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1. Agro-ecosystems in Bangladesh  

Bangladesh has a merely agrarian economy. About 80% of the country’s population resides in 

rural areas and most of the people are directly or indirectly engaged in agricultural activities 

(Bhattacharjee et al., 2012). Agriculture is the single largest sector contributing to the national 

economy (Gumma et al., 2014) and mainly consists of crop, fisheries, livestock and forestry. 

Bangladesh has fertile soils and a suitable climate with respect to temperature, rainfall and 

humidity for crop production. The total cropped area of Bangladesh is close to 15 million 

hectares (BBS, 2016). A considerable volume of cereal crops like rice, wheat, maize and other 

important crops e.g. vegetables, jute, pulses, oilseeds, fruits, sugarcane, tea, spices, cotton and 

tobacco are grown. The contribution of the agriculture sector to the national gross domestic 

product (GDP) is 15%, whereas the crop sector solely contributes approximately 8% (BBS, 2016). 

The sector plays a crucial role in employment generation, poverty reduction, human resource 

development and food security needs (Alam, 2005).  

Bangladesh is blessed with different wetland ecosystems: inland water bodies, brackish waters 

and marine environments. The inland open water systems include rivers, streams, lakes, 

marshes, haors and beels. A hoar is a temporary marshy wetland ecosystem which is physically 

a saucer or bowl shaped depression that looks like an inland sea during monsoon while a beel 

is a deeper depression where water remains permanent throughout the year. Together, all 

these inland aquatic systems comprise an area of about 3.9 million hectares. The inland closed 

water bodies encompass ponds, ditches and baors (oxbow lakes, formed by dead arms of rivers 

which are situated in the moribund delta of the Ganges in the western part of the country), and 

cover about 0.8 million hectares. The brackish water environment includes estuarine systems 

with extensive mangrove swamps, and coastal shrimp and prawn farms (FRSS, 2017). The 

prawns are often cultured in combination with rice, and these farming systems occupy more 

than 0.2 million hectare in the southwest coastal area of Bangladesh and contribute to the main 

livelihood for poor people in the region (FRSS, 2017). Rice-prawn farming is practiced in 

modified rice fields, locally known as ‘gher’ (Ito, 2004). The Bengali term ‘gher’, meaning 

‘perimeter’, refers to an enclosure made for prawn culture by modifying rice fields through 

building higher dikes around the field and excavating a canal several feet deep inside the 

periphery to retain water during the dry season (Ahmed and Garnett, 2010). Bangladesh’s 

marine water resources cover approximately 698 km2 in the Bay of Bengal (FRSS, 2017). 
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Bangladesh has become one of the world’s leading (freshwater) fish producing country with a 

total fish production of about 3.8 million metric tons per year (FRSS, 2017). Approximately 27% 

of the fish production comes from inland open water (capture fisheries), 57% from inland closed 

water (culture fisheries) and 16% from brackish water and marine fisheries. The fisheries sector 

contributes approximately 3.7% to the national GDP and provides 60% of the population’ 

animal protein intake. More than 11% of the total population of the country is directly or 

indirectly employed in this sector for their livelihoods (FRSS, 2017). Wetlands are also utilized 

for cattle bathing and sometimes for grazing in winter season. When farmers cultivate rice and 

other crops, they use water for irrigation. 

2. Intensification of agriculture and pesticide use  

Despite of having hundreds of agro-ecosystems, the population of Bangladesh (approximately 

157 million people on 147,570 km2 with a relatively high growth rate 1.05%; BDP 2016) is 

suffering from food deficit. The food needs of this rapidly growing population and the present 

food production practices result in land scarcity and intensification of agriculture through the 

cultivation of more than one crop per year in the same location. Several agro-climatic conditions 

like sudden and flash flood (80% of the total area of the country is susceptible to flooding), 

drought (north and north-western region of the country), cyclones (usually south and south-

eastern part of the country) and salinity intrusion (coastal belt along with Bay of Bengal) are 

posing further difficulties in meeting the growing demands for food (Sikder and Xiaoying, 2014). 

However, there is no or little possibility to expand the farming area, so the challenge is to feed 

the growing population by improving the productivity of the currently farmed land (Murshed-

E-Jahan and Pemsl, 2011).  

Now-a-days farmers are growing high-yielding cultivars of different crops to meet the 

increasing demand of food. However, one important phenomenon of these high-yielding 

varieties is that most of them are highly susceptible to pests and diseases (Ali et al., 2018), 

which may cause about 40% crop loss (Uddin et al., 2013). As a consequence, pesticides have 

been used extensively to protect crops from those pests, herewith improving the yield quality 

as well as quantity (Ansara-Ross et al., 2012; Peluso et al., 2014; Rahman, 2013). Pesticides were 

introduced in Bangladesh in 1951 but their use was negligible until the end of the 1960s (Ara et 

al. 2014). A sharp increase is their use has occured from 7,350 metric tons active ingredient of 

pesticides in 1992 to 45,172 metric tons in 2010  (Rahman, 2013). One of the reasons of 
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increasing pesticide use is that Bangladesh government has adopted a policy initiative to 

stimulate the control of pests by means of chemical measures to increase the overall yield and 

to prevent pre- and post-harvest crop losses (Rahman, 2013).  

Approximately 84 pesticide active ingredients belonging to 242 trade names of numerous 

chemical groups such as organochlorine compounds, organophosphates, carbamates, 

pyrethroids, neonicotinoids, heterocyclic pesticides, nitro compounds and amides are 

registered in Bangladesh and are used in agriculture and household applications (Ara et al., 

2014). However, organochlorine pesticides have been banned in Bangladesh in 1993 (Matin et 

al., 1998) due to their high human and environmental toxicity, chronic persistence, ability to 

bioaccumulate and biomagnify in the food chain (Sun et al., 2006; Teklu et al., 2016). Among 

other groups of pesticides, the use of organophosphorus pesticides has become increasingly 

popular in Bangladesh. Approximately, 35% of the crop-producing area is treated with them for 

a variety of crop protection purposes (Chowdhury et al., 2012a).   

3. Potential effects of pesticides on the aquatic environment 

Pesticides applied on agricultural land may reach the aquatic environment through several 

ways, including spray drift, surface runoff, ground water leaching, and careless disposal of 

empty containers and equipment washing water (Sankararamakrishnan et al., 2005 ; Hossain 

et al., 2015; Sumon et al., 2016). The aquatic contamination by pesticides used in agriculture 

may constitute potential (eco)toxicological risks to non-target aquatic organisms of different 

trophic levels in a food chain i.e. primary producers (Daam et al., 2008a; Malev et al., 2012; Liu 

et al., 2013; Kumar et al., 2014), invertebrates (Maltby et al., 2005; Palma et al., 2009; Rubach 

et al., 2011; Roessink et al., 2013; Van den Brink et al., 2016), and fish (Tillitt et al., 2010; 

Marimuthu et al., 2013; Manjunatha and Philip, 2016; Ali et al., 2018; Sumon et al., 2017), when 

exceeding the threshold levels. 

As fish is considered an important food source for human beings in Bangladesh (about 60% of 

the animal protein comes from fisheries; FRSS, 2017), the prediction and quantification of the 

toxic effects of insecticides on fish are important for policy making. Some direct 

(eco)toxicological effects of pesticides on fish, like mortality, alterations of normal behavioural 

patterns, of physiology and of normal reproductive behaviour have been studied earlier (Dutta 

and Maxwell, 2003; Clotfelter et al., 2004; Scott and Sloman, 2004). Furthermore, Oruç (2010) 

observed the effects of the insecticide chlorpyrifos on the mortality of juvenile and adult nile 
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tilapia (Oreochromis niloticus). Insecticides may cause severe histopathological alterations in 

various tissues (e.g. liver, kidney, gill and gonad) of fish. For example, Dutta and Maxwell (2003) 

have reported several histopathological alterations in bluegill sunfish ovary including 

cytoplasmic and karyoplasmic clumping, cytoplasmic retraction, atretic oocytes, adhesion, 

necrosis and thinning of follicular lining exposed to diazinon. Male bluegill sunfish, exposed to 

diazion, have been reported to have irregular shape and breakage of seminiferous tubules, 

empty and larger lumen, damaged sertoli cells and degeneration of interstitial cell of Leydig etc. 

(Dutta and Meijer, 2003). Some of the insecticides (e.g. monocrotophos) might be responsible 

for phenotypic feminization or sterility resulting in reproductive infertility in fish (e.g. zebrafish) 

(Zhang et al., 2013). Abnormal behavioural patterns like lethargic activities, irregular and erratic 

swimming, hyper excitation or restlessness of Labeo rohita occurred due to exposure to 

imidacloprid (Desai and Parikh, 2014). Insecticides may also cause serious malformations to the 

developmental stages of fish (Marimuthu et al., 2013). Furthermore, sometimes physiological 

alterations may be evoked through creating a hypoxic condition of the water body leading to 

low oxygen supply and resulting in excess mucous secretion on gills thereby reducing the 

respiratory activity and finally causing the death of the fish (Kind et al., 2002; Desai and Parikh, 

2014). Direct toxicological effects of pesticides (i.e. insecticides (Maltby et al, 2005); herbicides 

(Van den Brink et al., 2006); and fungicides (Maltby et al., 2009)) on invertebrates and primary 

producers have also been reported in earlier studies.   

Pesticides might have indirect effects on fish through decreasing fish’s food sources (algae and 

plankton), changing food habits and deteriorating the quality of aquatic habitat (Fleeger et al., 

2003; Van Wijngaarden et al., 2005; Azizullah et al., 2011; Cochard et al., 2014). Some pesticides 

e.g. herbicides may reduce the abundance of primary producers thus ultimately decrease the 

primary and secondary consumers (Brock et al., 2000; Van den Brink et al., 2006; Gregorio et 

al., 2012; Halstead et al., 2014). The primary consumers such as zooplankton (Daphnia magna) 

are severely affected by chlorpyrifos (Palma et al., 2008, 2009; Demetrio et al., 2014). In 

addition, insecticides like imidacloprid may adversely affect arthropods (e.g. insects like the 

mayfly Cloeon dipterum) (Roessink et al., 2013; Van den Brink et al., 2016). 

4. Effects of pesticides on (sub-) tropical aquatic ecosystems 

Ecotoxicological research into the fate and effects of pesticides on aquatic ecosystems has 

mainly focused on temperate countries (i.e., Europe, USA), while little information is available 
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for tropical ecosystems (Daam and Van den Brink, 2010). A few studies, however, have been 

conducted to understand the fate and effects of pesticides for the (sub-) tropical freshwater 

environments over the last decades. These study included single species toxcitity tests (Maltby 

et al., 2005; Kwok et al., 2007; Freitas and Rocha, 2012; Mansano et al., 2016; Daam and Rico, 

2016; Amid et al., 2017), multiple species toxicity tests (Rico et al., 2010, 2011; Echeverría-Sáenz 

et al., 2016; Méndez et al., 2016; Stadlinger et al., 2016; Svensson et al., 2017) and model 

ecosytem studies (i.e. microcosms) (Laabs et al., 2007; Daam et al., 2008a, 2008b, 2009a, 2009b, 

2010; Daam and Van den Brink, 2010, 2011; Leboulanger et al., 2011). 

5. Regulatory risk assessment of pesticides 

Environmental risk assessment of chemicals like pesticides is a process entailing three different 

phases: exposure assessment, effect assessment, and risk characterization phase (Van Leeuwen 

and Vermeire, 2007). Exposure assessment frequently uses chemical application data and 

empirical environmental data in combination with established fate models or analytical 

measurements of the compounds to which environmental compartments such as water or 

sediments are or may be exposed. Effect assessment aims at the estimation of the relationship 

between the dose or concentration of exposure and the incidence of a particular ecological 

effect in response to this exposure (e.g. through the establishment of a dose-response 

relationship). Finally, risk characterization combines the output of the previously mentioned 

studies in order to provide an estimation of the risks, frequently expressed as risk quotients 

(Brock et al., 2006; Van Leeuwen and Vermeire, 2007). 

Environmental risk assessment of pesticides should be performed using the best available 

methods. In order to achieve the goal, tiered approaches can be used in such risk assessment 

processes. The overall idea of tiered approach is to start with a simple and conservative 

approach (lower-tier). The higher-tier approach may only be performed when the lower-tier 

risk assessment indicates a possible risk (Van Leeuwen and Vermeire, 2007). The higher-tier risk 

assessment often requires more advanced studies to provide the realistic inputs, with greater 

complexity and a higher data requirement, while lower-tier requires less effort (Solomon et al., 

2008). The use of tier-based risk assessment approaches in developing countries like 

Bangladesh is currently lacking, while they have been used in Europe and USA for many years. 

It is, therefore, important to take into account the different options available for such an risk 

assessment of pesticides in developing countries like Bangladesh. 
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6. Overall aims of this study 

In Bangladesh, the use of different types and amounts of pesticides are increasing at an 

alarming rate due to agricultural intensification. As mentioned before, there are various likely 

direct and indirect effects of pesticides on the aquatic environment. Pesticides may be 

responsible for changing community composition and ecosystem properties (Halstead et al., 

2014). These cumulative effects may account for a great loss of different species in the aquatic 

ecosystems of a sub-tropical country like Bangladesh. During the past years, a large number of 

studies focusing on the toxicity of different pesticides to the aquatic environment have been 

conducted mostly in temperate countries. To date, information on the toxicity of pesticides on 

the aquatic organisms in sub-tropical Bangladesh is largely lacking. To address this knowledge 

gap, the present research aimed at assessing the potential environmental risks of the current 

wide-ranging use of insecticides on aquatic environment in Bangladesh.  

The specific research objectives of this thesis are: 

1. To assess the current status of pesticide use in crop production in Bangladesh and their 

associated potential risks to aquatic organisms.  

2. To perform a chemical monitoring program to quantify the residues in the aquatic 

environment and to calculate the potential risks posed by insecticides to the aquatic 

ecosystems.  

3. To derive the safe environmental concentration for a insecticide for certain structural and 

functional endpoints of sub-tropical freshwater ecosystems.  

4. To investigate the potential toxic effects of insecticides on the developmental stages and the 

reproductive tissues of fish. 

7. Thesis outline 

Chapter 2 provides information on the current use of pesticides in rice-prawn concurrent 

systems in south-west Bangladesh and human health issues posed by the application of 

pesticides. In this chapter, also model-based potential risks of pesticides for the aquatic 

ecosystems that support the culture of freshwater prawns (Macrobrachium rosenbergii) are 

assessed. The TOXSWA model calculates pesticide exposure (peak and time-weighted average 

concentrations) in surface waters of rice-prawn systems for different spray drift scenarios and 

a simple first-tier risk assessment based on threshold concentrations derived from single 
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species toxicity tests used to assess the ecological risk in the form of risk quotients. The PERPEST 

model refines the ecological risks when the first-tier risk assessment indicates a potential risk.  

Chapter 3 describes the outcomes of chemical monitoring in surface water and sediment 

samples collected from two different water bodies in north-west Bangladesh. The residues of 

ten most commonly used organophosphate pesticides are quantified in surface water and 

sediment samples in that region. The risk assessment of the pesticide concentrations in surface 

water and sediment based on risk quotient approach (RQ) for three different trophic levels is 

also presented and discussed. Like the modelling study, the higher-tier PERPEST model is used 

to confirm the risk of pesticides when the first-tier risk assessment indicates a possible risk.  

Chapter 4 aims at assessing the fate and effects of the insecticide imidacloprid on structural 

(phytoplankton, zooplankton, macroinvertebrates and periphyton) and functional (organic 

matter decomposition) endpoints of freshwater, sub-tropical ecosystems in Bangladesh. The no 

observed effect concentrations (NOECs) values of imidacloprid for all individual taxa and a few 

communities are assessed. The sensitivity of different species of micro- and macro-

invertebrates to imidacloprid in sub-tropics is compared with those from the temperate 

counterparts. Furthermore, single species toxicity test using two most responding species from 

the microcosm study (i.e. Cloeon sp. and Diaptomus sp.) are conducted to confirm their 

sensitivity observed in the microcosm study. 

Chapters 5 and 6 describe laboratory experiments focussing on toxicity effects of chlorpyrifos 

on the development and reproduction of Banded Gourami (Trichogaster fasciata). Chapter 5 

pays attention to the effects of chlorpyrifos on the incubation period of embryo, hatching 

success, mortality of embryos and two-day old larvae of Banded Gourami. Malformations of 

embryos and larvae for different time interval when exposed to different chlorpyrifos 

concentrations are also studied. Chapter 6 investigates the long-term toxicity of chlorpyrifos on 

the mortality and reproductive tissues of both male and female Banded Gourami (Trichogaster 

fasciata). The NOEC values of chlorpyrifos for all endpoints including the male and female 

mortality, GSI, histopathologcal alterations of ovary and testis are presented for different time 

intervals. 

In chapter 2, the lower-tier TOXSWA model was used to calculate the exposure concentrations 

of pesticides in surface water in rice-prawn systems. In chapters 2 and 3, the higher-tier 
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PERPEST model was used to refine the risks of pesticides which were previously derived from 

the RQ-based risk assessment approach.  

Chapter 7 presents a general discussion on the core findings and tries to asnwer the research 

questions. An overall picture of risks posed by pesticides in sub-tropical Bangladesh is presented 

and disscussed as well as which tools can be used in future risk assessment practices in 

Bangladesh.  
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Risk assessment of pesticides used in rice-prawn concurrent systems 
in Bangladesh 
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Mohammad Mahfujul Haque, Harunur Rashid 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter has been published in Science of the Total Environment (2016), 568: 498-506. 

17



 

Abstract 

The objectives of the current study were to determine the occupational health hazards posed 

by the application of pesticides in rice-prawn concurrent systems of south-west Bangladesh and 

to assess their potential risks for the aquatic ecosystems that support the culture of freshwater 

prawns (Macrobrachium rosenbergii). Information on pesticide use in rice-prawn farming was 

collected through structured interviews with 38 farm owners held between January and May 

of 2012. The risks of the pesticide use to human health were assessed through structured 

interviews. The TOXSWA model was used to calculate pesticide exposure (peak and time-

weighted average concentrations) in surface waters of rice-prawn systems for different spray 

drift scenarios and a simple first tier risk assessment based on threshold concentrations derived 

from single species toxicity tests were used to assess the ecological risk in the form of risk 

quotients. The PERPEST model was used to refine the ecological risks when the first tier 

assessment indicated a possible risk. Eleven synthetic insecticides and one fungicide (sulphur) 

were recorded as part of this investigation. The most commonly reported pesticide was sulphur 

(used by 29% of the interviewed farmers), followed by thiamethoxam, chlorantraniliprole, and 

phenthoate (21%). A large portion of the interviewed farmers described negative health 

symptoms after pesticide applications, including vomiting (51%), headache (18%) and eye 

irritation (12%). The results of the first tier risk assessment indicated that chlorpyrifos, 

cypermethrin, alpha-cypermethrin, and malathion may pose a high to moderate acute and 

chronic risks for invertebrates and fish in all evaluated spray drift scenarios. The higher-tier 

assessment using the PERPEST model confirmed the high risk of cypermethrin, alpha-

cypermethrin, and chlorpyrifos for insects and macro- and micro-crustaceans thus indicating 

that these pesticides may have severe adverse consequences for the prawn production yields.   
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1. Introduction 

The cultivation of the freshwater prawn or giant river prawn (Macrobrachium rosenbergii), in 

combination with rice (Oryza sativa) occupies more than 0.2 million hectare in the southwest 

coastal area of Bangladesh (DoF, 2013) and constitutes the main livelihood for poor people in 

the region (Ahmed et al., 2013). Rice-prawn farming is practiced in modified rice fields locally 

known as ‘gher’ (Chapman and Abedin, 2002; Ito, 2004). The Bengali term ‘gher’, meaning 

‘perimeter’, is an enclosure made for fish and prawn cultivation by modifying rice fields through 

building higher dikes around the field and excavating a canal several feet deep inside the 

periphery to retain water during the dry season (Ahmed and Garnett, 2010; Figure 1). Rice-

prawn farming is considered as an effective method of integrated agriculture-aquaculture 

(Ahmed et al., 2008) which maximizes land and water utilization, while providing excellent 

opportunities for nutrient re-utilization within the system (Kunda et al., 2008). In rice-prawn 

concurrent systems, the rice crop attracts a series of insect species that constitute the natural 

food source for the cultured fish and prawns, while the nutrient-rich waste released from the 

cultivated aquatic animals can be effectively used as fertilizer for rice farming (Huy Giap et al., 

2005). 

Rice-prawn farming offers a source of staple food (rice) and animal protein (fish) for the people 

of Bangladesh, while prawns are used as a cash crop to sustain the economy of the rural 

population (Ahmed and Garnett, 2010). The expansion of rice-prawn farming in Bangladesh has 

been noticeable over the last two decades, and prawn production has drawn a noteworthy 

attention due to its export potential to international markets (Ahmed et al., 2008; Mirhaj et al., 

2013) such as USA, Europe, and Japan (Ahamed et al., 2014; Ahmed and Garnett, 2010). 

Between 2011 and 2012, Bangladesh exported 7,060 tons of freshwater prawn, with a market 

value of 108 million US$ (DoF, 2013). 

Rice production in Bangladesh has steadily increased, but it is still not sufficient to cover the 

needs of the ever growing population (Shahid, 2011). The rapid population expansion and food 

security issues have resulted in a decrease of available arable land and a concomitant 

intensification of agricultural practices. Nowadays, farmers tend to grow high-yield varieties of 

rice (e.g. boro rice), which are highly susceptible to infestations with pests and diseases that 

may produce crop losses of up to 40% (Bagchi et al., 2009; Uddin et al., 2013). As a consequence, 

pesticides are being used to protect rice crops from pests, herewith improving rice crop yields 

19



 

and the quality of the product (Ansara-Ross et al., 2012; Rahman, 2013). As in many developing 

countries, the government has promoted the use of pesticides to increase agricultural yields in 

Bangladesh (Dasgupta et al., 2005). Pesticide consumption in Bangladesh has dramatically 

increased from 7,350 metric tons in 1992 to 45,172 metric tons in 2010 (Hasan et al., 2014).   

The application of pesticides in rice production may lead to the contamination of the 

surrounding aquatic environments by several ways including spray drift, runoff, and leaching 

(Van den Brink, 2013; Van Wijngaarden et al., 2005; Capri and Karpouzas, 2008). Pesticides 

applied in rice-prawn concurrent systems may constitute a potential toxicological risk for the 

aquatic organisms that are cultured in the gher as well as for the maintenance of the aquatic 

communities that support the aquatic ecosystem of the gher, and herewith can make the whole 

system less profitable as it may eradicate organisms that are a food source for the cultured 

prawns (Huy Giap et al., 2005). Furthermore, pesticides applied by farmers with poor education 

on safe pesticide use practices could result in human health hazards, including risks of acute 

intoxication and/or other diseases e.g. skin diseases, eye diseases, gastro-intestinal diseases, 

urinary and reproductive diseases (Miah et al., 2014).  

Several studies have investigated pesticide use patterns in different agricultural crops of 

Bangladesh (e.g. Dasgupta et al., 2005; Meisner, 2004); however, only one study has 

investigated pesticide use in rice-prawn concurrent systems (Hasan et al., 2014). The study by 

Hasan et al. (2014), however, did not investigate the potential aquatic risks of pesticides applied 

in these systems, and neither reported the impacts of pesticide use on farmers’ health. The 

objectives of the current study were to determine the farmers’ knowledge, perception and 

occupational health hazards related to the pesticides applied in concurrent rice-prawn farms of 

south-west Bangladesh and to assess their potential risks for the aquatic ecosystems that 

support the culture of the freshwater prawns Macrobrachium rosenbergii. For this, modelling 

approaches were developed to calculate pesticide risks in the gher of these systems which 

included an exposure assessment based on physical characteristics of the farms, pesticide use 

practices, and physico-chemical data and an effect assessment based on ecotoxicological data 

for the recorded pesticides. 

2. Materials and methods 

2.1. Pesticide data collection 

2.1.1. Farm interviews 
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Information on pesticide use, agricultural management practices and occupational health 

hazards related to pesticide use in rice-prawn farming was collected through structured 

interviews performed in the Khulna region (south-west Bangladesh). Such interviews were 

performed to 38 farm owners in 6 villages (namely Kaligati, Gutudia, Rudhagora, Dhopakhola, 

Moddapara, and Kola) between January and May 2012. The pesticide use information included: 

active ingredient, applied dose, mode of application, number of applications per crop, 

application interval, and approximate date of application. Information on human health issues, 

i.e. risk and health of applicators, short/long term impacts of pesticides on farmers’ health, 

most common negative health symptoms experienced by farmers, was collected (see 

Supporting Information). 

2.1.2. Pesticide physico-chemical properties  

Physico-chemical properties of the reported pesticides were collected from online databases 

(e.g. Lewis et al., 2016; http://www.chemspider.com) and peer-reviewed literature sources. 

Information was collected for the parameters listed in Table 1. The half-life of pesticides in 

sediment (DT50sed), was set to 1000 days for all reported pesticides (for rationale see FOCUS, 

2006).  

Table 1. Physico-chemical properties of the reported pesticides. 

M a- Molecular mass; SOL (Tref)b-Solubility in water at reference temperature (20°C); Kow
c- Octanol-water partition 

coefficient; VP (Tref)d- Vapour pressure at reference temperature (25°C); DT50 water hydrolysise- Half-life in water 

at pH = 7 and 20°C, assuming 1000 days when the compound is regarded as “stable” in the data base. The data for 

cartap, isoprocarb, and phenthoate were collected from Zhou et al., (2009), Takade et al., (1977), and Madamba, 

(1981), respectively; Kocf- Sorption coefficient on organic carbon; 1/ng- Freudlich exponent. It is assumed to be 0.9 

when the value is not available in the databases. 

 

Pesticide name 
Ma 

(g/mol) 

SOL (Tref)b 

(mg/L) 
Kow

c VP (Tref)d 

(Pa) 

DT50water 

hydrolysise (d) 
Koc

f 

 
1/ng 

 

Alpha-cypermethrin 416.30 0.004 316000 3.40 · 10-7 101 57889 0.90 
Carbofuran 221.26 322 631 8.00 · 10-5 37 70.8 0.89 
Cartap 273.80 200000 0.112 1.00 · 10-13 1.9 41.7 0.90 
Chlorantraniliprole 483.15 0.88 724 6.30 · 10-12 1000 (stable) 362 0.95 
Chlorpyrifos 350.89 1.05 50100 1.43 · 10-3 25.5 8151 0.90 
Cypermethrin 416.30 0.009 200000 2.30 · 10-7 179 156250 0.90 
Imidacloprid 255.66 610 3.72 4.00 · 10-10 1000 (stable) 6719 0.80 
Isoprocarb 193.24 270 209 2.80 · 10-3 1.2 107.5 0.90 
Malathion 330.36 148 562 3.10 · 10-3 6.2 1800 0.94 
Phenthoate 320.39 11 4900 5.30 · 10-3 12 1000 0.90 
Sulphur 32.06 0.063 1.70 9.80 · 10-5 1000 (stable) 1950 0.90 
Thiamethoxam 291.71 4100 0.741 6.60 · 10-09 1000 (stable) 56.2 0.90 
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2.1.3. Pesticide toxicity data  

Acute and chronic toxicity data for fish, invertebrates, and algae were collected from the 

FOOTPRINT Pesticide Properties Database (Lewis et al., 2016), the ECOTOX Database 

(http://cfpub.epa.gov/ecotox/quick_query.htm), and other peer-reviewed literature sources 

(Table 2). Fish toxicity data were also considered relevant because in some instances fish is 

being cultured together with prawns in the gher systems (Rahman et al., 2011). Acute toxicity 

data for fish consisted of 96-h LC50 and for invertebrates consisted of 48-h EC50 values was 

collected. The organisms for which acute toxicity data was available were the fish species 

Oncorhynchus mykiss, Lepomis macrochirus, Cyprinidae, Cyprinodon variegatus, Salmo 

gairdneri and Cyprinus carpio; the invertebrate species Daphnia magna and Daphnia carinata; 

and the algae species Raphidocelis subcapitata, Pseudokirchneriella subcapitata, Scenedemus 

subspicatus, Selanastrum subspicatus, and Chlamydomonas reinhardtii. Regarding the chronic 

toxicity data, the No Observed Effect Concentrations (NOEC) for an exposure period of 28, 21, 

and 3-4 days, were collected for fish, invertebrates, and algae, respectively. The species used 

for the chronic toxicity evaluation were the fish species Pimephales promelas, O. mykiss and 

Salmo trutta; the invertebrate species D. magna; and the algae species S. subspicatus. 

Table 2. Acute and chronic toxicity data for the recorded pesticides for fish, invertebrates and 
algae. 

a For the acute and chronic toxicity evaluation of imidacloprid on invertebrates, the 96-hour EC50 and 28-day EC10 
of Cloeon dipterum (belonging to the Ephemeroptera order) were used, since this species has been demonstrated 
to be significantly more sensitive than Daphnia magna (Roessink et al., 2013). 

b For the acute toxicity evaluation of thiamethoxam, the 96-hour EC50 for Hemiptera was taken from Morrissey et 
al. (2015). 
NA: Data not available 
 

 

Pesticide name 

Acute toxicity Chronic toxicity 

LC50 
Fish 

(µg/L) 

EC50 
Invertebrates 

(µg/L) 

NOEC 
Fish 

(µg/L) 

NOEC 
Invertebrates 

(µg/L) 

NOEC Algae 

(µg/L) 

Alpha-cypermethrin 
 
 

2.8 
 

0.3 
 

0.03 
 

0.03 
 

NA 
 Carbofuran 

 
180 9.4 2.2 8 3200 

Cartap 
 

1600 10 20 2 NA 

Chlorantraniliprole 
 

12000 11.6 110 4.47 NA 

Chlorpyrifos 
 

1.3 0.1 0.14 4.6 43 

Cypermethrin 
 

2.8 0.3 0.03 0. 04 1300 

Imidacloprid 211000 1.02a 9020 0.033 a 10000 

Isoprocarb 
 

22000 24 3200 NA NA 

Malathion 
 

18 0.7 91 0.06 NA 

Phenthoate 
 

2500 1.7 NA NA NA 

Sulphur 
 

63 63 NA NA NA 

Thiamethoxam 125000 44.8b 20000 100000 
 

NA 
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2.2. Pesticide exposure calculations 

2.2.1. The Gher scenario 

A scenario was created that represents the characteristics of the rice-prawn production systems 

in which pesticides are applied (Figure 1; Table 3). Farmers typically cultivate boro rice during 

the dry season, starting on the 3rd-4th week of December and harvesting it by the 2nd-3rd week 

of May. During the dry season, the paddy field and the adjacent gher are separated by a low 

dike. Farmers start stocking the prawns in the post-larval stage at the end of the rice season or 

just after it. Prawns are mainly grown during the wet season (June to December), when the dike 

is removed and the prawns are allowed to freely move around the entire flooded paddy field. 

Farmers usually harvest their prawn in December, however many of the prawns that have not 

reached the marketable size are kept in the gher for rearing until they reach a sufficient size or 

until the next year, thus keeping a continuously growing population. 

 

              

           

 

 

 

 

 

 

 

Figure 1. Pesticide application (A), typical rice-prawn concurrent production system from the 
Khulna region in Bangladesh (B), and schematic overview of the rice-prawn concurrent system 
(C). 

During the farm interviews, information was collected describing the physical characteristics of 

the rice-prawn farms. The collected information was used to build a physical scenario for the 

pesticide exposure simulations and included: area of the paddy rice field, water depth in the 

paddy rice field, dike height, canal area, canal length, canal width and water depth, number of 

irrigation events per rice growing season and water height irrigation (Table 3). 
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Table 3. Physical characteristics of the rice-prawn concurrent systems in Khulna region. Based 
on the information collected during the farm interviews (n=38). 
 

 

 

 

 

 

2.2.2. Pesticide exposure modelling 

We initially assumed that pesticides applied on rice production could enter the gher via spray-

drift deposition or via runoff produced by precipitation events leading to water overflowing the 

small dikes that separate the rice-production area from the gher. However, it is questionable 

whether the later should be considered as a relevant pesticide exposure process due to the low 

amount of precipitation typically recorded during the rice growing season. To investigate the 

relevance of the pesticide exposure caused via water runoff events during the rice-growing 

season we parameterised the PEARL model (Leistra et al., 2001) which was modified for 

applications in (flooded) paddy rice according to Ter Horst et al.  (2014). Although other models 

simulating pesticide fate in paddy rice exist (MED-Rice, 2003; Karpouzas et al., 2006; Inao et al., 

2008; Inao and Kitamura, 1999; Watanabe et al., 2006; Young, 2012) the PEARL model was 

selected because it is a field scale model that simulates the runoff and pesticide concentrations 

in the runoff. Furthermore, the model is freely available and allows calibration without an 

extensive dataset being available (Ter Horst et al., 2014). PEARL simulations were performed 

for the period 2004-2012 and included an evaluation of the hydrology of the whole rice-prawn 

production system during the entire year. Due to a lack of measured data (e.g. time series of 

percolation, groundwater tables, water depth on the field) we calibrated PEARL manually only 

considering the rice-growing period and using a set of requirements established using literature 

data (see SI). The main calibration parameters were the saturated conductivity of the plough 

pan and two bottom boundary flux parameters used to describe the downward flux at the 

bottom of the soil column as function of the groundwater level. For these calibrated 

simulations, we calculated the number of runoff events in the rice growing season and found a 

range of 0.3 to 0.7 events per year (see SI). We considered this number to be too low to indicate 

Parameter Mean ± SD 

Rice paddy area (ha) 0.6 ± 0.2 
Rice paddy water depth (cm) 12 ± 4.6 
Dam height (cm) 22 ± 7 
Canal area (ha) 0.06 ± 0.14 
Canal length (m) 51 ± 54 
Canal width (m) 12 ± 25 
Canal water depth (m) 1.55 ± 0.40 
Rice irrigation (n per cycle) 12 ± 14 
Water height irrigation (cm) 12 ± 5 
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runoff overflow as a major driver for pesticide exposure in the gher, and decided to only take 

into account spray-drift deposition for the pesticide exposure calculations.  

Pesticide exposure concentrations due to spray-drift deposition were calculated using the 

TOXSWA v3.3.2 model (Adriaanse, 1997; Beltman et al., 2006). TOXSWA is a pseudo-two-

dimensional numerical model describing pesticide behavior in the water layer and its underlying 

sediment at the edge-of-field scale (Adriaanse, 1997; Adriaanse et al., 2013). A TOXSWA 

scenario was created based on the information provided in Section 2.2.1 and Table 4. The 

TOXSWA scenario comprised only the rice-growing season from January 1st to May 10th, as being 

considered the most vulnerable period for pesticide risks to aquatic organisms. We simulated 

the gher as a stagnant rectangular water body (51 m long and 12 m wide) with a (constant) 

water depth of 1.55 m (Table 3). We assumed the concentration of suspended solids to be 15 

g/m3 with an organic matter content of 9% (FOCUS, 2001). Data on sediment properties were 

based on the EU-FOCUS sediment properties and segmentation characteristics (FOCUS, 2001). 

Spray drift was conservatively assumed to be perpendicular to the long side of the gher (51 m). 

During the farm interviews farmers reported to keep a distance of 0.80±0.95 m (mean ± SD) to 

the edge of the field when spraying. Given the variability of the spray distance reported by the 

farmers, we estimated different spray-drift deposition scenarios into the gher based on 

different distances between the spray area and the gher dike: 0.3m, 0.5m, 1m, 5m, and 10m. 

The percentage of pesticide spray-drift deposition into the gher for each scenario were 

calculated using the method described by Franke et al. (2010), assuming a crop height of 5 cm 

and warm and humid climate conditions. The calculated percentages of the applied dose that 

were considered to be deposited into the gher surface by spray drift were: 5.52%, 3.85%, 2.98%, 

0.66%, and 0.23% for each scenario, respectively. Finally, the pesticide exposure in surface 

water of the gher system for the different spray drift scenarios was conservatively calculated 

by FOCUS using the maximum active ingredient dose (kg/ha) and the maximum number of 

applications with average application intervals used by farmers, as reported in Table 4. The 

model simulations were performed using meteorological data (i.e., temperature, precipitation) 

for the year 2005, as it was considered a representative year for the time series for which 

information was available (2004-2012). The peak Predicted Environmental Concentrations 

(PECs; global maximum water concentration including suspended solids) and the maximum 

Time Weighted Average Exposure Concentrations (TWAECs) over the simulation period were 

obtained from the pesticide exposure profiles calculated by TOXSWA. 
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2.3. Aquatic risk assessment 

The first tier aquatic risk assessment was performed using a Risk Quotient (RQ) approach. We 

could not estimate the risk for carbofuran and sulphur among the evaluated pesticides reported 

by farmers since carbofuran was applied using broadcast method and sulphur is an inorganic 

chemical, whereas we simulated the TOXSWA for spray drift exposures and the dissipation 

processes modelled by TOXSWA were designed for organic chemicals. Acute RQs for fish and 

invertebrates were calculated by dividing the peak PECs by acute Predicted No Effect 

Concentrations (PNECs), while chronic RQs for algae, invertebrates, and fish were calculated by 

dividing the calculated 3-day, 21-day and 28-day TWAECs, respectively, by their respective 

chronic PNECs. Acute PNECs for invertebrates and fish were calculated by dividing the acute EC50 

or LC50 values by an assessment factor of 100. The chronic PNECs for algae, invertebrates, and 

fish were calculated by dividing No Observed Effect Concentration (NOEC) values by an 

assessment factor of 10. RQs were classified as no risk (RQ<1), moderate risk, (1<RQ<10) and 

high risk (RQ>10). 

Since the first tier RQ-based risk assessment is based on worst-case assumption, we used the 

higher-tier PERPEST v4.0.0.0 (Predicting the Ecological Risks of PESTicides) model to refine the 

risks of the PEC values of pesticides with a RQs>1. For the PERPEST model, we considered average 

case scenario while using average number of pesticide application and worst case scenario while 

using maximum number of pesticide application reported by farmers. The PERPEST model 

predicts the toxic effects of a particular concentration of a pesticide on grouped endpoints (Van 

den Brink et al., 2002; Ansara-Ross et al., 2008). The PERPEST model is based on a case-based 

reasoning (CBR) approach. For developing the model, empirical data were extracted from 

published literature describing the results from mesocosm and microcosm experiments for 

freshwater model ecosystem studies with pesticides (Van den Brink et al., 2002) and were 

collated within a database. The PERPEST model results in a prediction showing the probability of 

the evaluated pesticide concentration leading to no, slight or clear classes of effects on the 8 

grouped endpoints: algae and macrophytes, community metabolism, fish, insects, macro-

crustacenas, micro-crustaceans, other invertebrates, and rotifers. The PERPEST model refines 

the outcome of the risk as determined by the RQ approach. For a more detailed description on 

the equations and calculations used for PERPEST model, the reader is referred to Van den Brink 

et al. (2002). 
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3. Results and discussion 

3.1. Pesticides and their application patterns 

Twelve different pesticide active ingredients were recorded from the farm interviews. All 

substances recorded were synthetic insecticides, except for one fungicide (sulphur) (Table 4). 

Most pesticides were sold as a powder form (50%), followed by liquid (46%), and granule (4%) 

formulations. The most commonly reported pesticide was sulphur (29% farmers used it), 

followed by thiamethoxam, chlorantraniliprole, and phenthoate (21%; Table 4). Farmers applied 

pesticides in their rice field between January and March using spray (96%) and broadcast (4%) 

application methods. The full list of recorded active ingredients, together with their dose, 

number of application, average application interval, and approximate date of first application 

are provided in Table 4. 

3.2. Farmers’ perceptions on pesticide risks and occupational health hazards 

The 87% of the interviewed farmers reported to use pesticides during the rice-growing season. 

The compounds reported and application practices resemble those reported by a similar study 

performed in the same region (Hasan et al., 2014) and those reported by vegetable farmers in 

other areas of Bangladesh (Dasgupta et al., 2007). Most of the interviewed farmers had been 

working in their farm for long periods (on average 12 years), however only 21% of them reported 

having received any sort of training from government institutions (e.g. agriculture extension 

officers and fisheries officers) on pesticide use practices. The majority of the interviewed farmers 

reported to understand the pesticide application recommendations stated on the pesticide 

labels, except of two cases due to illiteracy. 

Overall, farmers were sceptical about the impacts of pesticide use on the productivity of their 

prawn and fish. Some of them, however, (25%) reported to have observed prawn mortalities 

after pesticide application at least once and suggested this to be related to the introduction of 

new ‘more toxic’ pesticides. The majority of the farmers (70%) reported to have increased 

pesticide dosages per land area during the last 5 years because of pest resistance and because 

of their attempts to increase productivity. 
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Table 4. Pesticides used in rice-prawn concurrent systems of the Khulna region (Bangladesh) 
together with their dosages and interval between applications. 

I= Insecticide, F= Fungicide 

The vast majority of the interviewed farmers (94%) assumed pesticide use to have short or long-

term impacts on their health. The majority of the farmers (81%) indicated some health symptoms 

after pesticide application and reported to be very confident that these symptoms had been 

occurred due to pesticide intoxication. In this study, the most common negative symptoms 

experienced by farmers’ after pesticide application were vomiting, which was reported by the 

51% of the interviewed farmers, followed by headache (18%), and eye irritation (12%). This could 

be explained by the fact that 82% of the interviewed farmers only used cloths to cover their body 

and face during pesticide application whereas other equipment such as gloves, appropriate 

masks or glasses was rarely used. The results of this study are in line with those recently reported 

by other investigations on human health risks of pesticides. For example, Miah et al. (2014) 

reported eye irritation, headache and nausea in vegetable farmers in Bangladesh and witnessed 

that 72% of their farmers used only cloths as a protection during pesticide application. They also 

reported some short-term diseases such as skin diseases, eye diseases, gastro-intestinal 

diseases, and urinary and reproduction impairment, probably related to pesticide use. Another 

study including 821 farmers among 11 districts in Bangladesh showed some negative symptoms 

after pesticide application such as headache (27%), dizziness (8%), eye irritation (26%), skin 

disease (13%), vomiting (9%) and other multiple diseases (Dasgupta et al., 2005). Dasgupta et al. 

(2007) also found some intoxication symptoms by Bangladeshi farmers that used pesticides. The 

most commonly reported were: headache, dizziness, eye irritation and dermal diseases, 

gastrointestinal problems and vomiting, and reported that 87% did not use any protective 

measures either during or after pesticide application. 

Pesticide name Type Group 
Use by 

farmers 
(%) 

Active 
ingredient 

dose (kg/ha) 
(min-max) 

Number of 
applications 

(times) 

Average 
application 

interval 
(days) 

Date of first 
application 

Alpha-cypermethrin I Pyrethroid 
 

5 0.1 2 15 4 February 
Carbofuran 
 

I Carbamate 
 

5 0.008-0.009 1 0 10 January 
Cartap 
 

I Unclassified 
 

8 0.5 2-4 15 10 February 
Chlorantraniliprole 
 

I Anthranilic diamide 21 0.014-0.015 2-4 18 8 March 
Chlorpyrifos 
 

I Organophosphate 
 

2.5 0.2 1 0 18 January 
Cypermethrin 
 

I Pyrethroid 
 

8 0.05-0.1 2-4 11 10 January 
Imidacloprid 
 

I Neonicotinoid 
 

2.5 0.2 2 20 4 March 
Isoprocarb 
 

I Carbamate 
 

10 1.005 2-3 12 24 March 
Malathion 
 

I Organophosphate 8 0.57 2-3 15 24 January 
Phenthoate 
 

I Organophosphate 21 0.5 2-8 13 24 February 
Sulphur 
 

F Inorganic 
compound 

 

29 1.98 2-4 10 24 February 

Thiamethoxam I Neonicotinoid 21 0.014-0.015 2-4 18 10 March 
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Sixty percent of the farmers’ reported to be aware of human health and environmental risks 

associated with pesticide application, however, the other forty percent were not informed. More 

than half of the recorded farmers (55%) were not informed about banned pesticides, the other 

part of them were informed by other farmers and local agricultural officers. The majority of the 

farmers (94%) reported not to know alternatives to pesticide use to control rice pests, and the 

knowledge on integrated pest management (IPM) practices or alternative bio-pesticides was 

reported by only one farmer.  

Our study demonstrated that the use of cloths to protect their mouth and nose during pesticide 

application is not sufficient. The resulting negative symptoms could be reduced by not only using 

cloths but also averting behaviour like e.g. wearing masks, hand gloves, eye glasses, and 

gumboot during handling of pesticides and washing hands or taking a shower after pesticide 

handling. The promotion of safe use of pesticides and suitable averting behaviour depends on 

some crucial factors like farmers’ education level, extension contact, participation in training 

programme, etc. (Kabir and Rainis, 2012). Due to the limited access to these factors, farmers are 

lagging behind to promote suitable averting behaviour during pesticide application. In this 

context, both the public and the private sector can play a major role to eradicate the problems. 

For instance, the government should launch education programs for farmers. The Department 

of Agricultural Extension (DAE), the largest agro-based public organization, is mainly responsible 

for providing extension services through Sub-Assistant Agricultural Officer (SAAO), a person who 

live in the farming village and visits local farms individually and in group meetings. The SAAO can 

play a substantial role to change farmer application practices. However, the number of extension 

agents is inadequate in comparison to the total amount of farmers. So, the government should 

increase the extension agent-farmer ratio making the extension services more accessible to the 

farmers. There is also an urgent need to ensure basic training among the farmers to gather 

knowledge and to build awareness on safe use and handling of pesticides so that they can 

properly interpret the recommendations on the pesticide label and they can promote the 

suitable averting behaviour (Dasgupta et al., 2007; Kabir and Rainis, 2012). Furthermore, our 

study also suggests applying risk assessment models for pesticide applicators that emphasize the 

reduction of risks through the promotion of suitable protective measures (Feola et al., 2012; 

Remoundou et al., 2015). 
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Figure 2. Water concentration dynamics of chlorpyrifos (A) and cypermethrin (B) in the gher 
system calculated with the TOXSWA model for the 0.5 m application distance scenario (i.e., 
spray-drift deposition in the gher of 3.85% of the applied dose. 

3.3. Pesticide exposure and first tier risk assessment 

Figure 2 shows an example of the calculated pesticide exposure profiles calculated with the 

TOXSWA model for chlorpyrifos and cypermethrin in the gher system, whereas the calculated 

peak PECs and the TWAECs for the list of evaluated pesticides are provided in Table S11. 

Chlorpyrifos showed the highest acute RQs for fish in all evaluated spray drift scenarios, followed 

by cypermethrin, alpha-cypermethrin, and malathion (Table S12), however, the rest of the 

evaluated compounds did not show potential risks (acute RQs <1). The highest chronic RQs for 

fish were calculated for cypermethrin, followed by alpha-cypermethrin, and chlorpyrifos while 

rest of them showed no risk (RQs<1) (Table S13). The majority of the recorded pesticides showed 

high acute RQs for invertebrates for all spray drift scenarios with the exception of carbofuran, 

thiamethoxam, and chlorantraniliprole. Among the pesticides evaluated, the highest acute RQs 

for invertebrates were also calculated for chlorpyrifos, followed by malathion, cypermethrin, 
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alpha-cypermethrin, and phenthoate for all scenarios (Table S14). The highest chronic RQs for 

invertebrates were calculated for imidacloprid, followed by malathion, cypermethrin, alpha-

cypermethrin for all spray drift scenarios (Table S15). We also calculated chronic RQs for algae 

for chlorpyrifos, cypermethrin, and imidacloprid (Table S16) but for the other pesticides this was 

not possible due to a lack of toxicity data. Among the calculated chronic RQs for these 

compounds, none of them showed risk (RQs<1) thus indicating the algae are not at risk as a result 

of exposure to the recorded pesticides in the gher system. 

The highest acute and chronic RQs including the three taxonomic groups for all spray drift 

scenarios are provided in Figure 3. The most sensitive species based on the lowest acute PNECs 

and the highest acute RQs and the lowest chronic PNECs and the highest chronic RQs among 

three taxonomic groups are presented in Table S17 and Table S18, respectively. Regarding the 

evaluation including the three taxonomic groups, four pesticides (e.g. chlorpyrifos, 

cypermethrin, apha-cypermethrin, and malathion) showed a moderate to high acute risk to fish 

when the spray distances were between 0.3 and 5m, from the edge of the rice field during 

pesticide application. Chlorpyrifos, however, even showed a moderate risk when the spray 

distance was 10 m (Table S12). Cypermethrin, alpha-cypermethrin, and chlorpyrifos showed a 

moderate to high chronic risk to fish with spray distances between 0.3 m and 10 m (Table S13). 

Most of the pesticides showed high acute risk for invertebrates even up to 5 m of spray distance 

and moderate risk up to 10 m of spray distance with the exception of chlorpyrifos and malathion. 

They showed high risk even with a spray distance up to 10 m (Table S14). For some pesticides, a 

moderate to high chronic risk was indicated for invertebrates, even with spray distances up to 

10 m (Table S15). Overall, for the vast majority of the evaluated pesticides moderate to high risks 

are indicated for invertebrates and fish even when a spray distance of 10 m from the edge of the 

rice field is used. Since in our study farmers reported to keep a spray distance of only 0.80 ± 

0.95m (mean ± SD) between the rice crop and canal during pesticides application, it is very likely 

that the pesticides will affect the aquatic ecosystems in the gher system. 
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Figure 3. Calculated highest acute (A) and chronic (B) risk quotients among the three evaluated 
taxonomic groups for the different spray drift scenarios evaluated in this study. The spray drift 
scenarios are represented as the distance from the pesticide application point to the gher and 
the calculated spray drift percentage. 

3.4. PERPEST model results 

The probability of effect classes (no effect, slight effect and clear effect) on 8 grouped 

ecological endpoints of the selected pesticides in respect to different spray drift distances are 

shown in Table S19-S23. The model results showed high probability of clear effects on aquatic 

insects, macro- and micro-crustaceans for cypermethrin, followed by alpha-cypermethrin, and 

chlorpyrifos for different spray drift distances. A high probability of clear effect is taken into 

account when one of the chemical poses the probability of higher than 50%. Cypermethrin 

(for both average and worst case scenario) and alpha-cypermethrin showed a high probability 

of clear effects on insects, macro- and micro-crustaceans even with spray distances up to 10 

m whereas chlorpyrifos showed a clear effect on these endpoints with spray distances up to 

0.5 m. Phenthoate showed a high probability of clear effect on insect and micro-crustacean 
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with spray distances up to 0.5 m for both the average and the worst case scenario, while 

imidacloprid showed a high probability of clear effects on micro-crustaceans with spray 

distances up to 1 m. Other pesticides (e.g. cartap, chlorantraniliprole, isoprocarb, and 

malathion) showed a lower probability of clear effects occurring on these ecological 

endpoints. Community metabolism, fish, algae and macrophytes, other macro-invertebrates, 

and rotifers were found to be impacted to a lesser extent by any of the selected pesticides. 

So, the result of the PERPEST model refined the risks of the top three pesticides (cypermethrin, 

alpha-cypermethrin, and chlorpyrifos) on the gher system which were previously derived 

following the RQ approach.  

To date, it has been challenging to perform site specific aquatic risk assessments of pesticides 

in the (sub-) tropics due to the absence of sensitivity data for local species (Rico et al., 2011). 

The present study, however, provides the first modelling exercise in Bangladesh to assess the 

potential risks of pesticides for the aquatic ecosystems that support the culture of the 

freshwater prawns. One of the limitations of our study is that we could not estimate the risks 

of the pesticides for the prawns because of a lack of toxicity data for most pesticides for M. 

rosenbergii. So, this study recommends that M. rosenbergii should be used as a test animal to 

refine the risk assessment. For example, tests with caged prawn larvae and fish placed at the 

edge of the rice area could be used to evaluate possible direct effects during and after 

pesticide applications, and to better quantify aquaculture productivity losses. Besides direct 

toxic effects, pesticides may impair the ecology of the gher system and indirectly affect the 

sustainability of the aquaculture production system. Pesticides may be responsible for 

changing the whole community structure and ecosystem properties of an ecosystem like the 

gher (Halstead et al., 2014) as a result of alterations in the food web and propagated effects 

(De Laender et al., 2015; Hela et al., 2005).  The direct effects of insecticides typically reduce 

organisms’ abundance by increased mortality or reduced fecundity or alter normal 

behavioural patterns, of physiology (e.g. sensorial, hormonal, neurological and metabolic 

systems), and of normal reproductive behaviour (Van Wijngaarden et al., 2005; Scott and 

Sloman, 2004). Indirect toxicant effects (Fleeger et al., 2003), may lead to ecological imbalance 

of a system by decreased abundance via reduced availability of preferred food sources e.g. 

algae and plankton (Cochard et al., 2014) and micro-crustaceans (Daam et al., 2008; Van den 

Brink et al., 2002); via changing food habits, and deteriorating aquatic habitat (Cochard et al., 
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2014). Prawns are merely dependent on natural food sources (e.g. phytoplankton, 

zooplankton, benthos, and detritus) in a gher system (Ahmed et al., 2008) and those are 

sensitive to indirect toxicant effects. Pesticides may accumulate in sediments as well as in the 

body of the cultured prawns, possibly resulting in long-term risks for consumers (Hernández 

et al., 2013) and for the international export of the produce to countries (Ahmed and Garnett, 

2010). So, unsustainable pesticide use practices may result in international bans from prawn-

importing countries, such as USA, Europe, and Japan, and influence the long-term net 

economic return from these systems.  

The risk assessment of pesticide in aquatic ecosystem like gher from adjacent paddy field 

largely depends on simulation models to estimate the predicted environmental 

concentrations (PECs). Available mathematical models are not always flexible to represent the 

different scenarios and the required input data is not always available or can be produced. So, 

in order to establish a realistic assessment and management procedure for more sustainable 

rice production practices, it is important to develop and validate mathematical models 

adapted to the rice-prawn systems in Bangladesh and in other regions of south-east Asia (Inao 

et al., 2008).  

4. Conclusions 

In rice-prawn concurrent systems, farmers’ aim to keep a dual benefit i.e. a higher rice yield 

through pesticide use without inducing prawn mortalities or yield reductions. To make the 

rice-prawn system more sustainable, mitigation measures or alternatives should be sought for 

the pesticides used in rice crop protection. The present study suggests that the mitigation of 

risk arising from spray drift may be achieved by the implementation of spray drift buffer or 

the avoidance of spray drift (Maltby and Hills, 2008; Hilz and Vermeer, 2013). This study also 

suggests that the adoption of Integrated Pest Management (IPM) practices may provide an 

alternative, which is a popular method of sustainable and eco-friendly crop production in 

many countries (Azad et al., 2009). To date, the rate of IPM adoption in Bangladesh is minimal 

(only 0.27% of the estimated 37 million farmers), though it was first introduced back in the 

1981 through the alliance of Food and Agriculture Organization (FAO) (Kabir and Rainis, 2013). 

The Department of Agricultural Extension (DAE) of Bangladesh has developed some 

dissemination techniques on IPM practices e.g. Extension Agent Visit, Farmers Field School 

(FFS), IPM club, and Field Days; but still shows little impact at the wide national scale. The 

34



 

government should invest more funds and improve the dissemination campaigns to the rural 

population e.g.  by the use of different print and electronic media like TV, radio, newspapers 

and magazines. Furthermore, although hundreds of NGOs are nowadays working in 

Bangladesh, very few are devoted to the implementation of IPMs. More NGOs should be 

involved with GOs to disseminate the IPM through raising awareness among the farmers. One 

of the main reasons behind this may be the poor socio-economic characteristics of the farmers 

and the low literacy rate. Most of the farmers are reluctant to adopt new technologies since 

the majority have no risk bearing capacity. So, this study suggests that both DAE and NGOs 

should motivate the farmers in a way that IPM practice is not only seen as an ecologically 

sound and socially acceptable technique, but also it is presented as a more profitable farming 

practice than the conventional one (i.e., farming with intensive use of pesticides).  
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Abstract 

The use of organophosphate pesticides (OPPs) to protect a variety of crops has increased in 

Bangladesh. OPPs may contaminate surrounding aquatic environments through several routes 

including spray drift, surface runoff and groundwater leaching. Since it is unknown how much 

OPP end ups in aquatic environment in Bangladesh, the objectives of the present study were 

to quantify the residues of ten most commonly used OPPs in water and sediment of water 

bodies of north-west Bangladesh and to assess their ecological risks for aquatic organisms. 

The risks of the pesticides in surface water and sediment were assessed using a first-tier risk 

quotient (RQ) approach. The higher-tier PERPEST model was used to refine the ecological risks 

of pesticides when RQ indicated a potential risk. Results showed the most frequently detected 

pesticides that appeared in high concentrations were chlorpyrifos, diazinon and quinalphos in 

surface water and sediment. The highest concentration of OPPs measured in water was 9.1 

µg chlorpyrifos/L (median of 1.95 µg/L), while this was 51 µg diazinon/kg dw (median of 11 

µg/kg dw) for sediment. Furthermore, results showed high acute and/or chronic RQs (RQ > 1) 

in surface water and sediment for chlorpyrifos, diazinon, quinalphos, malathion and 

fenitrothion. The higher-tier PERPEST model confirmed risks of chlorpyrifos, diazinon, 

quinalphos and fenitrothion for aquatic insects, micro- and macro-crustaceans which were 

previously derived by RQ-based risk assessment for aquatic organisms. Furthermore, the 

results of the PERPEST model also indicated possible indirect effects of these pesticides on 

algae and macrophytes, community metabolism, rotifers and other macro-invertebrates. 
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1. Introduction 

Agriculture is the single largest sector contributing to the national economy of Bangladesh. 

About 80% of the country’s population resides in rural areas and most of them are somehow, 

directly or indirectly, employed in agricultural activities (Bhattacharjee et al., 2012). A further 

intensification of agriculture in Bangladesh, however, is needed due to its’ ever increasing 

population (about 157 million people on 147,570 km2 with 1.05% growth rate; BDP, 2016), as 

well as land scarcity and food security needs (Dasgupta et al., 2007). Severe agro-climatic 

conditions (e.g. flash floods, seasonal water scarcity, and salinity intrusion in the coastal belt) 

pose further challenges to agricultural crop production. To meet the growing demand of food 

under these harsh conditions, farmers are cultivating high-yielding cultivars of crops to get 

higher yields (Hasanuzzaman et al., 2017), but most of these cultivars are highly vulnerable to 

pests and diseases (Ali et al., 2018). Hence, like many other developing countries, pesticides 

are used extensively in Bangladesh to protect the crops (Shahjahan et al., 2017). The 

government of Bangladesh also fosters the pesticide use to amplify the agricultural frontiers 

and to increase output per acre of land (Rahman, 2013). In Bangladesh, the Plant Protection 

Wing of the Ministry of Agriculture (MoA) controls the pesticide registration process. The 

Pesticide Technical Advisory Committee grants registration to a brand of pesticide after 

thorough examination of all reports (Rahman, 2013). 

The use of pesticides started in Bangladesh around 1951 and remained negligible until 1960s 

(Ara et al., 2014), but increased  dramatically from 7,350 metric tons in 1992 to 45,172 metric 

tons in 2010 (Rahman et al., 2013). At present, about 84 pesticide active ingredients belonging 

to 242 trade names of numerous chemical groups such as organochlorine compounds, 

organophosphates (including all evaluated ones), carbamates, pyrethroids, neonicotinoids, 

heterocyclic pesticides, nitro compounds and amides have been registered in Bangladesh and 

are routinely used in agriculture and household applications (Chowdhury et al., 2012a; Ara et 

al., 2014). Since organochlorine pesticides have been banned in Bangladesh in 1993 (Matin et 

al., 1998) due to their high toxicity, persistence, and ability to bioaccumulate and biomagnify 

in the food chain (Sankararamakrishnan et al., 2005; Sun et al., 2006; Teklu et al., 2016), the 

agricultural sectors have shifted towards organophosphorous pesticides (OPPs) (Chowdhury 

et al., 2012b). In Bangladesh, an estimated 35% of the crop-producing area is sprayed with 

OPPs for a variety of crop protection purposes (Chowdhury et al., 2012a). 
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OPPs may reach the surrounding aquatic environment through several routes including spray 

drift, direct runoff, ground water leaching, careless disposal of empty containers and 

equipment washing (Sankararamakrishnan et al., 2005 ; Hossain et al., 2015; Sumon et al., 

2016, 2017). Due to their bioaccumulation ability, OPPs have been detected in different 

environmental compartments e.g. surface and ground water (Leong et al., 2007; Rahmanikhah 

et al., 2010; Bhattacharjee et al., 2012; Chowdhury et al., 2012a; Hossain et al., 2015; 

Hasanuzzaman et al., 2017), sediment (Xue et al., 2005; Abdel-Halim et al., 2006; Nasrabadi et 

al., 2011; Kanzari et al., 2012; Masiá et al., 2015), and aquatic organisms (Abdel-Halim et al., 

2006; Aktar et al., 2009; Malhat and Nasr, 2011; Yang et al., 2012; Masiá et al., 2015; Otieno 

et al., 2015) in different parts of the world with concentrations ranging from 0.003 ng 

chlorpyrifos/L (Rahmanikhah et al., 2010) to 0.8 mg chlorpyrifos/L (Akan et al., 2014) in 

aqueous matrices and 40 ng diazinon/kg (Masiá et al., 2015) to 4.3 mg diazinon/kg (Akan et 

al., 2014) in solid matrices. OPPs have raised great concern in the scientific community due to 

their possible ecological risks to the aquatic ecosystems (Masiá et al., 2015; Wee and Aris, 

2017), in particular to arthropod invertebrates (Maltby et al., 2005). 

The residues of OPPs in the surface water of different water bodies in Bangladesh including 

rivers, paddy fields and seasonal ponds, have hardly been monitored (Bhattacharjee et al., 

2012; Chowdhury et al., 2012a, 2012b; Uddin et al., 2013; Ara et al., 2014; Hossain et al., 2015; 

Hasanuzzaman et al., 2017). The few available studies, however, did not quantify the residues 

of OPPs in sediments from aquatic systems and neither assessed pesticides risks for any of the 

environmental matrices. Hence, the objectives of the present study were to quantify the 

residues of ten most commonly used OPPs in water and sediments collected from two 

different water systems in north-west Bangladesh and to assess the ecological risks to aquatic 

organisms posed by these residues. This study also aimed to identify further research priorities 

concerning the risks of pesticides for aquatic ecosystems in Bangladesh. 

2. Materials and methods 

2.1. The study area 

Two types of beels, namely Baitkamari and Pirijpur were selected as study sites. A beel is a 

deep depression along a river where water remains permanent throughout the year. These 

beels are located in Islampur upazila area of Jamalpur district in north-west Bangladesh, which 

lies around  25°04'59.88"N and 89°47'30.12"E (Fig. 1). These beels were chosen because local 
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farmers routinely use a variety of pesticides to protect the crops in their vicinity throughout 

the year. Rice is the dominant crop in the surrounding of the Baitkamari beel and occasionally 

water chestnut is grown, whereas around the Pirijpur beel the focus is on vegetable 

production including eggplant, potato, tomato, cauliflower, cabbage, cucumber, pumpkin, 

and rice and jute. As it is surrounded by much more intensive agriculture, the Pirijpur beel is 

hypothesised to be more impacted by the pesticide contamination than the Baitkamari beel. 

The total area of the Baitkamari and Pirijpur beels in the wet season (June-October) is 

approximately 55 ha and 3 ha with an average water depth of approximately 5 m and 1 m, 

respectively. In wet season, the water level of both beels becomes high due to rain and flood 

water received from nearby Brahmaputra River. In dry season (November-March), however, 

the area of Baitkamari and Pirijpur beel is reduced to approximately 10 ha and 0.1 ha with an 

average water depth of about 1.8 m and 0.5 m, respectively. Information on crop cultivation 

and pesticide use in vicinity of both Baitkamari and Pirijpur beels was collected from 

agricultural officers of Islampur upazila. Since farmers use organophosphate pesticides 

extensively to protect the crops in the vicinity of both Baitkamari and Pirijpur beels, we 

selected this groups of pesticides in our study.  

 

 

 

 

 

 

 

 

 

 

Figure 1. Map of the sampling sites. 
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2.2. Collection and preservation of samples 

Both surface water and sediment samples were collected from 15 sampling sites of both the 

Baitkamari as the Pirijpur beel (Fig. 1). Sampling took place in August 2016 (wet season) and 

in January 2017 (dry season). Surface water samples (approximately 10 cm below water 

surface) were collected using the hand grab method in 1 L amber glass bottles, filled up to the 

seal, leaving no space for air bubbles and stored at 4 °C in dark until analysis (Forrest, 2000). 

The physico-chemical variables of water including temperature, dissolved oxygen, pH and 

electrical conductivity were measured in situ using a portable multimeter (Hach, HQ 40d). 

Turbidity was measured in situ using a Secchi disk. Total alkalinity, ammonia, nitrite, nitrate 

and phosphate concentrations were measured in the Wet laboratory of the Bangladesh 

Agricultural University in Mymensingh, according to the methods described in American Public 

Health Association (APHA, 2005). An Ekman grab (length and width: 15 cm and height: 16.5 

cm)  was used for sampling the upper sediment (upper 5-10 cm). They were homogenized, 

sieved (mesh size: 1 mm) and stored in 500 mL plastic bottles at 4 °C in dark until analysis. 

Organic matter, sediment texture and pH were measured in Soil Science Department  of 

Bangladesh Agricultural University in Mymensingh. pH was determined using a glass electrode 

pH meter. Organic matter was measured according to the method described by Walkley and 

Black (1934) and sediment texture was determined by the hydrometer method (Bouyoucos, 

1962). 

2.3. Analysis of samples 

All chemicals and reagents used to analyse the pesticide residues in water and sediment 

samples were Sigma-Aldrich analytical grade. Standard of ten OPPs (acephate, chlorpyrifos, 

diazinon, dimethoate, ethion, fenitrothion, fenthion, malathion, methyl-parathion and 

quinalphos) were purchased from Sigma-Aldrich, FAO-UN, Italy (purity: 99.9%). The QuEChERS 

(Quick, Easy, Cheap, Effective, Rugged and Safe) method with a slight modification was applied 

to extract and clean-up the water and sediment samples (Anastassiades et al., 2003). Briefly, 

10 g of each sample (both water and sediment) was transferred to a 50 mL centrifuge tube. 

Then 10 mL acetonitrile was added to the tube and shaken vigorously for 1 minute. 

Subsequently 7.5 g anhydrous MgSO4 and 1 g NaCl were added and the tube was shaken 

vigorously again and centrifuged at 5000 rpm for 5 minutes. Approximately, a 2 mL aliquot of 

the extract was transferred to an Eppendorf containing 100 mg primary secondary amine 
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(PSA) sorbent, 150 mg anhydrous MgSO4 and 30 mg graphitized carbon black (GCB). They were 

shaken vigorously for 2 minutes and centrifuged at 10000 rpm for 5 minutes. The final extracts 

were used to analyse the OPPs residue by GC-MS (GCMS-QP2010®, Shimadzu, Japan). Rxi®-5ms 

column (fused silica) low polarity phase: Crossbond® 5% diphenyl/95% dimethyl polysiloxane 

(30 m × 250 µm × 0.25 µm) was used to separate and analyse the extracted samples, with 1 

µL volume being injected automatically. The split less mode was applied for injection and the 

injector inlet temperature was 250 °C. The column temperature was programmed as follows: 

from 90 °C to 180 °C for 1 min at 25 °C/min, from 180 to 270 °C for 1 min at 3 °C/min and from 

270 to 310 °C for 3 min at 20 °C/min. Helium was used as carrier gas at a constant flow rate of 

1 mL/min, while nitrogen was used as make up gas. The total run time was 40 min. The 

recoveries, limit of detection (LOD) and limit of quantification (LOQ) for all pesticides were 

listed in Table S1. 

2.4. Risk assessment  

The aquatic risk assessment of OPPs in surface water and sediment was performed using the 

deterministic risk quotient (RQ) method. Acute and chronic RQs were estimated by dividing 

the measured environmental concentrations (MECs) by the acute and the chronic predicted 

no effect concentrations (PNECs), respectively (Van Leeuwen, 2003). RQs were classified as no 

risk (RQ < 1) and potential risk (RQ > 1). Before calculating the RQs in sediment, the 

concentrations of pesticides in sediment were converted to concentrations in pore water due 

to the lack of sediment toxicity data (Zhang et al., 2015). We used the following equation:  

Cpw = 1000*Cs/(Koc*foc)                                                                                                                                         (1)                                                                                                        

where Cpw means pesticide concentrations in pore water, Cs means measured pesticide 

concentrations in sediment, Koc means the sorption coefficient on organic carbon (see physico-

chemical properties in Table S2) and foc means the fraction of organic carbon in sediment (see 

supporting information in Table S3).  

When the MEC was below the LOD, acute and chronic RQs were estimated by dividing half of 

the LOD of that particular pesticide by the acute and the chronic PNECs, respectively (Van den 

Brink and Kater, 2006). Acute PNECs for Daphnia and standard test fish species were derived 

by dividing the acute LC50 or EC50 values by an assessment factor of 100. Chronic PNECs for 

standard test algae, Daphnia and standard test fish species were calculated by dividing the no 
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observed effect concentrations (NOECs) values by an assessment factor of 10 (Table S4) (Teklu 

et al., 2016). Eco-toxicological data for fish, Daphnia and algae were collected from 

FOOTPRINT Pesticide Properties Database (Table S5) (Lewis et al., 2016), except the chronic 

NOEC value of chlorpyrifos for Daphnia. As the FOOTPRINT Database showed much higher 

chronic NOEC of chlorpyrifos for Daphnia than the acute EC50, we collected this information 

from Palma et al. (2009) (Table S5). 

The higher-tier model PERPEST v4.0.0.0 (Predicting the Ecological Risks of PESTicides; Van den 

Brink et al. (2002); www.perpest.wur.nl) was used to refine the risks of the MEC values in 

surface water and sediment (pore water) with RQ values > 1. This model used higher-tier data 

(e.g. microcosms and mesocosms) and included indirect effects of pesticides. The PERPEST 

model resulted in a prediction showing the probability of the evaluated pesticide 

concentration leading to no, slight or clear effects on eight grouped endpoints: algae and 

macrophytes, community metabolism, fish, insects, macro-crustaceans, micro-crustaceans, 

other macro-invertebrates and rotifers. The model is based on a case-based reasoning 

approach. For developing the model, empirical data resulting from freshwater model 

ecosystem studies (i.e. microcosm and mesocosm) performed with pesticides were extracted 

and classified within a database (Van den Brink et al., 2002; Ansara-Ross et al., 2008; Van 

Wijngaarden et al., 2005).  

2.5. Statistical analyses 

Multivariate analyses were performed to evaluate the differences in pesticide concentrations 

in water and sediment, their RQs, and the physico-chemical variables between beels and 

seasons. First, all concentrations, RQs and physico-chemical variables (except pH) were Ln 

(AX+1) transformed to approximate a normal distribution of the data. The value of the A 

parameter was chosen in such a way that AX yields 2 with X being the lowest number above 0 

for each concentration, RQ or physico-chemical variable. So the factor A was determined for 

each endpoint separately. For each of the 5 datasets (sediment and water concentrations and 

RQs and physico-chemical parameters) two permutation tests under the RDA option were 

performed: one testing the significance of the differences between the beels, using beel as an 

explanatory variable and season as covariable, and one testing the significance of the 

differences between the seasons, using season as an explanatory variable and beel as 

covariable. If either variable was significant an RDA was performed using the interaction 
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between both variables as explanatory variables in order to show the correlations between 

the endpoints and the beels and seasons. 

To assess the correlation between physico-chemical variables and pesticide concentrations in 

the water and sediment and their associated RQs, an RDA was performed on each of the four 

data sets (water and sediment concentrations and RQs) using physico-chemical parameters as 

explanatory variables. This yields the significance of the correlation of each physico-chemical 

parameters with each of the four data sets.  

Spatial and seasonal differences were further assessed for all endpoints by univariate 

independent t-test using SPSS 23.0. The non-parametric Mann-Whitney U test was used when 

the data did not follow a normal distribution.  

3. Results and discussion 

3.1. Physico-chemical variables of water and sediment 

The results of the RDA showed significant differences between seasons (P ≤ 0.001) and beels 

(P ≤ 0.001) for the physicochemical variables of water and sediment (Fig. 2). Temperature was 

significantly higher in wet season than dry season in both beels (P < 0.001). For DO and nitrate, 

no significant difference was observed between seasons, but was between the beels (P < 

0.001). EC, ammonia, phosphate and silt values were not significantly different between beels 

and seasons. The differences were significant between seasons and beels for pH, turbidity, 

total alkalinity, nitrite, sediment pH, OM and sediment textures (sand and clay) (P < 0.05). 

The differences in physico-chemical variables of water and sediment between beels and 

seasons might be due to other sources of pollution than OPPs. The highest DO was measured 

in Baitkamari beel (10 mg/L) in wet season while lowest DO was measured in Pirijpur beel (5.2  

µg/L) in same season. The significant difference of DO between beels could be explained by 

the occurrence of jute retting near the sampling location in Pirijpur beel during wet season. A 

huge amount of biomass undergoes decomposition, and herewith consuming DO, during the 

jute retting process (Banik et al., 1993). The observed significant increase of temperature in 

Pirijpur beel during wet season (Hasan and Rahman, 2013) might have had a great influence 

on the decomposition of jute biomass, thus leading to increased turbidity and decreased DO. 

The significant reduction of DO due to jute retting was observed by earlier studies in water 

bodies in Bangladesh (Haque et al., 2002) and in India (Mondal and Kaviraj, 2008).  
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Figure 2. RDA biplot showing the difference in physico-chemical parameters between the 
beels and seasons. The interaction between beels and seasons explained 44% of the total 
variance, of which 62% is displayed on the horizontal axis and another 28% on the vertical 
axis. 

None of the physico-chemical variables had a significant correlation with pesticide 

concentrations in water or sediment, nor with the water and sediment RQs. Only ammonia 

had a significant (P = 0.045) correlation with pesticide concentrations in sediment, but this 

significance disappears when a p value correction is used to account for the number of 

statistical tests performed (false discovery rate, P = 0.675).       
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Table 1. Range, median concentrations and detection frequencies (DF, in %) of OPPs in 
surface water (µg/L) and sediment (µg/kg dw) in Baitkamari and Pirijpur beels during wet 
and dry seasons. 
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3.2. Occurrence of OPPs in surface water 

In both beels, all of the OPPs exceeded their LOQ in surface water at least at one of the 

sampling sites in both seasons. The total pesticide concentration in water in Baitkamari beel 

ranged from n.d-0.19 µM in the wet season and n.d-0.26 µM in the dry season, while in Pirijpur 

beel concentrations ranged from n.d-0.34 µM in wet season and n.d-0.35 µM in dry season. 

Thus, the total OPPs concentrations in water were higher in Pirijpur beel than in Baitkamari 

beel during both seasons as could be expected given the level of agricultural intensification 

and the lower dilution factor because Pirijpur beel has a smaller depth and width compared 

with that of Baitkamari beel. However, RDA showed no significant differences between 

seasons and beels for the OPPs concentrations in water (p > 0.05).  

In the Baitkamari beel, the most frequently detected pesticide in wet season was chlorpyrifos 

(53%), followed by quinalphos (40%) and diazinon (33%), while in dry season those were 

quinalphos (47%), chlorpyrifos (40%) and diazinon (40%) (Table 1). In the Pirijpur beel, the two 

most frequently detected pesticides were also chlorpyrifos (53% in wet season and 60 % in 

dry season) and quinalphos (47% for both seasons). Among the ten OPPs, acephate and ethion 

(20-27%) were the less frequently detected pesticides in surface water in both beels during 

both seasons (Table 1). The highest concentration in surface water of 9.1 µg/L was measured 

for chlorpyrifos in the Pirijpur beel at S10 during wet season (Table 1). The results of this study 

are in line with an earlier study by Hossain et al. (2015) in the sense that they found a similar 

maximum chlorpyrifos concentration (9.31 µg/L) in lake water in Bangladesh. Most earlier 

studies from different sub-(tropical) countries, however, reported lower concentrations of 

chlorpyrifos than our study (Leong et al., 2007; Rahmanikhah et al., 2011; Chowdhury et al., 

2012a; Lari et al., 2014; Dahshan et al., 2016; Wee and Aris, 2017). Abdel-Halim et al. (2006), 

however, reported the highest chlorpyrifos concentration as 303.8 µg/L in water samples 

collected from New Damietta drainage canal in Egypt, which is about 33 folds higher than our 

study. In our study, the highest diazinon concentration in water was 9 µg/L in the Baitkamari 

beel at S8 during the wet season (Table 1). Almost similar results were reported in a previous 

study by Hossain et al. (2015) in Bangladesh as they report a highest diazinon concentration 

of 7.86 µg/L in lake water. The highest concentrations of diazinon (9 µg/L) measured in this 

study was higher than the concentration range (0.0001-1.2 µg/L) reported for other sub-

(tropical) countries (Leong et al., 2007; Carvalho et al., 2008; Nasrabadi et al., 2011; 
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Rahmanikhah et al., 2011; Chowdhury et al., 2012b; Wee and Aris, 2017) and a Mediterranean 

country (Masiá et al., 2015).  

The observed variation in pesticide water concentrations in different studies could be 

explained by differences in cropping pattern, intensity of pesticide usage, distance of 

agricultural fields from sampling location, climate, etc. in different countries. Differences in 

pesticide concentrations might also be expected due to differences in efficiency of analytical 

verification methods used between different studies (Wee and Aris, 2017). The results, 

however, indicate that most of the concentration of the detected pesticides (e.g. chlorpyrifos, 

diazinon) were higher in our study than those found in other countries which might be due to 

the extensive and irrational usage of pesticide in north-west Bangladesh. For instance, earlier 

study by Sumon et al. (2016) reported that 70 % of the studied farmers overdosed the 

recommended dose of pesticides (e.g. 0.6 kg malathion/ha; number of applications 3 times 

with an average application intervals of 15 days) in rice-prawn systems in south-west 

Bangladesh, which might have resulted in the high concentrations. Another earlier study by 

Dasgupta et al. (2007) found approximately 47% of the farmers overdosed, with an average 

overuse of 3.4 kg of different pesticides/ha per growing season (e.g. chlorpyrifos has been 

used 10 times per crops) in rice and vegetables in different parts of Bangladesh. Hence, the 

present study suggests future monitoring studies in the vicinity of Baitkamari and Pirijpur 

beels including other groups of pesticides e.g. pyrethroids (cypermethrin and alpha-

cypermethrin) than organophosphates which were also heavily used in that region. This study 

also recommends to reduce the environmental risks of pesticides by firstly adhering to the 

recommended doses and through the adoption of integrated pest management (IPM) 

practices in Bangladesh. 

3.3. Occurrence of OPPs in sediment  

All OPPs were detected above the LOQ in sediment samples at least at one of the sampling 

sites in both Baitkamari and Pirijpur beels during both seasons. The total OPPs concentration 

in sediment samples in Baitkamari beel ranged from n.d-1.35 µM in wet season and n.d-0.85 

µM in dry season, whereas in Pirijpur beel ranged from n.d-0.86 µM in wet season and n.d-

0.93 µM in dry season. The results of the RDA, however, showed no significant differences 

between seasons and beels for the OPPs concentrations in sediment (p > 0.05).  
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In Baitkamari beel, the most frequently detected pesticide was chlorpyrifos (53%), followed 

by diazinon (47%), dimethoate, methyl-paration, and quinalphos (40%) in wet season, while 

quinalphos (53%) was the most detected pesticide in dry season, followed by chlorpyrifos 

(40%). The three most frequently detected pesticides in the Pirijpur beel during the wet 

season were quinalphos (53%), chlorpyrifos (47%) and dimethoate (47%), while diazinon 

(53%) was the most frequently detected pesticide in dry season (Table 1). In the present study, 

the highest OPP sediment concentration of 51 µg/kg dw was measured for diazinon in the 

Baitkamari beel during the wet season (Table 1). Earlier studies in sub- (tropical) waterbodies 

reported lower concentrations (0.56-3.79 µg/kg) of diazinon compared to those found in our 

study (Musa et al., 2011; Wu et al., 2015), which may be a result of the extensive pesticide 

usage in our study sites. However, somewhat higher diazinon concentration in sediment have 

been reported for Spain, 72 µg/kg in the Ebro River Basin (Navarro-Ortega et al., 2010) and 

175 µg/kg in the Guadalquivir River (Masiá et al., 2013). In our study, the highest chlorpyrifos 

concentration in sediment compartment of 45 µg/kg dw was measured in the Baitkamari beel 

during the wet season at S6 (Table 1). Two studies from Spain found approximately three 

times higher chlorpyrifos concentrations than our study in the Turia River and the Llobregat 

River (130-141 µg/kg), (Ccanccapa et al., 2016a; Masiá et al., 2015). However, a few earlier 

studies reported lower concentrations (0.02-16 µg/kg) of chlorpyrifos in sediment in different 

parts of the world than we reported in our study (Xue et al., 2005; Kanzari et al., 2012; Masiá 

et al., 2013; Montuori et al., 2015). Like surface water concentrations, the differences of 

pesticide concentrations in sediment in different studies could also be explained by the 

differences in cropping pattern, pesticide usage, climate, registration status of OPPs, analytical 

verification, etc. The results, however, indicate that most of the pesticides detected (e.g. 

diazinon and chlorpyrifos) in our study was higher than those found in other countries, which 

might be result of the extensive and irrational usage of pesticide in the vicinity of Baitkamari 

and Pirijpur beels in north-west Bangladesh. 

In our study, the total OPPs concentrations including most of the individual compounds in 

both Baitkamari and Pirijpur beels during both wet and dry seasons were higher in sediments 

than those in surface water. Moreover, there was a positive correlation between the most of 

the water and sediment concentrations in both Baitkamari and Pirijpur beels. For example, 

the highest measured diazion and chlorpyrifos concentrations were 51 µg/kg dw and 45 µg/kg 
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dw, respectively in sediments while those were 9 µg/L and 9.1 µg/L, respectively in surface 

waters. This could be explained by the hydrophobic nature and high adsorption tendency to 

the organic matter content in sediment of these pesticides (Gebremariam et al., 2011). 

3.4. Risk assessment 

Variable acute and chronic RQs for each trophic level (fish, invertebrates and algae) were 

calculated for the OPP concentrations in the surface water and the sediment compartment 

for the two beels in both seasons (Table 2). However, RDA did not show any significant 

differences of RQs between beels and seasons in surface water and sediment (p > 0.05). 

Among the evaluated compounds, the highest acute (700) and chronic (650) RQs for fish in 

surface water was calculated for chlorpyrifos (RQ > 1 for 52% of the samples), followed by 

quinalphos and malathion, however, the other pesticides did not show potential risks (RQs < 

1) (Table 2). The majority of the OPPs showed potential acute and chronic risks for Daphnia in 

surface water except acephate, dimethoate and ethion. Four pesticides including chlorpyrifos, 

malathion, quinalphos and fenitrothion showed higher acute and/or chronic potential risks 

for Daphnia than other pesticides as they showed RQs > 1 for 100% of the evaluated samples. 

The highest RQs for Daphnia were also calculated for chlorpyrifos (9100), followed by 

quinalphos (1076), fenitrothion (563) and malathion (533). Among the 10 evaluated OPPs, 

none of them showed potential risk (RQs < 1) for algae in surface water (Table 2). Like surface 

water, the highest acute (426) and chronic (395) RQs for fish were also calculated for 

chlorpyrifos in sediment, followed by quinalphos, malathion, diazion and fenthion, however, 

rest of the five OPPs (acephate, dimethoate, ethion, fenitrothion and methyl-parathion) did 

not show potential risks for any of the evaluated samples (RQs < 1). Eight out of ten OPPs 

showed acute and chronic potential risks for Daphina in sediment except acephate and ethion. 

Five pesticides including diazinon, chlorpyrifos, quinalphos, malathion and fenitrothion 

showed acute and/or chronic RQs > 1 for Daphnia in sediment for 100% of the samples (Table 

2). The highest RQs for Daphnia was calculated for diazinon (10167) in sediment, followed by 

chlorpyrifos (5533), quinalphos (892), fenitrothion (640) and malathion (520). Like surface 

water, none of the pesticides showed potential risks (RQs < 1) for algae in sediment among 10 

OPPs (Table 2).  
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Table 2. The percentage (%) of acute and chronic RQs > 1 (highest RQs) of OPPs in surface 
water and sediment for different aquatic organisms. 

 aFor acute RQs of chlorpyrifos on Daphnia in surface water, 46% of the samples showed RQs > 1 when this 

pesticide was not even detected and rest of the 54% of the samples showed RQs > 1 when they were calculated 

with respective measured concentrations. 

bFor chronic RQs of chlorpyrifos on Daphnia in surface water, 48% of the samples showed RQs > 1 when this 

pesticide was not even detected and rest of the 52% of the samples showed RQs > 1 when they were calculated 

with respective measured concentrations. 

cFor chronic RQs of fenitrothion on Daphnia in surface water, 68% of the samples showed RQs > 1 when this 

pesticide was not even detected and rest of the 32% of the samples showed RQs > 1 when they were calculated 

with respective measured concentrations. 

dFor acute RQs of malathion on Daphnia in surface water, 70% of the samples showed RQs > 1 when this pesticide 

was not even detected and rest of the 30% of the samples showed RQs > 1 when they were calculated with 

respective measured concentrations. 

eFor chronic RQs of malathion on Daphnia in surface water, 72% of the samples showed RQs > 1 when this 

pesticide was not even detected and rest of the 28% of the samples showed RQs > 1 when they were calculated 

with respective measured concentrations. 

 

 

Pesticide Surface water Sediment 

Acute 
RQfish 

Acute 
RQDaphnia 

Chronic 
RQfish 

Chronic 
RQDaphnia 

Chronic 
RQalgae 

Acute 
RQfish 

Acute 
RQDaphnia 

Chronic 
RQfish 

Chronic 
RQDaphnia 

Chronic 
RQalgae 

Acephate 
 

0 0 0 0 0 0 0 0 0 0 

Chlorpyrifos 52 
(700) 

a100 
(9100) 

52 
(650) 

b100 
(3033) 

0 67 
(425.7) 

100 
(5533) 

58 
(395.3) 

100 
(1844) 

0 

Diazinon 0 35 
(900) 

0 33 
(160.7) 

0 3 
(3.3) 

100 
(10167) 

2 
(1.5) 

100 
(1816) 

0 

Dimethoate 0 0 0 0 0 0 12 
(4.4) 

7 
(2.2) 

30 
(22.2) 

0 

Ethion 0 0 0 0 0 0 
 

0 0 0 0 

Fenitrothion 0 30 
(57) 

0 c100 
(563.2) 

0 0 38 
(64.7) 

0 100 
(639.6) 

0 

Fenthion 0 30 
(50) 

0 0 0 
 

2 
(2.5) 

35 
(342) 

0 0 0 

Malathion 28 
(17.8) 

d100  
(400) 

0 e100 
(533.3) 

0 30 
(17.3) 

100 
(390) 

0 100 
(520) 

0 

Methyl 
parathion 

0 25  
(41) 

0 0 0 0 92 
(457) 

0 0 0 

Quinalphos 45 
(142) 

100 
(1076) 

0 0 0 48 
(117.7) 

100 
(891.5) 

0 0 0 
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To assess the risks of pesticides for sediment-dwelling organisms, the measured sediment 

concentrations in our study were compared to the sediment toxicity data derived in earlier 

studies. For this, all sediment concentrations were normalized to sediment organic carbon 

(OC) content (For rationale, see Diepens et al. (2017)). The results indicated that the highest 

concentrations of two pesticides (diazinon and chlorpyrifos) in this study were lower than the 

calculated threshold values for Chironomus sp. in previous studies. For example, Ding et al. 

(2011) calculated the 10-d LC50 value of diazinon (54,300 µg/kg OC) for Chironomus dilutus, 

which is approximately eight times higher than measured (6375 µg/kg OC) in our study. 

However, earlier studies reported 10-d LC50 of chlorpyrifos for Chironomus tentans of 9956 

µg/kg OC (Ankley et al., 1994) and for Chironomus dilutus of 10,800 µg/kg OC (Harwood et al., 

2009), which is almost two times higher than our study (4500 µg/kg OC). 

In our study, several pesticides showed very high RQs (RQ > 1) in water and sediment, 

demonstrating a high potential risks to cause adverse effects for aquatic organisms. However, 

the potential risks of three pesticides (chlorpyrifos, malathion and fenitrothion) is present in 

surface water for Daphnia even without detection (Table 2). This, because the LOD of 

chlorpyrifos, malathion and fenitrothion in surface water was higher than the acute and/or 

chronic PNECs for Daphnia. Hence, the present study suggests that the analytical verification 

for several pesticides should be improved in future studies. In the present study, the 

invertebrate Daphnia was found to be at higher risk than other organisms (i.e. fish and algae). 

The reason behind the high acute and chronic RQs for Daphnia might be due to a combination 

of high MEC values for several sampling sites and relatively low PNEC values of these pesticides 

(Maltby et al., 2005). The results of this study are in accordance with one of the previous 

studies in tropical Thailand in the sense that they also calculated high RQs of different 

pesticides based on the sensitivity of Daphnia (Satapornvanit et al., 2004). Most of the earlier 

studies, however, calculated much lower RQ values of different pesticides for aquatic 

organisms than we reported in our study. For instance, one study from Spain by Ccanccapa et 

al. (2016a) calculated the highest RQ value of chlorpyrifos for Daphnia of 9 for the Turia River. 

Ccanccapa et al. (2016b) also reported the maximum RQ value of this pesticide of 3.6 for 

Daphnia in Ebro River, which is several hundred folds lower than we calculated for chlorpyrifos 

in our study. Almost similar, lower RQ values of chlorpyrifos than our study have been 

reported for surface water in different parts of the world (Thomatou et al., 2013; Stamatis et 
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al., 2013; Montuori et al., 2016; Wee and Aris, 2017). The reason of the high differences in 

RQs could be due to the use of different PNECs in different studies. The higher RQs values of 

different pesticides calculated in our study compared to earlier studies for aquatic organisms 

(i.e. Daphnia and fish) indicate the higher concentrations of pesticides measured in both 

Baitkamari and Pirijpur beel. The extensive and irrational use of pesticides (e.g. chlorpyrifos, 

diazinon and quinalphos) might be the main reason behind the high concentrations measured 

in the vicinity of Baitkamari and Pirijpur beels of north-west Bangladesh (Dasgupta et al., 

2007).  

Table 3. The high probability (≥ 50%) of clear effects of different pesticides in water and 
sediment (pore water) for several endpoints.  

Pesticides Fish  Insects  Macro-crustaceans  Micro-crustaceans 

Water Sediment Water Sediment Water Sediment Water Sediment 

Chlorpyrifos 
 

50 NI  96 92  94 90  93 88 

Diazinon 
 

NI NI  81 100  73 95  77 98 

Dimethoate 
 

NC NI  NC 66  NC 54  NC 57 

Fenitrothion 
 

NI NI  78 80  71 73  69 69 

Fenthion 
 

NI 52  84 98  79 93  76 94 

Methyl-
parathion 

NI NI  73 92  59 87  64 88 

Quinalphos 
 

NI NI  88 87  85 82  83 82 

NC = Not calculated by the PERPEST model since they did not show potential risk (RQ < 1) by RQ method; NI = 

Not included while any pesticides showed < 50% probability of clear effects for any of the endpoints both in 

surface and pore water by PERPEST model. 

The PERPEST model showed high probabilities of clear effects for aquatic insects, macro- and 

micro-crustaceans for both surface water and sediment for nine out of ten OPPs (except 

malathion in both cases). A high probability of clear effect is considered when OPPs pose a 

probability of higher than 50% (Sumon et al., 2016). The highest probability of clear effects in 

surface water were calculated for chlorpyrifos, followed by quinalphos, fenthion, diazinon and 

fenitrothion, and in sediment for diazinon, followed by fenthion, chlorpyrifos, methyl-

parathion, quinalphos and fenitrothion (Table 3). The high probability of clear effect for fish 

was calculated only for chlorpyrifos in surface water while this was calculated for fenthion in 

sediment. So, the results of the PERPEST model refined the potential clear risks of four 

pesticides i.e. chlorpyrifos, diazinon, quinalphos and fenitrothion in surface water and 
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sediment, which were already derived from the RQ-based risk assessment approach (Table 3). 

The probability of clear effects for algae and macrophytes, community metabolism, rotifers 

and other macro-invertebrates in both surface water and sediment, however, was also 

calculated for these pesticides, thus indicating the indirect effects on these endpoints. The 

observed indirect effects could be explained by the fact that the presence of these OPPs could 

lead to the eutrophication in Baitkamari and Pirijpur beels of north-west Bangladesh (Hela et 

al., 2005).  

4. Conclusions 

This study indicated that chlorpyrifos, diazinon, quinalphos and fenitrothion showed high risks 

in aquatic ecosystems in the vicinity of Baitkamari and Pirijpur beel of north-west Bangladesh. 

One of the main reasons of high risks in aquatic ecosystems posed by these OPPs could be 

their irrational use (i.e. overdose), however, we suggest further studies on the exact usage of 

pesticides by the farmers in that region. The study recommends to reduce the use of pesticides 

to the recommended doses, but preferably to lower dosages by promoting integrated pest 

management (IPM) practices in Bangladesh. We also suggest future studies (e.g. modelling 

study) to determine the route of pesticide exposure to the aquatic systems so that pesticide 

contamination may be reduced through the proper implementation of mitigation measures.  

Acknowledgements 

The study is financially supported by NUFFIC-NICHE-BGD 156 project. We are thankful to 

National Food Safety Laboratory (NFSL), Mohakhali, Dhaka-1212, Bangladesh for chemical 

analysis. The authors would like to express the gratitude to Md. Rakibul Islam, Chayan Chandra 

Sarker, Md. Helal Uddin and Al Emran for their kind help in sample collection. The authors 

would also like to thank Changgui Pan for his kind help in making the map.  

 

 

 

 

 

 

 

55



 

Supporting Information 

Table S1. LOD, LOQ and recoveries (mean ± SD; n = 3) of OPPs in surface water (spiked 
concentrations of 100 µg/L) and sediment (spiked concentrations of 100 µg/kg).  

 

 

 

 

Table S2. Physico-chemical properties of 10 OPPs (Source: Lewis et al., 2016). 
Pesticide 
name 

aCAS No. Molecular 
mass (g/moL) 

bWater 
solubility 

(mg/L) 

cKow
 dVapour 

pressure 
(mPa) 

eKoc
 fDT50 

water 
hydrolysis 

(d) 

gHenry 
coefficient 

(Pa m3 moL-1) 

Acephate 30560-19-1 183.17 790000 0.14 0.226 302 50 5.15 × 10-08 

Chlorpyrifos 2921-88-2 350.89 1.05 50100 1.43 8151 25.5 4.78 × 10-01 

Diazinon 333-41-5 304.35 60 4900 11.97 609 138 6.09 × 10-02 

Dimethoate 60-51-5 229.26 39800 50.6 0.247 287* 68 1.42 × 10-06 

Ethion 563-12-2 384.48 2 117000 0.2 10000 146 3.85 × 10-02 

Fenitrothion 122-14-5 277.23 19 2090 0.676 2000 183 9.86 × 10-03 

Fenthion 55-38-9 278.33 4.2 6920 0.37 1500 1000 2.40 × 10-02 

Malathion 121-75-5 330.36 148 562 3.1 1800 6.2 1.00 × 10-03 

Methyl 
parathion 

298-00-0 263.21 55 1000 0.2 240 21 8.57 × 10-03 

Quinalphos 13593-03-8 298.3 17.8 2750 0.346 1465 39 4.70 × 10-03 

aCAS No.- Chemical Abstracts Service Number of pesticides; bWater solubility at reference temperature (20 °C); 
cKow- Octanol-water partition coefficient; dVapour pressure at 25 °C; eKoc- Sorption coefficient on organic carbon 

(*Koc is collected from Sharma et al. 2013 because it is not available in database) ; fDT50 water hydrolysis- Half-

life in water at pH = 7 and 20 °C; gHenry coefficient at 25 °C. 

 

 

 

 

 

 

Pesticide name Surface water Sediment 

LOD 
(µg/L) 

LOQ 
(µg/L) 

Recoveries (%) LOD 
(µg/kg) 

LOQ 
(µg/kg) 

Recoveries (%) 

Acephate 0.001 <0.001 96.8 ± 5.75 0.16 0.53 73.1 ± 4.80 

Chlorpyrifos 0.02 0.07 87.5 ± 4.88 0.25 0.82 79.1 ± 4.50 

Diazinon 0.01 0.03 87.8 ± 7.81 0.50 1.65 73.0 ± 4.58 

Dimethoate 0.03 0.09 94.4 ± 6.25 0.23 0.76 77.3 ± 4.16 

Ethion 0.09 0.29 85.1 ± 8.02 0.30 0.99 68.7 ± 4.51 

Fenitrothion 0.02 0.06 83.3 ± 4.04 0.25 0.82 82.3 ± 4.04 

Fenthion 0.01 0.03 90.2 ± 3.91 0.08 0.26 71.3 ± 3.79 

Malathion 0.08 0.26 98.6 ± 3.08 0.29 0.96 83.8 ± 5.84 

Methyl parathion 0.01 0.03 93.5 ± 4.10 0.06 0.19 73.7 ± 5.50 

Quinalphos 0.07 0.23 98.0 ± 5.29 0.12 0.39 77.0 ± 4.58 
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Table S3. Foc (OM%/1.724; see FOCUS, 2014 for rational) values of sediment in Baitkamari 
and Pirijpur beel during wet and dry season.  

Site Baitkamari beel Pirijpur beel 

Wet Dry Wet Dry 

1 1.13 1.81 1.28 1.48 
2 0.72 1.60 0.92 1.25 
3 0.97 1.15 1.25 1.86 
4 1.00 1.58 1.38 2.10 
5 1.22 1.47 1.46 1.71 
6 1.00 1.03 1.44 1.57 
7 1.00 1.68 1.17 1.45 
8 1.02 1.83 0.93 1.84 
9 1.15 1.39 0.92 1.22 

10 1.11 1.90 1.35 1.08 
11 1.17 1.12 1.40 1.42 
12 0.82 1.08 1.25 1.80 
13 1.25 1.26 1.46 1.51 
14 1.22 1.62 0.97 1.89 
15 1.23 1.42 1.22 1.84 

 

Table S4. Acute and chronic PNECs of OPPs for fish, Daphnia and algae.  
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Pesticide name Acute PNECs ( µg/L)       Chronic PNECs ( µg/L) 

Fish Daphnia Fish Daphnia Algae 

Acephate 1100 672 470 4300 98000 

Chlorpyrifos 0.013 0.001 0.014 0.003 4.3 

Diazinon 31 0.01 70 0.056 1000 

Dimethoate 302 20 40 4 3200 

Ethion 5 NA NA NA NA 

Fenitrothion 13 0.086 8.8 0.0087 130 

Fenthion 8 0.058 NA NA 179 

Malathion 0.18 0.008 9.1 0.006 1300 

Methyl parathion 27 0.073 NA NA 300 
Quinalphos 0.05 0.0066 NA NA NA 
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Table S5. Acute and chronic toxicity data of OPPs for fish, Daphnia and algae (Source: Lewis 
et al., 2016). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NA = Not available; a The chronic 21-d NOEC of chlorpyrifos for Daphnia was collected from Palma et al. (2009). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pesticide name Acute toxicity (µg/L) Chronic toxicity (µg/L) 

Fish (96-h 
LC50) 

Daphnia 
(48-h 
EC50) 

Fish (21-d 
NOEC) 

Daphnia (21-d 
NOEC) 

Algae 
(72-h EC50/96-h 

NOEC) 

Acephate 110000 67200 4700 43000 980000 

Chlorpyrifos 1.3 0.1 0.14 0.03a 43 

Diazinon 3100 1 700 0.56 >10000 

Dimethoate 30200 2000 400 40 32000 

Ethion 500 NA NA NA NA 

Fenitrothion 1300 8.6 88 0.087 1300 

Fenthion 800 5.8 NA NA 1790 

Malathion 18 0.8 91 0.06 13000 

Methyl parathion 2700 7.3 NA NA 3000 

Quinalphos 5 0.66 NA NA NA 
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Abstract 

The neonicotinoid insecticide imidacloprid is used in Bangladesh for a variety of crop 

protection purposes. Imidacloprid may contaminate aquatic ecosystems via spray drift, 

surface runoff and ground water leaching. The present study aimed at assessing the fate and 

effects of imidacloprid on structural (phytoplankton, zooplankton, macroinvertebrates and 

periphyton) and functional (organic matter decomposition) endpoints of freshwater, sub-

tropical ecosystems in Bangladesh. Imidacloprid was applied weekly to 16 freshwater 

microcosms (PVC tanks containing 400 L de-chlorinated tap water) at nominal concentrations 

of 0, 30, 300, 3000 ng/L over a period of 4 weeks. Results indicated that imidacloprid 

concentrations from the microcosm water column declined rapidly. Univariate and 

multivariate analysis showed significant effects of imidacloprid on the zooplankton and 

macroinvertebrate community, some individual phytoplankton taxa, and water quality 

variables (i.e. DO, alkalinity, ammonia and nitrate), with Cloeon sp., Diaptomus sp. and 

Keratella sp. being the most affected species, i.e. showing lower abundance values in all 

treatments compared to the control. The observed high sensitivity of Cloeon sp. and 

Diaptomus sp. was confirmed by the results of single species tests. No significant effects were 

observed on the species composition of the phytoplankton, periphyton biomass and organic 

matter decomposition for any of the sampling days. Our study indicates that (sub-)tropical 

aquatic ecosystems can be much more sensitive to imidacloprid compared to temperate ones.  
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1. Introduction 

The shift from traditional to modern and intensive agricultural practices in developing 

countries like Bangladesh, has led to an increasing use of pesticides over the last decades 

(Rahman, 2013). Pesticide use in Bangladesh raised from 7,350 metric tons in 1992 to 45,172 

metric tons in 2010 (Ali et al., 2018). This was partly due to governments’ policy to stimulate 

chemical control measures against insect pests to increase crop production as well as to 

prevent pre- and post-harvest crop losses (Shahjahan et al., 2017; Sumon et al., 2016). 

Imidacloprid ((E)-1-(6-chloro-3-pyridylmethyl)-N-nitroimidazolidin-2-ylideneamine; CAS No. 

138261-41-3) is a neonicotinoid synthetic insecticide and veterinary substance. It was first 

introduced in the USA in the 1990s to control insect pests and is now registered in about 120 

countries for use in more than 140 crops including rice, maize, cotton, potatoes, tomatoes, 

sugar beets and various greenhouse-grown plants (Jeschke and Nauen, 2008; Morrissey et al., 

2015; Lewis et al., 2016).  

Imidacloprid may affect non-target aquatic organisms via exposure due to spray drift (Hilz and 

Vermeer, 2012) and runoff due to its’ high solubility in water (Armbrust and Peeler, 2002). 

After entering into water bodies, the dissipation time 50% (DT50) of imidacloprid merely 

depends on photolysis, however, variation in DT50 water was observed between different water 

bodies. For example, the European Food Safety Authority (EFSA) reported DT50water values 

ranging from 30 to 150 days for three water-sediment studies performed at 22 °C in laboratory 

in the dark (EFSA, 2008), indicating a likely long-term exposure of imidacloprid to aquatic 

ecosystem when light conditions are poor. However, imidacloprid was found to dissipate very 

rapidly in different studies under UV light due to photolysis (e.g. Lavine et al., 2010). Colombo 

et al. (2013) recorded a DT50 of 1.2 day from the water column monitored for 28 days in field-

based microcosms in Germany, whereas a DT50 of 8.2 day was reported in a pond microcosm 

in Germany (Posthuma-Doodeman, 2008). A DT50 of 1 day was recorded by Thuyet et al. 

(2011) for a rice paddy system in autumn in Japan. However, imidacloprid has been detected 

worldwide in surface waters at concentrations ranging from 0.001 to 320 µg/L, the highest of 

which was found in Netherlands (Morrissey et al., 2015). Imidacloprid has been found in 

aquatic ecosystems at 3.29 µg/L in the California’s agricultural regions in the USA (Starner and 

Goh, 2012) and up to 11.9  µg/L in Canadian agricultural areas (CCME, 2007). The field 
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monitoring data on imidacloprid is only available for temperate countries, but the systemic 

study from sub- (tropical) countries is lacking. 

During the past years, a large number of studies focusing on the toxicity of imidacloprid to the 

aquatic environment have been published, partly also due to the debate on the negative 

relationship between the use of neonicotinoids and non-target beneficial invertebrates, in 

particular arthropods (EASAC, 2015; Van Dijk et al., 2013; Vijver and Van den Brink, 2014). 

Both single species laboratory tests (Alexander et al., 2007; Stoughton et al., 2008; Roessink 

et al., 2013; Cavallaro et al., 2017; Van den Brink et al., 2016) and model ecosystem studies 

(Hayasaka et al., 2012a; Mohr et al., 2012; Colombo et al., 2013) using imidacloprid, were all 

conducted in temperate regions. To date no study seem to have been undertaken to 

investigate the sensitivity of imidacloprid on the aquatic organisms in the sub-tropics and 

tropics. Van den Brink et al. (2016) found that a reproducing, summer generations of several 

arthropods were more sensitive to imidacloprid than their non-reproducing, winter 

generation. Earlier studies demonstrated that higher temperature also might increase the 

sensitivity of arthropods (Camp and Buchwalter, 2016; Van den Brink et al., 2016). Hence, a 

difference in sensitivity between tropical and temperate communities to imidacloprid can be 

hypothesised. To address this knowledge gap, the present study aimed at assessing fate and 

effects of imidacloprid on the structural (phytoplankton, zooplankton, macroinvertebrates, 

and periphyton) and functional (organic matter decomposition) endpoints of freshwater 

ecosystems located in the sub-tropical country Bangladesh.  

2. Materials and methods 

Most of the materials and methods used for the microcosm experiment have been described 

by Rico et al. (2014).  

2.1. Design of the microcosm study and acute toxicity tests  

The present study was conducted in sixteen freshwater microcosms at the Faculty of Fisheries, 

Bangladesh Agricultural University (Mymensingh, Bangladesh; 24.7434°N, 90.3984°E). The 

open experimental area was roofed with transparent plastic slates (Fig. S1). Each microcosm 

comprised of a PVC tank (diameter: 172 cm; total height: 78 cm) which was coated with non-

toxic epoxy paint. Each microcosm was initially filled with 4.5 cm of sediment (collected from 

nearby ponds of Bangladesh Agricultural University campus) and 400 L of tap water (a layer of 
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56 cm). Microcosm water was allowed to dissipate the possible chlorine residues for one 

week. Each system was gently aerated to provide some water movement. The systems were 

stocked with algae and invertebrates collected from same ponds where sediment was 

collected. These ponds were selected because they were uncontaminated sources (as 

agricultural activities were not practised near the Bangladesh Agricultural University campus) 

and were quite biodiverse in terms of algae and invertebrates. Macroinvertebrates were 

stocked by distributing an equal numbers of each of the taxa into each microcosm, while equal 

amounts of concentrated plankton in terms of volume were added into each microcosm. The 

algae and invertebrate communities were allowed to develop themselves over a pre-

treatment period of 6 weeks. During the pre-treatment period, every two weeks about 20% 

of the water volume was exchanged between the microcosms to promote the uniformity in 

the structure of the communities between the microcosms. As recommended by Daam and 

Van den Brink (2011), urea (containing 1.4 mg/L nitrogen) and trisodium phosphate (0.18 mg/L 

phosphorus) were administered every two weeks to the systems during the experimental 

period. 

For the acute toxicity tests, Cloeon sp. and Diaptomus sp. were collected from the nearby 

ponds of Bangladesh Agricultural University campus (see some photos of Cloeon sp. and 

Diaptomus sp. in Fig. S2 and S3, respectively). Cloeon sp. was transferred in an aerated plastic 

bucket with a mixture of pond and de-chlorinated test water first and then only in test water 

to acclimate to the laboratory conditions for at least 3 days at ambient temperature. During 

the acclimation period, they were fed ad libitum with Enhydra fluctuans, Eichhornia crassipes 

and biofilms. Diaptomus sp. was stocked in an aerated glass beaker with de-chlorinated test 

water in the laboratory condition at ambient temperature and fed with algae. After an 

acclimation period of 3 days, 10 individuals of Cloeon sp. were transferred into each of the 21 

glass beakers containing 500 mL de-chlorinated tap water (water holding capacity: 750 mL) 

and 20 individuals of Diaptomus sp. were transferred into 21 glass beakers containing 50 mL 

de-chlorinated tap water (water holding capacity: 100 mL), which were put in the laboratory 

at ambient temperature and receiving no direct sunlight. An aeration system was introduced 

in all beakers to provide sufficient oxygen throughout the experimental period of 96 h. Feeding 

was stopped 24 h before and throughout the exposure period. Both species were exposed to 

seven different concentrations (0, 3, 10, 30, 100, 300, 3000 ng/L) of imidacloprid including 
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control with triplicate treatment for 96 h separately. Imidacloprid (as Premier with 20% active 

ingredient, 6 % adjuvants and 74% water and produced by the world of Hayleys) was 

purchased from a local pesticide seller (Mymensingh, Bangladesh). The stock solutions were 

prepared by dissolving the required weighed amount of imidacloprid in distilled water so a 

concentration of 200 g/L imidacloprid was achieved. Water quality variables (i.e. dissolved 

oxygen, temperature, pH and EC) were measured in the lowest and highest treatment, and in 

the control at 0 h and 96 h of exposure. Mortality and immobility were checked at every 24 h 

of exposure for Cloeon sp. and after 96 h of exposure for Diaptomus sp. Individuals were 

considered immobile when there was no observed movement within 20 s for Cloeon sp. and 

15 s for Diaptomus sp., and dead when there was no observed movement within 3-5 s for both 

after a tactile stimulation using a Pasteur’s capillary pipette (OECD, 2004). Dead individuals 

were removed immediately from the experimental units. Immobile individuals were kept in 

the systems because there was a possibility for recovery, and these specimens were used to 

calculate effect concentration levels based on immobilization. The test was valid when the 

mortality of the control did not exceed 10% at the end (96 h) of the test (OECD, 2004).  

2.2. Application and analysis of imidacloprid 

Like acute toxicity tests, imidacloprid (as Premier) with 20% active ingredient was used in 

microcosm experiment. Imidacloprid was applied to each microcosms weekly at either 

nominal concentrations of 0, 30, 300 or 3000 ng/L over a period of 4 weeks, using four 

replicates for each treatment. The doses were chosen based on the acute and chronic toxicity 

of imidaclooprid to the most sensitive organisms, mayflies. The lowest concentration (30 ng/L) 

was based on the  28-d EC10 value of imidacloprid for Cloeon dipterum (33 ng/L; Roessink et 

al., 2013) in the Netherlands. The highest concentration of 3000 ng/L of imidacloprid in both 

the microcosm experiment and the acute toxicity tests reflected the acute toxicity (96h-EC50) 

for the same species (1770 ng/L; Roessink et al., 2013). The four microcosms serving as 

controls received only aerated tap water. The control and treatments were randomly assigned 

to the experimental microcosms prior to the first imidacloprid application. Stock solutions of 

1 L were prepared for each of the 4 applications by dissolving the weighed amount of 

imidacloprid with distilled water in a volumetric flask so a concentration of 200 g/L 

imidacloprid was achieved and the solution was sonicated for 30 min at 45 °C.  
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The imidacloprid concentrations were analytically verified in microcosm water samples 

collected from one of the four replicates of all treatments just after application and before the 

next application. Water samples were collected at 1h, and 1, 2, 6.9, 7.1, 13.9, 14.1, 20.9, 21.1 

and 28 days. For the acute toxicity tests, water samples were collected to measure 

imidacloprid concentrations from one of the replicates of the control, the lowest and the 

highest treatment at 0 h and 96 h. Approximately 3 ml water samples were collected using a 

pipette and kept in a glass vial containing 1 ml of acetonitrile for both experiments. The 

samples were shaken thoroughly by hand and subsequently preserved in a freezer (-20 °C) 

until analysis. Imidacloprid concentrations from the water samples were analysed by liquid 

chromatography-tandem mass spectrometry (LC-MS) as described in Roessink et al. (2013). In 

this study, matrix-matched method was used to correct matrix effects in the instrumental 

quantification for imdacloprid. The limit of detection (LOD) and the limit of quantification 

(LOQ) in the microcosm study were 9 ng/L and 29 ng/L, respectively, and in the acute toxicity 

tests 6 ng/L and 19 ng/L, respectively. 

2.3. Invertebrates and algae 

The macroinvertebrate community was sampled using two pebble baskets (height: around 30 

cm; diameter: around 20 cm) that served as artificial substrates in each microcosm. Each of 

the two artificial substrates was placed on the sediment’s surface and were left for 

colonization for two weeks. Macroinvertebrates were sampled 7 days before the first 

imidacloprid application and on days 2, 9, 16 and 23 after the first imidacloprid application. 

The two artificial substrates present in the same microcosm were sampled alternately. For 

sampling, one of the substrates was carefully retrieved from the sediment and immediately 

enfolded by a nylon net. The substrate was carefully shaken in the net to extract the 

invertebrates from the substrate. In order to sample the pelagic macroinvertebrates, the net 

was moved through the water column close to one quarter of the microcosm wall. A core 

sediment sampler (inner diameter: around 8 cm) was used to collect the invertebrates 

inhabiting the sediment (Chironomid larvae and Tubifex tubifex) on day 28 after the first 

imidacloprid application. All sampled invertebrates were transferred to a white tray, 

subsequently identified and counted alive, and finally placed back into their original 

microcosms.  
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Plankton was sampled on days 7 and 1 before the first imidacloprid application, and on days 

2, 9, 16, 23 and 28 after the first imidacloprid application. Two 5 L depth-integrated water 

samples were collected using a Perspex tube in a plastic bucket and filtered over a net with a 

mesh size of either 20 µm for phytoplankton or 55 µm for zooplankton, yielding two samples 

of 100 mL. The samples were preserved in plastic bottles with 10% buffered formalin solution 

and stored at 4 °C. The individuals present in a sub-sample (1 mL) of the concentrated 

phytoplankton and zooplankton samples were identified to the lowest practical level with an 

inverted microscope (Olympus CX 41) and recalculated to numbers of individuals per litre of 

microcosm water.  

The possible effects of imidacloprid on the chlorophyll-a content of the periphyton biomass 

was evaluated by introducing three series of 3 microscopic glass slides (7.5 cm × 2.5 cm) at 30 

cm water depth in each microcosm 7 days before the first imidacloprid application. A glass 

slide series was retrieved on days 2, 16 and 28 after the first imidacloprid application and 

attached periphyton was collected by scraping and then the scraped periphyton was 

transferred to a glass vial containing 0.25 L tap water. The chlorophyll-a in the resulting 

periphyton - water mixture was measured according to APHA (2005) and the amount of 

chlorophyll-a per square centimetre of glass slide was determined. 

2.4. Water quality variables and organic matter decomposition 

Temperature (T), dissolved oxygen (DO), pH, electrical conductivity (EC) were monitored at 8 

am on 7 days and 1 day before the first imidacloprid application, and on days 0, 9, 16, 23 and 

28 after the first imidacloprid application, using a multimeter (Hach, HQ 40d). On these days, 

also total alkalinity levels and ammonia, nitrite, nitrate and total phosphorus concentrations 

were measured in water samples collected from each microcosm. For this, a depth-integrated 

water sample of approximately 1 L was collected in each microcosm using a Perspex tube and 

stored at 4 °C in a plastic bottle in the dark. Alkalinity and nutrient concentrations were 

determined within 7 days according to APHA (2005). 

Litter bags were used to study the effects of the insecticide on organic matter decomposition. 

The litter bags included 2 g of banana (Musa) leaves and three of them were introduced into 

each microcosm 1 day before the first imidacloprid application. The banana leaves were 

leached in tap water (2 days) and subsequently dried (40 °C for 48 h) before addition to the 

litter bags. The litter bags were placed approximate 30 cm below the water surface. On days 
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2, 16 and 28 after the first imidacloprid application, one of the three litter bags was sampled 

and the retrieved material was dried (40 °C for 48 h) and weighted. The percentage of organic 

matter decomposition was calculated by calculating the loss of the initial dry weight over 2, 

16 and 28 days. 

2.5. Data analyses 

No-observed-effect-concentrations (NOECs) were determined for the variables including 

water quality, all taxa of phytoplankton, zooplankton, macroinvertebrates, periphyton 

community, and organic matter decomposition data using the Williams test (Williams, 1972; 

p < 0.05) as available in the Community Analysis computer program, version 4.3.05 (Hommen 

et al., 1994). Prior to the analysis, the abundance data sets were ln (Ax + 1) transformed. For 

the determination of A and the rationale behind the transformation is referred to Van den 

Brink et al. (2000). 

The phytoplankton, zooplankton and macroinvertebrate data sets were analysed by the 

principal response curve (PRC) method using the CANOCO Software package, version 5 (Van 

den Brink and Ter Braak, 1999; Ter Braak and Šmilauer, 2012). The PRC method is a specific 

type of redundancy analysis (RDA) that is able to extract the variation in community 

composition due to the stressor from the total variation by including the treatment regime 

and its interaction with time as explanatory variables, and the sampling date as co-variables. 

The overall significance of the effect of imidacloprid treatment on the variation in community 

composition (p ≤ 0.05) was tested by performing 999 Monte Carlo permutations (Van den 

Brink and Ter Braak, 1999). Each treatment was tested against the control for each sampling 

date using Monte Carlo permutation tests under the RDA option in order to evaluate the 

significance of the imidacloprid induced community effects in time. 

The LC10, LC50 and LC90 and EC10, EC50 and EC90 values of imidacloprid resulting from the 

toxicity tests performed with Cloeon sp. and Diaptomus sp. were determined using log-logistic 

regression as programmed in the software GenStat 11th (VSN International Ltd., Oxford, UK) 

according to Rubach et al. (2011). 
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Figure 1. Dynamics of measured imidacloprid concentrations in microcosm water during the 
experimental period. 

3. Results and discussion 

3.1. Fate of imidacloprid 

One hour after each of the four applications, on average, 93% of the applied concentration 

was found in the highest treatment and on average, 87% was found in the second highest 

treatment (Fig. 1; Table S1). After 7 days, between 45% and 53% of the applied concentration 

was present in microcosm water in the highest and second highest treatment, respectively. In 

the acute toxicity tests 79% of the intended concentration was found in the highest treatment 

just after imidacloprid application, whereas after 96 hours of exposure 47% of the applied 

concentration was left (Table S2). In our study, the lower dissipation of imidacloprid in the 

microcosm experiment compared to the acute toxicity tests might be due to UV light 

absorption by natural organic matter and suspended particulate matter in microcosms which 

decreases the photodegradation of imidacloprid (Lu et al., 2015). The dissipation was, 

however, found to be faster in the present sub-tropical study compared to earlier model 

ecosystem studies (i.e. microcosm and mesocosm studies) and acute studies conducted in 

temperate regions. For example, Pestana et al. (2009) found 88% of the intended 

concentrations of imidacloprid after 24 h of exposure in the highest concentration in 

recirculatory flow-through stream mesocosms at 20 °C in Canada. Van den Brink et al. (2016) 
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measured 94% and 91% of the intended imidacloprid concentration just after application and 

after 96 hours of exposure, respectively in an acute study performed under very low light 

intensities at 18 °C in Netherlands. The rapid dissipation of imidacloprid in both microcosm 

and acute studies suggests that the dissipation is higher in the tropics than in temperate region 

due to higher temperature (28.2 ± 2 °C for microcosm experiment and 27.4 ± 0.6 °C for acute 

toxicity tests) and photodegradation during the experimental period (Laabs et al., 2007; Chai 

et al., 2009; Sánchez-Bayo and Hyne, 2011). In the present study, however, we found a build-

up of imidacloprid concentrations in later applications in all treatment levels as compared to 

the first application in microcosm study. For instance, 25% of the intended dose was found 

after 7 days of first application in the highest treatment while, 65% was present 7 days after 

the fourth application in the same treatment (Fig. 1; Table S1).  

3.2. Invertebrates 

The zooplankton community was dominated by Rotifera (6 taxa), followed by Cladocera (4 

taxa) and Copepoda (3 taxa) during the experimental period and all of them showed a 

relatively constant abundance in time (Fig. S4). The PRC showed significant negative effects of 

imidacloprid on the zooplankton community (p ≤ 0.001; Fig. 2), with a consistent NOECcommunity 

value of 300 ng/L (Table 1 and S3). Species weight in the PRC indicated that Diaptomus sp. was 

the taxon most responding to the treatments, followed by nauplius, two Rotifera taxa and 

three Cladocera taxa (Fig. 2). Univariate analysis indicated that four taxa showed a consistent 

negative response to the imidacloprid treatment, i.e. with NOECs calculated for at least two 

consecutive sampling dates (Table 1 and S3). Among the 13 taxa identified, Diaptomus sp. was 

the most negatively affected from day 2 after the first imidacloprid application onwards in 

almost all treatment levels with a consistent NOEC of 300 ng/L, followed by Keratella sp., Sida 

sp. and Brachionus sp. (Table 1 and S3; Fig. 2, 3 and S4). Our single species toxicity test 

confirmed the sensitivity of Diaptomus sp. when exposed to imidacloprid since an 96-h EC50 

of 38.6 ng/L was calculated for this genus (Table 2 and S4 and S5). Unfortunately, temperate 

toxicity values for Diaptomus sp. and the three other affected taxa could not be found in the 

literature and therefore comparison with published data is impossible. One study by Song et 

al. (1997), however, demonstrated a 48-h LC50 value of 361,230,000 ng/L for one of the 

copepods nauplius exposed to imidacloprid, which is several thousand folds higher than we 

reported for Diaptomus sp. In this study, the Cladoceran Sida sp. were consistently affected 
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on day 9 (NOEC = <30 ng/L) and 16 (NOEC = 300 ng/L) after the first imidacloprid application. 

The toxicity data for neonicotinoids towards Sida sp. are also not available in the literature for 

comparison. For Cladocera, the species Daphnia magna was tested most often.  

Table 1. The No Observed Effect Concentrations (NOECs) for phytoplankton, zooplankton, 
macroinvertebrates and water quality endpoints expressed in terms of nominal single-dose of 
imidacloprid concentrations (ng/L) measured on each sampling day (Williams test;  p ≤ 0.05). 
Only individual taxa or parameters that showed treatment-related effect on at least two 
successive sampling days are included. See Table S3, S6, S7 and S8 for the results for all species 
and parameters. 

Endpoint Sampling days 

-7 -1 0-2 9 16 23 28 

Zooplankton        

  Community > > > 300 > 300 30 

  Diaptomus sp. > > 300 (-) 300 (-) <30 (-) 300 (-) <30 (-) 

  Brachionus sp. > > > > > 300 (-) 30 (-) 

  Keratella sp. > > <30 (-) <30 (-) > <30 (-) > 

  Sida sp. > > > <30 (-) 300 (-) > > 

Macroinvertebrates        

  Community > NM 300 300 300 > NM 

  Cloeon sp. > NM <30 (-) <30 (-) 300 (-) 30 (-) NM 

  Notonecta sp. > NM 30 (-) 300 (-) 300 (-) > NM 

  Chironomid larvae NM NM NM NM NM NM 300 (-) 

  Tubifex tubifex NM NM NM NM NM NM 300 (-) 

Phytoplankton        

  Community > > > > > > > 

  Scenedesmus sp. > > > > 300 (-) 300 (-) > 

  Tetraedon sp. > > > > <30 (-) 30 (-) > 

Water quality         

  Dissolved oxygen > > > <30 (-) 30 (-) <30 (-) 30 (-) 

  Alkalinity > > > <30 (-) 300 (-) > <30 (-) 

  Ammonia > > > > > 300 (+) 300 (+) 

  Nitrate 300 (-) > 30 (-) 300 (-) 300 (-) 300 (-) > 

> = no significant effect (NOEC ≥ 3000 ng/L); NM = not measured; significant decrease (-) compared to control; 
significant increase (+) compared to control  
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Figure 2. PRC resulting from the analysis of the zooplankton data set, indicating the effects of 
imidacloprid on the zooplankton community. Of all variance, 7% could be attributed to 
sampling date; this is displayed on the horizontal axis. 20% percent of all variance could be 
attributed to treatment. Of this variance, 49% is displayed on the vertical axis. The lines 
represent the course of the treatment levels in time. The species weight (bk) can be 
interpreted as the affinity of the taxon with the PRC. The Monte Carlo permutation test 
indicated that a significant part of the variance explained by treatment is displayed in the 
diagram (p ≤ 0.001). The second PRC was not significant. 
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Earlier temperate studies, however, demonstrated a lower acute sensitivity of D. magna to 

imidacloprid than we reported for Sida sp. (i.e. several thousands of nanograms per litre) 

(Sánchez-Bayo and Goka, 2006; Tišler et al., 2009; Ashauer et al., 2011; Hayasaka et al., 2012b; 

Daam et al., 2013). A chronic temperate study by Ieromina et al. (2014) also found lower 

sensitivity of D. magna to imidacloprid since an 9-d EC10 and 15-d EC10 (survival endpoint) of 

54,160,000 ng/L  and 29,630,000 ng/L, respectively  was calculated. The higher sensitivity of 

Cladoceran to imidacloprid in this study compared  to o earlier acute and chronic studies could 

partly be explained by the higher temperature in sub-tropics (Sarma et al., 2005). For example,  

Ieromina et al. (2014) conducted their study at 20 °C while we recorded an average 

temperature of 28.2 °C during our microcosm experiment. The differences of sensitivity to 

imidacloprid might also be due to the different species tested in our study as compared to 

earlier studies (Hayasaka et al., 2012b). However, earlier studies on the toxicity of 

neonicotinoid insecticides towards microcrustaceans focused on acute effects (96 h or 

shorter) and only one on chronic effects on a standard test species (i.e., Daphnia sp.). Hence, 

we recommend future acute and chronic studies with more (sub-)tropical crustaceans to get 

a clearer picture of neonicotinoids toxicity towards tropical freshwater ecosystems, as we 

cannot fully explain why in our experiment Diaptomus sp. is so sensitive as compared to 

temperate crustaceans. 

 

Figure 3. The population dynamics of the zooplankton taxa Diaptomus sp. (A) and Keratella 
sp. (B) and the macroinvertebrate taxon Cloeon sp. (C) under the four imidacloprid 
concentrations.
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Figure 4. PRC resulting from the analysis of the macroinvertebrate data set, indicating the 
effects of imidacloprid on the macroinvertebrate community. Of all variance, 22% could be 
attributed to sampling date; this is displayed on the horizontal axis. 14% percent of all variance 
could be attributed to treatment. Of this variance, 74% is displayed on the vertical axis. The 
lines represent the course of the treatment levels in time. The species weight (bk) can be 
interpreted as the affinity of the taxon with the PRC. The Monte Carlo permutation test 
indicated that a significant part of the variance explained by treatment is displayed in the 
diagram (p = 0.002). The second PRC was not significant. 

In the present study, 10 macroinvertebrate taxa were identified belonging to three different 

taxonomic groups: Insecta (6 taxa), Mollusca (3 taxa) and Annelida (1 taxon). The results of 

the PRC showed significant effects of imidacloprid on the macroinvertebrate community (p = 

0.002; Fig. 4), with a consistent NOECcommunity value of 300 ng/L (Table 1 and S6). The species 

weights in the PRC indicated that Cloeon sp. was the taxon most strongly responding to the 

treatments i.e. showing lower abundance values in all treatments compared to the control 

(Fig. 3 and 4). The univariate analysis showed consistent significant negative effects of 
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imidacloprid on two insect species, as well as on Tubifex tubifex and Chironomid larvae, which 

were only sampled once (Table 1 and S6). Among 10 identified taxa, Cloeon sp. was the most 

affected taxon (NOEC < 30 ng/L on day 2 and 9), followed by Notonecta sp., who also showed 

a consistent response to the treatments (Table 1, S6 and Fig. S5). The single species toxicity 

test confirmed the high sensitivity of Cloeon sp. towards imidacloprid since an 96-h EC50 and 

LC50 of 5.48 and 23.8 ng/L, respectively, was calculated for this genus (Table 2 and S4 and S5). 

The results of our study are in accordance with the previous study by Roessink et al. (2013) in 

the sense that Cloeon sp. was the most sensitive taxa among the studied invertebrates in both 

studies. In our study, however, effects were found at much lower concentrations since they 

reported the 96-h and 28-d EC50 values of 1000 ng/L and 130 ng/L, respectively for Cloeon 

dipterum, which are about two orders of magnitude higher than the 96-h EC50 reported in 

our study. Alexander et al. (2007) reported a 96-h LC50 value of 650 ng/L for one of the mayfly 

species Epeorus longimanus, which is again about 27 folds higher than the value we reported 

for Cloeon sp. The higher sensitivity of Cloen sp. to imidacoprid in our study can partly be 

explained by differences in temperature as Van den Brink et al. (2016) showed an increase in 

the sensitivity of Cloeon dipterum due to increased temperature. They reported that the 96-h 

EC50 and LC50 values of imidacloprid for Cloeon dipterum were 1.7 and 4.2 folds lower, 

respectively at 18 °C compared to 10 °C. The higher temperature in the sub-tropics might 

modify the toxicity of imidacloprid through the elevation of metabolic rates of Cloeon sp., 

which leads to increased uptake rates of imidacloprid and thus could partly explain the higher 

sensitivity (Camp and Buchwalter, 2016). Moreover, the species of Cloeon sp. we used in our 

study continuously reproduces which could be another reason of their high sensitivity to 

imidacloprid. An earlier study by Van den Brink et al. (2016) found that the reproducing, 

summer generations of Cloeon dipterum (28-d EC50 = 130 ng/L) were approximately five times 

more sensitive to imidacloprid than their non-reproducing, winter generations (28-d EC50 = 

680 ng/L). The sensitivity differences between summer and winter generations of aquatic 

insects towards toxicants might depend on the differences in their physiologies and life 

histories, with concomitant implications for sensitivity to toxicants (Kwok et al., 2007). For 

example, based on metabolic principle, it has been hypothesized that tropical aquatic insects 

might be more sensitive to toxicants than their temperate counterparts (Castillo et al., 1997). 

The higher sensitivity of Cloeon sp. in our study can also be explained by the differences in use 

of different formulations or technical grade of imidacloprid in earlier studies, as the 
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formulated product can enhance the bioavailability and toxicity to target organisms (Malev et 

al., 2012). For instance, Stoughton et al. (2008) reported the 96-h LC50 value (654,30 ng/L) of 

technical-grade imidacloprid for Hyalella azteca, which is approximately four times higher 

than the 96-h value (174,40 ng/L) of commercial formulation Admire (240 g/L) for the same 

species; thus indicating Admire is more toxic than the technical-grade imidacloprid. All these 

differences between temperate and tropical circumstances and species, can, however, not 

fully explain why the tropical Cloeon sp. is so much more sensitive to imidacloprid compared 

to its temperate counterpart. 

The second most sensitive taxon after Cloeon sp. tested in our study was Notonecta sp., which 

was negatively affected from day 2 after the first imidacloprid application onwards for three 

consecutive sampling dates with a consistent NOEC value of 300 ng/L (Table 1). The present 

study showed, however, higher sensitivity of Notonecta sp. to imidacloprid than that was 

reported by Roessink et al. (2013) because they calculated an 96-h EC10 of 3000 ng/L, which 

is about ten times higher than we reported the NOEC value for this genus. Kobashi et al. (2017) 

demonstrated no treatment-related significant effects of imidacloprid (at 157,000 ng/L) on 

Notonecta triguttata in their rice mesocosm study in Japan. The higher sensitivity of 

Notonecta sp. to imidacloprid in this study compared to earlier temperate studies could be 

explained by the higher temperature in sub-tropics (Camp and Buchwalter, 2016).  

Figure 5. Chlorophyll-a in periphyton (A) and organic matter decomposition of banana (Musa) 
leaves (B) on day 2, 16, and 28 after first imidacloprid application (mean ± standard deviation) 
(NOEC ≥ 3 µg/L). 
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3.3. Primary producers 

A total of 32 different phytoplankton taxa were identified in the present study belonging to 

five major taxonomic groups: Chlorophyceae (12 taxa), Bacillariophyceae (10 taxa), 

Cyanophyceae (7 taxa), Euglenophyceae (2 taxa) and Desmidiaceae (1 taxon). The most 

abundant taxa in decreasing order were Ankistrodesmus sp., followed by Microcystis sp., 

Fragillaria sp., Oscillatoria sp., Ulothrix sp., and Tetraedon sp. during the experimental period. 

The PRC did not reveal significant effects of imidacloprid on the phytoplankton community (p 

= 0.718). However, univariate analysis showed significant effects of imidacloprid on certain 

phytoplankton taxa (15 out of 32) (Table S7; Fig. S6). Among 15 significant taxa, however, only 

two taxa (Scenedesmus sp. and Tetraodon sp.) were negatively affected for two consecutive 

sampling days (Table 1). Scenedesmus sp. had lower abundance values on day 16 and 23 in 

the highest treatment level (NOEC of 300 ng/L for both sampling days) (Table 1 and S7; Fig. 

S6A) and Tetraedon sp. had lower abundance values on day 16 in all treatment levels (NOEC 

< 30 ng/L) and on day 23 in the second highest and highest treatment level (NOEC of 30 ng/L) 

(Table 1 and S7; Fig. S6B).  

The chlorophyll-a density in periphyton biomass increased in all treated microcosms including 

the controls on day 16 after the first imidacloprid application but decreased slightly on day 28 

(Fig. 5A). However, the results of the univariate analysis did not show any significant effects 

of imidacloprid on periphyton biomass for any of the sampling days (NOECs ≥ 3000 ng/L). 

The results of this study indicates that the majority of the primary producers were tolerant to 

imidacloprid. This could be explained by the fact that the primary producers are not sensitive 

to neonicotinic imidacloprid based on their known insecticidal type of action (Daam et al., 

2013; Anderson et al., 2015). Furthermore, we noticed a bloom of floating algae and 

macrophytes (Lemna minor) in all microcosms including control in the present study which 

we, unfortunately, did not quantify. On average, 75% surface area of microcosms was covered 

with primary producers in the highest concentrations of imidacloprid, while on average, 40% 

area was covered in control microcosms (visual observation). Toxicity data for neonicotinoids 

towards primary producers, such as algae and macrophytes is limited, however, the available 

data indicate EC50 values larger than 1000,000 ng/L (Tišler et al., 2009; Malev et al., 2012; 

Bayer CropScience, 2013; Daam et al., 2013).  
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Figure 6. The dynamics of the water quality parameters DO (A), alkalinity (B), ammonia (C) 
and nitrate (D) measured during the experimental period. 

3.4. Water quality variables 
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concentrations decreased consistently in the highest treatment level at all sampling days 

except on day 28 with a NOEC of 300 ng/L. The highest nitrate concentration (1.7 mg/L) was 

measured on day 28 in the second highest treatment level (300 ng/L) (Table 1; Fig. 6D).  

In the present study, the effects found on water quality variables exposed to imidacloprid 

concentrations were indirect. Dissolved oxygen was consistently affected from day 9 after the 

first imidacloprid exposure onwards. This reduced dissolved oxygen level in microcosm water 

could be explained by reduced photosynthesis in the water column due to a bloom of floating 

algae and macrophytes. In our study, we observed that the majority of macro- and micro-

crustaceans were negatively affected on day 9 after the first imidacloprid application. Reduced 

grazing of these invertebrates and nutrient-rich environment in microcosms (e.g. ammonia, 

phosphate and nitrite were significantly increased for different sampling days) might have led 

to a bloom of floating algae and macrophytes (own observations) which hindered the light 

penetration into cosms and thus affected the photosynthesis. The reduced light penetration 

induced by floating algae and macrophytes might have reduced the photolysis of imidacloprid, 

thus increasing the exposure of macro- and micro-crustaceans to imidacloprid.   

3.5. Organic matter decomposition 

The decomposition rates of banana (Musa) leaves (mean ± SD) in the control microcosms were 

58 ± 10%, 72 ± 9% and 76 ± 0.5% on day 2, 16 and 28, respectively after the first imidacloprid 

application (Fig. 5B). In this study, the decomposition of banana leaves increased gradually 

with an increasing exposure period. The results of the univariate analysis, however, did not 

show any treatment-related significant effects of imidacloprid on the decomposition of 

banana leaves for any of the sampling days (NOECs ≥ 3000 ng/L) (Fig. 5B). The results of this 

study is line with earlier microcosm and mesocosm studies in the sense that they did not find 

treatment-related significant effects of imidacloprid on the microbial decomposition of 

different leaves used in their studies (Kreutzweiser et al., 2008; Pestana et al., 2009; Böttger 

et al., 2013). 

4. Conclusions 

This is the first study assessing the effects of 4 weekly applications of imidacloprid on the 

freshwater ecosystem under semi-field conditions in sub-tropics. In this study, imidacloprid 

concentrations between 30 and 3000 ng/L demonstrated significant effects on water quality 
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variables, certain phytoplankton taxa, and on communities of zooplankton and 

macroinvertebrates. The study revealed toxic effects of imidacloprid on a (sub-)tropical 

freshwater ecosystem at much lower concentrations than found for temperate systems. 

Whether these differences in sensitivity holds true for all (sub-)tropical aquatic ecosystems 

remains to be investigated. This study generates safe environmental values of imidacloprid 

for individual taxa and community levels of some endpoints through the derivation of NOECs. 

For certain taxa, the present study found low levels of NOECs (<30 ng/L) indicating that the 

standard of imidacloprid (30 ng/L) used in Europe (Vijver and Van den Brink, 2014) might not 

protect freshwater communities in Bangladesh. We recommend further long-term studies 

with (sub-)tropical aquatic species and ecosystems to get more insight into the comparative 

toxicity of imidacloprid using the data obtained from this study with those previously obtained 

in temperate regions. 
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Abstract 

This study elucidated the acute toxicity of chlorpyrifos on the early life stages of Banded 

Gourami (Trichogaster fasciata). To determine the acute effects of chlorpyrifos on their 

survival and development, we exposed the embryos and two-day-old larvae to six 

concentrations (0, 0.01, 0.10, 1.0, 10 and 100 mg/L) of chlorpyrifos in plastic bowls. Log-logistic 

regression was used to calculate LC10 and LC50 values. Results showed that embryo mortality 

significantly increased with increasing chlorpyrifos concentrations. The 24-h LC10 and LC50 

values (with 95% confidence limits) of chlorpyrifos for embryos were 0.89 (0.50–1.58) and 

11.8 (9.12–15.4) mg/L, respectively. Hatching success decreased and mortality of larvae 

significantly increased with increasing concentrations of chlorpyrifos. The 24-h LC10 and LC50 

values (with 95% confidence limits) of chlorpyrifos for larvae were 0.53 (0.27–1.06) and 21.7 

(15.9–29.4) mg/L, respectively; the 48-h LC10 and LC50 for larvae were 0.04 (0.02–0.09) and 

5.47 (3.77–7.94) mg/L, respectively. The results of this study suggest that 1 mg/L of 

chlorpyrifos in the aquatic environment may adversely affect the development and the 

reproduction of Banded Gourami. Our study also suggests that Banded Gourami fish can serve 

as an ideal model species for evaluating developmental toxicity of environmental 

contaminants. 
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1. Introduction 

In Bangladesh, agricultural intensification is indispensable due to the country’s ever-increasing 

population, leading to land scarcity as well as food security needs. To meet the growing 

demand for food, farmers grow high-yielding crop varieties all over the country. However, 

these high-yielding varieties are highly susceptible to various pests and diseases (Bagchi et al., 

2009); thus, to protect their crops from pests and to improve their crop yields and quality of 

their products, farmers use pesticides (Ansara-Ross et al., 2012; Rahman, 2013). The 

Bangladesh government, like many other developing countries, has promoted the use of 

pesticides to increase agricultural yields (Dasgupta et al., 2007). The use of pesticides in 

Bangladesh was negligible until 1960s (Rahman, 2013), but has dramatically increased from 

7,350 metric tons in 1992 to 45,172 metric tons in 2010 (Hasan et al., 2014). 

At present, farmers use a number of pesticides (Shahjahan et al., 2017). One that is widely 

used in agriculture and households is chlorpyrifos (O,O-diethyl O-3,5,6-trichloro-2-pyridyl 

phosphorothioate and CAS No. 2921-88-2), a synthetic organophosphate insecticide and 

acaricide (Yen et al., 2011). Farmers use  this insecticide to control pests in rice, coconut and 

vegetable crops, such as beans and potatoes. This insecticide poisons the stomach of the pest 

(Kienle et al., 2009) and inhibits enzyme activity by binding the enzyme acetyl cholinesterase 

(AChE) through phosphorylation (Palma et al., 2009; Jin et al., 2015). Its’ potential danger to 

humans, however,  has made the US Environmental Protection Agency  impose a ban on its 

sale for residential use (US EPA, 2006), while no such ban exists in Europe as chlorpyrifos is 

one of the top-selling insecticides (Bernabò et al., 2011). Chlorpyrifos is relatively persistent 

in nature as compared to other organophosporus insecticides, with a half-life in water-

sediment systems ranging from 29 to 74 days (Palma et al., 2009). 

Through spray drift, runoff and leaching, chlorpyrifos-contaminated soils move down and 

cause hazardous impact to the aquatic environment (Agbohessi et al., 2013; Van den Brink, 

2013). Chlorpyrifos shows a high toxicity to non-target aquatic organisms including 

vertebrates (Kienle et al., 2009; Bernabò et al., 2011; Xing et al., 2012; Jin et al., 2015) and 

invertebrates (Daam et al., 2008; Palma et al., 2009; Rubach et al., 2011, 2012). Like other 

groups of vertebrates, fish embryos and larvae are also considered to be the most sensitive 

stages in the life cycle and sensitive to low levels of environmental pollutants (Marimuthu et 
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al., 2013). A number of studies have been conducted to assess the toxicity of chlorpyrifos to 

various stages of different fishes (Table 1). 

The Banded Gourami or striped gourami (Trichogaster fasciata; family Osphronemidae; order 

Perciformis) is naturally abundant in Bangladesh, India, Myanmar, Nepal and Pakistan. This 

fish commonly inhabits freshwater pools, ditches, ponds, marshes and rivers, as well as lakes 

with vegetation (Mitra et al., 2007). The species has drawn attention for its taste and 

contribution to nutrition, and for its value as an indigenous ornamental aquarium fish in 

Bangladesh (Hossen et al., 2014). However, to date no study has been done to investigate the 

toxicity of chlorpyrifos on the early stage of Banded Gourami. The objective of the present 

study was to elucidate the acute toxicity of chlorpyrifos on the embryo and the larvae of 

Banded Gourami fish. The results of the study could serve as a baseline for other researchers 

in using the Banded Gourami fish as a model species for assessing the developmental toxicity 

of environmental contaminants. 

Table 1. An overview of chlorpyrifos toxicity on various stages of different fish species. 
Species 
 
 

Life stage Region Endpoint Threshold 
effects i.e. 
LC50 (µg/L) 

Reference 

Eastern Rainbow fish 
(Melanotaenia splendida 
splendida) 

Eggs 
16-day-old larvae 

Adult 
 

Temperate Mortality (96h) 23 
117 
396 

Humphrey and 
Klumpp (2003) 

Walleye (Stizostedion 
vitreum) 

Pro-larvae (1-5 day 
after hatch) 

 

Temperate Mortality (48h) 316 
 
 

Phillips et al. (2002) 

Turbot (Psetta maxima) 
 
 

Eggs 
Larvae 

Temperate Mortality (48h) 
Mortality (96h) 

116.6 
94.65 

Mhadhbi and Beiras 
(2012) 

Mezquital silverside 
(Chirostoma  jordani)   
 

Semi-adult Tropical Mortality (24h) 0.17 Dzul-Caamal et al. 
(2012) 

Spotted snakehead 
(Channa punctatus) 
 

Adult 
 

Tropical Mortality (96h) 
Mortality (24h) 

811.98 
5.38 

Ali et al. (2008); 
Mishra and Devi 

(2014) 

Guppy (Poecilia 
reticulata) 

Adult Tropical Mortality (96h) 
 
 

7.17 
176 

De Silva et al. (2005); 
Sharbidre et al. (2011) 

Nile tilapia (Oreochromis 
niloticus) 
 

Juvenile 
Adult 

Temperate Mortality (96h) 98.67 
154.01 

Oruc (2010) 

Stinging catfish 
(Heteropneustes fossilis) 
 

Adult Tropical Mortality (96h) 2200 Srivastav et al. (1997) 

Japanese medaka 
(Oryzias latipes) 
 

30-day-old juvenile 
Adult 

Temperate 
Temperate 

Mortality (48h) 
Mortality (96h) 

250 
120 

Rice et al. (1997) 

Khalil et al. (2013) 

Banded gourami 
(Trichogaster fasciata) 
 

Eggs 
2-day-old larvae 

 

Tropical Mortality (24h) 
Mortality (24h) 
Mortality (48h) 

11.8 
21.7 
5.47 

The present study 
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2. Materials and methods 

2.1. Fish and pesticide collection 

Semi-adult fish were collected from Bara beel of Gauripur, Mymensingh District.  A beel is a 

deep depression along a river where water remains permanent throughout the year. These 

fish were reared till adult stage in cemented rectangular cisterns (250×195×70cm; water 

height: 30cm) at the hatchery of the Faculty of Fisheries, Bangladesh Agricultural University, 

Bangladesh. They were supplied commercial feed twice a day. After three months of rearing, 

fish were found ready for spawning. The experiment was approved by the Animal Care and 

Use Committee of Bangladesh Agricultural University, Mymensingh, Bangladesh.  

Chlorpyrifos (in the form of Dursban and 20EC; Dow AgroSciences India Pvt. Ltd., India) was 

purchased from a local pesticide supplier (Mymensingh, Bangladesh).  

2.2. Hormone administration, collection of gametes, artificial fertilization and incubation of 

eggs 

We selected five healthy female (weight: 14 ± 1.1g; length: 8.7 ± 0.6 cm) and ten male (weight: 

15 ± 1.1g; length: 9.2 ± 0.6 cm) broods for spawning by examining the gonads and based on 

the external morphological features as described by Swarup et al. (1972): the upper lip of the 

male is more pronounced and the dorsal ventral fins are more pointed at the posterior end 

than those of the female. Both male and female broods were artificially induced by 

intramuscular injection of carp pituitary powder suspended in a 0.9% NaCl solution. The 

pituitary powder was administered at a dose of 2 mg/kg body weight of fish for males and 12 

mg/kg body weight of fish for females. Hormone-injected fish were then kept in a moderately 

aerated glass aquarium (45×30×32cm) containing dechlorinated tap water (50L). About 24h 

after hormone administration, eggs were stripped into plastic tray and testes were collected 

from males and cut into small pieces by using a scalpel for milt collection. Milt and eggs were 

stirred thoroughly into a plastic tray by using a clean and soft poultry feather for fertilization. 

After 2 min of gentle stirring, the eggs were washed with tap water to remove excess milt. 

Then the eggs were released into previously prepared experimental units for embryo toxicity 

evaluation. A certain amount of fertilized eggs were stocked into a glass aquarium to get larvae 

for larval toxicity evaluation. 

2.3. Experimental design 
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Six different concentrations of chlorpyrifos (0, 0.01, 0.1, 1, 10, and 100 µg/L) were used by 

adding chlorpyrifos stock solution for embryonic and larval bioassay. The stock solution was 

prepared by dissolving the weighed amount of chlorpyrifos in distilled water containing 200 

g/L chlorpyrifos. We used 18 plastic bowls containing 2L dechlorinated water for this 

experiment. The control group was kept in dechlorinated water. Each of the treatment and 

control group was set up in triplicate. Treatments were randomly allotted in the experimental 

units. The values of the water quality variables were determined according to APHA (1985). 

The values (mean ± SD) for water quality were as follows: temperature, 27.7 ± 0.2ºC; dissolved 

oxygen, 5.7 ± 1.3 mg/L; pH, 8.9 ± 0.14; total alkalinity, 184 ± 8.9 mg/L; electrical conductivity, 

386 ± 12.6 µS/cm;  and total dissolved solids, 179.2 ± 0.4 mg/L.   

For the evaluation of embryonic toxicity, we randomly selected 18 sets of 100 fertilized eggs 

and exposed these to different concentrations. The incubation period and hatching rate were 

recorded for both treatment and control groups. Dead embryos were counted at 24h of 

chlorpyrifos exposure. Then these were removed and the rest of the live ones were kept in 

the experimental units till hatching. To evaluate the larval toxicity, we randomly selected 18 

sets of 100 two-day-old larvae and released them into each of the 18 plastic bowls. The 

mortality of larvae was counted at 24h and at 48h of chlorpyrifos exposure. Mortality of 

embryo and larvae is defined here as white opaque and not responding to the agitation with 

a plastic rod.  

Malformations were observed for embryo at every 6-hour interval and for larvae at every 12-

hour interval from each of the 18 sets under a digital microscope (Olympus CX 41). Images 

were made by using a camera (Magnus analytics, Model-MIPS) connected between the 

microscope and a computer. 

2.4. Statistical analyses 

The hatching success and the mortality of embryos and larvae were calculated as the average 

of the three replicates. The LC10 and LC50 values of the toxicity experiment were calculated 

by means of log-logistic regression using the software GenStat 11th (VSN International Ltd., 

Oxford, UK) according to Rubach et al. (2011). To evaluate the toxic effects of different 

chlorpyrifos concentrations in embryo and larvae and hatching rate, we computed a one-way 

analysis of variance (ANOVA) by using the Duncan’s multiple comparison with SPSS (version 

20; SPSS Inc., Chicago, IL) at 5% significant level. Before any analyses were performed, the 
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one-way ANOVA assumptions of normality and homoscedasticity were evaluated using the 

Shapiro–Wilkes test and Levene's test, respectively. 

3. Results 

The acute toxicity of chlorpyrifos on the embryo of Banded Gourami fish, i.e. the mortality of 

embryos, significantly increased (one-way ANOVA; F5,12=106; p=0.000) with increasing 

chlorpyrifos concentrations (Table 2). A prolonged incubation period was observed due to 

increased concentrations of chlorpyrifos. Table 2 presents the 24-h LC10 and LC50 values (with 

95% confidence interval) of chlorpyrifos for embryos. The hatching rate significantly 

decreased with increasing chlorpyrifos concentrations (one-way ANOVA; F5,12=180; p=0.000). 

The number of dead larvae at 24h (one-way ANOVA; F5,12=113; p=0.000) and at 48h (one-way 

ANOVA; F5,12=144; p=0.000) of exposure significantly increased with increasing chlorpyrifos 

concentrations (Table 2). The calculated 24-h and 48-h LC10 and LC50 (with 95% confidence 

limit) values of chlorpyrifos for Banded Gourami larvae were presented in Table 2. 

Table 2. Toxicity of chlorpyrifos on the embryo and the larvae of banded gourami (n=100 
embryos and 100 two-day old larvae). 

 

In embryos, malformations were not found but some eggs were unhatched and eventually 

died after chlorpyrifos exposure (Fig. 1 A). However, several malformations were evident in 

Banded Gourami larvae, like abnormal head and eye shape, lordosis, body arcuation, caudal 

Concentration 
(µg/L) 

Incubation 
period 

Number of 
dead embryos 

at 24h 

Hatching 
success (%) 

Number of 
dead larvae 

at 24h 

Number of 
dead larvae at 

48h 
0 23 5.7±2.5 91.3±2.5 

 
3±3.6 

 
6.7±3.8 

 
0.01 23h30min 14.3±5.0 81±4.6 

 
5±1 

 
10±1 

 
0.1 24h30min 15.7±7.4 77.7±6.1 

 
15.3±6.1 

 
22.3±4.5 

 
1 25h 26.3±4.0 66.3±2.5 

 
18.3±4.2 

 
40±6.6 

 
10 27h 45.7±5.5 48.3±4.6 

 
33.3±6.5 

 
51±4.0 

 
100 30h30min 91±6 3.7±3.1 78±3.6 83.3±3.2 

 
P value 
 
LC10 value with 95% 
confidence limits 
 
LC50 value with 95% 
confidence limits 

 0.000 
 

0.89 (0.50-1.58) 
 
 

11.8 (9.12-15.4) 

0.000 
 

1.05 (0.60-1.84) 
 
 

9.56 (7.39-12.4) 

0.000 
 

0.53 (0.27-1.06) 
 
 

21.7 (15.9-29.4) 
 

0.000 
 

0.04 (0.02-0.09) 
 
 

5.47 (3.77-7.94) 
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fin damage, notochordal abnormality when exposed to 10 and 100 µg/L chlorpyrifos 

concentrations (Fig. 1 B-F). Morphological deformities were not found when embryos and 

larvae were exposed to <10 µg/L chlorpyrifos concentration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Malformations observed in banded gourami embryos and larvae due to chlorpyrifos 
toxicity. (A) unhatched embryo (B) Irregular head and eye shape and lordosis after 24h of 
exposure to 100µg/L concentration of chlorpyrifos (C) Lordosis and caudal fin damage after 
24h of exposure to 100µg/L concentration of chlorpyrifos (D) Body arcuation after 36h of 
exposure to 100µg/L concentration of chlorpyrifos (E) Caudal fin damage after 36h of exposure 
to 10µg/L concentration of chlorpyrifos (F) Notochordal abnormality after 48h of exposure to 
100µg/L concentration of chlorpyrifos. 
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4. Discussion 

The present study showed that the acute exposure to different concentrations of chlorpyrifos 

affects the hatching success, incubation period and the mortality of embryo and larvae of 

Banded Gourami. The hatching success significantly decreased with increasing chlorpyrifos 

concentrations. For instance, eggs exposed to the lowest chlorpyrifos concentration (0.01 

µg/L) had 81% hatching success, while those with the highest concentration (100 µg/L) had 

only 3.7% hatching success. Our study is in accordance with the hatching success described by 

Humphrey and Klumpp (2003) for eastern rainbow fish (Table 1). They found a hatching 

success of 90% for eastern rainbow fish exposed to 6.2 µg/L; a hatching success of 52% for the 

same species when exposed to 100 µg/L chlorpyrifos. Sreedevi et al. (2014) reported an almost 

similar finding on the reduced hatching success of zebrafish embryos due to chlorpyrifos 

toxicity. Earlier reports have showed that other organophosphate pesticides, like chlorpyrifos, 

may also have negative effects on the hatchability of different fishes. Aydin and Koprucu 

(2005) reported a significant decrease in hatching success of common carp embryos due to 

different diazinon concentrations. A similar finding was also reported by Mhadhbi and Beiras 

(2012) for turbot eggs when exposed to diazinon concentrations. Another study by Ansari and 

Ansari (2011) found a significant decrease of hatching success for zebrafish embryos exposed 

to dimethoate concentrations. A reduced hatching success was also observed for African 

catfish embryos when exposed to different buprofezin (Marimuthu et al., 2013) and 

endosulfan concentrations (Agbohessi et al., 2013) and for zebrafish embryos exposed to 

alphamethrin concnetrations (Ansari and Ansari, 2012).  

Our study demonstrates that chlorpyrifos retards hatching of fish embryos (Table 2). This 

might be due to hypoxia or disturbances of the hatching enzyme. During the normal hatching 

process of fish embryos, the chorion is digested by the hatching enzyme, which is a proteolytic 

enzyme secreted from hatching gland cells of the embryo. The structure and function of the 

protease might be destroyed by toxicants that block the pore canals of the chorions; thus 

resulting in shortage of oxygen supply for the development of embryos (Fan and Shi, 2002). 

The physiological processes involved, as well as the mechanism underlying neural control in 

hatching of fish embryos are still unclear. Therefore, it is important to know the normal biology 

of the hatching process and how chlorpyrifos interfere with the development of the hatching 

gland of Banded Gourami. 
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In this study, we also observed that the mortality rate of embryos and larvae significantly 

increased with increasing chlorpyrifos concentrations (Table 2). The 24-h LC50 of chlorpyrifos 

for Banded Gourami embryo was 11.8 µg/L, which is two times lower than those of  the 96-h 

LC50 for eastern rainbow fish eggs (Humphrey and Klumpp, 2003) and is one-tenth of the 48-

h LC50 for turbot eggs (Psetta maxima) (Mhadhbi and Beiras, 2012). We showed that Banded 

Gourami eggs were more sensitive to chlorpyrifos than two-day-old larvae. However, during 

the early development, fish show variable sensitivity with some compounds displaying higher 

sensitivity in embryos whereas others are more toxic to larvae (Ansari and Ansari, 2012; 

Gaikowski et al., 1996; Arufe et al., 2010). In this study, the 24-h and 48-h LC50 of chlorpyrifos 

for two-day-old larvae were 21.7 and 5.47 µg/L, respectively. This indicates that chlorpyrifos 

is highly toxic to Banded Gourami larvae. Oruc (2010) estimated the 96-h LC50 of chlorpyrifos 

for juvenile nile tilapia (Oreochromis niliticus) as 98.67 µg/L, which was 18 times higher than 

our finding. Several studies covering both temperate and tropical regions show higher LC50 of 

chlorpyrifos for other fishes than that for Banded Gourami larvae (Table 1). For instance, the 

96-h LC50 of juvenile common carp (Cyprinus carpio) ranged between 149 µg/L (Li et al., 2013) 

and 582 µg/L (Xing et al., 2015), which is 7 to 26 times higher than that of Banded Gourami 

larvae we reported. The higher LC50 of chlorpyrifos for adult spotted snakehead (Channa 

punctatus) than that of the larvae Banded Gourami was also reported by Ali et al. (2008). 

In our study, we found several malformations in Banded Gourami larvae due to chlorpyrifos 

exposure, whereas none on embryos (Fig. 1). All deformities were observed when the larvae 

were exposed to concentrations higher than 10 µg/L chlorpyrifos. Likewise, Shahjahan et al. 

(2017) observed malformations in stinging catfish when exposed to sumithion and Marimuthu 

et al. (2013) in African catfish when exposed to buprofezin. In the present study, the most 

observed notable malformation of Banded Gourami larvae was notochordal deformity, when 

larvae were mostly exposed to the highest concentration 100 µg/L chlorpyrifos (Fig. 1). Our 

study is supported by earlier findings on zebrafish exposed to chlorpyrifos (Sreedevi et al., 

2014; Yu et al., 2015), cartap (Zhou et al., 2009), malathion (Fraysse et al., 2006), cypermethrin 

(Shi et al., 2011) bifenthrin (Jin et al., 2010), fipronil (Stehr et al., 2006) and acetofenate (Xu et 

al., 2008). 

In conclusion, we report a first study on the developmental toxicity of chlorpyrifos by using 

Banded Gourami as a model. Chlorpyrifos significantly affects the hatching, survival of embryo 
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and larvae and induces malformations. The results of the study suggest that 1 µg/L of 

chlorpyrifos in the aquatic environment may have an adverse effect on the development and 

the reproduction of Banded Gourami. Our study also suggests that Banded Gourami fish could 

serve as an ideal model species for evaluating the developmental toxicity of environmental 

contaminants. This study, however, addresses only the exposure of Banded Gourami fish 

during their early developmental stages. Therefore, for potential persistence of the toxic 

effects in the long-term, we recommend future studies to evaluate the same endpoints in 

juvenile or adult of Banded Gourami to determine whether the effects of chlorpyrifos are 

transitory or permanent.  
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Abstract 

The main objective of this study was to assess the long-term toxicity of chlorpyrifos on survival 

and reproduction of Banded Gourami using mortality, gonado-somatic index (GSI) and 

histopathological observations as endpoints. Therefore, adult fish were exposed to five 

different concentrations of chlorpyrifos (0, 15, 50, 150, 500 µg/L) in 15 PVC tanks for 15, 30, 

45, 60 and 75 days. Results showed that all fish including male and female had died after 15 

days of 500 µg/L chlorpyrifos exposure. No consistent significant effect was observed for both 

male and female GSI. Furthermore, results showed dose- and duration-dependent 

histopathological alterations for both ovary and testes. The chronic NOEC (60-d) for most 

histopathological alterations of Banded Gourami ovary and testes was calculated as 50 μg/L, 

while 60-d NOEC for mortality of both male and female fish was < 15 μg/L. The results of the 

study show that the long-term exposure to chlorpyrifos affect the reproductive tissues of 

Banded Gourami at exposure concentrations also causing mortality. Future studies should 

evaluate effects at lower concentrations as even the lowest concentration of 15 μg/L.  
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1. Introduction  

As many other developing countries, the government of Bangladesh has promoted the use of 

pesticide to enhance agricultural yields (Dasgupta et al., 2007). Pesticide use in Bangladesh 

was negligible until 1960s, but has recorded a considerable increase from 7,350 metric tons 

in 1992 to 45,172 metric tons in 2010 (Ali et al., 2018). The organophosphates have become 

the most commonly used pesticides in different parts of the world like Bangladesh (Shahjahan 

et al., 2017), because of the increasing restrictions on the use of organochlorine pesticides in 

the environment (Benli and Ozkul, 2010).  

Chlorpyrifos (CAS No. 2921-88-2; O,O-diethyl O-3,5,6-trichloro-2-pyridyl phosphorothioate) is 

a broad spectrum organophosphate synthetic insecticide and acaricide (Yen et al., 2011; 

Manjunatha and Philip, 2016). Chlorpyrofis was introduced for agricultural and household 

applications in the USA in 1965 (Juberg et al., 2013). In agriculture, this insecticide is used to 

control foliar insects on cotton, soybeans, corn, paddy fields, fruits including coconut, banana, 

mango, grapes, pineapples, and vegetables including beans, potatoes, tomatoes, cauliflower 

and cabbage (Rao et al., 2003; Juberg et al., 2013; Lewis et al., 2016; Sumon et al., 2017).  

Chlorpyrifos may end up in aquatic habitats including streams, rivers and ponds due to direct 

overspray, atmospheric transport, agricultural and residential runoff, ground water leaching 

and improper disposal (Narra et al., 2011; Sumon et al., 2016; 2017). A broad range of 

concentrations of chlorpyrifos in water have been detected in different (sub-) tropical regions 

of the world: 0.06 µg/L and 37 µg/L in paddy field waters of Bangladesh (Bhattacharjee et al., 

2012; Hasanuzzaman et al., 2018); 0.003-0.006 µg/L in water in Kaithal and Pant Nagar 

(Mukherjee and Arora, 2011) and 30 µg/L in river water in India (Mohammed and Penmethsa, 

2014); 0.2 µg/L in water of Mae Sa watershed in northern Thailand (Sangchan et al., 2014); 

0.007 µg/L in surface water and 0.016 µg/L in ground water in southern coast watershed of 

Caspian Sea, Iran (Rahmanikhah et al., 2011); between 8.8 µg/L and 26.6 µg/L in water in Lake 

Naivasha of Kenya (Otieno et al., 2012) and up to 780 µg/L in river water in Nigeria (Akan et 

al., 2014). 

The release of this insecticide into the aquatic environment may have potential toxic effects 

on non-target aquatic organisms like invertebrates (Maltby et al., 2005; Daam et al., 2008; 

Palma et al., 2008; 2009; Rubach et al., 2011; 2012), and vertebrates (Maltby et al., 2005; 
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Oruç, 2010; Bernabò et al., 2011; Li et al., 2013; Manjunatha and Philip, 2016; Sumon et al., 

2017). Among vertebrates, fish is often used as suitable bio-indicator, because of their wide 

distribution in aquatic environment, long lifespan, free swimming, ability to respond against 

environmental xenobiotics, and importance as a food source for human beings (Gupta et al., 

2009; Narra et al., 2011; Correia et al., 2017).  

In different parts of the world studies have assessed the toxicity of chlorpyrifos on several 

endpoints of different fishes. Chlorpyrifos is reported to affect growth (Huynh and Nugegoda, 

2012), survival (Oruç, 2010; Mhadhbi and Beiras, 2012), haematological profiles (Nwani et al., 

2013; Narra et al., 2015), hepatic dysfunction (Oruç, 2012), neuro-behavioral dysfunction 

(Levin et al., 2004), oxidative stress (Oruç, 2012), genotoxic stress (Xing et al., 2015), cytotoxic 

stress (Palanikumar et al., 2014) and reproduction (De Silva and Samayawardhena, 2005; Hou 

et al., 2009; Oruç, 2010; Juberg et al., 2013; Lauan and Ocampo, 2013; Manjunatha and Philip, 

2016; Brandt et al., 2015) in different fish species, but not yet on Banded Gourami 

(Trichogaster fasciata) for any of the endpoints as per our literature survey.  

The Banded Gourami or Striped Gourami fish belonging to the family Osphronemidae, is one 

of the perch found in some Asian countries like Bangladesh, India, Myanmar, Nepal and 

Pakistan (Mitra et al., 2007). The species is important as a nutritional source for humans and 

as ornamental value used in aquaria (Sumon et al., 2017). In the past, the species was readily 

available in freshwater pools, ponds, ditches, marshes, rivers, lakes with vegetation, but the 

natural resources of this fish are declining fast in Bangladesh due to various anthropogenic 

stressors (Hossen et al., 2014). In our earlier study (Sumon et al., 2017), we investigated the 

chlorpyrifos toxicity on the early life stages of this fish species. However, the information on 

the toxicity of chlorpyrifos on mortality and reproduction (key endpoints) of adult Banded 

Gourami is lacking in earlier studies. To address this knowledge gap, we aimed at assessing 

the effects of long-term exposure to chlorpyrifos on the mortality and reproductive tissues of 

adult Banded Gourami using the mortality, gonado-somatic index (GSI) and histopathological 

observations. We studied the histopathological alterations of Banded Gourami after chronic 

exposure to chlorpyrifos, because histopathological examination represents a useful and rapid 

tool to assess the degree of pollution, particularly for sub-lethal and chronic effects in various 

tissues and organs (Cengiz and Unlu, 2006; Velmurugan et al., 2007; Chourpagar and 

Kulkarani, 2014; Paruruckumani et al., 2015; Correia et al., 2017). The results of the study 

96

http://www.sciencedirect.com.ezproxy.library.wur.nl/science/article/pii/S0045653515002416
http://www.sciencedirect.com/science/article/pii/S2090989615000466#b0040
http://www.sciencedirect.com/science/article/pii/S2090989615000466#b0040
http://www.sciencedirect.com/science/article/pii/S2090989615000466#b0135


 

would elucidate the dose- and duration-dependent mortality and reproductive damages of 

Banded Gourami fish due to toxic effects of chlorpyrifos.  

2. Materials and methods  

2.1. Fish and their holding  

Semi-adult fish were collected from the Bara beel of Gauripur, Mymensingh. A beel is a deep 

depression along a river where water remains permanent throughout the year. Fish were 

transported in a plastic container and washed with a 0.1% KMnO4 solution. They were reared 

in an indoor cemented rectangular cistern (250 cm × 195 cm × 70 cm; water height: 30 cm) at 

Faculty of Fisheries, Bangladesh Agricultural University, Bangladesh with continuous aeration 

over a period of three months. We did the entire experiment under natural light (13-h 

light/11-h dark photoperiod) and ambient temperature. Fish were fed a commercial feed 

twice a day at a rate of 2%/kg body weight. Banded Gourami fish used in this experiment was 

approved by the Animal Care and Use Committee of Bangladesh Agricultural University, 

Mymensingh, Bangladesh. 

2.2. Chemicals  

Chlorpyrifos (Dursban with 20% active ingredient; manufacturer: Dow AgroSciences India Pvt. 

Ltd., India) was purchased from a local pesticide supplier (Mymensingh, Bangladesh). All 

reagents and Haematoxylene-eosin were bought from a local supplier.  

2.3. Experimental design 

After three months rearing of semi-adult fish in cemented cistern, adult fish (length = 6.9 ± 0.8 

cm; weight = 10.5 ± 0.8 g) were transferred into PVC tanks (top and bottom diameter: 172 cm; 

total height: 78 cm) for a static bioassay. The median lethal concentration (96-h LC50) of 

chlorpyrifos for the adult Banded Gourami was determined according to the guideline 

described by the Organization for Economic Cooperation and Development (OECD, 1992). In 

the present bioassay, seven different chlorpyrifos concentrations (0, 150, 250, 350, 450, 550, 

and 650 µg/L) were evaluated in 21 tanks containing 100 L of dechlorinated tap water with 

continuous aeration. Each treatment and the control were triplicated and each replicate 

contained seven fish. Fish were acclimatized for 7 days before chlorpyrifos exposure. Feeding 

was stopped before 24 h and throughout the exposure period of 96 h. Mortality of fish was 

recorded at 24, 48, 72, and 96 h of chlorpyrifos exposure. Dead individuals were removed 
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immediately from the experimental units. The water quality (mean ± SD) variables in the static 

bioassay were: temperature (26.5 ± 1 ºC), dissolved oxygen (7.8 ± 0.5 mg/L), pH (7.9 ± 0.3) and 

total alkalinity (180.3 ± 7.8 mg/L).  

To assess long-term chlorpyrifos exposure, adult healthy Banded Gourami females (n=150; 

length= 7.97±0.72 cm; weight= 9.76±2.30 g) and males (n=150; length=8.63±0.72 cm; 

weight=11.91±2.59 g) were selected. Twenty fish (10 males and 10 females) were stocked into 

each of the 15 prepared PVC tanks, containing 300 L of de-chlorinated tap water. These tanks 

were coated with a non-toxic epoxy paint. An aeration system was installed to mix the water 

and provide sufficient oxygen during the experimental period of 75 days. Fish were 

acclimatized to the laboratory conditions for a period of 21 days prior to exposure (OECD, 

1996). Fish were exposed to five different concentrations of chlorpyrifos (0, 15, 50, 150 and 

500 µg/L; the 96-h LC50 in this study was 833 µg/L) for 15, 30, 45, 60 and 75 days. The control 

and treatments were set up in three replicates. The stock solutions were prepared by 

dissolving the weighed amount of chlorpyrifos in distilled water to obtain 200 g/L chlorpyrifos. 

Natural light and ambient temperature was maintained throughout the acclimation and 

exposure period. Excess food and excretions were siphoned out every day using a plastic 

pipette. Water (about 80%) in the experimental units was changed every three days and fresh 

chlorpyrifos concentrations were used. In our study, we did not measure the exposure 

concentrations, however, considering the half-life of chlorpyrifos in water phase (DT50water = 

5 days; Lewis et al., 2016), it could be expected that 3-day intervals of water renewal would 

expose the fishes to relevant concentrations of chlorpyrifos throughout the experimental 

period. The water quality variables were determined every alternate day according to APHA 

(APHA, 1985). The values (mean ± SD) of water quality in the experimental units were as 

follows:  temperature: 27.7 ± 1.3 ºC; dissolved oxygen: 6.5 ± 0.8 mg/L; pH: 8.7 ± 0.2; total 

alkalinity as CaCO3: 184.6 ± 10.2 mg/L; electrical conductivity: 368.5 ± 2.8 µS/cm, and total 

dissolved solids: 171 ± 4.5 mg/L.  

2.4. Mortality assessment, gonad collection and GSI estimation 

The number of dead fish was scored every day during the experimental period of 75 days and 

dead individuals were removed immediately from the experimental units. Fish were 

considered dead if there was no visible movement (e.g. gill movement) and if touching of the 

caudal peduncle produced no reaction (OECD, 1992). Two fish (one male and one female) 
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were retrieved from each replicate at each sampling date and were anesthetized with 100 

mg/L of MS222 to prevent any suffering during gonad collection. Prior to gonad collection, the 

length and body weight of both male and female fish were recorded. Fish were killed by 

decapitation and gonads were dissected out and weighed. The gonads were rinsed with 

physiological solution (0.9% sodium chloride) and later transferred to 10% buffered formalin 

solution at ambient temperature for appropriate fixation. The value of gonado-somatic index 

(GSI) was estimated by the following formula: GSI = [(gonad weight/body weight) × 100] 

(Barber and Blake, 2006). 

2.5. Histopathology of gonads 

For histological observation, the fixated gonad tissues were washed with running tap water 

for 24 h, processed, dehydrated in graded alcohol, cleared in benzene, and embedded in 

paraffin. The paraffin blocks were sectioned with microtome at a thickness of 5 µm and were 

stained with hematoxylin and counterstained with eosin. Finally, the histopathological 

alterations were photographed using digital photomicroscope (Olympus CX 41).  

2.6. Statistical analyses 

The mortality and GSI values of female and male Banded Gourami and the histopathological 

alterations of ovary and testis (%) were presented as the mean of the three replicates ± 

standard deviation (SD). The LC10, LC50 and LC90 values of chlorpyrifos for Banded Gourami 

were calculated by means of log-logistic regression using the software GenStat 11th (VSN 

International Ltd., Oxford, UK) according to Rubach et al. (2011). No Observed Effect 

Concentrations (NOECs) were calculated at taxon level (p ≤ 0.05) using the Williams test 

(ANOVA; Williams, 1972) as incorporated in the Community Analysis software (Hommen et 

al., 1994). Before univariate analyses were performed, the parameter values were log 

transformed using the formula: ln (Ax + 1); see Van den Brink et al. (2000) for the rationale of 

calculating A. The GSI values were, therefore, log transformed using ln (200x+1), while all 

other parameters were transformed with ln (0.2x+1). 
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3. Results  

3.1. Chlorpyrifos effects on mortality of Banded Gourami 

The calculated 96-h LC10, LC50 and LC90 (with 95% confidence limits) of chlorpyrifos for the 

adult Banded Gourami were 258 (158-421), 833 (506-1371), and 2689 (727-9942) µg/L, 

respectively. During the static bioassay, mortality was not observed in the control groups. 

The long-term 60-d LC50 for both males and females was around 50 μg/L with the LC10 and 

LC90 only being lightly lower and higher, respectively (Table 1). A dose- and duration-

dependent significant increase in both male and female mortality was observed after 15 and 

30 days of chlorpyrifos exposure to the highest and the second highest concentrations with a 

NOEC of 50 µg/L. But such significant increase in male and female mortality was observed in 

the lowest concentration (15 µg/L) after 45 and 60 days of exposure, respectively (with a NOEC 

of <15 µg/L) (Table 1 and S1). All fish, including males and females had died 15 days after the 

first chlorpyrifos exposure in the highest concentration (500 µg/L) (Table 1). In the present 

study, 100% mortality for male fish was observed after 45 days in 150 µg/L, and 60 days for 

female fish in the same treatment. After 75 days of exposure, 100% mortality was observed 

for male fish when exposed to the lowest concentration (15 µg/L) (Table 1).  
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3.2. Chlorpyrifos effects on female gonad 

A dose- and duration-dependent significant decrease in female GSI was observed after 15 days 

of chlorpyrifos exposure to the highest concentration with living individuals (150 µg/L) with a 

NOEC of 50 µg/L, but the trend was not consistent for the next sampling days (Table 2 and S1).  

However, dose- and duration-dependent histopathological alterations in the ovary were 

evident (Fig. 1). The ovaries extracted from the control fish did not show any histopathological 

alterations during the experimental period (Fig. 1A). After 15 days of exposure, alterations like 

cytoplasmic clumping (CC) and cytoplasmic retraction (CR), and atretic follicles (AF) were 

observed when the fish were exposed to 150 µg/L of chlorpyrifos (Fig. 1B). The most observed 

notable histopathological alteration in female gonad induced by chlorpyrifos toxicity was the 

atretic follicles (AF) (Fig. 1B-E and Fig. 1G-H), and this atresia was found to be severe after 75 

days of first chlorpyrifos exposure to 50 µg/L (Fig. 1H). Degenerated perinucleolar oocyte 

(DPNO) was observed after 45 days of chlorpyrifos exposure to 50 and 150 µg/L (Fig. 1D and 

E). Adhesion (AD) between numerous oocytes were prominent when exposed to different 

concentrations of chlorpyrifos (Fig. 1D-F and Fig. 1H). The treated ovary showed 

degenerations of ovigerous lamellae (DOL) (Fig. 1C-E and 1 G). Inter follicular spaces (IFS) were 

evident after 45 days (Fig. 1D) and 75 days (Fig. 1H) of exposure to 50 µg/L. A few necrosis 

(NE) was noticed in treated ovary after 60 days (Fig. 1G) and 75 days (Fig. 1H) of exposure to 

50 µg/L. A significant increase of histopathological alterations (%) in ovary were found after 

15 and 30 days of 150 µg/L chlorpyrifos exposure (NOEC of  50 µg/L), but after 45 days of 

exposure onwards such significant increase in several alterations were observed when 

exposed to 50 µg/L (NOEC of 15 µg/L) (Table 3 and S1). 

Table 2. GSI data of female and male Banded Gourami fish exposed to different concentrations 
of chlorpyrifos during the experimental period. 

Chlorpyrifos 
concentrations 

(µg/L) 

 

Days of exposure for female  Days of exposure for male 

15 30 45 60 75  15 30 45 60 75 

0 11±2.6 7.9±1.
3 

7.6±2.
5 

5.7±4.
4 

6.6±3.
7 

 1.0±0.2 1.1±0.2 0.07±0.05 0.13±0.07 0.1±0.06 

15 7.4±4.3 7.5±0.
9 

5.4±2.
2 

5.9±2.
5 

3.4±3.
3 

 0.5±0.3* 0.6±0.2* 0.13±0.1 0.1±0.08 ND 

50 6.3±3.4 5.8±1.
4 

6.7±0.
7 

3.5±1.
1 

3.8±3.
4 

 0.4±0.1* 0.4±0.1* 0.09±0.03 0.1±0.01 ND 

150 4.2±2.8* 3.7±3.
2 

5.4±0.
8 

ND ND  0.3±0.1* 0.1±0.06
* 

ND ND ND 

500 ND ND ND ND ND  ND ND ND ND ND 

Data were expressed as mean ± SD (n = 3); ND = No data due to fish mortality; The symbols of superscripts 

indicate the significance (Williams test ; p ≤ 0.05)
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Table 3. Summary of histopathological alterations (%) of Banded Gourami ovary exposed to 
different concentrations of chlorpyrifos during the experimental period. 

Alterations Chlorpyrifos 
concentrations 
(µg/L) 

Exposure time (days) 

15 30 45 60 75 

Cytoplasmic clumping 
(CC) 
 
 
 
 

0 0 0 0 0 0 
15 0 0 0 0 0 

50 0 0 0 0 0 

150 18.3±16.0* 0 11.7 ± 8.5* ND ND 
500 ND ND ND ND ND 

Cytoplasmic retraction 
(CR) 
 
 

 
 

0 0 0 0 0 0 
15 0 0 0 0 0 
50 0 0 0 0 0 

150 18.3±16.0* 0 11.7 ± 8.5* ND ND 
500 ND ND ND ND ND 

Atretic follicle (AF) 
 
 

 
 

0 0 0 0 0 0 
15 0 0 0 0 0 
50 0 0 35±4* 43.3±5.8* 60±10* 

150 30±21.6* 16.7±23.6 26.7±16.9* ND ND 
500 ND ND ND ND ND 

Degenerated 
perinucleolar oocyte 
(DPNO) 
 
 
 

0 0 0 0 0 0 
15 0 0 0 0 0 
50 0 0 21.7±2.4* 0 0 

150 0 0 16.7 ±4.7* ND ND 
500 ND ND ND ND ND 

Adhesion (AD) 
 
 
 
 

0 0 0 0 0 0 
15 0 0 0 23.3 ±23.6 0 
50 0 0 15±4* 0 20 ±8.2* 

150 0 0 23.3±9.4* ND ND 
500 ND ND ND ND ND 

Degeneration of 
ovigerous lamellae 
(DOL) 
 
 
 

0 0 0 0 0 0 
15 0 0 0 23.3 ±23.6* 0 
50 0 0 11.7±8.5 40±8.2* 0 

150 0 16.7±23.6 10±14 ND ND 
500 ND ND ND ND ND 

Interfollicular space 
(IFS) 
 
 
 
 

0 0 0 0 0 0 
15 0 0 0 0 0 
50 0 0 16.7±6.2 0 3.3±4.7 

150 0 0 0 ND ND 
500 0 0 ND ND ND 

Necrosis (NE) 0 0 0 0 0 0 
15 0 0 0 0 0 
50 0 0 0 16.7±12.5* 16.7±12.5* 

150 0 0 0 ND ND 
500 ND ND ND ND ND 

 

Data were expressed as mean ± SD (n = 3); ND = No data due to fish mortality; The symbols of superscripts 

indicate the significance (Williams test; p ≤ 0.05) 
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Figure 1. Histopathological alterations observed in banded gourami ovary due to chlorpyrifos 
toxicity during the experimental period. (A) Mature oocyte (MO), normal structure of nucleus 
(N), and perineucleolar oocyte (PNO) after 15 days of exposure to 0 µg/L (control ovary); (B) 
Atretic follicle (AF), cytoplasmic clumping (CC), and cytoplasmic retraction (CR) after 15 days 
of exposure to 150 µg/L; (C) Atretic follicle (AF), and degeneration of ovigerous lamellae (DOL) 
after 30 days of exposure to 150 µg/L; (D) Adhesion (AD), atretic follicle (AF), degenerated 
perineucleolar oocyte (DPNO), interfollicular space (IFS), and degeneration of ovigerous 
lamellae (DOL) after 45 days of exposure to 50 µg/L; (E) Cytoplasmic clumping (CC), 
cytoplasmic retraction (CR), adhesion (AD), atretic follicle (AF), degenerated perineucleolar 
oocyte (DPNO), and degeneration of ovigerous lamellae (DOL) after 45 days of exposure to 
150 µg/L; (F) Adhesion (AD), and degeneration of granulosa layer (DGL) after 60 days of 
exposure to 15 µg/L; (G) Atretic follicle (AF), necrosis (NE) and degeneration of ovigerous 
lamellae (DOL) after 60 days of exposure to 50 µg/L; (H) Atretic follicle (AF), adhesion (AD), 
necrosis (NE), and interfollicular space (IFS) after 75 days of exposure to 50 µg/L; H and E stain; 
×100; scale bar = 100 µm. 
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3.3. Chlorpyrifos effects on male gonad 

The male GSI significantly decreased with increasing chlorpyrifos concentrations after 15 and 

30 days of exposure with a NOEC of < 15 µg/L (Table 2 and S1). However, no such significant 

decrease of male GSI was found from day 45 onwards. Several dose- and duration-dependent 

histopathological alterations of testis were evident due to chlorpyrifos toxicity (Fig. 2). Like 

ovary, the testes which were extracted from the control fish did not show any 

histopathological alteration during the experimental period. The control testis contained 

regular-shaped of seminiferous tubules which were characterised by a round, oval or 

somewhat rectangular shape, and regular-shaped of sertoli cells and interstitial cell of Leydig 

(Fig 2A).  The treated testis showed several histopathological alterations like irregular shaped 

seminiferous tubules (ISST), breakage of seminiferous tubules (BST), damaged sertoli cells 

(DSC), degeneration of interstitial cell of Leydig (DICL), and empty lumen (EL) (Fig. 2B-E and 

Fig. 2G-H).  When exposed to 50 µg/L, severe breakage of seminiferous tubules accompanied 

with empty lumen were observed after 60 days (Fig. 2H), as well as some testicular oocytes 

(TO) in the treated testis after 45 days (Fig. 2E-F). A significant increase of histopathological 

alterations (%) in testis were observed after 15 and 30 days of 150 µg/L chlorpyrifos exposure 

(NOEC of  50 µg/L), but such significant increase of several alterations were noticed when 

exposed to 50 µg/L (NOEC of 15 µg/L) after 45 and 60 days (Table 4 and S1). 
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Table 4. Summary of histopathological alterations (%) of Banded Gourami testes exposed to 
different concentrations of chlorpyrifos during the experimental period. 

Alterations Chlorpyrifos 
concentrations 
(µg/L) 

Exposure time (days) 

 
15 30 45 60 75 

Irregular shape of 
seminiferous tubule 
(ISST) 
 
 
 

0 0 0 0 0 0 
15 0 0 46.7±4.7 23.3±17 ND 
50 0 0 18.3±2.4 0 ND 

150 0 30±21.6* ND ND ND 
500 ND ND ND ND ND 

Breakage of 
seminiferous tubule 
(BST) 
 
 
 

0 0 0 0 0 0 
15 0 0 0 0 ND 
50 0 0 0 36.7±5.8* ND 

150 16.7±12.5* 0 ND ND ND 
500 ND ND ND ND ND 

Degeneration of 
interstitial cell of Leydig 
(DICL) 
 
 
 

0 0 0 0 0 0 
15 0 0 28.3±2.4 23.3±17* ND 
50 0 0 20±0 26.7±5.8* ND 

150 26.7±18.9* 18.3±13* ND ND ND 
500 ND ND ND ND ND 

Damaged sertoli cell 
(DSC) 
 
 
 
 

0 0 0 0 0 0 
15 0 0 28.3±2.9 20±16.3 ND 
50 0 0 16.7±4.7 0 ND 

150 23.3±17* 18.3±13* ND ND ND 
500 ND ND ND ND ND 

Testicular oocyte (TO) 
 
 
 
 

0 0 0 0 0 0 
15 0 0 0 0 ND 
50 0 0 25±5* 0 ND 

150 0 0 ND ND ND 
500 ND ND ND ND ND 

Empty lumen (EL) 0 0 0 0 0 0 
15 0 0 0 0 ND 
50 0 0 20±0* 36.7±5.8* ND 

150 0 0 ND ND ND 
500 ND ND ND ND ND 

 
Data were expressed as mean ± SD (n = 3); ND = No data due to fish mortality; The symbols of superscripts 

indicate the significance (Williams test; p ≤ 0.05) 
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Figure 2. Histopathological alterations observed in banded gourami testis due to chlopyrifos 
toxicity during the experimental period. (A) normal structure of seminiferous tubule (ST), 
sertoli cell (SC), lumen (L), and interstitial cell of Leydig (ICL) after 15 days of exposure to 0 
µg/L (control testis); (B) Breakage of seminiferous tubule (BST), damaged sertoli cell (DSC), 
degeneration of interstitial cell of Leydig (DICL) after 15 days of exposure to 150 µg/L; (C) 
Irregular shape of seminiferous tubule (ISST), damaged sertoli cell (DSC), degeneration of 
interstitial cell of Leydig (DICL) after 30 days of exposure to 150 µg/L; (D) Irregular shape of 
seminiferous tubule (ISST), damaged sertoli cell (DSC), degeneration of interstitial cell of 
Leydig (DICL) after 45 days of exposure to 15 µg/L; (E) Irregular shape of seminiferous tubule 
(ISST), damaged sertoli cell (DSC), degeneration of interstitial cell of Leydig (DICL), testicular 
oocyte (TO), and empty lumen (EL) after 45 days of exposure to 50 µg/L; (F) Testicular oocyte 
(TO) after 45 days of exposure to 50 µg/L; (G) Irregular shape of seminiferous tubule (ISST), 
damaged sertoli cell (DSC), degeneration of interstitial cell of Leydig (DICL) after 60 days of 
exposure to 15 µg/L; (H) Breakage of seminiferous tubule (BST), degeneration of interstitial 
cell of Leydig (DICL), and empty lumen (EL) after 60 days of exposure to 50 µg/L; H and E stain; 
×400; scale bar = 50 µm.  
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4. Discussion 

4.1. Effects of chlorpyrifos on the mortality of Banded Gourami 

The 96-h LC50 of chlorpyrifos for adult Banded Gourami was 833 µg/L in the static bioassay, 

while the long-term 60-d LC50 for both male and female was around 50 µg/L. Earlier studies 

demonstrated a varied acute LC50 values of chlorpyrifos for different fish but the data for 

long-term LC50 of chlorpyrifos for fish is lacking. Mishra and Devi (2014) reported the 96-h 

LC50 of chlorpyrifos for adult spotted snakehead (Channa punctatus) as 812 µg/L, which is 

almost similar to our study. Oruç (2010) found the 96-h LC50 of chlorpyrifos for adult nile 

tilapia (Oreochromis niloticus) as 154 µg/L, which is about five times lower than we reported 

for Banded Gourami. Almost similar LC50 values of chlorpyrifos for different fish were 

estimated by earlier studies (Sharbidre et al., 2011; Mhadhbi and Beiras, 2012; Khalil et al., 

2013). Rao et al. (2003) found much more lower short-term LC50 of chlorpyrifos for 

Oreochromis mossambicus (around 26 µg/L), while Srivastav et al. (1997) reported for stinging 

catfish (Heteropneustes fossilis) as 2200 µg/L, which is several times higher than we reported 

for Banded Gourami.  

In the present study, the NOEC for both male and female mortality of Banded gourami was 

calculated as 50 µg/L after 15 and 30 days of first chlorpyrifos exposure. But a lower NOEC of 

<15 µg/L was calculated for both male and female mortality after 60 days of exposure, thus 

indicating the long-term exposure of Banded Gourami to chlorpyrifos showed an elevated 

mortality even at the lowest concentration (15 µg/L). Earlier studies observed almost similar 

chronic NOECs for mortality of different fishes. For instance, an average 40-d NOEC of 2.3 µg/L 

(1.16-116 µg/L) for mortality was calculated for Cyprinus carpio, while an average 30-d and 

90-d NOEC of 8.6 µg/L and 2.6 µg/L was calculated for Oreochromis niloticus and Tilapia zilli, 

respectively (ECOTOX Database (http://cfpub.epa.gov/ecotox/quick_query.htm)).  

In our study, we investigated the effects of chlorpyrifos formulation on the short- and long-

term mortality of Banded Gourami, however, further studies are needed to investigate the 

toxicity of chlorpyrifos (technical grade) on the mortality of same species to understand the 

toxicity differences between technical grade and commercial formulation of chlorpyrifos. 

Literatures on the differences in toxicity between technical grade and commercial formulation 

of chlorpyrifos on long-term mortality in fish is lacking. However, only one study by Majumder 

and Kaviraj (2018) showed that the commercial formulation of chlorpyrifos (96-h LC50 = 42 
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µg/L) is approximately two folds more toxic to Oreochromis niloticus than the technical grade 

(96-h LC50 = 90 µg/L) after an acute exposure. This, because the formulated products might 

have the added inert ingredients which can enhance the bioavailability and toxicity to target 

organisms (Cox and Surgan, 2006). 

4.2. Effects of chlorpyrifos on ovary 

The hypothalamic-pituitary-gonadal axis regulates the reproduction of teleost fish and most 

vertebrates. This axis is dependent on the feedback systems of steroid hormones such as 

estrogens which are crucial for successful reproduction. Estrogens produced in the ovary may 

have either a positive or a negative effect on the hypothalamus, pituitary and gonads 

(Hashimoto et al., 2000). The positive or negative effect is dependent on the hormone 

concentration needed for normal reproduction and the physiological needs of the fish 

(Arcand-Hoy and Benson, 1998). The feedback pathways are negatively affected when the 

hormone concentrations are altered i.e. less production of estrogens due to xenotoxic effects, 

which may result in impairment of the normal reproductive mechanisms (Maxwell and Dutta, 

2005). 

The present study found several alterations in the ovarian histopathology of Banded Gourami 

exposed to different concentrations of chlorpyrifos. The histopathological alterations 

observed in our study were dose- and duration-dependent because after 15 and 45 days of 

exposure to 150 µg/L, cytoplasmic degenerations like CC and CR were observed, indicating the 

negative feedback of estrogens to hypothalamic-pituitary-gonadal axis of this fish (Tillitt et al., 

2010). Earlier studies demonstrated a strong negative correlation between the damaged 

ovarian structures and levels of estrogen production in fish exposed to different pesticides 

(Maxwell and Dutta, 2005; Manjunatha and Philip, 2016). Deka and Mahanta (2012) observed 

cytoplasmic degenerations in Stinging Catfish (Heteropneustes fossilis) ovary when exposed to 

200 µg/L malathion for 10 days. The cytoplasmic alterations were also demonstrated in earlier 

studies in Bluegill fish (Lepomis macrochirus) ovary exposed to diazinon (Dutta and Maxwell, 

2003) and in Puntius ticto ovary exposed to dimethoate (Marutirao, 2013). 

In this study, follicular atresia in Banded Gourami ovary was observed after 15 days of 

chlorpyrifos exposure onwards. The follicular atresia of oocyte stages in chlorpyrifos-exposed 

ovaries could reflect a disruption in the normal processes of final maturation of oocytes with 

the subsequent disturbances of ovulation and oviposition which, in turn, may result in 
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decreased fertility of Banded Gourami. The atretic follicles were observed by Manjunatha and 

Philip (2016) in zebrafish (Danio rerio) ovaries after an acute exposure (96 h) to 200 µg/L of 

chlorpyrifos, Dutta and Maxwell (2003) in bluegill ovary exposed to diazinon, and 

Narayanaswamy and Mohan (2014) in Glossogobius giuris ovary exposed to malathion. The 

follicular atresia was also noticed in Puntius ticto ovary after a chronic exposure to dimethoate 

(Marutirao, 2013), and in Channa punctatus ovary after a sub-chronic exposure to 

monocrotophos (Maqbool and Ahmed, 2013).  

Next to follicular atresia, one of the common histopathological alterations in Banded Gourami 

ovary when exposed to different concentrations of chlorpyrifos were degenerations of the 

ovigerous lamellae. Disruption of ovigerous lamellae induced by chlorpyrifos toxicity may 

cause loss of follicles or empty follicles indicating the loss of genetic material within the 

follicles. The loss of genetic material in the ovarian follicles of Banded Gourami may hinder 

the production of estrogens. The results of this study are in line with findings of Dutta and 

Maxwell (2003) and Maxwell and Dutta (2005) in Bluegill ovary exposed to diazinon, and 

Marutirao (2013) in Puntius ticto ovary exposed to dimethoate. 

Adhesion between oocytes may cause interfollicular space which is evident in our study. In 

the present study, fusion of oocytes accompanied with interfollicular space was noticed after 

45 days of chlorpyrifos exposure to 50 µg/L. Oocytes that adhered to one another are 

prevented from moving on to the next level of maturation. This change in the ovary may 

inhibit the production of steroids. The results of our study are accordance with earlier studies 

in Bluegill ovary after 72 h of diazinon exposure to 60 µg/L (Dutta and Maxwell, 2003; Maxwell 

and Dutta, 2005). 

Necrosis was evident in Banded Gourami ovary after 60 and 75 days of chlorpyrifos exposure 

to 50 µg/L, thus indicating the lack or absence of genetic material after a long-term exposure, 

which may cause reduced levels of hormone production. Maqbool and Ahmed (2013) 

observed similar alteration in Channa punctatus ovary after 45 days of 2000 µg/L 

monocrotophos exposure. Necrosis or loss of genetic materials was also observed in Stinging 

Catfish ovary after an acute exposure to malathion (Dutta et al., 1994) and in Bluegill ovary 

exposed to diazinon (Maxwell and Dutta, 2005).  

4.3. Effects of chlorpyrifos on testes 
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The testis of fish have different vital structures. Together these structures perform the main 

function of the testis, which is to make and release mature spermatozoa in order to fertilize 

eggs. Seminiferous tubules are of primary importance because they hold and release the 

sperm that is necessary to fertilize eggs. The testis of fish are arranged in lobules that contain 

germ cells undergoing spermatogenesis (Oropesa et al., 2014; Manjunatha and Philip, 2016).  

In this study, the testes of the control Banded Gourami showed more or less regular structure 

of seminiferous tubules. However, in the treated testes we found certain irregular structures 

of seminiferous tubules exposed to different concentrations of chlorpyrifos. Severe damage 

was characterised by the breakage of seminiferous tubules and empty lumen in tubules after 

60 days of chlorpyrifos exposure to 50 µg/L. The damages of this tubules induced by 

chlorpyrifos toxicity may disrupt the normal spermatogenesis of Banded Gourami (Oropesa et 

al., 2014). Manjunatha and Philip (2016) demonstrated seminiferous tubules degeneration of 

zebrafish testis after an acute exposure to chlorpyrifos. Similar histopathological alteration 

was reported by Dutta and Meijer (2003) in Bluegill testis exposed to diazinon, Masouleh et 

al. (2011) in Caspian Kutum testis exposed to diazinon, and Bagchi et al. (1990) in Clarias 

batrachus testis exposed to quinalphos. 

Spermatogenesis is accomplished by the functional activities of reproductive hormones i.e. 

gonadotrophin releasing hormone, luteinizing hormone, follicle stimulating hormone and 

testosterone hormone secreted from the hypothalamo-pituitary-testicular axis (Stephen and 

Yinusa, 2011). Interstitial cells of Leydig are located between the seminiferous tubules 

maintaining a key role in the spermatogenesis. Their functional activity is regulated by the 

luteinizing hormone (LH), which binds to LH receptors in the Leydig plasma membrane (Catt 

and Dufau, 1976). Testosterone secreted by the Leydig cells is essential for normal 

spermatogenesis and fertility (Farag et al., 2010). Degenerations of interstitial cells of Leydig 

in Banded Gourami testes due to different concentrations of chlorpyrifos were evident in the 

present study. Degeneration and destruction processes in Leydig cells of Banded Gourami 

testis could lead to the failure of spermatogenesis. These results are in concordance with 

previous studies in Bluegill testis exposed to diazinon (Dutta and Meijer, 2003) and endosulfan 

(Dutta et al. 2006), in Cichlasoma dimerus testis exposed to endosulfan (Da Cuna et al. 2013), 

and in zebrafish testis exposed to clotrimazole (Baudiffier et al. 2013).  
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Sertoli cells are the somatic cells contained in the seminiferous tubules of the testis. They 

provide the physical support, nutrients and hormonal signals necessary for successful 

spermatogenesis (Griswold et al., 1988). For example, testosterone exerts its’ effects on 

spermatogenesis through respective receptors in the sertoli cells (Oropesa et al., 2014). 

Moreover, these cells constitute the blood-testis barrier (Buzzard and Wreford, 2002). 

Another function of these cells is the phagocytosis of degenerated germ cells leading to the 

accumulation of lipid droplets in their cytoplasm (Morales et al., 2004). The present study 

observed damage of these cells after long-term exposure to different concentrations of 

chlorpyrifos. The damage of sertoli cells induced by toxicants could lead to the impairment in 

their normal reproductive functions. The results of this study are in line with earlier studies in 

Bluegill testis (Dutta et al., 2006) and in Cichlasoma dimerus testis (Da Cuna et al., 2013) when 

exposed to endosulfan.  

In the present study, testicular oocytes indicate an intersex condition, were observed in 

Banded Gourami fish after 45 days of chlorpyrifos exposure to 50 µg/L. The intersex condition 

of fish indicates a low reproduction capacity and is a threat for fecundity as well as for 

population viability (Harris et al., 2011). The intersexuality in this study is probably due to the 

xenoestrogens released from endocrine-disrupting chemicals (EDCs), such as chlorpyrifos, 

altering normal sexual differentiation and gametogenesis because they interfere with 

synthesis, storage, release, transport, metabolism, binding action and elimination of 

endogenous hormones (Mills and Chichester, 2005; Ortiz-Zarragoitia, 2014). Xenoestrogens 

are structurally similar to 17β-estradiol (E2), such as 17α-ethinylestradiol (EE2), which exert 

their estrogenic effects on gonadal differentiation by mimicking the actions of endogenous 

estrogens and thereby inducing phenotypic feminization (Andersen et al., 2003; Kuhl et al., 

2005). The phenotypic feminization in Banded Gourami fish induced by chlorpyrifos toxicity 

observed in our study is in accordance with earlier studies in fishes exposed to different EDCs 

(Holbech et al., 2006; Marchand et al., 2010; Tillitt et al., 2010; Tian et al., 2012; Zhang et al., 

2013). 

5. Conclusions 

The study is the first assessing the long-term toxicity of chlorpyrifos on the mortality and 

reproductive tissues of Banded Gourami. The present study revealed no consistent significant 

impact on GSI, but showed dose- and duration- dependent significant impact on the mortality 
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of male and female fish, and histopathological alterations of  both ovary and testes after long-

term exposure to different concentrations of chlorpyrifos. The chronic NOEC (60-d) for most 

histopathological alterations of Banded Gourami ovary and testes was calculated as 50 μg/L, 

while 60-d NOEC for mortality of both male and female fishes was < 15 μg/L. The results of 

the study show that the long-term exposure to chlorpyrifos affect the reproductive tissues of 

Banded Gourami at exposure concentrations also causing mortality. This shows that the 

effects on reproductive tissues might not be the most critical endpoints for the risk 

assessment of chlorpyrifos effects on Banded Gourami. Hence, we recommend future studies 

should evaluate effects at lower concentrations as even the lowest concentration of 15 μg/L 

resulted in a 100% mortality of the male fish and 33% of the female fish after 75 days of 

exposure, with control mortalities of 11 and 17%, respectively. 
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The shift from traditional to modern and intensive agricultural practices in Bangladesh has 

resulted in an increasing use of pesticides to obtain higher agricultural yields, and thereby 

meeting the growing demand of food for the ever-increasing population (Rahman, 2013). 

Residues of pesticides applied on agricultural land may enter into the aquatic environment 

through direct runoff, spray drift and groundwater leaching and this may lead to the 

contamination of the non-target aquatic organisms like primary producers (Malev et al., 2012; 

Kumar et al., 2014), invertebrates (Maltby et al., 2005; Van den Brink et al., 2016) and fish 

(Marimuthu et al., 2013; Manjunatha and Philip, 2016). The inappropriate use of pesticides by 

the farmers (with poor education on safe pesticide use) may lead to occupational health 

hazards (Miah et al., 2014). The World Bank (2006) reported that approximately 1-5 million 

farmers worldwide suffer from pesticide poisoning during application and about 20,000 die 

annually from exposure, mostly in developing countries. 

A systemic study on environmental risk assessment of pesticides is, however, currently lacking 

in Bangladesh. Moreover, a clear understanding of farmers’ perception on the occupational 

health hazards during handling of pesticides is lacking in developing countries like Bangladesh. 

Hence, a set of studies including a field survey, a modelling study, a monitoring study, a semi-

field study (model ecosystem study) and two laboratory studies (Chapters 2-6) were executed 

to address the research objectives of this thesis (Chapter 1). 

The specific research objectives of this thesis were: 

1. To assess the current status of pesticide use in crop production in Bangladesh and their 

associated potential risks to aquatic organisms.  

2. To perform a chemical monitoring program to quantify the residues in the aquatic 

environment and to calculate the potential risks posed by pesticides to the aquatic 

ecosystems.  

3. To derive the safe environmental concentration for a pesticide for certain structural and 

functional endpoints of sub-tropical freshwater ecosystems.  

4. To investigate the potential toxic effects of pesticides on the developmental stages and the 

reproductive tissues of fish. 
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1. Human health issues during pesticide application 

Indiscriminate use and improper handling during pesticide application causes serious human 

health problems in developing countries like Bangladesh. In this thesis, the occupational 

health hazards of farmers posed by unsafe use of pesticide was reported in the context of rice-

prawn concurrent systems in south-west Bangladesh (Chapter 2). The most negative 

symptoms experienced by farmers after pesticide application were vomiting, headache and 

eye irritation. The majority of the farmers (81%) were quite sure that these negative health 

symptoms were the direct results of pesticide intoxication during application (Sumon et al., 

2016). The results of these negative symptoms are in line with other studies conducted in 

other regions in Bangladesh. For example, Dasgupta et al. (2007) reported negative health 

effects like headache, dizziness, eye irritation, vomiting, dermal diseases and gastrointestinal 

problems after pesticide application in different parts of Bangladesh. Another study by Miah 

et al. (2014) found some similar negative health symptoms but also nausea in farmers that 

grow vegetables in south-east Bangladesh. Almost similar negative health symptoms after 

pesticide applications have been reported in other south Asian countries like India, Nepal and 

Pakistan (Chitra et al., 2006; Khan et al., 2010; Shrestha et al., 2010; Atreya et al., 2012; 

Mohanty et al., 2013). 

The negative health symptoms experienced by the farmers could be explained by the lack of 

or no safety measures taken during pesticide application (Dasgupta et al., 2007; Miah et al., 

2014; Atreya et al., 2012; Mohanty et al., 2013). For instance, Sumon et al. (2016) reported 

about 82% of the farmers only used cloths to cover their body and face during pesticide 

application, which is not a sufficient protection measure. The negative symptoms can probably 

be reduced by not only using cloths but also averting behaviour like wearing masks, hand 

gloves, eye glasses and gumboot during pesticide application, and washing hands or taking a 

shower just after pesticide application (Chapter 2). The promotion of suitable averting 

behaviour often depends on farmers’ education level and proper training facilities (Kabir and 

Rainis, 2012). Due to limited access to these factors, farmers are lagging behind in the use of 

the suitable averting behaviour during pesticide application by themselves (Sumon et al., 

2016). Hence, both public and private sectors might play a vital role in educating the farmers 

in a way that farmers are aware of the suitable protective measures. For instance, the 

pesticide companies can introduce the product stewardship programmes making the 
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companies themselves co-repsonsible for their products during the use in the field, and the 

storage. Furthermore, the public sector i.e. the government needs to ensure basic training 

among the farmers to gather knowledge and to build awareness on safe use and handling of 

pesticide and subsequently can introduce the license for pesticide spraying only for the 

trained farmers.  

2. Predicted versus measured environmental concentrations of pesticides 

In this thesis, the TOXSWA v3.3.2 model was used to calculate the predicted environmental 

concentrations (PECs) of ten pesticides extensively used in rice-prawn concurrent systems in 

south-west Bangladesh under different spray drift scenarios (Chapter 2). TOXSWA is a pseudo-

two-dimensional numerical model describing pesticide behaviour in the water layer and its 

underlying sediment at the edge-of-field scale (Adriaanse, 1997; Adriaanse et al., 2013).  

The measured environmental concentrations (MECs) of some commonly used pesticides were 

determined in the surface waters and sediments in north-west Bangladesh (Chapter 3). These 

MEC values of chlorpyrifos and malathion in surface waters collected from beels in north-west 

Bangladesh (Chapter 3) were compared with the corresponding PEC values determined with 

TOXSWA for rice-prawn concurrent systems in south-west Bangladesh (Chapter 2). The 

highest PEC values of chlorpyrifos and malathion were much lower than those of the highest 

MEC values (Table 1). This could be explained by the fact that crop production and the use of 

pesticides in north-west Bangladesh (Chapter 3) was much more intensified than those in rice-

prawn systems in south-west Bangladesh (Chapter 2).  

Table 1: Comparison of the highest (median) PECs and MECs of chlorpyrifos and malathion 
and model-based (south-west Bangladesh) and monitoring-based (north-west Bangladesh) 
highest (median) RQs of this two pesticides for fish, Daphina and algae (Source: Chapters 2 
and 3). 

Pesticide PECs 

(µg/L) 

Model-based RQs MECs 

(µg/L) 

Monitoring-based RQs 

Fish Daphnia Algae Fish Daphnia Algae 

Chlorpyrifos 0.7 

(0.38) 

54.08 

(29.2) 

703 

(380) 

0.16 

(0.09) 

9.1  

(1.9) 

700 

(146) 

9100  

(1900) 

1.3 

(0.4) 

Malathion 2.3 

(1.3) 

12.75 

(7.2) 

327.86 

(216.7) 

0.002 

(0.001) 

3.2  

(1.3) 

17.8 

(7.2) 

400 

(217) 

0.002 

(0.001) 
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The calculation of the predicted environmental concentration (PEC) of pesticides in surface 

waters through modelling is a way forward for developing countries like Bangladesh. This tool 

can be used routinely in several south Asian countries and may include more aquatic systems. 

The determination of MEC values of different pesticides in surface water and sediments is also 

a way forward in Bangladesh. In this thesis, however, I think that the number of quantified 

samples (both surface water and sediment) were too low to evaluate the risks of pesticides 

for aquatic systems. Hence, I recommend further studies including more samples and 

pesticides (other groups than organophosphate) to better prioritize the research needs for 

other aquatic ecosystems in Bangladesh. As we did not have the direct comparison of PECs 

and MECs for the same aquatic systems, we suggest further studies performing the prediction 

and monitoring for the same aquatic systems using the same scenarios, so that a direct 

comparison can be made. 

3. Environmental risk assessment of pesticides in Bangladesh 

In this thesis, the lower-tier risk quotient (RQ) method was performed based on predicted 

environmental concentrations (PECs) from the modelling study (Chapter 2) and measured 

environmental concentrations (MECs) from the monitoring study (Chapter 3). Different 

pesticides and trophic levels have been evaluated in this thesis. The higher-tier PERPEST model 

was used to refine the risk assessment of those pesticides having RQs > 1 for any of the 

endpoints. 

The RQs of chlorpyrifos and malathion derived from the PEC values for rice-prawn systems in 

south-west Bangladesh (Chapter 2) were compared with those derived from MEC values in 

north-west Bangladesh (Chapter 3). The highest RQs of chlorpyrifos and malathion were 

higher for all aquatic organisms in the monitoring study than those calculated from the 

modelling study (Table 1). This can be explained by the much higher MEC values of chlorpyrifos 

and malathion were measured than those calculated PEC values. The RQs for both pesticides 

were much higher than those calculated in earlier studies, e.g. by Wee and Aris (2017), which 

calculated the highest RQ of chlorpyrifos being 4.8 in riverine ecosystem in one of the sub-

tropical countries (Malaysia). The higher RQs values of this pesticide calculated in our study 

for Daphnia than other studies indicate the higher concentrations of this pesticide in 

Bangladeshi aquatic ecosystems. The higher concentrations of pesticides in Bangladesh might 

be due to their irrational use (i.e. overuse and/or misuse) of pesticides by farmers (Chapters 
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2 and 3; Dasgupta et al., 2007). For instance, according to Dasgupta et al. (2007), over 47% of 

the studied farmers were overusing pesticides in different regions in Bangladesh, while Sumon 

et al. (2016) reported an overuse by 70% of the interviewed farmers in south-west 

Bangladesh. Satapornvanit et al. (2004) also obsevred the overdose of pesticides in one of 

previous studies in tropical Thailand. The reasons behind this irrational use of pesticides 

include farmers’ low and/or lack of education, inadequate product labelling, and lack of 

proper training facilities (Dasgupta et al., 2007).  

The results of both the model-based (Chapter 2) and monitoring-based (Chapter 3) risk 

assessment indicated that chlorpyrifos had high acute and chronic RQs (> 1), thus posing high 

risks for aquatic organisms like Daphnia and the standard test fish species. Based on these 

results, two laboratory experiments were conducted to elucidate the potential toxic effects of 

chlorpyrifos on the developmental stages and the reproductive tissues of Banded Gourami 

(Trichogaster fasciata), which is one of the local freshwater fish species in Bangladesh 

(Chapters 5 and 6).  

The results of the Chapter 3 of this thesis indicate that the highest MEC value of chlorpyrifos 

(9.1 µg/L) determined in north-west Bangladesh might have the risk for local fish species (e.g. 

Banded Gourami), since the results of Chapter 5 show that 1 µg/L chlorpyrifos has adverse 

effect on the developmental stages of Banded Gourami after an acute exposure. After the 

long-term exposure to chlorpyrifos, the results suggest that the highest MEC value may not 

increase the histopathological alterations (60-d NOEC = 50 µg/L), but might affect the 

mortality (60-d NOEC = < 15 µg/L) of Banded Gourami (Chapter 6). Further long-term studies, 

however, are recommended to evaluate the toxic effects of chlorpyrifos on the mortality and 

reproduction of Banded Gourami at < 15 µg/L (Chapter 6). In Chapters 5 and 6, a first study 

on the developmental and reproductive toxicity of chlorpyrifos by using Banded Gourami fish 

as a model is reported, however, analytical verification of exposure concentrations was not 

possible due to lack of technical facilities. Hence, we recommend to introduce the 

instrumental facilities to verify the exposure concentrations of chemicals analytically in future 

laboratory studies in Bangladesh. 

4. Sensitivity differences between tropical and temperate aquatic invertebrates 

The semi-field microcosm experiment derived safe threshold values for the neonicotinoid 

insecticide imidacloprid for different structural (phytoplankton, zooplankton, 
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macroinvertebrates and periphyton) and functional (organic matter decomposition) 

endpoints of freshwater ecosystems in sub-tropical Bangladesh (Chapter 4). Those 

microcosms have been used as a valuable tool for the higher-tier risk assessment of pesticides 

(Daam et al., 2008, 2009; Hayasaka et al., 2012a; Halstead et al., 2014; Hua and Relyea, 2014; 

Sumon et al., 2018) and veterinary medicines (Rico et al., 2014) over the past decades. There 

are multiple advantages of using microcosms for toxicity studies, since they allow replications, 

ecological realism, and are a good tool for validating safety factors used at lower-tier of the 

risk assessment (Daam and Van den Brink, 2010; Van den Brink, 2013). 

The results of Chapter 4 indicated that most zooplankton and macroinvertebrate species were 

found to be much more sensitive to imidacloprid than their temperate counterparts. Among 

the zooplankton, Diaptomus sp. was negatively affected from day 2 of the first imidacloprid 

exposure onwards over a period of 28 days with a consistent NOEC value of 0.3 µg/L. The 

sensitivity of this species to imidacloprid was confirmed by a single species toxicity test, since 

an 96-h EC50 of 0.0386 µg/L was calculated for this genus. Unfortunately, the toxicity data for 

Diaptomus sp. in temperate countries is lacking, therefore, a comparison is not possible. 

Among the macroinvertebrates, Cloeon sp. was the most responding species to imidacloprid 

i.e. showing the lowest abundance values in all treatments from the control (2-d and 9-d NOEC 

< 0.03 µg/L). The sensitivity of this species was also confirmed by a single species toxicity test 

(96-h EC50 = 0.00548 μg/L). Roessink et al. (2013) reported an 96-h EC50 and 28-d EC50 value 

of imidacloprid for Cloeon dipterum of 1.0 μg/L and 0.13 μg/L, respectively in the Netherlands, 

which is about 24-182 folds higher than the 96-h EC50 value calculated in Chapter 4 of this 

thesis for sub-tropical country. Another study from Canada by Alexander et al. (2007) 

calculated an 96-h LC50 value of 0.65 μg/L for the mayfly species Epeorus longimanus, which 

is again about 27 folds higher than the value reported for Cloeon sp. in Chapter 4 of this thesis. 

The higher sensitivity of this species in the microcosm experiment could be partly explained 

by the higher temperature in (sub-) tropics (Chapter 4; Camp and Buchwalter, 2016; Van den 

Brink et al., 2016) and may be caused by the lack of having winter generations of this species 

in our climate zone (Chapter 4; Kwok et al., 2007; Van den Brink et al., 2016). We recommend 

further studies to perform the risk assessment of imidacloprid (monitoring or model-based) 

using the threshold values of this insecticide for local organisms (i.e. primary producers, micro- 
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and macro invertebrates) of (sub-) tropical Bangladesh derived from the microcosm and single 

species toxicity tests experiments.  

5. Reducing the use of pesticide in Bangladesh 

The studies presented in this thesis showed the toxic effects of different pesticides on the 

aquatic environments. To make the agricultural system sustainable, the use of pesticides 

should either be reduced or mitigation measures should be sought for the pesticide use in a 

way that pesticides do not exceed the thresholds for the aquatic organisms. For example, 

taking the spray drift scenarios into account as a route of pesticide exposure in the aquatic 

ecosystems, the mitigation measure of pesticide risk may be achieved by the implementation 

of spray drift buffers (Chapter 2; Maltby and Hills, 2008; Hilz and Vermeer, 2013). One of the 

best options of avoiding pesticide use could be the adoption of Integrated Pest Management 

(IPM) practices, which is a popular method of sustainable and eco-friendly crop production 

system in many countries of the world (Azad et al., 2009). According to Prokopy (2003), IPM 

is “a decision-based process involving coordinated use of multiple tactics for optimizing the 

control of all classes of pests (insects, pathogens, weeds, vertebrates) in an ecologically and 

economically sound manner”. In Bangladesh, the IPM practices were first introduced in the 

1981 for rice systems, when the Food and Agriculture Organization (FAO) played a strong 

catalytic role with the government officials and donor community (Dasgupta et al., 2007; Kabir 

and Rainis, 2013). Subsequently, the government, through its Department of Agricultural 

Extension (DAE), initiated several IPM projects for rice and vegetables with donor funds. The 

DAE, is the largest agro-based public organization in Bangladesh and the main actor 

responsible for providing extension services to the rural farmers. The DAE has developed some 

dissemination techniques on IPM practices e.g. Extension Agent Visit, Farmers Field School 

(FFS), IPM club and Field Days. Some NGOs are also working to promote the IPM adoption in 

Bangladesh. The rate of IPM adoption in Bangladesh, however, is minimal (only 0.27% of the 

estimated 37 million farmers). The low adoption of IPM indicates that these dissemination 

techniques have had little impact at the national scale. 

One of the main reasons behind the low adoption could be the number of extension agents 

and NGOs, which are insufficient in comparison to the total farmers to disseminate the 

techniques. For instance, Sumon et al. (2016) reported in their study that only 6% of the total 

farmers knew about the IPM practices as an alternative method of pesticide use. Hence, the 

122



 

government should recruit more extension agents and invest more funds to improve the 

dissemination campaigns to the rural population. Printed and electronic media like TV, radio, 

newspapers and magazines can also play a substantial role to improve this situation. 

Furthermore, although hundreds of NGOs are nowadays working in Bangladesh, very few are 

devoted to the implementation of IPMs. More NGOs should be involved with GOs to 

disseminate the IPM through raising awareness among the farmers. Another reason of the 

low adoption of IPM could be the poor socio-economic characteristics of the farmers and the 

low literacy rate. Most farmers are reluctant to adopt new technologies since the majority of 

them have no or very low risk bearing capacity. So, this thesis suggests that both DAE and 

NGOs should motivate the farmers in a way that IPM practice is not only an ecologically sound 

and socially acceptable technique, but also that it is presented as a more profitable farming 

practice than the conventional one (i.e., farming with intensive use of pesticides) (Chapter 2; 

Dasgupta et al., 2007).  

6. Improving the environmental risk assessment scheme underlying the regulation of 

pesticides in Bangladesh 

Environmental risk assessment of pesticides based on lower-tier RQ method and higher-tier 

PERPEST model that are presented in Chapters 2 and 3. Chapters 4, 5 and 6 derive threshold 

values (e.g. LC50, EC50 and NOECs) of the two pesticides (i.e. imidacloprid and chlorpyrifos) 

for local primary producers, micro- and macro-invertebrates and fish in Bangladesh. These 

threshold values can be used for future risk assessment processes in (sub-) tropical 

Bangladesh.  

In a developing country like Bangladesh, the improvement the model-based risk assessment 

of pesticides is important. In order to establish a realistic risk assessment and management 

procedure for more sustainable rice production practices, however, the mathematical models 

need to be developed and validated for rice-prawn systems in Bangladesh and in other 

countries of south Asia to further strengthen the reliability of using the models. Moreover, the 

introduction of such a model in Bangladesh still needs to convince all stakeholders including 

government, who are resonsible to support decision making in the policy level to adopt and 

continue this new tools to estimate the exposure concentrations of pesticides in future. 

In this thesis, the monitoring-based risk assessment indicates that the potential risks of several 

pesticides may be present in surface water for Daphnia even without detection (Chapter 3). 
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This, because the limit of detection (LOD) of chlorpyrifos, malathion and fenitrothion in 

surface water was higher than the acute and/or chronic PNECs for Daphnia, thus indicating 

the low efficiency of analytical verifications. Hence, we suggest that the analytical verification 

for several pesticides should be improved in future monitoring-based risk assessment in 

Bangladesh. 

7. Concluding remarks and future lines of research 

The results of the pesticide use practices reported in this thesis, show that the negative health 

symptoms experienced by farmers were due to the lack of proper handling of pesticides during 

application. The government should provide basic training facilities and build awareness to 

the farmers in a way that farmers can practice the suitable averting behaviour during pesticide 

application. The model-based risk assessment of this thesis indicates that such assessment 

approaches can be used as good tools for risk assessment purposes in sub-tropical 

ecosystems, however, is important to develop and validate mathematical models adapted to 

the rice-prawn systems in Bangladesh and in other countries of south Asia.  

The results of the monitoring study of this thesis demonstrate that some of the measured 

pesticides (e.g. chlorpyrifos, diazinon, quinalphos, fenitrothion and malathion) pose high risks 

for surface water organisms like fish and Daphnia in north-west Bangladesh. The risk 

assessment based on monitoring study is a new approach in sub-tropical Bangladesh. This tool 

can be used for future environmental risk assessment of different pesticides for other aquatic 

ecosystems in Bangladesh and other south Asian countries.  

The microcosm experiment reveals that the threshold values of imidacloprid for sub-tropical 

aquatic organisms were much lower than those found for temperate countries. Whether the 

differences in sensitivity holds true for all sub-tropical aquatic ecosystems and/or more 

pesticides than imidacloprid alone,  remains to be investigated. The results of the microcosm 

(semi-field) experiment using one of the insecticides (imidacloprid) presented in this thesis, 

however, are the first microcosm study in sub-tropical Bangladesh while the model ecosystem 

experiments (i.e. microcosm and mesocosm) were introduced in Europe and North America 

in the seventies and eighties of the last century. We recommend to conduct more long-term 

microcosm experiments in Bangladesh including more sub-tropical species to get a clear 

picture about the toxicity of different pesticides towards sub-tropical freshwater ecosystems.  
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The results of the laboratory experiments of this thesis provides threshold values (e.g., LC50, 

NOEC) of chlorpyrifos for Banded gourami fish. In this thesis, I suggest that Banded Gourami 

fish could serve as an ideal model species for evaluating the developmental and reproductive 

toxicity of different environmental contaminants (e.g. pesticides). However, the 

establishment of the technical facilities (i.e. analytical verification of chemicals) for the 

standard laboratory experiments in developing countries like Bangladesh is urgently needed. 

In conclusion, the thesis has made an attempt to provide some tools to assess the risks to 

aquatic ecosystems of sub-tropical Bangladesh posed by several pesticides. Some pesticides 

posed serious risks for the aquatic organisms in Bangladesh. Further experimental, monitoring 

and model validation studies at nationwide, however, are needed to strengthen the present 

conclusions and characterise the risks of the multitude of other pesticides for Bangladeshi 

aquatic ecosystems. The results of risk assessment of the pesticides reported on in the thesis 

can be used as regulatory purposes by the policy makers to protect the surface water 

organisms. To make the whole agricultural system sustainable, the use of pesticides should be 

reduced based on recommended doses by agricultural extension officers. Another way of 

reducing pesticide use could be the adoption of IPM practices. The Bangladeshi government 

and NGOs should utilize more funds to disseminate the technologies and build awareness 

among the farmers to reduce/avoid the pesticide use in crop production.  
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Summary 

In Bangladesh, the intensification of agriculture is indispensable due to its ever increasing 

population, the food security needs, and land scarcity. Severe agro-climatic events (e.g. flash 

floods, seasonal water scarcity and salinity intrusion in coastal land) pose further difficulties 

to crop production. To meet the growing demand of food under these harsh conditions, 

farmers are using a variety of pesticides indiscriminately; a sharp increase of their use was 

observed during the last decades. The government of Bangladesh fosters the pesticide use to 

amplify the agricultural frontiers and to increase output per acre of land. Residues of pesticide 

applied on agricultural land may enter into the aquatic environment through drain, runoff and 

spray drift, thereby contaminating this environment. Hence, this PhD thesis aimed to 

investigate the human health issues and ecological risks on aquatic ecosystems posed by the 

large scale use of pesticides in Bangladesh. 

In Chapter 1 the current status of pesticide use in intensive agriculture in Bangladesh is 

described together with their associated potential risks on the aquatic environments posed 

by pesticides. The available studies on assessing the fate and effects of pesticides for the (sub-

) tropical aquatic ecosystems are reported. Chapter 1 describes the knowledge gap regarding 

the environmental risks of pesticides in the context of Bangladesh and discusses the tired-

based approach to take into account for the risk assessment in Bangladesh. 

Chapter 2 outlines the information on the current status of pesticide use in rice-prawn 

concurrent systems of south-west Bangladesh and human health issues posed by the 

application of pesticides. The ecological risks of 10 pesticides for the aquatic ecosystems that 

support the culture of freshwater prawns (Macrobrachium rosenbergii) were assessed using 

exposure and effect models. The TOXSWA model calculated pesticide exposure (peak and 

time-weighted average concentrations) in surface waters of rice-prawn systems for different 

spray drift scenarios. The simple first-tier risk assessment for these 10 pesticides were 

performed using a risk quotient (RQ) method. The results of RQ method indicated that 

chlorpyrifos, cypermethrin, alpha-cypermethrin and malathion may pose a high to moderate 

acute and chronic risks for invertebrates and fish for all spray drift scenarios. The higher-tier 

PERPEST effect model confirmed the high risks of cypermethrin, alpha-cypermethrin and 

chlorpyrifos for insects and macro- and micro-crustaceans, which were previously derived by 

the RQ-based risk assessment approach. The PERPEST model also indicated the indirect effects 
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of these pesticides on algae and macrophytes, community metabolism, rotifers and other 

macroinvertebrates. This chapter suggests that the mitigation of risk arising from spray drift 

may be achieved by the implementation of spray drift buffer or the avoidance of spray drift. 

We also suggest the adoption of Integrated Pest Management (IPM) practices to make the 

rice-prawn system in south-west Bangladesh more sustainable. 

Chapter 3 presents the results of a chemical monitoring in surface water and sediment 

samples of north-west Bangladesh. The residues of the 10 most commonly used 

organophosphate insecticides in surface water and sediment samples were measured in that 

region. Like Chapter 2 of this thesis, the risk assessment of the concentrations of these 10 

insecticides for fish, Daphnia and algae was started with a deterministic RQ method based on 

measured environmental concentrations (MECs) and the threshold concentrations derived 

from single species toxicity tests. The results showed high acute and/or chronic RQs (RQ > 1) 

in surface water and sediment for chlorpyrifos, diazinon, quinalphos, malathion and 

fenitrothion. The higher-tier PERPEST effect model also confirmed the risks of chlorpyrifos, 

diazinon, quinalphos and fenitrothion for aquatic insects, micro- and macro-crustaceans. This 

model also indicated the indirect effects of these pesticides on algae and macrophytes, 

community metabolism, rotifers and other macroinvertebrates.  

Chapter 4 describes the fate and effects of imidacloprid on several structural and functional 

endpoints of freshwater ecosystems in Bangladesh as evaluated in freshwater outdoor 

microcosms. The safe threshold values (i.e. NOECs) of imidacloprid for the individual taxa, 

community and water quality variables were derived for (sub-)tropical Bangladesh. Single 

species toxicity tests were also performed using the two most responding species (e.g. Cloeon 

sp. and Diaptomus sp.) of the microcosm study. The sensitivity of several arthropod species to 

imidacloprid was much higher in sub-tropical country Bangladesh compared to their 

temperate counterparts. 

Chapter 5 elucidates the acute toxicity of chlorpyrifos on the developmental stages of Banded 

Gourami (Trichogaster fasciata), which is a local freshwater fish species in Bangladesh. In this 

chapter, the effects of chlorpyrifos on the incubation period of embryo, hatching success, 

mortality of embryos and two-day old larvae of Banded Gourami are discussed. The 24-h LC50 

of chlorpyrifos for embryo was calculated as 11.8 μg/L , while the 24-h and 48-h LC50 of 

chlorpyrifos for larvae were 21.7 μg/L and 5.5 μg/L, respectively. Several malformations of 
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larvae including irregular head and eye shape, lordosis, body arcuation, notochordal 

abnormality and caudal fin damage when exposed to 10 and 100 μg/L chlorpyrifos were also 

demonstrated. 

Chapter 6 investigates the toxicity of chlorpyrifos on the mortality and the reproductive 

tissues of male and female Banded Gourami (Trichogaster fasciata) over a period of 75 days. 

The threshold values (NOECs) for male and female mortality, GSI, histopathological alterations 

of ovary and testis for different time interval were derived in this chapter. The results show 

that the long-term exposure to chlorpyrifos affect the reproductive tissues of Banded Gourami 

at exposure concentrations that cause mortality also. Hence, this chapter recommends future 

studies should evaluate effects at lower concentrations as even the lowest concentration of 

chlorpyrifos (15 μg/L) exerted effects. 

In chapter 7 the major findings of different studies are discussed and after an overview of the 

conclusions, this thesis recommends: (1) to promote the suitable averting behaviour by 

farmers during pesticide application, (2) to conduct future experimental, monitoring and 

model validation studies nationwide, in order to better characterize the risks posed by 

pesticides for Bangladeshi aquatic ecosystems, (3) to improve the technical facilities (i.e. 

analytical verification) for future laboratory studies, (4) to reduce the pesticide use based on 

the recommended dosage by agricultural extension officers, and (5) to seek alternatives of 

pesticide use through the adoption of integrated pest management (IPM) practices to avoid 

the risks posed by pesticides. 
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