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1 Introduction 

This deliverable report gives an overview of the performance of the Quality Assessment and Sensing 

(QAS) module as was achieved after the full integration of the line in Wageningen (WUR). The 

functionality and capabilities discussed in this report were demonstrated during the demonstration 

days in Wageningen at the end of May 2016. 

This deliverable is a result from Tasks 4.4 (Development of a quality sensing platform) and 4.5 

(Evaluation of the quality assessment method on relevant food products). 

2 Functionality of the QAS module 

The main functionality of the QAS module concerns the measurement and rating of the quality of all 

products that pass through the module. The term quality should be interpreted in a broad sense: It can 

refer to the assignment of a product to a certain quality class, but it can also concern the measurement 

of more specific product properties e.g. damage detection or brix estimation. 

This functionality is realized by applying a series of sensors which each measure different properties 

of the products. The sensors are divided over two submodules termed submodules “A” and “B” 

(Figures 1, 2 and 3). Submodule A is constructed in a collaboration between KUL, WUR and MU and 

contains an RGB camera, a 3D laser scanner, a microwave scanner and a hyperspectral camera (HSI, 

600 – 1000 nm). Submodule B contains an X-ray unit and is constructed by InnoS.  

 

Figure 1. Schematic overview of the PicknPack QAS module. 
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Figure 2. (a) Montage of submodule A in the PicknPack Line. (b) View of the interior of the QAS 
submodule A. Each of the sensors is mounted on a bridge over the web of packages. 

 

Figure 3. Montage of the QAS submodule B (X-ray) in the PicknPack Line. 

As illustrated in Figure 1, each QAS sensor is connected to a dedicated computer unit (called a “device”) 

which collects and processes incoming data. Data acquisition is controlled by an FPGA (field 

programmable gate array) controller which translates the speed of the line as captured by encoders 

into a trigger for the sensors. 

The devices are connected to a central module controller which also interacts with the PicknPack line 

as a whole. Communication is done according to the protocol developed in the PicknPack project 

(based on the zyre protocol). 

More information on each of the sensors and the assembly of the (sub-) modules can be found in 

deliverable reports D4.5 and D4.6 and D4.7. 

The QAS module is equipped with flexible self-learning software tools which should enable operators 

to quickly and easily train the algorithm to deal with new products or product features. These software 

tools are described in more detail in deliverable reports D4.8. and D4.9. 

(a) (b)



  

The remainder of this report provides an overview of the realized functionality and performance of the 

QAS module. The performance of the module is judged by means of two types of performance 

indicators: 

Performance of the module as a measuring system: This pertains to the more fundamental 

capabilities of the system needed to perform quality inspection in an industrial environment. These 

include:  

- The speed and accuracy at which all sensors can acquire incoming data 

- Spatial calibration related aspects which are important for sensor fusion 

- The correct behaviour of the QAS module in the PicknPack communication network 

- Safety aspects 

- Hygienic design 

 

Performance of the module as a processing system: This pertains to the more advanced capabilities 

of the system in that it can generate useful product information that can be used in the remainder of 

the line (printing, sorting,…). More specifically, this report discusses: 

- The product properties that can be measured and the correctness and accuracy of those 

measurements. 

- The ease with which the module can be operated/trained (flexibility). 

2.1 Performance of the module as a measuring system: 

2.1.1 Communication network 

The communication protocol developed in the PicknPack project has been successfully implemented 

and tested in the QAS module. The network topology used is shown in Figure 1: The PicknPack line 

communicates with the module controller which in turn communicates with the QAS devices. 

A more detailed overview of the most important capabilities of the module controller and the devices 

is listed here: 

QAS module controller 

- Monitors the presence and activity of QAS devices and acts appropriately 

- Sends/Receives information from the line/world model and redistributes as needed 

- Collects/stores processed data  

- Calculates new features by combining data from the devices (sensor fusion) 

 

Devices 

- Exchange information/data with the module controller 

- Acquisition and processing of (raw) data 

The communication protocol was implemented for the module controller (LabVIEW), HSI camera 

(LabVIEW), RGB camera (C++), 3D scanner (C++) and microwave scanner (C#). The communication 

protocol could not be fully implemented on the X-ray unit due to the late stage at which InnoS joined 



 

the PicknPack project. However, given that the communication protocol works well on the other 

devices, it is safe to assume that the protocol can be successfully implemented on the X-ray unit as 

well if more time can be spent. 

2.1.2 Speed and accuracy of data acquisition 

All sensor systems were able to deal with the stop and creep regime as dictated by the PicknPack line. 

More specifically this pertains to a stop phase of about 10 s and a creep phase under 2 s long, during 

which a maximum speed of about 16 cm/s is reached and a total distance of 250 cm is traversed. 

During acquisition the FPGA controller (Figure 1) monitored the movement of the line and produced 

correct custom trigger signals for all sensors. No data lines were missed and images of 

products/trays/punnets could be correctly reconstructed from the raw data feed. 

The sensors achieved the following resolutions: 

- HSI: 0.4 mm / pixel 

- RGB: 0.25 mm /pixel 

- 3D: 1 mm / pixel 

- Microwave: 2.1 mm / pixel in direction of motion, 21 mm / pixel in perpendicular direction 

- X-ray: 0.135 mm / pixel (= 0.027 mm  / pixel @ 5x binning) 

2.1.3 Spatial calibration 

All sensors were calibrated spatially, i.e. the relation between the local coordinate system of each 

sensor was determined relatively to the coordinate system of the line as a whole. Using this calibration, 

the sensors were able to correctly extract regions of interest (ROI’s, being trays/punnets) from the 

recorded data at runtime, based on the tray information provided by the world model/line controller. 

In Figure 4, three examples of the ROI extraction are shown. 

  

Figure 4. (a). ROI as extracted from the RGB data. Quality features are printed on top of each tomato. 
(b) ROI as extracted from the HSI data (fake colour image, only a single waveband is shown). (c) ROI as 
extracted from the dual X-ray data. 

 

 

(a) (c)(b)



  

2.1.4 Safety related aspects 

Safety was taken into account during the operation of the module. The most important safety 

measures were: 

- Installation of emergency stops 

- Installation of door sensors that shut down the laser system of the 3D scanner as soon as 

the doors of the module are opened 

- Appropriate shielding of the X-ray and microwave scanners 

- Examination and approval of the QAS module by a designated safety inspector 

During operation of the line the safety systems performed as expected. 

2.1.5 Hygienic design 

Both QAS submodules were designed with hygienic criteria in mind, e.g. by using stainless steel as 

construction material or by making all surfaces slanted to avoid build-up of contamination. 

Submodule A of the QAS module (see Figure 2(b) ) is equipped with a tunnel which was designed 

according to industrial design criteria. The sensors are installed above the tunnel so the part of the 

module that comes into contact with food products can be cleaned properly and safely. 

The X-ray unit (submodule B) was also designed according to industry standards and is fully cleanable. 

2.2 Performance of the module as a processing system 

The capabilities of the QAS module described in the previous paragraphs serve as a basis to be able to 

correctly process the incoming data. More specifically, the QAS module and its devices acquire raw 

data and extract from it ROI’s per tray/punnet which are linked to information obtained from the 

worldmodel (position, content). This data is then processed using the various data models developed 

during the PicknPack project. Once the processing is completed, the features obtained per tray/punnet 

are uploaded to the worldmodel for storage or further use down the line (e.g. printing of custom 

labels). 

2.2.1 Measured product properties 

In this paragraph, the results obtained are discussed for each of the sensors separately. Generally 

speaking for each sensor, first a segmentation step is performed to separate the plastic tray 

background from the objects of interest and to split an object (e.g. tomato truss) into its components 

(e.g. individual tomatoes and stalk). Further processing is then conducted on the segmented objects. 

Hyperspectral Imaging Sensor (KUL) 

Tomato trusses 

Tomato trusses are segmented by applying a PCA (principal component analysis) model that 

differentiates between stalks and tomato flesh. Subsequently, individual tomatoes are segmented by 

spatial processing (based on the Hough transformation). 

 



 

 The HSI setup was used to create models to determine: 

- the brix-value (sugar content) of individual tomatoes  

- The ripeness of individual tomatoes 

- the presence of skin damage 

Figure 5 shows the results achieved by the model that determines the Soluble Solid content (SSC) 

(expressed as Brix-degrees). An R²-value of 0.53 was achieved (Table QAS1). This low value is explained 

by the fact that for tomatoes the variation in sugar-content between tomatoes is generally low. 

 

Figure 5. Model that predicts the Brix-value in tomatoes. Measured soluble solid content versus 
predicted. 

 

Table 1. Overview of the results obtained by the data models for determining tomato brix values (SSC) 
and colour (Hue H*). 

 

 

 

 

 

 

The colour of the tomatoes is predicted by estimating the L-, a- end b-values of the tomatoes in the 

Lab colour space. The predicted a- and b-values are then used to estimate the Hue value for each 

 
R² R²

p
 RMSEC RMSEP 

L* 0,86 0,86 1,56 1,57 

a* 0,95 0,93 1,86 1,89 

b* 0,55 0,42 1,92 2,29 

H* 0,97 0,95 3,01 3,35 

SSC 0,53 0,23 0,25 0,31 



  

tomato (Figure 6 and Table 1). A good correlation (r² of 0.97) was obtained. This hue-value can then 

be linked to the ripeness class of which the tomato is a member. 

 

Figure 6. Hue prediction for tomatoes. The hue-value is calculated as the tangent of the b- and a-value 
of the Lab-colour space. 

Finally, figure 7 shows an example of damage detection in tomato trusses. These results were obtained 

offline, but can be implemented online according to the same methodology used for the ripeness and 

brix-values. 

 

Figure 7. Determination of cutting and puncture damage in tomatoes. The left images show an RGB 
image of a truss. The middle images are a fake colour reconstruction of the trusses. The right side 
images show the results obtained (red= tomato flesh, yellow= gloss, greed = stalk, black =damage). 

Grapes 

Similar to the methodology described above for tomatoes, a model for the sugar content (brix) of 

grapes was developed. In Figure 8 and Table 2, the results obtained are shown for white grapes. A good 

RGB-image Reconstruction of RGB Hue-calculations

Cutting damage

Puncture damage



 

correlation (r² = 0.95) between measured and estimated SSC (soluble solid content) was obtained. For 

red grapes (r² = 0.35, see Table 2), no good predictive model could be fit. 

 

Figure 8. Measured versus predicted soluble solid content (SSC, Brix) for white grapes. 

Table 2. Overview of the results obtained by the data models for determining grape brix values (SSC). 

 
R² R²p RMSEC RMSEP 

SSC (white) 0,95 0,73 0,64 1,33 

SSC (red) 0,35 0,31 1,36 1,72 

 

Chicken and turkey 

A classification model was built that could discriminate between uncooked/cooked turkey and 

chicken. The model was built by means of partial least squares discriminant analysis (PLSDA). Figure 9 

and Table 3 present an overview of the results obtained. Overall, about 90 % of the objects can be 

assigned to the correct class. 
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Figure 9. Example of the classification between raw or cooked chicken and turkey. Each pixel is assigned 
a colour to mark to which class it was appointed by the model. 

Table 3. Summary of the results obtained for the classification model for cooked/raw chicken and 
turkey.  

Ground truth Raw Chicken Cooked Chicken Raw Turkey Cooked Turkey 

Raw Chicken 88 0 5 0 

Cooked Chicken 0 93 0 9,2 

Raw Turkey 12 0 95 0 

Cooked Turkey 0 7 0 90,8 

 

RGB sensor (WUR) 

Tomato trusses 

Based on a small number of examples, a segmentation method is trained, which segments the image 

into background, tomato and stalk/calyx based on colour information stored in Hue-Saturation 

histograms. As both stalk/calyx and tomatoes can be green, a further refinement of the stalk/calyx 

segmentation is done using shape information, looking for elongated structures in the image. 

Furthermore, individual tomato segmentation is achieved by detecting circular/elliptical shapes in the 

image. Segmentation of individual tomatoes and stalk works robustly. Some examples of data recorded 

on the line are shown in Figure 10. 

Virtual RGB-imageHyperspectral imaging

Background Raw Chicken Raw Turkey Cooked Chicken Cooked Turkey

Raw Meat Cooked Meat



 

 

Figure 10: Examples of segmentation of the raw image data to the separate packages (orange boxes), 
identification of the individual tomatoes (blue ellipses), and stalk/calyx (blue dotted regions). 

Using the segmentation of the individual tomatoes, the colour of each tomato is determined by taking 

the median Hue value over all pixels of the tomato area. This median Hue value is then used to estimate 

the colour class of each tomato on a human-readable colour scale using a polynomial regression model. 

The regression model was trained and tested on ground-truth data acquired by two human experts 

that established the colour class of 214 tomatoes on a scale from 1-12. 

Figure 11 shows the results of estimation of colour class per tomato on the vine. The estimations made 

by our method correlates well with the ground truth measurements, with R2=0.95. The average 

prediction error was 0.49. The ground-truth measurements were done by two experts and the 

predictions are compared to the average of the two. It must be noted that the human judgement of 

colour class was not fully consistent over the two experts, with an average difference of 0.56 colour 

class. It can thus be noted that the prediction error is smaller than the disagreement between the 

experts. It is difficult to say which part of the prediction error is due to human error and which part to 

machine error. 

 



  

 

Figure 11: Estimation of colour class on a scale from 1-12. Average error is 0.49. 

3D sensor (WUR) 

Tomato trusses 

An example of the data recorded by the 3D sensors can be seen in Figure 12. Using the transformation 

matrices obtained during the calibration of the sensors, the package ROIs are translated to the 

coordinates of the 3D sensor, which is used to get separate 3D point clouds for each package. 

 

Figure 12: Example of 3D data recorded by the QAS module. 

Based on the segmentation of the individual tomatoes, some parameters of the shape and size of the 

tomatoes are determined. Specifically, we take the length of the major and minor axes of the ellipse 

fitted to the contour of each tomato. Based on this information, a regression method is trained to 

predict the weight. The learning and testing is performed on ground-truth data, which is collected by 

measuring the weight of each tomato with a scale.  

y = 0.9542x + 0.3345
R² = 0.9542

1

2

3

4

5

6

7

8

9

10

11

12

1 2 3 4 5 6 7 8 9 10 11 12

Es
ti

m
at

e
d

 c
o

lo
u

r 
cl

as
s 

(-
)

Ground truth colour class (-)

Estimation of colour class (N=214)



 

Figure 13 shows the results of weight estimation in the PicknPack line. The results show an average 

prediction error of 5.0 g, with a R2 of 0.53. Results of an earlier off-line experiment with more elliptic 

tomatoes are shown in Figure 14, indicating an average prediction error of 3.9 g.  

 

Figure 13: Estimation of weight of individual tomatoes. R2=0.53. Average prediction error is 5.0 g. 

 

Figure 14: Weight estimation in an earlier off-line experiment, with an average prediction error of 3.9 
gram. 
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Microwave scanner 

The microwave sensor scans food products to obtain its dielectric properties and evaluate the food 

quality by means of the associated Equivalent Dielectric Value (EDV). Both the mean value and 

maximum EDV values are calculated for analysis and evaluation.  

The microwave sensor can discriminate between food samples which differ in moisture content, which 

can for instance be used to evaluate the freshness and predict the product shelf life.  

Chicken 

The microwave was used to determine the cooking stages of chicken filet. In Figure 15, chicken breasts 

of different cooking stages are shown, being: raw chicken and chicken cooked with a microwave oven 

for 5, 10, 15, 20, 25, 30, 35, and 40 minutes. In these samples, sample 5 (cooked for 20 minutes) is 

properly cooked, sample 1 is uncooked (raw), 2-3 are insufficiently cooked, and 6 to 8 are over cooked.  

   

Sample 1 Raw Chicken breast Sample 2 Cooked 5 minutes Sample 3 Cooked 10 minutes 

   

Sample 4 Cooked 15 minutes Sample 5 Cooked 20 minutes Sample 6 Cooked 25 minutes 

   

Sample 7 Cooked 30 minutes Sample 8 Cooked 35 minutes Sample 9 Cooked 40 minutes 

Figure 15. Chicken breast samples of different cooking stages 



 

 

The test results of the samples in Figure 15 are given in Figure 16.  

   
Sample 1 

EDV mean:0.121 
EDV max: 0.732 

Sample 2 
EDV mean:0.115 
EDV max: 0.740 

Sample 3 
EDV mean:0.108 
EDV max: 0.655 

   
Sample 4 

EDV mean:0.088 
EDV max: 0.487 

Sample 5 (properly cooked) 
EDV mean:0.083 
EDV max: 0.462 

Sample 6 
EDV mean:0.066 
EDV max: 0.337 

   
Sample 7 

EDV mean:0.060 
EDV max: 0.312 

Sample 8 
EDV mean:0.058 
EDV max: 0.283 

Sample 8 
EDV mean:0.056 
EDV max: 0.277 

Figure 16. EDV measurement of chicken breast with microwave sensor 

The trends of EDV mean and EDV max with cooking time are given in Figure 17, and Figure 18.  
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Figure 17. Trend of EDV mean values of chicken breast  

 

Figure 18.  Trend of EDV maximum values of chicken breast  

From Figure 17 and Figure 18, it can be seen that there is a good agreement in EDV mean and EDV max 

with the cooking time. The developed model can thus be used to evaluate the degree of cooking of 

chicken breast. The same methodology is expected to be applicable for other food products. 

X-ray sensor (KUL and InnoS) 

Tomato trusses 

Considerable effort has been spent to allow accurate imaging in a stop-and-creep environment as 

implemented in the PicknPack system. The sensors were appropriately triggered by an encoder in 

direct contact with the web of trays. The resulting images needed various types of calibration and 

normalization, as shown in figure 19(a). The wavy patterns in the vertical direction are caused by small 

variations in exposure due to the stop and creep motion. The horizontal binary bands are the result of 

the detectors being overexposed due to hardware constraints at very low speeds of the web of trays 

just before and after the web stops and starts respectively. The vertical black bars that are visible in 

the images are caused by the web of tray supports passing between source and detector and were 

simply cropped out.  Figure 19(b) shows the corrected X-ray images. The wavy patters have 



 

disappeared completely but some image degradation is still visible in the regions of low web speed. 

The cause has been identified and future detector firmware upgrades should solve this issue.  

(a) (b)  

Figure 19: Uncorrected (a) and corrected (b) X-ray images. 

The X-ray scanner is currently capable of detecting foreign bodies in trays filled with tomato trusses, 

grapes or chicken breast as shown in figure 20(a) in red. Based on the stereo-images, 3D position and 

size of individually detected objects (figure 20(a), blue) can be assessed. Note that size estimation does 

not encompass shape reconstruction. 

(a) (b)  

Figure 20: Detection of foreign bodies – in this case a metal washer - (in red, a) in trays filled with 

tomato trusses (detected contours in blue)  and a 3D rendering of estimated tomato size and position 

(b). 

Advanced algorithms for internal defect detection and shape reconstruction have been developed but 

still need integration with the 3D-vision system before online implementation is possible (also see 

Deliverable report D4.7). This integration relies on deploying the communication software as 

developed for the QAS module on the X-ray module which was delayed due to the postponed join date 

of InnospeXion in the PicknPack project.  



  

Offline simulations for a system with a 0.5 mm, 1 mm and 2 mm detector pixel size (Figure 2) show 

that these methods can reliably detect small defects with limited variation in density as shown in Figure 

21, left column. The right column shows classification results for manual inspection of radiographs. 

 

Figure 21: Detection accuracy  (%) of defects for a detector with pixel sizes 0.5, 1 and 2 mm. Columns 

show the defect size in mm while rows show the defect density in relation to sample density (i.e. 

samples in the bottom row don’t contain defects). As a reference, accuracy of visual classification of 

radiographs is shown on the right. 





 

Figure 22: Radiograph and residual output of the in-silico simulations to evaluate multi-sensor inspection classification performance. The dataset 
consisted of randomly oriented tori of random size, with spherical defects with densities ranging from 0 to 100 % of sample density and radii of 0.5 up 
to 7 mm. 





QAS module controller (KUL) 

As described in the previous paragraphs, each of the sensor measures certain features per tray/punnet 

or per object and sends these to the module controller. The module controller can then be used to 

calculate new features based on the combination of the features received.  

As an example of this approach, an algorithm was developed and implemented online that could assign 

products in a tray to a user specified quality class. An object is assigned to a certain quality class (in 

this example “premium quality”, “acceptable quality” and “not acceptable quality”) by checking for a 

number of pre-defined product properties if they fall within a desired range (selectable by the user of 

the system). 

In Figure 23 an example is shown for tomato trusses. The brix value (HSI), colour (RGB) and weight 

distribution within the truss (3D) are measured by different sensor systems and sent to the QAS 

module controller. For each quality feature a desired range is defined (green = desired, orange = 

acceptable, red = not acceptable). If a product scores in the ‘green zone’ for all features, it is considered 

premium quality. If it score in the ‘red zone’ for a single feature, it is considered not acceptable. In the 

other scenarios (combination of green and orange ‘zones’) the product is considered of acceptable 

quality. 

 

Figure 23. Screenshot of (a part of) the user interface to define quality classes for tomato trusses. The 

colours on the sliders indicate the desired values for each feature (green: premium quality, orange, 

acceptable, red: not acceptable). 



 

The methodology described here is flexible, in that any of the features that are measured can be 

selected as part of the combination of features which are used for quality grading. Likewise, the ranges 

that determine each ‘zone’ on the quality scale (green/orange/red) can be quickly changed in function 

of the current needs of the production line. 

2.2.2 The QAS module as a flexible food inspection system 

Quality measurements as added value for consumers 

The quality information gathered online in the QAS module about every product on the line is sent to 

the line controller. The line controller forwards this information to the printer module, which prints a 

QR code, including a link with which the consumer has access to all available quality information (see 

Figure 24). 

 

Figure 24. Examples  of prints produced by the PicknPack line including a QR code, which contains a link 
to an image containing more information about the product as measured by the QAS module. 

Semi-supervised learning (KUL) 

To assist an operator at building new classification models for predicting (new) quality features for a 

(new) type of product, a semi-supervised segmentation algorithm was developed. This combines the 

discriminating power and ease of use of unsupervised segmentation algorithms, like k-means 

clustering, with the calculation speed of supervised classification algorithms, like PLSDA. In a first step, 



  

an operator should decide on which algorithm gets the best unsupervised segmentation result. Based 

on this input, the algorithm will build a supervised model to classify the pixels. Then the operator has 

to decide on 10 new images if the segmentation, resulting from the supervised classification, of these 

images is correct. Otherwise, the training set should be extended using an unsupervised segmentation 

algorithm, like in the first step. This leads to an iterative procedure to build a robust classification 

model. In Figure 25, an example of this methodology is shown for tomatoes and grapes. 

This algorithm was not yet implemented on the line but demonstrated stand alone. More detailed 

information can be found in deliverable report D4.8. 

 

Figure 25. Example of the results obtained for the semi-supervised segmentation of tomatoes (left) and 
grapes (right). The top figures show a fake colour image of the measured products. The bottom figures 
show the results of the segmentation. The percentages represent the number of correctly classified 
pixels. 

Deep learning (WUR) 

Recently, methods inspired by the way in which the human brain’s networks of neuronal cells process 

visual stimuli have led to great progress in the field of computer vision. State-of-the-art methods now 

attain remarkable performance in complex, general tasks such as identifying and tracking cars or 

people within images or videos. 

Artificial neural networks accept images captured using, for example, hyperspectral cameras, and 

process the information in these images by passing them through layers of processing units of artificial 
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neurons. These neurons are modelled on the brain’s neuronal cells, and each performs a simple 

computation. However, by combining many layers of these neurons, complex computations can be 

performed. By adjusting the connections between layers, a neural network can be adapted to perform 

a multitude of tasks, using the same general principle. 

This technique was applied in the PicknPack Quality Assessment Module, where it employs neural 

networks to perform tasks such as identifying cuts or puncture damage in tomatoes. The process starts 

with a user annotating a set of training images by pointing out areas of the image containing the kind 

of imperfection that needs to be identified. In a process known as Deep Learning, the neural network 

is presented with this series of training images and user identified imperfections, and uses these to 

learn by example. After training, the neural network can be used in a production line to identify similar 

imperfections in images of produce passing through the quality assessment module. 

It is important to note that the process of training the neural networks can be performed by non-

experts. Users merely have to collect a representative set of training images, and point to defects in 

these images. This allows the deep-learning module to be adapted to a variety of produce types and 

kinds of imperfection. For example, a company may collect training images of chicken fillets, and 

identify areas of unacceptable discolouration on their surfaces. The QAS module will then learn, based 

on this training data, how to perform this novel task in an automated fashion. 

The QAS module has been tested on a variety of tasks. These have included the identification of worm 

damage and bruises in colour images of apples, and cuts and puncture damage in hyperspectral images 

of tomatoes. The module has also been tested for potential use as part of the pick-and-place robot, 

where the system first identifies the stalks of blue, red or green grapes. In each case, however, the 

training process was identical. Images of either apples, tomatoes or grapes were captured, and areas 

of interest (for example, worm damage, cuts or stalks) highlighted by a user. Examples of the results 

are in Figure 16. 



  

 

Figure 16: Results from defect detection based on deep learning. a) and b) show examples of using the 
network with hyperspectral data. The blue contours indicate the user-labelled ground truth and the red 
blobs are the result of the network. a) shows detection of punctures, b) of cuts. c) gives examples of the 
detection of worm holes in apples with the input image on the right, ground truth in the middle and the 
result of the deep network on the right. 

Easy changeable configuration 

The QAS module was designed to allow for an easy and flexible change of the configuration it is used 

in. This effect plays on different levels: 

- The QAS module as a whole can be easily relocated to another position in the line. The 

software of the module was designed to automatically cope with this change with minimal 

user input. 

- The sensor configuration can be easily changed. Sensors can be removed or added or their 

relative configuration can be changed as desired. As the devices that control the sensors 

use the same software design as that of the module, this reconfiguration is similar to the 

reconfiguration of the module described above. 

- Sensors can be quickly assigned new capabilities in terms of models that are available for 

processing new features/product types. The processing chain is designed that it can assign 

any of the available models to a tray/punnet and use that model to calculate the desired 

features for that model. Models can be easily added or removed without changing the 

software of the processing chain itself. New features or product types that are added are 

handled automatically according to the standards described in the PicknPack protocol. 


