) of the area under study, 

constraining urban emissions asks for sufficient observations of atmospheric 

concentrations to account for the large spatiotemporal variability. Kort et al. (2013) 

compared different network configurations to identify the optimal monitoring strategy for 

Los Angeles’ (~1300 km
2
) CO2 emissions. They conclude that at least eight measurement 

sites are needed to have sufficient sensitivity to emissions from the entire basin. 

Additionally, McKain et al. (2012) argue that 5 monitoring sites are needed to constrain 

the emissions from Salt Lake City, while Turnbull et al. (2015) have access to 12 

measurement sites in Indianapolis. Such monitoring networks necessitate the availability 

of numerous resources, including sufficient funds and trained technicians to maintain the 

instruments. However, such resources are evidently not available in all regions. Ciais et al. 

(2014) note that, despite all efforts to monitor (urban) GHG emissions, many regions are 

still systematically undersampled. These regions include some developing economies that 

experience a high urbanization rate, thus becoming important contributors to 

anthropogenic GHG emissions. However, such regions may have neither the resources nor 

the priority to build and preserve an extensive monitoring network. An interesting 

question is thus whether a simpler approach can provide sufficient detail to monitor and 

constrain the emissions of a developing urbanized and/or industrialized centre. 

In this paper we present measurements from a relatively simple and cheap monitoring 

framework that has a high temporal resolution and a footprint that covers an urban area. 

It consists of only two observational sites, which are located upwind and downwind of a 

medium-sized urban area with respect to the prevailing wind direction of 190°. We 

selected the city of Rotterdam, the Netherlands (dark blue shape in Fig. 2.1) as our case 

study. Rotterdam is a relatively small city (about 320 km
2
 and 625.000 inhabitants) 

compared to megacities used in previous studies. However, Rotterdam is part of a larger 

urbanized area containing several urban centres and industrial areas, surrounded by 

pasture and agricultural land. This area, which is called the Rijnmond area (~860 km
2
, light 

blue outline in Fig. 2.1), has 1.2 million inhabitants. The Rijnmond area includes the largest 

sea port of Europe (~100 km
2
, yellow shape in Fig. 2.1) with activities in storage and 

transhipment of dry and wet bulk and containers, refineries, chemistry, and energy 

industries. Along the coast (North Sea) between the port and The Hague, there is a large 

area with gas-heated and CO2-enriched glasshouses (green shape in Fig. 2.1). Additionally, 

other major cities, such as The Hague and Utrecht, are only at 20 and 45 km distance from 

the city centre of Rotterdam, respectively. Thus the Rijnmond area is characterised by a 

wide variety of scattered anthropogenic activities and influence of other nearby urban 

centres. As such, it is an interesting case for other European coastal urban areas that often 

display a more heterogeneous emission landscape than most megacities in the US or Asia. 
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Figure 2.1: Map of the Rijnmond area (light blue outline), including the city of Rotterdam (dark blue outline), 
the port (yellow outline) and the glasshouse agriculture source sector (green outline); the observation sites are 
indicated with white stars; the prevailing wind direction during the observations is given by the black arrow. 
Source: Google Earth. 

We measure (semi)continuous mole fractions of CO2, CH4, and CO. The latter has the 

potential to function as a tracer for fossil fuel CO2 emissions (Djuricin et al., 2010; Turnbull 

et al., 2015). With these observations we have created a dataset of long-term continuous 

concentration gradients of multiple combustion tracers over an urban-industrial complex. 

We perform several analyses to examine how much two continuous observations sites 

(Westmaas and Zweth) can explain about the CO2 emissions from important source 

sectors within this highly urbanized area. Moreover, we study the use of CO as tracer to 

identify the fossil fuel contribution to the total CO2 signal found at our measurement sites. 

In this paper we discuss the use of our observations to identify signals from Rotterdam 

and the port, following four research questions:  

 Can we explain the temporal variations in the CO2 concentration time series? 

 Under which conditions is the upwind site (Westmaas) suitable as background 

station to estimate CO2 fluxes from the Zweth-Westmaas gradient? 

 Can we get a first estimate of the fossil fuel CO2 fluxes of important source 

sectors with the two measurement sites? 

 Can CO be used to quantify the fossil fuel contribution to the total CO2 signal 

from our case study? 

We start with a description of our observations and method to estimate fossil fuel 

fluxes, which is based on a mass balance approach. Then we demonstrate the 

spatiotemporal variability in the CO2 background concentration, estimate CO2 fluxes for 
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several footprints, and reconstruct fossil fuel CO2 concentrations using CO. Finally, we 

present recommendations for effectively monitoring and estimating fossil fuel fluxes. 

2.2 Methods 

2.2.1 Sampling sites 

We selected two measurement locations marked by a star in Fig. 2.1, 15 km south 

(location Westmaas) and 7 km northwest (location Zweth) of the city centre of Rotterdam 

(see Table 2.1 for details). The Westmaas site is in an open area with mostly low 

agricultural crops and a few trees along a subsidiary road (at 150 m distance). There are 

highways at 1.3 km to the north and at 1.7 km to the west. Westmaas is also a station in 

the Dutch National Air Quality network (RIVM). This site is considered the upwind site due 

to the prevailing southwesterly wind and because of its relatively rural to suburban 

location. The Zweth site is not part of an existing network and was selected specifically for 

this study. It is located between a highway (at 650 m), a railway (at 1 km), and an airport 

(at 2.6 km) and at the edge of a small village (De Zweth) with a medium-large canal used 

for occasional inland shipping. Rotterdam The Hague Airport is the third largest airport of 

the Netherlands, which serves many European metropolitan areas (>1.6 million 

passengers in 2014) and is also regularly used for military aircrafts. Therefore, this site is 

more affected by anthropogenic emissions and is used as downwind site. The field in 

which the instrument is installed is surrounded by trees and is about 85 by 30 m large. 

With a sampling height of 10 m (almost similar to the height of the trees) the influence of 

the trees on advection may be an important factor. A sampling height of 10 m is sub-

optimal, but installing higher masts was not allowed in the area. 

Table 2.1: Specifications of the two measurement sites Westmaas and Zweth. 

 Coordinates Start time series Sampling height  
[m above surface] 

Elevation  
[m above sea 
level] 

Westmaas 51.786666° N, 
4.450536° E 

2014-01-01 10 -0.5 

Zweth 51.964381° N, 
4.394650° E 

2014-05-01 3 (until 2014-07-03 11:00) 
10 (from 2014-07-03 11:00) 

-3 

 

At both locations we installed a low-drift analyser based on cavity ring-down 

spectroscopy (CRDS) (Picarro Inc., CA, USA, type G2401 (Picarro, 2015)) to measure 

atmospheric concentrations of CO2, CH4 and CO (more information on the observations 

and their availability can be found in the Supplementary Information). It requires little 

maintenance and can be operated at relatively low cost without the need for highly 

trained technicians. Moreover, the long-term stability reduces the consumption of 

expensive calibration gases (Andrews et al., 2014; Richardson et al., 2012; Schmidt et al., 

2014; Welp et al., 2013; Winderlich et al., 2010). The low cost and ease with which the 
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analysers can be operated are essential for possible expansion of the monitoring network 

to other cities in developing countries and remote areas. 

2.2.2 Methods for flux estimates 

When an air parcel is transported from Westmaas to Zweth, the mole fraction of CO2 in 

that air parcel is affected by processes that occur during transport. Therefore, comparing 

CO2 mole fractions at Westmaas and Zweth can provide information on the magnitude of 

those processes in their footprint. Previous research has shown that observations made 

during flights upwind and downwind of a source sector of interest can be used to estimate 

the flux for that sector (Caulton et al., 2014; Karion et al., 2013; Mays et al., 2009; Peischl 

et al., 2015). The integrated flux of X (FX) over the total sector between the two flight 

tracks can be calculated using a mass balance equation: 

 

                      
 

  

  
 

      (1) 

 

where v∙cos(α) is the proportion of the wind velocity parallel to the observed 

concentration gradient, and ΔXobs is the observed concentration enhancement over a 

background value which is integrated over a horizontal (y) and vertical (z) plane where zi is 

boundary-layer height adjusted for vertical transport and boundary-layer growth (Peischl 

et al., 2015). In contrast to these studies we lack a y-dimension as the location of our 

observational sites is stationary in time, but we do have a longer time series that allows us 

to apply data selection. 

To get a flux estimate from continuous in-situ observations we adapt the previous mass 

balance equation to the one-box model (Fig. 2.2). The change in concentration [kg m
-3

] of 

species X in a box is a function of the inflow Fin and outflow Fout (advection), chemical 

reactions (C and L), emission (E) and deposition (D, all fluxes in [kg km
-2

 hr
-1

]): 

 

                                  (2) 

 

where Δt is the time difference between two measurements of X in hours and h the 

boundary layer height in km. We adopt a Lagrangian approach in which this box moves 

with the wind from an upwind to a downwind site and advection becomes zero. Since CO2 

is chemically inert only emission (both fossil fuel emissions Eff and biogenic respiration Ebio) 

and deposition (photosynthesis An) remain, resulting in the following equation: 

 

                               (3) 

 

where ΔXobs is equal to the concentration at Zweth measured at time t+Δt minus the 

concentration at Westmaas measured at time t. With a distance of 20.15 km between the 

sites the time difference Δt for wind parallel to the gradient is typically between 0.5 and 
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1.5 hours. Note that we round off Δt to full hours since we binned our observations 

(approx. 1 per second) into hourly concentrations. 

 
Figure 2.2: Representation of a one-box model. Source: Jacob (1999) 

We define a footprint from which the fluxes are observed at Zweth when the wind is 

coming from Westmaas. We need to identify this area of influence in order to compare 

the flux estimates made with Eq. 3 with those given by emission databases for the same 

area. We define the footprint as the area covered by a Gaussian plume at neutral stability 

(to represent dominant wind speed and mixing conditions) from the downwind to the 

upwind site (i.e. it has a triangular shape). The total area of the footprint between 

Westmaas and Zweth is about 44 km
2
 (see Table 2.2) following: 

 

                       (4) 

 

where F (0.32) and f (0.78) are empirical stability parameters, x is the travel distance in m 

and σy is the standard deviation of the Gaussian plume in the horizontal direction in m. We 

multiply by 3 to get the 3σ width of the normal distribution. 

To estimate the fossil fuel flux we need to approximate the biogenic fluxes in the 

footprints and account for their contribution to the CO2 concentration gradient. This is 

done based on observations in the Netherlands of annual cycles of the net ecosystem 

exchange (NEE = Ebio - An) (Hendriks et al., 2007), from which we determine monthly mean 

NEE. An average daily cycle for May is determined based on the work of Jacobs et al. 

(2003) and scaled according to the monthly mean NEE. This gives us an average daily cycle 

per month (Appendix A), which will be used to calculate the total biogenic flux. Both the 

Hendriks et al. and Jacobs et al. studies used NEE observations over well-watered/wet 

grassland, which match with the agricultural land use in our study area. 

Note that the mass balance approach assumes the emissions to be well-mixed 

throughout the boundary layer by the time it reaches the downwind site and that h is 

taken as a constant during transport. We use a monthly value of h based on 

measurements at the nearby Cabauw site (Royal Netherlands Meteorological Institute 

(KNMI), 2007) and assume this value to be maximal and relatively constant during the 

afternoon (see Appendix A). These assumptions on constant h and neutral stability are 
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only valid during well-mixed afternoon conditions. Therefore we select only 12-16h UTC 

data from our time series that correspond to a wind speed of at least 3 m s
-1

. 

Although this process of using an up- and downwind observational site to constrain 

urban emissions seems rather straightforward, Turnbull et al. (2015) have identified 

several difficulties related to this strategy for Indianapolis. First, the mole fraction is 

heterogeneous in space and time. Spatial heterogeneity implies that the upwind 

observation is not necessarily representative for the mole fraction of the entire 

‘background’ air parcel moving over the city. This is especially relevant if the wind 

direction is not exactly parallel to the concentration gradient. The issue of temporal 

heterogeneity is addressed by accounting for the travel time between the up- and 

downwind site. Note, however, that the gradient then becomes: 

 

                                 (5) 

 

where time lag τ between the observations at the upwind and downwind site is: 

 

                      (6) 

 

and x is the distance between the sites, v the wind speed and α the wind direction relative 

to the gradient. The time lag is zero when the wind blows perpendicular to the gradient 

(so the gradient consists of measurements taken simultaneously at both sites). The value 

of Δt in Eq. 3 is independent of the wind direction, but merely a function of wind speed 

and travel distance. 

Second, other sources and sinks affect the mole fraction during transport, which makes 

it difficult to extract the impact of fossil fuel emissions from the total signal. We have 

previously discussed the biogenic sources and sinks, but Turnbull et al. (2015) also 

mention the importance of entrainment when the free-tropospheric concentration 

significantly differs from the boundary-layer background concentration. However, 

estimating entrainment requires an estimate of the free-tropospheric mole fractions. 

Additionally, mixing and entrainment of CO2 can be highly variable as those processes 

depend on atmospheric conditions and the land surface (Vilà-Guerau de Arellano et al., 

2004). Therefore, similar to Turnbull et al. (2015) we assumed entrainment did not affect 

the mole fraction during transport. During the afternoon hours we selected here, this 

assumption is supported by a typically quite constant boundary layer height h (Vilà-

Guerau de Arellano et al., 2004). 

Finally, the distinction has to be made between in-city and remote observational sites. 

Kort et al. (2013) argue that in-city observational sites are continuously affected by local 

emissions. Therefore, they are better suitable for constraining urban fluxes than remote 

sites, even though they are only sensitive to a small part of the entire urban area. In 

contrast, remote sites only detect urban emissions at certain wind directions and even 
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then the signal is diluted by other fluxes, i.e. the urban air is mixed with other air masses. 

Turnbull et al. (2015) also found an occasional and diluted signal at a 130m-tower 24 km 

downwind of the centre of Indianapolis. In contrast, our downwind site is at only 7 km 

from the city centre and within an urbanized area, so we consider it to be semi-urban 

rather than remote. However, the sampling height is only 10 m. Therefore, we will explore 

the use of such sites for monitoring urban fluxes. We expect that the effect of dilution is 

limited while at the same time we are able to detect urban signals for most wind 

directions. We will go more in-depth in the discussion. 

2.2.3 Flux estimates for non-aligned cases 

The methodology presented in the previous section requires an air parcel that travels 

straight from Westmaas to Zweth, as the gradient between the sites is only determined by 

the biogenic and fossil fuel fluxes in the footprint P1 (Fig. 2.3). However, this limits the 

amount of useful observations. For example, including westerly winds allows us to get an 

impression of the emissions from the glasshouse source sector. 

 
Figure 2.3: Illustration of the footprints (P1, P2, P3) in the aligned and non-aligned case, where Z and W 
represent the Zweth and Westmaas measurement sites, W’ is the actual upwind location and triangles 
illustrate the footprints. 

Therefore, we adapt the method to apply to other, ‘non-aligned’ source sectors by 

rotating the footprint P1 of Zweth into the wind direction such that is overlaps the 

glasshouse source sector (Fig. 2.3). If we want to estimate the flux in P1 we need to 

account for the difference between the mole fraction measured at W and the actual 

upwind mole fraction at W’. This is done by estimating the difference between the fluxes 

in the footprints of W (P2) and W’ (P3) and assuming that Westmaas is not affected by 

large, local fluxes. We will show that this is a valid assumption for several wind sectors. Eq. 

3 then becomes: 

 

                                     (7) 
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where FP2 and FP3 are the total fluxes in footprints P2 and P3. Since the footprints P2 and P3 

are not over urbanized or industrialized areas, the difference between FP2 and FP3 can be 

considered to be caused by biogenic fluxes. 

2.3. Results 

2.3.1 Temporal variability in CO2 concentrations 

Our CO2 concentration time series show a large temporal variability (Fig. 2.4). If we want 

to use these observations to constrain urban fossil fuel fluxes, we need to ensure that the 

observations are indeed highly affected by those anthropogenic sources. In order to 

extract the anthropogenic influence from the total observed CO2 concentrations we need 

to consider several processes that explain the full range of variability in the time series of 

the CO2 concentration.  

 
Figure 2.4: Smoothed annual cycle of daytime CO2 mole fractions at Westmaas (solid red curve) and Mace 
Head, Ireland (dashed red curve). The dots indicate the observed hourly CO2 mole fractions at Westmaas. 

The CO2 concentration has a distinct annual cycle, mainly driven by the biosphere. The 

seasonal cycle in the background afternoon CO2 concentration is estimated with the curve 

fitting method described by Press et al. (1992). We fit a function to the observations to 

describe the annual cycle. Next, we apply a low-pass filter with a default cut-off value of 

80 days to the hourly residuals to account for synoptic variations. Figure 2.4 shows the 

seasonal cycle of Westmaas and Mace Head (Bousquet et al., 1996; Derwent et al., 2002) 

(from the GLOBALVIEWplus product (Cooperative Global Atmospheric Data Integration 

Project, 2015)). Mace Head is located at the west coast of Ireland and is representative for 

marine background air without the influence of local (anthropogenic and biogenic) 

sources and sinks. Therefore, the short-term variability in its CO2 concentrations is limited 
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to a few ppm. The two curves show a similar cycle, with lower than average 

concentrations from July to September. This is related to the large-scale biospheric uptake 

that exceeds the ecosystem respiration during the Northern Hemisphere summer. During 

the winter, ecosystem and soil respiration cause an increase in the CO2 concentration. 

Interestingly, the smoothed seasonal cycle at Westmaas has a larger amplitude, showing 

higher concentrations in the winter and slightly lower concentrations in the summer 

compared to Mace Head. This suggests that there is an additional local influence of 

biogenic fluxes compared to the marine background air sampled at Mace Head. This 

additional influence would be expected given the vegetated surface in the footprint of the 

Westmaas site. 

 
Figure 2.5: Average daily cycle of the CO2 mole fraction at Westmaas for continental (NE-S wind direction, full 
line) and marine (SSW-N wind direction, dashed line) regime and 95% confidence interval of the mean. LT is 
the local wintertime. 

In addition, the CO2 concentration at Westmaas has a more distinct peak towards the 

end of the year, whereas Mace Head shows the highest CO2 concentrations at the end of 

the winter. This peak can be explained by a change in wind regime. During the period of 

high concentrations the prevailing wind direction is easterly and continental air is 

advected. During the rest of the year mainly marine air with a lower CO2 concentration is 

advected by the predominant (south-)westerly wind. Figure 2.5 shows the average daily 

cycles for the marine (wind from SSW-N) and continental (wind from NNE-S) regimes. 

These average cycles are created by subtracting the smoothed annual cycle in Fig. 2.4 and 

then adding the yearly average value of this smoothed cycle to each data point. This 

provides a time series of seasonally detrended CO2 concentrations to prevent a bias due to 

the change in dominant wind regime between winter and summer. The continental 
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regime shows a significantly higher concentration, because continental air contains 

emissions from the European mainland. In contrast, marine air is only (partly) affected by 

emissions from the UK. Moreover, the CO2 concentration under the marine regime shows 

less diurnal variability. Marine air is relatively well-mixed and only boundary-layer 

development has some impact on the concentrations. In contrast, the amplitude during 

the continental regime is much larger. During daytime the difference between the two 

regimes is small due to intensive mixing. Yet at night the continental emissions are 

trapped in a much smaller boundary-layer, causing the concentration to increase.  

Even though a large part of the variability in the CO2 concentration can thus be explained 

by the seasonal cycle and changes in wind regime, a part of the variability remains 

unexplained. The smoothed function in Fig. 2.4 can be considered a background 

concentration and the increases above this background can be largely explained by the 

impact of regional sources and sinks. So indeed our observations are affected by 

anthropogenic sources. Therefore, we subtract the seasonal cycle from the observations 

for all further analyses to ensure that the signals we see are coming from those regional 

influences rather than large-scale atmospheric changes.  

2.3.2 Spatial variability in CO2 concentrations 

Now we know that our observations contain anthropogenic signals, we can examine the 

observations in more detail. The case study contains several regions, such as the port and 

the glasshouse area, with large anthropogenic emissions. Therefore, if we want to get a 

full spectrum of urban signals we need to use Westmaas-Zweth gradients from different 

wind directions. However, it is important to ensure that the upwind site is suitable as 

background station. This means that the concentration measured at Westmaas should be 

relatively homogeneous and similar to the observed concentration at Zweth in absence of 

the source sector. 

Figure 2.6 (left panel) shows a bivariate polar plot of the observed CO2 mole fractions at 

Westmaas. The polar plot shows the median mole fraction for the period 2014-2015 

(which is used for all further analyses) as a function of wind direction and wind speed. 

Based on the position of Zweth relative to (the port of) Rotterdam we are mainly 

interested in north-westerly to south-easterly winds. For Westmaas we clearly see a 

marine regime with uniformly lower concentrations with a south-westerly to north-

westerly wind. Even the impact of emissions from the UK hardly appears in this plot, 

making Westmaas a suitable background site for Zweth at these wind directions. Winds 

from the southwest to southeast advect continental air coming from Belgium, causing a 

small increase in the CO2 concentration. For a wind direction of 170° this is no issue, 

because the wind blows parallel to the Westmaas-Zweth transect and this is thus included 

correctly in the Westmaas as background. However, for south to south-westerly winds the 

observed gradients might be less useful. Also, at lower wind speeds we seem to detect 

traffic emissions from the highway west of Westmaas. The (south)east winds, which are 
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expected to advect emissions from Rotterdam The Hague Airport and part of the city of 

Rotterdam to Zweth, are not suitable for our analysis due to large increments in the 

concentration at Westmaas. These are likely to be caused by emissions from Moerdijk 

(southeast of Westmaas), the city of Dordrecht and its industrial area (east of Westmaas), 

and at high wind speed the Ruhr area in Germany. To summarize, we expect that winds 

from south-southeast and north-northwest can be used to constrain emission from a part 

of the city of Rotterdam and south-westerly to north-westerly winds are suitable to detect 

emissions from the port and glasshouse area. 

 
Figure 2.6: Median CO2 mole fraction observed at Westmaas (left) as a function of wind direction (angular 
coordinate) and wind speed (radial coordinate); Frequency of occurrence of each combination of wind speed 
and wind direction at Rotterdam The Hague Airport (right). 

2.3.3 CO2 flux estimates for footprints 

We have seen in Sect. 2.3.2 that there are several wind sectors that contain important 

source sectors and have a suitable background concentration estimate. Combining these 

results with the Zweth-Westmaas gradients (Fig. 2.7, left panel) allows us to identify 

interesting footprints. For Fig. 2.7a we used median values to reduce the influence of 

single events since we are interested in sustained concentration gradients associated with 

large source sectors. For Rotterdam, which also includes a small fraction of the port, we 

find a gradient of +2 and -2 ppm (positive gradients mean Zweth has higher mole fractions 

than Westmaas) for southeasterly and northwesterly winds, respectively. Because this 

wind direction is parallel to the gradient, the negative gradients can also be used to 

estimate the flux from this source sector, reversing the role of Zweth to background. 

In addition, we can identify two more wind direction regimes with large positive CO2 

gradients; one with a gradient of +3-4 ppm with south-westerly to southerly winds and a 

smaller one with a gradient of up to +2 ppm with westerly winds. The first one is the result 
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of a wide range of industrial activities in the port. The largest gradient is probably caused 

by emissions from a section of the port mainly occupied by refineries, energy production, 

and chemical industries (hereafter referred to as port-Botlek). We have seen in Sect. 2.3.2 

that Westmaas is not an appropriate background site for this wind direction. That we find 

a very clear signal even though the background concentration is already elevated at 

Westmaas indicates that this air travels over an important source sector. Therefore, we 

will try to estimate the flux of this source sector too to see how important the background 

concentration is. The smaller signal of +2 ppm is likely to be caused by emissions from the 

Maasvlakte, a section of the port where we mainly find activities related to transhipment 

of containers, dry and wet bulk storage and transhipment, a large coal-fired power plant, 

and the glasshouse area between the port and The Hague (hereafter referred to as 

Maasvlakte/glasshouse).  

 
Figure 2.7: Difference between Zweth and Westmaas CO2 mole fractions (left) as a function of wind direction 
(angular coordinate) and wind speed (radial coordinate) for a minimum bin size of 2; Yearly CO2 emissions for 
2012 (right) (source: Netherlands PRTR (2014)) with source sectors similar to Fig. 2.1 and the selected 
footprints are given by triangles (blue: metropolitan Rotterdam; red: port-Botlek; green: 
Maasvlakte/glasshouse). 

So we have identified three interesting wind sectors that represent part of the Port-

Botlek source sector (200°) with large point source emissions, Maasvlakte/glasshouse 

source sector (280°), and metropolitan Rotterdam (170°). The corresponding footprints 

are shown in Fig. 2.7b. In reality the footprint that represents Rotterdam also contains 

part of the port source sector, but this part contains no large point sources. We estimate 

the fluxes in these footprints using Eq. 3 and Eq. 7. 

We now estimate the fossil fuel fluxes in the footprints based on the observed gradients 

(Fobs) and compare them to estimates based on the emissions inventory (FNER) for 

Rijnmond (2012) from the Dutch National Emission Registration (NER) (Netherlands PRTR, 

2014). The average wind speed is about 7 m s
-1

 for the Port-Botlek footprint and 6 m s
-1

 for 

the other two footprints. The results are given in Table 2.2. Since the individual flux 
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estimates from the observations are not normally distributed the median fluxes are given 

and their 95% confidence interval. Moreover, we should note that there is a significant 

uncertainty in the emission database, especially at high spatiotemporal resolution. For 

example, Ciais et al. (2010) found an uncertainty of 19% in emission databases at the 

European level and spatiotemporal downscaling causes uncertainties to increase up to 

50% at 100 km horizontal resolution. At the Dutch national level the uncertainty of the 

annual CO2 budget is estimated to be 3% (Coenen et al., 2012), but the uncertainty at 1km 

hourly resolution is unknown. In Table 2.2 also the vegetative fraction in the footprints is 

given, which is used to calculate the biogenic fluxes. As the port-Botlek and 

Maasvlakte/glasshouse footprints are non-aligned, an additional correction is required. 

For the port-Botlek footprint the Fp2 and Fp3 (Eq. 7) are very similar and Fp2-Fp3 is nearly 

zero, but for the Maasvlakte/ glasshouse footprint we account for the difference in fveg in 

FP2 (0.7) and FP3 (0, as it is located over sea). 

Table 2.2: CO2 fluxes in kg km-2 hr-1 estimated from the observed Zweth-Westmaas gradient (Fobs) and as 
reported in the NER emission database (FNER) for three footprints and the corresponding wind direction, 
distance from upwind to downwind site (x), area of the footprint (A), the fraction of vegetation in the footprint 
(fveg) and number of observations used for the flux estimates (N). 

Footprint Fobs 

[kg km
-2

  
hr

-1
] 

95% Confidence 
interval Fobs 

[kg km
-2

 hr
-1

] 

FNER 
[kg km

-2
  

hr
-1

] 

Wind  
direction  
(deg.) 

x  
[km] 

A 
[km

2
] 

fveg N 

Metropolitan 
Rotterdam 

2670 (2211-4139) 3396 170 20.15 44 0.2 10 

Port-Botlek 6752 (5198-9170) 8750 200 20.15 44 0.4 43 
Maasvlakte/ 
glasshouse 

2645 
 

(2193-3888) 2295 280 19.24 40 0.3 116 

 
For the footprint metropolitan Rotterdam, sampled when the wind blows parallel to the 

gradient, there are only 10 cases (N=10 hours) which match our criteria. However, every 

individual hour represents the average of ~300 measurements within that hour; hence the 

hourly concentrations are very robust with a low uncertainty. Variations in Fobs are the 

result of short-term variations in the emissions, while the same 10 fluxes estimated from 

the emission database contain little temporal variability. Nevertheless, Fobs is in 

reasonable agreement with FNER. Also the Maasvlakte/glasshouse and port-Botlek FNER fall 

within the Fobs confidence interval, although this range is much larger for port-Botlek than 

for metropolitan Rotterdam and Maasvlakte/glasshouse. We have shown in Sect. 2.3.2 

that the Westmaas concentration at this wind direction is elevated by local emissions, 

which can result in an underestimation of the flux. Moreover, in this part of the port a 

fraction of the CO2 is emitted from stacks, which may not always reach ground level at the 

measurement site. Therefore, we conclude that making a reliable flux estimate of the 

port-Botlek footprint with just these two measurement sites is not possible without 

additional information on the transport to constrain the estimate. 



CHAPTER 2 

42 

 

2.3.4 ΔCO:ΔCO2 ratios 

Now we have seen that the two sites can be used to get a first idea of the urban fluxes, 

another interesting question is whether CO can be used as tracer for fossil fuel CO2 in this 

area. Many source types have a distinct emission ratio between co-emitted species like CO 

and CO2 ((Djuricin et al., 2010; Levin and Karstens, 2007; Lopez et al., 2013) and see Table 

2.3). Therefore, if we know the CO:CO2 emission ratio in a footprint we could use CO to 

reconstruct the fossil fuel CO2 time series. Moreover, the tracer ratios (ΔCO:ΔCO2) in the 

observations can provide information on dominant source types. ΔCO2 and ΔCO represent 

an elevation in concentration above the background concentration, which we assume is 

completely caused by fossil fuel emissions. We can calculate ΔCO2 and ΔCO by subtracting 

the smoothed curve from the original concentration time series (e.g. Fig. 2.4 for CO2), 

similar to Tohjima et al. (2014). We correct the ΔCO2 for the biogenic contribution based 

on our previous findings. 

Table 2.3: Average CO:CO2 emission ratios per emission category for the entire Rijnmond area, based on the 
National Emission Registration 2012. 

Source type CO:CO2 (ppb/ppm) 

Power generation 0.16 
Non-industrial combustion 2.77 
Industrial combustion and processes 1.14 
Road transport 16.72 
Non-road transport 5.81 

 
Since every footprint has a characteristic mixture of source types, they also have a 

distinct emission ratio. The CO2 footprint of metropolitan Rotterdam is dominated by 

power generation (55%), non-industrial combustion (19%) and road traffic (13%). In 

contrast, the majority of the CO2 emissions in the Maasvlakte/glasshouse footprint comes 

from non-industrial combustion (94%) and only 5% of the emissions is from road traffic. 

The port-Botlek footprint is dominated by industrial production (62%) and energy 

production (31%) emissions, which have a low CO:CO2 emission ratio. The corresponding 

ratios vary over time due to temporal changes in the dominant source types. This makes 

interpretation of ΔCO:ΔCO2 in the observations a challenging task. Nevertheless, the 

fractions of CO and CO2 from fossil fuel emissions are strongly correlated (R
2
>0.5 for 

October 2014-March 2015), which suggests that CO can provide additional information 

about CO2. 

To test this method for our case study we first examine how well the observed 

ΔCO:ΔCO2 ratios correspond to the ratios suggested by the NER. Figure 2.8 (left) shows the 

smooth Gaussian fit of the probability density functions of observed ΔCO:ΔCO2 for the 

three footprints. The corresponding NER ratios are given by arrows and their standard 

deviation by black horizontal lines. For the metropolitan Rotterdam footprint the mean 

observed ratio is 3.9 ppb/ppm which corresponds well to the NER ratio of 3.4 ppb/ppm. 

The Maasvlakte/glasshouse footprint has a mean observed ratio of 2.0 ppb/ppm, while 
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the NER suggests a ratio of 4.7 ppb/ppm. The selected hours with correct wind speed and 

direction for this footprint are mainly summertime data, when the non-industrial 

combustion that dominates the CO2 emissions is limited and road traffic becomes 

relatively more important. This results in a higher emission ratio. However, the 

observations suggest that the impact of non-industrial combustion is underestimated. 

Probably, these emissions are mainly from the glasshouse area rather than residential 

heating and the heating of glasshouses has less seasonal variation. The NER database has 

no distinct emission category for glasshouse heating and therefore the same seasonal 

cycle is applied as for residential heating, causing this discrepancy with the observed ratio. 

Moreover, for port-Botlek the observed mean ratio is 3.8 ppb/ppm, which is much higher 

than the 1.1 ppb/ppm given by the NER database. A possible explanation could be that the 

low ratio in the NER is dominated by point sources (industrial production and power 

generation) that are relatively devoid of CO, while the observations are more affected by 

the (surface) area sources that have a higher emission ratio. These ratios are lower than 

what was found in previous studies due to relatively complete (clean) combustion 

(Djuricin et al., 2010; Lopez et al., 2013; Turnbull et al., 2015).  

 
Figure 2.8: Smooth Gaussian fit of probability density functions of ΔCO:ΔCO2 for the three footprints based on 
the observations. Black arrows indicate the emission ratio for co-sampled times according to the NER emission 
database while black horizontal lines illustrate their standard deviation (left); Scatter plot of the observed 
ΔCO2 and those estimated from the NER reported ratios multiplied with observed ΔCO and the 1:1 line in black 
(right, colours correspond to the left graph). 

Additionally, the Maasvlakte/glasshouse footprint shows a much narrower distribution 

in the observed ratios than the other two footprints. It is likely that the emissions from the 

Maasvlakte/glasshouse footprint are better mixed by the time they reach Zweth due to 

the larger travel distance and the lack of large sources along the transect after leaving the 

port. In contrast, the other two footprints include several sources close to the Zweth 

measurement site. Due to temporal variations in the local atmospheric conditions and in 

the emissions Zweth can be affected by different source types at different times. For 
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example, during the morning rush hour road traffic could be the dominant source type, 

while at another moment point source emissions affect the measurements. This results in 

a wider range of the ΔCO:ΔCO2 PDF that is not fully captured by the NER database, with 

the port-Botlek footprint most clearly illustrating this difference. 

Finally, we calculate ΔCO2 values for each footprint based on the ΔCO observations and 

the NER emission ratios (Fig. 2.8, right). For the metropolitan Rotterdam footprint the 

ΔCO2 values are scattered around the 1:1 line, as was expected based on the good match 

with the observed emission ratio. However, the ΔCO2 is generally overestimated for the 

port-Botlek footprint using this approach, while the Maasvlakte/glasshouse footprint 

shows an underestimation. The correlation coefficient r for all data combined is 0.37, 

while for only the metropolitan Rotterdam data r is 0.61. 

2.4 Discussion and conclusions 

Over the past years, several studies have pointed out the importance of in-situ 

observations to verify urban emissions of greenhouse gases (Ciais et al., 2014; McKain et 

al., 2012; Zimnoch et al., 2010) and they attempted to reach this goal using a wide range 

of methods; from ground-based in-situ observations to aircraft campaigns and from flux 

measurements to remotely sensed atmospheric concentrations (e.g. (Brioude et al., 2012; 

Font et al., 2014; Järvi et al., 2012; Lauvaux et al., 2013; Mays et al., 2009; Silva et al., 

2013)). These studies are often complemented with an extensive and expensive urban CO2 

monitoring network. 

To test a more cost-efficient method we used only 2 continuous measurements, one on 

each side of an urban area. This method is relatively simple and therefore suitable to 

extend to other regions in the world. Using a mass balance approach and assuming a 

neutral to well-mixed boundary layer with constant height the gradient between the two 

sites was used to estimate the emissions along this transect. This method has been used 

before by several studies, but only with aircraft measurements rather than ground-based 

observations (Caulton et al., 2014; Karion et al., 2013; Mays et al., 2009; Peischl et al., 

2015). The advantage of aircraft measurements is that there is more information on the 

vertical profile of concentrations and the horizontal extent of the plume, including the 

wind field along the transect. But our continuous observations give us a much larger 

dataset, which allows us to find variations in the gradient over time due to emission 

variations and select subsets from the database based on atmospheric conditions. 

The objective of this study was to determine whether continuous observations of CO 

and CO2 at two sites (Zweth and Westmaas) can provide interesting information about the 

different source sectors and whether they can be used for an initial estimate of the CO2 

fluxes. The results indicate that our observations are indeed affected by urban emissions 

and that Westmaas is suitable as background station for different wind sectors. The mass 

balance approach gives good results for the aligned cases. For non-aligned cases 
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additional estimates and assumptions are needed, increasing the uncertainty of the flux 

estimates. For our case study the non-aligned flux estimates show reasonable agreement 

with the emission database because for the selected wind sectors Westmaas seems to be 

relatively unaffected by local fluxes. Previous flux estimates for large cities range from 

175-625 kg km
-2

 hr
-1

 for Paris (Bréon et al., 2015) and 745 kg km
-2

 hr
-1

 for Helsinki (Järvi et 

al., 2012) to 3600 kg km
-2

 hr
-1

 for Houston, 4000 kg km
-2

 hr
-1

 for Los Angeles (Brioude et 

al., 2013), and 7300-16500 kg km
-2

 hr
-1

 for Greater London (Font et al., 2014). Our Fobs 

ranges from about 2600-6800 kg km
-2

 hr
-1

, whereas FNER takes values of 2250-8800 kg km
-2

 

hr
-1

. The Rotterdam footprint fluxes are thus well in line with those of other large cities.  

Since the method used in this study gives a good first impression of the emissions, it can 

be used to explore an area where little is known about the emissions. Based on the 

findings an efficient measurement strategy can be developed to estimate fluxes from 

important source sectors. Based on the results in this paper we recommend using aligned 

flux estimates to reduce the uncertainty. If sufficient resources are available all gradients 

can be monitored continuously by installing multiple instruments. Another, more cost-

efficient method is to assign one fixed measurement site and use a mobile instrument that 

can be relocated depending on the wind direction. Moreover, our footprints cover only 

part of the source sectors and the metropolitan Rotterdam footprints also covers part of 

the port. This illustrates the importance of finding good locations for the observations 

when flux estimates for particular source sectors are made. Both the distance from the 

source sector (which determines the size of the footprint) and the location with respect to 

the dominant wind direction and upwind fluxes should be taken into account. However, in 

densely build areas often practical limitations exist that reduce the number of possible 

observational sites. Nevertheless, our results show that one upwind site that is relatively 

unaffected by large local emissions and an upwind site that is in between the important 

source sectors could already provide valuable information. 

The main difficulty related to the mass balance approach is that it is sensitive to the 

choice of boundary layer height (h). We used monthly values for h based on observations, 

but in reality there would be a lot of temporal variability depending on the synoptic 

conditions. A change in h affects both the Fobs and the range of its confidence interval. 

Based on the variability of h found in previous research (Lee and De Wekker, 2016), we 

estimate the uncertainty to be about 30%. In addition, our biogenic flux estimates are 

quite uncertain, yet a 50% decrease of these fluxes only results in maximum 2% decrease 

of the fossil fuel flux estimates. Moreover, the mass balance approach assumes that 

emissions are well-mixed by the time they reach the upwind site. To favour such well-

mixed conditions we used the minimum wind speed and afternoon data criteria. However, 

we think that well-mixed conditions are not always reached, especially for stack emissions 

and sources that emit close to the measurement site. Sources with a smaller spatial extent 

and a smaller distance to the measurement site could be mixed throughout a much 

thinner layer than the actual boundary layer height and, as illustrated before, this could 
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have an impact of several percent on the flux estimates. Also, we rounded-off the travel 

time to full hours in order to correspond to hourly averaged measurements. We estimated 

the error introduced by this approximation by using the concentration gradient an hour 

after the selected hour. We found that the error is limited (1% for the port-Botlek 

footprint) because of the relative constancy of the concentration gradient for the selected 

moments. In addition, we assumed neutral stability to establish the footprint dimensions, 

while in reality the footprint could have a different width. This introduces an error 

especially in heterogeneous source sectors. For example, an increase of the footprint 

width of 10% will result in an increase of the FNER of 180%. In contrast, for the other two 

footprints the flux changes only with a few percent (-8 and +4%). Finally, we assumed that 

the air mass moving from Westmaas to Zweth is not affected by other air masses (dilution) 

or entrainment. However, entrainment of air with a lower CO2 concentration causes the 

downwind observations to be lower than expected based on the fossil fuel emissions and 

this dilution effect has shown to be significant compared to biogenic uptake (Vilà-Guerau 

de Arellano et al., 2004).  

All these assumptions increase the uncertainty in our flux estimates, but are necessary 

due to a lack of information about these processes. Although the observations provide 

useful information on important source sectors and their anthropogenic emissions, a 

chemical transport model can quantify the effect of dilution, entrainment, biogenic fluxes, 

et cetera and improve the flux estimates by providing a value for h. Model simulations for 

the same cases including explicit biospheric contributions, as well as plume dispersion will 

be done in a follow-up study. In addition, we aim to extend our dataset by continuing this 

monitoring framework, which will further contribute to the uncertainty reduction. 

In addition, our data inclusion criteria, although underpinned by our observations, are 

somewhat arbitrary. Nevertheless, careful examination of the Zweth-Westmaas gradients 

for varying selection criteria and even with the full dataset shows that the signals 

identified in this paper are consistent. Only the magnitude of the signals is sensitive to our 

choice of selection criteria (Appendix B shows 95% confidence interval). 

 Finally, we illustrated that the observed ΔCO: ΔCO2 ratio agrees well with the CO:CO2 

emission ratio in the emission database for metropolitan Rotterdam, albeit with a large 

observed range. The observed ΔCO can therefore be used to reconstruct fossil fuel CO2 

concentrations. However, the presence of point sources had a large impact on the 

estimated ratio for the port-Botlek footprint. Whereas the NER ratio is dominated by the 

low point source emission ratios, the observations are mostly affected by area source 

emissions at the surface with a much higher CO:CO2 ratio. If we exclude the point sources 

in the port-Botlek footprint the NER indeed gives a ΔCO:ΔCO2 ratio of 8.8 ppb/ppm 

compared to 1.1 ppb/ppm with point sources. This large difference presents a good 

opportunity to use our monitoring sites to specifically target emissions from this area. 

Although the metropolitan Rotterdam footprint also includes several point sources, these 

are less dominant over the area sources than for the port-Botlek footprint and the 
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agreement between observations and the NER is better. The NER also seems to 

underestimate the emissions from glasshouse heating, while overestimating their 

seasonality due to the way the database was constructed. Moreover, the observations 

show a wide range in ratios, which is related to the temporal variability in the emissions 

and meteorological conditions. For example, point sources will only affect the 

measurements from time to time, resulting in a low observed ratio. In contrast, during 

rush hour traffic emissions will be dominant and the observed ratio increases drastically. 

The direct calculation of ΔCO2 from the observations is complicated by the presence of 

biogenic CO2 fluxes. We have included a correction for this by estimating the biogenic CO2 

fraction based on the flux estimates with and without biogenic fluxes. Without this 

correction the observation-based ratios would be 1, 7 and 11% higher for the 

metropolitan Rotterdam, port-Botlek and Maasvlakte/glasshouse footprint, respectively. 

Miller et al. (2012) underpin our finding that exact quantification of ΔCO and ΔCO2 is 

challenging due to the impact of chemistry and biogenic contributions, although this is 

especially relevant during summer months. Indeed, it has previously been concluded that 

the use of CO to constrain fossil fuel CO2 emissions is limited by the uncertainty and 

variability in CO:CO2 emission ratios (Turnbull et al., 2006; Vardag et al., 2015). 

Nevertheless, several studies have also shown that regular 
14

C observations can be used to 

quantify fossil fuel CO2 emissions and calibrate ΔCO (Levin and Karstens, 2007; Turnbull et 

al., 2006; Vardag et al., 2015; Vogel et al., 2010). Using plume modelling could also be 

useful to get more spatial detail in CO:CO2 emission ratios, especially when it comes to 

stack plumes with lower emission ratios and their impact on the observations. 

The method presented in this study has proven useful and it is recommended for further 

exploitation in other areas to identify important source sectors and test its general 

applicability. The final derived fluxes are within -23% - + 15% of the estimates from a state 

of the art bottom-up inventory and for every footprint within the 95% confidence interval 

(Table 2.2). For many urban regions or cities this would be an enormous improvement in 

their emission estimate. However, to verify emission reductions, the uncertainty in the 

flux estimates will need to be reduced significantly. Therefore, we recommend future 

studies to explore the use a high-resolution transport model and an inverse modelling 

approach. Such method could improve the flux estimates by including additional 

information on processes that remain unquantified with our method, such as 

entrainment, dilution and additional (biogenic) sources and sinks of CO2. Such a full 

modelling framework presents a more expensive and time-consuming methodology, while 

the easy-to-use mass balance approach gives a reasonable first, rough estimate. 

Moreover, a transport and/or plume model can be useful for source attribution using 

tracer ratios and footprint analysis. Furthermore, observations of additional tracers, such 

as 
14

C and O2/N2, can help to separate CO2 fossil fuel fluxes from biogenic sources and 

sinks (Turnbull et al., 2006). In combination with high quality datasets, as presented here, 

we expect this would lead to improved flux estimates and monitoring of CO2 emissions for 
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heterogeneous urban-industrial landscapes, which are responsible for the majority of the 

global anthropogenic CO2 emissions. 

Appendix 2A: Methodology 

 
Figure A1: Mean daily cycle of the net ecosystem exchange for several months. 

 
Figure A2: Annual cycle of the maximum boundary layer height. 
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Appendix 2B: Polar plots 

 
Figure B1: Median CO2 mole fraction observed at Zweth as a function of wind direction (angular coordinate) 
and wind speed (radial coordinate). 

 
Figure B2: Difference between Zweth and Westmaas CO2 mole fractions as a function of wind direction 
(angular coordinate) and wind speed (radial coordinate) for a minimum bin size of 2 and the lower and upper 
limit of the 95% confidence interval. 
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Abstract 

Monitoring urban-industrial emissions is often challenging, because observations are 

scarce and regional atmospheric transport models are too coarse to represent the high 

spatiotemporal variability in the resulting concentrations. In this paper we apply a new 

combination of a Eulerian model (WRF with chemistry) and a Gaussian plume model 

(OPS). The modelled mixing ratios are compared to observed CO2 and CO mole fractions at 

four sites along a transect from an urban-industrial complex (Rotterdam, Netherlands) 

towards rural conditions for October–December 2014. Urban plumes are well-mixed at 

our semi-urban location, making this location suited for an integrated emission estimate 

over the whole study area. The signals at our urban measurement site (with average 

enhancements of 11 ppm CO2 and 40 ppb CO over the baseline) are highly variable due to 

the presence of distinct source areas dominated by road traffic/residential heating 

emissions or industrial activities. This causes different emission signatures that are 

translated into a large variability in observed ΔCO:ΔCO2 ratios, which can be used to 

identify dominant source types. We find that WRF-Chem is able to represent synoptic 

variability in CO2 and CO (e.g. the median CO2 mixing ratio is 9.7 ppm (observed) against 

8.8 ppm (modelled)) , but it fails to reproduce the hourly variability of daytime urban 

plumes at the urban site (R
2
 up to 0.05). For the urban site, adding a plume model to the 

model framework is beneficial to adequately represent plume transport especially from 

stack emissions. The explained variance in hourly, daytime CO2 enhancements from point 

source emissions increases from 30 % with WRF-Chem to 52 % with WRF-Chem in 

combination with the most detailed OPS simulation. The simulated variability in ΔCO:ΔCO2 

ratios decreases drastically from 1.5 to 0.6 ppb ppm
-1

 which agrees better with the 

observed standard deviation of 0.4 ppb ppm
-1

. This is partly due to improved wind fields 

(increase in R
2
 of 0.10), but also due to improved point source representation (increase in 

R
2
 of 0.05) and dilution (increase in R

2
 of 0.07). Based on our analysis we conclude that a 

plume model with detailed and accurate dispersion parameters adds substantially to top-

down monitoring of greenhouse gas emissions in urban environments with large point 

source contributions within a ~10 km radius from the observation sites. 
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3.1 Introduction 

Cities are major contributors to anthropogenic CO2 and air pollutant emissions (Brioude et 

al., 2013; Turnbull et al., 2015; Velasco et al., 2014). Both monitoring and modelling of 

urban/regional concentrations of CO2 and co-emitted air pollutants, such as CO and NOx, 

has therefore received a lot of attention (Brioude et al., 2013; Font et al., 2014; Huszar et 

al., 2016; Lac et al., 2013; Mays et al., 2009; McKain et al., 2012; Rayner et al., 2014; 

Ribeiro et al., 2016; Silva et al., 2013; Tolk et al., 2009; Wunch et al., 2009; Zhang et al., 

2015). Since current emission inventories at small scales contain substantial uncertainties 

(Pouliot et al., 2012; Vogel et al., 2013), data assimilation has been applied to urban 

environments in order to better quantify fossil fuel fluxes. However, modelling urban 

atmospheric composition remains challenging as the urban environment is complex in 

both the emission landscape and atmospheric transport. This means that to independently 

estimate urban emissions from atmospheric observations, urban inversions require a 

detailed and accurate transport model that allows the mismatch between model and 

observations to be attributed to errors in the emission inventory, rather than to transport 

errors (Boon et al., 2016). Previous inversion studies relied heavily on a strict data 

selection to favour well-mixed conditions with more reliable model output, which results 

in very small data sets and therefore increased uncertainty on the estimated emissions 

(Bréon et al., 2015; Brioude et al., 2013). This could be overcome by improving the model 

representation of urban transport, taking into account that the model requirements are 

strongly dependent on the type of observation site used in the inversion. In this paper we 

aim to construct a promising observation and modelling framework to quantify the CO2 

budget of an urban area by addressing two important questions in the context of inverse 

modelling at the urban scale. 

The first question is what type of measurement location (urban vs. rural) can best be 

used to monitor urban fluxes. Generally, urban sites are most strongly exposed to nearby 

(<1 km) fluxes and therefore show a large variability (Bréon et al., 2015; Lac et al., 2013). 

In contrast, rural sites show a much smaller response to urban emissions due to the small 

range of wind directions at which the site is affected by the urban area. Moreover, the 

dilution of urban plumes increases with distance (Calabrese, 1990; Finn et al., 2007) and 

the observed signal at the rural site can be small. Another consideration is that near-

ground measurements, as commonly found in cities, are highly influenced by local sources 

(<100 m) that mask the overall urban signal. Boon et al. (2016) suggested that, even if 

strict data selection is applied, the usefulness of such sites in inversions with high-

resolution Eulerian models (1–10 km) might be limited. Together, these papers suggest 

that a useful measurement location should be just downwind of an urban area relative to 

the dominant wind direction at a distance that ensures enough exposure to the urban 

plume and limits model errors due to large heterogeneity and local emissions. We will 

examine a transect of measurement sites to see which site best matches this criterion. 
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The second question we address is what type of modelling framework is best capable of 

explaining urban transport and the resulting mole fractions at the measurement sites. 

Since the measurement location determines the level of spatiotemporal variation that can 

be observed in the concentrations, it also determines the requirements imposed on the 

modelling framework. In atmospheric composition modelling both Eulerian and 

Lagrangian (plume, puff or Gaussian) models are used, or a combination of both (Kim et 

al., 2014; Korsakissok and Mallet, 2010b). Eulerian models use a grid that can be adapted 

to cover either small or large areas at different resolutions and are therefore widely used. 

However, Eulerian models assume that trace gasses are instantly mixed within individual 

grid boxes, which may enhance dispersion in the horizontal and vertical. The resulting 

errors in transport and mixing are reflected in unrealistic concentrations (Karamchandani 

et al., 2011; Tolk et al., 2009). The magnitude of the concentration error depends on the 

heterogeneity of the emissions and the grid resolution (Tolk et al., 2008). A plume model 

improves the description of horizontal and vertical mixing and can account for higher 

spatial heterogeneity of emissions and concentrations. The use of such models has proven 

useful for both inert and reactive species, and point and line sources at local/urban scales 

(Briant and Seigneur, 2013; Korsakissok and Mallet, 2010a, b; Rissman et al., 2013; Vinken 

et al., 2011). However, a plume model is usually only applied to local sources to reduce 

computational expenses. It therefore does not resolve the impact of remote emissions 

and synoptic transport. So, when assessing the carbon balance of a whole city or larger 

areas, a combination of both models might be needed. 

Oney et al. (2015) examined an extensive CO2, CH4 and CO measurement network in 

combination with the FLEXPART-COSMO model. However, their framework focused on 

regional (~100–500 km), terrestrial fluxes. Several other studies focussed on urban scales 

(Boon et al., 2016; Bréon et al., 2015; Turnbull et al., 2015), but only few incorporated a 

Lagrangian model. For example, McKain et al. (2012) and Lauvaux et al. (2016) used a 

Lagrangian model to optimise urban fluxes of CO2, while Brioude et al. (2013) compared 

simulated FLEXPART CO2, CO and NOx concentrations to small observational datasets from 

seven flights over Los Angeles. Here, we compare and combine simulations with two 

different models: the Eulerian WRF-Chem model and the segmented Gaussian plume 

model OPS. The Gaussian plume model is used here specifically to transport point source 

emissions. The model output is compared to continuous observations of CO2 and CO at 

several measurement sites along an urban-to-rural transect. We included CO, because this 

species can act as a useful tracer for source attribution. We use the Rijnmond area (The 

Netherlands) including the city of Rotterdam as our case study, which is surrounded by 

scattered urban, agricultural, and rural areas. We chose this area because of the 

availability of a 1x1 km
2
 emission inventory and its complex combination of residential, 

transport (including shipping), greenhouse and industrial activities. This makes Rijnmond 

an interesting test case, albeit not a simple one. 
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This paper starts with a description of the case study (Sect. 3.2.1), the modelling 

framework (Sect. 3.2.2–3.2.5), and a summary of data selection criteria and methods 

(Sect. 3.2.6). Subsequently, we examine the ability of our measurement sites to detect 

urban signals, and demonstrate the added value of both urban and semi-urban sites (Sect. 

3.3.1). Sect. 3.3.2 examines the ability of WRF-Chem to represent the urban signals at the 

measurement sites. Finally, we discuss the advances made by implementing the Gaussian 

OPS plume model (Sect. 3.3.3) and we examine the relative importance of improved 

meteorological conditions and source representation in Sect. 3.3.4. Our results lead to 

recommendations for monitoring and modelling of urban atmospheric composition in 

Sect. 3.4. 

3.2 Methods 

3.2.1 Study area and measurements 

We take the Rijnmond area (Fig. 3.1) in the Netherlands for our case study in which 

Rotterdam is the major urban area (625.000 inhabitants). The area is situated in flat 

terrain near the west coast of The Netherlands and includes a large harbour and industrial 

area. The bottom-up estimated emissions in this area are about 35 Mt CO2 and 48 kt CO in 

2012 (Netherlands PRTR, 2014). In the port area, over three times more CO2 is emitted 

than in the city of Rotterdam. In contrast, more than 60 % of all CO is emitted in the city of 

Rotterdam. The reason for this difference is that emissions within the city are dominated 

by road traffic, which emits relatively much CO (CO:CO2 emission ratio of almost 17 ppb 

ppm
-1

). The principal source of CO2, namely energy production and industrial processes, is 

mainly found in the port area and barely emits any CO (CO:CO2 emission ratio of less than 

1 ppb ppm
-1

). The CO2 emissions are therefore dominated by point sources (~80 %). 

We have installed two measurement sites to monitor CO2 and CO mixing ratios 15 km 

south (Westmaas, 51.79° N, 4.45° E) and 7 km northwest (Zweth, 51.96° N, 4.39° E) of the 

city centre with an inlet at 10 m a.g.l. We consider Zweth to be an urban site which is 

highly affected by urban emissions. Westmaas functions as a background site close to – 

but not within - the city and it is usually located upwind of the major source areas. 

Therefore, Westmaas provides information on the air mass entering the Rijnmond area 

and we only use this site to validate the large-scale patterns in WRF-Chem. These 

measurements have been described in more detail by Super et al. (2017b). At Rotterdam-

The Hague airport (Fig. 3.1) meteorological observations are made, which we also use for 

transport model validation purposes. 

We include two additional, more remote, sites in our framework. The Cabauw site 

(51.97° N, 4.93° E) is situated 32 km east of the centre of Rotterdam and is considered a 

semi-urban site (Van der Laan et al., 2016; Vermeulen et al., 2011). This means the 

sampled air masses are influenced by urban emissions, but less often than a truly urban 

location. CO2 is measured at several heights (20, 60, 120 and 200 m a.g.l.) along a 200 m 
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tall tower by the Energy research Centre of the Netherlands (ECN). CO is measured at 

ground level (2.5–4 m a.g.l.) by the National Institute for Public Health and the 

Environment  (RIVM). Another observation site is located at Lutjewad (53.40° N, 6.35° E), 

close to the coast in the north of the Netherlands. At this rural site, CO and CO2 mixing 

ratios are observed at 60 m a.g.l. (Van der Laan et al., 2009b; Van der Laan et al., 2016). 

These four stations together describe a transect from the city towards rural areas.  

 
Figure 3.1: CO2 emission map of the Rijnmond area (red outline), including the city of Rotterdam (blue outline) 
and the port area (brown outline); the observation sites are indicated with black stars (Lutjewad is shown in 
Fig. 3.2). The boundaries of domain 4 in WRF-Chem are indicated by the black square. Source: Netherlands 
PRTR (2014).  

For the Cabauw CO2 measurements we selected the 60 m level. On average the CO2 

mixing ratios are similar at all levels during well-mixed daytime conditions (Vermeulen et 

al., 2011), but a large gradient is observed for stable conditions when the 20 m level is 

highly affected by surface fluxes surrounding the tower. Similarly, Turnbull et al. (2015) 

suggested that measurements closer to the surface are more sensitive to local fluxes and 

therefore a higher level than 20 m is more suitable to obtain information on more remote 

fluxes. We choose the 60 m level observations to be able to compare easily to the 

Lutjewad site. However, a higher level could have been used without affecting our 

conclusions. 

3.2.2 Eulerian model 

The Eulerian model used in this study is WRF-Chem V3.2.1 (Skamarock et al., 2008). For its 

initial and boundary conditions we use meteorological fields from the National Centers for 

Environmental Prediction (NCEP) Final (FNL) Operational Global Analysis (National Centers 

for Environmental Prediction/National Weather Service/NOAA/U.S. Department of 

Commerce, 2000) at 1x1° horizontal resolution and a temporal resolution of 6 hours. We 
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define four 2-way nested domains (Fig. 3.2) which have a horizontal resolution of 48x48, 

12x12, 4x4 and 1x1 km respectively, and a vertical resolution of 29 eta levels with the 

lowest model layer 40 m deep and a total of 8 levels in the lowest 1 km. The outer domain 

is situated over Europe. Domains 2–4 zoom in on the Rijnmond area in the southwest of 

the Netherlands. Based on previous studies over the Netherlands (Bozhinova et al., 2014; 

Daniels et al., 2016; Steeneveld et al., 2014), we have used the Yonsei University (YSU) 

boundary layer scheme (Hong et al., 2006), the Dudhia scheme for shortwave radiation 

(Dudhia, 1989), the Rapid Radiation Transfer Model (RRTM) as longwave radiation scheme 

(Mlawer et al., 1997), and the Unified Noah Land-Surface Model as the surface physics 

scheme (Ek et al., 2003). We also used the single-layer urban canopy model (UCM) to 

account for changes in roughness length and heat fluxes in the urban environment (Chen 

et al., 2011), although the impact of the UCM model on simulated mixing ratios is very 

small in our domain. 

 
Figure 3.2: Location of the domains is indicated with squares. The horizontal resolutions of the domains are 
(from outer to inner domain): 48x48 km, 12x12 km, 4x4 km and 1x1 km. Black circles represent the 
observation sites. 

The CO2 initial and boundary conditions are taken from the 3D mole fractions from 

CarbonTracker Europe (Peters et al., 2010). The CarbonTracker 3D fields have a horizontal 

resolution of 1x1° and 34 vertical levels. Therefore, they are both horizontally and 

vertically interpolated onto the WRF-Chem grid. The CO initial and boundary conditions 

are calculated with IFS-MOZART (Flemming et al., 2009) and obtained from the Monitoring 

Atmospheric Composition and Climate (MACC) project. The boundary conditions are 

updated every 6 hours (only for the outer domain). 

We have implemented a CO2 budget based on the methodology used by Bozhinova et al. 

(2014), described in Eq. (1). 
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                                                    (1) 

 

where the indices express the origin of CO2: obs – total observed concentration at a 

particular location, lsbg – large-scale background mole fraction, ff – fossil fuels, bf – 

biofuels, p – photosynthetic uptake, r – ecosystem respiration. Similar to the original study 

of Bozhinova et al. (2014), we omitted the stratosphere-troposphere exchange and ocean 

fluxes and assume they are accounted for in the large-scale background. With Eq. (1) we 

thus only consider regional contributions to the carbon budget in addition to the large-

scale background. In the model, any change in the large-scale background CO2 mole 

fraction (XCO2,lsbg) is only caused by advection and exchange at the domain boundaries. 

In addition, we added the CO budget to WRF-Chem following Eq. (2). The main sources 

of CO are fossil fuel combustion and oxidation of hydrocarbons (US EPA, 1991). Several 

scholars have argued that the hydrocarbon oxidation term is important for the large-scale 

background CO concentration (Gerbig et al., 2003; Griffin et al., 2007; Hudman et al., 

2008), contributing a significant percentage to the total CO burden. Yet, these studies 

were all based on summer time measurements and under conditions favourable for 

photochemistry. Photochemical oxidation is likely to be less important in the winter 

months considered here. Moreover, Griffin et al. (2007) found the CO fraction from local 

anthropogenic emissions to dominate at measurement sites. We assume this is also valid 

in the urban-industrial environment of our case study. We nevertheless consider that this 

introduces an uncertainty in the modelled CO mixing ratios. For summer time studies the 

oxidation term might be significant. 

The main sink of CO is the reaction with the hydroxyl radical (chemical loss term L), 

which we account for with a simple first order loss term. We assume steady-state, i.e. the 

OH concentration is taken as a constant (10
6
 molecules cm

-3
). This results in a lifetime for 

CO of about 2 months at mid-latitudes (Jacob, 1999) during the winter months used in our 

study: 

 

                                         (2) 

 

The different contributions in Eq. (1) and Eq. (2) are separated as different additive 

tracers (i.e. labelled) in the WRF-Chem simulations. 

3.2.3 Gaussian plume model 

The plume dispersion model OPS (Operational Priority Substances) is a segmented 

Gaussian plume model that calculates the transport, dispersion, chemical conversion and 

deposition of pollutants (Sauter et al., 2016; Van Jaarsveld, 2004). It is used to calculate 

large-scale, yearly averaged concentration and deposition maps for the Netherlands at 1x1 

km
2
 resolution. It was initially developed to model dispersion of pollutants like particulate 
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matter and ammonia, but has also been used to study the dispersion of pathogens (Van 

Leuken et al., 2015).  

In this paper we use the so-called "short-term" version of this model (version 10.3.5), 

which contains mostly the same parameterisations as the "long-term" model described by 

Sauter et al. (2016). The short-term model provides hourly concentrations at receptors 

that can be individual sites, or across a gridded domain. The model keeps track of a 

trajectory forward in time, for which plumes consist of so-called segments, taking into 

account time-varying transport over longer distances (e.g. changes in wind direction and 

dispersion). If for a time step a specific plume affects the receptor, a Gaussian plume 

formulation is used to calculate the concentration caused by that source based on the true 

travel distance along the trajectory. 

The OPS model uses primary meteorological variables which are measured by the Royal 

Dutch Meteorological Institute, and calculates secondary variables such as boundary layer 

height and friction velocity, but also the turning of the wind with height and a vertical 

wind profile. Primary meteorological variables are spatially interpolated over the 

Netherlands to 10x10 km
2
 using 19 observation sites with a weighing factor depending on 

the distance to the grid point. The variables are subsequently averaged over a pre-defined 

area (for more information see Sauter et al. (2016)). The use of observed meteorology in 

OPS versus model-calculated meteorology in WRF-Chem could result in an unfair 

comparison of the models, and we therefore replaced the primary parameters 

(temperature, humidity, wind speed, and wind direction) and the boundary layer height 

with those calculated by WRF-Chem. The secondary (dispersion) parameters are 

automatically also updated, since they are calculated from the primary parameters. Note 

that the meteorological conditions in OPS remain constant during each simulated hour 

and over a large region. 

Although potentially the OPS model can be used for both area and point source 

emissions, we believe that point sources will benefit most from a more detailed 

description of dispersion as they are affected most by the instant dilution in a Eulerian 

model. When using OPS, we assume wet deposition plays no role due to the relative 

insolubility of CO2, while dry deposition of CO2, i.e. photosynthetic uptake, is accounted 

for by WRF-Chem (Eq. (1)). We do not simulate CO with the OPS model. The point source 

contribution to the total CO concentrations is very small and therefore the impact of OPS 

is limited. 

3.2.4 Emissions 

The fossil fuel and biofuel emissions for domains 1–3 in the WRF-Chem simulation are 

taken from the TNO-MACC III inventory for 2011 (Kuenen et al., 2014) and have a 

horizontal resolution of 0.125x0.0625°. Fossil fuel and biofuel emissions for domain 4 in 

WRF-Chem are collected from the Dutch Emission Registration (Netherlands PRTR, 2014) 

and compiled by TNO (Netherlands Organization for Applied Scientific Research) to a 1x1 
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km
2
 emission map for the year 2012. In the OPS simulations we only include the point 

source emissions from domain 4 in WRF-Chem (hereafter referred to simply as the 

Rijnmond area). 

Table 3.1: Overview of SNAP categories and the vertical distribution of point source emissions in WRF-Chem. 

SNAP Description % of point source emissions per model layer [m above 
surface] 

  0–55 55–130 130–235 235–360 >360 

1 Combustion in energy and 
transformation industries 

  18.5 % 42 % 39.5 % 

2 Non-industrial combustion 
plants 

     

3 Combustion in manufacturing 
industry 

12.2 % 37.3 % 46.2 % 4.3 %  

4 Production processes 12. 2 % 37.3 % 46.2 % 4.3 %  
5 Extraction and distribution of 

fossil fuels 
     

6 Solvents and other product 
use 

     

7 Road transport      
8 Other mobile sources and 

machinery 
100 %     

9 Waste treatment and disposal  16.5 % 44.5 % 39 %  
10 Agriculture      

 
The emissions are divided over ten SNAP emission categories, summarised in Table 3.1, 

which may include both area and point sources. We apply a temporal profile to the 

emissions by assigning hourly, daily and monthly fractions to the emissions per emission 

category (Denier van der Gon et al., 2011). In WRF-Chem, area source emissions are added 

to the lowest surface model level every hour. Point source emissions (only SNAP 1, 3, 4, 8 

and 9) are given a simplified, fixed vertical distribution based on previous research with 

plume rise calculations (Bieser et al., 2011). These emissions are emitted at the heights 

shown in Table 3.1. OPS allows for more detailed point source characteristics and 

accounts for stack height and plume rise (based on heat content) per individual point 

source. 

The biogenic (non-biofuel) CO2 fluxes in WRF-Chem are generated as described by 

Bozhinova et al. (2014). The SiBCASA model (Schaefer et al., 2008) calculates monthly 

averaged 1x1° photosynthetic uptake (An) and ecosystem respiration (R) for nine different 

land use types. Combining the high-resolution land-use map of WRF-Chem with the 

SiBCASA fluxes gives us biogenic fluxes on the resolution of the WRF-Chem grid. The 

temporal resolution is enhanced by scaling the An and R at each WRF-Chem time step with 

modelled shortwave solar radiation (SWin in W m
-2

) and 2m temperature (T2m in K): 

 

                    (3) 
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                              (4) 

 

where An,f is the monthly average photosynthetic flux divided by the monthly total 

incoming shortwave radiation (mole CO2 km
-2

 h
-1

 (W m
-2

)
-1

), and Rf the monthly average 

respiration flux (mole CO2 km
-2

 h
-1

) divided by the monthly total of the empirical function 

                   (unitless). This procedure was first described in Olsen and Randerson 

(2004). It neglects the impact of water stress, temperature and CO2 concentration on the 

photosynthetic uptake. Given that we consider only winter months in which 

photosynthesis is limited, we assume the error resulting from this simplification to be 

small. 

3.2.5 Overview of simulations 

We simulated a period of 3 months, October–December 2014. We choose this period 

because of the high data coverage at all measurement sites and to limit the impact of 

biogenic fluxes and hydrocarbon oxidation. We considered four simulations for CO2, using 

two different model systems as described in Table 3.2. All simulations include the WRF-

Chem contributions of XCO2,lsbg, XCO2,p, XCO2,r, and XCO2,bf and XCO2,ff from area sources. Also, 

the first three simulations make use of meteorological conditions as simulated by WRF-

Chem. Therefore, the simulations only differ in the representation of point source 

emissions in the Rijnmond area. To identify the importance of a correct representation of 

meteorological conditions we do an additional OPS simulation with interpolated 

meteorological observations (see Sect. 3.2.3). The simulations are designed to gradually 

increase the complexity of the point source representation towards more realistic point 

source contributions: 

 In simulation 1 (WRF-Chem) the point sources are represented as area sources in 

WRF-Chem; 

 In simulation 2 (WRF+OPS-area) the point sources are treated as area sources in 

OPS; 

 In simulation 3 (WRF+OPS-point) the point sources are represented as true point 

sources with detailed source characteristics in OPS; 

 In simulation 4 (WRF+OPS-point-obsmet) the point sources are represented as 

true point sources with detailed source characteristics in OPS and the 

meteorology in OPS is replaced by interpolated observations and OPS calculated 

boundary layer height. 

In the WRF-Chem run we labelled the point source emissions from the Rijnmond area 

separately, so we can replace them by the OPS counterparts. The OPS model simulates 

concentrations directly at the measurement sites, whereas from WRF-Chem we extract 

the grid box average mixing ratio of the boxes in which the measurement sites are 

located. 
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Table 3.2: Overview of the simulations, which model is used to calculate the urban plume mixing ratio from 
point sources in the Rijnmond area, how point sources are represented and the source of meteorological 
conditions. 

Simulation name Point source 
contribution  

Point source 
representation 

Meteorological 
input 

WRF-Chem WRF-Chem area WRF-Chem 
WRF+OPS-area OPS area WRF-Chem 
WRF+OPS-point OPS point WRF-Chem 
WRF+OPS-point-obsmet OPS point observations 

3.2.6 Baseline determination and data selection criteria 

In this study we are especially interested in the contribution of urban emissions and the 

ability of the models to represent the transport of those emissions to the observation 

sites. However, the observed CO2 and CO mixing ratios are also affected by background 

signals and other fluxes. Therefore, in order to purely compare the transport of urban 

emissions, we need to separate the fossil fuel contribution from all other contributions. In 

the models we can separate the fossil fuel contribution XCO2,ff coming from the Rijnmond 

area (hereafter referred to as “urban plume”) from all other contributions (i.e. XCO2,ff from 

outside the Rijnmond area, XCO2,lsbg, XCO2,p, XCO2,r, and XCO2,bf, hereafter referred to as 

“baseline”) by using labelled tracers. To quantify the urban plume contribution to the total 

observed mixing ratio, we also need to subtract a baseline. 

Previous studies have suggested various methods to calculate the baseline from 

observations, for example using a remote/upwind measurement site or statistical 

methods (e.g. (Djuricin et al., 2010; Lopez et al., 2013; Turnbull et al., 2015; Van der Laan 

et al., 2010). An in-model comparison with WRF-Chem shows that Westmaas is a suitable 

background site for Zweth (Super et al., 2017b), but Westmaas gives a biased baseline 

estimate for the more remote sites (Cabauw and Lutjewad) because of the interference of 

other sources and sinks along the transect from Rijnmond to the measurement site. 

Another suggested method is to subtract a smoothed representation of the original time 

series (Press et al., 1992; Super et al., 2017b; Thoning et al., 1989) which filters out 

variations below a certain cut-off time scale. For seasonal cycle smoothing for example, a 

typical cut-off value is 80 days. In our study however, the baseline needs to filter out 

synoptic variations across the domain and we therefore chose a cut-off time of 5 days. We 

tested this baseline definition by applying it to the WRF-Chem time series and comparing 

the resulting concentrations to the true WRF-Chem baseline based on the labelled tracers. 

We found satisfactory agreement (R
2
 is between 0.65 and 0.81 for both species at all 3 

locations). Note that this method does not account for short pollution events bringing 

polluted air into the domain as only synoptic variations are captured. 

To prevent any differences between model and observations resulting from the baseline 

selection, we choose to apply this subtraction of a smooth cycle method with a 5-day cut-

off to both observations and our model time series at all measurement sites (see Fig. 3.3 

for an example). The concentrations above the baseline are considered to be the urban 
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plume concentrations and are denoted ΔCO2 and ΔCO. Note that data points can also be 

below the baseline if clean air is advected and only a small fossil fuel contribution is 

calculated. We discard these data points, because we cannot accurately estimate the fossil 

fuel concentrations in those urban plumes. 

 
Figure 3.3: Time series of modelled (WRF-Chem) and observed CO2 and CO mixing ratios at Zweth (left) and 
Cabauw (right). The observation-based baseline used in this study is also shown. 

In all the analyses, we applied a wind sector selection to ensure that the observations 

are affected by emissions in the Rijnmond area rather than from other urban areas 

nearby. For Zweth we selected wind directions of 90–220 degrees, for Cabauw 230–270 

degrees, and for Lutjewad 210–230 degrees. For Zweth we can also separate between 

signals from the residential area (90–150 degrees, Zweth-city) and industrial area (160–

220 degrees, Zweth- port). Wind direction observations at Rotterdam airport are used for 

this purpose. Additionally, a daytime selection criterion (8:00–17:00 LT) is applied to 

favour well-mixed conditions. 

3.3 Results 

3.3.1 Comparison of measurement sites 

The urban-to-rural transect of observation sites provides an opportunity to evaluate the 

ability of different types of sites to detect urban plumes. We find that a semi-urban site 

can provide a constraint on the total emissions in the Rijnmond area, whereas an urban 

site is able to separate between different source areas. This is illustrated in Fig. 3.4 (left 

panel), where we display the probability density functions of the urban plume CO:CO2 

concentration ratio (i.e. ΔCO:ΔCO2) at the three sites. A probability density function 
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illustrates the likelihood that an observed urban plume concentration ratio takes a certain 

value. The narrower the distribution, the less variable the ratios are and the more likely a 

ratio is to take the mean value (largest probability). Figure 3.4 also displays the mean 

bottom-up derived emission ratio of the Rijnmond area (vertical solid line, 2.5 ppb ppm
-1

) 

and its range, which is taken from the emission inventory taking into account the temporal 

profiles of the separate emission categories. 

 
Figure 3.4: Left: Smooth Gaussian fit of probability density functions of observed ΔCO:ΔCO2 at the Zweth, 
Cabauw and Lutjewad measurement sites. The solid vertical line (shaded area) shows the mean emission ratio 
(Q1–Q3 range) for all emissions integrated over the Rijnmond area (see Fig. 3.1). Right: The Zweth 
observations separated into two distinct source areas based on the observed wind direction. The dash-dotted 
and dashed vertical lines represent the mean emission ratios from the residential area and the port, 
respectively. Generally, there is a reasonable match between the bottom-up emission ratio and the 
concentration-derived ratio, but observed ratios from the Zweth-port wind sector are much higher than 
expected because of the intermittency of plume transport from the many stacks in this area. The grey bars in 
the right panel show the point source events selected in Sect. 3.3.3. 

We see that the ΔCO:ΔCO2 distribution at Cabauw is relatively narrow. Also, the mean 

ΔCO:ΔCO2 at Cabauw (2.2 ppb ppm
-1

) is very close to the bottom-up Rijnmond emission 

ratio. This indicates that Cabauw observes an integrated, well-mixed signal from the 

Rijnmond area and therefore contains information on the entire urban area. Interestingly, 

Lutjewad shows a much wider distribution with a mean of 3.9 ppb ppm
-1

. The urban plume 

from Rijnmond is mixed with signals from other industrial and urban areas (such as 

Amsterdam) before it reaches Lutjewad, causing more variability. This suggests that a site 

too far away from the urban sources is unable to uniquely identify the urban plume 

coming from a specific region. Also, the wind direction is heterogeneous between 

Rijnmond and Lutjewad. So, despite that the wind in Rijnmond is blowing towards 

Lutjewad according to our wind sector selection, the urban plume might never reach the 

site if the wind direction is changing during transport. This makes it difficult to filter out 

the Rijnmond urban plume and Lutjewad will be disregarded for the remainder of this 
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study. The Zweth site has an even wider distribution than Lutjewad and a mean ratio of 

4.5 ppb ppm
-1

. This site is affected by different source areas with distinct emission ratios 

depending on the wind direction, resulting in a large variability in observed concentration 

ratios. This variability contains a lot of information about the Rotterdam emissions and 

their spatiotemporal variations. Therefore, we examine the Zweth distribution in more 

detail by selecting wind sectors that sample different source areas with distinct emission 

characteristics (Fig. 3.4, right panel). Zweth-city is illustrative for the signal from the urban 

residential area dominated by road traffic and the Zweth-port signal contains mostly 

industrial and power plant emissions. 

We find a large difference in bottom-up emission ratios for the residential (6.6 ppb 

ppm
-1

, vertical dash-dotted line) and port area (1.2 ppb ppm
-1

, vertical dashed line), which 

is not fully reproduced by the observed ΔCO:ΔCO2 ratios. Whereas the observed 

ΔCO:ΔCO2 ratio for Zweth-city (5.0 ppb ppm
-1

) is in reasonable agreement with the 

emission ratio, Zweth-port has a mean observed ratio that is much higher than expected 

(4.1 ppb ppm
-1

). This discrepancy is related to the presence of high stack emissions in this 

area, which make up almost 75 % of the total Rijnmond CO2 emissions. The stack 

emissions from industrial processes and energy production have a small emission ratio of 

~1 ppb ppm
-1

 and dominate the total emission ratio. However, stack emissions have small 

plume dimensions that can easily be missed at the Zweth site and not be visible in the 

observations, especially for stacks in the vicinity of Zweth. Therefore, the observed 

concentration ratio can turn out much higher than what is expected based on the 

emission inventory including stack emissions. Indeed, the emission ratio of the Zweth-port 

area without point sources would be 3.9 ppb ppm
-1

, which is very close to the observed 

4.1 ppb ppm
-1

. This finding indicates that stack emissions only occasionally affect the 

Zweth observations and it is very important to represent those events well with a model in 

order to constrain this large fraction of CO2 emissions. Although there might be an 

uncertainty in the emission inventory, reported emissions from industrial stacks are 

relatively accurate. Thus, it is unlikely that this explains the full discrepancy found for 

Zweth-port. Another potential cause of the discrepancy could be that the emission ratio is 

variable in time – for example due to a change in fuels used for energy production, while 

this is not accounted for in the inventory. However, this would likely have a smaller impact 

than the discrepancy found here. The impact of stack emissions on the Zweth 

observations is discussed in more detail in Sect. 3.3.3. 

3.3.2 WRF-Chem urban plume transport 

We have now seen that the observations at Zweth and Cabauw contain valuable 

information about the emissions in the Rijnmond area. In order to use that information to 

estimate the emissions, we explore the ability of WRF-Chem to represent observed time 

series, and especially their urban plume components. 
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Table 3.3: Statistics for WRF-Chem daytime (8:00–17:00 LT) average meteorological variables and total CO2 and 

CO mixing ratios as compared to observed daytime averages (full simulation period).           is the average 
observed mixing ratio and N gives the number of days included. This table shows that WRF-Chem is able to 
represent day-to-day variations in meteorological conditions and mixing ratios, except for the wind direction. 

Variable Site R
2
 RMSE bias     

       N 

Temperature Rotterdam airport 0.77 2.5 °C + 0.9 °C  90 
Specific humidity Rotterdam airport 0.81 1.0 g kg

-1
 + 0.5 g kg

-1
   90 

Wind speed Rotterdam airport 0.72 1.2 m s
-1

 <0.1 m s
-1

  90 
Wind direction Rotterdam airport 0.20 53 degrees - 13 degrees  90 
CO2 mixing ratio Westmaas 0.65 8.8 ppm + 1.1 ppm 418 ppm 83 
 Zweth 0.45 13.0 ppm + 2.5 ppm 423 ppm 85 
 Cabauw (60 m) 0.48 10.6 ppm + 3.6 ppm 417 ppm 86 
CO mixing ratio Westmaas 0.53 55 ppb - 23 ppb 187 ppb 83 
 Zweth 0.41 69 ppb - 1 ppb 198 ppb 85 
 Cabauw (60 m) 0.35 53 ppb + 18 ppb 156 ppb 89 

 
First, we analyse the model performance on a day-to-day basis by looking at daytime 

averages and find that WRF-Chem is able to resolve day-to-day variations reasonably well. 

Table 3.3 shows that, respectively, 65 % and 53 % of the variability in the CO2 and CO 

mixing ratios is captured at the Westmaas background site. Although the explained 

variances are slightly smaller at the urban (Zweth) and semi-urban (Cabauw) site, the 

performance at Cabauw for CO2 is comparable to previous modelling studies (Bozhinova et 

al., 2014; Tolk et al., 2009). Yet, the RMSE (Root Mean Square Error) is relatively large for 

CO and CO2 at all sites. Since Westmaas is nearly unaffected by urban emissions, the cause 

of the large RMSE is related to larger scale transport. Looking at meteorological variables, 

there is a good agreement for temperature, humidity and wind speed. However, the 

model has difficulties simulating the correct wind direction, which is especially expressed 

in the large RMSE. Similar errors have been observed before (Deng et al., 2017; Srinivas et 

al., 2016). The largest error is found in the second half of November, causing a large 

model-data discrepancy (also visible in Fig. 3.3). Table 3.3 also shows that the RMSE in the 

mixing ratios further increases for sites that are more influenced by the urban area. This 

finding indicates that WRF-Chem has difficulties representing the full variability caused by 

urban-industrial emissions. 

Second, looking closer at the urban plumes we find that WRF-Chem represents the 

typical characteristics of urban plumes reasonably well, but it simulates the peaks at the 

wrong time at the wrong location compared to the measurements (Table 3.4). We tried to 

isolate the impact of errors in urban transport by looking statistically at the urban plume 

concentrations (ΔCO2 and ΔCO) at Zweth and Cabauw. We select all data points that 

satisfy our criteria, separately for the observed and modelled time series such that both 

data sets can have a different size. We disregard data points associated with wind speeds 

of less than 3 m s
-1 

to favour well-mixed conditions that are easier to interpret. However, 

we find that the inclusion of low wind speed data has limited impact on the average 

statistics. Table 3.4 shows that, on average, there is a good agreement between WRF-
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Chem and the observations in the median and the 80
th

 percentile. The median values of 

CO2 are somewhat lower in WRF-Chem, indicating there are more small values and less 

high peak values in the model. Because the frequency distribution of the wind direction is 

similar between the observations and WRF-Chem, we expect no bias is introduced by the 

wind direction error. However, if we now co-sample WRF-Chem and the observations in 

time (i.e. we select observations that match our criteria and then take the same time from 

the WRF-Chem time series, which creates two data sets of equal size) we find a very small 

explained variance (R
2
) for both species at both sites based on hourly data. An inversion 

using these hourly data would thus be subject to a large model-data mismatch that 

increases the uncertainty in the optimised fluxes. Therefore, we next look more 

specifically at the data points responsible for the highest mismatch in observed and 

simulated ΔCO2.  

Table 3.4: Statistics for the distribution of the observed and modelled (WRF-Chem) urban plume mixing ratios 
(ΔCO2 and ΔCO) at the Zweth and Cabauw site. N is number of hours included for either the observed or 
simulated time series. The R2 in the final column is based on co-sampling of WRF-Chem with the observations. 
The agreement between WRF-Chem and the observations is satisfactory when considering the distribution of 
the plume mixing ratios, but the low explained variance when co-sampling suggests a large impact of transport 
errors on individual plumes. 

Species Site Obs/model Median 80
th

 
percentile 

N R
2
 

CO2 Zweth Observed 9.7 ppm 17.3 ppm 284  
  WRF-Chem 8.8 ppm 16.9 ppm 249 0.05 
 Cabauw (60 m) Observed 6.0 ppm 9.1 ppm 32  
  WRF-Chem 5.6 ppm 6.4 ppm 37 <0.01 
CO Zweth Observed 29 ppb 57 ppb 274  
  WRF-Chem 33 ppb 50 ppb 207 0.01 
 Cabauw (60 m) Observed 13 ppb 28 ppb 58  
  WRF-Chem 18 ppb 31 ppb 51 <0.01 

 
We find that the largest differences between WRF-Chem and the observations at Zweth 

when co-sampling urban plumes results from errors in simulated wind direction, as well as 

from an inability of WRF-Chem to simulate the impact of point source emissions. This is 

illustrated in Fig. 3.5, where we binned the absolute errors in hourly ΔCO2 into four 

magnitude classes of 10 ppm each and correlate them with the error in simulated wind 

direction (as binned into three classes of 20 degrees, scatter plots) and with the observed 

ΔCO:ΔCO2 ratio (whisker plots). We find that the smallest ΔCO2 model error class (0–10 

ppm) is dominated by the smallest wind direction error (0–20 degrees, 68 %), while in the 

largest ΔCO2 model error class (30–40 ppm) 70 % of the data points have a wind direction 

error of more than 20 degrees. With such large wind direction errors, the trajectory of 

urban plumes is misrepresented and the modelled mixing ratios are affected by the wrong 

source area, or plumes may even entirely miss the sites in the model. In addition, we find 

that in the largest ΔCO2 model error class (30–40 ppm) the observed ΔCO:ΔCO2 is lower 

(2.5 ppb ppm
-1

) and less variable than in the other classes, suggesting a larger influence of 
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industrial (stack) emissions. Although the number of data points in the largest ΔCO2 model 

error class is small (N=14), these tendencies give a good indication of what might cause 

these errors. At Cabauw, the impact of stack emissions is not visible, because the point 

source emissions are already well-mixed when the air mass arrives at Cabauw. Hence, we 

will next examine the added value of the OPS plume model only at Zweth to better 

represent the dispersion of CO2 emitted from stacks and the impact of wind direction in 

OPS. 

 
Figure 3.5: This figure shows four classes of the absolute model error in ΔCO2 compared with the Zweth 
measurement site. For each class two quantities are displayed. 1) A whisker plot of observed ΔCO:ΔCO2, which 
shows that the largest absolute ΔCO2 model error (y-axis) is related to small observed concentration ratios (x-
axis). This indicates an important role for low-ratio stack emissions (industrial and power plant sources) in the 
large model error class. 2) A coloured scatter plot for which data points are divided into three classes based on 
the absolute error in simulated wind direction (<20 degrees in small blue dots on bottom row, 20–40 degrees 
in larger green dots on middle row, and >40 degrees in large red dots on top row). Each dot represents one 
hour. The percentage contribution of each wind direction error class to the total number of data points (N) is 
shown on the right. These numbers show that the model error in wind direction also plays an important role in 
the ΔCO2 model error. 

3.3.3 WRF-Chem and OPS point source representation 

When we focus exclusively on point source emissions, we find that all simulations that 

include the OPS plume model are in better agreement with the observations than the 

WRF-Chem simulation (based on the R
2
 and regression slope). This is illustrated in Table 

3.5, where we compare co-sampled simulated and observed events with a high point 

source contribution (see also Appendix A for more details). These events are selected 

based on a low observed ΔCO:ΔCO2 ratio (the threshold is 1.5 ppb ppm
-1

, events 

illustrated as grey bars in Fig 3.4). In the models, these events are highly correlated with a 

high point source contribution (of at least 90 %) in the simulated ΔCO2 mixing ratio (r is -
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0.76 (WRF+OPS-point-obsmet) and -0.61 (WRF-Chem)). Including low wind speed data 

deteriorates most of the statistics for all simulations (not shown), meaning that the 

models have difficulties representing stagnant conditions. 

For WRF-Chem the explained variance in the co-sampled observations is limited 

(R
2
=0.30) and the regression slope of ΔCO2 is significantly lower than one (i.e. the 1:1 line 

of modelled vs. observed ΔCO2). Both the mean ΔCO:ΔCO2 and the standard deviation are 

larger than the observed mean and standard deviation. This suggests that the lack of 

agreement is partly caused by an error in the WRF-Chem wind direction, causing the 

model to sample air from a wrong source area. 

Table 3.5: Statistics for CO2 point source peaks at Zweth in four different model simulations as compared to 
observations. N is number of hours included and the slope is based on a linear regression. ΔCO:ΔCO2 denotes 
the mean (± 1σ standard deviation) of the urban plume concentration ratio in ppb ppm-1. 

Model run R
2
 ΔCO:ΔCO2 ΔCO2 slope N 

WRF-Chem 0.30 0.9 (±1.5) 0.82 42 
WRF+OPS-area 0.37 1.2 (±1.1) 0.87 42 
WRF+OPS-point 0.42 1.2 (±1.6) 0.86 42 
WRF+OPS-point-obsmet 0.52 0.7 (±0.6) 0.99 40 
     
Observed  0.7 (±0.4)   

 
In contrast to WRF-Chem, WRF+OPS-point-obsmet shows a larger explained variance 

(R
2
=0.52), a regression slope that is nearly one, and a ΔCO:ΔCO2 ratio that agrees with 

observations both in mean and in standard deviation. Since only about 10 % of the Zweth-

port observations are affected by stack emissions due to the small dimension of the 

plumes (N=42), a better representation of atmospheric conditions has a large impact. An 

advantage of the OPS model is the ability to estimate the model uncertainty by providing a 

plume cross-section. Receptor points can be positioned anywhere and by adding several 

receptor points around the true measurement location we can account for transport 

errors (e.g. in the wind direction). If we allow for a maximum wind direction error of 5 

degrees, this has no significant impact on the R
2
 or slope (results not shown), suggesting 

that the results from the WRF+OPS-point-obsmet simulation are robust against small 

random errors in wind direction. However, systematic errors in the wind direction or the 

treatment of point source emissions such as present in WRF-Chem will have an impact on 

its performance, as we will explore next. 

Dispersion 

When comparing WRF-Chem and WRF+OPS-area we find that the OPS model reduces the 

dispersion of point source emissions, which causes emissions from high stacks to barely 

reach ground level. Vertical profiles of ΔCO2 near an energy production stack for both 

model simulations are shown in Fig. 3.6. Energy production sources often have the highest 

stacks and the lowest ΔCO:ΔCO2 ratios. Near an energy production stack the vertical 
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dimension of the plume in WRF+OPS-area is smaller than in WRF-Chem. The plume 

remains more concentrated in WRF+OPS-area, leading on average to lower mixing ratios 

at ground level (left panel) and to higher maximum values at around 200 m (right panel). 

This effect is also clearly visible at Zweth (not shown) and results in a higher mean 

ΔCO:ΔCO2 ratio in Table 3.5 for WRF+OPS-area (i.e. less influence of the low-ratio stack 

emissions) and a higher explained variance (37 %). 

 
Figure 3.6: Vertical profiles of the median (Q1–Q3) (left panel) and maximum (right panel) ΔCO2 mixing ratio at 
14 h UTC at about 500 m from an energy production point source in WRF-Chem and WRF+OPS-area. The 
horizontal lines represent the boundaries of the vertical levels in WRF-Chem. Emissions are taking place in 
levels 3, 4 and 5 in WRF-Chem or at 130, 235 and 360 m in WRF+OPS-area. The figure shows on average lower 
mixing ratios at ground level in WRF+OPS-area than in WRF-Chem, despite an identical treatment of the 
vertical emission structure. WRF+OPS-area also shows higher maximum values, reflecting a reduction in 
vertical dispersion compared to the Eulerian box representation in WRF-Chem. 

Point source representation 

From a comparison of WRF-Chem, WRF+OPS-point and WRF+OPS-point-obsmet it follows 

that having a plume model with full point source characteristics can improve the 

agreement with the observed mixing ratios, even if the meteorological conditions are 

biased. Implementing detailed source characteristics (WRF+OPS-point) not only increases 

the explained variance to 42 %, it also increases the ΔCO:ΔCO2 standard deviation. This is 

the result of larger spatial (both horizontal and vertical) variability in the emission 

landscape.  

These effects are also visible in Fig. 3.7, which shows a time series of six days of 

observations and model output. When differences between the simulations are small, this 

indicates the absence of point source signals. On October 23 (event A) an improvement is 

made by using observed meteorological conditions due to the large wind direction error, 

while the difference between WRF-Chem and WRF+OPS-point is small. However, on other 

occasions the use of the OPS model, irrespective of the meteorology used, already 

improves the simulated urban plume mixing ratio. For example, on October 24 (event B) 
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both OPS runs reduce the urban plume mixing ratios and are in better agreement with the 

observations. On October 26 (event C) the opposite is happening. Whereas WRF-Chem is 

only above the background for four hours, the observations show a longer and more 

severe pollution event, despite a relatively small wind direction error. Although an 

additional improvement can be made using the observed wind fields, using WRF+OPS-

point already improves the length and strength of the pollution event. Note that, although 

WRF-Chem sometimes performs better than the simulations including OPS, the overall 

statistics suggest that it is recommended to use WRF+OPS-point-obsmet. 

 
Figure 3.7: Time series of ΔCO2 at Zweth from observations and three model simulations (top panel) and of the 
wind direction at Rotterdam airport from WRF-Chem, WRF+OPS-point-obsmet, and observations (bottom 
panel). Shaded areas indicate specific events discussed in more detail in the text. 

3.4 Discussion 

In this study we focused on two major questions in urban greenhouse gas modelling 

studies: what type of measurement locations can provide the best information on urban 

fluxes of CO2 and CO, and what type of modelling framework can best represent urban 

plume mixing ratios at these measurement sites. In a previous study, Lauvaux et al. (2016) 

have used nine observation towers to estimate CO2 fluxes from Indianapolis. They have 

argued that the optimum number of towers is dependent on the spatial heterogeneity of 

the emissions within the city. They also state that it is impossible to attribute changes in 

the total CO2 concentration to specific source sectors when only CO2 observations are 

available. Based on our current findings, we believe that with the use of other co-emitted 

species, like CO, information can be gained about source sector contributions, as was also 

shown by Turnbull et al. (2015). Additionally, Brioude et al. (2013) have shown that with 
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only a few flights a reasonably robust flux estimate can be made for CO and NOy. These 

studies thus show that with additional species and strategically placed measurements the 

need for a large observation network can be reduced. However, an important pre-

condition is that atmospheric transport is correctly represented. Lauvaux et al. (2016) 

discussed that the atmospheric transport in high-resolution Eulerian models might suffer 

from errors due to assumptions about turbulence and other fine-scale processes, which 

causes urban plumes to violate the well-mixed assumptions of the model. This is especially 

relevant for emission sources with dimensions that are significantly smaller than the 

model resolution, i.e. point sources. Indeed, in this study we find that a plume model is a 

useful addition to the Eulerian model to correctly represent the transport of emissions 

from large point sources. 

3.4.1 Comparison of observation sites 

We first examined the use of the measurement sites to detect urban plumes, since the 

measurement sites in an inversion determine the demand put on the model performance. 

At the rural site (Lutjewad), the urban plume has become mixed with other signals and the 

urban plume is difficult to distinguish. This site (at ~200 km from the Rijnmond area) is 

therefore too far removed to specifically constrain the Rijnmond emissions, although it 

was shown to constrain emissions from the larger urban conglomerate of the Randstad 

quite well (Van der Laan et al., 2009a; Van der Laan et al., 2010). The semi-urban site 

(Cabauw) detects urban plumes from Rijnmond which have already become well-mixed 

during transport. Moreover, the mean concentration ratio matches well with the emission 

ratio for the Rijnmond area. We therefore argue that the Cabauw site could constrain the 

overall emissions of the Rijnmond area due to its integrating power without the need for a 

multi-model approach. In contrast, the urban location (Zweth) is highly exposed to the 

urban fluxes and is able to detect spatial variations in emissions inside the urban area. We 

find distinct concentration ratios for different source areas that can provide valuable 

information about dominant source types and areas. These findings are similar to a 

previous study concluding that a network of in-city sites provides good constraints due to 

their high exposure and ability to separate between different parts of the source area 

(Kort et al., 2013). However, the difference between the emission ratio and observed 

concentration ratio for the Zweth-port area indicates that stack emissions might 

frequently be missed at the Zweth measurement site due to the limited plume 

dimensions. Therefore, a correct representation of the transport becomes increasingly 

important. Thus, we conclude that the Cabauw and Zweth site have their own particular 

(dis)advantages and a combination of an urban and semi-urban site could be most 

beneficial to constrain urban fluxes in detail. Note that this conclusion is specifically valid 

for the Rijnmond area with the presence of major point sources and the requirements 

might be different for other urban topologies. 
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3.4.2 Model skill 

Next, we evaluated the skill of the Eulerian WRF-Chem set-up. The ability of our WRF-

Chem framework to represent daytime average mixing ratios is comparable with other 

model frameworks in the urban environment (Bozhinova et al., 2014; Bréon et al., 2015; 

Lac et al., 2013; Tolk et al., 2009). However, WRF-Chem has a large wind direction bias 

that makes it difficult to compare modelled and observed mole fractions. The monthly 

average WRF-Chem wind direction shows an absolute bias of 1 (October), 51 (November) 

and 10 (December) degrees compared to the observed wind direction at Rotterdam 

airport. The error in November is large compared to previous findings (Jiménez et al., 

2016) and this results in a large model-observation mismatch in tracer mixing ratios (Fig. 

3.3). Also at the Cabauw site, which is less influenced by build-up areas, the model-data 

agreement for the 10 m wind direction in November is limited. Previous research has also 

shown an uncertainty of 30–40 % in the tracer mixing ratio due to the uncertainty in 

meteorological conditions (Angevine et al., 2014; Srinivas et al., 2016). Additionally, 

Angevine et al. (2014) have shown that using an ensemble mean of model simulations 

with different meteorology does not necessarily lead to a better representation of plume 

transport and dispersion in a Lagrangian model for area sources. We therefore speculate 

that assimilating observed wind fields in WRF-Chem, as was done by Lauvaux et al. (2013), 

could be more beneficial to improve the modelled wind fields and as such improve the 

plume transport. Furthermore, the model performance under stratified and low wind 

speed conditions need to be addressed, since removing these data can lead to biased 

emission estimates. 

Some studies argued that the main limitations of a Eulerian model are the enhanced 

dispersion due to instant mixing of species throughout the grid box and, related to that, 

the absence of a good point source representation (Karamchandani et al., 2011; Tolk et 

al., 2009). Our results show evidence for both limitations in the WRF-Chem set-up. First, 

WRF-Chem underestimates the median urban plume mixing ratios of both CO2 and CO 

which should mainly be attributed to errors in transport and mixing. Whereas CO mixing 

ratios at the Zweth site are dominated by area sources, CO2 mixing ratios are also highly 

affected by point source emissions. Therefore, their consistent underestimation cannot be 

caused solely by errors in point source emissions. Second, looking more specifically at the 

point source contribution, WRF-Chem can only explain 30 % of the variance and the 

spread in the ΔCO:ΔCO2 ratio is too large compared to the observations. Thus the 

resolution appears to be too low to fully represent the transport of the urban plumes from 

point sources, similar to previous findings related to power plant plumes (Lindenmaier et 

al., 2014) and megacities (Boon et al., 2016).  

In order to overcome the limitations of WRF-Chem related to point source 

representation and wind field errors, we evaluated the use of the OPS plume model with 

full point source characteristics and observed meteorological conditions. As discussed 

before, the OPS plume has limited impact on the CO mixing ratios as point sources only 
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contribute a small fraction to the total CO emissions. Therefore, the focus in the 

remainder is on CO2. The OPS plume model requires limited effort to be run in addition to 

WRF-Chem (it requires 2 input files and takes only a few seconds to run) and is therefore a 

relatively easy solution to improve the point source representation.  

Several previous plume modelling studies with different species showed improvements 

compared to the gridded approach (Briant and Seigneur, 2013; Ganshin et al., 2012; 

Karamchandani et al., 2006; Karamchandani et al., 2012; Korsakissok and Mallet, 2010b; 

Rissman et al., 2013). In this study we find a significant improvement with WRF+OPS-

point-obsmet at Zweth, both in the explained variance and the ΔCO:ΔCO2 ratio. Also the 

observed-vs-simulated regression slope of the point source ΔCO2 mixing ratio becomes 

nearly one. In this analysis the number of selected data points is relatively small, because 

stack emissions can easily be missed by an observation site due to the small plume 

dimensions. Therefore, only a few events can be used to constrain point source emissions 

and a good representation of the plume transport is essential. Although there are only 

~100 individual point sources in the Rijnmond area, they make up about 75 % of the total 

CO2 emissions. Thus we argue that in an urban-industrial area with a significant point 

source contribution the use of a plume model is critical to get a reliable emission estimate. 

If detailed point source characteristics are unknown, these would have to be estimated 

and this adds an uncertainty to the modelled mixing ratios. Nevertheless, we have shown 

that even with the WRF-Chem point source representation (i.e. 1x1km
2
 in size and fixed 

vertical distribution) the plume model can already improve the agreement with the 

observations. Further improvements can possibly be made by representing traffic 

emissions as line source emissions in a plume model (Briant and Seigneur, 2013) rather 

than considering them as gridded area sources in the Eulerian model.  

Although part of the OPS-driven improvement can be attributed to the use of observed 

meteorological conditions, we have shown with the WRF+OPS-point simulation that there 

is also an improvement in point source representation. We found that a higher spatial 

variability in the emissions causes more variability in the concentration ratios. 

Representing point sources as area sources, as is done in WRF-Chem, results in lower 

correlations and less variability in concentration ratios, which is consistent with previous 

studies that demonstrated the importance of a good source representation (Kim et al., 

2014; Korsakissok and Mallet, 2010a; Touma et al., 2006). Besides the ability to include 

detailed source characteristics and to use observed meteorology, the OPS model has some 

additional advantages. We have shown that looking at individual stacks can provide 

valuable information about the underlying transport and dispersion processes and how 

they are affected by source characteristics. Additionally, receptor sites can be positioned 

anywhere, which allows us to study the spatial variations at much higher resolution than 

currently possible with WRF-Chem. 

At Cabauw, the difference between WRF-Chem and the WRF+OPS-point simulation is 

small, although the model-data mismatch at Cabauw is further reduced when observed 
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meteorology is used. This leads to the question for which spatial extent a plume model is 

beneficial. In previous plume-in-grid models at high resolution (<25 km) plumes or puffs 

are often injected in the Eulerian parent model when the width of the plume is similar to 

the grid size (Karamchandani et al., 2006; Kim et al., 2014; Korsakissok and Mallet, 2010a). 

According to the definition of the lateral dispersion factor in OPS this would mean that a 

plume will have reached a horizontal width of 4 km (the resolution of the domain in which 

Cabauw is located) after about 8 km travel distance under well-mixed conditions. To test 

this, we compared a monthly average WRF-Chem CO2 mixing ratio field in and around 

Rijnmond with a monthly averaged gridded OPS mixing ratio field. The OPS model was 

only applied for emissions within the Rijnmond area and therefore the distance outside 

the WRF-Chem domain 4 at which the mixing ratio fields become similar gives an 

indication of the spatial extent for which the OPS model is still beneficial. We find that the 

difference between the mixing ratio fields disappears quickly outside the Rijnmond area 

and WRF-Chem and OPS become similar at about 10–14 km outside the boundary of 

domain 4. 

3.5 Conclusions 

Our ultimate ambition is to quantify the total urban CO2 budget using multiple observation 

sites and an inverse modelling system. Such information could be used to monitor the 

impact of implemented policies and progress towards objectives. Based on the work 

reported here, we state that the modelling framework should ideally consist of a Eulerian 

model in combination with a plume model for point source emissions within the city, 

preferably driven by locally observed meteorology. The use of a plume model is of great 

added value to correctly represent the transport of point source emissions in a diameter 

closer than ~10 km to the site. Although the additional computational demand with the 

OPS plume model is limited, detailed model input is required given that the results are 

very sensitive to source characteristics and wind fields. Given the importance of observed 

local meteorology for the model performance, we strongly recommend inclusion of a 

(simple) meteorological station in any similar monitoring set-up. Also, Lagrangian particle 

dispersion models driven by WRF meteorological fields have proven useful in describing 

the transport of point source emissions and in inverse modelling (Brioude et al., 2013; Pan 

et al., 2014; Srinivas et al., 2016), but such set-up would suffer from wind field errors. The 

optimal set-up for an urban monitoring network requires a semi-urban measurement site 

(here ~30 km from the urban area with no other urban areas in between) and at least one 

additional urban measurement site (here at the edge of the urban area, at ~7 km from the 

city centre). The semi-urban site provides a robust and integral constraint on the urban 

fluxes and can be used in combination with a high-resolution Eulerian model framework. 

The urban measurement site can provide useful information about local differences, such 

as the dominance of road traffic in a certain source area or local changes due to 
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implemented measures. Observing additional species besides CO, like 
14

CO2, 
13

CO2, O2/N2, 

NO2, SO2 or black carbon, could be a useful extension of our framework for identifying 

source sector contributions. Such a set-up is a promising step towards independent 

verification of urban CO2 budgets.  

Appendix 3A: Scatter plots 

 
Figure A1: Left: A scatter plot of ΔCO and ΔCO2, where the slopes (represented by lines) represent the 
ΔCO:ΔCO2 ratio for the observed and modelled values. The slope of WRF+OPS-point-obsmet coincides with the 
slope of the observations, suggesting a good agreement. Right: A scatter plot of simulated ΔCO2 to observed 
ΔCO2. The slope of WRF+OPS-point-obsmet coincides with the 1:1 line (dotted line), suggesting a good 
agreement with the observations. 
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4.1 Introduction 

Recently, much effort is put into climate agreements to limit the effect of global warming. 

An important part of these agreements is the reduction of greenhouse gas emissions from 

fossil fuel combustion. An example is the Nationally Determined Contributions related to 

the Paris Agreement. These emission reduction efforts need to be monitored (UNFCCC, 

2015), preferably independently using atmospheric observations. A potentially interesting 

tool in an independent emission verification system is data assimilation (DA), in which 

atmospheric observations provide a constraint on the emissions and emission trends. 

Data assimilation has been used for a wide range of applications, also related to the 

carbon cycle (Brioude et al., 2013; Broquet et al., 2013; Lauvaux et al., 2016; Peters et al., 

2005; Van der Laan-Luijkx et al., 2017). One important precondition is the presence of 

enough observations in the area of interest. Therefore, DA of atmospheric CO2 

observations has mostly been applied on regional scales and mainly related to biogenic 

fluxes. Focusing on smaller (sub-national/urban) scales requires a denser network of CO2 

observations than currently available in most regions. However, in several megacities (e.g. 

Indianapolis, Paris, Los Angeles) an effort has been made to install a dense network of 

instruments with a high temporal resolution in order to monitor CO2 emissions (Bréon et 

al., 2015; Turnbull et al., 2015). This is important, because urban areas are responsible for 

about 70% of the global fossil fuel CO2 emissions and the largest potential of emission 

reduction can be found in those areas. Therefore, applying DA at the urban scale is 

receiving increasing attention. 

An important factor in DA is the definition of the prior emission map (i.e. a first 

estimate) and its uncertainties (Wang et al., 2018). Currently, fossil fuel CO2 emissions are 

often estimated on a yearly basis per country with an uncertainty of a few percent for 

developed countries and up to 50% for data-sparse regions (Andres et al., 2012). Mostly, 

these emissions are disaggregated to higher spatiotemporal resolution to create state-of-

the-art emission maps. However, the relationship between the data used for 

disaggregation and the emissions is not always straightforward and can be dynamic in 

space and time. Moreover, most inventories use fixed time profiles to introduce a diurnal 

or seasonal cycle, which is based on long-term, regional average activity data at best, or 

else expert judgement. Therefore, the uncertainty at higher spatiotemporal resolution is 

much larger than at the annual time scales. This places a higher demand on the DA system 

at the urban scale as less confidence can be put in the prior and the system is allowed to 

move further away from the starting point. Moreover, the uncertainties in high-resolution 

inventories have not been quantified accurately, which hampers the creation of a realistic 

error covariance matrix. Such a matrix defines the error structure of the prior emissions 

and is used, together with the error structure of the observations, to constrain the 

emissions. As such, incorrect definition of the errors can steer the outcome too much 

towards the observations, or towards the prior. 
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We can identify two main challenges related to emission monitoring at high resolution. 

First, the quality of the emission data need to be improved by including new or more 

specific data streams, as previously suggested by Ciais et al. (2014). For example, current 

time profiles for road traffic are based on traffic counts averaged over several years. 

Instead, real-time traffic counts for the area of interest can be used to better mimic the 

dynamic nature of this emission sector. An additional advantage of using these data 

streams is that they are available in near real-time, whereas current emission inventories 

often have a lag of several years. Second, we need to quantify the uncertainty in the 

emissions at the spatiotemporal resolution of the observations to be able to use them in 

the DA system. Since it is difficult to assess the uncertainty of an emission product due to 

the lack of verification methods a more promising method is to estimate the uncertainty 

in underlying parameters, such as emission factors (see Chapter 1). 

In this chapter we develop a dynamic fossil fuel emission model that calculates high-

resolution emissions from a wide range of data streams. With "dynamic" we refer to the 

use of hourly activity data for the specific study region to create hourly variability in the 

emissions instead of using fixed hourly profiles based on long-term averaged activity data 

or socio-economic characteristics. A dynamic emission modelling system allows us to 

study the uncertainty of underlying data streams (e.g. traffic counts, energy consumption, 

household heating intensity) and to asses critical assumptions that are needed to come to 

the spatiotemporal resolutions that allow independent fossil fuel emission monitoring. 

Similar to most state-of-the-art inventories the emission model gives emissions per source 

sector. In the DA system we can thus optimize model parameters per source sector. To 

ease the attribution of CO2 enhancements to specific source sectors we also include 

additional tracers (CO, NOx and SO2) in the emission model and DA system. These tracers 

are co-emitted with CO2 in a ratio that is specific for each source sector and can therefore 

potentially be used to attribute CO2 signals to specific source sectors. We will demonstrate 

the optimization of emission factors, emission ratios and time profiles in the next chapter. 

The purpose of this chapter is twofold. First, to examine the use of different data 

streams to calculate emissions of CO2 and other co-emitted species for a specific area of 

interest. Second, to gain insight in the uncertainty of emissions and the parameters that 

have the largest impact on the overall uncertainty. We start with a description of the 

dynamic fossil fuel emission model in Sect. 4.2, including an inventory of the different data 

streams. Sect. 4.3 examines the uncertainty in model parameters, which are used to 

estimate the uncertainty in the emissions in Sect. 4.4. Data assimilation within the 

dynamical emission model will be demonstrated in Chapter 5 of this thesis. 
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4.2 Dynamic fossil fuel emission model 

4.2.1 Case study and general set-up 

Our dynamic emission model aims to calculate hourly emissions per source sector based 

on different data streams. We developed the model for the Netherlands with a specific 

focus on the Rijnmond area, including the city of Rotterdam (about 625,000 inhabitants) 

and its large industrial-port area. The Rijnmond area is located at the west coast of the 

Netherlands in a larger urbanized area (Randstad, about 7 million inhabitants). The area of 

interest is thus characterized by a complex mixture of residential and industrial activities. 

We focus on the year 2014. 

Table 4.1: Overview of sectors and subsectors distinguished in the dynamic emission model, including their 
short name used in the figures. 

Sector Subsector Short name 

Power plants Coal-fired power plants 1A 
 Gas-fired power plants 1B 
Non-industrial combustion Households 2A 
 Glasshouses 2B 
Industry  3 
Road traffic Cars 7A 
 - Highway 7A1 

 - Main road 7A2 

 - Urban road 7A3 

 HDV 7B 
 - Highway 7B1 

 - Main road 7B2 

 - Urban road 7B3 

Shipping Ocean shipping 8A 
 Inland shipping 8B 
 Recreational shipping 8C 

 
We identified five source sectors (based on SNAP categories, Selected Nomenclature for 

sources of Air Pollution) that are relevant for the CO2 emissions in the area of interest. 

These are power plants, industry, non-industrial combustion, road transport, and shipping. 

These sectors contribute 37%, 39%, 15%, 6% and 3% to the total CO2 emissions in the 

Rijnmond area, respectively. The non-industrial combustion sector is subdivided into 

households and glasshouses. In the port of Rotterdam power plants and industry are the 

major sources of CO2, but in the urbanized area residential combustion and road transport 

are dominant. All emission categories and subcategories are listed in Table 4.1. 

The dynamic emission model consists of three parts: calculation of the total yearly 

emissions for the entire country, temporal disaggregation to hourly scale, and spatial 

disaggregation to 1x1 km
2
 for the area of interest. The following sections will explain each 

of these parts in more detail. A summary of all data used in the emission model is given in 

Appendix A. 
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4.2.2 Calculation of total emissions 

Total emissions (F in kg yr
-1

) are calculated as a function of the economic activity and an 

emission factor per unit of activity (adapted from Raupach et al. (2007)): 

 

    
 

 
  

 

 
          (1) 

 

where A is the amount of activity, such as vehicle kilometres driven or generated power, 

and E is the primary energy consumption (petajoule (PJ)). In this equation the term F/E is 

the emission factor (EF), i.e. the amount of CO2 emitted per amount of energy consumed. 

The term E/A can be seen as a measure of energy efficiency, in which technological 

development plays an important role (Nakicenovic et al., 2000).  

For each source sector we describe the total CO2 emission with Eq. 1. For the activity 

data we use either the degree day sum calculated from the outside temperature (for non-

industrial combustion) or the GDP (Gross Domestic Product; for power plants, industry, 

road transport and shipping), which are simple and widely available proxies for activity. 

The degree day function is explained in more detail in Sect. 4.2.3. The temperature can be 

measured and GDP is provided by several institutions, like the International Monetary 

Fund. Therefore, this method is applicable in other countries as well. The second term in 

Eq. 1 (E/A) can be estimated from energy consumption statistics, such as available from 

the International Energy Agency. Note that this term can show a large trend in case of 

technological development. The last term in Eq. 1 (F/E) is the most difficult one, because 

the emission factor is dependent on the fuel mix and the energy efficiency, which itself 

can vary with environmental conditions (e.g. a cold engine on a winter day burns less 

efficiently). It can therefore differ significantly between countries. 

The industrial sector consists of a wide range of activities, from refineries and chemical 

industry to food industry, that have their own characteristics. Although the industrial 

energy consumption shows a correlation with GDP, this is not consistent with trends in the 

reported emissions. The current development in the Netherlands is that energy intensive 

industry is exported and that the industrial production is decreasing per unit GDP. This 

causes a shift in dominant industrial processes that affects the average characteristics of 

the industrial sector. Therefore, predicting industrial emissions requires additional 

information on dominant processes. For now we estimate the industrial emissions using 

the energy consumption per unit GDP given the absence of a good alternative. 

From the total CO2 emissions we can also calculate emissions of co-emitted tracers using 

emission ratios of each tracer to CO2, which is an additional multiplier at the right-hand 

side of Eq. 1. The ratios can be highly variable in space and time and depend on the 

technology and combustion characteristics. We apply this method to calculate emissions 

of CO, NOx and SO2. 
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4.2.3 Temporal disaggregation 

The next step is to disaggregate the yearly emissions to hourly emissions by calculating 

time profiles, such that Eq. 1 becomes "dynamic": 

 

    
 

 
  

 

 
          (2) 

 

where T is the hourly time factor. Averaged over a year the value of T is 1.0, so that it only 

alters the temporal evolution and not the total emissions. T can be calculated in two ways: 

1) by directly using activity data or 2) by parameterizing temporal variations from 

environmental and/or economic conditions. When activity data is available the first option 

is preferable. However, in data-sparse regions the second option might be necessary to 

implement. Nevertheless, the second option is still an improvement compared to long-

term average profiles as commonly used. Therefore we explore both methods. In this 

section we explore the possibilities for temporal disaggregation for each source sector. 

Non-industrial combustion 

Non-industrial combustion is considered to be dominated by households' natural gas 

consumption to heat houses, for cooking, and for warm water supply. A Dutch energy 

provider has a small dataset publicly available from about 80 smart meters for the year 

2013 with hourly gas consumption (Liander, 2018). It clearly shows a seasonal cycle, but 

also more small-term variations (daily data are shown in Fig. 4.1). We also see higher gas 

consumption in the beginning of the year, where the first three months of 2013 had some 

long, cold spells. 

Previous studies have used the concept of heating degree days to describe the temporal 

variability in emissions from households (Mues et al., 2014; Terrenoire et al., 2015). This 

concept assumes that heating only takes place below a certain temperature threshold 

(here 18°C) and the hourly time factor can be defined as: 

 

                   (3) 

 

where H is the heating degree day factor (H = max(291.15-  ,0)) based on the daily mean 

outside temperature at 2m.    is the yearly average heating degree day (   
 

 
   

   ). 

However, gas consumption related to warm water supply and cooking is largely 

independent of the outside temperature and therefore a constant offset is included in the 

heating degree day factor: 

 

                  (4) 
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where f is the constant offset. We assumed an offset of 20%, similar to Mues et al. (2014). 

The time factor can now be defined as: 

 

                        (5) 

 

where the average heating degree day accounted for the constant offset   
           .  

We compared the heating degree day method with gas consumption data on a daily 

basis (Fig. 4.1). The degree day function follows the gas consumption data very well, 

including the higher consumption at the start of the year, reaching an R
2
 of 0.90 (N=365). 

The gas consumption of consumers also has a diurnal pattern with peaks in the early 

morning and late afternoon. Therefore, a diurnal profile can be estimated based on typical 

working hours. For hourly data R
2
 is 0.80 (N=8760, not shown). 

 
Figure 4.1: Daily time profiles for households (left) and glasshouses (right). Full lines are based on true activity 
data, whereas dashed lines are parameterizations based on the degree day function. 

Interestingly, in the Rijnmond area 45% of the non-industrial combustion emissions of 

CO2 are caused by glasshouses. Similar to residential heating, the glasshouse emission 

factors are assumed to be a function of temperature. Yet, the energy consumption of 

glasshouses is dependent on many other variables as well, such as the humidity, light 

intensity, and the crop that is cultivated (Van der Velden and Smit, 2015). Moreover, most 

glasshouses have cogeneration plants that produce electricity and heat. Both can be used 

in the glasshouses, but sometimes electricity is supplied to the power grid depending on 

energy prices. 

For the energy consumption of glasshouses there is no true activity data available. 

Instead, we use modelled daily energy consumption for a typical Dutch glasshouse 

cultivating tomatoes (courtesy of Bas Knoll, TNO) as the ‘truth’ (activity data) in Fig. 4.1. 

This time profile is calculated for typical meteorological conditions, such that the order of 

magnitude and the peaks are representative for an average year. There is almost no 

energy consumption during the summer, which indicates that there is no constant offset. 

So, we use Eq. 3 to determine the emission factor. Moreover, we use a lower temperature 

threshold of 15°C to get a better fit with the observed energy consumption. The estimated 
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function compares well with the activity data (Fig. 4.1) with an R
2
 of 0.85 (N=365). The 

diurnal cycle of glasshouse emissions is likely to be different from that of household 

emissions. Yet we lack data to establish a diurnal cycle. We therefore use the same diurnal 

profile as for households, although this is likely to be incorrect. 

Power plants 

Power plants can use different fuels such as hard coal, natural gas or biomass. In the 

Netherlands coal-fired and gas-fired power plants account for 80-85% of the total energy 

production. The remainder comes mainly from wind energy and biomass burning. Coal-

fired power plants are currently the main source of energy and their generation is 

relatively stable compared to other sources. It does show a seasonal cycle with less energy 

production during the summer months. Gas-fired power plants have a larger temporal 

variability as they are mainly used as back-up for peak hours, depending also on the 

amount of renewable energy that is available. This is shown in Fig. 4.2 based on actual 

power generation in the Netherlands in 2016 reported by the European Network of 

Transmission System Operators for Electricity (ENTSO-E), which has detailed data available 

for the whole of Europe. The data are averaged over the day. 

 
Figure 4.2: Daily time profiles for gas-fired (left) and coal-fired (right) power plants. Full lines are based on true 
activity data, whereas dashed lines are parameterizations based on observed temperature (coal) and wind 
speed/radiation (gas). 

We use Eq. 5 to estimate the time profiles of power plants. Linear regression analysis 

shows that the variability in coal-fired power generation is (negatively) correlated with 

degree days. In this case we use a large constant offset of 80% and a threshold of 25°C 

which were chosen to best match the actual power generation data. The offset is much 

larger than for households because there is always a basic energy demand from the 

industry. The estimated time profile resembles the one based on activity data, although 

there is a clear mismatch in January-February and September-October. In contrast, the 

gas-fired power plants are (negatively) correlated with the wind speed and incoming solar 

radiation, indicating the need for gas-fired power generation in the absence of renewable 

sources. Therefore, we replace the temperature in Eq. 5 with the multiplication of wind 

speed and incoming solar radiation: 
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                                      (6) 

 

where FF is the wind speed (m s
-1

) and R the incoming solar radiation (J cm
-2

). Here we use 

a constant offset of 10% and a threshold of 10 m s
-1

 and 150 J cm
-2

. 

The diurnal cycles for power plants can be based on socio-economic factors. For 

example, the energy demand peaks early in the morning when people get ready to go to 

work and at the end of the afternoon when they get home. We find this pattern in the 

actual power generation data, with coal-fired power plants being less variable during the 

day than gas-fired power plants. The fixed profile from the European MACC-III emission 

inventory (Denier van der Gon et al., 2011; Kuenen et al., 2014) matches reasonably well 

with gas-fired power plant profiles, but it is less applicable for coal-fired power plants (Fig. 

4.3). Overall, the estimated profiles for gas-fired power plants (hourly data) have an R
2
 of 

0.32 (N=8784) when compared to the activity data. For coal-fired power plants this is 0.21 

(N=8784). 

 
Figure 4.3: Average diurnal cycle for gas-fired (left) and coal-fired (right) power plants. Full lines are based on 
true activity data, whereas dashed lines are fixed profiles from the MACC inventory (Denier van der Gon et al., 
2011; Kuenen et al., 2014). Shading gives the 1σ variability of the diurnal cycle based on activity data. 

Industry 

This source sector consists of a wide range of activities, of which some are semi-

continuous and only interrupted by maintenance stops while others follow working hours. 

This makes it very difficult to predict the temporal variability, especially for the overall 

sector. Since the largest CO2 emissions are related to refineries and heavy industry we will 

focus on these activities. We find a seasonal cycle in the reported industrial activity, with a 

small decline during the summer and Christmas holidays. However, the variations are very 

small (max. 1%). Therefore, we assume constant emissions.  

Road transport 

Road transport emissions can vary between different road and vehicle types (Mues et al., 

2014), but are also strongly dependent on environmental, socio-economic and driving 

conditions (such as the amount of stops, free-flow versus stagnant conditions, and engine 
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temperature). For example, during holidays or weekends there can be a lot of traffic 

heading for the coast or other attractions, which relocates emissions compared to regular 

weekdays. 

 
Figure 4.4: Time profiles of road transport on highways for ten randomly chosen days in March. Full lines are 
based on true activity data, whereas dashed lines are parameterizations based on averaged traffic counts for 
Rotterdam. 

Traffic count data are often used to create average time profiles for road traffic 

emissions. However, with traffic counts we are unable to account for environmental and 

driving conditions. Traffic counts for the Netherlands are made available by the Nationale 

Databank Wegverkeersgegevens (NDW) and similar data is available in many developed 

countries. We differentiate between two vehicle types (passenger cars + motorcycles 

(hereafter referred to as cars) and light duty + heavy duty vehicles (LDV+HDV) (hereafter 

referred to as HDV) and three road types (highway, main road, urban road). We selected 

all available locations for 2014 within or close to Rotterdam that separate between 3-5 

vehicle lengths and filtered for a minimum data coverage of 75%. This leaves us with 25 

highway, 6 main road and 13 urban road locations. From this data we make average time 

profiles (daily, weekly and monthly) per road and vehicle type, as is often done to 

disaggregate road traffic emissions. Note that this method excludes any spatial variations 

(e.g. highways leading towards the city vs. the beach), except for differentiating between 

road types. 

Generally, HDV show a larger spread due to the low counts during the weekend (Fig. 

4.4). Car counts show a morning and evening rush hour and they go down in between. In 

contrast, HDV counts peak throughout the day and only go down after the evening rush 

hour. Moreover, the diurnal cycles are different during the weekend than on weekdays. 

These patterns can be explained from socio-economic factors. Current time profiles are 

often based on cars and are unable to correctly represent the temporal variability of HDV. 

This also affects the spatial distribution of emissions and therefore we create average 

diurnal, weekly and seasonal profiles separately for cars and HDV, for different road types 

and taking into account the day of the week. The comparison of true traffic counts and 

averaged traffic counts results in R
2
 values between 0.83 and 0.95 for hourly data for the 

whole year (N between 2665 and 6471). 
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Shipping 

Shipping emissions are dependent on the type of fuel they use and whether ships apply 

slow-steaming. Additionally, during loading and unloading ships still emit CO2 and other 

pollutants, even though they are not moving. Such information is currently not available, 

so instead we used information about the arrival and departure of ships in the port of 

Rotterdam to make a time series of ship movements. Note that this only applies to large 

vessels that transport goods and passengers and that the time profile will look quite 

different for recreational shipping. However, large ships account for approximately 80% of 

the total shipping emissions in the area of interest. Since we lack information about other 

type of shipping movements we will only account for large ships in the time profiles. 

We collected ship movements for one month (daily data) and an average diurnal profile 

(Fig. 4.5). The diurnal cycle shows a peak throughout the day, which corresponds well with 

the HDV road transport emission patterns on highways. The reason for this is that HDV 

road transport is related to shipping movements, as HDV takes care of good transport 

further inland after the goods have arrived by ship. We also find a clear weekly pattern 

with less ship movements during the weekend, although the decrease is less than for HDV 

road transport. This is likely because large ships, such as entering the port of Rotterdam, 

continue travelling during the weekend. Therefore, the weekly pattern resembles more 

that of car road transport on highways. Thus we can estimate ship movements by using 

the temporal profiles of HDV and cars on highways. This method is specifically tested for 

Rotterdam, but different patterns might be visible elsewhere. We also use HDV patterns 

for the seasonal variability. With this method the R
2
 reaches a value of 0.89 for a period of 

18 days with hourly data (N=432). 

 
Figure 4.5: Daily time profiles for shipping. Full line is based on true activity data, whereas dashed line is a 
parameterization based on traffic counts of heavy-duty vehicles (diurnal cycle) and cars (day-to-day variations) 
on highways. 

4.2.4 Spatial disaggregation 

The spatial disaggregation of emissions has received much more attention by inventory 

builders than temporal disaggregation. Therefore, the spatial patterns in inventories are 

relatively good and we will spend no further effort on improving them, neither will their 
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uncertainties be included in the following analyses. Moreover, our DA system will be set 

up to estimate only domain-average parameters. However, we do need to determine 

which fraction of the national total emissions are taking place in the Rijnmond area. For 

this purpose we disaggregate the total emissions calculated with our emission model to a 

1x1 km
2
 grid using simple proxies described below and we compare this to the Rijnmond 

emissions in the Dutch national inventory (Netherlands PRTR, 2014). We find that the 

yearly emissions for the Rijnmond region based on the dynamic emission model and the 

simplified spatial disaggregation based on these proxies are within a few percent from the 

total reported emissions for the same area. 

 
Figure 4.6: Spatial distribution of non-industrial combustion, road transport and shipping as in the dynamic 
emission model (left) and in the Dutch national emission inventory (Netherlands PRTR, 2014) (right). Spatial 
patterns of power plants and industry are taken from the Dutch national emission inventory. The colours 
indicate the relative emission strength in each pixel, each panel summing up to one for the entire Rijnmond 
area displayed here. 

Household emissions are most easily located in space by using population density. 

However, for glasshouses this is not applicable, but they do appear very clearly on satellite 

images. This implies that the spatial distribution can be scaled with the area of a pixel 
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covered by glasshouses. We use these data to create an overall emission map of the non-

industrial combustion emissions (Fig. 4.6a). The colours indicate the relative emission 

strength. We can observe two large centres of emissions. The first is the city of Rotterdam 

with abundant residential heating, the other is the glasshouse area near the coast. The 

spatial pattern in the emission model compares well to that of the emission inventory (Fig. 

4.6b). 

Road transport and shipping takes place only on roads and waterways. Therefore, tools 

like OpenStreetMap or Google Earth can be helpful to identify pixels in which to place 

road transport or shipping emissions. Main roads and urban roads are busiest in densely 

populated areas and we distribute the total road traffic emissions over these pixels using 

population density. Highways are used for transport between cities and therefore 

emissions take place outside densely populated areas as well. Nevertheless, highway 

transport is usually to and from densely populated areas, such that most emissions will 

take place close to cities. We therefore relate these emissions with the population density 

in the area of interest (here Rijnmond) relative to the rest of the country. We find that the 

overall emission pattern looks quite realistic, but too much of the emissions seem to be 

clustered in the city of Rotterdam compared to the inventory (Fig. 4.6c-d). 

Shipping emissions are dependent on the type of ships and waterways. Large ships are 

the biggest emitters and use larger waterways. Rivers are often used for recreational 

purposes, resulting in less emissions on rivers (therefore recreational shipping is excluded 

in the remainder of this study). Therefore, the waterway characteristics are important to 

consider. We therefore separate between three categories: 1) (heavy) ocean shipping of 

bulk goods, oil, etc. which are dominant in the port and at sea on the main shipping 

routes, 2) inland shipping, mainly for transporting goods further inland via large rivers and 

canals, and 3) recreational shipping on (smaller) waterways away from the busy port area. 

With these categories we can attribute emissions to specific waterways, but we lack 

information about the spatial distribution within waterways. For example, at sea, just 

outside the main fairway, ships are at anchor while waiting before they are allowed to 

enter the port, which causes less emissions than a moving vessel. This is not taken into 

account in the simplified spatial distribution and the result is that too much emissions are 

located at sea outside the main fairway (Fig. 4.6e-f). 

Power plants and industrial stacks are relatively easy to locate in space, as they can be 

identified through platforms like Google Earth. Even though this emission category also 

includes some diffuse sources, the stacks emit the vast majority of CO2. Locating these 

would thus be sufficient to represent the spatial distribution of these source sectors. The 

disaggregation of emissions over these stacks can be done using the capacity of each 

industrial plant. In Europe these plants are required to report their yearly emissions and 

this information can be used. However, a difficulty with stack emissions is that the stack 

height is of great importance for the dilution and transport of pollutants. In Rijnmond the 

stack heights are known and in addition the heat content of the plume is reported, which 
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is needed to calculate the plume rise. When such data is not available an estimate must be 

made per source sector, as was done by Bieser et al. (2011).  

4.3 Parameter uncertainties 

Using Eq. 1 and the temporal and spatial proxies for the activity within each emission 

category, we created dynamic hourly emissions of CO2 and co-emitted tracers for the 

Rijnmond area. We can estimate the uncertainty in these high-resolution emissions from 

the uncertainties in the emission model parameters. All parameter values and their error 

shapes (mostly lognormal for emission ratios and normal for other variables) are 

summarized in Appendix A. 

The second term in Eq. 1, the amount of energy consumed per amount of activity, is 

estimated from activity data (degree day sum or GDP) and reported energy consumption 

data. These data have a relatively small uncertainty. However, it is important to use recent 

numbers, because the trend in this term can be large. For example, the gas consumption 

by Dutch households per degree day has decreased by almost 15% between 1990 and 

2014 (CBS, 2017). 

Emission factors for CO2 are determined by the fuel type that is burned and the carbon 

content of that fuel. Emissions of SO2 are mostly dependent on the sulphur content of the 

fuel. Emission factors of CO and NOx are dependent on the conditions under which 

combustion takes place, such as the temperature. Moreover, sometimes catalysts or other 

(end-of-pipe) techniques are in place to reduce the emissions of air pollutants. Therefore, 

emission ratios are extremely variable in space and time and often their errors are 

correlated (see Appendix B for the full covariance matrix). In most cases the estimated 

emission factor for the Netherlands is within the range given in Appendix A. The only 

exception is the SO2 emission factor from power plants. In the Netherlands SO2 is 

effectively removed from the power plant flue gas, e.g. by desulphurization, resulting in 

much lower emission factors than derived from the general databases. We therefore scale 

the SO2 emission factor for power plants down with a factor of 100 to reach agreement 

with the Dutch emission factor. We use the emission factors to convert CO2 emissions to 

emissions of the other tracers (CO, NOx, SO2). 

To estimate the uncertainty related to the time profiles we compare the time profiles 

based on activity data with those estimated from environmental and socio-economic 

conditions. We use the hourly profiles, as these will be used in the DA system for the best 

comparison with observations. Moreover, we assume the errors in some time profiles are 

correlated (i.e. covariance exists). We use the same time profiles for all tracers, although 

in reality differences exist as expressed in the temporal variability of emission ratios.  

Most sectors have been subdivided in subsectors to better capture the wide range of 

emission factors and ratios and their specific spatiotemporal distribution. Although more 

detailed information is needed, this method has the advantage that the overall 
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uncertainty of each sector is reduced. For power plants, road traffic and shipping we 

estimate a fraction of the total energy consumption for each subsector and assume these 

are correct. A similar strategy is needed for the industrial sector, which contains a wide 

range of activities and processes with their own characteristics. Including one full range of 

emission factors and ratios for the industry in the emission model means that the industry 

fully dominates the uncertainty in the emissions. However, the industrial sector is so 

diverse that many subsectors need to be specified and a lot of information is required to 

represent their spatiotemporal variability. Given the complexity of this sector we assume, 

for now, a range in emission factors and ratios that only captures the most dominant 

subsectors. In the future we may have to revisit this assumption. 

4.4 Emission uncertainties 

With the covariance matrix of all parameters in our dynamic emission model we create an 

ensemble (N=500) that represents the variance of the parameter distributions, and then 

use these to create an ensemble of emission calculations in a Monte Carlo simulation. This 

provides us with a range in the total emissions, which represents the uncertainty in the 

emissions due to the uncertain input parameters. We report uncertainties in % (1 σ) for 

normal distributions (CO2) or as a 90% confidence interval (CI) for lognormal distribution 

(co-emitted species). 

4.4.1 Uncertainty in total emissions 

The total yearly emission of CO2 for the Netherlands calculated by the emission model is 

180 Tg with an uncertainty of about 15%. In the Dutch national emission inventory the 

uncertainty for 2004 is estimated with a Monte Carlo simulation to be only 1% for CO2 

(Ramírez et al., 2006), because national specific emission factors are used with a smaller 

uncertainty range (see Sect. 4.5 for more details). For CO, NOx and SO2 the uncertainties in 

the emission model are much larger, with medians (CI’s) of 6.5x10
8
 (1.3x10

8
 – 6.8x10

9
) kg 

CO, 5.0x10
8
 (1.2x10

8
 – 5.1x10

9
) kg NOx, and 1.3x10

8
 (5.1x10

6
 – 2.2x10

10
) kg SO2 per year. 

These ranges are the result of uncertainties in emission factors and the assumed ratios of 

release per unit of CO2 emitted. The time profiles play no role here, because the average 

time profile over a year is always one. In other words, the time profile has no impact on 

the total yearly emissions. Additionally, no spatial disaggregation is included in the 

estimated uncertainty of the national emission inventory. 

For shorter time periods the time profiles have an impact on the error as well. The daily 

emissions of the Netherlands depend on the day and the season (Fig. 4.7) and range from 

0.36 to 0.76 Tg CO2. The time series shows a seasonal cycle with lower emissions during 

the summer. There is a clear weekly cycle with reduced emissions during the weekend. 

The uncertainty in the total daily emission varies between 8 and 15 %, which is similar to 

or lower than the uncertainty in the yearly total emissions. This is surprising, because 
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additional uncertainties are introduced. Indeed, the time profiles themselves cause an 

uncertainty in daily CO2 emissions of about 7% if the other uncertainties are excluded 

from the analyses. A likely explanation for the relatively low uncertainties in the daily CO2 

emissions is that deviations are cancelled out. Each parameter is perturbed for each 

ensemble member. Possibly, positive deviations in some parameters are balanced by 

negative deviations in other parameters, causing a lower uncertainty in the total emissions 

than expected based on the uncertainties of individual parameters. 

 
Figure 4.7: Time series of daily CO2 emissions for the Netherlands (in Tg day-1). Given is the interquartile range 
(shaded area) and the median (line) from the ensemble. 

Therefore, we further examine the impact of individual parameters on the uncertainty in 

the total emissions of CO2 (Fig. 4.8, upper panel). In other words, we calculate the 

uncertainty in the total CO2 emission caused by one individual parameter by setting the 

uncertainty of all other parameters to zero. For this purpose we performed a Monte Carlo 

simulation per parameter, setting all other parameters to the expected value. To ease the 

interpretation we normalized all the emissions by dividing by the median value of each 

simulation. For this analysis (and all following ones) we consider daily emissions for a 

random day in January as we plan to update the state vector in our DA system (see 

Chapter 5 of this thesis) on a daily basis. We find that the uncertainty in the daily CO2 

emission is mainly caused by the emission factors of the dominant source sectors, namely 

coal-fired power plants (4%, EF 1A), industry (13%, EF 3) and households (3%, EF 2A). Also 

the time profiles of the coal-fired power plants (T 1A) and households (T 2A) add some 

uncertainty (1% and 2%, respectively). 
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Figure 4.8: Box plots showing the uncertainty in the overall emission of CO2, CO, NOx and SO2 caused by 
individual parameters. Emissions are normalized. EF refers to an emission factor (green bars), T to a time 
profile (orange bars) and R to an emission ratio (blue bars). (Sub)sectors are indicated with their short names 
as summarized in Table 4.1. In this analysis, uncertainties in industry (category 3), road transport (category 7) 
and shipping (category 8) dominate the national total emissions of the tracers. 
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4.4.2 Uncertainty in emissions per sector 

The main contributors to the overall uncertainty are not only the most uncertain 

parameters, but also those related to the dominant source sectors. If we want to study 

individual source sectors we need to know which parameters cause the largest 

uncertainties in each source sector. For this purpose we perform similar Monte Carlo 

simulations per parameter as before, but this time we calculate the uncertainty caused by 

a parameter in the CO2 emission from the source sector related to that specific parameter. 

For example, we calculate the uncertainty caused by the emission factor of road traffic on 

the total road traffic emissions, and the effect of the industrial time profile on the total 

industrial emissions. Figure 4.9 shows that the road traffic and shipping sectors contain 

the smallest uncertainties, although the time profile for shipping causes an uncertainty of 

about 7% in the total shipping emissions. The industrial emissions are most uncertain and 

this is almost exclusively due to the emission factor, which causes an uncertainty of 41% in 

the total industrial emissions. Similarly, the power plant emissions have a large 

uncertainty due to the uncertain emission factor of coal-fired power plants (19%). Also for 

households and glasshouses the emission factor is uncertain (14% and 26%, respectively), 

but here the time profiles also have a large impact (10% and 16%, respectively). 

 
Figure 4.9: Box plots showing the uncertainty in the emission of power plants (1A+1B), households (2A), 
glasshouses (2B), industry (3), road traffic (7A+7B) and shipping (8A+8B+8C) caused by individual parameters 
affecting that sector. Emissions are normalized. EF refers to an emission factor (green bars) and T to a time 
profile (orange bars). (Sub)sectors are indicated with their short names as summarized in Table 4.1. 

Moreover, we intent to use additional tracers in the DA system for source attribution. In 

order to do so we also need to consider the parameters that cause the largest uncertainty 

in those tracers. For example, if a species is dominated by road traffic emissions (like NOx) 

it can be used to attribute CO2 emissions to that sector. However, an incorrect estimate of 

an emission ratio can attribute too much or too little CO2 emissions to road traffic. Figure 

4.8 shows the uncertainty caused by the individual parameters on the total emissions of 

the co-emitted species. Note that the overall uncertainties are much larger for these 

species, especially for SO2. We find that the largest uncertainty in CO emissions is caused 
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by the emission ratio of road traffic (cars). Additional parameters that are of importance 

for CO are the emission factors for households, industry and road traffic, and emission 

ratios of households and industry. Similar to CO, the NOx:CO2 emission ratio for road 

traffic dominates the uncertainty in the overall NOx emissions, but also the emission ratios 

for ocean shipping, industry and households have a significant impact. Finally, the 

emission factor of industry and the time profile of the shipping sector are of importance. 

For SO2 the ratios of shipping and industry cause the largest uncertainties. For industry the 

emission factor is also relevant. 

4.5 Discussion and conclusion 

The aim of this study is to gain insight in how we can calculate emissions from different 

data streams, and to quantify the uncertainties in the resulting emissions. For this purpose 

we developed a dynamic fossil fuel emission model. We have used relatively simple and 

easily accessible data in our model, such that it can be applied successfully to other cities 

and in other countries as well. However, more detailed data could significantly improve 

the emission estimates and generate emissions in near real-time. For example, with the 

emergence of smart meters in residential buildings a new source of data becomes 

available that can be used to predict emissions from households. Moreover, new vehicles 

are equipped with an on-board computer system including GPS. The on-board computer 

can monitor, amongst others, engine temperature, exhaust temperature and exhaust 

composition (Pucher, 2017). With such data the road transport emissions can be well 

established, also with more spatial detail. Similarly, shipping movements can be tracked 

with GPS data to improve the timing and spatial distribution of shipping emissions. 

However, such detailed data are not (yet) easily accessible and processing so much data 

would involve a large computational effort.  

Each fuel type has its specific emission factor for CO2, which is relatively well known and 

can be used to accurately determine the CO2 emission. However, the fuel mix can differ 

significantly between countries. For example, in the Netherlands most of the household 

heating is based on natural gas, whereas in eastern European countries more wood and 

coal is used with a different emission factor. Similarly, the composition of the vehicle fleet 

can vary strongly. Therefore, the emission model needs to be updated for each 

application, changing the assumptions on fuel mixes. Moreover, a different set of source 

sectors might be needed. For example, the importance of glasshouse emissions is very 

specific to Rijnmond and can be excluded in most other cases. Given the flexible set-up of 

the model this can be done easily. 

We find an uncertainty of about 15% in the total yearly CO2 emission for the 

Netherlands. The Dutch Pollution Release and Transfer Register (PRTR) reports an 

uncertainty of only 1%. The main reason for this difference is that the PRTR uses emission 

factors established specifically for the Netherlands which have a smaller reported 
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uncertainty than the general ones used in this work. The reason we nevertheless start 

from these general emission factors is to test whether our DA system would be able to 

independently estimate the true emission factors in an area where local data is absent. 

Moreover, we doubt whether the 1% uncertainty reported by the PRTR is realistic. For 

example, reported emissions from diesel cars were found to be underestimated by a 

factor 3 (for CO2) up to a factor 40 (for NOx) (Brand, 2016). This scandal, also known as 

Dieselgate, illustrates that our assumptions about the real world might be less certain 

than we expect. Therefore, we want to include larger prior uncertainties to allow our DA 

system to drift away from what we currently assume is true. In this way we can 

independently estimate the emission factors from atmospheric observations. Note that 

the emission factors used by the PRTR are within the uncertainty range of our estimates. 

Looking at the uncertainty in the total emissions we find that the emission factors are 

the most important parameters for CO2. Clearly the parameters related to the most 

dominant source sectors have the largest influence on the overall uncertainty. The impact 

of uncertainties in the time profiles are limited, except for households. We conclude that 

to reduce uncertainty in dynamically calculated emissions (the aim of Chapter 5), the 

emission factors of coal-fired power plants, households and industry and the time profile 

of households need to be optimized to better constrain the total CO2 emissions. 

We can further zoom in on specific source sectors and how co-emitted species can help 

to attribute CO2 emissions to specific sectors. The power plants emit very little air 

pollutants, such that they cause large enhancements in CO2 and very small enhancements 

in the other tracers. These signals are thus relatively easy to identify, which presents a 

nice opportunity to constrain CO₂ emissions from this sector. Moreover, the emission 

ratios from this sector are close to zero and thus not interesting to optimize. Non-

industrial combustion contributes significantly to the CO emissions (14%). Both the 

emission factor, emission ratio and time profile of households contribute to the 

uncertainty in the CO emissions. Parameters related to glasshouses have no significant 

impact on total emissions of any of our tracers. The industry causes about 17% of the total 

CO emissions, 10% of the total NOx emissions and 35% of the total SO2 emissions. It is 

therefore the only sector causing a significant signal in all the tracers included in the 

system. It is also a sector with large uncertainties due to the wide range of activities. As 

such, all parameters related to industrial emissions would benefit from optimization, 

leading to a better constraint on the CO2 emissions from the industry. The industrial sector 

could potentially also benefit from a further division into refineries, chemical industry, etc. 

Road traffic dominates the CO emissions (60%) and also has a large contribution to NOx 

emissions (28%). The emission ratios related to cars are very uncertain and therefore have 

a huge impact on the uncertainty in CO and NOx emissions. The uncertainty in time 

profiles has little impact and therefore there is little need to optimize the road traffic time 

profiles. Finally, shipping is the dominant sector for both NOx (46%)and SO2 (47%) 

emissions. The uncertainties related to this sector are specifically large for SO2, caused by 
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the emission ratios. Also the shipping time profile contributes significantly to the 

uncertainty of both species. Previous studies have shown that satellite data could put a 

constraint on shipping emissions of NOx (Boersma et al., 2015), so they could prove useful 

to inform our emission model on temporal variations as well. 

A side note to the usage of the co-emitted species is that we currently assume the same 

time profiles apply to all tracers. In reality, the emission of CO from road traffic is relatively 

large when the engine is cold (cold start), causing the emission ratio of CO to CO2 to be 

variable (Andrews et al., 2004). Similar processes occur for other source sectors and 

species as well, thus making the uncertainties in the emission ratios even larger than 

suggested here. This can be overcome by implementing species-specific time profiles, 

taking into account processes that affect the tracer ratios. 

Based on this work we have thus identified the most uncertain and most important 

model parameters to improve the estimate of CO2 emissions per source sector. However, 

the industrial sector complicates doing this based on atmospheric measurements as used 

in an inversion, since it lacks a clear tracer ratio signature. This poses the risk that all 

unexplained variability in measured concentrations could be attributed to this sector, 

leaving other model parameters at their initial estimated values. Thus with the limited 

amount of information that is currently available, estimating hourly industrial emissions 

could benefit from continuous monitoring of the largest stack emissions, as was previously 

suggested by Ciais et al. (2014). This would also provide a constraint on the total yearly 

emissions and emission factors for all species. 
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Appendix 4A: Dynamic emission model parameters 

Table A1: Overview of all parameters in the dynamic emission model, there unit, function type (log = 
lognormal), expected value and uncertainty (range). For normal distributions we quote the 1σ standard 
deviation. 

Parameter (Sub)sector Unit Type Expected 
value 

Uncertainty 

Emission 
factor 

(^) 
Coal-fired power plants 

(1) 
kg/PJ normal 1.01x10

8
 23% 

Gas-fired power plants 
(1) 

kg/PJ normal 5.61x10
7
 10% 

Households
 (1) 

kg/PJ normal 5.89x10
7
 14% 

Glasshouses
 (1) 

kg/PJ normal 5.61x10
7
 25% 

Industry 
(2) 

kg/PJ normal 7.66x10
7
 40% 

Road traffic cars
 (3) 

kg/PJ normal 7.24x10
7
 10% 

Road traffic HDV
 (3) 

kg/PJ normal 7.33x10
7
 5% 

Ocean shipping
 (4) 

kg/PJ normal 7.76x10
7
 5% 

Inland shipping
 (4) 

kg/PJ normal 7.30x10
7
 5% 

Recreational shipping
 (4) 

kg/PJ normal 7.10x10
7
 5% 

Emission 
ratio CO:CO2 

Coal-fired power plants
 (3) 

kg/kg log 1.29x10
-4

 8.7x10
-7

–2.9x10
-4

 

Gas-fired power plants
 (3) 

kg/kg log 8.47x10
-4

 3.4x10
-4

–2.5x10
-3

 

Households
 (3) 

kg/kg log 3.88x10
-3

 8.3x10
-4

–9.6x10
-3

 

Glasshouses
 (3) 

kg/kg log 5.40x10
-4

 3.1x10
-5

–7.7x10
-4

 

Industry 
(2) 

kg/kg normal 2.06x10
-3

 40% 

Road traffic cars
 (3) 

kg/kg log 1.32x10
-2

 8.0x10
-5

–6.5x10
-2

 

Road traffic HDV
 (3) 

kg/kg log 2.22x10
-3

 9.3x10
-5

–1.3x10
-2

 

Ocean shipping
 (4) 

kg/kg normal 2.32x10
-3

 30% 

Inland shipping
 (4) 

kg/kg normal 3.42x10
-3

 30% 

Recreational shipping
 (4) 

kg/kg normal 2.96x10
-1

 30% 

Emission 
ratio NOx:CO2 

Coal-fired power plants
 (3) 

kg/kg log 5.94x10
-4

 3.0x10
-4

–9.4x10
-4

 

Gas-fired power plants
 (3) 

kg/kg log 2.00x10
-3

 2.6x10
-4

–3.7x10
-3

 

Households
 (3) 

kg/kg log 1.50x10
-3

 4.8x10
-4

–3.3x10
-3

 

Glasshouses
 (3) 

kg/kg log 1.63x10
-3

 5.0x10
-4

–3.5x10
-3

 

Industry 
(2) 

kg/kg normal 6.56x10
-4

 40% 

Road traffic cars 
(3) 

kg/kg log 1.76x10
-3

 9.0x10
-5

–7.5x10
-3

 

Road traffic HDV 
(3) 

kg/kg log 1.11x10
-2

 3.3x10
-4

–3.7x10
-2

 

Ocean shipping 
(4) 

kg/kg normal 2.32x10
-2

 30% 

Inland shipping 
(4) 

kg/kg normal 1.37x10
-2

 30% 

Recreational shipping 
(4) 

kg/kg normal 1.97x10
-3

 30% 
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Table A1 (continued) 

Parameter (Sub)sector Unit Type Expected 
value 

Uncertainty 

Emission 
ratio SO2:CO2 

Coal-fired power plants 
(3) 

kg/kg log 1.66x10
-4

 2.9x10
-5

–4.4x10
-4

 

Gas-fired power plants 
(3) 

kg/kg log 5.01x10
-6

 2.9x10
-6

–7.2x10
-6

 

Households 
(3) 

kg/kg log 2.21x10
-5

 1.4x10
-5

–6.7x10
-5

 

Glasshouses 
(3) 

kg/kg log 8.91x10
-6

 5.2x10
-6

–1.3x10
-5

 

Industry 
(2) 

kg/kg normal 4.28x10
-4

 40% 

Road traffic cars 
(5) 

kg/kg normal 1.01x10
-6

 100% 

Road traffic HDV 
(5) 

kg/kg normal 8.16x10
-7

 100% 

Ocean shipping 
(4) 

kg/kg log 6.18x10
-3

 3.3x10
-4

–2.0x10
-2

 

Inland shipping 
(4) 

kg/kg log 6.57x10
-3

 3.5x10
-4

–3.0x10
-2

 

Recreational shipping 
(4) 

kg/kg log 3.14x10
-4

 1.1x10
-4

–7.0x10
-4

 

Hourly time  
factor 

(6) 
Coal-fired power plants - normal 1 28% 

Gas-fired power plants - normal 1 43% 

Industry - normal 1 5% 

Households - normal 1 43% 

Glasshouses - normal 1 74% 

Road traffic cars highw. - normal 1 18% 

Road traffic cars main r. - normal 1 18% 

Road traffic cars urban r. - normal 1 18% 

Road traffic HDV highw. - normal 1 41% 

Road traffic HDV main r. - normal 1 18% 

Road traffic HDV urban r. - normal 1 48% 

Total shipping - normal 1 31% 

Energy 
consumption 
per activity 
data 

(7)
 

Total power plants PJ/mln € - 8.22x10
-4

 - 

Households PJ/dd
 (*) 

- 0.199 - 

Glasshouses PJ/dd
 (*) 

- 0.061 - 

Industry PJ/mln € - 7.05x10
-4

 - 

Road traffic cars PJ/mln € - 3.98x10
-4

 - 

Road traffic HDV PJ/mln € - 2.01x10
-4

 - 

Total shipping PJ/mln € - 1.51x10
-4

 - 
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Table A1 (continued) 

Parameter (Sub)sector Unit Type Expected 
value 

Uncertainty 

Fraction of 
total energy 
consumption 
per subsector 
(8)

 

Total power plants: coal - - 0.62 - 

Total power plants: gas - - 0.38 - 

Road traffic cars: highway - - 0.47 - 

Road traffic cars: main r. - - 0.28 - 

Road traffic cars: urban r. - - 0.25 - 

Road traffic HDV: highw. - - 0.56 - 

Road traffic HDV: main r. - - 0.24 - 

Road traffic HDV: urban r. - - 0.20 - 

Total shipping: ocean - - 0.79 - 

Total shipping: inland - - 0.20 - 

Total shipping: recreation - - 0.01 - 
(^) Emission factor for coal-fired and gas-fired power plants include uncertainty due to variations in fuel type, 
including burning of biomass (5% uncertainty). For households weassumed 8% wood combustion 
(http://www.emissieregistratie.nl/erpubliek/documenten/Lucht%20(Air)/Consument,%20Kleinbedrijf%20en%20
HDO%20(Consumers)/2016%20R10318%20Wood-burning%20stove.pdf), the remainder is natural gas (with 10% 
uncertainty). For glasshouses we assumed only natural gas combustion, including 20% additional uncertainty due 
to use of cogeneration plants. For road traffic cars we assumed 69% gasoline, 29% diesel and 2% LPG (with 5% 
uncertainty); for road traffic HDV we assumed 100% diesel. 
(*) dd = degree day 
Data sources: 
(1) Expected value and uncertainty based on IPCC Emission Factor Database (http://www.ipcc-
nggip.iges.or.jp/EFDB/main.php) 
(2) Expected value based on Emissieregistratie (emission) and CBS (energy consumption); uncertainty based on 
expert judgement 
(3) Expected value and uncertainty based on European Environment Agency air pollutant emission inventory 
emission factors 
(http://efdb.apps.eea.europa.eu/?source=%7B%22query%22%3A%7B%22match_all%22%3A%7B%7D%7D%2C%
22display_type%22%3A%22tabular%22%7D) 
(4) Expected value and uncertainty based on CO2, CH4, and N2O emissions from transportation-water-borne 
navigation, by Paul Jun, Michael Gillenwater, and Wiley Barbour (http://www.ipcc-
nggip.iges.or.jp/public/gp/bgp/2_4_Water-borne_Navigation.pdf) 
(5) Expected value based on Air Pollutant Emission Factor Library (http://www.apef-library.fi/); uncertainty based 
on expert judgement 
(6) Uncertainties based on comparison activity data-based time profiles and estimated time profiles from 
environmental/socio-economic factors 
(7) Expected value based on CBS (energy consumption, GDP) and KNMI (degree day sum) 
(8) Expected value based on Emissieregistratie 
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Appendix 4B: Covariance matrix 

 
Figure B1: Covariance matrix for all parameters in the dynamic emission model. For all covariances we assume 
a correlation coefficient of 0.5. 
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Abstract 

Emission monitoring in urban areas is receiving increasing attention as a way to support 

decision making in the context of CO2 emission reductions, but so far quite some 

challenges remain when applying inverse modelling at such small scale. In this study we 

address some of these challenges in order to gain more insight in the limitations of urban 

inversions, the (dis)advantages of several network configurations and the importance of 

having a prior estimate at high resolution. We apply an inverse modelling framework to an 

urban-industrial complex and make use of pseudo-observations to be able to perform 

sensitivity tests. As prior we employ a dynamic fossil fuel emission model and we optimize 

the model parameters. This method shows promising results in improving our 

understanding of the emission landscape of the city, as the model parameters can be 

translated into physically relevant variables and processes. Moreover, we show that the 

optimization can be successful in data-scarce regions where, for example, the temporal 

variability of emissions is unknown. In addition, we extend our inversions with co-emitted 

tracers (CO, NOx and SO2) that help attribute atmospheric CO2 signals to specific source 

sectors. In this way we are able to distinguish the effect of emission reduction policies 

targeting specific source sectors, especially with urban measurement sites. However, 

when using erroneous atmospheric transport the results deteriorate and may even 

become physically unfeasible. This illustrates the importance of modelling correct 

atmospheric transport in inversions using true observations, which remains the number 

one challenge in urban inversions. 
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5.1 Introduction 

During recent years, international debate has resulted in important climate agreements 

that support climate mitigation and adaptation efforts. Within the 2015 Paris Agreement 

195 nations agreed with a climate action plan, in which each nation sets its own climate 

targets, also related to carbon emission reductions (UNFCCC, 2015). An important role in 

reaching emission reduction targets is laid out for cities, which emit a large portion of the 

global fossil fuel CO2 emissions (about 70% according to the International Energy Agency 

(IEA, 2008)). All efforts related to the Paris agreement should be reported regularly to the 

United Nations Framework Convention on Climate Change (UNFCCC). The Paris Agreement 

also states that parties should strengthen their cooperation, also with respect to the 

sharing of information and good practices. Within this context it becomes increasingly 

important to map fossil fuel emissions and to quantify emission trends. Monitoring 

emission trends can help understand the effectiveness of mitigation strategies, which is 

valuable information to share with other member states. Besides, monitoring can reveal 

unexpected growth in emissions that reduce the effect of emission reduction policies. 

Most greenhouse gas emission estimates are currently based on yearly, national 

emissions reported to the UNFCCC, which are often disaggregated using activity data or 

proxies for activities like population density (Hutchins et al., 2017; Kuenen et al., 2014). 

Although the yearly estimates are reasonably accurate at national scale (estimated 

uncertainty for developed countries is less than 8% for CO2), their uncertainty increases 

when disaggregating them towards finer spatiotemporal resolutions, such as hourly/city 

scale (Ciais et al., 2010; Nassar et al., 2013). A method to improve emission estimates is 

using transport models in combination with independent observations of atmospheric 

mixing ratios, generally called data assimilation (DA). Recently, efforts have been made to 

apply DA techniques to the urban environment (Boon et al., 2016; Bréon et al., 2015; 

Brioude et al., 2013; Brophy et al., 2018; Fischer et al., 2017; Graven et al., 2018; Lauvaux 

et al., 2013; Lauvaux et al., 2016; McKain et al., 2012). Yet, for urban DA the fine scales 

(less than 1km and less than 1 hour) need to be resolved, therefore putting a higher 

demand on the DA system. For example, Boon et al. (2016) mentioned that sources with a 

small spatial extent (point sources) are not correctly represented on a 2x2 km
2
 grid, while 

these sources have a significant impact on the locally observed mixing ratios. Similarly, we 

have previously shown that a plume model is necessary to correctly represent sources 

with a limited spatial extent (Super et al., 2017a). These model limitations result in strict 

data selection criteria to favour conditions that can be represented correctly by 

atmospheric transport models. This in turn can lead to biased emission estimates by the 

inversion framework as specific sources are underrepresented, or even missed, in the 

observations. 

Additionally, there is an ongoing debate about the type of in-situ measurement sites 

that could best be used in urban inversions. On the one hand, Kort et al. (2013) argue that 
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in-city surface sites are most exposed to urban fluxes and therefore provide the best 

constraints. On the other hand, Bréon et al. (2015) found that their in-city observation 

location was too prone to transport errors and they used horizontal concentration 

gradients from measurements on the edge of the city. We have shown similar results in 

Chapter 3 where we show that observations at urban sites contain the most information, 

but the models have trouble simulating the correct transport, especially in the presence of 

point source emissions (Super et al., 2017a). Moreover, Turner et al. (2016) argued that a 

dense network with moderate precision is preferred over a over a smaller network with 

high precision. Other types of observations, such as flux measurements, also have their 

own (dis)advantages. Nevertheless, most studies show that DA is a promising tool to 

objectively estimate CO2 fluxes from urban areas, especially when transport errors can be 

reduced or better quantified (Lauvaux et al., 2016). 

So far, urban DA studies have tried to constrain the total fossil fuel flux to validate 

bottom-up CO2 inventories, often without considering the underlying emission process 

that caused the mismatch between observed and modelled concentrations. As one of very 

few exceptions, Lauvaux et al. (2013) used the CO:CO2 ratio to conclude that the emission 

reduction in Davos during the World Economic Forum 2012 was likely related to reduced 

traffic, but without a quantification. However, emission reduction policies usually target 

specific source sectors. Therefore, an increase in fossil fuel emissions from one source 

sector can cause the total CO2 emissions to appear stable, although a policy targeting 

another source sector can be effective in itself. In order to monitor the effect of each 

measure independently it becomes essential to attribute changes in the total CO2 

emissions to these policies and thus to specific source sectors. It is, therefore, not 

sufficient to constrain the total CO2 flux, but we need to differentiate the CO2 signal into 

signals from the different source sectors. One way to accomplish this is by using additional 

measurements of co-emitted species and isotopes. Such methods have previously been 

used to differentiate between biogenic and anthropogenic emissions or between fuel 

types (Djuricin et al., 2010; LaFranchi et al., 2013; Lopez et al., 2013; Super et al., 2017b; 

Turnbull et al., 2015), but also to separate between different fossil fuel sources 

(Lindenmaier et al., 2014; Super et al., 2017a). 

The aim of this study is to explore how well we are able to constrain urban CO2 

emissions per source sector given the errors/uncertainties that exist in the emissions and 

transport models. The research questions are: 

 Which type of monitoring framework is most suitable to constrain urban fossil fuel 

emissions? 

 Is the DA system able to attribute residuals to the correct parameters when the 

prior contains large errors? 

 How sensitive is the DA system to atmospheric transport errors? 

 What are the (dis)advantages of propagating gained knowledge to the next DA 

cycle? 



CHAPTER 5 

110 

 

In this study we use observing system simulation experiments (OSSEs, experiments using 

pseudo-observations), applied to the urban-industrial complex of Rotterdam 

(Netherlands), to answer these questions. For this purpose, we developed a data 

assimilation framework that uses atmospheric observations to optimize CO2 emissions and 

attributes them to specific source sectors. Underlying the inverse method is a dynamic 

emission model that estimates hourly, 1x1 km
2
 resolution emissions from different source 

sectors using a wide range of (statistical) data. The DA system optimizes parameters in the 

emission model rather than the total CO2 emissions and by including four co-emitted trace 

gases (CO2, CO, NOx and SO2) we enable source attribution. The model is dynamic in the 

sense that it responds to environmental conditions and can be used to calculate emissions 

in near real-time. We use data that is widely available so that the emission model can be 

applied in regions where currently little is known about the emission landscape. The 

emission model is also flexible and can be adapted easily to different areas. The 

description of the dynamic emission model is found in Chapter 4 of this thesis.  

This idea of a parameter inversion is not new, but has been applied mainly to biogenic 

fluxes of CO2 (Koffi et al., 2013; Rayner et al., 2014; Tolk et al., 2011). Previous research 

has shown that a parameter inversion infers a good estimate of net ecosystem exchange, 

although non-linear model parameters can be more difficult to solve (Tolk et al., 2011). An 

advantage of a parameter inversion is that the result has more physical meaning than an 

updated emission. For example, emissions from consumer heating can decrease from one 

year to another, but that could either be the result of higher temperatures or a lower 

emission factor. With the emission model we can predict the emissions based on the 

observed temperature and the resulting discrepancy should thus be attributed to a change 

in emission factors. 

We start with an overview of the DA system components and the model settings. Next, 

we discuss the results following the research questions. We start with the comparison of 

different observation networks, including the ability to use co-emitted tracers to attribute 

CO2 emissions to specific source sectors. Next, we quantify the uncertainty caused by 

model errors, both in the dynamic emission model (prior) and the atmospheric transport 

model. Finally, we discuss the effect of propagating optimized parameter values and/or 

posterior uncertainties. 

5.2 Methods 

5.2.1 Data assimilation principles 

The goal of data assimilation is to find a state at which the system is in optimal agreement 

with observations. In this study we employ the CarbonTracker Data Assimilation Shell 

(CTDAS) described in detail in Van der Laan-Luijkx et al. (2017). Briefly, the CTDAS system 

is a flexible implementation of a square-root Ensemble Kalman Filter (Whitaker and 

Hamill, 2002), which also allows lagged windows (i.e. smoothing instead of filtering). 
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Although originally based on the DA system CarbonTracker (Peters et al., 2007) and the 

TM5 atmospheric transport model (Krol et al., 2005), CTDAS's implementation in python 

offers a flexible DA system than can be easily adapted to other transport models and new 

data sets. In our study we have for example replaced the observation operator of CTDAS 

(the TM5 model) with a combination of WRF-STILT footprints, the OPS plume model, and a 

fossil fuel emission model (discussed in detail in the following sections). 

 
Figure 5.1: Time series of pseudo-observations and prior CO2 mixing ratios and a summary of how these time 
series were created. The CarbonTracker background (used for the pseudo-observation) is given by the dashed 
line. 

We use the ensemble Kalman smoother as optimization method (Cohn et al., 1994; 

Peters et al., 2005). This method optimizes the cost function for variables in the state 

vector x using information from observations (y
0
 with covariance R) and a prior estimate 

of the state vector (x
b
 with covariance P

b
). 

 

              
 
                                  (1) 

 

In this function,   is the observation operator that returns simulated mole fractions given 

the state vector. R and P determine how much weight is given to the observations and 

prior estimate, respectively. 
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The optimized state vector (indicated with superscript a, whereas b refers to the prior 

estimates) which minimizes the cost function is 

 

     
      

      
          (2) 

 

and its covariance is 

 

  
          

         (3) 

 

Here, H is the linearized observation operator and K is the Kalman gain matrix: 

 

     
        

      
  

       (4) 

 

The solutions of Eq. 2 and Eq. 3 are calculated as in Peters et al. (2005) using an 

ensemble of 40 members. More details in the individual parts of this system are provided 

below and are summarized in Fig. 5.1. 

5.2.2 Modelling framework 

Dynamic emission model 

In most inversions the observation operator uses CO2 flux fields from a biosphere model 

or emission inventory as input. In this study we use a dynamic fossil fuel emission model 

to drive our transport models such that we can optimize the parameters in this model. The 

emission model is developed for the Netherlands and is focused over Rotterdam (Fig. 5.2). 

This is one of the major cities in the Netherlands (about 625,000 inhabitants) with the 

largest sea port of Europe to the west. It is located in a larger urbanized area (Randstad, 

about 7 million inhabitants) with The Hague, Amsterdam and Utrecht being other major 

cities. A large area to the southwest of The Hague is covered with glasshouses. It is 

characterized by a complex mixture of anthropogenic and industrial activities and 

therefore we distinguish five source sectors and a total of ten sub-sectors to construct its 

emissions (see Table 5.1). 

The emissions are calculated in three steps. Firstly, the yearly, national emission is 

calculated per sector using activity data and CO2 emission factors. Secondly, we apply 

temporal disaggregation to hourly emissions using local activity data or environmental 

conditions. Finally, we downscale the national totals to 1x1 km
2
 resolution using statistical 

data, such as population density. The emission model thus contains several parameters 

per source sector: activity, emission factor, and time profile.  
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Table 5.1: Overview of sectors and subsectors distinguished in the dynamic emission model, including their 
short name used in the figures and their approximate contribution to the total CO2 emission in Rotterdam. 
Crosses indicate which emission factors (EF), tracer ratios of CO, NOx or SO2 (Rco, RNOx, RSO2) and time profiles 
(Tf) are part of the state vector. 

Sector Subsector Short 
name 

Contribution  EF RCO RNOx RSO2 Tf 

Power plants Gas-fired 1A 37% X     
Coal-fired 1B  X     

Non-
industrial 
combustion 

Households 2A 15% X X   X 
Glasshouses 2B  X    X 

Industry  3 39% X X X X X 

Road traffic Cars 7A 6% X X X   
 Heavy duty vehicles  7B  X X X   

Shipping Ocean shipping 8A 3% X  X X X 
 Inland shipping 8B  X  X X  
 Recreational shipping 8C       

 
The model parameters are based, as much as possible, on local/national data. For 

example, we use traffic counts for the Rotterdam area to perform temporal 

disaggregation of road traffic emissions. These data are considered to be the true state of 

the emission landscape in Rotterdam. When such data are not available more general data 

can be used. For example the emission factors can be taken from large-scale databases 

from the IPCC and other organisations (see Chapter 4 of this thesis). However, these 

values then have a large uncertainty, which propagates into the calculated emissions of 

the dynamic emission model. The advantage of this model is that it uses data that are 

widely available in near real-time, so that it can be applied around the world as prior for 

DA systems. More detailed information about the dynamic emission model can be found 

in Chapter 4 of this thesis.  

One major challenge in this study is to attribute the mismatch between observations and 

model to a specific sector, as a CO2 observation alone provides no details on the origin of 

the CO2. To retrieve more information about a single CO2 observation we included three 

additional tracers in the DA system: CO, NOx and SO2. These species are co-emitted with 

CO2 during fossil fuel combustion, but often with a distinct ratio (referred to as RCO, RNOx 

and RSO2) (Fig. 5.3). These ratios act as a signature of each source sector, and the co-

emitted tracers thereby allow the DA system to attribute observed CO2 changes to a 

specific sector. The emissions of these trace gases are calculated from the CO2 emissions 

using typical emission ratios per source sector, which in reality are highly variable and 

uncertain and can thus affect the optimization results, as we will investigate and discuss 

further below. The emission ratios are also parameters in the dynamic emission model. 
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Figure 5.2: Map of the domain covered within the inversions, including several major cities (underlined). The 
squares and circles show the locations of the measurement sites within the urban (7 sites) and rural (4 sites) 
network configurations. 

 
Figure 5.3: Emission ratios of CO:CO2 (RCO), NOx:CO2 (RNOx) and SO2:CO2 (RSO2) for specific source sectors based 
on the Dutch Pollution Release and Transfer Register (Netherlands PRTR, 2014). Units are in ppb ppm-1. A value 
of 10 on the y-axis thus implies that for each 1000 moles of CO2, 10 moles of the auxiliary tracer is emitted. 

Observation operator 

The observation operator takes care of the translation from the state vector (in our case 

parameters of the emission model) first into emissions (through the emission model) and 

then into atmospheric mixing ratios that can be compared to observations (through 
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transport modelling). In our study the transport modelling consists of two parts. The first 

part, the Weather Research and Forecasting-Stochastic Time-Inverted Lagrangian 

Transport (WRF-STILT) model, is used for surface area emissions only. STILT is a Lagrangian 

particle dispersion model that describes the footprint of a single measurement by 

dispersing particles back in time (Gerbig et al., 2003; Lin et al., 2003). With this footprint 

the surface influence of emissions on a single observation can be described. An advantage 

of this method is that it allows the pre-calculation of linear atmospheric transport, which 

makes this part of the observation operator less computationally demanding than running 

an ensemble of a full atmospheric transport model (like WRF with chemistry). The total 

domain covered with WRF-STILT is 77 x 88 km (Fig. 5.2) and includes most of the 

Randstad. 

To generate a footprint, 75 particles are released at the observation site at the start of 

the back-trajectory and followed back in time. Given that the variability in hourly 

observations at an urban location is dominated by local signals, we choose to construct 

back-trajectories of 6 hours. This is based on the domain size, which could be covered 

within 6 hours for typical wind speeds. Within this time frame emissions can become well-

mixed throughout the boundary layer under typical mixing conditions, such that emissions 

outside this range can be represented by a boundary inflow. Footprints are generated for 

each hour within the back-trajectory to account for hourly variations in the emissions. We 

drive STILT with meteorology from the WRF model (v3.5.1) (Nehrkorn et al., 2010). The 

WRF model was set up with two nested domains (15x15 and 3x3 km
2
 horizontal 

resolution) and the footprints have a 1x1 km
2
 resolution over the entire domain.  

The second part of the transport modelling is a plume model. In a previous study we 

have shown that point source (stack) emissions should be modelled with a plume model 

to better represent the limited dimensions of the stack plume (Super et al., 2017a). 

Similarly, Vogel et al. (2013) have shown that the surface influence calculated by STILT can 

lead to large model errors for stack emissions. Therefore, we include the OPS (Operational 

Priority Substances) plume model in our framework to model the transport and dispersion 

of stack emissions (Sauter et al., 2016; Van Jaarsveld, 2004). OPS provides hourly 

concentrations at pre-defined receptor points, which represent our measurement sites. 

The model keeps track of a plume trajectory, taking into account time-varying transport 

over longer distances (e.g. changes in wind direction and dispersion). If for a time step a 

specific plume affects the receptor, a Gaussian plume formulation is used to calculate the 

mixing ratio caused by that source based on the true travel distance along the trajectory. 

We drive the model with the same WRF meteorology as STILT. 

Similar to the WRF-STILT model, we assume an influence time of 6 hours on our 

observations. However, in this case we run the OPS model forward from -6 hours to the 

time of observation. We apply the OPS model only to point source emissions within the 

Rijnmond area, as we found in Chapter 4 that a plume model only has an added value less 

than 10 km downwind from the stack (Super et al., 2017a). Point sources at more than 10 
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km from the observation site can be sufficiently represented with a Eulerian model. The 

OPS model input includes detailed information about the exact stack height and heat 

content of the plume.  

In addition to the fossil fuel contribution we also include background mixing ratios for 

CO2 and CO. NOx and SO2 are short-lived and therefore the variations in the background 

are relatively small compared to the fossil fuel signals. The CO2 background is taken from 

the 3-D mole fractions from CarbonTracker Europe (Peters et al., 2010) and also accounts 

for biogenic fluxes. The resolution of these CO2 fields is 1x1° and we select the pixel that is 

situated over Rotterdam. The 3-hourly data are linearly interpolated to get hourly 

background mixing ratios and are added to the fossil fuel signals calculated by the 

transport models. We use the strong correlation between CO2 and CO mixing ratios (r = 

0.73) to calculate CO background conditions from the CO2 background. This is not very 

accurate, but for the purpose of this OSSE it provides us with a decent estimate of the 

variability in background mixing ratios. For the pseudo-observations (see Sect. 5.2.4) the 

original time series is used, whereas in the inversion random noise is added to the 

background mixing ratios with a standard deviation of 2 ppm for CO2. 

5.2.3 State vector 

As mentioned before, the emission model uses as much as possible local or national data 

that we consider to be the truth and are used to create the pseudo-observations (see Sect. 

5.2.4). However, we start from a different state where we lack local data and typical 

values from large-scale data bases are used (as listed in Appendix A of Chapter 4). The 

prior state vector (x
b
) consists of 9, 21 or 25 scaling factors that each relate to a parameter 

from the dynamic emission model, depending on the experiment (see Sect. 5.2.5). The 

scaling factors quantify the difference between the truth and the prior, where true scaling 

factors are always 1.0. In Chapter 4 we examined the importance of each model 

parameter and we selected the most important ones for the state vector. Parameters are 

important when they are either very uncertain or when they have a large contribution to 

the overall emissions. For example, power plants have a large contribution to the total CO2 

emissions in Rotterdam and therefore the CO2 emission factor related to this source 

sector needs to be well-known in order to obtain an accurate emission estimate. Some 

additional emission factors and tracer ratios are not in the state vector, but they do have 

an error (i.e. different values are used for the pseudo-observations than in the inversion). 

This causes a residual mixing ratio that might be attributed incorrectly to other model 

parameters. 

The covariance matrix P, which describes the error structure of the state vector, is based 

on the same data as the prior parameter values that define the state vector. Most 

databases provide a range of values for emission factors from a particular source or fuel 

type and this is used to estimate the uncertainty. These uncertainty values can also be 

found in Appendix A of Chapter 4. The true values are always within the uncertainty range. 
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For this study we selected an arbitrary two-week period in January 2014 (6-20 January). 

Note that during the summer the importance of source sectors might be different, e.g. 

there will be less heating from households. Nevertheless, this period is sufficient to test 

the applicability of our DA system. We update our state vector every day starting from the 

same prior values and prior uncertainties such that we obtain 14 independent estimates 

of the state vector. Therefore, the state vector only contains one time step of one day 

(recall that the footprints also only extend backwards for a short period). In this way we 

can test the robustness of the parameter estimates and examine whether a short period 

of observations would be sufficient to constrain the most important emission model 

parameters. Another option is to create one optimized state vector for the entire period. 

In that case the state vector is only updated if the newly added observations contain 

relevant information that reduces the uncertainty. We tested this option too and the 

conclusions were not different from is presented. Note that by estimating time-average 

parameters we would be susceptible to temporal aggregation errors (Kaminski et al., 

2001). Moreover, we would be unable to constrain the day-to-day variability, which is 

relevant for optimizing the time profiles. 

Optimizing time profiles requires a different method than optimizing the other 

parameters. The reason is that the average value of the yearly time profile should equal 

1.0, as it only affects the variability and not the total yearly emission. For example, a 

colder year results in more emissions from households (heating), which is accounted for in 

the calculation of the total emission. The time profile should not change the total 

emissions, but only attribute most emissions to the coldest periods and less emissions to 

warmer periods. That means that if the DA system recognizes an increase in heating 

during a cold period, it lowers the time profile for the remainder of the year (only data 

that have not yet been optimized) such that the average value stays 1.0 and total 

emissions are not affected. 

5.2.4 Pseudo-observations 

The observations used to optimize the emission model parameters are created using the 

same modelling system as described above. The dynamic emission model is used to create 

realistic emissions with a high spatiotemporal resolution. Yet, in contrast to the prior, the 

model parameters are not scaled (scaling factors are 1.0) and the specific Dutch 

parameter values are used in the emission model. This is also true for parameters that are 

not included in the state vector. This means that some part of the prior is wrong and is not 

adjusted in the inversion. These parameters, however, have a small impact on the 

emissions (Chapter 4). 

The resulting emissions are used in combination with the transport calculated by WRF-

STILT and OPS model to create pseudo-observations at the locations shown in Fig. 5.2. The 

simulated time series are illustrated in Fig. 5.1. The urban network consists of seven sites 

that are scattered over the city of Rotterdam and the port. The rural network consists of 
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four sites that form an arch around the Rotterdam area. All sites are existing sites in the 

CO2 or air quality measurement networks, although not all species used in the inversion 

are observed at all locations. We only use the daytime (12-16h LT) observations to 

constrain our emissions. This is normally done to favour well-mixed conditions with better 

simulated transport and we want to mimic these limitations. We assume all instruments 

have an inlet at 10m above ground level. In reality this is lower for several sites, but during 

the well-mixed daytime conditions the difference should be minimal. 

The covariance matrix R describes the observation error. It accounts for errors related to 

instrumentation, but also representativeness errors due to model transport and 

interpolation. Since the pseudo-observations are created with the same modelling 

framework as used for the inversion the model error is non-existent. Also the 

measurement error is irrelevant. Nevertheless, realistic estimates of these errors need to 

be included in the OSSE. Moreover, the boundary inflow is subject to errors and some 

parameters in the emission model are not optimized even though they contain an error. 

Therefore, the R matrix is based on the estimated errors and variability caused by these 

differences and we end up with variances of 8 ppm (CO2), 21 ppb (CO), and 2 ppb (NOx and 

SO2). 

5.2.5 Experiments  

We perform various experiments to examine the sensitivity of the system to different 

sources of error. The experiments are discussed here and the detailed set-up of the 

inversions is summarized in Table 5.2.  

1) Network configurations: We start with a comparison of two monitoring networks which 

differ in the amount of measurement sites and their location (Fig. 5.2). We perform 

inversions with CO2 as the only tracer and with the full range of tracers to assess the 

added value of including co-emitted species for source attribution (inversions Rural-CO2, 

Rural-all, Urban-CO2 and Urban-all). These tests address the question which type of 

monitoring sites (urban/semi-urban/rural) are most useful in urban inversions. The results 

are discussed in Sect. 5.3.1. 

2) Time profiles: The second experiment uses different time profiles to describe hourly 

variations (inversion Temporal). Whereas the pseudo-observations are based on the 

dynamic profiles developed in Chapter 4, the inversion uses non-dynamic profiles (Denier 

van der Gon et al., 2011). With this experiment we examine how the DA system deals with 

large errors in the prior and whether it is able to attribute the resulting residuals to the 

correct model parameters. The results are discussed in Sect. 5.3.2.  

3) Transport model errors: The third experiment is used to examine the impact of 

erroneous transport (inversion Transport). The pseudo-observations for this experiments 

are created with OPS as the only transport model, whereas the inversion used STILT as the 

only observation operator (both models are driven by the same WRF meteorology). The 

OPS and STILT models differ strongly in their underlying basis and assumptions, but also in 
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model parameterizations. We have shown previously that the dispersion in WRF-STILT is 

much faster than in OPS and the model results show large differences even if the same 

meteorology is used (Super et al., 2017a). The results are discussed in Sect. 5.3.3. 

4) Propagation of gained knowledge: The fourth experiment is similar to the Urban-all 

inversion, except that we propagate knowledge from the previous day (inversions Urban-

all_parameter and Urban-all_covariance). It addresses the question whether the DA 

system benefits from the propagation of knowledge in an environment where the 

observations are complex mixtures of signals from different source sectors. In the Urban-

all_parameter inversion we use the optimized value of a previous day as prior for the next 

day. In the Urban-all_covariance inversion we also use the posterior covariance matrix of 

the previous day as the prior covariance matrix (error propagation) (Sect. 5.3.5). 

Table 5.2: Overview of the inversions: which network and tracers are included, which parameters make up the 
state vector, and which transport models and time profiles are used. Some settings are different for pseudo-
observations (obs) and the inversion (inv). 

Run name Network Tracers State vector Observation 
operator 

Time profiles 

Rural-CO2 Rural CO2 EF STILT-OPS Dynamic 
Rural-all Rural all EF, RCO, RNOx, RSO2 STILT-OPS Dynamic 
Urban-CO2 Urban CO2 EF STILT-OPS Dynamic 
Urban-all 
(parameter, 
covariance) 

Urban all EF, RCO, RNOx, RSO2 STILT-OPS Dynamic 

Temporal Urban all EF, RCO, RNOx, RSO2, Tf STILT-OPS Dynamic (obs), 
fixed (inv) 

Transport urban all EF, RCO, RNOx, RSO2 OPS (obs), 
STILT (inv) 

Dynamic 

5.3 Results 

5.3.1 Monitoring requirements 

Network configurations 

The urban network is more sensitive to urban emissions than the rural network. This 

follows from the comparison of the prior and posterior residual CO2 mixing ratios (Fig. 

5.4). The prior residuals indicate the difference between the pseudo-observations and the 

simulated mixing ratios (in ppm) with the prior estimate of the emission factors. The 

posterior residuals represent the differences between the same pseudo-observations and 

the simulated mixing ratios with the optimized emission factors. The prior and posterior 

residuals for Rural-CO2 and Rural-all are almost similar, indicating that little information is 

gained during optimization due to the insensitivity of the rural network to urban plumes. 

In contrast, both simulations with the urban network show a smaller bias in CO2 mixing 

ratios after optimization. Nevertheless, the spread remains large. 
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Figure 5.4: Normalized distributions (probability density functions) of the pseudo-observations – modelled 
mixing ratios (in ppm) for four different simulations. Given are the bias (deviation from zero) and standard 
deviation of each distribution. The prior residuals are calculated based on the prior state vector; the posterior 
residuals are calculated based on the optimized state vector. The runs with the urban network show reduced 
biases. Note that residuals are included for all observations and not just those assimilated, and thus the 
agreement can also become worse after optimization. 

A possible explanation for the small differences when using the rural network is the 

larger distance between the measurement sites and the emission hotspots. This causes 

the plumes with enhanced tracer mixing ratios to often miss the measurement sites. Or 

the plumes are so diluted that the enhancement (and therefore also the prior residual) is 

very small compared to the uncertainty caused by transport and background mixing ratio 

errors. In both cases, limited information can be gained from the observations (note that 

the adjustment to the state vector in Eq. 2 scales with the residual term y
0
- (x

b
) squared). 

Indeed, the pseudo-observations show CO2 signals of more than 8 ppm (the estimated 

observation error) only about 9% of the selected hours at one of the rural observation 

sites. There are no cases when two or more rural sites measure significant signals. We 

therefore conclude that rural sites do not provide useful information on time scales of less 

than two weeks. In contrast, the urban network picks up strong signals for about 75% of 

the selected hours, of which 60% affects two or more sites. 

The finding that the urban network is more sensitive than the rural network is supported 

by Fig. 5.5, which shows the variability (spread) in the 14 independently optimized 

emission factors and tracer ratios. The simulations with the rural network show limited 

day-to-day variability in the estimated parameter values, which remain close to the prior 

estimates (dots). The optimized emission factors for the simulations with the urban 

network show more variability, suggesting that these sites are sensitive to the urban 

signals. Several emission factors (for example for industry (EF 3), coal-fired power plants 
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(EF 2B), and households (EF 2A)) differ more from the prior estimates (dots) and display a 

wide range in optimized values. 

 
Figure 5.5: Spread (Q1-Q3) and median values of the parameter scaling factors for the fourteen days included 
in the inversions. The prior values are indicated by the dots to the left of the box plots. The left y-axis is for the 
emission factors, the right y-axis for the tracer ratios. The simulations with the urban network show more 
variability and larger deviations from the prior values (black dots). 

Co-emitted tracers 

The additional co-emitted species also have an impact on the optimization. The Urban-CO2 

inversion attributes the existing residuals mainly to the industrial emission factor (EF 3), 

because this parameter is highly uncertain (Fig. 5.5). The industrial sector has large CO2 

emissions, so that an update of the emission factor can easily improve the simulated CO2 

mixing ratios. In contrast, in the Urban-all inversion the emission factors of households 

(2A), glasshouses (2B) and coal-fired power plants (1B) also show large changes in 

optimized values (Fig. 5.5), because the co-emitted tracers show that part of the residual 

is unlikely to be caused by the industrial sector. For example, power plants and industrial 

plants are often located in the same areas and their signals are often mixed. In the 

absence of co-emitted species the residual is most likely attributed to the industry, which 

is most uncertain. However, when including the co-emitted tracer CO the DA system can 

more easily identify the source of the residual. If the industry would be the cause of the 
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residual there should also be a residual in CO. However, if the power plants are actually 

the cause of the residual the residual in CO would be limited, as power plants co-emit 

almost no CO. As such, in the absence of a CO residual the DA system knows that the 

residual is not caused by the industry, but by power plants. Therefore, we conclude that 

the co-emitted species contain valuable information about the emission model 

parameters, despite the uncertainties in the emission ratios. 

 
Figure 5.6: Posterior uncertainty (1σ of unitless scaling factor) in the industrial emission factor (EF 3) and 
absolute mean residual of CO2 (in ppm) from highest- to lowest-ranked days. The prior uncertainty in EF 3 is 
0.4. 

Next we take a closer look at the optimized parameter values. For this purpose, we focus 

on the Urban-all inversion. We exclude the emission factors for road traffic and shipping, 

because these are relatively certain and they barely affect the total CO2 emissions. The 14 

daily independent parameter estimates are ranked based on their posterior uncertainty 

and the remaining residual to find the most trustworthy parameter estimates. This ranking 

is done per parameter, so the best estimate of different parameters can be related to 

different days. The increase in residual (same for all parameters) and posterior uncertainty 

(of the industrial emission factor) is shown in Fig. 5.6. Both show that the 3-5 highest 

ranked days have similar characteristics. After that the reliability decreases, suggesting 

that only the best few days are fit to make emission estimates. The reason is that on other 

days the atmospheric signals from that particular source sector are too small, or even 

absent, and are not informative to update the parameters related to that source sector. A 

similar pattern is found for the other parameters (not shown), with the exception of the 

glasshouse emission factor (EF 2B) which shows a large increase in posterior uncertainty 

as of the third ranked day. Therefore, we focus on the average of the three (two for EF 2B) 

most likely values. 
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Figure 5.7: Error in the prior or optimized scaling factors (top-3 average) compared to the truth (which is 
always 1.0) for a range of model parameters for several runs. Positive (negative) values indicate an 
overestimation (underestimation) of the true values as the truth has been subtracted. The ranking of the 
optimized values is done based on the posterior uncertainty and posterior residuals. The uncertainties of 
parameters with a lognormal distribution are not shown due to their large range. These uncertainties are only 
slightly reduced. 

 For most parameters the top-3 average optimized value from the Urban-all simulation is 

closer to the true value compared to the prior estimate (Fig. 5.7). This is true for all tracer 

ratios, except for RCO of road traffic (cars and HDV). The optimized emission factors for 

households, glasshouses and industry are also closer to the truth. The other emission 

factors, related to power plants, are not well-constrained. If we check the pseudo-

observation time series of CO2 mixing ratios resulting from power plants and industry we 

find that there are no distinct peaks from gas-fired power plants (Fig. 5.8). There are only 

few gas-fired power plants in the area with high stacks and their emissions are likely to 

miss the observation sites. Therefore, the emission factor for this subsector is barely 

updated. In contrast, coal-fired power plants do generate large signals, although these 

mostly occur during night time and these data are excluded from the inversion. 

Nevertheless, some daytime peaks exist and the corresponding optimized emission factor 

is quite different from the prior. However, coal-fired power plant emissions are mostly 

mixed with industrial signals, posing a major challenge to the inversion system in 
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attributing the residuals to the correct sector. This is even made more difficult by the lack 

of a distinct emission ratio for either of these sectors. 

 
Figure 5.8: Pseudo-observation time series of CO2 mixing ratios at the urban observation sites resulting from 
three source sectors: gas-fired power plants, coal-fired power plants and industry. Shaded areas indicate 
daytime hours used in the inversion. 

We can also use the top-3 averaged parameter values to calculate the total CO2 

emissions and the emissions of the largest source sectors (Table 5.3). Road traffic and 

shipping are not included (similar for Fig. 5.7), since their contribution to the total CO2 

emissions is minor. The prior underestimates the emissions with 11% (-3.97 Tg yr
-1

), 

indicating that a reasonable first estimate of the total emissions can be made based on 

general emission factors that are applied globally, rather than on the Rijnmond-specific 

numbers used in the truth. This sets quite a challenging benchmark for our observation-

based assimilation method to improve on. The Rural-CO2 run estimates the emission to be 

more or less similar to the prior, which is low relative to the truth. However, the other 

runs have higher (less negative deviations) estimates that are closer to the truth. The best 

estimate for total CO2 is obtained with the Urban-CO2 simulation with an underestimation 

of only 5% (-1.71 Tg yr
-1

). However, when we look at specific source sectors we find that 

the Urban-all simulation improves the estimated emissions of glasshouses and industry. In 

contrast, the coal-fired power plant emissions deteriorate while being the second largest 

source of CO2, resulting in a stronger underestimation of the total emissions. The gas-fired 
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power plant emissions are barely affected by the optimizations. This comparison shows 

that the inclusion of co-emitted species significantly affects the estimated emissions per 

source sector, but that this does not necessarily lead to a better total CO2 emission 

estimate. 

Table 5.3: Reported yearly CO2 emission for Rijnmond (in Tg yr-1) and deviations from the truth based on the 
prior and top-3 optimized parameter values for all runs. Bold (underlined) values signify the best (worst) 
emission estimates per category. 

Run Total Power plants  
(gas) 

Power plants  
(coal) 

Households Glasshouses Industry 

True 34.4 3.60 10.6 2.29 1.31 14.2 

Prior -3.97 -0.25 -0.74 +0.25 -0.43 -2.84 
Rural-CO2 -3.96 -0.25 -0.74 +0.26 -0.44 -2.82 
Rural-all -3.26 -0.29 -0.53 +0.25 -0.45 -2.29 
Urban-CO2 -1.71 -0.24 -5.19 +0.20 -0.44 -0.74 
Urban-all -2.54 -0.25 -1.91 -0.21 -0.27 +0.08 
Temporal -4.71 -0.29 -2.88 +0.24 -0.44 -1.39 
Transport -25.4 -0.51 -12.6 +0.27 -0.43 -12.2 
Urban-all  
parameter 

-3.27 -0.12 -2.52 -0.34 -0.25 -0.08 

Urban-all  
covariance 

-6.19 -0.05 -4.07 -0.29 -0.05 -1.91 

5.3.2 Time profiles 

In the previous sections we showed that our system is able to constrain a range of model 

parameters. In this section we take it a step further by introducing an additional error that 

is typically present in these type of inversions, namely uncertain time profiles (Temporal 

simulation). The time profiles determine which fraction of emissions for a sector occur at 

which hour of the day, and on which day of the year. Like the emission factors and 

emission ratios, the time profiles act linearly on the emissions per sector. Yet, unlike the 

emission factors and emission ratios the time profiles are constrained to be on average 1.0 

over a year and thus only modify the temporal structure of the solution. 

The optimized time profiles are in better agreement with the true profiles than the 

priors (Fig. 5.9). We show here daily values, because the time profiles are optimized on a 

daily basis similar to the other parameters. Especially the day-to-day variations are 

captured well, but the time profiles of households (Tf 2A) and glasshouses (Tf 2B) have a 

strong negative bias, so that the emissions are not correctly spread over the year. This has 

an effect on the optimized emission factors as well. For example, it seems that the 

overestimation of household emissions is attributed to the time profiles instead of the 

emission factor, causing the emission factor to remain too large (Fig. 5.7). This hypothesis 

is supported by the presence of strong negative correlations between the time profiles 

and emission factors of both sectors, which indicates that the system had difficulties 

separating the two from atmospheric observations (see Sect. 5.3.4 for more details on 

correlations). 
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Figure 5.9: Different daily time profiles for the simulated period based on the selected hours (12-16h LT). The 
true profiles are dynamic, the prior profiles are fixed, and the optimized profiles are the result of the inversion. 
The optimized profiles follow the day-to-day variations of the dynamic profiles much better than the priors. 

Additionally, the uncertainty in the hourly variations is much larger than the uncertainty 

in the yearly average emission factors. Therefore, a system that seeks to minimize 

uncertainties for this sector gains most from updating the time profiles. This is especially 

true for the shipping emissions, which have a relatively certain emission factor. The 

shipping time profile is therefore very well-constrained (Tf 8). The only exception is the 

industry, which has a very uncertain emission factor. We find that this emission factor is 

better constrained than the ones for households and glasshouses as residuals are more 

easily attributed to the emission factor. The underestimation of the emission factors leads 

to a too low estimate of the total CO2 emissions of 29.7 Tg yr
-1

. 

These results show that for some sectors it is possible to obtain time profiles from an 

optimization in the absence of activity data to correctly represent day-to-day variations. 

Such time profiles are needed to correctly optimize the emission factors and ratios, while 

without time profiles the inversion suffers from a structural model error that gets aliased 

into the other model parameters. 

5.3.3 Transport model errors 

In the previous simulations the model transport was assumed to be exactly known, as the 

inversion used the same models that were used to create the pseudo-observations. In the 

case of real observations the transport adds an additional uncertainty to the inversion. We 

examine the impact of erroneous transport by using different models for the inversion and 

the generation of the pseudo-observations. The pseudo-observations are the same as in 

previous simulations, but the inversion only uses STILT. Therefore, there is only a 

difference in the transport and dispersion of point source emissions that were performed 

with OPS to create pseudo-observations. Treating these point sources with STILT causes 
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high peak mixing ratios (Fig. 5.10), because with STILT we assume all emissions take place 

at ground level whereas OPS accounts for stack heights and plume rise. We thus consider 

the results in the context of erroneous representation of point source emissions. 

We find that the difference in transport leads to much larger prior residuals of -4.78 ± 

16.51 ppm (not shown) compared to the Urban-all simulation. The optimized mixing ratios 

are generally lower than the prior mixing ratios and are in much better agreement with 

the pseudo-observations (posterior residuals are 0.67 ± 7.06 ppm). However, sometimes 

the posterior mixing ratios suddenly show a sharp decline whereas the observations and 

prior show a large peak (such as on 11-12 January). This indicates the presence of negative 

emissions in the posterior estimate (i.e. uptake of CO2). Indeed, the emission factor of 

coal-fired power plants becomes negative (smaller than -1.0, as 1.0 is the truth) (Fig. 5.7). 

So we find that an overestimation of atmospheric mixing ratios due to erroneous 

representation of stack emissions in the transport model results in a strong decrease in 

emission factors. Moreover, the source sectors that are not simulated with the plume 

model (households and glasshouses) also show deteriorating results, which is a 

compensating effect for the large changes made to the other sectors. On average, the 

erroneous transport leads to a large underestimation of the total emissions of 25.4 Tg yr
-1

. 

 
Figure 5.10: Time series of prior (full) and posterior (dashed) simulated CO2 mixing ratios and the pseudo-
observations (dots) for the Transport simulation at all seven urban sites. Shaded areas indicate daytime hours 
used in the inversion. 
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The implications of these results are important, as transport model errors are currently 

the main challenge for urban inversions with real observations. Not only does an 

erroneous description of model transport have a huge effect on the optimized emissions, 

it also results in large posterior uncertainties. The comparison shown here is an extreme 

case, resulting in obviously incorrect and untrustworthy emissions. But in reality it might 

be difficult to assess the effect of transport errors on the results. 

5.3.4 Error covariance structure 

In order to better understand previous findings we have a closer look at the covariance 

structure of the Urban-all simulation (Fig. 5.11). The prior covariance matrix (left panel) 

mainly shows diagonal values, which indicate the uncertainty in a parameter. Some 

parameter errors are also correlated (we will call this parameter correlation), indicated by 

off-diagonal values. A positive (negative) parameter correlation means that a positive 

deviation in one parameter has to be compensated by a positive (negative) deviation in 

the other parameter. This affects the cost of tuning a parameter and thus provides 

additional information to the inversion. Additionally, the presence of a parameter 

correlation between two variables means that they are difficult to differentiate from an 

atmospheric signal. In other words, if A and B are correlated a CO2 residual can be reduced 

by tuning A or B, or both. The inversion system is unable to identify with which magnitude 

to correct either of the parameters. Unless the variables also affect another observed 

quantity in a different way, for example the mixing ratio of a co-emitted tracer. 

The prior covariance matrix (Fig. 5.11, middle panel) shows that we assumed positive 

parameter correlations between tracer ratios from the same sector (road traffic: cars (7A) 

and HDV (7B), shipping: ocean (8A) and inland (8B)), but also between the RCO and RNOx of 

road traffic. The reason is that the emission ratios are mainly determined by technological 

implementations that we think affect the subsectors equally. Moreover, we also assume 

the technology to impact the emissions of CO and NOx equally. In contrast, SO2 emissions 

are usually reduced by desulphurization methods which is different from the techniques 

to reduce CO and NOx emissions. Therefore, we assume RSO2 not to be correlated with RCO 

and RNOx. We indeed see that the prior errors show the same sign for the correlated 

parameters and the optimized values of correlated parameters are both reduced or 

increased. The only exception is the RCO for road traffic, which is underestimated for cars 

and overestimated for HDV. Our inversion is able to recognize the discrepancy between 

the RCO from cars and HDV as it decreases the one while increasing the other, unlike 

suggested by the positive correlation. However, the corrections are in the wrong direction.  

Equally interesting is the posterior covariance matrix. The diagonal values in the prior 

covariance matrix are larger than in the posterior covariance matrix (Fig. 5.11, left panel), 

indicating that the uncertainty of the parameters is reduced. In contrast to the prior 

covariance matrix, the posterior covariance matrix (Fig. 5.11, right panel) displays a 

significant number of off-diagonal values. Note that this is an average matrix for all 
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fourteen days and that variations exist between the days. Therefore, the parameter 

correlations in this graph are not averaged out and are consistently present. Now the 

question is whether the presence of parameter correlations is beneficial (extra 

information) or harmful (difficult to discern variables) for the inversion. 

 
Figure 5.11: Prior (middle panel) and 14-day average posterior (right panel) covariance matrix P from the run 
Urban-all. On the diagonal the variances (uncertainties in a variable) are shown, whereas off-diagonal values 
indicate covariances or correlations between different variables. The left panel shows the difference between 
the prior and posterior diagonal values. All differences are positive, indicating an uncertainty reduction. 

If we compare the posterior uncertainties of a parameter for the individual days against 

the absolute sum of the correlations this parameter has with the other parameters for the 

same days, then we find a positive relationship for all parameters with correlation 

coefficients between 0.23 and 0.89 (on average 0.59). So days with a high posterior 

uncertainty of a parameter correspond to days where the error of that parameter also 

correlates strongly with errors of other parameters. A weak correlation means that a 

parameter is less sensitive to the presence of error correlations with other variables, 

therefore we will call this the sensitivity correlation. The weakest sensitivity correlations 

are related to the RNOx, RSO2 and emission factor of the industrial sector. These parameters 

show little variability during the fourteen days and an average over the entire period gives 

a robust estimate of the true parameter values. The parameters with the strongest 

sensitivity correlations are RCO of households and road traffic (HDV). These parameters 

show large fluctuations during the fourteen days and the 2-week average values tend to 

be dominated by a few outliers. If a few days can be selected on which the parameter 

correlations are weak (i.e. the atmospheric signal clearly contains information about this 

specific parameter), the top-3 estimate displayed in Fig. 5.7 can still give a good estimate 

of the parameter value, as is true for the household emission ratio. However, for road 

traffic (HDV) the parameter correlations always seem to have an effect and this parameter 

is less well-constrained. 

A few parameters with a particularly large amount of strong parameter correlations are 

RCO from industry (3), RNOx from cars (7A) and RSO2 from ocean shipping (8A). Although 
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these three emission ratios are improved during optimization, the remaining uncertainties 

are large. The optimized RCO of industry is 3.3 ppb/ppm with an uncertainty of about 25%, 

the optimized RNOx of road traffic (cars) is 1.9 ppb/ppm with an uncertainty of about 28% 

and the optimized RSO2 of shipping (ocean) is 3.3 ppb/ppm with an uncertainty of about 

65%. These results suggest that the presence of parameter correlations in the posterior 

covariance matrix makes the optimization procedure more difficult for that specific 

parameter, due to the inability to isolate the effect of this parameter on the atmospheric 

observations. This results in poorly constrained parameters and/or large posterior 

uncertainties. However, this is only true when parameters are sensitive to parameter 

correlations (high sensitivity correlation). Why some parameters are more sensitive to the 

presence of parameter correlations than others needs to be investigated. One hypothesis 

is that the presence of parameter correlations is less problematic when the parameter can 

be discerned by another signal, for example from a co-emitted tracer. 

5.3.5 Propagation of gained knowledge 

In Rijnmond some source sectors are strongly clustered. For example, glasshouse 

emissions take place mainly to the northwest of Rotterdam. Therefore, this sector can 

only be constrained by the urban network when the wind blows from the northwest and 

affects the measurements sites. As a consequence, each day of measurements can only 

constrain a limited number of source sectors, while improved knowledge on one of the 

source sectors would also affect the other source sectors (as seen in the previous section). 

 
Figure 5.12: Time series of the optimized – true scaling factors for the simulations Urban-all (full line), Urban-
all_parameter (dashed line) and Urban-all_covariance (dotted line). 

In previous inversions we have made fourteen independent estimates of the model 

parameters, starting each day with the same prior estimates and uncertainties. A 
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downside of this method is that knowledge that is gained during previous days is not 

propagated to the next day. Including such propagation scheme means that each day 

starts with an updated prior estimate, such that for example a new estimate of the 

industrial emissions can be constrained by better knowledge about power plant emissions. 

Normally, propagation schemes also use the covariance matrix of the previous time step. 

This would imply that after some time the model parameters become more or less fixed, 

while in reality some parameters might change over longer periods of time. We therefore 

perform two new simulations which propagate information from the previous day and 

compare them. The first one only propagates the optimized parameters, but starts each 

day with the same covariance matrix P
b
 as shown in Fig. 5.11 (Urban-all_parameter). The 

second one propagates both the optimized parameters and the covariance matrix (Urban-

all_covariance). Otherwise, the simulations are similar to the Urban-all run. 

In general, the more information is propagated the less variability we find from one day 

to the next (Fig. 5.12). The regular Urban-all inversion (full lines) shows large variability for 

those parameters that are regularly updated with new information, such as the industrial 

emission factor (EF 3). The industrial emission factor is likely to be different for specific 

sub-sectors, so that it matters whether a plume comes from a refinery or from the food 

industry, resulting in large variations. In the Urban-all_parameter inversion the variability 

is slightly reduced by starting each day with a different prior. For example, the large 

reduction in the household emission factor (EF 2A) on day 7, which is visible in all 

inversions, is maintained during the following days. The Urban-all_covariance inversion 

shows even smoother time series due to the reduced freedom of the system to change 

the parameter values after information has been added (reduced uncertainties). 

For parameters that occasionally affect the observations both the propagation schemes 

have a clear advantage. Fig. 5.12, which displays the difference between the optimized 

and true emission factors, shows that the emission factor of gas-fired power plants (EF 1A) 

grows steadily towards the correct value with both propagation schemes. The emission 

factor of glasshouses (EF 2B) is well-constrained on day 6-7 (11-12 January) and this value 

remains relatively stable during the rest of the period. As such, the estimated emissions of 

these subsectors are the best for the inversions with propagation. Also the industrial 

emission factor (EF 3) is doing reasonably well when propagating the posterior parameter 

values, fluctuating around the truth during the two weeks. Yet when the covariance matrix 

is also propagated this emission factor estimate becomes too low. The Urban-all and 

Urban-all_parameter simulations have a similar error in the industrial emission, although 

reversed in sign. However, the Urban-all_covariance simulation strongly underestimates 

the industrial emission. 

For both inversions the emission factor of households (EF 2A) and coal-fired power 

plants (EF 1B) deteriorate during the two-week period. EF 1B decreases during the first 

few days, moving further from the truth. As mentioned before, the signals of coal-fired 

power plants are often mixed with those of the industry (Fig. 5.8). The posterior 
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covariance matrix in Fig. 5.11 also shows a relatively strong correlation between the 

emission factors of these two source sectors. The decrease in the coal-fired power plant 

emission factor is thus likely the result of the inability of the inversion system to discern 

this parameter from the industrial emission factor. 

The household emission factor shows a sudden decline on day 7 (12 January), related to 

a shift in the wind direction from west to south-east. The atmosphere apparently contains 

information about household emissions during a south-easterly flow. Indeed, the city of 

Rotterdam is within the footprint of several observation sites on this day. We see the 

same happening on days 13 and 14 (18-19 January) when the wind again shifts to the 

south-east and the emission factor of households is constrained. Unfortunately, the 

emission factor is overcorrected, possibly due to the overestimation of the road traffic and 

shipping emissions that are also in the footprint. This results in an underestimation of the 

household emissions. 

5.4 Discussion and conclusion 

The aim of this study was to examine how well our DA system is able to quantify urban 

CO2 emissions per source sector. Since the prior consists of a dynamic fossil fuel emission 

model the model parameters are optimized rather than the emissions themselves. We 

find that most of our inversions improve the total yearly CO2 flux for the Netherlands 

compared to the prior. Note that, given the improvement in emission ratios, also the 

emissions of CO, NOx and SO2 are improved in these inversions. However, the 

disaggregation between source sectors remains challenging. This is partially due to the 

fact that some parameters have a similar effect on the observations (their errors are 

correlated) and are therefore inseparable. We also identified some additional challenges 

for urban scale inversions, such as the definition of the temporal distribution and 

simulating urban scale transport. Introducing these uncertainties challenges the DA 

system to find a reasonable emission estimate and to separate between source sectors. 

Nevertheless, we have shown that optimizing time profiles seems viable for some 

categories in case dynamic profiles are not available. 

Based on previous work we expected the rural network to be the best option to 

constrain the total emissions (Super et al., 2017a). However, here we find that the urban 

network gives the best emission estimate, which could be due to the relatively short 

simulation period in which the rural sites are barely affected by the urban emissions. We 

do expect the rural network to be of larger value once we consider emissions to come 

from multiple cities in a region. The urban network shows the largest sensitivity to the 

different source sectors and is therefore the preferred network for source attribution. The 

coal-fired power plant emissions are nevertheless better constrained by the rural network. 

Yet, we find no configuration with which we can optimize all the source sectors and the 

total CO2 emission correctly. For example, the inversion with propagation of both 
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optimized parameter values and covariances (Urban-all_covariance) gives the best results 

for gas-fired power plants and glasshouses, but performs poorly for coal-fired power 

plants. Therefore, more research is needed to establish the best DA configuration, possibly 

with an extended simulation period.  

The signals we work with in our DA system are driven mainly by differences in fossil fuel 

emissions. For this purpose we subtract a background mixing ratio from our observations. 

Fossil fuel signals during daytime are typically on the order of 1-10 ppm. Residuals (y
0
-

 (x
b
)) are only a fraction of this, and are often close to, or smaller than, the prescribed 

model-data mismatch (R). Given the linear relationship between the residuals and the 

parameters, illustrated in Eq. 2, a small residual means that the leverage on the 

parameters is relatively small. The strength of this relationship depends on K (given in Eq. 

4) and could be increased by decreasing the observation error (R), increasing the prior 

parameter error (P
b
), or increasing the footprint sensitivity (H). However, larger signals, 

and therefore larger residuals, exist during night time and the early morning (Fig. 5.8 and 

Fig. 5.10). These data could provide more information about the parameters, but they are 

currently not included in the inversions. We only selected afternoon observations, as is 

often done in high-resolution atmospheric inversions, to exclude the impact of 

atmospheric transport errors related to stable boundary layers. Therefore, the inversion 

could benefit strongly from an improved description of stable boundary layers so that the 

large night time enhancements can be used to constrain the fossil fuel fluxes. 

The largest discrepancies between the optimized and true emission model parameters 

are found when we use different transport models for the pseudo-observations and for 

the inversion. Transport errors can either be random or systematic. Random errors, such 

as errors in the wind direction, are unlikely to affect the optimized emissions much when 

averaged over a longer time period and domain. This was shown by Deng et al. (2017), 

who found little variation in the average CO2 emission for Indianapolis using different 

configurations of WRF to calculate the transport. They do find an impact on the spatial 

distribution of the emissions. This becomes important when optimizing a specific source 

sector that is clustered in one place, such as the glasshouses. We found that the 

glasshouse sector is only correctly optimized with a specific wind direction. If the modelled 

wind direction is wrong the residuals would thus not be attributed to the glasshouse 

sector as it is not in the modelled footprint of the measurement site. 

Systematic errors, whether in the modelled transport or in the observations, are more 

difficult to solve as they do not cancel out when simulating a longer period and this can 

lead to biased emission estimates (Meirink et al., 2008; Su et al., 2011). An example of a 

bias in modelled transport is the systematic error in pollutant dispersion under stable 

conditions, which has often lead previous inversion studies to only select well-mixed 

afternoon hours (Boon et al., 2016; Bréon et al., 2015; Lauvaux et al., 2013). Such data 

selection also leads to a bias in the estimated emissions when the diurnal cycle is not 

accounted for. In this study the systematic error is introduced by emitting all point source 
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emissions at surface level instead of accounting for the stack height. This even resulted in 

a negative emission factor for coal-fired power plants.  

A process that becomes important when using real observations is chemistry, since SO2 

and NOx are chemically reactive with a lifetime of several hours to days. CO is also 

chemically reactive (lifetime of several months in mid-latitude winter), but at the scale 

considered here this is relatively unimportant. Chemical removal of these tracers affects 

the observed tracer ratios with CO2 and thus complicates source attribution. This is 

especially true for the rural network since the transport time is longer and the chemical 

removal has advanced more. Therefore, the modelling framework should consider 

chemical removal, either by implementing chemistry or by estimating the removal based 

on travel time and a decay function. Nevertheless, an additional uncertainty is introduced. 

Additionally, a complicating factor in interpreting observed CO2 mixing ratios is the 

presence of a background and a biogenic signal, while we are only interested in that part 

of the mixing ratio that is caused by fossil fuel emissions. An incorrect definition of the 

background causes a large bias in the optimized emissions (Göckede et al., 2010). Here, 

we ignore the uncertainty in the background, except in the definition of the covariance 

matrix R, and attribute all tracer residuals to the fossil fuel emissions. Yet, there are 

several other methods to deal with the non-fossil fuel related CO2 signals. First, the 

uncertain background can be added to the state vector and be optimized in the inversion. 

For example, He et al. (2017) have shown that high-altitude aircraft observations are 

suitable to improve regional biosphere flux estimates by correcting the bias in boundary 

conditions. Second, a mixing ratio gradient over the area of interest can be calculated 

using an upwind and downwind site such that the boundary inflow plays no role anymore 

(Turnbull et al., 2015). This method was shown to reduce the impact of boundary inflow, 

but only when the wind direction is more or less perpendicular to the gradient (Bréon et 

al., 2015; Staufer et al., 2016). Therefore, this method limits the amount of useful 

measurements. Finally, the fossil fuel signal can be separated from other CO2 sources 

using the radiocarbon isotope (
14

CO2). Although observations of carbon isotopes are 

expensive and currently not widely available, previous studies have shown promising 

results using Δ
14

C (the ratio of 
14

CO2 to 
12

CO2) to simulate fossil fuel CO2 records and in 

inverse modelling studies (Basu et al., 2016; Bozhinova et al., 2014; Levin and Karstens, 

2007; Miller et al., 2012; Turnbull et al., 2006; Turnbull et al., 2015; Wang et al., 2018). 

Our urban network detects average fossil fuel CO2 signals of about 5 ppm with peaks up to 

50 ppm. This would result in Δ
14

C signals of around 13 up to 130 per mille, which are 

certainly detectable with current techniques. Besides Δ
14

C other isotope signatures and 

tracers can also provide additional information. For example, 
13

CO2 and O2/N2 can give 

insight in the dominant sources and sinks or fuel types (Lopez et al., 2013; Van der Laan et 

al., 2014) and as such also be an indicator for the transition from fossil fuels to biofuels. 

Finally, we compared two optimization methods with a different propagation scheme. 

We have shown that this affects the results significantly and therefore the choice of 
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propagation scheme should be made carefully. As mentioned before, the propagation of 

error statistics has the advantage that observations with little information about a specific 

parameter will have little impact when the uncertainty is already reduced by previous 

days. However, this method does not allow us to track changes in the parameter values 

over a longer period of time while the uncertainties are becoming too small. Developing 

methods to properly inflate these errors, or even the creation of an error model to aid this 

propagation, would be an interesting follow-up to our work. Yet, we expect changes in 

emission factors and ratios not to occur at short time scales and therefore applying error 

propagation to two-weekly inversions could be a possibility, starting the following two-

weekly inversion with the original covariance matrix. The alternative method, which 

consists of only propagating the optimized parameter value and not the uncertainty, does 

give the DA system the freedom to identify temporal variability. However, the individual 

estimates are not very robust for some parameters, thus leaving us with a large 

uncertainty. 

To conclude, inverse modelling at the urban scale is feasible when the observations 

contain a lot of information about the different source sectors. However, additional 

tracers are an important addition to the inversion framework in order to discern the 

information belonging to specific source sectors. Moreover, we argue that a dynamic 

emission model has some major advantages over regular emission maps, allowing us to 

constrain physically relevant parameters even in the absence of good prior information. 

Nevertheless, quite some challenges remain. Transport modelling at this small scale needs 

to be improved to be able to use real urban observations, as under current conditions the 

transport error strongly dominates the results. Moreover, adding additional tracers and 

isotopes can add more information to the system to constrain the emissions (for example 

for coal-fired power plants) and to improve the definition of the fossil fuel signal. For the 

future, additional advances need to be made to include satellite observations in the 

inverse modelling framework. The advantage of satellite data is that it covers data-sparse 

regions and with a larger view it can differentiate between the urban dome with high 

pollution levels and the cleaner rural areas. Nevertheless, currently the uncertainties in 

satellite retrievals are too large to significantly improve emission estimates for short time 

windows in addition to in-situ measurements. 
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6.1 Introduction 

There are significant efforts needed to reduce the amount of CO2 emitted to our 

atmosphere from fossil fuel combustion at a wide range of scales. There are continental 

and global agreements (e.g. Paris Agreement, EU 2020 Climate & Energy Package), local 

efforts (e.g. emission reduction by better waste separation in Arnhem, Netherlands 

(Gemeente Arnhem, 2014)) and industry-wide efforts (e.g. emission reductions in the 

Dutch energy-intensive industry (VEMW, 2017)). International agreements, such as the 

Paris agreement, play an important role in creating a solid base for coordinated action. In 

such agreements emission reduction targets are set, but often there is no strict guideline 

on how to reach those targets. Each member state thus implements policies targeting 

specific source sectors, but often there is a lack of knowledge on the efficiency of such 

policies. As such emission monitoring, reporting and verification (MRV) is an important 

aspect of emission reduction policies in order to monitor the progress made and to 

exchange best practices.  

In this thesis several methods for emission monitoring are explored. Emissions are 

reported at a national level and often emission reductions are guided by policies at the 

(inter)national level. However, most emissions take place in urban areas and therefore the 

effect of emission reductions will certainly become visible here. As such, there are two 

main research strategies that we could have followed. The first option is to focus on large 

spatial scales and make emission estimates at regional to national scale using rural 

measurement sites or even satellite observations. A supporting argument for this option is 

that this would support implementation and verification of the Paris agreement. An 

example of such an approach is illustrated by Van der Laan et al. (2010), who used long-

term observations of CO2, CO, radon and radiocarbon at one urban site to constrain fossil 

fuel emissions of the Netherlands. The second option is to focus on emission hotspots, i.e. 

urban areas, and use (semi-)urban measurement sites. An important reason to choose this 

option is that urban areas contribute a large fraction to the global fossil fuel CO2 emissions 

(Duren and Miller, 2012) and therefore the largest emission reductions can be achieved in 

urban areas. Emission reductions in high-emitting areas cause large changes in 

atmospheric CO2 signals in the surrounding area and that makes urban areas suitable for 

emission monitoring. Moreover, emission monitoring following exact country borders is 

difficult, while monitoring dominant emission hotspots can mostly be done without 

considering country borders and still constrains most of a countries emissions.  

We choose to take the second strategy for two reasons. Firstly, because of the 

availability of unique in-situ measurements within a complex urban-industrial area. 

Secondly, we anticipated the possibility to concurrently monitor emissions of air 

pollutants to support source attribution. Air pollution is a major issue in urban areas and 

therefore the development of an urban monitoring system could potentially support the 

improvement of urban air quality as well. Previous scientific efforts to quantify emissions 
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and emission trends in urban areas have encountered several limitations, such as large 

errors in calculated atmospheric transport in the complex urban environment and 

difficulties isolating the fossil fuel signal from the observed concentrations (Boon et al., 

2016; Bréon et al., 2015; Lac et al., 2013). Thus there is plenty of room for improvement 

and development of new methods, as described in this thesis. 

The work discussed in this thesis aims to contribute to the current understanding of 

atmospheric monitoring systems at urban scales and enhance the amount of information 

that can be gained from these systems. This research can therefore be used to improve 

our knowledge of the urban carbon cycle, to set up effective monitoring frameworks, and 

to gain insight in the contribution of specific source sectors to support policy making. In a 

broader sense, better knowledge of the fossil fuel emissions and the trends therein can 

help to better understand the entire carbon cycle and how it is going to change in the 

future. For example, in inversions focusing on terrestrial fluxes the fossil fuel fluxes are 

often assumed to be relatively well-known and their uncertainty is included in the 

observation error (Broquet et al., 2013; Peters et al., 2010). This allows less of the residual 

to be attributed to terrestrial fluxes. Therefore, we argue that a better estimate of the 

fossil fuel CO2 emissions also benefits the optimization of terrestrial fluxes. 

In this chapter we discuss four themes (or sub-goals) that are important for atmospheric 

monitoring of urban fossil fuel CO2 emissions and that cover all the work described in this 

thesis. The foundation of an atmospheric monitoring framework consists of an 

observation network and atmospheric transport models. The first theme therefore covers 

the value of different types of observation sites (Chapter 2 and 3) and the (dis)advantages 

of several observation network configurations (Chapter 5) in estimating urban emissions. 

The second theme revolves around the ability of different types of transport models to 

represent observed atmospheric concentrations (Chapter 3). The third theme is the 

quantification of urban fossil fuel CO2 emissions. Within this theme several methods are 

discussed that can be used to quantify emissions, including a simple mass-balance 

approach (Chapter 2), the dynamic fossil fuel emission model (Chapter 4), and the 

advanced method of inverse modelling (Chapter 5). The final theme considers whether 

information can be gained by adding co-emitted species to the system and whether this 

information can help attribute CO2 emissions to specific source sectors (Chapters 2-5). 

Together these themes help to understand the complexity of the urban emission 

landscape and what is needed to quantify it. 

6.2 Monitoring fossil fuel emissions through atmospheric observations 

A main feature of an independent monitoring system is the presence of an observation 

network. In this thesis we have used several observation network set-ups that differ in the 

number of sites and their location to explore their use for monitoring urban fossil fuel 

emissions (RQ. 1). In Chapter 2 we have used an upwind-downwind gradient with only two 
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measurement sites close to the city border (semi-urban) and have shown that this is a 

promising set-up to estimate the overall fluxes of the intermediate area. In Chapter 3 we 

have compared sites at increasing distance (in-city to ~200 km) from the urban area. Here, 

we found that the further away from the city we measure, the smaller the observed 

signal. The smaller signal is more difficult to isolate from all other signals that are mixed in 

and the urban signal can easily be missed by a rural site depending on the wind direction. 

A remote site, however, does observe an integrated signal and is therefore useful for 

calculating the total flux from the city. In contrast, in-city sites are well-exposed to urban 

fossil fuel fluxes and can be used to separate between different source areas, such as the 

residential and industrial area in the case of Rotterdam. This is in line with previous 

findings (Boon et al., 2016; Bréon et al., 2015; Kort et al., 2013; Lac et al., 2013). Chapter 5 

confirms these findings by giving a better constraint on source sector emissions with an 

urban network. The rural network shows to be relatively insensitive to urban emissions 

because the observed signals are comparable to the uncertainty caused by model errors. 

It should be noted that the sites in the rural network are further removed from the city 

than the downwind site used in Chapter 2. 

An important notion from the above summary, which discretely runs like a thread 

through all the chapters, is the notion of scale. Processes affecting the urban carbon 

budget work at different spatial and temporal scales. The smaller the scale under 

consideration the more complex processes exist that play a role. For example, the 

complex atmospheric transport in a city affects the urban sites needed to constrain 

emissions from individual source sectors. However, in order to interpret the observed 

signals at remote sites (used to constrain the total urban emission) the effect of urban 

atmospheric transport can be neglected. Therefore, the purpose of the study determines 

the amount of detail that needs to be resolved.  

Following this notion, we argue that the best monitoring strategy (type of instrument, 

location, period covered) is case dependent. In a data-sparse region where little is known 

about the emissions, a first general idea is needed of the overall CO2 emissions. In this 

thesis continuous in-situ observations of CO2 are used to estimate average fossil fuel 

fluxes (Chapter 2). We find that two monitoring sites for CO2, located up- and downwind 

of the city at about 15 km from the city border (semi-urban), are convenient to estimate 

the total emissions. With this method there is no need to account for stack emissions, 

which are already well-mixed by the time they reach the measurement sites (Chapters 2 

and 3). In addition, a meteorological monitoring station is needed to provide information 

about at least the wind direction and wind speed, so that the most suitable data can be 

selected. Additional information, such as boundary layer height, are useful as well. Putting 

sites further away from the city (rural, more than ~50 km) is less helpful as the signals 

become small compared to the background noise. In this way we can improve our 

understanding of the carbon budget for the region with relatively few resources using the 

methodology described in Chapter 2. Note that in many cities an air quality monitoring 
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network is present that can also be used as basis to monitor CO2 emissions. At existing 

sites the facilities are present to install an (additional) instrument and air quality 

measurements can be used in addition to CO2 observations to gain more knowledge about 

dominant source sectors (see Sect. 6.5.5). 

In a region where reliable emission data are available and the focus is on monitoring 

emission trends resulting from policy implementations, more detail is required to separate 

between source areas. Here, we recommend the use of an urban network monitoring CO2 

and co-emitted species (see Sect. 6.5.5). The hourly data used in this thesis provide a lot of 

detailed information on the short-term variability in emissions (Chapter 3). We have 

shown that a few weeks of data is sufficient to constrain the CO2 emission landscape if a 

dynamic emission model is used as prior and a sufficiently large urban monitoring network 

is present. The optimized emission factors can be used to calculate the yearly total 

emissions from activity data. It should be noted, however, that emission ratios are variable 

and a few weeks of data is insufficient to correctly constrain the yearly emissions of co-

emitted species. Moreover, a longer time series (at least several years) is needed to 

monitor changes in the emission landscape resulting from emission reduction policies. The 

size of the monitoring network depends on the size and complexity of the city and can be 

tested using an inversion experiment. Previous research has shown that a larger network 

of sensors can improve source attribution in the Paris metropolitan area (Wu et al., 2016), 

decreasing the uncertainty in optimized emissions by 18-33% for individual source sector 

when going from 10 to 70 measurement sites. In line with this we recommend extending 

the network to monitor the major stack emissions in detail since the optimization of 

power plant emissions remains a challenge. Relatively cheap instruments can be placed in 

the stacks. Although these instruments are less accurate, the additional information 

gained outweighs the reduced accuracy (Turner et al., 2016). Besides, concentrations in 

the exhaust are extremely large and a minor error in the observations becomes irrelevant. 

Of course also practical limitations exist that determine the size and shape of the 

network. For example, one of our CO2 measurement sites (Zweth) is not at an ideal 

location, situated in a small open area surrounded by high trees. The inlet height nearly 

reaches the height of the trees. Therefore, the trees affect the transport of pollutants by 

the wind, but they also cause a significant biogenic flux. This makes the interpretation of 

the observations more difficult. Although we have shown that this observation site is 

useful to constrain urban emissions due to its location relatively close to the city, a higher 

inlet or an open area could benefit our monitoring framework. 

A major challenge in interpreting in-situ observations of atmospheric CO2 concentrations 

is isolating the anthropogenic signal from the large advective flows of 'background' air. 

Throughout this thesis we have used different background definitions, which all have their 

pros and cons. In Chapter 2 we used an upwind-downwind gradient, where the upwind 

site is considered to give the background concentration. This method is only applicable for 

a specific wind direction. A small deviation from the exact perpendicular wind direction 
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already causes a large uncertainty in the background concentration. Besides, selecting for 

a specific wind direction greatly reduces the amount of observations that can be used. 

Similar limitations were found in previous studies (Bréon et al., 2015; Staufer et al., 2016). 

In Chapter 3 the background concentration is based on a smoothed function of the 

observed time series. Although this is a relatively easy method without need for extra 

observation sites it can have a large bias when above average clean or polluted air is 

advected because these relatively short-term features are not captured. The uncertainty 

in this method is also illustrated by the difference compared to other curve fitting 

methods shown by Pickers and Manning (2015). Finally, in Chapter 5 we use CO2 

concentrations from a large-scale model which gives us a grid box average value over a 

large area. Although the latter two methods give similar mean fossil fuel signals, the last 

method has more variability. Based on the difference between these methods we 

estimate the uncertainty in the background concentration (and thus in the remaining fossil 

fuel CO2 signal) to be about 3 ppm. The background concentration is thus a significant 

source of uncertainty and each of the described methods has its limitations. Another 

method to identify the fossil fuel signals is by measuring radiocarbon (
14

C). This carbon 

isotope is lacking in fossil fuels and therefore fossil fuel burning results in a decrease in 

radiocarbon. A downside is that radiocarbon measurements are mostly very expensive, 

non-continuous and due to the need for laboratory analyses they are not available in real-

time. Nevertheless, this method has been used in previous studies which have shown 

promising results (Basu et al., 2016; Bozhinova et al., 2014; Fischer et al., 2017; Levin and 

Karstens, 2007; Miller et al., 2012; Turnbull et al., 2006).  

Although in this thesis we used in-situ observation of atmospheric concentrations there 

are other potentially interesting measurement techniques that could be of added value 

for urban monitoring studies. One example is aircraft flights, which have previously been 

used in combination with the mass-balance approach to estimate fluxes of methane and 

CO2 from a specified area (Caulton et al., 2014; Karion et al., 2013; Mays et al., 2009; 

Peischl et al., 2015). With this method a vertical profile of concentrations can be made, 

which might be useful to detect plumes from elevated stacks. However, Mays et al. (2009) 

also report several challenges related to this method, such as the uncertainty in the 

background concentration and in the measured wind speed. A second alternative is 

remote sensing, which has the advantage of a large spatial coverage, also in data-sparse 

regions (Ciais et al., 2014). The applications are currently still limited for CO2, because a 

relatively high accuracy is required to distinguish the fossil fuel enhancement from the 

large background concentration. Nevertheless, some studies have examined the use of 

satellite data to constrain urban fluxes and have shown both opportunities and challenges 

(Silva et al., 2013; Worden et al., 2012). Finally, urban fluxes can be measured directly with 

eddy-covariance measurements (Kleingeld et al., 2017). The advantage of this method is 

that the measurements can be related directly to fluxes. However, the footprint of such 
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measurements is often limited and to constrain fluxes from a large urban area requires a 

lot of instruments. 

6.3 Atmospheric transport modelling in an urban-industrial complex 

The interpretation of atmospheric observations is sometimes challenging due to the wide 

range of processes that affect the atmospheric concentrations. Atmospheric transport 

models can be used to explain and account for many of these processes, such as 

transport, mixing, and entrainment. Also biospheric fluxes can be included. The method of 

combining atmospheric observations and atmospheric transport models to constrain 

emissions is called inverse modelling and makes optimal use of both sources of 

information. The inversion method relies heavily on a correct representation of 

atmospheric transport such that differences between observed and modelled 

concentrations can be attributed to errors in the emissions. Therefore, we have examined 

the capability of several types of atmospheric transport models to represent the 

atmospheric transport and the importance of atmospheric transport for inverse modelling 

(RQ. 2 and 4). Also in this context the notion of scale is important. 

Previous CO2 inverse modelling studies were mainly focused on estimating large-scale 

(grid spacing of 50 to several hundred kilometres) weekly to monthly mean ecosystem 

fluxes (Basu et al., 2016; Broquet et al., 2013; He et al., 2017; Liu and Bowman, 2016; 

Meesters et al., 2012; Ray et al., 2014; Rödenbeck et al., 2009; Schuh et al., 2010; Tolk et 

al., 2011). The observations used in these studies capture biospheric signals from a large 

domain dominated by daily to weekly variations. Therefore, there was less need to resolve 

hourly and kilometre-scale transport and fluxes. Most of these studies used an Eulerian 

transport model. In Eulerian regional transport models each grid cell contains well-mixed 

air such that no spatial variability exists below the grid resolution. Relevant processes that 

occur at sub-grid scale therefore must be parameterized. 

In contrast, urban fossil fuel fluxes vary at sub-hourly and street canyon scale (<100m), 

thus causing large variability in observed urban CO2 concentrations (hourly averaged) that 

needs to be resolved. At these high resolutions the sub-grid processes in Eulerian models 

(such as turbulence) become important and cause significant errors in atmospheric 

transport (Lauvaux et al., 2016). Moreover, the complexity of build-up areas has an impact 

on the wind fields, turbulence, and radiative balance (Heusinkveld et al., 2014; Kent et al., 

2018; Wicht et al., 2017), which in turn affect urban atmospheric transport and mixing. 

The model parameterizations of these processes in regional atmospheric transport models 

is not sufficient to correctly resolve small-scale transport. A special Urban Canopy Model 

(UCM) is available in WRF-Chem that describes the characteristics of an urban area, but 

we found no significant improvement using UCM. Chapter 3 shows that our Eulerian 

model WRF-Chem can reproduce the daytime average observed mixing ratios reasonably 

well. However, large errors occur in the simulated wind fields that cause incorrect 
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footprints. Consequently, hourly transport modelled with WRF-Chem (1x1 km
2
) is prone to 

large errors. We have shown in Chapter 5 that erroneous atmospheric transport limits the 

ability of the inversion system to correctly quantify the urban fossil fuel emissions. As 

such, the incorrect representation of atmospheric transport is an important limitation of 

our monitoring system, as was also suggested by previous studies (Boon et al., 2016; Deng 

et al., 2017; Vogel et al., 2013). 

Additionally, due to the discrete nature of Eulerian models the presence of strong 

sources causes large errors in modelled concentrations at measurement sites close to 

these sources (Karamchandani et al., 2011; Tolk et al., 2009). This is especially true for 

point sources which have a small horizontal extent. We tried to overcome this problem by 

implementing a Lagrangian model, called the OPS model (Chapter 3). A Lagrangian model 

that follows particles through space and time is not limited by grid size, but uses sub-grid 

parameterizations similar to Eulerian models to represent turbulence at scales not 

resolved by the meteorological driver data. This indeed shows better results for the 

dispersion of point source emissions. An additional advantage is that the model can be 

driven by observed meteorological conditions. But also even more complex models are 

developed (such as LES) that can be used specifically in build-up areas and account for the 

impact of buildings and street orientation on the atmospheric transport (e.g. (Dezzutti et 

al., 2018; Tolias et al., 2018). However, more detailed models require more input data 

which, if uncertain, add additional uncertainty to the results. For example, the Gaussian 

OPS model requires exact stack heights for point source emissions, which have a large 

impact on the modelled concentrations (30-50% change in mixing ratios when the WRF-

Chem characteristics are used). If stack heights are unknown this would thus cause an 

error. Therefore, the added value of more complex models should always be weighed 

against the uncertainty caused by the additional input. In a data-rich area like Rotterdam 

we found most input data to be available and the increased complexity of the models not 

to be much of an issue. 

Clearly, the choice of atmospheric transport model should be based on the purpose (and 

scale) of the study and be related to the observation network. To correctly represent 

urban observations a Lagrangian model that resolves small-scale features and dilution of 

point source emissions is needed. However, the difference between the Eulerian and 

Gaussian transport of point source emissions becomes negligible after about 15 km from 

the source area. As such, an estimate of the total urban emissions can be made with 

several semi-urban sites and an Eulerian model. The advantage of adding an atmospheric 

transport model is that the short-term variations in atmospheric processes can be 

accounted for compared to the case where only observations are used (such as in Chapter 

2). 
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6.4 Quantification of urban fossil fuel CO2 emissions 

In the previous sections we have discussed the optimal monitoring strategies identified in 

this thesis, based on observations and models. In this section we discuss their ability to 

quantify urban fossil fuel CO2 emissions (RQ. 3 and RQ. 4). 

In Chapter 2 the urban fossil fuel CO2 flux is estimated using only two observation sites 

close to the city border, providing a gradient in the CO2 mixing ratio over the city. These 

gradients can be used to make a first estimate of the emissions in the city as long as the 

upwind site is representative for the background air. As we make long-term average flux 

estimates we only need to correctly represent the average transport processes. Although 

this mass-balance approach is very simplified, it shows reasonable flux estimates with 

errors of 15-23% compared to the emission inventory. This method even allows us to 

separate between three source areas while only accounting for the observed wind 

direction, except in the presence of elevated stack emissions. Nevertheless, the estimates 

can be influenced by biogenic fluxes and by atmospheric processes that are not taken into 

account (such as entrainment). Moreover, the flux estimates are made using a strict data 

selection based on well-mixed daytime conditions. Although such simplifications and 

selections are often done to minimize the model errors (Boon et al., 2016; Bréon et al., 

2015; Lauvaux et al., 2013), the resulting emission estimates are not necessarily 

representative for hours outside the selection. Indeed, if we would include observations 

from all hours of the day in the flux estimate of Metropolitan Rotterdam (Table 2.2) the 

resulting hourly emission estimate would be about half as large (i.e. night time emissions 

are smaller). Besides this bias we find a large variability in emission estimates using 

individual concentration gradients, which can be 30% up to more than 100% of the 

average emission estimate for a specific source area. Similarly, Mays et al. (2009) found 

large short-term variability in emissions, which makes it difficult to extrapolate the results 

and calculate a yearly total emission based on a few concentration gradients.  

In Chapter 4 we use a completely different method to estimate emissions, without using 

atmospheric observations. Instead, we explored the potential of several auxiliary data 

streams to predict high-resolution emissions based on general emission factors and 

activity data that can be used in the absence of local data. These data (consisting of 

emissions factors, emission ratios and activity data) are combined in a dynamic fossil fuel 

emission model that estimates emissions based on knowledge about the emission 

landscape. However, some data have a large uncertainty, especially emission factors of 

CO2 and emission ratios of co-emitted species with CO2. This results in a significant 

uncertainty of about 15% in the overall emissions in the Netherlands, which is comparable 

to the uncertainty in the mass-balance approach. However, more specific knowledge 

about the region, such as which cleaning technologies are implemented in industrial 

stacks (e.g. desulphurization techniques), can reduce the uncertainties. Indeed, the 

uncertainty reported by the Dutch Pollutant Release and Transfer Register is only 1% 
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based on local emission factors and activity data. However, we argue that the reported 

uncertainty is likely underestimated when errors in the accounting methods are 

considered. Moreover, the emission model predicts emissions per source sector and 

therefore gives more detail than the mass-balance approach. Our analysis of uncertainties 

in the dynamic emission model also shows which parameters are most important and 

most uncertain. This knowledge can help policy makers to tackle those sectors and 

characteristics where most emission reduction can be gained. Moreover, the most 

uncertain parameters can be improved by inventory builders and inverse modellers to 

create a better emission estimate using new data streams and atmospheric constraints. 

Finally, in Chapter 5 we use the dynamic fossil fuel emission model as prior for the 

inversion system. Different experiments are done which make use of different observation 

networks, time profiles or transport models. We optimized the emission factors of CO2, 

emission ratios and time profiles. We find that we can significantly reduce the uncertainty 

in the prior yearly emission estimate when using the urban network and only two weeks 

of CO2 observations, leading to an error of only 5%. For comparison, Basu et al. (2016) 

were able to constrain the yearly US emission to within 1% using almost two years of CO2 

and 
14

CO2 pseudo-observations. Looking at the individual parameters of the emission 

model when including all tracers we find that most emission ratios and the emission 

factors of households, glasshouses and industry are indeed better constrained while the 

emission factors of power plants drift away from the truth. 

In the inversions in Chapter 5 we increased the complexity compared to Chapter 2 by 

looking at shorter time scales, which requires resolving short-term transport processes as 

well. Due to the large transport errors found in Chapter 3 we decided to first use pseudo-

observations instead of real observations in the inversions. By using the same atmospheric 

transport in the inversion that was used to create the pseudo-observations, the impact of 

erroneous transport is removed from the inversion. This allows us to examine the 

strengths and weaknesses of our system when not dominated by transport errors. 

Nevertheless, we do acknowledge the large impact of erroneous transport of inversions 

with real observations, as was shown before. In this thesis, however, we rather focus on 

the development of our inversion system and improving the prior definition of the 

emissions. This is, like reducing transport errors, a necessary step in the development of 

our capacities to constrain urban emissions. 

Comparing these three methods (mass-balance, dynamic emission model, inverse 

modelling) we conclude that the optimization of a dynamic fossil fuel emission model 

(inverse modelling) is the preferred method to calculate fossil fuel emissions. The dynamic 

fossil fuel emission model gives details about the different source sectors, which is 

relevant in the context of emission reduction policies. However, in itself it contains large 

uncertainties when general emission factors and emission ratios are used, thus signifying 

the importance of optimizing the model parameters. Although the uncertainties in the 

different methods compared to the truth are difficult to determine, the dynamic emission 
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model has several advantages over the regular emission maps. Firstly, the dynamic 

emission model has the advantage that the optimized results have a physical meaning and 

can be compared to other cities, for example to verify whether the household emissions 

per degree day fall within the range of similarly developed cities in other countries. 

Secondly, the optimized emission ratios can also be used to improve the emission 

estimates of co-emitted tracers. Thirdly, the emission model can be built for any area 

using local information, whereas normal emission inventories cover large domains and are 

based on long-term average data and/or characteristics averaged over that domain. The 

potential of using local data is huge with emerging high-resolution data streams, such as 

real-time traffic and shipping monitoring using on-board computers and transponders or 

real-time energy consumption using smart meters. Unlocking the potential of such data 

could be a very nice step forward in dynamic emission modelling. Finally, the optimized 

parameters show little variability in the short-term. Therefore, the results can be more 

reliably extended to night time conditions, resulting in a smaller bias than the mass-

balance approach given that the time profiles are relatively well-defined. 

6.5 Source attribution using co-emitted species 

Previously, we mainly discussed the quantification of the total fossil fuel CO2 emissions per 

area. However, the dynamic fossil fuel emission model estimates the emissions per source 

sector, which can be used to determine how much emission reduction can be gained from 

policies targeting a specific sector. Yet, all the emitted CO2 looks exactly the same in our 

observations and it is impossible to separate CO2 from road traffic and residential heating 

without further information. In this thesis we examined the use of co-emitted species to 

gain such information (RQ. 1). 

Up to now most studies only used CO as an additional tracer (or in combination with 
14

CO2) and the variability in the overall emission ratio has often shown to be a 

complicating factor in the use of CO for identifying fossil fuel CO2 emissions (Levin and 

Karstens, 2007; Lopez et al., 2013; Turnbull et al., 2006; Turnbull et al., 2015; Van der Laan 

et al., 2010; Vogel et al., 2010). Moreover, this method requires subtracting a background 

concentration from the observed CO and CO2 concentration as we are only interested in 

the ratio from the fossil signals (denoted ΔCO:ΔCO2). As discussed previously the 

definition of the background concentration introduces a large uncertainty which makes it 

difficult to get the exact value of the observed concentration ratios. 

In Chapters 2 and 3 we also start with CO as co-emitted species that can potentially 

attribute a CO2 signal to industrial or residential source areas. Large point sources, i.e. 

power plants and industry, emit relatively little CO compared to road traffic and 

residential heating. Therefore, a higher ΔCO:ΔCO2 ratio indicates that the footprint of the 

measurement covers a residential and traffic-dominated area. We find that CO is indeed 

helpful to interpret the CO2 signals when the two source areas are physically separated. If 
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this is not the case the ΔCO:ΔCO2 ratio would be more difficult to interpret. Moreover, the 

higher than expected ΔCO:ΔCO2 concentration ratios help us understand that the elevated 

stack emissions frequently pass by or over the measurement sites (Chapter 2). We also 

used this ratio to select cases where the industrial/power plant signal is dominant to 

compare the performance of the Eulerian and Gaussian models in representing the 

dispersion of stack emissions (Chapter 3). 

In Chapters 4 and 5 we also included other co-emitted species (NOx and SO2) and they 

prove useful to attribute CO2 emissions to different source sectors in the inverse modelling 

framework. Whereas the CO signal is often dominated by road traffic and can be used in 

our study to separate between industrial and residential sectors, NOx and SO2 give 

constraints on the other source sectors as well. Therefore, to distinguish different source 

sectors there is less need for these sectors to be physically separated, but only if a source 

sector has a specific signature of emission ratios. For example, the industrial and coal-fired 

power plant emissions are often co-located and lack distinct signatures. This makes it 

difficult to separate them from atmospheric observations. Adding an additional tracer, 

such as PM2.5, could solve this issue.  

Without co-emitted species the inverse modelling framework is unable to attribute the 

model-data mismatch to the correct source sector (Chapter 5), although a good estimate 

of the overall CO2 emissions can also be made without the additional tracers. Moreover, 

our inversion framework can optimize the emission ratios per source sector, therewith 

also improving the emission estimates of co-emitted tracers. Therefore, we argue that co-

emitted species are an important addition to an urban monitoring framework. Which co-

emitted species are useful depends on the study area: the dominant source sectors, 

dominant fuel types, and applied filtering technologies. A first idea of relevant co-emitted 

species can be gained from an existing urban air quality monitoring network. With wind 

roses of the co-emitted species concentrations in Rotterdam we were able to identify 

which species peak when the wind blows from a specific source area. 

6.6 Outlook and recommendations for future research 

There are many ongoing projects that focus on quantification of urban greenhouse gas 

emissions and gaining more detail from co-emitted species or isotopes. Besides large 

research projects several (PhD) students work on such topics, amongst others at the 

Wageningen University and the University of Groningen. For example, research is done on 

the use of oxygen as a tracer for fossil fuel CO2 emissions. When fuels are burned CO2 is 

released and O2 is consumed according to an oxidative ratio that is specific for each fuel 

type, which makes O2 potentially interesting to track dominant fuel types. A first effort to 

include O2 in a regional atmospheric transport model has shown promising results, but 

further improvements are needed especially related to the selected oxidative ratios 

(Kuijpers, 2018).  
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An isotope that also merits attention is radiocarbon (
14

CO2). For example, the RINGO 

(Readiness of ICOS for Necessities of Integrated Global Observations) project examines the 

ability of the Integrated Carbon Observation System (ICOS) measurement network to 

detect fossil fuel emissions by including 
14

CO2 measurements (ICOS, 2017). Other carbon 

isotopes (
13

CO2) or oxygen isotopes (
18

O) might also provide valuable information about 

fuel or source types or about other sources and sinks of CO2 (Chen et al., 2017; Lopez et 

al., 2013; Popa et al., 2014). Yet, the use of isotopes requires further research to improve 

the definition of discrimination rates and interfering sources (such as nuclear facilities), 

which is needed to improve the model results. Additionally, the measurement uncertainty 

of some isotopes is relatively large, hampering the usefulness of isotope observations in 

inverse modelling studies. 

Another project that follows up on our work is the H2020 project VERIFY that aims to 

provide independent verification of greenhouse emissions using observations in an inverse 

modelling framework (European Commission, 2018) , starting from the dynamic emission 

model developed and described in this thesis. The inversions will also be used to examine 

the effectiveness of emission reduction policies and track whether emission reduction 

targets are met. This project aims to use real observations in an inverse framework with 

multiple tracers and isotopes, marking another step towards true observation-based 

monitoring of emission reductions. However, we argue that the representation of small-

scale transport needs to be improved to be able to get reasonable emission estimates 

with inverse modelling when using real observations. Moreover, we think it is important 

to start monitoring urban emissions as soon as possible and not to wait until policies are 

implemented. This allows us to establish a baseline with which to compare the future 

emission landscape resulting from emission reduction policies. 

What can be noticed from the listed initiatives is that they only consider greenhouse gas 

emissions. Co-emitted trace gases are merely used to improve the estimate of greenhouse 

gas emissions through attribution. Yet, the reason that trace gases can be used to monitor 

greenhouse gas emissions is that they come from the same sources. Therefore, emission 

reduction policies targeting greenhouse gases are likely to also affect the emissions of 

those co-emitted trace gases. Since some of these gases are important air pollutants (like 

NOx) it seems sensible to monitor changes in emissions of air pollutants simultaneously to 

avoid unintended adverse consequences. An additional advantage is that air pollution is 

more tangible and therefore higher on many political agendas. Moreover, some air 

pollutants also affect the climate or the uptake of CO2 by vegetation, such as ozone (Super 

et al., 2015). We therefore recommend to consider greenhouse gases and air pollutants 

from fossil fuel combustion in one system, not just for source attribution but also to 

monitor the implications of emission reduction policies on both air quality and climate.  

Additionally, advances are made in earth observation to monitor a wide range of air 

pollutants and greenhouse gases at increasingly higher resolution, such as the recently 

launched TROPOMI instrument (Hu et al., 2018). The advantage of satellite observations is 
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that they cover a vast area, also where observations are currently scarce or even absent. 

Therefore, satellites are a useful tool for making emission estimates using a wide range of 

trace gases, such as CO (Dekker et al., 2017), or to provide a constraint on background 

concentrations. Also CO2 can be measured from space. Yet, despite the large CO2 

concentration gradients at the surface due to the presence of fossil fuel emissions, the 

column-averaged mole fraction observed by a satellite instrument is relatively small. 

Therefore, only very large emission reductions at emission hotspots cause signals large 

enough to be detectable from space with the current limitations in accuracy and 

resolution (Liu et al., 2017). Nevertheless, satellites can be useful to constrain parts of the 

carbon cycle (biogenic, fossil fuel) for larger regions, as was previously shown (Fischer et 

al., 2017; Reuter et al., 2014; Silva et al., 2013). 

For a PhD following up on my work a nice starting point would be improving the dynamic 

emission model. For example, an improved description of the industrial emissions is 

needed, including several sub-sectors with their own characteristic emission factors and 

ratios. Currently, the clustering of all industrial emissions is one of the major causes of 

uncertainty. Moreover, we currently use a simplified spatial distribution. But with 

emerging real-time data streams the description of the spatial and temporal distribution 

of emissions can be improved. Also the inversion system can be improved by making the 

system suitable for multiple species (possibly also isotopes), including the effects of 

chemistry. If we want to move towards an operational inversion system using real 

observations chemistry becomes an important factor of uncertainty. The inversion system 

could also be expanded with other types of observations, such as direct flux 

measurements or satellite data. These observations have their own advantages and 

together they are likely to better constrain the different aspects of the urban emission 

landscape. Finally, a major source of uncertainty is the atmospheric transport. Although 

this should not be the main focus for a PhD working on urban inversions, we believe that 

improving the description of the night time stable boundary layer height could benefit the 

inversions by allowing to use night time data with large concentration enhancements. This 

could be reached by using observed 
222

Radon enhancements to scale the fossil fuel fluxes 

(Van der Laan et al., 2010; Van der Laan et al., 2014). With these adjustments some major 

steps are made towards an urban inversion using real measurements, which is the 

ultimate aim. 

  



CHAPTER 6 

152 

 

  



SUMMARY 

153 

 

Summary 

Background 

Fossil fuel combustion causes an increase in atmospheric carbon dioxide (CO2) levels and is 

one of the major causes of climate change. Therefore, efforts are made to reduce CO2 

emissions from fossil fuel combustion through (inter)national agreements, with the most 

famous example being the Paris agreement. Each member state that ratified the 

agreement has to aim for pre-set emission reduction targets. In this collaborative effort it 

is important to keep track of the progress made towards these targets, but also to gain 

insight in which emission reduction policies are most effective to support future decision-

making. Therefore, scholars have started developing atmospheric monitoring techniques, 

mainly focused on urban areas. Since about 70% of the anthropogenic CO2 emissions takes 

place in urban areas, the largest emission reductions will take place here. This causes large 

atmospheric signals that are relatively easy to measure. However, scholars have faced 

some major challenges. For example, the transport within a built-up area is complex, 

making the interpretation of atmospheric observations difficult. Moreover, emission 

reduction policies often target specific source sectors (such as road traffic or industry). 

Hence, these sectors should be monitored separately to understand the effectiveness of 

individual measures. This source attribution is impossible with only CO2 observations 

when source sectors are not spatially isolated. 

Aim 

The overall aim of this thesis is to improve our understanding of the monitoring 

requirements to constrain urban fossil fuel CO2 emissions per source sector. A key feature 

of a monitoring system is a network of observation sites. Therefore, the first research 

objective is to identify the most useful monitoring sites and network configurations. 

Besides CO2 we also included measurements of trace gasses that are co-emitted with CO2 

during fossil fuel combustion. This happens in a ratio that is specific for a source sector 

and therefore these tracers have the potential to identify the source of a CO2 signal. We 

examined this opportunity to use co-emitted species to attribute CO2 signals to specific 

source sectors. Besides observations a good model representation of atmospheric 

transport is needed to interpret the observations. Therefore, the second research 

objective is to better understand the possibilities and limitations of atmospheric transport 

models in reproducing observed mixing ratios within/close to a city and find a useful 

modelling approach. The third objective is to predict high-resolution emissions in an urban 

area using proxy data and to gain insight in the uncertainties related to these emissions. 

Finally, we combine our insights related to measurements, models and emission modelling 
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into an inversion framework to estimate how well we can constrain urban CO2 emissions 

per source sector (objective 4). 

Results and conclusions 

In Chapter 2 we examined the effectiveness of two observation sites close to the city 

border of Rotterdam, providing a gradient in the CO2 mixing ratio over the city from the 

upwind to the downwind site. The two sites provide one year of hourly mixing ratio 

gradients which are used to make a first estimate of the urban emissions. For this purpose 

we first examined whether the upwind site was representative for the composition of the 

background signal, which proved to be the case for specific wind directions. We found on 

average large enhancements at the downwind site compared to the upwind site for three 

major source areas: the city, the port and the glasshouse area. From the selected 

gradients we calculated emissions, accounting only for average biospheric fluxes, 

footprints, and boundary layer height. Although this approach is very simplified it shows 

reasonable flux estimates compared to the reported emissions. Nevertheless, we found 

that the estimates can be heavily influenced by local emissions and by transport processes 

that we could not take into account. For example, the presence of elevated stack 

emissions complicates the estimate of the emissions without detailed knowledge of the 

atmospheric transport. Finally, the results show that CO can potentially attribute a CO2 

signal to industrial or residential source areas. We conclude that observed mixing ratio 

gradients can be used to make a rough estimate of the urban emissions, in which CO is of 

added value to identify dominant source types. 

In Chapter 3 we compared two atmospheric transport models: the Eulerian WRF-Chem 

model (1x1 km
2
 resolution) and the Lagrangian OPS model. Atmospheric transport models 

are useful to account for the impact of transport, mixing, entrainment, and biospheric 

fluxes on the observed mixing ratios and can help interpret the observed signals. We 

examined the ability of these models to reproduce the observed mixing ratios at several 

measurement sites along a transect from an urban (Rotterdam) to rural location. On 

average, WRF-Chem gives good results, reproducing meso-scale features with the correct 

order of magnitude for the observed CO2 mixing ratios. However, the timing of CO2 mixing 

ratio enhancements is often incorrect, which is mainly the result of an incorrect 

representation of the wind direction causing the model to sample the wrong source area. 

Moreover, we found that the representation of point sources is problematic. In a Eulerian 

model emissions get instantly mixed throughout the grid box, which causes a large 

underestimation of local and downwind mixing ratios for sources with a small horizontal 

extent. Using the OPS model improves the representation of point sources, because it has 

no spatial discretization. The difference between OPS and WRF-Chem is only visible up to 

approximately 15 km from major stack emissions, such that point sources further away 

from observation sites can be represented by WRF-Chem as well. An additional advantage 
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of the OPS model is that it can be driven by locally observed meteorological data, such 

that it overcomes the wind direction issue from WRF-Chem. However, the OPS model is 

sub-optimal for area source emissions over a large domain and therefore we conclude 

that a combination of both models is the best option in Rotterdam. Finally, the results in 

Chapter 3 show that urban sites are well-exposed to urban fossil fuel fluxes and can be 

used to separate between different source areas (such as the residential and industrial 

area), especially if besides CO2 also CO is included. Sites that are further removed from the 

city (semi-urban) provide a better constraint on the total flux. 

Chapter 4 explored the potential of several data streams to predict high-resolution 

emissions. These data were combined in a dynamic fossil fuel emission model that 

estimates emissions based on additional knowledge about the emission landscape. First, 

we calculated the total yearly emissions for the Netherlands per source sector using 

activity data (such as Gross Domestic Product), emission factors (the amount of CO2 

emitted per amount of fuel consumed) and energy efficiency (amount of fuel consumed 

per amount of activity). Then the total yearly emissions were disaggregated to hourly and 

1x1 km
2

 scale using proxies and hourly activity data. In this way we created a dynamic 

emission map based on a wide range of parameters that are specified per source sector. 

One major advantage is that we can estimate the (unknown) uncertainty in the high-

resolution emissions from the (better-known) uncertainty in the model parameters. We 

find that we can estimate the yearly emissions for the Netherlands with a 15% uncertainty 

when using generalized proxies (i.e. based on general, large-scale activity data and 

emission factors). Using more specific knowledge about the region (e.g. about 

technological advancement) and local activity data reduces this uncertainty. We can also 

use the emission model to calculate emissions of co-emitted species by multiplying the 

CO2 emissions with the typical emission ratios for each source sector. These emission 

ratios are variable and uncertain and the emissions of co-emitted species have a larger 

uncertainty than the CO2 emission. Finally, the model parameters have a physical meaning 

and can be linked to emission reduction policies, making it a useful tool for policy-makers. 

With the dynamic emission model we identified the most important and uncertain 

parameters affecting the emissions (CO2 emission factors, emission ratios and time 

profiles). In Chapter 5 we tried to optimize these parameters using a newly developed 

inverse modelling framework. The inversion system uses the multi-model framework 

described in Chapter 3 to translate the emissions calculated by the dynamic emission 

model into mixing ratios of CO2, CO, NOx (nitrogen oxides) and SO2 (sulphur dioxide). We 

used the same modelling framework to create pseudo-observations, which are used to 

validate the model. The only difference is the values appointed to the parameters in the 

emission model (generalized data for the prior, local data for the pseudo-observations). 

We performed an experiment to explore the difference between an urban and a rural 

observation network, which shows that the CO2 signals captured by the rural network are 

too small to contain relevant information. The urban network performs well and gives a 
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good estimate of the total yearly emissions for the Rotterdam area (5% error). When we 

included observations of the co-emitted tracers the emission estimate per source sector 

generally improves. Some sectors remain difficult to constrain, for example due to the lack 

of large enhancements or the lack of a clear emission ratio signature. The time profiles can 

also be constrained relatively well, at least the day-to-day variability. However, for 

households the error in the time profile gets aliased into the emission factor, causing the 

emission factor to be less well constrained. When we introduced erroneous atmospheric 

transport the results deteriorate drastically, especially for power plants and industry (i.e. 

point sources) which suffer most from the transport errors. We conclude that an inversion 

system with a dynamic emission model as a prior has great potential for monitoring urban 

emissions, but transport errors currently hamper its applicability to real observations. 

This work contributed to a better understanding of the complexity of the urban fossil 

fuel emissions and what is needed to monitor this. Urban observations provide useful 

information and, depending on the size and shape of the monitoring network, can be used 

to constrain urban emissions in more or less detail. Observations of co-emitted species 

have the potential to attribute CO2 emissions to specific source sectors and are an 

important addition to our inversion framework. The dynamic fossil fuel emission model 

has several major advantages over a regular emission map, being flexible and physically 

meaningful. Although several challenges remain, the work described in this thesis is an 

important step in the development of urban monitoring capacities. 
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Samenvatting 

Achtergrond 

De verbranding van fossiele brandstoffen zorgt voor een toename van koolstofdioxide 

(CO2) in de atmosfeer en is een belangrijke oorzaak van klimaatverandering. Daarom 

worden er allerlei (inter)nationale overeenkomsten gesloten om de CO2 uitstoot (emissies) 

terug te brengen, waarvan het Parijs-akkoord het bekendst is. Elk land dat deelneemt aan 

dit akkoord moet streven naar een vooraf vastgestelde reductie van de CO2 emissies. In 

zo’n samenwerkingsverband is het belangrijk om bij te houden hoeveel vooruitgang is 

geboekt in het behalen van de doelstellingen, maar ook om inzicht te verkrijgen in welke 

beleidsmaatregelen het meest effectief zijn in het terugdringen van de emissies om 

verdere besluitvorming te ondersteunen. Om dit te bewerkstellingen zijn wetenschappers 

begonnen met de ontwikkeling van methodes om de (verandering in de) emissies te 

monitoren. Deze methodes richten zich voornamelijk op steden. Bijna 70% van de door de 

mens veroorzaakte CO2 emissies vindt plaats in steden en hier zullen de grootste reducties 

in emissies plaatsvinden. Dit zorgt voor grote atmosferische signalen die relatief 

eenvoudig gemeten kunnen worden. Echter, monitoren in de stad brengt ook diverse 

uitdagingen met zich mee. Bijvoorbeeld het atmosferisch transport in een stad is complex 

vanwege de gebouwen, wat de interpretatie van gemeten concentraties lastig maakt. Ook 

richten beleidsmaatregelen zich vaak op specifieke economische sectoren (zoals verkeer 

of industrie). Het gevolg is dat de emissies van elke sector apart gemonitord moet worden 

om het effect van individuele maatregelen vast te stellen. Deze toekenning van CO2 

signalen aan specifieke economische sectoren is onmogelijk met slechts CO2 metingen als 

de sectoren niet fysiek gescheiden zijn. 

Doelstelling 

De voornaamste doelstelling van dit proefschrift is inzicht verkrijgen in wat er voor nodig 

is om fossiele CO2 emissies in steden te kwantificeren per economische sector. Een 

netwerk van metingen vormt hierbij een belangrijk uitgangspunt. We richten ons daarom 

eerst op de identificatie van de meest bruikbare types meetlocaties en netwerk 

configuraties. Naast CO2 maken we ook gebruik van andere gassen die tegelijkertijd met 

CO2 worden uitgestoten tijdens de verbranding van fossiele brandstoffen. Dit gebeurt in 

een bepaalde verhouding (ratio) die specifiek is voor een economische sector, waardoor 

deze gassen potentieel gebruikt kunnen worden om de bron van een CO2 signaal te 

achterhalen. We onderzoeken deze mogelijkheid om andere gassen te gebruiken voor de 

toekenning van CO2 signalen aan economische sectoren. Naast metingen is een goede 

modelweergave van atmosferisch transport nodig om de metingen te kunnen 

interpreteren. Dat leidt tot het tweede doel: het beter begrijpen van de mogelijkheden en 



SAMENVATTING 

158 

 

beperkingen van een atmosferisch transport model en de meest veelbelovende 

benadering identificeren. Het derde doel is het voorspellen van stedelijke CO2 emissies op 

hoge resolutie op basis van diverse indicatoren en inzicht verkrijgen in de onzekerheden in 

de emissies. Als laatste combineren we de verkregen inzichten met betrekking tot de 

metingen en modellen in een inversiesysteem. Het doel hierbij is om te testen hoe goed 

de stedelijke CO2 emissies per economische sector gekwantificeerd kunnen worden. 

Resultaten en conclusies 

In hoofdstuk 2 hebben we de effectiviteit van twee meetlocaties vlakbij de stadrand van 

Rotterdam onderzocht. Die twee locaties geven een gradiënt in CO2 concentraties over de 

stad van de bovenwindse naar de benedenwindse locatie, die we gebruiken om een eerste 

schatting te maken van de stedelijke emissies. Eerst hebben we gekeken of de 

bovenwindse locatie representatief was voor de samenstelling van het 

achtergrondsignaal, wat het geval bleek te zijn voor bepaalde windrichtingen. Op de 

benedenwindse locatie vonden we grote signalen voor drie brongebieden: de stad 

Rotterdam, de haven en het kassengebied. Met behulp van de geselecteerde 

concentratiegradiënten berekenden we de emissies van het brongebied, rekening 

houdend met gemiddelde CO2 uitwisseling van de biosfeer, de voetafdruk van de 

metingen, en de grenslaaghoogte. Ondanks dat deze methode erg versimpeld is, geeft het 

een redelijke schatting van de emissies in vergelijking met gerapporteerde waarden. Toch 

zagen we dat de geschatte emissies sterk afhankelijk kunnen zijn van lokale bronnen en 

transportprocessen waar we geen rekening mee hebben kunnen houden. Bijvoorbeeld de 

aanwezigheid van schoorstenen bemoeilijkt de schatting zonder gedetailleerde kennis van 

het atmosferische transport. Tot slot laten onze resultaten zien dat koolstofmonoxide (CO) 

de potentie heeft om CO2 signalen toe te kennen aan verschillende brongebieden die 

gekenmerkt worden door industrie of woningen. We concluderen dat gemeten CO2 

concentratiegradiënten gebruikt kunnen worden om een ruwe schatting te maken van 

stedelijke emissies, waarbij CO van toegevoegde waarde is voor het identificeren van 

dominante bronnen.  

In hoofdstuk 3 vergeleken we twee atmosferische transport modellen: het Euleriaanse 

WRF-Chem model (1x1 km
2
 resolutie) en het Lagrangiaanse OPS model. Atmosferische 

transport modellen berekenen onder andere het effect van transport en menging op de 

concentraties van gassen en helpen dus bij de interpretatie van metingen. We 

onderzochten hoe goed de modellen de gemeten concentraties kunnen reproduceren 

voor een aantal meetlocaties, van stedelijk gelegen (nabij Rotterdam) tot een landelijke 

locatie. Gemiddeld genomen geeft WRF-Chem goede resultaten. Het reproduceert meso-

schaal variaties in de correcte orde van grootte voor de gemeten CO2 concentraties. 

Echter, de tijdstippen van pieken in de CO2 concentraties zijn vaak niet correct, wat vooral 

veroorzaakt wordt door fouten in de berekende windrichting waardoor het verkeerde 
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brongebied wordt opgepikt. Ook bleek de representatie van puntbronnen problematisch. 

In een Euleriaans model wordt de uitgestoten CO2 onmiddellijk gemengd in een model 

“grid box”, wat zorgt voor een onderschatting van lokale en benedenwindse concentraties 

voor bronnen met een beperkte omvang. Het gebruik van het OPS model verbetert de 

representatie van puntbronnen doordat de ruimte continu is in plaats van discreet. Het 

verschil tussen OSP en WRF-Chem is alleen zichtbaar tot op ongeveer 15 kilometer van 

grote puntbronnen, waardoor puntbronnen die verder verwijderd zijn van de meetlocaties 

ook door WRF-Chem opgelost kunnen worden. Een bijkomend voordeel van het OPS 

model is dat het gedreven kan worden door lokaal gemeten atmosferische 

omstandigheden, zodat het probleem met de windrichting in WRF-Chem geen rol meer 

speelt. Aan de andere kant is het OPS model niet optimaal voor oppervlaktebronnen over 

een groot gebied en we concluderen dan ook dat een combinatie van beide modellen de 

beste optie is voor Rotterdam. Als laatste laten de resultaten in hoofdstuk 3 zien dat 

stedelijke meetlocaties blootgesteld zijn aan de stedelijke CO2 emissies en geschikt zijn om 

verschillende brongebieden te onderscheiden, vooral als we naast CO2 ook CO 

meenemen. Meetlocaties verder van de stad (landelijk gebied) zijn geschikter om de 

totale emissies van de stad te kwantificeren. 

Hoofdstuk 4 beschrijft de potentie van allerlei datastromen om stedelijke emissies te 

bepalen op hoge resolutie. De data werden gecombineerd in een dynamisch emissiemodel 

dat de emissies schat op basis van extra kennis over het gebied. Eerst berekenden we de 

totale jaarlijkse emissies van Nederland per economische sector op basis van activiteit 

(zoals bruto nationaal product), emissiefactoren (de hoeveelheid CO2 uitgestoten per 

hoeveelheid geconsumeerde brandstof) en energie-efficiëntie (de hoeveelheid 

geconsumeerde brandstof per hoeveelheid activiteit). Daarna werden de totale emissies 

opgesplitst naar emissies op 1x1 km
2
 per uur door middel van diverse indicatoren en 

activiteit per uur. Op deze manier hebben we een dynamische emissiekaart geproduceerd 

op basis van een grote hoeveelheid parameters die specifiek zijn vastgesteld voor elke 

economische sector. Een belangrijk voordeel van het emissiemodel is dat we de 

(onbekende) onzekerheid in de hoge-resolutie emissies kunnen schatten uit de (beter 

bekende) onzekerheid in de gebruikte data. De onzekerheid in de geschatte jaarlijkse 

emissies voor Nederland is 15% wanneer we algemeen geldende indicatoren gebruiken. 

Als we specifieke kennis over de regio en lokale activiteit (zoals verkeerstellingen in de 

stad zelf) gebruiken wordt deze onzekerheid aanzienlijk kleiner. We kunnen het 

emissiemodel ook gebruiken om emissies van andere gassen te schatten door de CO2 

emissies te vermenigvuldigen met de typische emissieratio voor elke economische sector. 

Deze ratio’s zijn variabel en onzeker, waardoor de emissies van andere gassen een grotere 

onzekerheid hebben dan de CO2 emissies. Een laatste voordeel van het emissiemodel is 

dat de parameters een fysieke betekenis hebben en gerelateerd kunnen worden aan 

beleidsmaatregelen, waardoor het gebruikt kan worden door beleidsmakers. 
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Met behulp van het dynamische emissiemodel hebben we de belangrijkste en meest 

onzekere parameters geschat die van invloed zijn op de emissies (CO2 emissiefactoren, 

emissieratio’s en tijdsprofielen). In hoofdstuk 5 hebben we geprobeerd de exacte waarden 

van deze parameters te schatten met een nieuw ontwikkeld inversiesysteem. Het 

inversiesysteem gebruikt de combinatie van WRF-Chem en OPS beschreven in hoofdstuk 3 

om de emissies berekend met het dynamische emissiemodel te vertalen naar 

atmosferische concentraties van CO2, CO, NOx (stikstofoxiden) en SO2 (zwaveldioxide). We 

gebruikten dezelfde modellen voor het maken van pseudo-metingen, die gebruikt worden 

voor validatie van het model. Het enige verschil is de waarde die toegekend wordt aan 

elke parameter van het emissiemodel (algemene waarden als uitgangspunt voor de 

inversie, lokale data voor de pseudo-metingen). We hebben een experiment gedaan om 

het verschil tussen een stedelijk en ruraal netwerk van meetlocaties te onderzoeken. 

Daaruit blijkt dat de CO2 signalen gemeten op de rurale meetlocaties te klein zijn om daar 

informatie uit te kunnen halen. Het stedelijke netwerk geeft betere resultaten en geeft 

een goede schatting van de totale jaarlijkse emissies voor Rotterdam (met een fout van 

5%). Als we metingen van de andere gassen toevoegen verbetert de emissieschatting per 

economische sector. De emissies van sommige sectoren blijft echter lastig te bepalen, 

bijvoorbeeld doordat er weinig signalen zijn die informatie bevatten over die sector of 

omdat de emissieratio's van die sector geen duidelijk signatuur hebben. De dag-tot-dag 

variaties in de emissies kunnen redelijk goed bepaald worden, hoewel voor sommige 

sectoren het verschil tussen gemeten en berekende concentraties onterecht toegekend 

wordt aan de emissiefactor in plaats van het tijdsprofiel. Als we fouten aanbrengen in het 

atmosferisch transport verslechteren de resultaten drastisch, vooral voor economische 

sectoren die vooral bestaan uit puntbronnen (zoals energiecentrales en industrie). We 

concluderen dat het inversiesysteem met als uitgangspunt het dynamisch emissiemodel 

potentie heeft voor het monitoren van stedelijke CO2 emissies, maar dat de huidige 

problemen met het berekenen van atmosferisch transport een belemmering zijn voor 

toepassingen met echte metingen. 

Dit werk heeft bijgedragen aan een beter begrip van de complexiteit van stedelijke CO2 

emissies door verbranding van fossiele brandstoffen en wat nodig is om dit te monitoren. 

Stedelijke meetlocaties bevatten veel informatie en kunnen, afhankelijk van de grootte en 

vorm van het netwerk, gebruikt worden om stedelijke emissies te schatten in meer of 

minder detail. Metingen van andere gassen hebben de potentie om CO2 signalen toe te 

kennen aan specifieke economische sectoren en zijn een belangrijke toevoeging in ons 

inversiesysteem. Het dynamische emissiemodel heeft een aantal belangrijke voordelen 

ten opzichte van standaard emissiekaarten, zoals de flexibiliteit en de relatie met 

beleidsmaatregelen. Ondanks dat er meerdere uitdagingen overblijven, is het werk 

beschreven in dit proefschrift een belangrijke stap in de ontwikkeling van methodes voor 

het monitoren van stedelijke emissies. 
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Appendix A: Supplementary information to Chapter 2 

A.1 Instrumentation 

We installed low-drift analysers based on cavity ring-down spectroscopy (CRDS) (Picarro 

Inc., CA, USA, type G2401) to measure atmospheric concentrations of CO2, CH4 and CO. 

The CRDS technique uses optical absorption at wavelengths of 1603 nm, 1651 nm and 

~1570 nm to simultaneously determine concentrations of CO2, CH4 and CO, respectively. 

A laser beam at specific wavelength is directed into the cavity, which consists of three 

highly reflective mirrors, and travels through the cavity with an effective path length of 

15-20 km. At wavelengths insensitive to absorption by gases, the decay time of light 

intensity is only determined by the small mirror transmittance (cavity-only ring down 

time). When changing to a wavelength sensitive to absorption by the gas sample an 

additional loss term is introduced, leading to a faster decay in light intensity (total ring 

down time). Comparing the total ring down time with the cavity-only ring down time 

provides information on the trace gas concentrations. A more detailed description of the 

instrument can be found in Crosson (2008). 

Sampled air continuously flows through the cavity at regulated temperature and 

pressure, such that the measurements are insensitive to changes in ambient temperature 

and pressure (Crosson, 2008). Moreover, the CRDS analyser reports dry mole fractions 

based on the simultaneously measured water vapour concentrations and laboratory-

derived water correction functions for CO2 and CH4 (Chen et al., 2010; Rella et al., 2013). 

Although a similar function has been established for CO, its generalizability for individual 

analysers is low (Chen et al., 2013). Therefore, the manufactory default water vapour 

correction is applied for CO. 

A.2 Calibration and data processing 

The raw data for which the cavity pressure or temperature deviates more than 0.7 hPa 

(0.5 Torr) or 0.1 °C from the nominal settings of 186.2 hPa (140 Torr) or 45 °C, 

respectively, were flagged. We further corrected CO2 and CH4 mole fractions for the cavity 

pressure variations within 0.7 hPa from the nominal setting (Filges et al., 2015). The 

corrections are not necessary for normal monitoring conditions, but may be helpful when 

pressure variations occur during valve switching or short-term noise increase of the cavity 

pressure. Note that the magnitude of the corrections is up to 0.25 ppm for CO2 and 4 ppb 

for CH4. Finally, the raw and temporally high-resolution (0.2 Hz) data were aggregated to 

minute averages. 

The instruments are connected to 3 cylinders with different mole fractions, of which the 

exact mole fractions have been established in the Centre for Isotope Research in 

Groningen against the WMO X2007 (CO2) and X2004 (CO and CH4) scale (Zhao and Tans, 
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2006) (Table A1, values between brackets). Cylinder 2 was the reference used for 

calibration, whereas cylinders 1 and 3 were used as independent targets for quality 

control. Alternately, the contents of one of the cylinders is measured by the instrument 

for 20 minutes after 12 hours of measuring the sample (S). The measurement sequence is 

thus S (720 min.) – Targ1 (20 min.) - S (720 min.) – Ref2 (20 min.) - S (720 min.) – Targ3 (20 

min.). This sequence is constantly repeated. Due to the instrument's linear response with 

concentration, using only two or three cylinders is sufficient (Crosson, 2008). The cylinders 

were used for final processing and calibration. 

Table A1: Average and 1σ of CO2, CH4, and CO mole fractions in the Targ1 and Targ3 cylinders as measured by 
the instruments at both measurement sites; between brackets the contents as established in the laboratory is 
given. 

 Westmaas   Zweth   
CO2 [ppm] CH4 [ppb] CO [ppb] CO2 [ppm] CH4 [ppb] CO [ppb] 

Targ1 370.23±0.02 
(370.22) 

1660.8±0.27 
(1661.1) 

97.26±1.07 
(95.7) 

399.97±0.06 
(399.98) 

1952.7±0.34 
(1952.5) 

221.85±1.00 
(223.2) 

Ref2 (400.01) (1957.4) (229.2) (410.55) (1804.3) (201.2) 
Targ3 501.71±0.04 

(501.70) 
2099.6±0.27 
(2099.9) 

514.07±1.17 
(512.8) 

449.84±0.06 
(449.85) 

1956.7±0.30 
(1956.9) 

376.99±1.02 
(377.7) 

 
Based on the time series of the three cylinders we applied several corrections. First, the 

time series showed a systematic error compared to the concentrations listed in Table A1. 

So the first step was to correct for this bias. This offset-correction was also applied to the 

ambient air measurements. Secondly, there was a long-term analyser drift and more 

short-term tendencies. The data was corrected for these tendencies by applying a linear 

interpolation to the Ref2 calibration data, which means that every measured 

concentration from the Ref2 cylinder was put to exactly the value given in Table A1. The 

measurements of ambient air and the other target cylinder concentrations were then 

corrected using the interpolation. This single bias correction using only Ref2 allowed us to 

use the other cylinders for quality control. Finally, the minute-averages were aggregated 

to hourly averages. Similar methods are applied for CH4 and CO. 

A.3 Data quality 

Figure A1 shows the CO2, CH4 and CO mole fractions in target cylinder 1 measured at 

Westmaas after data processing. The mixing ratio of Targ1 as established in the laboratory 

is given by the red dashed line. All results for Targ1 and Targ3 at both locations are 

summarised in Table A1. The difference between the average Targ1 and Targ3 mole 

fractions measured by the instrument and the mole fractions determined in the laboratory 

gives us the bias in the observations. The CO2 measurements are very accurate, with a bias 

of 0.01 ppm in all cases. The bias is largest for CO (up to 1.6 ppb). The precision of the 

measurements, based on the standard deviation, is satisfactory for all species. CO shows 

the largest relative variation. 
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Figure A1: Time series of CO2, CH4, and CO mixing ratio for target cylinder 1 after data processing at location 
Westmaas for the year 2014. The mole fraction of Targ1 as established in the laboratory is given by the dashed 
line. 

The measurements at both locations are made continuously, although they are 

sometimes interrupted by technical malfunctions. For example, if the cavity temperature 

deviates too much from the regulated temperature, the measurements are shut down 

until the instrument has rebooted. Moreover, other activities near the measurement sites 

that could disturb the observations are written down in a log. Data affected by these 

malfunctions or activities are either corrected or flagged, such that the data quality is not 

affected. The resulting time series after all data processing are shown in Figure A2. 

At the start of the measurements at Zweth a 10m mast was unavailable. Therefore, the 

sampling height was 3m until July 2014. After installing the 10m mast, we continued to 

take a few samples per day at 3m during one month (July). Previously observed vertical 

profiles show that the CO2 mixing ratio can change with several ppm moving only a few 

tens of meters upwards (Vermeulen et al., 2011). This effect is especially clear during the 

night, but is dependent on the season due to the role of vegetation as CO2 source and 

sink. Similarly, the CH4 mixing ratio can vary with height due to the presence of local 

sources. Note that the inlet height is explicitly included in the data files provided for 

download. We examine the difference between the 3 and 10 m observations by binning 

observations by hour. This results in an average daily cycle from the irregular samples (N = 

263 for both heights). The daily cycles of the CO2, CH4, and CO mixing ratio at both heights 

and the differences between the two heights (given by δ) relative to the mixing ratio at 

10m are shown in Figure A3. 
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Figure A2: Time series of ambient CO2, CH4, and CO mixing ratio at Westmaas (left) and Zweth (right). The 
vertical dashed lines indicate the transition from 3 to 10m sampling height. 

The diurnal cycle is mainly determined by atmospheric mixing and for CO2 the diurnal 

cycle is stronger at 3m than at 10m. The mixing ratio is generally larger at 3m, except from 

about 8-15h UTC (10-17h LT) when δCO2 fluctuates around zero. For CO2, emissions from 

vegetation and the soil play an important role in this diurnal cycle. During the night 

respiration causes the CO2 mixing ratio to increase. Since there is little mixing in a stable 

boundary-layer this increase is more pronounced closer to the surface. During daytime 

photosynthesis has the opposite effect, being an important sink of CO2. However, due to 

convective mixing the difference between the two heights is smaller than at night time.  

CH4 shows a similar difference between the two heights as CO2. However, vegetation 

does not affect CH4, so there are other local sources that cause this difference. One 

potentially important source is the peat soil, which is a CH4 producer due to the high 

ground water level at this location (Le Mer and Roger, 2001; Schrier-Uijl et al., 2014; Smith 

et al., 2003). Estimates of CH4 emissions are highly variable, as they depend on many 

environmental factors. Yet, emissions of 10-30 μmol m
-2

 hr
-1

 have been estimated for 

Scottish wetlands with soil water depths of 0-10 cm (Smith et al., 2003), which could 

significantly enhance the CH4 mixing ratio close to the surface. During daytime convection 

causes this CH4 flux to be mixed quickly through the boundary-layer, causing δCH4 to be 

close to zero. 

CO has no local sources and this mixing ratio is mainly determined by advection. This 

may explain the increase in CO in the morning, which has about the same timing as the 
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morning rush hour. Due to the absence of local influences we find no clear diurnal pattern 

in δCO. Yet the CO mixing ratio generally seems to be higher at 10m. This can be explained 

by the presence of large trees and bushes that surround the measurement area and 

potentially reduce the effect of advection at 3m. The 10m mast reaches to the tree tops 

and is therefore more exposed to advected air. 

To conclude, users of this data set should be aware that data for May and June 2014 at 

location Zweth are more affected by local influences due to the lower sampling height. 

Considering this time series as homogeneous can therefore result in a bias. However, 

between 6 and 18h UTC the impact appears to be limited. 

 

Figure A3: Left: Hourly averaged observed CO2, CH4, and CO mixing ratio at 3 (blue circles) and 10m (red 
triangles) height at Zweth; Right: the difference between 10 and 3m CO2, CH4, and CO mixing ratio relative to 
the mixing ratio at 10m. LT is the local wintertime (UTC+1). 
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Dankwoord 
 
Daar ligt ie dan, mijn proefschrift. Het resultaat van ruim vier jaar aan uitdagingen en 

acceptatie, doelloos ronddobberen en de weg weer vinden, huilen en lachen. Alle sterke 

en zwakke punten worden uitvergroot en in de schijnwerpers gezet. Niemand heeft ooit 

gezegd dat een PhD traject een ‘walk in the park’ zou zijn en dat is het ook zeker niet. 

Maar ik ben de uitdaging aangegaan en wat ik heb gekregen is een proces waarbij ik 

mijzelf op professioneel en persoonlijk vlak heb kunnen ontwikkelen. Ik kan met recht 

zeggen dat ik vandaag de dag een ander persoon ben dan toen ik aan dit avontuur begon. 

De verlegen, onzekere student is veranderd in een zelfbewuste onderzoeker. En daar ben 

ik ontzettend trots op! Gelukkig heb ik niet alles in mijn eentje moeten doorstaan. Tijdens 

de hele periode stonden er allerlei mensen voor mij klaar om samen mijn successen te 

vieren en mijn tegenslagen te helpen verdragen. En ik wil iedereen dan ook heel erg 

bedanken die onderdeel is geweest van dit spannende avontuur.  

Als eerste wil ik mijn begeleiders bedanken zonder wie dit boekje niet tot stand had 

kunnen komen: Wouter, Michiel en Hugo. Dankzij jullie uiteenlopende persoonlijkheden 

en achtergronden is het project een succes geworden. Tijdens de uitvoerige discussies 

over welke richting het onderzoek op moest gaan kwamen altijd tal van interessante 

opties op tafel te liggen, van wetenschappelijk georiënteerd tot praktijkgericht. Vaak had 

ik na zo’n meeting een aantal dagen nodig om structuur aan te brengen en mijn gedachten 

te ordenen. Maar daar staat tegenover dat ik, nadat de orde was teruggekeerd, altijd 

barste van de energie en ideeën. Ook zat jullie feedback op mijn stukken lang niet altijd op 

één lijn, wat me soms wat stress opleverde. Maar dankzij die uitvoerige feedback zijn de 

hoofdstukken mooi en duidelijk leesbaar geworden. Bedankt daarvoor! 

Michiel, voornamelijk tijdens de eerste twee jaar stond je altijd voor me klaar om te 

helpen als ik weer eens problemen had met WRF. Je hebt me echt op weg geholpen en 

richting gegeven aan de eerste periode. Het was fijn om te weten dat als ik ergens mee 

vast zat, je direct alles liet vallen om mijn model of script te debuggen. Vooral je enorme 

geduld en positieve instelling worden erg gewaardeerd. Ook al is de begeleiding daarna 

minder intensief geworden, jouw mental support is altijd belangrijk geweest. Jij hebt me 

vaak gezegd dat een goede balans tussen werk en privé ervoor zorgt dat je op je werk ook 

optimaal kunt presteren. Dus elke keer als ik het even niet meer zag zitten zei jij dat ik de 

middag vrij moest nemen om te gaan wandelen en het de volgende dag opnieuw moest 

proberen. En dat hielp! Tijdens het wandelen kreeg ik meestal weer inspiratie en 

motivatie. Bedankt! 

Wouter, jij hebt juist in de tweede helft van het traject de begeleiding op je genomen. In 

het begin liep het af en toe wat stroef en begrepen we elkaar niet altijd. Maar naarmate 

de tijd vorderde leerden we elkaar beter kennen en verliep de samenwerking steeds 

beter. Het is erg fijn om een begeleider te hebben die je niet alleen verteld wat je niet 
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goed doet, maar die ook vaak benadrukt dat je juist wel goed bezig bent. Je eerlijkheid 

heeft mij daardoor veel inzicht gegeven in mijn sterke en zwakke punten. Je geduld bij het 

uitleggen (en nogmaals uitleggen, en nogmaals uitleggen...) van de principes achter data 

assimilatie wordt heel erg gewaardeerd, omdat ik nu eindelijk het gevoel heb dat ik weet 

waar ik mee bezig ben... geloof ik. Als laatste wil ik je bedanken dat je mij toegang hebt 

gegeven tot je enorme netwerk, waardoor ik veel contacten heb opgedaan waar ik de rest 

van mijn carrière voordeel van zal hebben. 

Hugo, ik waardeer met name jouw enthousiasme over alles wat ik voorstelde en liet 

zien. Of het nou een doorbraak was met het emissiemodel of een aantal slecht leesbare 

figuren met de eerste resultaten. Ook je praktische instelling is voor mij van onschatbare 

waarde geweest. Je weet altijd feilloos de link te leggen tussen onze wetenschappelijk 

gefundeerde onderzoeksvragen en wat er speelt in de praktijk. Ik heb altijd een brede 

interesse gehad en ben graag bezig met dingen die ik beschouw als relevant voor de 

maatschappij. Daarom is de wetenschap dat mijn onderzoek van belang is voor de praktijk 

voor mij erg belangrijk. Daarnaast wil ik je bedanken dat je mij toegang hebt gegeven tot 

de middelen beschikbaar bij TNO: metingen, kennis, emissie data, en ga zo maar door. 

Deze zijn erg belangrijk geweest voor het slagen van het project.  

I would also like to thank all of my colleagues that made my life at the department a real 

joy! Especially Arjan, for always joining me for coffee and lunch strolls around campus and 

for being a great friend and paranymph. Aris and Auke, thanks for being my supportive 

roommates for the last year! Peter, thanks for sharing your views on all topics imaginable 

during the coffee break. But also thanks to all other PhD’s, current and past, for your 

joyful presence. I would also like to thank Ingrid for your support throughout my PhD. 

Whether I needed advice on inverse modelling, someone to proofread my paper or 

someone to be my paranymph, you were always willing to help. Every time I came by to 

ask a short question we ended up talking and laughing for a long time. Thanks a lot! And 

sorry to keep you from work...  

Besides my supervisors and colleagues I received a lot of support from people at, 

amongst others, TNO (Arjo, Antoon, Jeroen, Marcel, Stijn, Richard, Sander), RIVM (Marina, 

Ferd), ECN (Daniëlle, Arjan), and Rijksuniversiteit Groningen (Huilin and PhD's). I am very 

grateful for your willingness to provide me with necessary data, methods and ideas and to 

help me with data analysis. I would also like to thank my colleagues at LSCE. I really 

enjoyed my stay with you and learned a lot. It was very nice to have in-depth discussions 

about research methods and to end the day with a beer. The insights I gained during our 

discussions have guided my research. Thank you for letting me be part of your group for a 

few months. And finally, I would like to express my gratitude to my opponents: Albrecht 

Weerts, Harro Meijer, Gregoire Broquet and Julia Marshall. Thank you for your time and 

Gregoire and Julia for your willingness to travel to the Netherlands for the defence. 

Then I would like to thank my friends. During my PhD I enjoyed playing ultimate at WAF 

and I played nice games with a lot of nice people. The trainings and games gave me a lot of 
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positive energy. So thanks to all (former) WAFfies for sharing all these victories and losses! 

A special thanks to Jasper. Although we only manage to meet once or twice a year I really 

enjoy our lunches and talks. I would also like to thank Kai, Roel and Ilse. I am very grateful 

that we became friends and that you are always there for us. Sébastien and Fangqian, 

thank you for your friendship and support during the summer school. You really kept me 

going with your positive spirit and jokes, even when I had a difficult time. I have great 

memories of us lying under a truck in the streets of Paris to measure its exhaust and 

wandering through Valencia with Fangqian unintentionally ending up with a group of 

Dutch guys. I will never forget those moments! 

Als laatste natuurlijk dank aan mijn familie. Papa en mama, jullie steun door dik en dun 

is heel erg belangrijk geweest. De wetenschap dat jullie er altijd voor mij zijn is 

onbetaalbaar! Het viel niet altijd mee om te praten over het project en vaak leverde mijn 

poging iets te vertellen alleen maar vragende gezichten op. Maar dat doet geen afbreuk 

aan jullie ondersteuning en het enthousiasme over die mooie figuren in mijn artikelen. 

Ook hebben jullie mij altijd gestimuleerd in mijn enthousiasme, ook al moesten jullie 

daarvoor met zware rugzakken vol stenen door de bergen sjouwen. De weekendjes weg 

met het gezin zijn altijd een fijne onderbreking van de dagelijkse sleur en ik heb er erg van 

genoten. Ik hoop dat we dat nog lang blijven volhouden! En dan als allerlaatste, maar 

zeker niet de onbelangrijkste persoon in mijn leven, Sabina. Als mijn lieve, trotse zus en 

beste vriendin ben je onmisbaar. Ook al kan ik soms lastig en koppig zijn, jij staat altijd 

voor mij klaar met goede adviezen, een ondersteunende knuffel of een noodzakelijke 

schop onder mijn kont. Qua inhoudelijke discussies over ons werk hebben we misschien 

niet veel aan elkaar gehad, maar qua mentale ondersteuning des te meer. Als twee PhD-

zusjes weten we precies wat de ander doormaakt en voelen we elkaar goed aan. Dat heeft 

me enorm gesteund in de moeilijke periodes. Natuurlijk moet ik ook de goede periodes 

niet vergeten, waarin we allerlei leuke activiteiten hebben ondernomen die ervoor 

hebben gezorgd dat ik vol energie weer aan het werk kon. Papa, mama en Sabina, dank 

voor al jullie steun en positivisme!!! 
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