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ABSTRACT 

Protein-Protein Interactions (PPIs) play an important role in plant infections, taking part in the detection of the 
pathogen by the plant and its defence mechanisms, but also in the manipulation of host processes by the 
pathogen. Phytophthora infestans is a plant pathogenic oomycete with a large arsenal of secreted proteins 
that help the infection process through interactions with the host plant proteins. We constructed a pipeline to 
predict PPIs between P. infestans and one of its most important hosts, Solanum lycopersicum (tomato). Two 
methods based on protein domains are implemented and combined to predict PPIs between these two species. 
Additionally, various evaluations based on the predicted network architecture, gene expression and targeted 
processes are performed to validate the predicted interactions and study the influence of different parameters 
of the pipeline. 
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INTRODUCTION 
The oomycete Phytophthora infestans is a 
microscopic and filamentous eukaryote. This 
pathogen causes the late blight disease on tomato 
and potato, two of the most important crops in 
agriculture, leading to billions of dollars in losses 
and control costs annually [1].  This pathogen was 
initially categorized as a fungus because of its 
similar morphology and infection process [2]. 
However, studies based on genetic structure [3] and 
phylogeny [4] have revealed that it is evolutionary 
closer to diatoms and brown algae. Throughout 
history, P. infestans has caused devastating 
epidemics, one of which led to the well-known Irish 
potato famine in the 1840s, that caused a 
population drop of one third in Ireland due to millions 
of deaths and migrating families [5, 6]. The high 
genomic mutation rate of P. infestans leads to the 
appearance of new, resistant strains of this 
pathogen each year, hampering the development of 
long-term control methods [7, 8]. 
 
Phytophthora spp. have both asexual and sexual 
reproductive cycles. The sexual cycle allows the 
pathogen to diversify into new strains [9]. Plant 
infection mainly occurs during the asexual cycle that 
can be classified as hemibiotrophic [10]. The 
infection cycle has a biotrophic phase, where  
P. infestans grows in close contact with alive host 
cells through the formation of hyphae and haustoria. 
This phase is followed by extensive necrosis of the 
host tissue, followed by fast colonization and 
sporangium formation (Figure 1) [7, 11, 12]. 

          

Figure 1: The Phytophthora asexual life cycle [12].  

During infection, the pathogen adopts different 
morphological life stages for dispersion, host 
penetration and growth. Dispersion between hosts 
is usually governed by sporangia, which are blown 
from aerial parts of the infected host onto new host 
plants. When these cells are in contact with a new 
host, they either directly form a germ tube or release 
motile zoospores that eventually form a cyst by 
formation of a cell wall. The cyst germinates and 
penetrates the host tissues through natural 
openings in the plant or by forming a germ tube. The 
germ tube forms an appressorium that pierces the 
cuticle of a host epidermal cell and once inside the 
host, a primary vesicle is formed [13]. From this 
primary vesicle, hyphae start to grow in the 
extracellular tissue and colonize the plant cells. The 
hyphae inside the host form a special structure 
called a haustorium. Here, pathogen proteins are 



secreted to disrupt the host defence response and 
to manipulate its metabolism [13].  
 
Manipulation of host processes is vital for pathogen 
proliferation. This process is mediated by proteins 
called effectors. Effectors are secreted by the 
pathogen from the apoplast and from the haustoria, 
where the host and the pathogen membranes are in 
close contact. Genomic analyses revealed that  
P. infestans has an extremely large number of 
effector genes, many of which code for secreted 
proteins [14, 15]. Many of these effectors contain an 
N-terminal signal peptide for secretion that is 
followed by a C-terminal functional effector module 
[16]. Some of these effectors are inhibitors of host 
defence proteases (e.g. Cysteine and Serine 
protease inhibitors EPI1 and Kazal-like Serine 
protease inhibitors), proteases to counter attack the 
host defences and necrosis and ethylene inducing 
peptides such as the NEP1-Like Family [17]. The 
rest of the effectors would be translocated inside the 
host cell through specialized structures and 
translocation signals. Many of these cytoplasmic 
effectors are uncategorised, but some others have 
been included in effector families such as RxLR and 
CRN, and have been described to modulate and 
disrupt host cellular signalling and necrosis 
processes [16]. The RxLR effectors earned this 
name because they are characterized by an RxLR 
motif (Arginine, any, Leucine, and Arginine) near the 
N-terminal domain. This RxLR domain has been 
shown to act as a translocation signal to penetrate 
the host cell membrane. RxLR genes are mainly 
found in genome regions with high transposon 
activity, which may be the reason for their quick 
evolution and high variability [18]. Sequence 
variation is mainly found in the C-terminal regions, 
as this is likely to be the module with the 
biochemical effector activity, while the N-terminal 
regions remain constant with the translocation 
signal [19]. CRN effectors are known for their 
crinkling and necrosis-inducing activity and some of 
them have been described to localize in the host 
nucleus, modulating the host’s gene transcription 
[20, 21]. These proteins have a highly conserved N-
terminal domain containing the translocation motif 
LxLFLAK (Leucine, any, Leucine, Phenylalanine, 
Leucine, Alanine, Lysine) and a variable C-terminal 
region. Although a function for most of these 
effectors has not been identified yet, one CRN 
effector of P. infestans has been described to 
exhibit a kinase activity, likely disrupting the host 
signalling cascade during the infection process [21, 
22]. 
 
Plants are constantly affected by abiotic and biotic 
stresses which pose important selection pressures 
and require them to develop and maintain defences 
to fight against these factors. This causes 
pathogens and their host plants to coevolve, in a 
perpetual fight in which the host tries to destroy the 
pathogen, while the pathogen tries to avoid the host 
defences. One of the models that describes this 

coevolution process of plant-pathogen interactions 
is the Zig-Zag model proposed by Jones and Dangl 
in 2006 [23]. Although this model might be too 
simple for describing all the interactions in the host-
pathogen system [24, 25], it still can be used to 
explain the coevolution of pathogen effectors and 
host defences. 

 
According to this model, the defences of a plant host 
are divided into two branches. In the first branch, the 
plant develops extracellular receptors that 
recognise conserved molecules among usual 
pathogens and start a signalling cascade that would 
activate defences against the colonization. These 
conserved molecules are called pathogen 
associated molecular patterns (PAMPs) and the 
mechanism is called PAMP triggered immunity 
(PTI). However, some pathogens develop 
strategies to avoid PTI by hiding their PAMPs or by 
interfering with the signalling cascade. Among these 
strategies, we find the secretion of proteins called 
effectors (Figure 2).  
 

 

Figure 2: Different phases of the Zig-Zag model [23]. 

In the second branch of the defences, the host plant 
employs resistance proteins (R) to detect the 
pathogen effectors and activate the effector 
triggered immunity (ETI). However, very few direct 
interactions between effectors and resistance 
proteins have been described. This led to the 
formulation of other theories that explain how this 
recognition happens, for example the guard 
hypothesis or the decoy hypothesis [26, 27].  
 
In all these models, both the infection processes 
and the defence responses would be governed 
through protein-protein interactions (PPI) between 
host and pathogen proteins. PPIs are key for these 
pathogen effectors to work. Determining these 
interactions might reveal new patterns that can be 
exploited to develop effective controls for this 
devastating disease. In general, PPIs can be 
classified into physical and functional interactions. 
In the first case proteins have physical contact (e.g. 
two alfa chains and two beta chains form the 
hemoglobin protein complex). Functional 
interactions include proteins that work in the same 
biological processes, but may be physically 
separated [28]. For experimental determination of 



PPIs, several methods have been developed, such 
as Yeast2Hybrid or co-inmunoprecipitation. 
However, the experimental study of physical 
interactions is slow and expensive, and therefore 
large-scale experiments describing PPIs are rare 
[29]. Development of in silico prediction methods is 
useful to accelerate this task. Several of these 
methods have been developed in an attempt to 
predict whether a pair of proteins could physically 
interact [30]. These methods are based on several 
protein features: structure [31], homology [32], 
sequence [33, 34] or domains [34–36]. 
 
Several methods for predicting PPIs that use protein 
domain information have been developed in the last 
years, but all of them are based on the same 
assumption: some protein interactions take place 
between two or more domains identified in those 
proteins [37]. Some of these methods even extend 
this idea to include particular interactions between 
specific domains and protein motifs [38]. These 
methods propose that a pair of proteins is likely to 
interact when they contain domains known to 
interact. Protein domains are usually defined as 
compact and stable conserved structural segments 
of a protein, that are able to fold independently; that 
is, their structure arises without the intervention of 
the rest of the protein. On the other hand, protein 
motifs are conventionally defined as non-
independent, short conserved protein sequence 
segments. 

 
Here we describe the development and application 
of in silico PPI prediction methods to provide insight 
into potential PPIs between P. infestans and tomato 
(Solanum lycopersicum). We examine the 
application of these computational methods by 
exploiting protein domain and motif information from 
various sources. 

 
 
MATERIALS AND METHODS 
 
Protein and interactome sets 
The set of P. infestans proteins used in this project 
was extracted from Meijer et al. 2014 [15]. In this 
paper, the secretome of P. infestans is obtained by 
merging an in silico predicted secretome [14] with 
proteins identified extracellularly by mass 
spectrometry. The resulting secretome consists of 
2242 proteins that are potential effectors in the 
infection process of S. lycopersicum 
(Supplementary File 1). The set of tomato proteins 
was extracted from the interactions database 
STRING v10.5 [39]. STRING includes both 
experimentally determined and predicted PPIs from 
different species. These predictions are scored on a 
scale from 150 to 999 using different sources of 
information: co-expression analysis, ortholog 
transfer, shared selective signals across genomes 
and automated text-mining of scientific literature. 
The database also includes and categorizes the 

interactions into physical or several kinds of indirect 
interactions. We maintained a filter for extracting 
only physical PPIs and applied a score threshold of 
900 in order to take only the more reliable 
interactions. After filtering, the tomato PPI network 
contained 552 tomato proteins involved in 956 
interactions (Supplementary File 1). 
 
Domain and motif annotation 
The sets of proteins of P. infestans and  
S. lycopersicum were annotated for domains using 
the software InterProScan v5 (5.27-66.0) with the 
Pfam database (v31.0) [37, 40]. Additionally, motifs 
known to bind domains were extracted from the 3did 
(v2017_01) [41] and iELM (v1.0) [42] databases in 
regular expression format. The number of motifs 
retrieved was 702 and 267 respectively. A motif 
annotation was performed on the described  
P. infestans secretome and S. lycopersicum 
interactome protein sets. Since some motifs are 
short peptides that may appear by chance, two 
different filters were applied:  a surface exposure 
filter and a frequency filter [38]. The surface 
exposure filter removes motifs of which more than 
50% of the residues are predicted to be buried. 
Surface exposure was calculated with the software 
NetSurfP v1.0 [43]. Thereafter, we applied a 
frequency filter to remove motifs that occur in over 
5% or 10% of the proteins, on the S. lycoperosicum 
and P. infestans sets respectively.  
 
Domain-based approaches 
Two different domain approaches were applied 
independently to predict PPIs in the P. infestans – 
S. lycopersicum pathosystem. These methods are 
described in Dyer et al. (2007) and Zhang et al. 
(2016) [35, 36]. Additionally, we added the motif 
information and worked with these motifs in the 
same way as domains. Both approaches work in a 
similar way: they assign a score in the range 0-1 to 
Domain-Domain Interactions (DDIs) and Domain-
Motif Interactions (DMIs); and calculate a score for 
each possible protein pair from our datasets as 
follows: 

 
In Equation 1, we obtain Pr(Pgh), the PPI score for 
proteins g and h, by substituting Pr{𝑔, ℎ|𝑑, 𝑒} for the 
DDI/DMI scores of domains/motifs d and e, for all d 
and e in g and h respectively [36]. The two methods 
differ in how they calculate the score for the DDIs 
and DMIs.  In the Zhang approach, the scores for 
structurally determined DDIs are extracted from the 
database 3did (v2017_01), obtaining a total of 
11200 DDI scores in the range 0-1. However, this 
database does not provide scores for DMIs, and 
neither does the iELM database. We therefore used 
an arbitrary score of 0.3 for all DMIs, the rounded 
average of all DDI scores. In the Dyer method, both 
DDI and DMI scores are calculated based on the 

Pr (𝑃𝑔ℎ) = 1.0 − ∏ (1.0 − Pr{𝑔, ℎ|𝑑, 𝑒})

𝐷𝑑𝑒 ∈ 𝑃𝑔ℎ

      (1) 

 

 



information of the host interactome. A Bayesian 
formula (Equation 2) is used to score the a posteriori 
probability for a DDI or DMI to appear in interacting 
proteins [35]. In this way, DDIs and DMIs that 
appear frequently in interacting proteins obtain a 
greater score because they are more likely to 
participate in the interactions. 
 

Pr{g,h|d,e} is the probability of proteins g and h 
interacting due to domains d and e; this is the DDI 
of d, e. Pr{d,e|g,h} is the fraction of interactions 
where one protein contains domain d and the other 
contains domain e. Pr{I(g,h)} represents the prior 
probability that a pair of proteins interact; this is the 
frequency of interactions in the interactome. Finally, 
Pr{D(g,d),D(h,e)} is used for normalization as the 
probability that if we choose two proteins, one will 
contain domain d and the other domain e. After all 
DDIs and DMIs were calculated, both methods were 
applied to score every possible pair between the  
S. lycopersicum interactome and P. infestans 
secretome proteins. 
 
Co-localization filter 
To reduce the number of candidate interactions, a 
filter for subcellular location was used, requiring 
both proteins of the pair to co-localize in the same 
subcellular compartment. For this task, the software 
LOCALIZER (v1.0.4) was used [44]. LOCALIZER 
predicts the location inside the plant cell of both 
plant and effector proteins by searching for peptides 
that contain transit or signal sequences. The 
algorithm classifies each protein as nucleus, 
chloroplast, mitochondria or none. If proteins in a 
pair are predicted to be in different compartments, 
they are removed. Then, a first subset is built with 
proteins pairs that were both localized in nucleus, 
mitochondria or chloroplast. In order to obtain a less 
restrictive subset, we assumed that proteins 
classified as none are found in the cytoplasm; a 
second subset was constructed by adding pairs of 
proteins found in the cytoplasm to the first. 
 
Evaluation of predictions 
After these filters, a combined PPI score was 
calculated as the sum of the Dyer and Zhang scores. 
We evaluated the interactions using different 
approaches described below. Approaches 2, 3, 4 
and 5 were performed only on the 30 highest 
scoring interactions, in order to have a better 
reliability and reduce the complexity of the results. 

 
1) Comparison to known interactions 
The few known PPI interactions in this pathosystem 
are reviewed in Whisson et al. 2016 [13]. We 
manually retrieved the protein sequences of 10 
described interactions from the Ensembl and 
Uniprot databases. In some cases, the exact protein 
was not found or was not described properly in the 

paper. For these cases, we manually selected the 
most similar paralogs and proteins of the same 
family for P. infestans proteins, identified by Uniprot 
BLAST.  Also, some S. lycopersicum proteins had 
to be retrieved as orthologs of the described protein 
in other organisms such as Nicotiana benthamiana 
and Solanum tuberosum. Finally, we obtained a list 
of 42 interactions (Table S1). In order to test our 
predictor, the Dyer and Zhang methods were run 
over the proteins forming these interactions. 
 
2) Proximity in host PPI network 
Dyer et al. [35] propose that in the host, proteins 
involved in the same processes usually are part of 
the same interacting complexes. Therefore, they will 
be close to each other in the host PPI network. A 
pathogen effector that targets several host proteins, 
is likely to target proteins with similar functions. For 
each pathogen effector with more than one 
predicted target, the significance of target 
colocation in the PPI network was estimated by 
repeatedly randomly selecting the same number of 
host proteins and computing the sum of distances 
between all target pairs. A P-value was obtained for 
each effector with several targets. Since the host 
PPI graph consists of multiple subgraphs  
(Figures S1-2), sometimes there was no possible 
path between the targets. For these cases, a 
penalization distance was used, calculated as one 
plus the longest distance between two nodes 
among all the subgraphs in the PPI network. 
 
3) Gene correlation on common effectors 
Dyer et al. 2007 [35] proposed that proteins 
predicted to interact are likely to have similar 
expression patterns. In addition, the expression of 
effector genes targeting the same host protein are 
also likely to be correlated, since they would be 
playing a similar role on the host target. We used an 
RNA-Seq transcriptomics dataset of 25 samples of 
P. infestans – S. lycoperosicum infection timepoints 
(Judelson et al. unpublished), sampled every 4 
hours over a period of 2 to 6 days post infection. 
Read counts were normalized by the DESeq 
method [45].  Then, in our subset of 30 best 
interactions, the Pearson correlation between the 
expression levels was calculated for each target-
effector pair. For host proteins targeted by several 
pathogen effectors, the Pearson correlation was 
calculated for each effector-effector pair. Each 
correlation coefficient was tested for significance by 
calculating the correlations likewise for a set of 1000 
random pairs of proteins from the protein. 
 
4) GO enrichment in host targets 
To investigate whether host targets are infection-
related, the predicted S. lycopersicum targets were 
annotated with Gene Ontology (GO) terms. The 
STRING identifiers were translated to Uniprot 
identifiers to retrieve the associated GO terms for 
each host protein. “Cellular component” ontology 
terms were not considered since we already applied 
a filter for subcellular location. Then, for each GO 

Pr{𝑔, ℎ|𝑑, 𝑒} =
Pr{𝑑, 𝑒|𝑔, ℎ} Pr {𝐼(𝑔, ℎ)}

Pr {𝐷(𝑔, 𝑑), 𝐷(ℎ, 𝑒)}
          (2) 

 

 



term found for the host predicted targets, a Fisher 
exact test was performed to test for enrichment 
compared to the total host interactome. We used an 
unadjusted P-value threshold of 0.1 to consider a 
GO term significantly enriched (Supplementary File 
3). A list of infection-related GO terms was built 
using the list of 42 known interactions determined 
before [13]. The GO terms assigned to the 14 host 
targets were used as the first infection-related GO 
terms list. A second and more complete list was built 
adding the children of every GO term on the first list, 
since these are also likely to be infection-related 
(Supplementary File 3). 
We counted the number of enriched GO terms that 
were classified as infection related as True 
Positives (TP); and those classified as non-infection 
related as False Positives (FP). As False Negatives 
(FN) and True Negatives (TN) we used the number 
of non-enriched GO terms that were infection and 
non-infection related respectively. Using this data, 
precision, recall and accuracy were calculated. 
 
5) Comparison of results with different 
parameters 
In order to compare the results found when different 
parameters are used in the pipeline defined in this 
project, we combine all the P-values from the 
previous tests using Fisher’s omnibus method.  
 
 
RESULTS AND DISCUSSION 
 
The domain annotation is poor among effector 
proteins 
The number of domains per protein is generally low, 
especially for Phytophthora proteins, more than half 
of them which no domain annotated (Figure 3).        
 

 

Figure 3: Domain annotation of P. infestans 
secretome and S. lycopersicum interactome. 

This is likely due to the high mutation rate of 
Phytophthora effectors, leading to proteins with no 
significant homology with any other protein used for 
the domain annotation [16]. The low number of 
domains unfortunately prevented us to include 
many of these proteins in further analyses. We 
therefore expanded the annotation to protein motifs, 
which were expected to be found in higher number. 
In fact, the motif annotation yielded a very large 

number of motifs per protein, even after the use of 
the exposure and frequency filters (Figure 4). 
 

 

Figure 4: Motif annotation of S. lycopersicum 
interactome with 5% of frequency filter; and  
P. infestans secretome with 10% of frequency filter. 

This use of motifs allowed us to include most of the 
proteins in our datasets, using domain-motif pairs 
as a new source of information for predicting PPIs.  
 
The Dyer and Zhang methods yield different DDI 
scores 
The first step for both the Dyer and Zhang methods 
is calculating the PPI scores for each DDI.  Figure 5 
shows the scores for each DDI using only domains 
in the Phytophthora and Solanum pathosystem.  

 

Figure 5: Dyer and Zhang DDI scores for each pair 
of domains in our protein sets.  

It is clear that predictions by the two methods are 
not correlated. The same result is found when 
including motifs (Figure S3). This lack of correlation 
is also found when we use any of the DDI scores for 
the prediction of PPIs in our protein sets. Figure S4 
shows that using motifs generally increases the 
scores of predicted PPIs, yielding scores for protein 
pairs that could not be found using only domains. It 
is likely that both methods lack accuracy and are 
therefore not able to capture and score all the actual 
DDIs underlying the PPIs. For this reason, we 



selected the best predictions based on the sum of 
both scores, trying to complement one method with 
the other in order to obtain higher reliability. 
 
Subcellular location and score filters are set to 
obtain the most reliable subset of interactions 
The software LOCALIZER allowed us to filter the 
predicted PPIs based on subcellular location. By 
filtering for co-localizing proteins, we were able to 
further narrow down the set of candidate 
interactions. The predicted PPI datasets were 
reduced in similar proportions:  37.7% and 8.5%, 
depending on the in- or exclusion of pairs 
considered in the cytoplasm. Table 1 shows the 
number of protein pairs found before and after the 
co-localization filter. 

Table 1: Number of protein pairs before and after 
the co-localization filter. 

Solanum-
Phytophthora 

Original Localizer Localizer + 
cytoplasm 

Domains 555120 47087 (8.5%) 209168 (37.7%) 

Domains + 
Motifs 

1193500 104150 (8.7%) 451502 (37.8%) 

 
Table S2 shows the classification of proteins by 
LOCALIZER in different compartments and  
Figure S5 shows the different PPIs predicted after 
the filtering. After the interactions were filtered for 
co-location, the best subset of 30 interactions was 
chosen for each set by filtering on the sum of Dyer 
and Zhang scores. As a result, 4 sets of 30 
interactions are obtained: domain annotation (D), 
domain annotation with cytoplasm compartment 
(DC), domain and motif annotation (DM) and 
domain and motif annotation with cytoplasm 
compartment (DMC). These 30 interactions and 
their predicted locations are listed in Table S3. 
Figures S1-2 show the predicted interactions plotted 
over the host PPI network. Figure 6 shows that the 
overlap between the four sets is limited.  

 

Figure 6:  Overlap of the 30 best interactions, after 
application of different parameters.  

This implies firstly that the addition of motifs yields 
PPIs that were not found just with domain 
information, and secondly, that most of the best 
PPIs predicted are localized in the cytoplasm  
(Table S3). 

Scores for known interactions are zero 
A complete and accurate predictor should be able 
to assign a higher score to known interactions than 
to most protein pairs. However, all 42 known 
interactions had a score of 0 for all of the analyses, 
likely a result of the poor domain annotation for 
these proteins (Figure 7). 

 

Figure 7: Domain annotation of P. infestans and       
S. lycopersicum proteins known to interact. 

The only domain found in some Phytophthora 
effectors was RXLR (PF16810), with no DDI or DMI 
for neither Dyer nor Zhang. This made it impossible 
for the predictor, working only with domains, to 
produce useful information. According to the motif 
annotation, it seems like the motifs found in these 
proteins do not yield any DMI that justify the 
interactions, showing that the additional motif 
annotation has not been useful in this case  
(Figure S6). 
 
Host proteins targeted by the same effector 
often participate in same processes 
The analysis on the significance of the proximity of 
targets in the host PPI network was performed over 
the 4 result sets. For each effector with several host 
targets, a P-value was calculated for the proximity 
of these host targets in the host PPI network.  
Table S4, illustrates these P-values; Table 2 gives 
the combined P-value for each result. 

Table 2: Fisher combined P-values for proximity of 
targets evaluation. 

 D DC DM DMC 

Fisher P-value 0.0131 0.0107 0.025 0.854 

 
The results show how both sets that use only 
domains (D, DC) have similar low P-values. The  
P-value for the set that used motifs (DM) is higher 
but still significant; for the last set (DCM) the targets 
are clearly not significantly close. According to 
these results, running the methods only with protein 
domains yield more reliable predictions, comparing 
to also using motifs. 
  



Gene expression is correlated for predicted 
interacting proteins and effectors that target the 
same host proteins 
For each interaction, we evaluated the correlation 
significance of gene expression associated to the 
interacting proteins and effectors that target the 
same host protein (Supplementary File 2). Table 3 
shows the Fisher combined P-value for each of the 
4 result sets. 

Table 3: Fisher combined P-values for evaluation of 
gene expression correlation. 

Fisher P-Value D DC DM DMC 

Target-Effector 4.76x10-7 8.79x10-4 0.437 0.748 

Effector-Effector 6.0x10-6 9.64x10-3 0.0603 1.29x10-7 

 
For both sets working only with domains (D, DC) 
there is a significant correlation of gene expression 
between both the interacting proteins, and between 
the effectors that target the same host protein, 
especially in the case of set D. On the other side, 
interacting proteins in sets DM and DMC are mostly 
non-correlated. However, it seems like some 
correlation is found between the effectors targeting 
the same host proteins. These results suggest that 
the sets D and DC contain more promising 
predictions than DM and DMC, and that the motif 
annotation introduces noise in the predictions. For 
the D and DC sets, the gene expression correlation 
is significant for many predicted interactions, 
marking them as promising. We have no 
satisfactory explanation for the low P-value 
obtained for effector pairs in the DMC set. 
Preliminary tests show that effectors found in this 
set are larger than the average secreted protein, 
and therefore they generally have more annotated 
domains and motifs. Also, some of these domains 
are related to glycosidases, so we speculate that 
these effectors may be apoplastic proteins involved 
in the process of cell wall degradation, which may 
explain their correlated gene expression. 
Nevertheless, further study of these effectors is 
needed to confirm this hypothesis.  

 
GO terms related to infection are found enriched 
in the predicted targets 
For each of the 4 result sets, Supplementary File 3 
shows the GO terms enriched in our host targets 
comparing to the complete set of proteins in the host 
interactome; and indicates whether these were 
found in the sets of infection related GO terms. For 
each set, the precision, recall and accuracy are also 
shown in Table 4.  

Table 4: Statistics for detection of infection related 
terms 

 
 
Relatively high accuracies contrast with low 
precision and recalls which are, at least in part, 
explained because of the incomplete list of infection 
related GO terms. This list only contains the GO 
terms of the 14 known targets of P. infestans. 
Moreover, the GO annotation of these proteins may 
not be complete and, as the list contains homologs, 
many GO terms are repeated. The actual number of 
effector targets is likely to be far higher, so many 
infection related GO terms are not included in this 
list. Furthermore, the list is still lacking processes 
related with the infection, for example GO:0009709 
(detection of brassinosteroid stimulus) is classified 
as being unrelated to infection, yet is highly 
enriched in D, DC and DM sets. Strikingly, some 
studies suggest that the brassinosteroid signalling 
pathway is related with pathogen infections [46], 
specifically with Phytophthora infection [47]. This 
example together with other GO terms incorrectly 
classified as not infection-related, like GO:0001578 
(microtubule bundle formation) and GO:0060548 
(negative regulation of cell death) [48, 49], mean 
that performance is likely underestimated. 
 
 
CONCLUSION 
Predicting Protein-Protein interactions is a difficult 
task in bioinformatics. Several methods have been 
described and implemented in an attempt to solve 
this problem and facilitate the experimental 
determination of these interactions. However, their 
performance is limited and in general they are 
based on indirect evidences. Moreover, 
experimental determination of interactions between 
proteins is slow, expensive and usually not reliable 
enough. 
 
These difficulties lead to a lack of reliable protein 
interaction data. Only model organisms such as 
Arabidopsis thaliana or Sacharomyces cerevisiae 
have a reasonable number of determined 
interactions. The situation is even worse for inter-
species PPIs, e.g. in the P. infestans –  
S. lycopersicum pathosystem only 10 interactions 
have been determined. This is insufficient to train a 
predictor, as it is obviously just a small subset of the 
total actual interactions and therefore not 
representative for the biological interaction.  
 
This lack of data is characteristic for fields where 
science is still starting to progress. Conversely, the 
study of PPIs is a promising field where many 
discoveries and new bioinformatics tools are to be 

D DC DM DMC

Precision 0.091 0.179 0.139 0

Recall 0.154 0.269 0.192 0

Accuracy 0.933 0.945 0.944 0.946

Precision 0.295 0.231 0.222 0.125

Recall 0.07 0.049 0.043 0.016

Accuracy 0.78 0.777 0.778 0.78

Infection 

related

Infection 

related         

+ children



developed in order to unravel the truth about PPIs. 
The more we know, the better we will understand 
how these interactions work and the easier it will be 
to predict them. It is a slow, but constant process 
that will eventually improve our knowledge.  
 
In this specific project, it was not possible to apply 
structural homology and sequence homology 
approaches since effector proteins of P. infestans 
are small, have a high mutation rate and therefore 
very little homology with proteins in other (model) 
organism. For this reason, we worked on a smaller 
level, not in complete proteins, but looking for 
conserved fragments, domains or even motifs. With 
this domain and motif annotation we were able to 
implement the Dyer and Zhang methods to make 
PPI predictions. The filters that have been 
described were applied to improve the results, 
reducing noise and unlikely interactions in order to 
get more reliable predictions. 

 
Although our methods were unable to predict the 
small subset of known interactions, the subsequent 
evaluations that were carried out suggest that our 
predictions are not random, and it might therefore 
be worth to study them in more detail, if possible 
perhaps even verify them in the lab. 
 
The use of motifs for complementation of the limited 
domain annotations, gave worse results than when 
using only domains. Motif annotation allowed these 
methods to work with proteins without domains, but 
at the same time introduced noise that could not be 
corrected for by the exposure and frequency filters.  
On the other hand, those PPIs that were predicted 
using only domains yielded promising results for all 
our evaluations: host targets predicted to interact 
with the same effector were close in the host PPI 
network, a result that suggests their role in similar 
processes; significantly correlated gene expression 
was found in predicted interacting proteins and also 
in effectors targeting the same host protein, which 
indicates that these pairs might be working at the 
same time and therefore potentially in the same 
processes; and finally, many of the enriched GO 
terms found in the predicted targets were likely 
infection related. Since we could not find an 
objective way to determine a complete list of 
infection related GO terms, the results of these 
evaluations are somewhat subjective. Yet we found 
indications in literature that suggest the predicted 
host targets could indeed be related to infection. 
These evaluations do not prove that the predicted 
interactions are real, but they make biological sense 
and are a priori promising. 

 
This project is the next step on the research of PPIs 
between P. infestans and its host S. lycopersicum 
and may be helpful for further studies of these 
pathosystem. 
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SUPPLEMENTARY DATA 

 

Figure S1: Best 30 predicted interactions for the S. lycopersicum – P. infestans pathosystem using only 
domains in the pipeline. Left: D set (not including cytoplasm). Right: DC set (including cytoplasm). Pathogen 
effectors are plotted as red triangles, host targets as black circles and the rest of host proteins as blue circles. 



 

Figure S2: Best 30 predicted interactions for the S. lycopersicum – P. infestans pathosystem using also motifs 
in the pipeline. Left: DM set (not including cytoplasm). Right: DMC set (including cytoplasm). Pathogen 
effectors are plotted as red triangles, host targets as black circles and the rest of host proteins as blue circles. 

  

  



 

Figure S3: Dyer and Zhang DDI scores for each pair of domains, including motifs, in our protein sets. 

 

Figure S4: Dyer and Zhang PPI scores for each pair of proteins in our protein sets.            
Left: Using only domains. Right: Including motifs. 



  

Figure S5: Dyer and Zhang PPI scores for each pair of proteins in our protein set using only domains (Figure 
S4) after being filtered using LOCALIZER. Left: Without cytoplasm compartment; Right: With cytoplasm 
compartment.  

 

 

Figure S6: Motif annotation of proteins known to interact from P. infestans with 10% of frequency filter; and 
S. lycopersicum with 10% frequency filter. 

 

 

 

  



Table S 1: Known interactions of S. lycopersicum – P. infestans proteins [15] 

Solanum Phytophthora Solanum Phytophthora 

4081.Solyc01g005160.2.1 PITG_14368 4081.Solyc05g007350.1.1 PITG_06432 

4081.Solyc01g005160.2.1 PITG_14371 4081.Solyc05g007350.1.1 PITG_16663 

4081.Solyc01g005160.2.1 PITG_14374 4081.Solyc06g005170.2.1 PITG_11350 

4081.Solyc01g005160.2.1 PITG_23016 4081.Solyc06g005170.2.1 PITG_11383 

4081.Solyc01g090480.2.1 PITG_04089 4081.Solyc06g005170.2.1 PITG_11384 

4081.Solyc01g105310.2.1 PITG_04085 4081.Solyc06g005170.2.1 PITG_21422 

4081.Solyc01g105310.2.1 PITG_04086 4081.Solyc06g005170.2.1 PITG_22935 

4081.Solyc01g105310.2.1 PITG_18683 4081.Solyc07g063420.2 PITG_03192 

4081.Solyc01g105310.2.1 PITG_20300 4081.Solyc07g063420.2 PITG_21238 

4081.Solyc01g105310.2.1 PITG_20301 4081.Solyc11g071430.1.1 PITG_14368 

4081.Solyc01g105310.2.1 PITG_20303 4081.Solyc11g071430.1.1 PITG_14371 

4081.Solyc02g064720.2 PITG_00366 4081.Solyc11g071430.1.1 PITG_14374 

4081.Solyc02g064720.2 PITG_02860 4081.Solyc11g071430.1.1 PITG_23016 

4081.Solyc02g092560.2 PITG_00366 4081.Solyc12g056520.1.1 PITG_06432 

4081.Solyc02g092560.2 PITG_02860 4081.Solyc12g056520.1.1 PITG_16663 

4081.Solyc03g080090.2.1 PITG_03192 4081.Solyc12g088670.1.1 PITG_04085 

4081.Solyc03g080090.2.1 PITG_21238 4081.Solyc12g088670.1.1 PITG_04086 

4081.Solyc04g071350.2.1 PITG_06432 4081.Solyc12g088670.1.1 PITG_18683 

4081.Solyc04g071350.2.1 PITG_16663 4081.Solyc12g088670.1.1 PITG_20300 

4081.Solyc04g072220.2.1 PITG_03192 4081.Solyc12g088670.1.1 PITG_20301 

4081.Solyc04g072220.2.1 PITG_21238 4081.Solyc12g088670.1.1 PITG_20303 

 

Table S2: Classification of proteins in different compartments by LOCALIZER. 

LOCALIZER Mitochondria Chloroplast Nucleus Cytoplasm 
(none) 

Phytophthora 155 140 484 1463 

Solanum 50 68 187 247 

 

Table S3: Best 30 interactions for each of the 4 sets of S. lycopersicum – P. infestans pathosystem. 

 
Domains (D) Domains (cytoplasm) (DC) Domains+Motifs (DM) Domains+Motifs 

(cytoplasm) (DMC) 

Solanum - Phytophthora - 
Location 

Solanum - Phytophthora - 
Location 

Solanum - Phytophthora - 
Location 

Solanum - Phytophthora - 
Location 

4081.Solyc01g088020.2.1 
- PITG_02427 - nucleus 

4081.Solyc01g067490.2.1 
- PITG_00983 - cytoplasm 

4081.Solyc01g088020.2.1 
- PITG_02427 - nucleus 

4081.Solyc02g083940.2.1 - 
PITG_04980 - cytoplasm 

4081.Solyc01g088700.2.1 
- PITG_02664 - nucleus 

4081.Solyc01g067490.2.1 
- PITG_08048 - cytoplasm 

4081.Solyc01g088700.2.1 
- PITG_02664 - nucleus 

4081.Solyc02g087300.1.1 - 
PITG_04980 - cytoplasm 

4081.Solyc02g070890.2.1 
- PITG_05338 - nucleus 

4081.Solyc01g067490.2.1 
- PITG_09585 - cytoplasm 

4081.Solyc03g007100.2.1 
- PITG_02427 - nucleus 

4081.Solyc02g087300.1.1 - 
PITG_05502 - cytoplasm 

4081.Solyc03g007100.2.1 
- PITG_02427 - nucleus 

4081.Solyc01g067490.2.1 
- PITG_17982 - cytoplasm 

4081.Solyc03g007610.2.1 
- PITG_19099 - chloroplast 

4081.Solyc02g087300.1.1 - 
PITG_09457 - cytoplasm 

4081.Solyc03g007100.2.1 
- PITG_14123 - nucleus 

4081.Solyc01g088700.2.1 
- PITG_02664 - nucleus 

4081.Solyc04g012170.2.1 
- PITG_03335 - nucleus 

4081.Solyc02g087300.1.1 - 
PITG_16950 - cytoplasm 

4081.Solyc03g083440.2.1 
- PITG_03694 - nucleus 

4081.Solyc02g070890.2.1 
- PITG_05338 - nucleus 

4081.Solyc04g012170.2.1 
- PITG_06804 - nucleus 

4081.Solyc02g087300.1.1 - 
PITG_19889 - cytoplasm 

4081.Solyc03g117120.2.1 
- PITG_02427 - nucleus 

4081.Solyc02g070910.1.1 
- PITG_11236 - cytoplasm 

4081.Solyc04g012170.2.1 
- PITG_07302 - nucleus 

4081.Solyc02g087300.1.1 - 
PITG_20529 - cytoplasm 

4081.Solyc04g009950.2.1 
- PITG_14108 - nucleus 

4081.Solyc02g070910.1.1 
- PITG_11728 - cytoplasm 

4081.Solyc04g012170.2.1 
- PITG_14108 - nucleus 

4081.Solyc02g087300.1.1 - 
PITG_23035 - cytoplasm 

4081.Solyc04g049070.2.1 
- PITG_14939 - nucleus 

4081.Solyc02g070910.1.1 
- PITG_17832 - cytoplasm 

4081.Solyc04g051510.1.1 
- PITG_03335 - nucleus 

4081.Solyc03g120900.1.1 - 
PITG_04980 - cytoplasm 



4081.Solyc04g049770.2.1 
- PITG_02664 - nucleus 

4081.Solyc03g007100.2.1 
- PITG_02427 - nucleus 

4081.Solyc04g051510.1.1 
- PITG_06804 - nucleus 

4081.Solyc07g066060.2.1 - 
PITG_06804 - nucleus 

4081.Solyc04g051510.1.1 
- PITG_05338 - nucleus 

4081.Solyc03g007670.2.1 
- PITG_00983 - cytoplasm 

4081.Solyc04g051510.1.1 
- PITG_19041 - nucleus 

4081.Solyc08g067040.2.1 - 
PITG_00983 - cytoplasm 

4081.Solyc04g051510.1.1 
- PITG_09665 - nucleus 

4081.Solyc03g007670.2.1 
- PITG_05498 - cytoplasm 

4081.Solyc05g055690.1.1 
- PITG_14108 - nucleus 

4081.Solyc08g067040.2.1 - 
PITG_02728 - cytoplasm 

4081.Solyc04g051510.1.1 
- PITG_11752 - nucleus 

4081.Solyc03g007670.2.1 
- PITG_08048 - cytoplasm 

4081.Solyc06g084210.2.1 
- PITG_14108 - nucleus 

4081.Solyc08g067040.2.1 - 
PITG_04980 - cytoplasm 

4081.Solyc04g051510.1.1 
- PITG_19041 - nucleus 

4081.Solyc03g007670.2.1 
- PITG_09585 - cytoplasm 

4081.Solyc07g040790.2.1 
- PITG_03335 - nucleus 

4081.Solyc08g067040.2.1 - 
PITG_05502 - cytoplasm 

4081.Solyc05g056130.2.1 
- PITG_16366 - nucleus 

4081.Solyc03g007670.2.1 
- PITG_17982 - cytoplasm 

4081.Solyc07g040790.2.1 
- PITG_06804 - nucleus 

4081.Solyc08g067040.2.1 - 
PITG_06741 - cytoplasm 

4081.Solyc05g056130.2.1 
- PITG_21027 - nucleus 

4081.Solyc03g115050.2.1 
- PITG_06222 - cytoplasm 

4081.Solyc07g040790.2.1 
- PITG_07302 - nucleus 

4081.Solyc08g067040.2.1 - 
PITG_08536 - cytoplasm 

4081.Solyc07g049480.2.1 
- PITG_04891 - chloroplast 

4081.Solyc03g117120.2.1 
- PITG_02427 - nucleus 

4081.Solyc07g066060.2.1 
- PITG_00353 - nucleus 

4081.Solyc08g067040.2.1 - 
PITG_09457 - cytoplasm 

4081.Solyc07g049480.2.1 
- PITG_18396 - chloroplast 

4081.Solyc04g051510.1.1 
- PITG_05338 - nucleus 

4081.Solyc07g066060.2.1 
- PITG_03335 - nucleus 

4081.Solyc08g067040.2.1 - 
PITG_10517 - cytoplasm 

4081.Solyc07g066060.2.1 
- PITG_02427 - nucleus 

4081.Solyc04g051510.1.1 
- PITG_09665 - nucleus 

4081.Solyc07g066060.2.1 
- PITG_06804 - nucleus 

4081.Solyc08g067040.2.1 - 
PITG_16950 - cytoplasm 

4081.Solyc08g077700.2.1 
- PITG_02664 - nucleus 

4081.Solyc06g036420.1.1 
- PITG_05498 - cytoplasm 

4081.Solyc07g066060.2.1 
- PITG_07302 - nucleus 

4081.Solyc08g067040.2.1 - 
PITG_17575 - cytoplasm 

4081.Solyc09g008470.2.1 
- PITG_14108 - nucleus 

4081.Solyc06g075340.2.1 
- PITG_03462 - cytoplasm 

4081.Solyc07g066060.2.1 
- PITG_12108 - nucleus 

4081.Solyc08g067040.2.1 - 
PITG_18117 - cytoplasm 

4081.Solyc10g008100.2.1 
- PITG_10846 - nucleus 

4081.Solyc07g005810.2.1 
- PITG_09792 - cytoplasm 

4081.Solyc07g066060.2.1 
- PITG_14108 - nucleus 

4081.Solyc08g067040.2.1 - 
PITG_18397 - cytoplasm 

4081.Solyc11g065690.1.1 
- PITG_00594 - nucleus 

4081.Solyc08g077700.2.1 
- PITG_02664 - nucleus 

4081.Solyc07g066060.2.1 
- PITG_17603 - nucleus 

4081.Solyc08g067040.2.1 - 
PITG_19889 - cytoplasm 

4081.Solyc11g065690.1.1 
- PITG_01349 - nucleus 

4081.Solyc11g068400.1.1 
- PITG_18776 - cytoplasm 

4081.Solyc07g066060.2.1 
- PITG_17661 - nucleus 

4081.Solyc08g067040.2.1 - 
PITG_20529 - cytoplasm 

4081.Solyc11g065690.1.1 
- PITG_02948 - nucleus 

4081.Solyc11g072290.1.1 
- PITG_05498 - cytoplasm 

4081.Solyc07g066060.2.1 
- PITG_18833 - nucleus 

4081.Solyc08g067040.2.1 - 
PITG_23035 - cytoplasm 

4081.Solyc11g065690.1.1 
- PITG_03842 - nucleus 

4081.Solyc12g009960.1.1 
- PITG_02664 - nucleus 

4081.Solyc07g066060.2.1 
- PITG_18834 - nucleus 

4081.Solyc10g047000.1.1 - 
PITG_04980 - cytoplasm 

4081.Solyc12g008360.1.1 
- PITG_16366 - nucleus 

4081.Solyc12g014320.1.1 
- PITG_00983 - cytoplasm 

4081.Solyc07g066060.2.1 
- PITG_22856 - nucleus 

4081.Solyc11g017070.1.1 - 
PITG_04980 - cytoplasm 

4081.Solyc12g008360.1.1 
- PITG_21027 - nucleus 

4081.Solyc12g014320.1.1 
- PITG_08048 - cytoplasm 

4081.Solyc08g077700.2.1 
- PITG_02664 - nucleus 

4081.Solyc12g014320.1.1 - 
PITG_00983 - cytoplasm 

4081.Solyc12g009960.1.1 
- PITG_02664 - nucleus 

4081.Solyc12g014320.1.1 
- PITG_09585 - cytoplasm 

4081.Solyc11g005110.1.1 
- PITG_06804 - nucleus 

4081.Solyc12g014320.1.1 - 
PITG_08048 - cytoplasm 

4081.Solyc12g099660.1.1 
- PITG_10846 - nucleus 

4081.Solyc12g014320.1.1 
- PITG_17982 - cytoplasm 

4081.Solyc12g009960.1.1 
- PITG_02664 - nucleus 

4081.Solyc12g035360.1.1 - 
PITG_04980 - cytoplasm 

Table S4: P-values for each effector with several targets in proximity of targets evaluation. 

(D) (DC) (DM)  (DMC) 

PITG_02427 0.186 PITG_00983 0.075 PITG_02427 1 PITG_00983 1 

PITG_02664 0.008 PITG_02427 1 PITG_02664 0.005 PITG_04980 0.006 

PITG_05338 0.031 PITG_02664 0.005 PITG_03335 0.213 PITG_05502 1 

PITG_10846 0.031 PITG_05338 0.031 PITG_06804 0.328 PITG_09457 1 

PITG_14108 0.035 PITG_05498 0.001 PITG_07302 0.122 PITG_16950 1 

PITG_16366 0.022 PITG_08048 0.07 PITG_14108 0.206 PITG_19889 1 

PITG_21027 0.034 PITG_09585 0.087 
  

PITG_20529 1 
  

PITG_17982 0.07 
  

PITG_23035 1 

 

 


