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Page i | Abstract 

ABSTRACT 

The perennial grass species Miscanthus sinensis has been identified as a promising 
lignocellulosic biomass feedstock that can facilitate the transition towards a biobased economy. 
Given that M. sinensis is still an orphan crop, considerable efforts will be needed to increase the 
speed and effectiveness of M. sinensis breeding. The aims of this study were to characterize the 
phenotypic variation within the WUR miscanthus collection, obtain insights into the genetic 
relationships amongst its accessions and to assess the potential of genomic selection to 
accelerate M. sinensis breeding efforts. The accessions within the collection displayed a high 
degree of phenotypic variation with high estimates of heritability for all 14 traits that were 
measured during its 5th and 6th growing season. Although sequencing data of 94 M. sinensis 
genotypes had a lower quality than expected, genotypes could be well distinguished based on 
their genetic relationships. Genomic prediction based on 2600 SNPs resulted in an average 
prediction accuracy of 0.51. Changing the input of the model and its parameters lead to trait-
dependent changes in prediction accuracy. Therefore, optimal settings and recommendations for 
future experimental design were given. Considering the long establishment phase of M. sinensis, 
it is expected that implementation of genomic selection will substantially increase the rate of 
genomic improvement for M. sinensis. Although sequencing quality was suboptimal, the findings 
and pipeline generated in this project will guide future research when high quality sequence 
data becomes available.  
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1 BACKGROUND 

1.1 BIOENERGY FROM LIGNOCELLULOSICS 
In April 2016, representatives of 174 countries signed the Paris Agreement, a global agreement 
on the reduction of climate change. In this agreement, countries committed to restrict the 
increase of global temperature to well below 2 °C above pre-industrial averages, with an aim for 
a 1.5 °C increase (UNFCCC, 2015). In order to meet the ambitious reductions of climate change 
and greenhouse gases, novel sustainable sources of energy will be needed to replace fossil 
energy and reduce carbon emissions. Energy derived from biomass has been identified as a 
sustainable, renewable form of energy that will be important for improving the sustainability of 
our modern production, transportation and consumption levels (Fuss et al., 2014). These 
improvements should lead to a transition from our current fossil-resource intensive economy 
towards a biobased economy. This concept, the biobased economy, comprises all technological 
developments allowing for a significant replacement of fossil energy carriers by biomass 
(Trindade et al., 2010).  

Lignocellulosic biomass can be used to produce several forms of energy, for example for heat, 
liquid fuels, electricity and chemicals. As for liquid fuels, the current practice is the growth of 
lignocellulosic biomass and using the cellulose and hemicellulose for the production of 
bioethanol (Trindade et al., 2010). Cellulose and hemicellulose are two major polymers in the 
plant cell wall, and their fraction of the biomass is the major component of dried biomass. The 
conversion success of biomass to biofuel is dependent on the saccharification efficiency of 
converting these polysaccharides into fermentable monosaccharides. Other cell wall 
components such as lignin can reduce the accessibility of these polymers and thus reduce the 
saccharification efficiency (Allison et al., 2010; Lewandowski et al., 2016; Zhao et al., 2012). 

Current production of biofuels using the cellulose and hemicellulose of lignocellulosic crops is 
considered a step in the right direction (Stöcker, 2008). However, to create a biobased economy 
which is commercially successful, all plant biomass needs to be entirely valorised. This would 
require so called ‘integrated biorefineries’, where the plant biomass is refined into a broad range 
of products that cover the operational costs of deconstructing biomass and its transformation 
into added-value products. Analogous to the petrochemical industry, an integrated biorefinery 
might produce a high volume, low value liquid transportation fuel and multiple low volume, high 
value biochemicals that enhance the profitability of the biorefinery (Figure 1). Conceptually, it 
generates its own energy, which reduces the costs and improves the sustainability of the 
integrated biorefinery (Speight, 2011).  

 

 
FIGURE 1: A CONCEPT BIOREFINERY FOR LIGNOCELLULOSIC FEEDSTOCKS, ADAPTED FROM SPEIGHT, J.G. (2011) 
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Following this transition towards the employment of integrated biorefineries, conventional 
concepts about processing techniques and waste streams need to be revised. An iconic example 
of an outdated concept is the utilization of lignin. Conventionally, lignin was considered to be a 
waste stream with a major impact on the recalcitrance of biomass (i.e. resistance of cell walls to 
enzymatic deconstruction). Novel conversion pathways have shown possibilities to start the 
deconstruction of the cell wall with the harvest of lignin from intact biomass and subsequently 
utilize lignin for the production of high value biochemicals. This has given a new meaning to the 
concept of biomass recalcitrance, which now has been defined as the features of biomass that 
increase the costs, complexity and energy requirements of operations in the biorefinery and 
reduce the conversion efficiency of biomass into the desired products (McCann and Carpita, 
2015). Under this new definition, biomass recalcitrance is a trait that is end-goal dependent. At a 
more general level, the new definition implies that the specific features of lignocellulosic 
biomass composition are not fixed and should be tailored to the demands of specific industrial 
end-uses.  

1.2 MISCANTHUS (SINENSIS) 
Although lignocellulosic biomass is considered a promising candidate for providing a 
sustainable, high yielding feedstock, relatively limited time and effort has been put into breeding 
and improving lignocellulosic plants (Allwright and Taylor, 2016). The goal of achieving high 
yields of lignocellulosic biomass is to maximize the amount of biobased products that can be 
obtained from a given amount of land. In the near future, most of the soils will be needed for 
food production. Therefore, agricultural soils used for biobased purposes must be highly 
productive. In the previous section biomass recalcitrance and biomass composition have been 
addressed as important features of lignocellulosic biomass crops. Other plant characteristics 
that have been identified as advantageous for biomass crops are a high photosynthetic 
efficiency, increased recycling of nutrients at end of growing season, high water use efficiency 
and a high stress tolerance (Taylor et al., 2016).  
A category of plants that complies with several of these advantageous characteristics mentioned 
above are C4 plants. Compared to the more common C3 plants, C4 plants use an improved 
photosynthetic system that prevents photorespiration. The improved photosynthetic system of 
C4 plants increases both their energy efficiency and water use efficiency, which results in 
relative higher yields compared to C3 plants (Ghannoum et al., 2011). Examples of these plants 
are maize, sugar cane and sorghum.  
 
Several C4 plants that are good candidate species for the production of lignocellulosic biomass 
belong to the plant genus Miscanthus, here further referred to as miscanthus. Miscanthus is a 
perennial grass native to East Asia, which has adapted to different environments over a wide 
climatic range and is therefore well suited for the production of biomass under European 
climatic conditions (Lewandowski et al., 2016). Miscanthus has a high biomass yield, little input 
demands and a high photosynthetic efficiency. It has an early spring emergence, a long 
vegetative phase and its production period is 10 -25 years. Miscanthus recycles its nutrients 
between growing seasons by transporting them to its rhizomes after flowering, which makes the 
plant very resource-use efficient. (Lewandowski et al., 2016; van der Weijde et al., 2017c). 
Furthermore, because miscanthus grows equally well on marginal lands, it does not compete 
with food security (Allwright and Taylor, 2016). Plant developmental processes such as 
flowering and senescence could also be interesting targets for breeding, as they are important in 
promoting nutrient remobilization and therefore improve biomass quality (Clifton-Brown and 
Lewandowski, 2002; Jensen et al., 2017). However, transition from the vegetative phase to the 
reproductive phase diverts the energy for growing biomass to flowering (Jensen et al., 2011). A 
combination of a late but promptly and synchronous senescence, that leaves enough time to 
remobilize plant nutrients to the rhizome, would be ideal.  
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Within Europe, Miscanthus research has mostly focussed on three miscanthus species, M. 
sacchariflorus (2n=4×=76; 4.4 Gb), M. sinensis (2n=2×=38; 5.4 Gb) and M. x giganteus (2n=3x=57; 
6.8 Gb), the latter one being a natural cross between the former two. M. x giganteus is the only 
genotype that is currently commercially available for biomass production. Approximately 
20.000 ha is commercially grown in Europe (Lewandowski et al., 2016). In order to improve the 
interest in, and increase the production area of miscanthus, several issues need to be overcome. 
Firstly, the triploid M. x giganteus is sterile and its propagation has to be performed via rhizomes 
or in vitro. This makes the initial establishment of M. x giganteus very expensive. Additionally, 
the current application of Miscanthus biomass is usage as solid fuel (e.g. pellets) for heat and 
power generation, which is a low value use. Breeding for traits that valorise miscanthus biomass 
(e.g. high saccharification efficiency) in M. x giganteus is significantly limited because of its 
sterile nature (van der Weijde et al., 2017b). This drawback is even more apparent in the context 
of integrated biorefineries and breeding for traits tailored to end-goal dependent qualities. This 
severely limits the potential of M. x giganteus for application in different biobased industries. For 
this reason, plant breeders have taken interest in the fertile species M. sacchariflorus and M. 
sinensis.  

1.3 PHENOTYPIC VARIANCE 
In order for M. sacchariflorus and M. sinensis to be used in breeding programs, an important 
requisite would be to have ample phenotypic variation for important agronomical traits, such as 
yield and biomass quality. Lewandoski et al. (2016) discovered that M. sacchariflorus, M. sinensis 
and novel hybrids from the former species all had genotypes that were able to outperform the 
commercially grown M. x giganteus, which has an average yield of 22 ton DM ha-1 yr-1 (Heaton et 
al., 2004). Other research showed that both M. sinensis and M. sacchariflorus had genotypes with 
large genotypic variation in cell wall composition. Hence, they can be used in breeding programs 
to improve biomass quality (Allison et al., 2011; Zhao et al., 2014). Breeding efforts for better 
cell wall quality and saccharification efficiency have already shown a potential to significantly 
improve the value of miscanthus biomass (Lewandowski et al., 2016). In comparison to M. 
sacchariflorus, Miscanthus sinensis can grow in a larger geographical range and possesses a 
larger variance in traits related to cold tolerance and cell wall quality (Hodkinson et al., 2015; 
van der Weijde et al., 2017c). Additionally, the diploid M. sinensis facilitates genetic research 
relative to the tetraploid M. sacchariflorus, since practices such as allele fixing and 
recombination studies will be less complex (Hodkinson et al., 2015). For these reasons, breeding 
for M. sinensis has gained a higher priority compared to  M. sacchariflorus.  
From biochemical analysis on M. sinensis was reported that approximately 85% of dry biomass 
consisted of cell wall material, of which 46% was cellulose and 31% were hemicellulosic 
polysaccharides (Lewandowski et al., 2016). Other reports show cell wall components range 
from 28–49% for cellulose, 24–32% for hemicellulose and 15–28% for lignin content (Hodgson 
et al., 2010; Zhao et al., 2012). Field trials consisting of 8 diverse M. sinensis genotypes showed 
biogas yields from 441 to 520 ml/g dry matter. However, genotypes with a high conversion 
efficiency were not the most high yielding genotypes. It was concluded that breeding in the 
future should focus on combining both the high-yielding and high biomass quality traits 
(Lewandowski et al., 2016). In a F2 mapping population from parents with contrasting cell wall 
composition it was shown that biomass quality traits had a high heritability. Most biomass 
quality traits had a H2 higher than 0.5, and the highest H2  of 0.62-0.72 was observed for lignin 
content in the cell wall (ADL/cw) (van der Weijde et al., 2017b). In other words, the potential to 
move forward in this direction is feasible.  
Recent characterization of the Wageningen University & Research (WUR) miscanthus collection 
showed a wide range of phenotypical variation for various morphological and biochemical traits 
(Bogers, 2017). The coefficient of variation (CV) for morphological characteristics ranged from 
10.4% for ‘date of flowering initiation’ to 120.7% for stem angle, with an average CV of 36.7%. 
The CV for cell wall traits ranged from 5.8% for cellulose to 46.8% for ‘glucose + xylose yield’, 
with an average CV of 14.9%. Ample variation was found for lignin content with a CV of 12.8%.  
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Analysis of trait combinations showed examples of genotypes with preferable trait 
combinations, indicating that breeding for certain trait combinations is possible. For example, 
plants were found that had a combination of a high yield and a small length, a combination of a 
high stem yield and either an early or a late flowering, and a combination of a high cellulose 
conversion and either a low or a high lignin content. Hence, it can be concluded that the 
Wageningen UR miscanthus collection has a potential for breeding for biobased end uses.  

1.4 EXISTING MOLECULAR TOOLS FOR M. SINENSIS 
Although M. sinensis has preferable characteristics and a high variance in traits important in the 
context of integrated biorefineries, it has unique genetics and breeding objectives that hamper 
the usage of classical breeding strategies. M. sinensis is self-incompatible and therefore has a 
highly heterozygous genome. The genome is large, complex and has undergone genome wide 
duplication (Ma et al., 2012). Furthermore, M. sinensis has a long establishment period and it can 
take two or three years before biomass quality and biomass production are predictive of their 
values at full maturity (Arnoult et al., 2015; van der Weijde et al., 2017a). The combination of 
these unique qualities addresses the necessity for molecular tools in Miscanthus breeding.  
In the past decades, various techniques for dissecting the genotypic determinants of phenotypic 
traits have been implemented in breeding efforts. These include the construction of genetic 
maps, quantitative trait locus (QTL) analyses and genome wide association studies (GWASs). Up 
until now, several (incomplete) genetic maps have been published. In 2002, Atienza et al. used 
RAPD markers to identify 28 linkage groups. This map was incomplete since M. sinensis has 19 
chromosomes. Nevertheless, the map has been useful for the discovery of  a number of QTLs 
(Atienza et al., 2002). In 2012, Swaminathan et al. used 868 RNAseq-markers to produce a 
framework genetic map with 19 linkage groups (Swaminathan et al., 2012). However, this 
framework genetic map had a modest marker density which limited the usefulness for QTL 
mapping and marker assisted selection. In 2012, Ma et al. used Genotyping-By-Sequencing (GBS) 
to create a genetic map that identified 19 linkage groups based on 3745 markers (Ma et al., 
2012). Since marker data from this research was proprietary, Liu et al. created a new high-
density map with accessible SNP markers. Their map was based on 3182 SNPs, with an average 
intermarker spacing of 0.8 cM and 0.9 cM for respectively the female and the male map (Figure 2 
(Liu et al., 2016). 
More recently, Van der Weijde et al. (2017) published a novel genetic map based on a GBS 
approach. Their male map consisted of 242 SNP markers and had an average intermarker 
spacing of 8.0 cM. Their female map consisted of 322 SNP markers and had an average inter-
marker spacing of 6.7 cM (van der Weijde et al., 2017b).  The construction of the 
abovementioned maps has been facilitated by anchoring the DNA sequences and the linkage 
groups to the Sorghum bicolor genome. Furthermore, this anchoring facilitated a better 
interpretation of QTL mapping results and opened the possibility of comparative genomic 
studies. This resulted in the discovery of M. sinensis QTLs related to agronomic performance, 
combustion quality, biomass productivity, conversion efficiency characters and the zebra stripe 
phenotype (Gifford et al., 2015; Liu et al., 2016; Slavov et al., 2014; van der Weijde et al., 2017b). 
Some of these traits were found to have a very high number of QTLs, such as the discovery of 86 
QTLs related to biomass composition (van der Weijde et al., 2017b). This indicates certain traits 
can have a high genetic complexity and a strong quantitative genetic control.  
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FIGURE 2: HIGH-DENSITY GENETIC MAP WITH ACCESSIBLE SNP MARKERS, ADAPTED FROM LIU ET AL. (2016) 
“GENETIC DISTANCE SHOWN ON THE LEFT IN CENTIMORGANS (CM). LINKAGE GROUP NUMBERS SHOWN AT THE BOTTOM (LINKAGE 
GROUP NUMBERS BASED ON THE GENETIC MAP FROM SWAMINATHAN ET AL. (2012). HORIZONTAL LINES REPRESENT ESTIMATED 
POSITIONS OF THE GENETIC MARKERS. MARKER TYPE IS SHOWN BY COLOUR (RED, GOLDENGATE SNPS; BLACK, RAD-SEQ SNPS; GOLD, 
HETEROZYGOUS IN M. SINENSIS ‘STRICTUS’ ONLY; GREEN, HETEROZYGOUS IN M. SINENSIS ‘KASKADE’ ONLY; BLUE, HETEROZYGOUS IN 
BOTH M. SINENSIS ‘STRICTUS’ AND M. SINENSIS “KASKADE’).” 

 
 

1.5 GENOMIC SELECTION 
1.5.1 NEED 
The emergence of next generation sequencing (NGS) techniques has led to the development of 
fast, cheap, high-throughput genome-wide SNP genotyping platforms. The development of 
methods such as restriction site associated DNA sequencing (RadSeq) and genotyping-by-
sequencing (GBS) facilitated an even more efficient marker discovery. Both methods have been 
used for SNP discovery and map construction in M. sinensis, as described in section 1.4. On the 
whole, these methods contributed to the identification of over 10,000 QTLs in 12 mayor crops. 
However, from those thousands of QTLs, only a few have been actually used for marker assisted 
breeding programs (Bassi et al., 2016; Bernardo, 2008). A possible explanation is that, when 
dealing with complex traits, single markers often capture a too small part of the genetic variation 
for being useful in marker assisted breeding. An example of a complex trait is cell wall 
composition, for which plants devote approximately 10% of their genome, which is around 2500 
genes (Carpita and McCann, 2008). In addition to these difficulties related to the complexity of 
traits, M. sinensis also has a large, complex genome that has undergone genome-wide 
duplication, which complicates interpretation of genotypic data and makes the search for 
informative SNPs and QTLs challenging (Ma et al., 2012).  
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1.5.2 THEORY 
To make better use of the (increasing) availability of high-density, genome-wide markers a 
concept was proposed to use all genome-wide markers in a model to predict (complex) plant 
traits as the sum of all (minor) genetic effects. This approach that has been called genomic 
selection (Meuwissen et al., 2001). Genomic selection has a potential high advantage when 
breeding for complex traits that are regulated by multiple QTLs, such as yield and cell wall 
composition (Poland et al., 2012).  
To perform genomic selection (GS), a population will be both phenotyped and genotyped, which 
will be referred to as the training population (TP). This training population will be used to create 
and train a statistical model that associates allelic data with phenotypic traits. The model then is 
used to predict a genomic estimated breeding value (GEBV) of non-phenotyped individuals, 
which are referred to as the breeding population (BP). The GEBV is calculated as the 
combination of useful loci that are in the genome of the individual, and gives an estimation for 
the usefulness of an individual as a breeding parent. Individuals with predicted superior 
phenotypes can be selected as parents in a very early stage and the duration of the breeding 
cycle is reduced drastically because no phenotyping is needed.  
Parallel to the breeding program, the effectiveness of the prediction model needs to be assessed. 
This is done with a set of individuals that are genotyped and phenotyped, which is referred to as 
the validation population (VP). The GEBV for individuals of this population is calculated and its 
correlation to the actual observed phenotypic value indicates the accuracy of the model. 
Phenotypic information from the VP can be used to update and re-calibrate the model. 
Assessment of the effectiveness of the model using real data can be performed in three methods 
(Sallam et al., 2015).  
 

Subset validation:  The TP and VP are from the same set of lines and cross validation (e.g. 100 
times 10-fold cross validation) is used. In this method, TP and VP are from the same 
environment, G x E interaction is not taken into account, so the accuracy is upwardly biased.  
 

Interset validation:  The TP and VP are predefined sets, and could be either environmentally 
defined sets (i.e. TP and VP have same genotype but have different environment) or 
chronologically defined (i.e. TP is an older line and is used to predict VP, which is either in the 
same or different environment)  
 

Progeny validation: The TP includes parents (or grandparents) from the VP (which indirectly 
means they are in different environments)  
 
 
1.5.3 EXPERIENCES 
Genomic selection is based on the estimation of the effect of a given marker on the phenotype of 
an individual. There are several statistical models that can be used to calculate estimations of the 
marker effects. The difference between models is based on their assumptions when treating the 
variance of complex traits. Heslot et al., compared 11 genomic selection models on 8 different 
datasets and reached the conclusion that most models had a very similar accuracy for the given 
traits (Heslot et al., 2012).  
Since genomic selection was described in 2001, many studies and reviews have been published 
to describe the effectiveness and discuss the prospects in plant breeding. Comparison of GS 
research in multiple crops and for several traits showed a very high potential for GS usage in 
plant breeding (Bhat et al., 2016). There are several factors that can influence the prediction 
accuracy of a GS model. Ten factors and their effect are described in Table 1.  
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TABLE 1: FACTORS THAT CAN INFLUENCE PREDICTION ACCURACY AND THEIR EFFECT (BASSI ET AL., 2016; BHAT ET AL., 2016; POLAND ET 
AL., 2012; SALLAM ET AL., 2015) 

Factor Effect 

Size of TP A bigger training population results in a higher prediction accuracy 

Composition TP More relatedness between TP and BP results in a higher prediction accuracy 
A higher population structure results in a lower prediction accuracy 

H2 trait More heritability of a trait results in higher prediction efficiency 
More GxE interaction results in a lower prediction efficiency 

Genetic architecture 
trait 

Complex trait with high number of loci results in a lower prediction efficiency 

Statistical model Different statistical models result in different prediction accuracies 

Validation method Only validating within a similar environment (e.g. subset validation) will result in 
overestimation of H2 and therefore overestimation of prediction efficiency 

Marker type Markers should be equally distributed over the genome. Both GBS and RadSeq have 
been proven to be effective for GS. 

Marker density The density should be high enough so each QTL will be in LD with a marker 
If multiple markers are linked to a QTL, its effect on a trait will be overestimated 

Filtering of markers Choice of the minimal minor allele frequency (MAF) and maximal missing data 
frequency influence the amount of (useful) markers for the GS model 

Genotype imputation 
method 

Missing marker data can be imputed in several ways (e.g. heterozygous value; mean 
imputation) and this can affect the prediction of the marker effect 

 
 
To date, only one construction of a genomic selection model for M. sinensis has been reported 
(Slavov et al., 2014). In this research, RadSeq genotyping was used on a population of 138 
genotypes and 20,000 SNPs were discovered. A model was constructed for 17 phenology, 
biomass and cell wall traits. Slavov et al. reported prediction accuracies ranging between 0.05 
(dry matter) and 0.95 (moisture), with an average of 0.57 for the 17 studied traits. These results 
indicate the potential of genomic selection for miscanthus breeding programs.  
 
Since genotyping performances have continued to improve, new predictions based on a higher 
density of SNPs are expected to have improved prediction accuracies. As described in section 
1.3, the Wageningen UR miscanthus collection has a high variance in morphological and biomass 
quality traits that are important for the purpose of a biobased economy. Traits such as the 
saccharification efficiency can be predicted, which haven’t been modelled before in GS studies in 
miscanthus.  
A goal for breeding programs is to breed for new varieties that have a combination of several 
preferred characteristics, such as high yield, high conversion efficiencies and an optimal 
flowering time. Some of these traits are complex and can consist of dozens of QTLs. 
Furthermore, it takes two years before cell wall composition (i.e. biomass quality) and biomass 
production are predictive of the yield at full maturity. For an even more reliable prediction for 
these, and especially other traits, screening has to be performed after at least the third year 
(Arnoult et al., 2015; van der Weijde et al., 2017a).  Because of these reasons, genomic selection 
has the potential to be a useful, cost- and time-efficient tool for the Wageningen miscanthus 
breeding program.  
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2 OBJECTIVES  

The goal of the Wageningen UR miscanthus breeding program is to breed for a lignocellulosic 
crop that is better suited for the biobased economy. There is a need for novel, improved varieties 
with a higher morphological and biochemical quality. This implies breeding for low biomass 
recalcitrance and high conversation efficiencies. This reduces the processing costs, which is a 
limiting factor for the production of miscanthus on a larger scale.  
 

This research is performed parallel to other research projects, which have as an overall goal to 
obtain more insight into the phenotypic and genotypic diversity of the Wageningen UR 
miscanthus collection and to develop novel breeding tools to improve the Wageningen 
miscanthus breeding program. This research has a specific goal to construct a genomic selection 
model as a novel breeding tool for the Wageningen miscanthus breeding program. The research 
will have 3 specific objectives:  
 

1. To obtain updated information on the degree of phenotypic diversity (both, in 
morphological and biochemical quality traits) of the Wageningen UR miscanthus 
collection 

 

2. To perform the molecular characterization and obtain insights into extent of genetic 
diversity of the Wageningen UR miscanthus collection 

 

3. To construct and validate a genomic selection model to predict GEBVs for various 
morphological and biochemical traits in M. sinensis 
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3 MATERIALS AND METHODS 

3.1 PLANT MATERIAL 
The experimental population in this research is the Wageningen UR miscanthus collection. This 
collection consists of 128 plots, containing 106 M. sinensis genotypes, 13 M. sacchariflorus 
genotypes, 5 M. x giganteus genotypes and 4 other hybrid genotypes. The accessions originate 
from various international gene banks and breeding programs and show a high amount of 
phenotypic diversity. The collection was planted in 2012  (Wageningen, the Netherlands). Each 
plot consists of 16 plants  (i.e. a square of 4x4 plants).  

3.2 GENOTYPING 
DNA was isolated from random young leaves from the middle plants within the plot for 94 M. 
sinensis plants from the collection. RAD-SEQ sequencing was performed by BGI (Shenzen, 
Guangdong, China). Briefly, DNA samples were cut with the restriction enzyme EcoR1 and 
unique adapters were ligated to the ends of the DNA fragments. DNA samples were pooled, 
purified and multiplied (PCR). DNA was sequenced using Ilumia HiSeq X10/4000 systems. A 
total amount of 371.52 Gb clean data was generated in the project. The quality of the obtained 
marker data was lower than expected. Unfiltered SNP calling resulted in 88000 SNPs, but after a 
50% call rate threshold only 2600 SNPs remained. When a minor allele frequency (MAF) 
threshold of at least 3 allele copies of the minor allele was applied, only 2000 SNPs remained.  
M. sinensis is still an orphan crop with little genomic resources. Therefore it is possible that the 
RAD fragments did not fit into the standard SNP calling pipeline and results were limited. Near 
the end of this thesis, an early version of the M. sinensis genome was published (Phytozome, 
2018). BGI redid SNP calling using the recently published reference genome. This resulted in 
identification of over 8.1 million SNPS, of which 7.0 million were located on chromosomes and 
1.1 million on scaffolds. Unfortunately, since the dataset arrived near the end of this thesis it 
could not be used for the analyses in this report.  

3.3 PHENOTYPING 
The miscanthus breeding program has been characterized for phenotypic traits relevant to plant 
morphology and biochemistry for several years. Continuing this work, a total of 14 traits have 
been measured across 2017 (Table 2). The methods that were used are similar to the methods 
used by Boogers (2017) and van der Weijde (2017a). Briefly, in January the four middle plants 
from the 5th growing season were harvested, dried (60oC) and weighed. Starting from July, the 
plants from the 6th growing season were checked thrice a week for the first flowering plant (i.e. 
the moment the first flowering head was opening) and subsequently for the date that half of plot 
had a flowering plant. In the first week of October the number of stems per plant (> 30 cm) were 
counted for the 4 middle plants of the plot. Subsequently, plot lodging was characterized by a 
categorical score of 1-3, where: 1 was no lodging, 2 slight lodging and 3 severe lodging. In week 
42 and 43 of October a harvest of 3 randomly chosen flowering stems from each of the 4 middle 
plants was performed, cutting 3-4 cm above ground level (i.e. a duplicate harvest). Leaves and 
flowers were stripped from the stem and for all three the fresh weight was measured. For the 
stem, length, node number and internode diameter were measured (i.e. thinnest diameter of 
middle internode). Stems where cut in pieces of 3-4 cm. Stems, leaves and flowers were dried 
(60oC, 48h) and dry weighs were measured. Dried stems were milled using a hammer mill with a 
1 mm screen.   
Cellulose, hemicellulose and lignin contents of the stem cell wall were estimated by determining 
NDF, ADF and ADL contents (in duplicate) using Ankom technology. Samples and buffers were 
prepared according to protocols developed by Ankom Technology (2017a; 2017b; 2017c). For 
step 8 and 9 in the  ADL protocol, treatment was performed by placing 1L Schott flasks 
containing 24 bags covered with 72% H2SO4 in a shaker for 3 hours at 120rpm at a 45° angle.  
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Enzymatic saccharification efficiency was measured similar to the protocol described by Van der 
Weijde et al. (2017a). The preeminent deviation was the usage of an alternative enzymatic 
cocktail for digestion, since the original cocktail became unsuitable for independent research 
purposes. Briefly, samples were prepared by weighing 500 mg stem subsample in F57 Ankom 
filter bags (in triplicate). The biomass was washed with deionized water (3x 5min, ~60oC) for 
the removal of soluble sugars, after which the samples were folded and placed in 50ml Falcon 
tubes. An alkaline pre-treatment was performed (2 hours incubation in 2% NaOH, at 50oC at 160 
rpm) after which the samples were thoroughly washed and neutralized. To determine 
saccharification efficiency the pre-treated biomass was hydrolysed by a 150 µl cellulase enzyme 
blend (1.2 g/ml; Sigma-Aldrich, Saint Louis, MO, US) and 15 µl endo-1,4-ß-xylanase M1 (1,700 
U/mL; Megazyme, Bray, IE), for 48 hours in an incubator shaker at 50oC at 160 rpm. Reactions 
were carried out in 44 ml 0.1M sodium citrate buffer (pH = 4.8), containing 0.375 g/L sodium 
benzoate to prevent microbial contamination. After saccharification the enzymatic activity was 
stopped by incubation for 5.5 minutes at 99oC at 300 rpm. Samples were centrifuged and diluted 
50x after which the sugar release was quantified using High-Performance Anion-Exchange 
Chromatography (HPAEC) analysed by a Dionex system equipped with a CarboPac PA1 column 
and a pulsed amperometric detector (Dionex, Sunnydale, CA).  
 
TABLE 2: PHENOTYPIC TRAITS OF INTEREST, MEASURED IN 2016 AND 2017 (RESP. GROWING YEAR 5 AND 6) 

Trait Definition 

Stem number Mean  number of flowering stems per plant (cm) 

Stem length Mean stem length (cm) 

Internode diameter Mean diameter of middle internode (m) 

Internode length Mean internode length per plant (cm) 

Stem yield Total dry weight of 12 flowering stems (g DW) 

Leaf yield  Total dry weight of the leaves of 12 flowering plants (g DW) 

Flower yield  Total dry weight of the flowers of 12 flowering plants (g DW) 

Biomass yield  Total dry weight of the 4 middle plants per plot after harvest (g DW) 

Initiation Flowering Date of flowering initiation(Julian Day Number, JDN) 

50% Flowering Date on which 50% of the plants have a flowering stem (Julian Day 
Number, JDN) 

Cellulose  Cellulose content, gravimetrically measured (% dry weight) 

Hemicellulose  Hemicellulose content, gravimetrically measured (% dry weight) 

Lignin  Lignin content, gravimetrically measured (% dry weight) 

CelCon Percentage of cellulose converted to glucose (% dry weight) 

3.4 DATA ANALYSIS 
Phenotypic data analyses have been performed using Genstat v18 (VSN_International, 2015). 
Missing data for flower yield and total biomass yield were estimated via their correlation to 
‘stem yield’ and ‘stem yield x stem number’, respectively. Plants that did not flower were 
assigned the highest observed value. Outliers in the saccharification efficiency experiments were 
left out for analyses.  
Summary statistics were calculated for all phenotypic data from the 4th and 5th growing season. 
ANOVAs were performed for each trait using the different growing season as blocking structure. 
Broad sense heritability’s were estimated as  
 

𝐻2 =  
𝑉𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒

𝑉𝑃ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒
=  

𝑀𝑆𝑝𝑙𝑜𝑡

𝑀𝑆𝑝𝑙𝑜𝑡+𝑀𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙
                                 (Equation 1) 

 

 
Histograms of the phenotypic variance were generated using the R package ggplot2.  
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For each SNP, the sequence of the 82bp RAD fragment from which the SNP was called was 
known. Geneious v10.0.9 (Kearse et al., 2012) was used to perform a local BLAST of these 
sequences. First a BLAST database was built for a custom program from an early release of the 
Miscanthus genome (Phytozome, 2018). Afterwards, the sequences were BLASTed against this 
database via the ‘Megablast’ method, to obtain a ‘query-centric alignment’ with a ‘matching 
region with annotations’. The output showed the best hits for each sequence on the genome, 
with information about the position (e.g. chromosome, hit start) and their match (e.g..%  
Pairwise Identity, E value and grade).  
 
R base was used to perform a principal component analysis. Genomic prediction was performed 
using custom scripts, adapted from scripts developed by Mario Callus from the WUR Animal 
Breeding and Genetics department (Appendix 1). Additionally, genomic prediction was 
performed using the rrBLUP package (Endelman, 2011). Custom scripts used a leave-one-out 
cross validation whereas the rrBLUP package used a larger subset validation with a 
customizable amount of cycles. The default parameters for the custom scripts were 2596 SNPs 
with an SNP calling of > 0.5, without removal of markers below MAF threshold, using custom 
broad sense heritability estimates and a leave-1-out cross validation.  
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4 RESULTS AND DISCUSSION 

4.1 THE WUR MISCANTHUS COLLECTION DISPLAYS A BROAD RANGE OF PHENOTYPIC 
DIVERSITY THAT IS HIGHLY HERITABLE 

Since M. sinensis is still an orphan crop there is an urge to use novel breeding tools that can 
accelerate breeding efforts. These efforts should aim to design a crop varieties with favourable 
characteristics that can be adapted to the requirements of biorefineries. Therefore it is of high 
importance to establish diverse germplasm collections, characterizing their range of phenotypic 
diversity and identifying the genetic determinants thereof.  
The WUR miscanthus collection has been phenotyped during the 4th and 5th growing season. All 
traits show a broad range of phenotypic diversity, with the coefficient of variation ranging 
between 6.8% for lignin and 63.0% for stem yield (Table 3). The highest variation is measured 
for yield related traits, which is promising since yield improvement is one of the primary 
objectives of international miscanthus breeding (Weijde et al., 2013). Although the coefficients 
of variation are generally lower for cell wall quality traits, there is still ample variation between 
genotypes. The observed variation in hemicellulose and lignin content was in accordance with 
previous reports (Allison et al., 2011; van der Weijde, 2016). Cellulose content exceeded the 
reported range of 26-49%. Similarly, cellulose conversion efficiency exceeded the reported 
range of 32-50%. These findings can be caused by a difference in phenotyping,  environmental 
effects, the availability of novel germplasm in our experimental population or any combination 
of these.  
 
TABLE 3: AVERAGES OF MORPHOLOGICAL AND BIOCHEMICAL TRAITS (GROWING SEASON 2016 AND 2017) 

Summary statistics  Mean  Minimum  Maximum  CoV 

Stem number 68 12 206 46.7% 

Stem length 183 66 298 25.9% 

Internode diameter 4.81 2.10 7.66 22.7% 

Internode length 19.1 9.7 34.7 18.0% 

Stem yield  142 18 456 63.0% 

Leaf yield  84.0 6.4 265.2 57.5% 

Flower yield  16.4 2.9 42.0 51.9% 

Biomass yield  1904 213 4464 45.5% 

Initiation Flowering 233 183 282 10.9% 

50% Flowering 242 186 283 11.4% 

Cellulose (%) 50% 40% 57% 6.8% 

Hemicellulose (%) 30% 22% 35% 8.4% 

Lignin (%) 10% 5% 15% 19.5% 

CelCon(%) 50% 30% 79% 26.9% 
 
Most morphology-related traits tend to follow a normal distribution, with the distributions of 
both years overlapping each other (Figure 3). Only one trait, 50% flowering, follows a clear 
different pattern that resembles a bimodal distribution. This flowering behaviour can be 
explained by a significant correlation between 50% flowering and the maximum temperature 
per day (Bogers, 2017). Biomass yield is normally distributed, but the 5th growing season has 
relative higher yields. Similarly, traits related to cell wall quality all tend to follow a normal 
distribution, but the distribution mean of both years differ (Figure 4). For the 5th growing 
season, plants had on average higher cellulose, higher lignin but lower hemicellulose relative to 
the previous year. The phenotypic differences in biomass yield and cell wall composition 
between both years can be caused by several factors.  
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Genetic, agronomical (e.g. harvest date), climatic and other environmental factors have been 
shown to influence biomass production (Arnoult and Brancourt-Hulmel, 2015) and cell wall 
composition of Miscanthus (Allison et al., 2011; Golfier P, 2016). An alternative explanation is 
that the plants had not fully matured and traits were not stable yet. Comparing the similar 
distributions per year for morphology-related traits to the shifted distributions for the cell wall 
quality related traits reveals  that, although on a morphological level the plants look similar the 
changes on the biochemical level can be significant. 
 
 

 
FIGURE 3: EXTENT OF PHENOTYPIC VARIATION IN IMPORTANT MORPHOLOGICAL TRAITS IN GROWING SEASON 2016 AND 2017 

 
 

 
FIGURE 4: EXTENT OF PHENOTYPIC VARIATION OF CELL WALL CHARACTERISTICS IN GROWING SEASON 2015 AND 2016 

 
The two distributions for cellulose conversion efficiency have distinct means, which is a result of 
the usage of two different enzymatic cocktails. This resulted in a  high range of values that 
explains the high coefficient of variance for CelCon compared to the other cell wall quality traits 
(Table 3). Both enzymatic cocktails have a characteristic enzymatic performance and genotypes 
could perform differently between the different treatments. Therefore one might argument that 
the different measurements can be considered different traits. However, although the broad 
sense heritability (H2) estimates are lowest of all traits they still show that a considerable 
amount of the phenotypic variation can be explained by the variation in the genotypes (Table 4). 
Future experiments will show whether the H2-estimate for CelCon was realistic or if it was an 
underestimation caused by the measurements differences.  
 
 



 

 
Page 14  

The different ranges in the enzymatic saccharification experiment address the need for robust 
phenotyping protocols. Robust phenotyping protocols will improve phenotyping precision and 
therefore improve the power of breeding efforts. At a more general level, robust and uniform 
phenotyping protocols will facilitate the comparative value of data across different years, 
different environments and even different studies (Arnoult and Brancourt-Hulmel, 2015). 
Another phenotyping protocol that can be improved within this study is the separation of leaves 
and stems after harvest. Incomplete leaf removal will result in overestimations of stem yield. 
Moreover, leaf and stem can have different biochemical composition that may be masked when 
not separated completely (da Costa et al., 2014).  
 
 
TABLE 4: BROAD SENSE HERITABILITY ESTIMATES 

H²: 
Stem number 0.89 
Stem length 0.94 
Internode diameter 0.92 
Internode length 0.84 
Stem yield 0.89 
Leaf yield  0.93 
Flower yield  0.85 
Biomass yield  0.84 
Initiation Flowering 0.89 
50% Flowering 0.96 
Cellulose (%) 0.96 
Hemicellulose (%) 0.91 
Lignin (%) 0.83 
CelCon (%) 0.77 

 
The high degree of phenotypic variation that is observed from Table 3, Figure 3 and Figure 4 can 
be largely attributed to variation in the genotypes (Table 4). The H2-estimates have an average 
of 0.89 and range from 0.77 for CelCon up to 0.96 for Cellulose and 50% flowering. In practice, 
these H2-estimates show that a trait is likely to behave similar in the next growing season. 
Arnoult and Brancourt-Hulmel (2015) reviewed several studies on miscanthus and concluded 
that all traits had a high contribution of the genotype to the phenotypic variability. Nevertheless, 
the H2-estimates observed in this study are higher expected. Slavov et al. (2014) reported an 
average H2 of 0.64, with heritabilities for cellulose, hemicellulose and lignin content of 0.79, 0.60 
and 0.66, respectively. These differences in trait heritability are most likely caused by 
differences in experimental design. The study population of Slavov et al. followed a randomized 
complete block design with four blocks and one replicate per genotype per block, with the plants 
grown at 1.5x 1.5 m spacing. The WUR miscanthus collection has no biological replicates but 
each plot contains 16 plants to avoid border effects. In this study the growing season was used 
as blocking structure to estimate heritabilities, whereas Slavov et al. used biological replicates as 
blocking structure. Whether variation between locations in the field, or variation between years 
will result in a bigger environmental variation is dependent on both the specific conditions each 
year and on the specific conditions across the experimental field. Regarding research standards 
on experimental designs, it would be advised to have biological replicates in a randomized 
design to be able to cancel out site-specific environmental effects. Nevertheless, the relatively 
high heritabilities observed in this study show the significance of avoiding border effects to 
reduce environmental variation and its positive effect on heritabilities.  
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FIGURE 6: CORRELATION BETWEEN LIGNIN CONTENT AND 
CELLULOSE CONVERSION EFFICIENCY 

 

 
 
Strong correlations were observed between traits, with as strongest a negative correlation 
between lignin content and cellulose conversion efficiency (Figure 5,Figure 6). This negative 
correlation is widely known in literature, and it is why reduction of lignin content has been 
targeted as another of the major breeding goals for Miscanthus (Arnoult and Brancourt-Hulmel, 
2015; Golfier P, 2016; Grabber, 2005; Weijde et al., 2013). Another strong negative correlation is 
observed between lignin content and hemicellulose content. Van der Weijde et al. (2017c) have 
suggested that hemicelluloses and lignin have similar functions regarding cell wall rigidity. 
Hence, reductions in lignin content can be compensated by increase of hemicellulose content 
and therefore do not necessarily lead to lower cell wall rigidity and plant fitness. This theory was 
supported by a positive correlation between hemicellulose content and cellulose conversion, 
which is also observed in this study.  
 
In conclusion, all traits characterized within the WUR miscanthus collection show a broad range 
of phenotypic diversity with a high amount of variation that can be used in breeding programs. 
Heritability estimates have shown that this phenotypic variation for all traits can be largely 
attributed to the genotypic determinants. This shows even better the high quality and 
possibilities the WUR miscanthus collection possesses for breeding novel improved miscanthus 
accessions.  
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FIGURE 5: PHENOTYPIC RELATIONSHIP MATRIX FOR IMPORTANT BIOBASED-
RELATED TRAITS, INSIGNIFICANT RESULTS HAVE BEEN SET TO ZERO. A FULL 
PAGE MATRIX OF ALL TRAITS IS SHOWN IN APPENDIX 2 
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FIGURE 7: PRINCIPAL COMPONENT ANALYSIS OF THE GENOMIC RELATIONSHIPS, 
LABELS ARE PLOT NUMBERS, FULL PAGE IMAGE IN APPENDIX 3 

4.2 MOLECULAR ANALYSES SHED LIGHT ON GENETIC RELATIONSHIPS, BUT ARE 
CHALLENGED BY A LARGE, REPEAT-RICH GENOME 

The previous section has shown the WUR miscanthus collection has a high phenotypic diversity. 
To facilitate breeding efforts and usage of molecular breeding tools it is valuable to have insight 
into the genetic diversity of the experimental population. Principal component analysis on 2600 
SNPs shows that two principal components are already well able to discriminate between the 
accessions (Figure 7). One dense cluster of genotypes is located at the right-upper corner of the 
plot. Another group is located in the left upper corner (i.e. which shows clear distinction on PC1). 
Most of the remaining genotypes are distributed over PC2, mostly on right half of PC1. The two 
first principal components (PCs) explain a relatively large proportion (38.2%) of the variation. 
This can be caused by the low amount of markers that was used (2600 SNPs). When 22,000 and 
80,000 SNPs were used for analysis, the total variation explained by the first two PCs changed to 
26.2% and 17.3%, respectively. This means that the addition included markers that were 
uncorrelated to the initial markers. However, because the extra SNPs that were added had a very 
low call rate with up to 90% missing data, these analyses should be repeated with a larger 
amount of markers of higher quality.  
 
Interestingly, the PCA shows multiple occurrences of genotypes originating from the same 
research project grouping together. One clear example is the group of 111 up to 128 on the left-
upper corner that consist mostly of individuals from the ‘1997’ and ‘1998’ groups. Within the 
experimental field, individuals from similar research projects have been planted together in a 
consecutive order. These findings indicate that several of these consecutive plots have relatively 
high genetic similarity. It is known that the environment can have a significant effect on the M. 
sinensis phenotype (Allison et al., 2011; Arnoult and Brancourt-Hulmel, 2015; Golfier P, 2016). 
Physically close positioning of genetically close accessions can lead to an inability to 
discriminate between genotypic or environmental effects. To illustrate this a subset including 
the individuals from the ‘1997’ and ‘1998’ groups was compared to the remaining accessions. 
Both subsets show a different distribution for stem length and cellulose content (Figure 8). 
Certain molecular breeding tools such as genomic prediction use genomic relationships to 
predict phenotypes. If genetically similar individuals experience similar environmental effects 
predictions will be more accurate, which would be an overestimation. Incorporating a 
randomized design into a future experimental field could overcome these problems.   
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Alignment of the 82bp RAD fragments against the recently published reference genome showed 
a relatively balanced genome coverage (Figure 9). Contrary to literature, no bias for putative 
centromeric regions was detected (Slavov et al., 2014). Slavov et al. performed RAD-sequencing 
with a methylation sensitive restriction enzyme and already suggested that usage of multiple 
restriction enzymes with varying sensitivities to methylation could mitigate the bias in SNP 
detection. In this study it is shown that usage of the methylation insensitive EcoRI resulted in an 
improved genome coverage. However, the importance of a balanced genome coverage is 
debateable. For sorghum bicolor a high diversity was observed in gene-rich euchromatic regions. 
Heterochromatic pericentromeric regions showed low genetic diversity and low recombination 
rates (Evans et al., 2013). Since the Miscanthus genome is similar to the Sorghum bicolor genome, 
similar patterns in gene density between euchromatic and pericentromeric heterochromatic 
regions can be expected. Therefore a lower SNP coverage in pericentromeric regions might not 
be an issue for molecular studies. In Zea mays, trait-associated SNPS were found to be 
particularly enriched in nongenetic regions within 5kb upstream of genes. These regions are 
often related to regulation of gene expression (Yu et al., 2012). However, these intergenetic 
regions are often targeted for methylation, which in Zea mays can be up to 50% of cytosine being 
methylated (Suzuki and Bird, 2008). If the genetic organisation within the Miscanthus genome is 
comparable to Z. mays, usage of a methylation sensitive enzyme may prevent trait-associated 
SNPs from being detected. Considering these findings, it has yet to be determined which 
restriction enzymes would be optimal to obtain a markers set that yields most information for 
molecular studies.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 9: DISTRIBUTION OF SNPS FOR ALL 19 CHROMOSOMES OF M. SINENSIS 

FIGURE 8: PHENOTYPIC DISTRIBUTION OF SUBSET ‘1997’ AND ‘1998’ COMPARED TO THE REMAINING ACCESSIONS FOR THE TRAITS 
STEM LENGTH AND CELLULOSE CONTENT 
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From BLASTing the RAD-fragments it was observed that, in the majority of the cases, not only 
the best hit but also successive hits had a high similarity to regions of the genome (Table 5; 
Table 6). It is known M. sinensis evolved from a genome wide duplication in its progenitor, which 
was closely related to a Sorghum ancestor (Ma et al., 2012). However, a single genome 
duplication would not explain the observed high similarities. Miscanthus shares a similar 
genome structure to maize, which also had a genome duplication in the recent past (Ma et al., 
2012; Schnable et al., 2012). The large genome size of maize has been explained as the result of 
transposon amplification. Long terminal repeat (LTR) retrotransposons can constitute to 75% of 
the maize genome (Schnable et al., 2009). In comparison, the sorghum genome contains 
approximately 55% LTR-retrotransposons, whereas the relatively small rice genome contains 
26% LTR-retrotransposons. For sorghum, a repeat content of approximately 61% was reported 
(Paterson et al., 2009). Aside from a large number of LTR retrotransposons in Sorghum, copy 
number variations were detected in several thousand genes. Some of these genes could be 
related to basic biological functions and even bio-energy related traits (Paterson et al., 2009). 
These findings shed light onto the similarity within genomes of grasses and can explain the high 
amount of highly similar BLAST hits. In future, databases such as Grassius that integrate gene 
regulatory information for maize, rice and sorghum and will facilitate Miscanthus genetic 
research and improve knowledge of regulatory genes in Miscanthus (Jakob et al., 2009). 
 
  
 

TABLE 5: FIRST 4 BLAST HITS FOR RAD-FRAGMENT ‘RECORD_2233’ 

HIT 
SEQUENCE 
NAME 

SEQUENCE 
LENGTH 

HIT START HIT END 
% PAIRWISE 
IDENTITY 

1 Chr14 82 27,104,280 27,104,361 99.40% 
2 Chr13 82 29,143,087 29,143,168 98.20% 
3 Chr01 82 13,892,769 13,892,688 98.20% 
4 Chr13 82 29,719,085 29,719,166 98.20% 

 

 

TABLE 6: AVERAGES OF THE 4 BEST HITS FOR BLASTING THE RAD-FRAGMENTS AGAINST THE M. SINENSIS REFERENCE 

HIT 
AVERAGE (%) 
PAIRWISE 
IDENTITY 

AVERAGE 
E VALUE 

AVERAGE 
GRADE 

TOTAL 
HITS 

1 98.82% 4.00E-16 98.57% 2501 

2 96.64% 4.00E-16 93.79% 1713 

3 96.08% 4.00E-16 92.91% 866 

4 96.18% 4.00E-16 93.95% 740 
 
 
 
The genomic information obtained in this study gave a first insight into the genetic relationships 
within the experimental population and displayed a promising genome coverage. However, it 
was shown that genetic studies using the repeat-rich M. sinensis genome are challenging and the 
alignment results are not set in stone. Future genetic studies into the reference genome will 
provide a deeper understanding in the repeatability and homology of the M. sinensis genome.  
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4.3 EXPLORATORY FINDINGS ON GENOMIC PREDICTION ACCURACIES AND THE 
DETERMINING PARAMETERS THEREOF 

It has been shown that the WUR miscanthus collection has a high degree of phenotypic variation, 
with high estimates of heritability. Sequencing results of 94 M. sinensis genotypes had a lower 
quality than expected but had a relatively balanced distribution across the genome and 
genotypes could be distinguished based on their genetic relationships. Therefore it was 
concluded that the WUR miscanthus collection has potential to be used in M. sinensis breeding 
programs. However, as discussed in the introduction, classical breeding strategies for M. sinensis 
breeding are slow and there is a strong urge for molecular genetic tools. Genomic Selection has 
been widely regarded as a promising crop breeding tool and after first tests for M. sinensis it was 
concluded that genomic selection could be immediately applied in breeding programs (Slavov et 
al., 2014). 
In this study the potential of genomic selection for the WUR miscanthus collection was assessed. 
Briefly, genome estimated breeding values (GEBVs) of individuals were predicted based their 
genotypic relationships with other individuals. These GEBVs were correlated with the real 
phenotypic value to estimate prediction accuracies (Figure 10). Generally, prediction accuracies 
were high under default settings (Table 7). Prediction accuracies had an average of 0.51, ranging 
from 0.32 for lignin content to 0.72 for stem length. The average prediction accuracy of 0.51 in 
this study is lower than the average prediction accuracy of 0.57 reported by Slavov et al. This 
might be because different traits were measured, but it is most likely caused by the larger 
amount of better quality markers Slavov et al used.  
The effect of enlarging the set of markers to 22,500 or 82,000 SNPs was trait-dependent. The 
effect could be either positive (e.g. stem number), negative (e.g. lignin) or little effect at all (e.g. 
stem length). Added markers can contain new useful information that can be used for a better 
prediction. On the other hand, adding low quality markers can also add a ‘noise’ that reduces 
predictive abilities (M. Callus, personal communication). This addresses the importance of high 
quality marker data with a high call rate. Removal of SNPs that were below M.A.F-threshold had 
no effect on prediction accuracies. This is in accordance with other studies. Nevertheless, in 
large datasets removal of SNPs below M.A.F.- threshold is arbitrary to correct for mistakes in 
SNP calling (M. Callus, personal communication). Using a smaller training population (88 
genotypes) to predict a bigger validation population (6 genotypes) resulted in lower prediction 
accuracies. This was expected since there is less information in the training population. For this 
procedure the 88 genotypes were randomly selected from the total population and this was 
iterated for 100 and 500 cycles. Given that the prediction accuracies could change up to 8% 
between the different iterations indicates that there should be sufficient cycles if the model 
validation is assessed in this way.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 10: PLOTS FOR THE REGRESSION 
OF GEBV AND OBSERVED PHENOTYPE FOR 
MOST IMPORTANT BIOCHEMICAL TRAITS 



 

 
Page 20  

 
 
TABLE 8: MEAN PREDICTION ACCURACIES OF GENOMIC PREDICTION 
MODELS (1’FOLD’VALIDATION) USING PHENOTYPIC DATA FROM 
DIFFERENT YEARS 

  
Both 2016 2017 

Stem number 0.50 0.53 0.38 

Stem length 0.72 0.73 0.68 

Internode diameter 0.54 0.53 0.50 

Internode length 0.48 0.47 0.44 

Stem yield 0.64 0.61 0.72 

Leaf yield  0.58 0.52 0.61 

Flower yield  0.40 0.36 0.47 

Biomass yield  0.45 0.23 0.56 

Initiation Flowering 0.56 0.63 0.57 

50% Flowering 0.57 0.62 0.68 

Cellulose (%) 0.56 0.54 0.69 

Hemicellulose (%) 0.37 0.35 0.52 

Lignin (%) 0.32 0.38 0.49 

CelCon (%) 0.45 0.55 0.62 

Average 0.51 0.50 0.57 

 

TABLE 7: MEAN PREDICTION ACCURACIES ACROSS DIFFERENT GENOMIC PREDICTION MODELS 

  
2600 SNPs 
(default) 

22500 
SNPs 

82000 
SNPs 

2000 SNPs 
(– M.A.F.) 

88 geno 
100 cycles 

88 geno 
500 cycles 

Stem number 0.50 0.58 0.57 0.50 0.38 0.35 

Stem length 0.72 0.71 0.71 0.72 0.70 0.69 

Internode diameter 0.54 0.62 0.61 0.54 0.63 0.56 

Internode length 0.48 0.56 0.55 0.48 0.42 0.34 

Stem yield 0.64 0.67 0.67 0.64 0.68 0.60 

Leaf yield  0.58 0.62 0.61 0.58 0.59 0.60 

Flower yield  0.40 0.53 0.52 0.40 0.30 0.30 

Biomass yield  0.45 0.35 0.34 0.45 0.42 0.38 

Initiation Flowering 0.56 0.62 0.59 0.56 0.50 0.53 

50% Flowering 0.57 0.63 0.61 0.57 0.58 0.55 

Cellulose (%) 0.56 0.58 0.58 0.56 0.53 0.53 

Hemicellulose (%) 0.37 0.40 0.44 0.36 0.41 0.40 

Lignin (%) 0.32 0.25 0.24 0.32 0.29 0.32 

CelCon (%) 0.45 0.43 0.44 0.45 0.44 0.45 

Average 0.51 0.54 0.53 0.51 0.49 0.47 

 
 
Prediction of traits based on the average values from 
both growing seasons was compared to prediction 
based on the individual growing seasons (Table 8). 
In 2017, certain morphology-related traits had 10-
15% lower prediction accuracy relative to 2016 (e.g. 
stem number, stem length). On the other hand, cell 
wall quality traits could be predicted 10-15% better 
relative to 2016. This indicates that differences in 
phenotypes per year can have a considerable effect 
on the prediction accuracy. As discussed in chapter 
4.1, more robust and uniform phenotyping protocols 
and randomized experimental designs could help to 
overcome these problems. Assuming no differences 
in phenotyping, trait averages of multiple years 
would be the most realistic predictors (M. Callus, 
personal communication). Another explanation of 
the differences in accuracies between years could be 
the presence of influential data points in the 
prediction accuracy regression. Histograms of the 
phenotypic distribution showed that in 2016 the 
number of stems per plants followed a smaller 
normal distribution compared to 2017 (Figure 3). 
Both years have a few high performing genotypes, 
which are influential data point in the regression that 
affect the  slope of the regression and therefore the 
prediction accuracies (Figure 11). This finding 
addresses the usefulness of correlation plots as a 
quick visual data check, and a means to obtain 
insight into which are the best and worst predicted 
genotypes.  
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FIGURE 11: REGRESSION PLOTS FOR STEM NUMBER FOR THE YEARS 2016 AND 2017 

 
 
 
Average prediction accuracies improved slightly when our own heritability estimates were used 
instead of the arbitrary value that was initially used in the model (Table 9). An increase in 
heritability is indeed expected to be beneficial because the component of accuracy due to genetic 
relationships will gain in importance (Jannink et al., 2010). This finding adds to discussion in 
chapter 4.1 regarding the importance of accurate heritability estimation. For genomic prediction 
it is especially important to have accurate H2-estimates, since it is only possible to predict the 
part of the phenotype that is due the genotype. In other words, H2 is the upper limit genomic 
prediction can reach.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE 9: MEAN PREDICTION ACCURACIES FOR DIFFERENT 
HERITABILITY SETTINGS. FOR THE THIRD COLUMN OUR OWN 
BROAD-SENSE HERITABILITY ESTIMATES WERE USED. 

  
H2=0.3 H2 

Stem number 0.39 0.50 

Stem length 0.68 0.72 

Internode diameter 0.46 0.54 

Internode length 0.46 0.48 

Stem yield 0.59 0.64 

Leaf yield  0.51 0.58 

Flower yield  0.33 0.40 

Biomass yield  0.36 0.45 

Initiation Flowering 0.52 0.56 

50% Flowering 0.55 0.57 

Cellulose (%) 0.60 0.56 

Hemicellulose (%) 0.36 0.37 

Lignin (%) 0.29 0.32 

CelCon (%) 0.43 0.45 

Average 0.47 0.51 
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Manhattan plots showed markers with high effect located on all chromosomes (Figure 12). 
However, in this study only 2269 markers with genomic positional information were available. 
For the M. sinensis draft genome 67,789 loci containing protein-coding transcripts were reported 
(Phytozome, 2018). This means there was roughly one marker per 30 genes. In future, 
experiments with a higher density of high quality markers are expected to give more insight into 
important regulatory regions on the genome. On a chromosome level, patterns of physically 
close markers with similar (high) SNP effects might be observed. The potential information 
about high-effect SNPs should be integrated with GWAS and QTL analysis results to detect 
similar patterns in order to obtain improved biological interpretations.  
 

 
FIGURE 12: MANHATTAN PLOT OF THE ABSOLUTE SNP EFFECTS FOR THE MOST IMPORTANT BIOCHEMICAL TRAITS 

 
In this chapter it has been shown that changing the input of the model and changing parameters 
will lead to a trait-dependent change in prediction accuracy. For the most realistic prediction 
accuracies, averages over multiple years should be used, provided that standardized 
phenotyping protocols are used. High heritabilities have positive effect on prediction accuracies, 
therefore it should be a goal to obtain deeper knowledge into estimating the most realistic 
heritabilities. When sufficient high quality markers are available, markers below M.A.F.-
threshold should be removed. More markers are expected to give higher prediction accuracies, 
but a plateau is expected between 10,000-20,000 markers (Slavov et al., 2014). When less 
genotypes were used in the training population, predictive abilities reduced. Slavov et al. have 
shown that increasing the training population size will increase prediction accuracies. Therefore 
it is essential to ensure the size and viability of the experimental population to reach the highest 
realizable prediction accuracies.  
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4.4 THE WAY FORWARD 
As mentioned before, the end-goal of using genomic prediction is to accelerate M. sinensis 
breeding. The rate of genetic improvement over time consists of four factors and can be 
calculated using the breeders equation (Eq. 2) (Mackay et al., 2015). 
 

𝑅𝑡 =  
𝑖∗𝑟∗𝜎𝐴

𝐿
                                                               (Equation 2) 

 

where: Rt is the response to selection over time, i is the selection intensity, r is the accuracy of selection, L is the time 
taken to generate new lines (i.e. generation interval), σA is the genetic variance among candidates for selection.  
 

In this study the accuracy of genomic selection has been on average approximately half of 
phenotypic selection (Table 7). Using genomic selection the generation interval may be 
significantly reduced, since selection can be performed at an early plant age. If this generation 
interval is reduced more than half there would already be an increased rate of genetic 
improvement. Moreover, the amount of selection candidates and its proportion selected (i.e. 
selection intensity) can be intensified if genomic selection is applied. More crosses and seedlings 
can be made and the most promising genotypes can be selected an early stage. Other genotypes 
can be discarded, so there is no need to set-up experimental fields for all individuals.  
 
Within this report several recommendations have been discussed to improve the veracity of the 
prediction accuracies and other results. Phenotyping and heritability-estimates can be improved 
by enacting robust phenotyping protocols on a viable population with a randomized design. The 
most important factors affecting prediction accuracy are the size of the training population and 
the genetic relationships between training and breeding population (de los Campos et al., 2013; 
Slavov et al., 2014). These two components should be kept in mind when designing future 
training populations. It should be noted that actual prediction accuracies can be different due to 
the leave-one-out validation that was used.  When the model is validated using the breeding 
population (i.e. progeny validation), there will be differences in population structure and a decay 
in linkage disequilibrium. For future research it is advised to use the phenotypic information 
from progeny to update the prediction model, since alleles will be fixed by selection and genetic 
drift. Additionally, it should be considered to extend the training population with data from 
individuals across multiple environments. This way genomic prediction can help to breed M. 
sinensis for multiple locations and accelerate its utilization as a biobased crop. Actual 
implementation of all these recommendations requires tremendous effort and will be costly. One 
component were expenses can be reduced is sequencing costs. After the initial costs of 
genotyping the training population, the breeding population can be genotyped with a subset of 
markers. Missing markers will then be imputed from the patterns of recombination and linkage 
disequilibrium among markers in the training population. In animal breeding, this can be a 
reduction from 600,000 markers in the training population to as few as 384 in the breeding 
population (Mackay et al., 2015). Recent suggestions to improve prediction accuracies even 
further are by usage of indices or incorporation of genomic prediction in crop growth models. 
For traits that have low heritability and/or predictive ability it is possible to calculate prediction 
indices based on their genetic correlations to traits with higher heritabilities and prediction 
accuracies (Mackay et al., 2015). For traits in which genomic prediction was ineffective, the 
inclusion of even a single trait in selection indices resulted in a several-fold increase in 
predictive ability (Davey et al., 2017). Since prediction of non-additive gene effects and G*E 
interactions remains challenging, an integration of crop growth models and genomic prediction 
(CGM-WGP) was performed (Messina et al., 2017). This resulted in considerably higher 
environment predictions than traditional genomic prediction and shows potential to predict 
G*E*M interactions for breeding in future. 
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5 CONCLUSION 

The aims of this study were to characterize the phenotypic variation within the WUR miscanthus 
collection, obtain insights into the genetic relationships amongst its accessions and to assess the 
potential of genomic selection. A high degree of phenotypic variation and high estimates of 
heritability were found for all traits that were measured. This shows the high quality and 
possibilities the WUR miscanthus collection possesses for breeding novel improved miscanthus 
accessions. Small imperfections in phenotyping protocols and experimental design were 
observed. Using robust phenotyping protocols on a viable, randomized experimental population 
will improve the veracity of the results and ultimately the accuracy of genomic prediction. 
Sequencing results revealed that accessions with physically close positions had often high 
genetic relationships. This might lead to an inability to discriminate between genotypic or 
environmental effects, which can be overcome by implementing a randomized experimental 
design. RAD-sequencing with a methylation insensitive restriction enzyme resulted in a relative 
balanced genome coverage, which proposedly has a positive effect on genomic predictions. 
Alignment of RAD-fragments against the repeat-rich M. sinensis genome were found to be 
challenging and therefore BLAST results are not set in stone. Genomic prediction based on 2600 
SNPs resulted in an average prediction accuracy of 0.51. Changing the input of the model and its 
parameters lead to a trait-dependent change in prediction accuracy. In order to obtain the best 
and most realistic prediction accuracies, it is advised to use a large set of markers, using accurate 
heritabilities and average trait-values over multiple years. Recommended future strategies are 
offspring marker imputation, progeny validation and eventually the integration of various 
molecular breeding tools. Even better prediction accuracies might be realized by usage of 
selection indices and/or integration of whole genomic prediction in crop growth models. 
Considering the long establishment phase of M. sinensis, it is expected that implementation of 
genomic selection will substantially increase the rate of genomic improvement for M. sinensis. 
Although sequencing quality was suboptimal, the findings and pipeline generated in this project 
will guide future research when high quality sequence data becomes available.  
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7 APPENDIXES 

APPENDIX 1: EXPLANATION OF R SCRIPT USED TO PERFORM GENOMIC PREDICTION 
APPENDIX 1  

# Install and load required packages 
install.packages("calibrate") 
install.packages("rrBLUP") 
library(calibrate) 
library(rrBLUP) 
 
# Load marker, phenotype and heritability data from files in your working directory  
# (sample files provided via USB) 
SNPdata<-read.csv("genotype.csv",header=T,as.is=TRUE,row.names=1) 
SNPdata=SNPdata[,-c(1:2)] 
SNPdata=SNPdata[,-c(1:2)] 
Pheno=as.matrix(read.csv(file = "means.csv",header = TRUE,row.names = 1,as.is = TRUE)) 
# optional: in our case the genotypes and phenotypes have reverse order, the code below will reverse the 
order of the phenotypes 
# for(i in 1:ncol(Pheno)) {Pheno[,i] = rev(Pheno[,i])} # for reverse order  
# rownames(Pheno) = rev(rownames(Pheno)) # for reverse order 
h2list = read.csv("h2.csv") 
 
# Convert SNP data 
parseSNPdata = function(x) { 
  unique.x = unique(x) 
  heterozygote =  setdiff(unique.x,c("A","C","T","G","-")) 
  alleles = setdiff(unique.x,union(heterozygote,"-")) 
  y = rep(1, length(x)) 
  y[which(x==alleles[1])] = 0 
  y[which(x==alleles[2])] = 2 
  y[which(x=="-")] = NA 
  return(y) 
} 
SNPdata_2 = apply(SNPdata,1,parseSNPdata) 
rownames(SNPdata_2)=colnames(SNPdata) 
 
# Optional data validation 
ifelse(dim(Pheno)[1]==dim(SNPdata_2)[1],"Same number of genotypes in SNPdata and Phenotype 
data",stop('Different number of genotypes in SNPdata and Phenotype data')) 
 
# Parameters that are required for the script 
nplants = dim(SNPdata_2)[1];nplants 
nsnp = dim(SNPdata_2)[2];nsnp 
traits = dim(Pheno)[2];traits 
p=apply(SNPdata_2,2,mean,na.rm=T)/2 
sum_2pq=2*sum(p*(1-p)) 
 
 
####  Make G-matrix 
#First scale genotypes to have a mean of 0 
SNPdata_3<-scale(SNPdata_2,center=TRUE,scale=FALSE) 
#Replace NA's by 0 
SNPdata_4<-replace(SNPdata_3,is.na(SNPdata_3),0)       
#check positive definiteness of the matrix, and bend if necessary 
G<-SNPdata_4%*%(t(SNPdata_4))/sum_2pq 
Gt<-eigen(G) 
epsilon<-1.e-02 
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#matrix Gp can be used to make a heatmap to visualize the relationships 
Gp<-G  
if(min(Gt$values)<epsilon){ 
  #  cat(min(Gt$values)) 
  eig_val<-Gt$values 
  eig_val[which(eig_val<epsilon)]<-epsilon 
  G<-Gt$vectors%*%diag(eig_val)%*%t(Gt$vectors) 
  #  diag(cor(G,Gp)) 
} 
 
#Compute G-1 
G_1<-solve(G)        
 
# Create table to store accuracies that will be generated 
accuracy = matrix(nrow=traits, ncol=1,dimnames = list(unlist(dimnames(Pheno)[2]),c("Mean"))) 
 
# This code changes the working directory to a subfolder where all generated output will be saved (the 
subfolder name is the current time) 
wd=getwd() 
time= Sys.time() 
time = gsub(":",",",time) 
wd_tmp = paste(getwd(),"/Output - ",time,"/", sep = "") 
dir.create(wd_tmp) 
setwd(paste(wd_tmp)) 
 
 
##########  
# Below is the code that will generate the output for all plants for each trait.  
# It is recommended to select all text  from ### START to ### END (within the R script)  
# and press Ctrl+Enter. 
########## 
 
 
### START 
# Now compute GEBV 
for (r in 1:traits) { 
  h2<-h2list[r,2]  #sigma_a^2/(sigma_a^2+sigma_e^2) 
  alpha<-(1/h2)-1   #sigma_e^2/sigma_a^2 
  nphen<-nplants  #all plants have both genotypes and phenotypes 
   
  #set up mixed model equations (MME) 
  #1) LHS; dimensions are ((1+nplants)x(1+nplants)); A-1 has dimension (nped x nped) 
  LHS<-array(0,c(nplants+1,nplants+1)) 
  #add 1'1 
  LHS[1,1]<-nphen 
  #add 1'Z 
  LHS[2:(nphen+1),1]<-1 
  #add Z'1 
  LHS[1,2:(nphen+1)]<-1 
  #add Z'Z 
  LHS[2:(nphen+1),2:(nphen+1)]<-LHS[2:(nphen+1),2:(nphen+1)]+diag(1,nphen) 
  #add G-1*alpha 
  LHS[2:(nplants+1),2:(nplants+1)]<-LHS[2:(nplants+1),2:(nplants+1)]+G_1*alpha 
  #invert LHS 
  LHS_1<-solve(LHS) 
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  #2) RHS 
  #Read in phenotypes 
  y<-Pheno[,r] 
  RHS<-array(0,c(nplants+1,1)) 
  #add 1'y 
  RHS[1,1]<-sum(y,na.rm = T) #TEST 
  #add Z'y 
  RHS[2:(nplants+1),1]<-y 
  #3) compute solutions 
  SOL<-LHS_1%*%RHS 
  GEBV<-SOL[2:(nplants+1)] 
  #cor(GEBV,y)  
   
   
    #4) Now compute solutions without using the phenotype of the individual, 
    # e.g. using leave-1-out crossvalidation (GEBV_CV) 
    GEBV_CV<-matrix(0,nplants) 
  for (i in 1:nplants){ 
    #adjust LHS to "remove" plant i 
    LHSi<-LHS 
    LHSi[1,1]<-LHS[1,1]-1 
    LHSi[1,(i+1)]<-0 
    LHSi[(i+1),1]<-0 
    LHSi[(i+1),(i+1)]<-LHS[(i+1),(i+1)]-1 
    #adjust RHS to "remove" plant i 
    RHSi<-RHS 
    RHSi[1]<-RHS[1]-y[i] 
    RHSi[i+1]<-0 
    #get new solutions 
    SOLi<-solve(LHSi)%*%RHSi 
    GEBV_CV[i]<-SOLi[i+1] 
  } 
  accuracy[r,] = cor(GEBV_CV,y) 
  
  ## For each trait: create a table with the 10 ‘highest effect’ markers and plots of the SNP effects       
  SNP_effects<-t(SNPdata_4)%*%G_1%*%GEBV/sum_2pq 
  
 dir.create(path =  paste(getwd(),"\\", colnames(Pheno)[r], "\\", sep = "")) 
  dir = paste(getwd(),"\\", colnames(Pheno)[r], "\\histogramSNPeffects.jpg", sep = "") 
  jpeg(dir) 
  hist(SNP_effects,main = colnames(Pheno)[r]) 
  dev.off() 
   
dir = paste(getwd(),"\\", colnames(Pheno)[r], "\\absoluteSNPeffects.jpg", sep = "") 
  jpeg(dir) 
  plot(seq(1,length(SNP_effects),by=1),abs(SNP_effects),xlab='SNP',ylab='Absolute SNP-
effect',title(colnames(Pheno)[r])) 
  dev.off() 
   
dir = paste(getwd(),"\\", colnames(Pheno)[r], "\\regression.jpg", sep = "") 
  jpeg(dir, width = 800, height = 700, res=150) 
  plot(GEBV_CV,y,type="n",main = paste(colnames(Pheno)[r]," (R2=",format(round(cor(GEBV_CV,y), 2), 
nsmall = 2),")", sep=""), 
       xlab="GEBV", ylab="Observed phenotype") 
  textxy(GEBV_CV,y,labs = gsub(" OD1302-","",names(y)), offset = 0) 
  dev.off() 
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  topmarkers = matrix(nrow=10, ncol=2,dimnames = list(c(1:10),c("Marker", "Effect"))) 
  o = order(abs(SNP_effects), decreasing = T)[1:10] 
  topmarkers_o = SNP_effects[o,] 
  for (n in 1:10) { 
    topmarkers[n,1] = names(topmarkers_o)[n] 
    topmarkers[n,2] = round(topmarkers_o[n],8) 
  } 
  write.csv(topmarkers,file=paste(getwd(),"\\", colnames(Pheno)[r], "\\topmarkers.csv", sep = "")) 
} 
 
# Write a table with the mean prediction accuracy for each trait 
write.csv(accuracy,file="accuracy.csv") 
 
# Create a heatmap and PCA plot of the genomic relationships 
G2=G 
diag(G2)=NA 
G2[lower.tri(G2)] <- NA 
colnames(G2) = rownames(G2) = gsub("X","",colnames(SNPdata)) 
jpeg("heatmap.jpeg",width=3000,height=3000,res=400) 
heatmap(1-G2,Colv=NA,Rowv=NA) 
dev.off() 
 
fit <- prcomp(G) 
png("PCA.png",units = "px", width = 1466,height = 1066,res = 200) 
plot(fit$rotation[, 1:2],type="n",main = "PCA genomic relationships", 
     xlab=paste("PC1 (",round(summary(fit)$importance[2,1]%*%100,1),"%)",sep=""), 
     ylab=paste("PC2 (",round(summary(fit)$importance[2,2]%*%100,1),"%)",sep="")) 
textxy(fit$rotation[,1],fit$rotation[,2],labs=gsub("X","",colnames(SNPdata))) 
dev.off() 
 
# Set your working directory back to its original 
setwd(paste(wd)) 
### END 
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APPENDIX 2: ALL PHENOTYPIC CORRELATIONS 
APPENDIX 2 
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APPENDIX 3: FULL PAGE IMAGE OF THE PCA 
APPENDIX 3 

 

 

 

 

 

 

 

 

 


