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1 Introduction  

This deliverable report gives an overview of the performance of the Quality Assessment and Sensing 

(QAS) module as was achieved after the full integration of the line in Wageningen (WUR). The 

functionality and capabilities discussed in this report were demonstrated during the demonstration 

days in Wageningen at the end of May 2016. 

This deliverable is a result from Tasks 4.4 (Development of a quality sensing platform) and 4.5 

(Evaluation of the quality assessment method on relevant food products). 

2 Functionality of the QAS module  

The main functionality of the QAS module concerns the measurement and rating of the quality of all 

products that pass through the module. The term quality should be interpreted in a broad sense: It can 

refer to the assignment of a product to a certain quality class, but it can also concern the measurement 

of more specific product properties e.g. damage detection or brix estimation. 

This functionality is realized by applying a series of sensors which each measure different properties 

of the products. The sensors are divided over two submodules termed submoduleǎ ά!έ and ά.έ 

(Figures 1, 2 and 3). Submodule A is constructed in a collaboration between KUL, WUR and MU and 

contains an RGB camera, a 3D laser scanner, a microwave scanner and a hyperspectral camera (HSI, 

600 ς 1000 nm). Submodule B contains an X-ray unit and is constructed by InnoS.  

 

Figure 1. Schematic overview of the PicknPack QAS module. 
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Figure 2. (a) Montage of submodule A in the PicknPack Line. (b) View of the interior of the QAS 
submodule A. Each of the sensors is mounted on a bridge over the web of packages. 

 

Figure 3. Montage of the QAS submodule B (X-ray) in the PicknPack Line. 
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which collects and processes incoming data. Data acquisition is controlled by an FPGA (field 

programmable gate array) controller which translates the speed of the line as captured by encoders 

into a trigger for the sensors. 

The devices are connected to a central module controller which also interacts with the PicknPack line 

as a whole. Communication is done according to the protocol developed in the PicknPack project 

(based on the zyre protocol). 

More information on each of the sensors and the assembly of the (sub-) modules can be found in 

deliverable reports D4.5 and D4.6 and D4.7. 

The QAS module is equipped with flexible self-learning software tools which should enable operators 

to quickly and easily train the algorithm to deal with new products or product features. These software 

tools are described in more detail in deliverable reports D4.8. and D4.9. 

(a) (b)



  

The remainder of this report provides an overview of the realized functionality and performance of the 

QAS module. The performance of the module is judged by means of two types of performance 

indicators: 

Performance of the module as a measuring system: This pertains to the more fundamental 

capabilities of the system needed to perform quality inspection in an industrial environment. These 

include:  

- The speed and accuracy at which all sensors can acquire incoming data 

- Spatial calibration related aspects which are important for sensor fusion 

- The correct behaviour of the QAS module in the PicknPack communication network 

- Safety aspects 

- Hygienic design 

 

Performance of the module as a processing system: This pertains to the more advanced capabilities 

of the system in that it can generate useful product information that can be used in the remainder of 

ǘƘŜ ƭƛƴŜ όǇǊƛƴǘƛƴƎΣ ǎƻǊǘƛƴƎΣΧύΦ aƻǊŜ ǎǇŜŎƛŦƛŎŀƭƭȅΣ ǘƘƛǎ ǊŜǇƻǊǘ Řƛǎcusses: 

- The product properties that can be measured and the correctness and accuracy of those 

measurements. 

- The ease with which the module can be operated/trained (flexibility). 

2.1 Performance of the module as a measuring system: 

2.1.1 Communication network  

The communication protocol developed in the PicknPack project has been successfully implemented 

and tested in the QAS module. The network topology used is shown in Figure 1: The PicknPack line 

communicates with the module controller which in turn communicates with the QAS devices. 

A more detailed overview of the most important capabilities of the module controller and the devices 

is listed here: 

QAS module controller 

- Monitors the presence and activity of QAS devices and acts appropriately 

- Sends/Receives information from the line/world model and redistributes as needed 

- Collects/stores processed data  

- Calculates new features by combining data from the devices (sensor fusion) 

 

Devices 

- Exchange information/data with the module controller 

- Acquisition and processing of (raw) data 

The communication protocol was implemented for the module controller (LabVIEW), HSI camera 

(LabVIEW), RGB camera (C++), 3D scanner (C++) and microwave scanner (C#). The communication 

protocol could not be fully implemented on the X-ray unit due to the late stage at which InnoS joined 



 

the PicknPack project. However, given that the communication protocol works well on the other 

devices, it is safe to assume that the protocol can be successfully implemented on the X-ray unit as 

well if more time can be spent. 

2.1.2 Speed and accuracy of data acquisition  

All sensor systems were able to deal with the stop and creep regime as dictated by the PicknPack line. 

More specifically this pertains to a stop phase of about 10 s and a creep phase under 2 s long, during 

which a maximum speed of about 16 cm/s is reached and a total distance of 250 cm is traversed. 

During acquisition the FPGA controller (Figure 1) monitored the movement of the line and produced 

correct custom trigger signals for all sensors. No data lines were missed and images of 

products/trays/punnets could be correctly reconstructed from the raw data feed. 

The sensors achieved the following resolutions: 

- HSI: 0.4 mm / pixel 

- RGB: 0.25 mm /pixel 

- 3D: 1 mm / pixel 

- Microwave: 2.1 mm / pixel in direction of motion, 21 mm / pixel in perpendicular direction 

- X-ray: 0.135 mm / pixel (= 0.027 mm  / pixel @ 5x binning) 

2.1.3 Spatial calibration  

All sensors were calibrated spatially, i.e. the relation between the local coordinate system of each 

sensor was determined relatively to the coordinate system of the line as a whole. Using this calibration, 

ǘƘŜ ǎŜƴǎƻǊǎ ǿŜǊŜ ŀōƭŜ ǘƻ ŎƻǊǊŜŎǘƭȅ ŜȄǘǊŀŎǘ ǊŜƎƛƻƴǎ ƻŦ ƛƴǘŜǊŜǎǘ όwhLΩǎΣ ōŜƛƴƎ ǘǊŀȅǎκǇǳƴƴŜǘǎύ ŦǊƻƳ ǘƘŜ 

recorded data at runtime, based on the tray information provided by the world model/line controller. 

In Figure 4, three examples of the ROI extraction are shown. 

  

Figure 4. (a). ROI as extracted from the RGB data. Quality features are printed on top of each tomato. 
(b) ROI as extracted from the HSI data (fake colour image, only a single waveband is shown). (c) ROI as 
extracted from the dual X-ray data. 

 

 

(a) (c)(b)



  

2.1.4 Safety related aspects 

Safety was taken into account during the operation of the module. The most important safety 

measures were: 

- Installation of emergency stops 

- Installation of door sensors that shut down the laser system of the 3D scanner as soon as 

the doors of the module are opened 

- Appropriate shielding of the X-ray and microwave scanners 

- Examination and approval of the QAS module by a designated safety inspector 

During operation of the line the safety systems performed as expected. 

2.1.5 Hygienic design  

Both QAS submodules were designed with hygienic criteria in mind, e.g. by using stainless steel as 

construction material or by making all surfaces slanted to avoid build-up of contamination. 

Submodule A of the QAS module (see Figure 2(b) ) is equipped with a tunnel which was designed 

according to industrial design criteria. The sensors are installed above the tunnel so the part of the 

module that comes into contact with food products can be cleaned properly and safely. 

The X-ray unit (submodule B) was also designed according to industry standards and is fully cleanable. 

2.2 Performance of the module as a processing system 

The capabilities of the QAS module described in the previous paragraphs serve as a basis to be able to 

correctly process the incoming data. More specifically, the QAS module and its devices acquire raw 

Řŀǘŀ ŀƴŘ ŜȄǘǊŀŎǘ ŦǊƻƳ ƛǘ whLΩǎ ǇŜǊ ǘǊŀȅκǇǳƴƴŜǘ ǿƘƛŎƘ ŀǊŜ ƭƛƴƪŜŘ ǘƻ ƛƴŦƻǊƳŀǘƛƻƴ ƻōǘŀƛƴŜŘ ŦǊƻƳ ǘƘŜ 

worldmodel (position, content). This data is then processed using the various data models developed 

during the PicknPack project. Once the processing is completed, the features obtained per tray/punnet 

are uploaded to the worldmodel for storage or further use down the line (e.g. printing of custom 

labels). 

2.2.1 Measured product proper ties 

In this paragraph, the results obtained are discussed for each of the sensors separately. Generally 

speaking for each sensor, first a segmentation step is performed to separate the plastic tray 

background from the objects of interest and to split an object (e.g. tomato truss) into its components 

(e.g. individual tomatoes and stalk). Further processing is then conducted on the segmented objects. 

Hyperspectral Imaging Sensor (KUL) 

Tomato trusses 

Tomato trusses are segmented by applying a PCA (principal component analysis) model that 

differentiates between stalks and tomato flesh. Subsequently, individual tomatoes are segmented by 

spatial processing (based on the Hough transformation). 

 



 

 The HSI setup was used to create models to determine: 

- the brix-value (sugar content) of individual tomatoes  

- The ripeness of individual tomatoes 

- the presence of skin damage 

Figure 5 shows the results achieved by the model that determines the Soluble Solid content (SSC) 

(expressed as Brix-degrees). An R²-value of 0.53 was achieved (Table QAS1). This low value is explained 

by the fact that for tomatoes the variation in sugar-content between tomatoes is generally low. 

 

Figure 5. Model that predicts the Brix-value in tomatoes. Measured soluble solid content versus 
predicted. 

 

Table 1. Overview of the results obtained by the data models for determining tomato brix values (SSC) 
and colour (Hue H*). 

 

 

 

 

 

 

The colour of the tomatoes is predicted by estimating the L-, a- end b-values of the tomatoes in the 

Lab colour space. The predicted a- and b-values are then used to estimate the Hue value for each 

 
R² R²

p
 RMSEC RMSEP 

L* 0,86 0,86 1,56 1,57 

a* 0,95 0,93 1,86 1,89 

b* 0,55 0,42 1,92 2,29 

H* 0,97 0,95 3,01 3,35 

SSC 0,53 0,23 0,25 0,31 



  

tomato (Figure 6 and Table 1). A good correlation (r² of 0.97) was obtained. This hue-value can then 

be linked to the ripeness class of which the tomato is a member. 

 

Figure 6. Hue prediction for tomatoes. The hue-value is calculated as the tangent of the b- and a-value 
of the Lab-colour space. 

Finally, figure 7 shows an example of damage detection in tomato trusses. These results were obtained 

offline, but can be implemented online according to the same methodology used for the ripeness and 

brix-values. 

 

Figure 7. Determination of cutting and puncture damage in tomatoes. The left images show an RGB 
image of a truss. The middle images are a fake colour reconstruction of the trusses. The right side 
images show the results obtained (red= tomato flesh, yellow= gloss, greed = stalk, black =damage). 

Grapes 

Similar to the methodology described above for tomatoes, a model for the sugar content (brix) of 

grapes was developed. In Figure 8 and Table 2, the results obtained are shown for white grapes. A good 

RGB-image Reconstruction of RGB Hue-calculations

Cutting damage
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correlation (r² = 0.95) between measured and estimated SSC (soluble solid content) was obtained. For 

red grapes (r² = 0.35, see Table 2), no good predictive model could be fit. 

 

Figure 8. Measured versus predicted soluble solid content (SSC, Brix) for white grapes. 

Table 2. Overview of the results obtained by the data models for determining grape brix values (SSC). 

 
R² R²p RMSEC RMSEP 

SSC (white) 0,95 0,73 0,64 1,33 

SSC (red) 0,35 0,31 1,36 1,72 

 

Chicken and turkey 

A classification model was built that could discriminate between uncooked/cooked turkey and 

chicken. The model was built by means of partial least squares discriminant analysis (PLSDA). Figure 9 

and Table 3 present an overview of the results obtained. Overall, about 90 % of the objects can be 

assigned to the correct class. 
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Figure 9. Example of the classification between raw or cooked chicken and turkey. Each pixel is assigned 
a colour to mark to which class it was appointed by the model. 

Table 3. Summary of the results obtained for the classification model for cooked/raw chicken and 
turkey.  

Ground truth Raw Chicken Cooked Chicken Raw Turkey Cooked Turkey 

Raw Chicken 88 0 5 0 

Cooked Chicken 0 93 0 9,2 

Raw Turkey 12 0 95 0 

Cooked Turkey 0 7 0 90,8 

 

RGB sensor (WUR) 

Tomato trusses 

Based on a small number of examples, a segmentation method is trained, which segments the image 

into background, tomato and stalk/calyx based on colour information stored in Hue-Saturation 

histograms. As both stalk/calyx and tomatoes can be green, a further refinement of the stalk/calyx 

segmentation is done using shape information, looking for elongated structures in the image. 

Furthermore, individual tomato segmentation is achieved by detecting circular/elliptical shapes in the 

image. Segmentation of individual tomatoes and stalk works robustly. Some examples of data recorded 

on the line are shown in Figure 10. 

Virtual RGB - imageHyperspectral imaging

Background Raw Chicken Raw Turkey Cooked Chicken Cooked Turkey

Raw Meat Cooked Meat



 

 

Figure 10: Examples of segmentation of the raw image data to the separate packages (orange boxes), 
identification of the individual tomatoes (blue ellipses), and stalk/calyx (blue dotted regions). 

Using the segmentation of the individual tomatoes, the colour of each tomato is determined by taking 

the median Hue value over all pixels of the tomato area. This median Hue value is then used to estimate 

the colour class of each tomato on a human-readable colour scale using a polynomial regression model. 

The regression model was trained and tested on ground-truth data acquired by two human experts 

that established the colour class of 214 tomatoes on a scale from 1-12. 

Figure 11 shows the results of estimation of colour class per tomato on the vine. The estimations made 

by our method correlates well with the ground truth measurements, with R2=0.95. The average 

prediction error was 0.49. The ground-truth measurements were done by two experts and the 

predictions are compared to the average of the two. It must be noted that the human judgement of 

colour class was not fully consistent over the two experts, with an average difference of 0.56 colour 

class. It can thus be noted that the prediction error is smaller than the disagreement between the 

experts. It is difficult to say which part of the prediction error is due to human error and which part to 

machine error. 

 



  

 

Figure 11: Estimation of colour class on a scale from 1-12. Average error is 0.49. 

3D sensor (WUR) 

Tomato trusses 

An example of the data recorded by the 3D sensors can be seen in Figure 12. Using the transformation 

matrices obtained during the calibration of the sensors, the package ROIs are translated to the 

coordinates of the 3D sensor, which is used to get separate 3D point clouds for each package. 

 

Figure 12: Example of 3D data recorded by the QAS module. 

Based on the segmentation of the individual tomatoes, some parameters of the shape and size of the 

tomatoes are determined. Specifically, we take the length of the major and minor axes of the ellipse 

fitted to the contour of each tomato. Based on this information, a regression method is trained to 

predict the weight. The learning and testing is performed on ground-truth data, which is collected by 

measuring the weight of each tomato with a scale.  
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