Natural genetic variation in C. elegans identified genomic loci controlling metabolite levels

  1. Riekelt H. Houtkooper1
  1. 1Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, 1105 AZ Amsterdam, The Netherlands;
  2. 2Laboratory of Nematology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
  1. 3 These authors contributed equally to this work.

  • Corresponding authors: r.h.houtkooper{at}amc.nl, jan.kammenga{at}wur.nl
  • Abstract

    Metabolic homeostasis is sustained by complex biological networks that respond to nutrient availability. Genetic and environmental factors may disrupt this equilibrium, leading to metabolic disorders, including obesity and type 2 diabetes. To identify the genetic factors controlling metabolism, we performed quantitative genetic analysis using a population of 199 recombinant inbred lines (RILs) in the nematode Caenorhabditis elegans. We focused on the genomic regions that control metabolite levels by measuring fatty acid (FA) and amino acid (AA) composition in the RILs using targeted metabolomics. The genetically diverse RILs showed a large variation in their FA and AA levels with a heritability ranging from 32% to 82%. We detected strongly co-correlated metabolite clusters and 36 significant metabolite quantitative trait loci (mQTL). We focused on mQTL displaying highly significant linkage and heritability, including an mQTL for the FA C14:1 on Chromosome I, and another mQTL for the FA C18:2 on Chromosome IV. Using introgression lines (ILs), we were able to narrow down both mQTL to a 1.4-Mbp and a 3.6-Mbp region, respectively. RNAi-based screening focusing on the Chromosome I mQTL identified several candidate genes for the C14:1 mQTL, including lagr-1, Y87G2A.2, nhr-265, nhr-276, and nhr-81. Overall, this systems approach provides us with a powerful platform to study the genetic basis of C. elegans metabolism. Furthermore, it allows us to investigate interventions such as nutrients and stresses that maintain or disturb the regulatory network controlling metabolic homeostasis, and identify gene-by-environment interactions.

    Footnotes

    • [Supplemental material is available for this article.]

    • Article published online before print. Article, supplemental material, and publication date are at http://www.genome.org/cgi/doi/10.1101/gr.232322.117.

    • Freely available online through the Genome Research Open Access option.

    • Received November 10, 2017.
    • Accepted July 20, 2018.

    This article, published in Genome Research, is available under a Creative Commons License (Attribution 4.0 International), as described at http://creativecommons.org/licenses/by/4.0/.

    | Table of Contents
    OPEN ACCESS ARTICLE

    Preprint Server