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1 Introduction

This deliverable repoigivesan overviewof the performance of the Qualithssassment and Sensing
(QAS) module as was achieved after the full integration of the line in Wageningen (WUR). The
functionality and capabilities discussed in this report were demonstrated during themulsnation

days in Wageningen at the end of May 2016.

This deliverable is result fromTasks 4.4 (Development of a quality sensing platform) and 4.5
(Evaluation of the quality assessment method on relevant food prodlucts

2 Functionality of the QAS module

The main functionality of the QAS module concerns the measurement and rating of the quality of
products that pass through the module. The term quality should be interpreted in a broad sense: It can
refer to the assignment of a product &xertain qualiy class, but it can also concern the measurement

of more specific product properties e damagedetection orbrix estimation

This functionality is realized by applying a series of sensors which each measure different properties
of the products.The seners are divided over twesubmodules termedsubmodulé& édahdda . €
(Figures 1, 2 and 3. SubmoduleA is constructedn a collaboration betweelKUL, WUR and MU and
containsan RGB camera 3D laserscanner,a microwave scanner andhyperspectral camer@HSI,

600¢ 1000 nm) SubmoduleB containsan X-ray unit andis constructed by InnoS.
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Figure 1. Schematic overview of the PicknPack QAS module.
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Figure 2.(a) Montage of submodule A in the PicknPack Line. (b) View of the interior of the QAS
submoduleA. Each of the sensors is mounted on a bridge over the web of packages.

Figure3. Montage of theQAS submodule B-(Xy)in the PicknPack Line.
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which collects and processes incoming data. Data acquisition is controlled by an FPGA (field
programmable gate array) controller which translates the speed of the line as captured by encoders

into a trigger for the sensors.

The devices are connected to @ntral module controller which also interacts with the PicknPack line
as a whole. Communication is done according to the protocol developed in the PicknPack project
(based on the zyre protocol).

More information on each of the sensors and the assemblyhef(sub) modulescan be found in
deliverable reports D4.5 and D4aéd D4.7

The QAS modulis equipped with flexible selfiearning software tools which should enable operators
to quickly and easily train the algthhm to deal with new products or produftatures These software
tools are described in more detail in deliverable reports D4.8. and D4.9.
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The remainder of this reponprovidesan overview othe realized functionality and performance of the
QAS moduleThe performance of the module is judhédy means of two types of performance
indicators

Performance of the module as a measuring systeifhis pertains to the more fundamental
capabilities of the system needed to perform quality inspection in an industrial environment. These
include:

- The speeand accuracy at which all sensors can acquire incoming data

- Spatial calibration related aspects which are important for sensor fusion

- The correct behaviour of the QAS module in tiekPPack communication network
- Safety aspects

- Hygienic design

Performane of the module as a processing systeifhis pertains tahe more advanced capabilities
of the system in that it can generate useful product information that can be used in the remainder of
GKS fAYS OLINAYGAYITT a2NIAGSESX0d az2NB aLISOATAOIf ¢

- The product properties that can be measured and the correctness and accuracy of those
measurements.
- The ease with which the module can be operated/trained (flexibility).

2.1 Performance of the module as a measuring system:

2.1.1 Communication network

Thecommunication protocol developed in the PicknPack project has been successfully implemented
and tested in the QAS module. The network topology used is shown in Figure 1: The PicknPack line
communicates with the module controller which in turn communicatéth the QAS devices.

A more detailed overview of the most important capabilities of the module controller and the devices
is listed here:

QAS module controller

- Monitors the presence and activity of QAS devices and acts appropriately

- Sends/Receives inforrtian from the line/world model and redistributes as needed
- Collects/stores processed data

- Calculates new features by combining data from the devices (sensor fusion)

Devices
- Exchange information/data with the module controller
- Acquisition and processirgf (raw) data

The communication protocol was implemented for the module controller (LabVIEW), HSI camera
(LabVIEW), RGB camera (C++), 3D scanner (C++) and microwave scanner (C#). The communication
protocol could not be fully implemented on therXy unit due to the late stage at which InnoS joined



PicknPack

the PicknPack project. However, given that the communication protocol works well on the other
devices, it is safe to assume that the protocol can be successfully implemented ofrapaudit as
well if more timecan be spent.

2.1.2 Speed and accuracy of data acquisition

All sensor systems were able to deal with the stop and creep regime as dictated by the PicknPack line.
More specifically this pertains to a stop phase of about 10 s and a creep phase under 2 s logg, duri
which a maximum speed of about 16 cm/s is reached and a total distance of 250 cm is traversed.

During acquisition the FPGA controller (Figure 1) monitored the movement of the line and produced
correct custom trigger signals for all sensors. No dataslingere missed and images of
products/trays/punnets could be correctly reconstructed from the raw data feed.

The sensors achieved the following resolutions:

- HSI: 0.4 mm / pixel

- RGB: 0.25 mm /pixel

- 3D: 1 mm/ pixel

- Microwave: 2.1 mm / pixel in direction ofation, 21 mm / pixel in perpendicular direction
- Xray. 0.135 mm / pixel£0.027 mm / pixel @ 5x binning)

2.1.3 Spatial calibration

All sensors were calibrated spatially, i.e. the relation between the local coordinate system of each
sensor was determined relatly to the coordinate system of the line as a whole. Using this calibration,

iKS &aSyaz2NBR 6SNB Fo6fS (G2 O2NNBOGte SEGNI OG NBIA
recorded data at runtime, based on the tray information provided by the wmiddel/line controller.

In Figure 4, three examples of the ROI extraction are shown.

(b)

Figure 4. (a). ROI as extracted from the RGB data. Quality features are printed on top of each tomato.
(b) ROI as extracted from the HSI data (feddeurimage, only aingle waveband is shown). (c¢) ROI as
extracted from the dual-xay data.
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2.1.4 Safety related aspects

Safety was taken into account during the operation of the module. The most important safety
measures were:

- Installation of emergency stops

- Installation of doo sensors that shut down the laser system of the 3D scanner as soon as
the doors of the module are opened

- Appropriate shielding of the-Kay and microwave scanners

- Examination and approval of the QAS module by a designated safety inspector

During operatiorof the line the safety systems performed as expected.

2.1.5 Hygienic design

Both QAS submodules were designed with hygienic criteria in mind, e.g. by using stainless steel as
construction material or by making all surfaces slanted to avoid 4oldf contamin&on.

Submodule A othe QAS module (see Figu?¢b) ) is equipped with a tunnel which was designed
according to industrial design criteria. The sensors are installed above the tunnel so the part of the
module that comes into contact with food products can be cleaned properly and safely.

The Xray unit(submodule B) was also designed according to industry standards and is fully cleanable.

2.2 Performance of themodule as a processing system

The capabilities of the QAS module described in the previous paragraphs serve as a basis to be able to
correctly procss the incoming data. More specifically, the QAS module and its devices acquire raw
RIFGI FyR SEGNFOG FNRBY AG whLQ& LISNJ GNF e&klLidzyySi
worldmodel (position, content). This data is then processed using theugadata models developed

during the PicknPack project. Once the processing is completed, the features obtained per tray/punnet
are uploaded to the worldmodel for storage or further use down the line (e.g. printing of custom
labels).

2.2.1 Measured product proper ties

In this paragraph, the results obtained are discussed for each of the sensors separately. Generally
speaking for each sensor, first a segmentation step is performed to separate the plastic tray
background from the objects of interest and to split@rject (e.g. tomato truss) into its components

(e.g. individual tomatoes and stalk). Further processing is then conducted on the segmented objects.

Hyperspectral Imaging Sens¢KUL)
Tomato trusses

Tomato trusses are segmented by applying a PCA (princgpaponent analysis) model that
differentiates between stalks and tomato flesh. Subsequently, individual tomatoes are segmented by
spatial processing (based on the Hough transformation).
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The HSI setup was used to create models to determine:

- the brix-value (sugar content) of individual tomatoes
- Theripenessof individual tomatoes
- the presence o$kin damage

Figure 5shows the results achieved by the model that determines the Soluble Solid content (SSC)
(expressed as Brdkegrees). An Réalue of 0.53 waschieved (Table QAS1). This low value is explained
by the fact that for tomatoes the variation in sugaontent between tomatoes is generally low.
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Figure 5. Model that predicts the Bualue in tomatoes. Measured soluble solid content versus
predicted.

Table 1. Overview of the results obtained by the data models for determining tomato brix values (SSC)
and colour (Hue H*).

0,86 0,86 1,56 1,57
ar 0,95 0,93 1,86 1,89
b* 0,55 0,42 1,92 2,29
H* 0,97 0,95 3,01 3,35
SSC 0,53 0,23 0,25 0,31

The colour of the tomatoes is predicted by estimating theat end bvalues of the tomatoes in the
Lab colour space. The predictedamd bvalues are then used to estimate the Hue value for each
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tomato (Figure 6 and Table 1). A gommtrelation (r2 of 0.97) was obtained. This huedue can then
be linked to the ripeness class of which the tomato is a member.

RGBimage Reconstruction of RGB Hue-calculations

qig k.
. - '5
1

Hue = tan(b*/a*)

Figure 6. Hue prediction for tomatoes. The-frakie is calculated as the tangent of theaind avalue
of the Labcolour spae.

Finally, figure 7 shows an example of damage detection in tomato trusses. These results were obtained
offline, but can be implemented online according to the same methodology used for the ripeness and
brix-values.

Cutting damage

Puncture damage

| '

Figure 7. Determination of cutting dmpuncture damage in tomatoes. The left images show an RGB
image of a truss. The middle images are a fake colour reconstruction of the trusses. The right side
images show the results obtained (red= tomato flesh, yellow= gloss, greed = stalk, black =damage)

Grapes

Similar to the methodology described above for tomatoes, a model forstigar content (brix)of
grapes was developed. In Fig@&and Table, the results obtained are shown for white grapes. A good
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correlation (r2 = 0.95) between measured andimsted SSC (soluble solid content) was obtained. For
red grapes (r2 = 0.35, see TaB)eno good predictive model could be fit.
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Figure8. Measured versus predicted soluble solid content (SSC, Brix) for white grapes.

Table 2Overview of the results obtained by the data models for determining grape brix values (SSC).

SSC (white) 0,95

SSC (red) 0,35 0,31 1,36 1,72

Chicken and turkey

A classification model was built that could discriminate betwesmooked/cooked turkey and
chicken. The model was built by means of partial least squares discriminant analysis (PLSDA). Figure
and Table3 present an overview of the results obtained. Qalgrabout 90 % of the objects can be
assigned to the correct class.
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Hyperspectral imaging

Raw Meat Cooked Meat

Background Raw Chicken Raw Turkey Cooked Chicken Cooked Turkey

Figure9. Example of the classification between raw or cooked chicken and turkey. Each pixel is assigned
a colour to mark to which class it was appointed by the model.

Table3. Summary of the results obtained for the classification model for cooked/raw chicken and
turkey.

Raw Chicken 88 0 5 0
Cooked Chicken 0 93 0 9,2
Raw Turkey 12 0 95 0
Cooked Turkey 0 7 0 90,8

RGB sensqiWUR)
Tomato trusses

Based on a small number of examples, a segmentation method is trained, which segments the image
into background, tomato and stalk/calyx based on colour information stored in-Sdteration
histograms. As botstalk/calyx and tomatoes can be green, a further refinement of the stalk/calyx
segmentation is done ugg shape information, looking for elongated structures in the image.
Furthermore, individual tomato segmentation is achieved by detecting circular/elliptical shapes in the
image. Segmentation afdividual tomatoes and stalk works robustly. Some exampldatafrecorded

on the line are shown in Figu.
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FigurelO: Examples of segmentation of the raw image data to the separate packages (orange boxes),
identification of the individual tomatoes (blue ellipses), and stalk/calyx (blue dotted regions).

Using he segmentation of the individual tomatoes, thelour of each tomato is determined by taking
the median Hue value over all pixels of the tomato area. This median Hue valer issé#d to estimate
the colour class of each tomato on a hurmaadable colouscale using a polynomial regression model.
The regression model was trained and tested on greunth data acquired by two human experts
that established the colour class of 214 tomatoes on a scale fraéh 1

Figure 1 showsthe results of estimation atolour class per tomato on the vine. The estimations made
by our method correlates well with the ground truth measurements, witkORB5. The average
prediction error was 0.49. The groutidith measurements were done by two experts and the
predictions arecompared to the average of the two. It must be noted that the human judgement of
colour class was not fully consistent over the two experts, with an average difference of 0.56 colour
class. It can thus be noted that the prediction error is smaller thandibagreement between the
experts. It is difficult to say which part of the prediction error is due to human error and which part to
machine error.
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Estimation of colour class (N=214)
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Figurell: Estimation of colour class on a scale frod21 Average error is 49.

3D sensor (WUR)
Tomatotrusses

An example of the data recorded by the 3D sensors can be seen in Figure 12. Using the transformation
matrices obtained during the calibration of the sensors, the package ROIs are translated to the
coordinates of the 3D sensor, which is used togggtarate 3D point clouds for each package.

Figure 12: Example of 3D data recorded by the QAS module.

Based on the segmentation of the individual tomatoes, some parameters of the shape and size of the
tomatoes are determined. Specifically, we take the length of the major and minor axes of the ellipse
fitted to the contour of each tomato. Based on this inf@tion, a regression method is trained to
predict theweight. The learning and testing is performed on grodngh data, which is collected by
measuring the weight of each tomato with a scale.




































