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ABSTRACT 
As part of the NWO-Vidi project “Home Turf. An integrated approach to the long-term development, 
cultural connections and heritage management of Dutch raised bogs”, this MSc thesis aims to find 
the best practice for creating a high-resolution 3D pre-peat landscape. The pre-peat landscape, the 
landscape that could be found just before the peat started developing, is reconstructed using legacy 
data and new collected data with Ground Penetrating Radar (GPR). Different geostatistical 
approaches are used and assessed on quality. A case study within the Bargerveen (South-East 
Drenthe, The Netherlands), which has only bog remnants and no reclaimed peat, is chosen to test 
ordinary-, co- and regression kriging with both transformed and untransformed legacy data, new 
collected GPR data and a combination of both data. Either the peat height above sea level or peat 
depth below surface level is used as input for the kriging, depending on the best variogram function. 
The quality assessment is done calculating the standard deviation, the mean error and the root mean 
square error. The data preparation, 
processing and assessing is all done with R. 
2D maps of the peat height above sea level 
predictions and the corresponding standard 
deviations are created. The best scenario for 
reconstructing on a 2 x 2 meter grid is in any 
case using untransformed data. Co-kriging 
untransformed GPR data with legacy data as 
covariable is assessed to be the best 
reconstruction, followed by regression and 
ordinary kriging of the GPR and legacy 
datasets combined. For regression kriging 
the AHN is used as regression data. For the 
best reconstruction a (rotating) 3D map is 
created. From an applicability analysis it is 
concluded that this method should be 
applicable to all bogs in the world, as long as 
there are bog remnants and an accurate 
digital elevation model available.   
  
 
 
  
 
 

 

 

 FIGURE I: PHOTO TAKEN IN THE BARGERVEEN, JUST BEFORE SUNSET. 
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1. INTRODUCTION 

1.1. PROBLEM DESCRIPTION 
Research has shown that raised bogs can date back 3000 to 5300 years BP in The Netherlands 
(Casparie et al., 2008; Van Geel et al., 1996) and Poland (Lamentowicz et al., 2015) and to almost 
6000 BP in Sweden (Foster et al., 1988; Svensson, 1988). Nevertheless, research on the long term 
spatial development of these raised mires deficits (Van Beek et al., 2015). Due to peat exploitation 
the mires have declined in size over the past centuries (De Zeeuw, 1978; Gerding, 1995; Leenders, 
2014; Montanarella et al., 2006). The present shape of the mires in the landscape is therefore not the 
shape of the mire centuries ago. Modelling the pre-peat landscape is a way to gain more knowledge 
on peat and landscape development (Chapman and Gearey, 2013). The purpose of this thesis was to 
find the best practice for creating a 3D pre-peat landscape. In this thesis the use of legacy data, 
collecting new data with a geophysical technique and augering is tested, to reconstruct a high 
resolution pre-peat landscape of a raised bog remnant in the Netherlands. When a digital elevation 
model (DEM) is created for the pre-peat landscape, this DEM can be used for landscape evolution 
models. A DEM is the main input to this (Temme et al., 2017). If the DEM or its resolution changes, 
the model output can be completely different (Perron and Fagherazzi, 2012; Schoorl et al., 2000). A 
case study was  selected to test and compare multiple created DEMs. The DEMs are subjected to 
multiple quality assessments. The data for this geostatistics was collected from online databases and 
in the field with ground penetrating radar (GPR) and augering. With more information about creating 
pre-peat landscapes, gaining more insight in peat development in the Holocene should become a 
step closer.  
 
In this research a pre-peat landscape is defined as the landscape that could be found just before peat 
began to grow. From Medieval times onwards peat has been cut and reclaimed (De Zeeuw, 1978; 
Deforce et al., 2007; Segal, 1966). Due to this human activity there are two different peat landscapes 
nowadays: a former, reclaimed peatland and a landscape with bog remnants. When reconstructing 
the pre-peat landscape both landscapes require a different approach. When there are still remnants 
left then the reconstructed landscape is the landscape directly underneath the bog. When all peat is 
reclaimed, the landscape that could be found before the peat began to grow could have been higher, 

FIGURE 1.1: PHOTO OF THE BARGERVEEN AREA. 
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lower or at the same level as the landscape is nowadays. That depends on e.g. how much erosion, 
deposition or equalisation there has been since all peat was reclaimed. A way to reconstruct this pre-
peat landscape can be for example with historical maps or reports that show the elevation of the 
landscape just after reclamation or that tell how much peat has been reclaimed. In this research only 
the landscape that is found underneath bog remnants will be reconstructed and thus this is also the 
kind of landscape that is referred to with pre-peat landscape.  
 
The thesis is part of the NWO (Netherlands Organization for Scientific Research/Nederlandse 
Organisatie voor Wetenschappelijk Onderzoek) - Vidi project “Home Turf. An integrated approach to 
the long-term development, cultural connections and heritage management of Dutch raised bogs.” 
(NWO, 2017; Van Beek et al., 2017). The results will contribute to future landscape evolution studies 
on spatio-temporal bog development in which a DEM of the reconstructed pre-peat landscape is an 
input.  
 

1.2. THEORETIC BACKGROUND 
This is not the first research about GPR measurements in peatlands. Different researchers have 
successfully used GPR for recording the thickness of peat layers (Candel et al., 2017; Chapman and 
Gearey, 2013; Lowry et al., 2009; Pîrnău et al., 2014; Proulx-McInnis et al., 2013; Warner et al., 1990). 
These successes show that GPR is a good geophysical technique to gather new data with depths of 
the peat base.  
 
Also reconstructing a pre-peat landscape has been done before (Chapman and Gearey, 2013), but 
renewing about this thesis research is the testing and assessing of different geostatistical 
methodologies, e.g. Chapman and Gearey (2013) have only tried one interpolation method in 
Hatfield and Thorne Moors, eastern England and created a reconstruction with a grid size of 20 
meters. This research aims to get a high-resolution DEM reconstruction, with a much smaller grid size 
and eventually the best geostatistical methodology, resulting from the research, will used to 
reconstruct this DEM.  
 

1.3. RESEARCH QUESTIONS 
A research was defined. To achieve this goal the main question was answered, making use of the sub 
questions addressing different aspects like quality assessment and applicability of the method in a 
broader context. By means of an objective a case study area was chosen as pilot study to test 
different methodologies.  

RESEARCH GOAL  

To develop a spatial reconstruction of the mineral surface underlying bog remnants. 

MAIN RESEARCH QUESTION 

Which geostatistical methodology is most suitable to reach the goal above, given the need to 
co-analyse legacy, auxiliary and newly collected data (which may have different degrees of 
uncertainty)? 
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SUB QUESTIONS 

 Do additional data significantly improve the quality of the resulting DEM compared to a 
reconstruction based on legacy data alone? 

 What is the best possible accuracy that can be reached for the reconstruction? 

 What is the best possible resolution and support that can be reached for the reconstruction? 

 To which spatial scale and to which types of bog landscapes can the method successfully be 
applied? 

OBJECTIVE  

Select a case study as tool to test different geostatistical approaches, which meets a range of 
pre-defined suitability criteria regarding data availability, size, and accessibility. 
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FIGURE 2.2: SCHEMATIC VIEW OF GROUND PENETRATING RADAR (LUNT ET AL., 2005). 

2. TECHNICAL BACKGROUND 
For the reconstruction of the pre-peat landscape, the peat height and peat depth were reconstructed 
as intermediate steps. The peat height is defined as the height of the peat base in meters above sea 
level and the peat depth is defined as the depth of the peat base in meters below surface level. To 
clarify, Figure 2.1 is a schematic drawing of the peat height and the peat depth relative to the peat 
base, surface level and sea level.  

2.1. GROUND PENETRATING RADAR 
Ground Penetrating Radar (GPR) is a 
geophysical technique for finding 
different sedimentary layers in the soil. 
As stated in Paragraph 1.2, different 
researchers have used GPR for recording 
the thickness of peat layers. Due to 
these successes and accurate 
measurements, GPR is chosen as 
geophysical technique to measure the 
depth of the peat base. GPR transmits 
energy at a certain frequency into the 
ground, and will be reflected when the 
energy propagates deeper into the soil (see also Figure 2.2). In the best conditions GPR will 
propagate up to tens of meters deep. The soil absorbs the energy and at some point the energy is too 
low to be transmitted back to the receiver (Griffin and Pippett, 2002). Different sedimentary layers 
will show a different transmittance, making calculations to find the depth possible (Lowry et al., 
2009). The results can be visualized in a radargram. An example (processed) radargram can be found 
in Figure 2.3, the yellow lines showing peat/sand transitions (Candel et al., 2017)  
 
GPR radargrams of peat covering Late Pleistocene to Early Holocene slope deposits have shown a 
variety of reflection patterns, indicating the peat base clearly (Bristow and Jol, 2003; Leopold and 
Völkel, 2003). This is another reason why GPR is chosen to assess the peat base depth for this 
research. Also, an advantage of GPR is that it is a non-destructive method (Daniels, 2005). This 
implies that the soil does not get disturbed when the layer thickness is measure, easing obtaining 
permission from the land owner because nothing gets damaged. This is important because it is very 
likely that the case study is (part of) a protected natural area.  

Sea level 

Peat base 

Surface level 

Peat depth 

Peat height 

FIGURE 2.1: SCHEMATIC DRAWING OF THE PEAT DEPTH AND PEAT HEIGHT RELATIVE 

TO THE PEAT BASE, SURFACE LEVEL AND SEA LEVEL. 
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Different materials (sediments) have different 
properties. These control the behaviour of 
the energy of the GPR. These properties are 
dielectric permittivity, electrical conductivity 
and magnetic permeability (Neal, 2004). 
Common travel velocities can be found in 
Appendix A. The GPR records traveling time 
of the (reflected) waves and distance 
travelled. With the corresponding software a 
radargram can be created and from this 
radargram the recorded travel times can be 
read. The first clear solid black line in the 
radargram indicates the peat base most 
likely. The GPR needs to be calibrated to find 
out at what velocity the electromagnetic 
waves travel through the peat. When 

knowing the depth of the peat layer at calibration points a traveling velocity can be calculating. This 
is used to transform all travel times in depths (Finlay et al., 2008). More about the calibration can be 
read in Paragraphs 3.4.1 and 3.4.2. With the travel velocity and the recorded peat base depth it can 
be verified whether the peat base is indicated correctly or that another clear solid black line should 
be the peat base.  
 

2.1.1. RESEARCH SPECIFIC GPR INFORMATION 

Underneath the peat blankets the main sediment is sand (Beets and van der Spek, 2000). GPR 
measurements in peat landscapes with underlying sand deposits have shown that at 250 MHz the 
border between both sediments is well visible (Candel et al., 2017), Figure 2.3. 
For the GPR measurements a pulseEKKO PRO 250 Hz with a SmartTow configuration is used. See also 
Figure 2.4 An external GPS is carried in the backpack. The odometer, transmitter, receiver and GPS 

FIGURE 2.3: PROCESSED RADARGRAM OF A VALLEY IN THE DRENTSE AA, 

YELLOW LINES INDICATING PEAT/SAND TRANSITIONS IN THE VALLEY-FILL 

(CANDEL ET AL., 2017). HORIZONTAL AXIS: DISTANCE FROM WEST TO EAST, 

VERTICAL AXIS: TIME AND DEPTH (CONVERTED SCALE). 

Measuring wheel 
(odometer) 

Transmitter 

Receiver 

GPS 

Digital Video Logger 

FIGURE 2.4: PHOTO OF DILLEN BRUIL WALKING WITH THE PULSEEKKO PRO 250 HZ GROUND PENETRATING RADAR WITH 

SMARTTOW. PHOTO CREDITS: ROY VAN BEEK. 
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are all connected to the Digital Video Logger: a computer to change settings, displaying a live 
radargram and storing data. 

2.2. GEOSTATISTICS 
Kriging is an optimal form of spatial linear prediction at known locations. Field observations are used 
to find out covariance structures within the field to predict the unknown locations (Cressie, 1990; 
Stein, 2012). It is also called spatial correlation modelling (Kleijnen, 2009). Three different methods 
for kriging are tested in this thesis: ordinary kriging (OK), co-kriging (CK) and regression kriging (RK). 
The differences will be explained below.  
 
The transition border between the peat base and the underlying mineral layer is based on different 
data sources, possibly having a different measurement error. Suppose that      is the prediction at 
location  . Each data source can have a different measurement error ( ). As already stated,   is 
calculated using different sources of data: legacy (DINO- and BIS-) data and new collected data by 
GPR, leading to the following set of Equations (1): 
 

                     
 

                    
            

                   
 
For the legacy data it is assumed that both databases have the same measurement error since both 
databases contain the same methods of gathering the data. This assumption implies that the set of 
Equations 1 can be combined into the set of Equations 2: 
 

                   
 

                         
 
 

2.2.1. ORDINARY KRIGING 

With ordinary kriging it is assumed that both measurement errors are equal: 
 

              
 
Due to this assumption, the differences in measurement errors of the databases cannot lead to 
bigger errors in the final reconstruction and therefore the measurement errors are not of interest 
anymore. For this reason the measurement error is neglected and: 
 

             
 
 
 

2.2.2. CO-KRIGING 

[1] 

[3] 

[2] 

[4] 
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The assumption of Equation 4 may not lead to the best reconstruction. This is why co-kriging is also 
tested. Co-kriging is used when there is a covariable besides the target variable, used to help predict 
the target variable at unknown locations (Rossiter, 2012). It is mostly used to reduce the estimation 
variance of the prediction (Myers, 1982). For co-kriging it is not assumed that the measurement 
errors are equal. Leading, in contrast to ordinary kriging, to equation 5:  
 

              
 
Consequently this reverts to Equation 2. Following up on Equation 4, the measurement error of the 
target variable is neglected to enhance the comparison between ordinary- and co-kriging, because 
the input data is equal. Hence, the other dataset does have a measurement error and is therefore 
used as covariable.  
  
Both the GPR and the legacy data are assessed as both target- and covariable. So when the GPR data 
is the target variable and the legacy data is the covariable, the following set of Equations (6) are 
used: 
 

                                                          

 
                                                    

 
If it is the other way around, with the legacy data as target variable and GPR data as covariable, the 
set of Equations 7 is used when co-kriging. 
 

                                              
 

                                                      

 
Both cases of co-kriging will be assessed, for both transformed and untransformed data. Because the 
measurement errors are assumed to be different, the combined legacy + GPR data is not used with 
co-kriging, instead co-kriging is done to compensate for the measurement error.   
 

2.2.3. REGRESSION KRIGING 

For regression kriging, just like ordinary kriging, it is assumed that that the measurement errors are 
equal (Equation 3). Furthermore, it is assumed that      is linear dependant on     , in which   is 
the surface level elevation at location  . A linear relation between      and      is therefore 
required. 
 

2.3. RECONSTRUCTION DATABASES 
The basis of the reconstruction was a database with the data points. This database needed to be 
designed according to Table 2.1 in order to let the written function to optimize databases (Appendix 
G1) work properly. The database should contain the following items: 
 
 

o Name:   Name of the data point, 
o X.Coord:  X coordinate of the data point, 

[5] 

[7] 

[6] 
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o Y.Coord:  Y coordinate of the data point, 
o SurfaceLevel: Elevation of the surface level. If the surface level is not known the database 

  should be completed with: “Unknown”, 
o Layer1 Depth: Depth of the first layer relative to the surface level, 
o Layer1 Deposit: Deposit of the first layer, e.g.: Peat/Sand/Clay, 
o Layer1 Details: If Sand is the layer to be constructed, a distinction can be made on for  

  example sand median, this can be completed in this column, e.g.:  
  Fine/Coarse. 

 
The database continues with Layer2 Depth, Deposit and Details, Layer3 Depth, Deposit and Details, 
etc. until the last layer. The database should be saved as a .csv file. 
 
TABLE 2.1: DATABASE DESIGN, REQUIRED FOR THE RECONSTRUCTION.  

 
Important is that the names of column 2, 3 and 4 were not changed. Furthermore when the depth of 
the last examined layer was recorded, something should be filled in at the next Layer Deposit in the 
database (or Layer Details in case the reconstruction is based on the Layer Details). If this is not done 
the last examined layer is not taken into account when reconstructing because exclusion whether the 
corresponding depth is the depth of the layer base or the end of the recording is not possible.  
 

2.4. TRANSFORMATIONS 
Normally distributed data lead to lower residuals when cross validating the interpolated data (Hengl 
et al., 2004). If the data substantially deviate from normality, a mathematical transformation is 
required. For elevation data a natural logarithm transformation is proven to be working, but also 
square root or normal logarithm transformations can work (Gobin et al., 2001). Some of these 
transformations (and more) are also covered by a family of transformations proposed by Box and Cox 
(Box and Cox, 1964; Osborne, 2010). Box-Cox transformations therefore are also checked to improve 
normality, using lambda parameters relevant in the Box-Cox regression: -5 to 5 (Komunjer, 2009; 
Statistics How To, 2018). 
 
The family of Box-Cox transformations is given by Equation 8, given the lambda parameter ( ), the to 
be transformed positive variable   and its transformation(Box and Cox, 1964):  
 

             {

    

 
               
 

                     

 

 
For the transformed data the calculated kriging predictions and kriging variances should be back 
transformed. With the back transforming it is ensured that there is a bias adjustment. This bias is 
generated due to fact that when back transforming not the mean of a distribution is obtained but the 
median is (Miller, 1984), see also Figure 2.5. For the inverse Box-Cox transformation Equation 8 can 
be rewritten to Equation 9: 

Name X.Coord Y.Coord SurfaceLevel 
Layer1 
Depth 

Layer1 
Deposit 

Layer1 
Details 

Layer2 
Depth 

Layer2 
Deposit 

Layer2 
Details 

... ... ... 

...      
  

 
 

   

↓      
  

 
 

...  ... 

...      
  

 
 

   

[8] 

[9] 
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  {
(                )

 
              

 
                                             

 

 
The bias correction for this Box-Cox transformation is given by Equation10: 
 

            
  

 
 
        

   
 

 

With   as the back transformed variable (Equation 9),   the used lambda parameter and    the 
variance.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.5. ACCURACY AND PRECISION 
Accuracy is the correctness of the reconstruction. So when something is accurate the average 
deviation is small. This is estimated by the Mean Error (ME). The closer the ME is to zero, the higher  
the estimation of accuracy, or lower the bias is. Precision is the degree to which repetitions result in 
the same value. If something is precise than all measurements are very close to each other, but not 
necessarily close to the real value (if it is, it is accurate as well). By calculating the Root Mean Square 
Error (RMSE), an indication of both the accuracy and precision is given. The lower the RMSE the 
higher the accuracy and precision together.  

[10] 

FIGURE 2.5: DATA TRANSFORMATION: WHEN BACK TRANSFORMING MEAN (AND THUS MEDIAN) VALUE OF 

A DATASET TO ORIGINAL VALUES, THE MEDIAN VALUE IS OBTAINED AND NOT THE DESIRED MEAN. 
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FIGURE 3.1: SCHEMATIC OVERVIEW WITH ALL STEPS TAKEN DURING THIS RESEARCH IN CHRONOLOGICAL ORDER (FOLLOWING THE ARROWS) OF THE 

(PRE)PROCESSING, THE COLLECTING AND ANALYSING THE DATA AND THE RECONSTRUCTIONS. DIFFERENT COLOURS INDICATE DIFFERENT 

ENVIRONMENTS. ALL STEPS WITHIN THE LARGE GREY BOX ARE DONE WITH R. 

3. METHODOLOGY  

3.1. OVERVIEW 
A smaller area within the Bargerveen is chosen as case study area. More information on this area and 
why this area is selected can be read in Chapter 4. A schematic overview with all steps taken during 
this research, can be found in Figure 3.1.  
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3.2. SAMPLING STRATEGY 
The sampling strategy was based on the available legacy data. 
For every location in the area the Euclidean distance to the 
nearest data point was calculated. At the points of the largest 
Euclidean distance, transects were drawn to walk along. A 
sampling route was created based on the transects. Sampling 
was done walking along the route, using the Avenza PDF Maps 
application (Avenza, 2018) on a tablet in the field.  
 
All predefined transects were sampled (unless field conditions 
made it impossible), as well as some parts in between the 
transects. While measuring the walking speed had to be kept 
low, because a higher walking speed caused that measurements 
were skipped. This balance between speed and no skips 
determined the walking speed. In the field it was decided when 
and where to do extra measurements along the route, 
depending on field conditions e.g. surface water, relief, 
vegetation and daylight time.  
 
The sampling design was created with ArcGIS. The Toolbox 
model used can be found in Appendix B1. First the roads 
(heartline of the roads, extracted from the TOP10NL file), the 
DINO points, BIS points and Bargerveen area with and without 
water were clipped on the new, smaller case study area. A raster was created from the area without 
water (so the water parts could not influence any calculations at this point). The DINO and BIS points 
were merged and the Euclidean distance was calculated from the merged legacy data. At the largest 
Euclidean distance transects for GPR measurements were drawn. All outputs were clipped on the 

case study raster and 
projected to WGS_1984 
(coordinate system for the 
PDF Maps application) and 
maps were created to 
design a sampling route.  
 
The designed sampling 
strategy can be found in 
Figure 3.3. Due road work 
in the north, the case study 
are was only accessible via 
the road east of number 1. 
Transects were sampled 
from 1 to 5, walking mainly 
over the white areas of the 
Euclidean distance. The 
sampling route deviated a 
little due to field 
conditions; the GPR must 
stay dry so crossing large 
water areas were avoided.  
 

FIGURE 3.2: PHOTO OF DILLEN BRUIL AND ROY VAN 

BEEK PREPARING GPR MEASUREMENTS. PHOTO 

CREDITS: CINDY QUIK. 

1 

2 

3 

4

 
5 

FIGURE 3.3: CASE STUDY AREA WITH THE LEGACY POINTS (RED) AND CORRESPONDING EUCLIDEAN 

DISTANCE. IN GREEN THE TRANSECTS NUMBERED IN ORDER OF SAMPLING 
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3.3. REUSE OF DATA 

3.3.1. LEGACY DATA 

DINOLOKET 

The legacy data had two origins. The first was from the DINOloket, the other was the BIS. DINO (Data 
and Information of the Dutch Subsurface/Data en 
Informatie van de Nederlandse Ondergrond) is a 
database of the Geological Survey of the 
Netherlands (GDN, Geologische Dienst 
Nederland), part of TNO (an organization for 
applied physical research in the Netherlands), 
and it is a database with millions of subsurface 
data. This data is accessed via the portal at the 
DINOloket. Before this data was included in the 
database all data was checked on DINOloket 
terms, format and duplicates (DINOloket, 2017) 
and therefore they can be assumed to be 
reliable. All data points available within the area 
of the case study were downloaded from the 
DINOloket via the portal. With the downloaded 
DINO data come files containing the point data 
(one file per data point) and a KML (Keyhole 
Markup Language - a file format used to display 
geographic data in an Earth browser such as 
Google Earth (Google Developers, 2017)) file with 
the locations of the data points. The latter was 
opened in ArcGIS (Appendix B2). The KML data 
was projected to RDNew (the coordinate 
reference system of the Netherlands) and by 
using the shapefiles of the potential case study 
areas, the data points within the areas were 
selected (Appendix B3).  
 

BIS 

The second origin of the legacy data was from the 
BIS (Bodemkundig informatie systeem/Soil 
information system), a soil data base provided by 
Wageningen Environmental Research (former 
known as Alterra) (Wageningen Environmental 
Research, 2017a). The BIS data consists of two 
data types: BPK (standard auger descriptions) and the PFB (with somewhat more extensive 
descriptions/auger method). The BIS data is only available for all case study areas in the Netherlands, 
as a geodatabase through Geodesk. This geodatabase contains two files with locations (BPK and PFB 
locations) and two files with belonging layer information). The BPK and PFB location data was 
merged, identical features were deleted, the data points were clipped on the shapefiles of the 
potential case study areas and the name of that area was added as extra column (Appendix B4). To 
select the layer information per case study area, the area names of the just created location data of 
the BPK and PFB were joined to the layer information data. As a result, the layer information table 

FIGURE 3.4: PHOTO OF THE TREE NEXT TO CP26A. 
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had four new joined fields. A new field was created in which the area names of the four joined fields 
were put together and the four joined fields were deleted and the table is exported to Excel 
(Appendix B5). Peat depths were assessed per potential area in Excel.  
 
 

3.3.2. AUXILIARY DATA 

AHN 

The Actual Height file of the Netherlands (AHN, Actueel Hoogtebestand Nederland) is a digital 
elevation map. It contains detailed and precise height data with on average eight elevation measures 
per square meter, collected by laser altimetry (AHN, 2018). The AHN will be used to convert the peat 
depth into peat height above sea level in order to get a reconstruction with heights relative to sea 
level. To work with the AHN in R, .TIF tiles are downloaded from the ArcGIS website (ArcGIS, 2017). 
The tiles needed to cover the complete case study area are downloaded. For the reconstruction the 
0,5 m resolution AHN2 filled maps are used. The AHN of the Bargerveen can be found in Figure 4.5. 
 
Using R, the AHN .TIF tiles were merged. A spatial grid data frame was created with the ASCII location 
data and AHN values. The ASCII location data is created with ArcGIS. A polygon with the area that 
was desired as case study area was clipped on the Bargerveen shapefile. From this new file 
unnecessary fields were deleted and a new field was created for calculating the new area. Thereafter 
the polygon was transformed to a raster with a grid cell size of two meters and an ASCII file was 
created from this, see also Appendix B6. The ASCII file contains the area (with correct boundaries) of 
the reconstructions, over which the reconstruction points were predicted. 
 
 

3.4. DATA COLLECTION AND PROCESSING 

3.4.1. GPR DATA COLLECTION 

FIELDWORK 

With the permission of the ranger of Staatsbosbeheer, the Bargerveen was entered. The GPR was 
installed (see also Paragraph 2.1) and the route was walked according to the sampling strategy 
(Paragraph 3.2).  

PROCESSING 

Once the GPR data was processed, the transition layer between the peat base and the underlying 
mineral layer was interpreted. With Adobe Illustrator a line was drawn on the processed radargrams, 
at the transition, which is the first most solid black line. Hereafter every 10 meters the depth of the 
transition was determined.  
 
Next the calibration points were determined. At each transect two calibration points were chosen to 
get at least one calibration point per transect sampled. The calibration points were chosen with use 
of the drawn transition border. At a location where the transition border is horizontal, meaning no 
increase or decrease in depth, the calibration point was placed. This way it was secured that if due to 
GPS accuracy the calibration point was sampled along the transect but next to the location where it 
was placed, the recorded depth was still the depth of the placed calibration point (Figure 3.5).  
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The transects were loaded into ArcGIS. With the GPR 
results come .gps files with coordinates of all traces for 
each walked transect. With a GPXconverter 
(GPSVisualizer, 2018) the .gps files were converted to 
.gpx files and imported in ArcGIS. The imported points 
were projected to RDNew and lines were created from 
the points, see also Appendix B7.  
 
In order to display the calibration points in ArcGIS, a 
new point feature class was created. At the distance of 
the calibration points from the start of the transect, a 
point is added to this class, until all calibration points 
were visualized as points in this class.  
 
For the coordinates of the 10 meter intervals used for 
the transition border depth determination, also new 
feature point classes were created. Now, for every 
transect every 10 meter a point is added to the class. 
All feature classes are merged to calculate the X and Y 
coordinates at once. All points, including coordinate 
data, were exported to Microsoft Excel. A Toolbox 
model, including a more detailed, technical description 
can be found in Appendix B8. 
 
All calibration points are displayed with ArcGIS and 
new maps (in WGS_1984) are created for sampling the 
calibration points during the second fieldwork.  
 

3.4.2. GPR CALIBRATION 

FIELDWORK 

Again with permission of the ranger of Staatsbosbeheer the Bargerveen was entered. The calibration 
points were located with the Avenza PDF Map application on the tablet. At each calibration point the 
depth of the transition border between the peat and the underlying mineral layer was determined 
using an Edelmanboor or a gouge, depending on the wetness and compactness of the soil. Gouging is 
a much less time consuming method than augering and therefore gouging was preferred. Elongation 
sticks were brought in case the transition border is deeper than the length of the Edelmanboor or 
gouge.  

ΔD 

Transition border 
Placed calibration point 
Real calibration point 

D 
D 

D 
D + ΔD 
Δd 

 
 

FIGURE 3.5: ILLUSTRATION OF THE EFFECT ON PEATDEPTH (D) WITH A HORIZONTAL TRANSITION BORDER VERSUS AN 

INCREASING/DECREASING TRANSITION BORDER WHEN, DUE TO GPS ACCURACY, THE REAL CALIBRATION POINT IS SAMPLED 

NEXT TO THE PLACED CALIBRATION POINT. 

FIGURE 3.6: PHOTO TAKEN DURING THE CALIBRATION 

FIELDWORK, NEAR CP27A. 
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PROCESSING 

With the calibrated point data it was possible to calculate the travel velocity per calibration point. 
The highest and lowest velocities were neglected and the remaining velocities were averaged. This 
average was used to transform the travel times measured with the GPR into depths. For the 
calibration points the calculated depth was used instead of the measured depth in order to keep the 
error per location the same, instead of having one real but outlying depth in a line of more or less 
equal estimated depths. When the difference between the calculated and measured depth was really 
large it was checked whether the transition border was drawn correctly, and if necessary it was 
drawn again.  
 

3.4.3. LOSS ON IGNITION  

At least two locations were needed for a loss on ignition experiment. If samples for this test for one 
auger hole turned out to be corrupt than there is still the second auger hole that can be used, 
otherwise the samples were averaged. The samples were taken during the GPR calibration fieldwork. 
Per location two samples were taken. One sample was taken just above the transition border and 
one sample just below this. With these samples the organic matter content was investigated. This 
was done to proof that the determined transition border is really the transition border between the 
peat and the underlying mineral layer, because the organic matter content in peat is much higher 
than the organic matter content in the expected cover sand deposit below (more about these layers 
can be read in Paragraph 4.4). The loss on ignition is an indication of the organic matter content, 
although iron oxide also influences the loss on ignition (Lechler and Desilets, 1987). In cover sand just 
outside the Bargerveen area traces of iron oxide are found (Van Hoof, 2014), so this was taken into 
account.  
 
The loss on ignition (LOI) experiment was done the following way: the empty crucibles were weighed 
and the soil samples homogenized. A part of the sample was put in the crucibles and the crucibles 
with the samples were dried 48 hours in the oven at 105°C and weighed again. Afterwards they were 
put in the oven for ignition, this time 4 hours at 550°C and weighed again. The loss on ignition was 
calculated with Equation 11 (Heiri et al., 2001). 
 

     
           

     
     

 
With DW105 the dry soil weight (weight of the crucible and dry soil weight minus the empty crucible 
weight) and DW550 the ignited soil weight (weight of the crucible and ignited soil weight minus the 
empty crucible weight). The LOI is used to support which organic matter content is regarded as peat 
and which organic matter content is not, to give a detailed characterisation of the peat-sand 
interface. 
 

3.4.4. DATA ANALYSIS 

DATABASE PREPARATION 

The DINO database was created going through all single files downloaded from the DINOLoket 
manually and filling out the database template (Table 2.1). The BIS database was created using a 
pivot table in Excel. For the layer information, the lower limit of all peat layers were displayed per ID. 
This table was copied next to the BIS location information, containing the coordinates and was used 

[11] 
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to complete the database template (Table 2.1) for both the BPK and PFB data. Because only peat 
layers were displayed, there were layers that do not have a Layer Deposit but do have a lower limit 
(depth of another mineral base). For these layers the deposit as completed as “unknown” as this 
layer was important to note down but the mineral deposit itself was not importance for this thesis.  
 
Unless mentioned otherwise every processing described in this chapter was done with R from here 
onward. All steps taken are presented in R Markdown (R Studio, 2016), to enhance readability and 
reproducibility. The created databases were transformed to three new databases: GPR data, legacy 
data, and combined GPR + legacy data. These databases were optimized to correctly work with them. 
In order to have all same input values for the surface level, all known surface level elevations were 
replaced by the elevations extracted from the AHN. Data frames were created from these new 
databases and the depths of the transition border between the peat base and the underlying mineral 
layer was selected. It was made sure that the deepest peat layer was selected as reference peat layer 
in case there were more layers with peat, unless it is plausible that this peat layer was deposited 
before the to be reconstructed pre-peat landscape. The selected column contained the depth of the 
peat layer in the current landscape. It was desired that the final reconstruction indicates the height in 
meters above sea level. For this a column was created with peat height above sea level; the depth of 
the peat layer was subtracted from the height of the surface level, which was extracted from the 
AHN. One way to reconstruct the peat height above sea level was to krige with the peat height data. 
Another way was to use the peat depth for kriging, and subtracting this reconstructed peat depth 
from the surface level elevation.  

 
 
Because every ten meters a depth was recorded with the GPR data, there was a lot of local 
coherence of the depths on the different lines. This local influence had a large effect on the 
distribution of peat depths and consequently on the transformation of the data in order to get it less 
skewed. Besides, the fitted variogram functions were also influenced by this coherence. To account 
for this, a subset of 5 random records per line was taken. The subsets replaced the GPR data and the 
GPR data points in the combined data and the subsets were used for transforming data and 
subsequently for variogram fitting. More about transformations and variogram fitting can be read in 
the following paragraphs and in Paragraph 2.4.  

FIGURE 3.7: PHOTO OF DILLEN BRUIL. LOCATION DETERMINATION FOR GPR MEASURMENTS IN THE BARGERVEEN. PHOTO CREDITS: 

CINDY QUIK. 
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DISTRIBUTION  

Both the peat depth and peat height were checked on distribution. If transformation of the data 
leaded to a more normal distribution (Paragraph 2.4), the data was transformed. The transformation 
that leaded to the distribution with the lowest absolute skewness was used.  
 

VARIOGRAM FUNCTIONS 

For both the peat depths and the peat heights a variogram were made, using both transformed and 
untransformed data. A variogram is a plot with variances of all observations at a given spatial 
separation (lag) (Bachmaier and Backes, 2011). Through these variances a model was fitted. This was 
done with the fit.variogram() function of the gstat package (Pebesma, 2017b). It was 
researched which variogram type fitted best, e.g. Linear, Exponential, Gaussian, or Spherical. Kriging 
predictions were based on a variogram function, the variogram with the lowest weighted sum of 
squared errors gives the best prediction values and thus the best variogram type was determined. 
Whether the peat depth or peat height was used for kriging depended on the variogram function. 
The variogram function with the lowest nugget and sill was used for kriging, and so whether the peat 
depth or peat height data was used as observation data. 
 

RECONSTRUCTIONS 

Ordinary kriging was done with the gstat package krige()function (Pebesma, 2017c). In order to 
do so, a gstat object was created for the peat depth and peat height of the transformed and 
untransformed subsetted GPR data, the combined subsetted GPR and legacy data (all data) and the 
legacy data. The best fitted variogram functions were used for the kriging. For the kriging the 
complete datasets are used, so not the subsetted data. For the kriging, not the subsetted data, but 
the complete dataset was used. Transforming the complete dataset required using the same 
transformation as applied on the subsetted data. Predictions were done for the locations in the ASCII 
file of the case study area. 
 
For transforming co-krige data, both the legacy and the GPR subset should have the same 
transformation. Therefore it was checked what on average gave the best transformation when 
transforming legacy data with the most optimal transformation of the GPR subset and vice versa. 
These transformations were used for determining the best, optimal, variogram model, which should 
also be the same for both datasets. The combined best fitted variogram function with the optimal 
variogram model was used for co-kriging and meanwhile it was determined whether peat height or 
peat depth was more suitable. This fitted variogram function was used for creating a gstat object. 
First for the (subsetted) target variable and secondly for the (subsetted) covariable, using the first 
gstat object as input for the second gstat object. A third gstat object was created for the combined 
target- and covariable, using the second gstat object as input for the third gstat object. Contradicting 
the first two gstat objects, the variogram function for the latter was estimated manually, with the 
same model as the former variogram functions. This function must lead to a linear model of 
coregionalization when kriging with the complete dataset, which means that all predicted values 
have a representation (Goulard and Voltz, 1992; Lark and Papritz, 2003; Myers, 1982). Three new 
gstat objects with the complete dataset instead of the subsetted datasets were created, using 
respectively the automatically fitted variogram functions of the target variable and the covariable 
and the manual fitted variogram function just described. This gstat object was used to create a linear 
model of coregionalization with the fit.lmc() function (Pebesma, 2017a). The kriging was done 

with the predict() function (Pebesma, 2017e) over the ASCII file of the case study area.  
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For regression kriging first it was tested whether there is a linear relation between the peat depth or 
height and the surface level elevation. If there was, the variogram function was based on the 
residuals of the linear model of the relation. The same steps as for the ordinary kriging were 
followed. Only now the kriging was done over the spatial grid data frame of the cases study ASCII file 
with AHN values. 
 
The kriging gave two outputs, a kriging prediction and a kriging variance. All transformed kriging 
predictions and variances were back transformed to ‘normal’ values, see also Paragraph 2.4. 
 
The predicted peat depths were subtracted from the surface level elevation. The predicted peat 
heights were multiplied with the case study ASCII file, to have the same area boundaries for all 
reconstructions. From these new  created peat height prediction values new spatial grid data frames 
were created with the ASCII case study coordinates. Maps were plotted with the spplot() 
function of the sp package (Pebesma, 2017f). The plot is a map with the heights of the pre-peat 
landscape. Different colours were used to indicate the different heights of the pre-peat landscape 
predictions above sea level, in m. For all maps the same colours were used for the different heights, 
easing comparison.  
 
The final reconstructions that were assessed can be distinguished by their name. All names have a 

fixed design of different abbreviations to characterize them. The used design is: Prepeat. ... (or 

Peatdepth./Peatheight. before correcting the reconstructions for peat height above sea 
level), With on the dots the abbreviations that were used, separated by an underscore. The used 
abbreviations are: 
 

 OK: Ordinary kriging 

 CK: Co-kriging 

 RK: Regression kriging 

 A:  All data, GPR and Legacy data combined, used 

 G:  Only GPR data used 

 L:  Only legacy data used 

 GC: GPR data as covariable 

 LC: Legacy data as covariable 

 T:  Transformed data 

 UT: Universal Transformed data 
 

ASSESSMENT 
KRIGING STANDARD DEVIATION 

Kriging standard deviation maps were used to compare kriged maps 
mutually. A lower standard deviation gives a more reliable map and 
thus the map with the lowest standard deviation is the best 
reconstruction based on standard deviation. The kriging standard 
deviation is the square root of the kriging variance, an output of the 
kriging. The standard deviation was plotted the same way as the 
prediction was plotted (see also the previous paragraph). The 
legend was scaled such way that all kriging standard deviation maps 
have the same colour scale indicating the standard deviation, easing 
comparison between the maps. For calculating the standard 
deviation, the back transformed data was used. Expected is a mean 
standard deviation of 1 since normality is reached again (mean = 0, 
standard deviation = 1). Besides the maps, the minimum, mean and FIGURE 3.8: PHOTO OF AN ELONGATED GOUGE 

AT CP23A. 
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maximum standard deviations of all reconstructions were calculated and used to assess the 
reconstructions.  
 
ACCURACY 

The Mean Error (ME) and Root Mean Square Error (RMSE) were calculated using a leave-one-out 
cross validation. This is a cross validation in which the number of cross validated points equals the 
size of the dataset (Refaeilzadeh et al., 2009). So for all observed values a new value was predicted 
by leaving one observation out when kriging and this way of kriging was repeated until all 
observations have been left out once. The leave-one-out cross validation is strongly influenced by the 
local coherence on the GPR lines. So for the predictions that have GPR observations, all clustered 
data (walked lines) were taken out  and cross validated with the remaining data. To do so a hold-out 
cross validation is done for every cluster (Refaeilzadeh et al., 2009) and both the leave-one-out and 
hold-out cross validated data was combined. 
 
The cross validation is done using the functions krige.cv()(ordinary and regression kriged 

predictions) and gstat.cv() (co-kriged predictions) from the gstat package (Pebesma, 2017d). 
From the residuals, the difference between the observed (obs) and predicted (pred) values, the Mean 
Error (Equation 12) and Root Mean Square Error (Equation 13) were calculated, with n the number of 
data points used for the kriging. 
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As with the standard deviation calculations, for the RMSE and ME untransformed data was used as 
well. The residuals that are calculated by the cross validation are of a different range than the 
prediction and observation values, because observation and prediction are supposed (when correctly 
kriged) to be more or less the same, leaving a very low residual. So the residuals had to be 
recalculated with back transformed observation data and back transformed prediction data in order 
to correctly calculate the RMSE and ME.  
 
RESOLUTION/SUPPORT 

The resolution is the number of grid cells that are used for the reconstruction and consequently the 
area that one grid cell represents. The support is number of observations that have been used and 
consequently this is the area that one observation represents. The resolution and support were 
derived from the kriging statistics.  
 

BEST METHOD 

The best method was determined based on the standard deviation and accuracy/precision. The 
reconstructions were ordered from low to high error for both the ME and RMSE. The standard 
deviation was ordered from low to high mean standard deviation. For each criterion points were 
divided, 1 point for the best reconstruction, counting on to 15 points for the worst reconstruction. 
Since the RMSE indicates both accuracy and precision and ME only accuracy, the ME points were 
halved, making it more important to be accurate and precise than only accurate. For each criterion 
the points were added up. The reconstruction with the least total points was assessed as best 

[12] 

[13] 
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reconstruction. In case of equal or very close scores, different rankings were assigned based on 
mutual differences between the assessed parts. Whenever the assessment results were evidentially 
different than the assessment tables indicate, reconstructions were declassified.   For the best 
method a 3D plot and a 3D rotating plot were made.  
 
3D  PLOT 

A 3D surface plot was made with the lattice package and the wireframe() function (Sarkar, 2018). 
From this 3D plot also a rotating .GIF file was made, to get a 360° view of the pre-peat landscape. 
This was done with a programme called ImageMagick and the saveGIF() function from the 
animation package (Xie, 2018; Xie and Yu, 2017). The rotating image enables the 3D view from 
different angles. 
 

3.5. APPLICABILITY 
To answer the last sub question the methodology was re-examined and assessed on applicability in 
other regions. It was researched whether the tested methodology can also be applied on other bogs 
in the Netherlands, Europe or the World and thereby, whether the obtained results would be derived 
for these other bogs as well.  
 
Furthermore it was investigated whether the methodology is also applicable on a smaller and larger 
spatial scale. What happens if the area increases or decreases and the amount of data points remain 
the same? Which means that the sample density changes. This was reasoned based on the 
reconstruction assessment. Moreover, the variance will be influenced by a different spatial scale. 
This makes the reconstruction very case specific and its influence was therefore also discussed.  
 
The above asked questions were a way to find information and argue about the applicability of the 
tested methods in a broader context.  
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4. CASE STUDY SELECTION 
Picking a case study is a crucial step in the research. The case study will be used as tool to test the 
different methods. All collected data and all calculations are done for the case study and the 
conclusions will be drawn on basis of this. Also for the case study the pre-peat landscape will be 
reconstructed which can directly be an input for the landscape evolution model designed within the 
NWO-Vidi project Home Turf. 

4.1. SELECTION CRITERIA 
One case study area was chosen based on certain criteria, to apply the methodology on. These 
criteria meet standards that were required and/or desired to test the methodology for collecting new 
data and reconstructing the DEMs of the pre-peat landscape. The following criteria have been used: 
 

o The topsoil of the area should be peat, either peat remnants or natural peat that has not 
been reworked.  

o Legacy data points with registered peat depth should be available.  
o The thickness of the peat layer may not exceed 4 meters, that is the maximum depth the 250 

MHz GPR can detect (Candel et al., 2017). Legacy data can provide information about the 
peat layer thickness. 

o The case study should be one of the areas 
presented in Figure 4.1: Bourtangerveen, 
Bollenveen, Drents Plateau/Drentse Aa, 
Vriezenveen, Zwillbrocker Venn, De Peel or 
Reuselse Moeren, these are seven areas 
selected for the Home Turf project.  

o The case study may also be a smaller area 
within a larger peat landscape.  

o It should be possible to obtain permission 
from the owner to go into the area and to 
auger/gouge and to do GPR measurements.  

 
The following steps need to be taken for selecting a 
proper case study and have all, unless mentioned 
differently, been done using ArcMap. 
 

4.2. ASSESSED STUDY AREAS 
For the different potential areas some crucial 
information was needed to check on the criteria. First 
of all it was necessary to know who owns the area 
and whether there are still bogs (or remnants) present or whether there is also reclaimed peat in the 
area. This information is found on webpages about the specific areas. Since in the Netherlands 
almost all peat has been reclaimed (Verhoeven, 2013), there are not many contiguous areas with no 
reclaimed peat. Therefore, for the larger peatlands, smaller areas are used as case study. 
 

FIGURE 4.1: SEVEN PEAT AREAS THAT ARE PART OF 

THE HOME TURF PROJECT: 1A: BOURTANGERVEEN, 

1B: BOLLENVEEN, 1C: DRENTS PLATEAU/DRENTSE 

AA, 2A: VRIEZENVEEN, 2B: ZWILLBROCKER VENN, 

3A: DE PEEL AND 3B: REUSELSE MOEREN. 
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The second step was to create shapefiles of the different potential study areas. The shapefiles were 
created by selecting the correct areas from the Natura2000 shapefile (European Environment 
Agency, 2017). From these resulting shapefiles the surface water parts were subtracted. These were 
extracted from the TOP10NL provided by GeoDesk. GeoDesk is a facility within Wageningen 
University and Research Centre. They make geodata available and refer to documents of others 
(Wageningen Environmental Research, 2017b) The amount of surface water in a bog is a moment 
recording; it will vary over time during the year. The used water area is from November 2016. Both 
the Natura2000 shapefiles and the water parts contain size information of which the total area can 
be calculated for both the shapefiles with and without water parts (Appendix B9).  
 
Only for the Bollenveen and the Reuselse Moeren there was no shapefile available because these 
areas are not part of the Natura2000 (LNV, 2018), so this area was assessed using Google Maps (see 
also Appendix CB9). The total area, with and without surface water, of all potential case study areas 
are found in the attribute tables. 
 

4.3. AREA SELECTION 
Based on the criteria described in paragraph 4.1, Table 4.1 is completed. Due to time limits (DINO 
data needed to be assessed all one by one, while BIS data could be assessed all in one)  only BIS data 
was used for selecting the case study area to find the maximum depth of the peat layer in the 
potential case study areas, assuming that the BIS data alone represents the area enough to give an 
estimation of the maximum peat depth. A decision was made which potential case study area was 
the most suitable area. Permission was requested to the owner to do GPR measurements in the case 
study area. After the permission was obtained, that area was selected as case study area, when no 
permission could be obtained another area should was selected where it was possible to auger and 
to do GPR measurements. All potential case study areas, based on the Natura2000, and the available 
legacy data points are presented in Figure 4.2. 
 

The Bollenveen is a too small area, mainly consisting of surface water (see Figure 10.16, B9). This 
makes the area not suitable as case study area because with only 80m2 of surface area, collecting 
GPR data every 10m of a transect, would lead to minimal data points. When testing different 
datasets, more data is desirable. The Reuselse Moeren is also not very large (see Figure 10.17, B9) 
but a major disadvantage here is that there are only a few remnants left, leaving a very small case 
study. Therefore these potential case study areas were not further researched (indicated with NR in 
Table 4.1). The Zwillbrocker Venn is just over the Dutch border in Germany, the used legacy data is 
only available for The Netherlands, so this area was not suitable as well due to absence of DINO and 
BIS data. 
 
Both Bourtangerveen and Vriezenveen are large areas that are not only remnants, but for these 
area’s there are bogs that only have remnants: The Bargerveen and the Engbertdijksvenen 
respectively (Staatsbosbeheer, 2017f, h). These bogs were further researched instead of researching 
the whole area. The same counted for De Peel, of which the Groote Peel, Deurnse Peel and 
Mariapeel were combined, but contrasting these areas do have reclaimed peat. Based on the 
presence of reclaimed peat the Drents Plauteau/Drentse Aa region and De Peel were not considered 
suitable as potential case study.   
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FIGURE 4.2: POTENTIAL CASE STUDY AREAS BASED ON THE NATURA2000 AND THE AVAILABLE LEGACY DATA POINTS. A: BARGERVEEN, B: DE PEEL, C: 

C: DRENTSE AA, D: ENGBERTSDIJKSVENEN AND E: ZWILLBROCKER VENN. RIGHT BOTTOM: THE NETHERLANDS WITH INDICATION OF THE POTENTIAL 

CASE STUDY AREAS. 
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TABLE 4.1: COMPLETED TABLE WITH SELECTION CRITERIA FOR PICKING A CASE STUDY (NR: NOT RESEARCHED) 

Potential case 
study area 

Owner 
Only peat 

(remnants), no 
reclaimed peat 

 
Area (km2)  

 
_____________________ 

water  
 incl. | excl.  

Available 
legacy data 

points 
________________________ 

 
Total  |   km-1    

Maximum 
thickness 

(cm)  
         _   ______________ 

water  
incl. |excl. 

Fieldwork 
permission 
available 

Bourtangerveen 
Bargerveen 

 

Staatsbosbeheer 
Staatsbosbeheer 

(Staatsbosbeheer, 2017i) 

No 
Yes 

(Staatsbosbeheer, 2017h) 
20.82 15.31 382 18.3  280 210 Yes 

Bollenveen Staatsbosbeheer 
(Pingoruines, 2017) 

No 
(Pingoruines, 2017) 0.011  0.008 NR NR NR 

Drents Plateau/ 
Drentse Aa 

Mostly 
Staatsbosbeheer 
(Staatsbosbeheer, 2017d) 

No 
(Staatsbosbeheer, 2017c) 39.02 38.39 767 19.7  250 250 NR 

Vriezenveen 
Engbertdijks-
venen 

Staatsbosbeheer 
Staatsbosbeheer 

 

(Staatsbosbeheer, 2017g) 

No 
Yes 
 

(Staatsbosbeheer, 2017f) 

9.32 7.81 83 8.9  300 300 No 

Zwillbrocker 
Venn 

Zwillbrock 
Biologische Station  

(Zwillbrock Biologische Station, 
2017) 

 
No  

 
(LANUV NRW, 2013) 

1.83 1.81 0 NR NR 

De Peel 
Groote Peel,    
Deurnse Peel 
and Mariapeel 

Staatsbosbeheer 
Staatsbosbeheer 

 
 

(Staatsbosbeheer, 2017b) 

No 
No 
 
 

(Staatsbosbeheer, 2017a) 

40.83 37.01 734 17.9 210 205 NR 

Reuselse Moeren Staatsbosbeheer 
(Staatsbosbeheer, 2017e) 

No 
(de Brabantse Kempen, 2017) 1.81 1.81 NR NR NR 

 
 
The two areas of interest which were left were the Bargerveen and the Engbertdijksvenen. The latter 
was prefered due to the fact that it is better coverable within the project limits (time, budget) due to 
the smaller area, but no permission was obtained by the ranger of Staatsbosbeheer. Therefore the 
Bargerveen was selected as case study area, but the Bargerveen was too large to completely cover 
with GPR. Therefore a smaller case study area within this pilot area was chosen based on available 
legacy data points and accessibility. Also it was taken into account that there was not too much 
surface water in the area, since that obstructs GPR measurements and surface water is a highly 
varying variable in bogs, depending on time of the year how much there is.  The case study area was 
located in the west part of the Bargerveen, surrounded by roads around the area and a path in the 
middle. A map of the Bargerveen can be found in Figure 4.3.  
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4.4. AREA INTRODUCTION: BARGERVEEN 
The Bargerveen is a nature reserve in the South East of the province Drenthe, The Netherlands. It is 
about the last remainder of the Bourtangerveen where peat is still growing due to water- and 
ecological management (Casparie et al., 2008). 
 
During the second last glacial period, the Saale, the stream valley of the Hunze was eroded (50-60m 
deep). The Hondsrug was formed. This is a boulder clay ridge next to the Hunze valley where boulder 
clay is absent. During the same glacial period and the 
interglacial period, the Eemien, the valley has been 
filled with cover sands, fluviatile deposits and peat. 
During the last glacial period, the Weichselian, 
another layer of mostly cover sand is deposited. After 
the Weichselian the Hunze valley (still 10-15 meters 
deep) remained. The Hunze river emerged here. The 
first peat growth dates back to 5300 BC, where bogs 
developed in the banks of the Hunze. After a drier 
period, around 4950 BC the Bargerveen became 
wetter again. Due to these changes peat started 
developing again. Ombrogenic  sphagnum peat FIGURE 4.4: PHOTO OF SPHAGNUM IN THE BARGERVEEN. PHOTO 

CREDITS: CINDY QUIK. 

FIGURE 4.3: BARGERVEEN WITH CASE STUDY AREA INDICATED, LEFT TOP: INSET OF THE NORTHERN NETHERLANDS WITH BARGERVEEN LOCATION 

INDICATION. 
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moors developed. Different layers of different types of moors developed since then (Casparie et al., 
2008). Old maps (dating from 1599) have indicated that the Southern part of the Bourtangerveen, 
including the Bargerveen, was unaffected by humans. It was abandoned and inaccessible due to the 
swampiness and large water richness (Casparie et al., 2008).  
 
Still in the last glacial period cover sand ridges from the Hondsrug have ended up in the Hunze valley. 
At some of these locations cover sand ridges have more or less cut off the Hunze stream. In the 
Bargerveen one of these ridges can be found (Casparie et al., 2008). This is visible in the digital 
elevation model (AHN) of the Bargerveen, Figure 4.5. The white areas in the elevation model is 
unknown data, this can be either water or parts of Germany (which is not covered by the AHN). This 
digital elevation model was one of the inputs for the reconstruction (see also Paragraph 2.3). 
 
 

 
 
 
 

 

  

FIGURE 4.5: DIGITAL ELEVATION MAP (AHN) OF THE BARGERVEEN CASE STUDY AREA AND FULL BARGERVEEN AREA (INSET). 
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5. RESULTS  

5.1. GPR MEASUREMENTS 

5.1.1. RADARGRAMS 

In total there were 12 transects sampled, named from Line21 to Line32. Figure 5.2 is a map with the 
recorded transects visualized. All radargrams of all walked lines can be found in Appendix D. On the 
horizontal axis of the radargrams, the walked distance is displayed and on the vertical axis the travel 
time. In Figure 5.1 an example of one of the radargrams can be found. The radargram shows the first 
74 meters of Line27, with the interval points every 10 meters in yellow and at 70 meter the visited 
calibration point (blue). The transition border is drawn around 10-20 ns. At this travel time the black 
line is most solid and sharp.   
 

 

   

FIGURE 5.1: FIRST 74 METER OF THE RADARGRAM OF LINE27. GREEN: TRANSITION BORDER, BLUE: VISITED CALIBRATION POINT AND YELLOW: 10M 

INTERVAL POINTS. 



BEST PRACTICES FOR CREATING HIGH-RESOLUTION 3D PRE-PEAT LANDSCAPES 

 MSC THESIS     DI LLEN BRUIL   28 

5.1.2. GPR CALIBRATION  

All walked lines have two calibration points (CP’s), named A and B. These are found in Figure 5.2.  
 

 
During the second field work the locations of the records in the field were marked with the Avenza PDF Maps 

application. These locations did not correspond exactly with the planned calibration point locations. The 

differences can be seen in Figure 5.3. To correct for this, a new adjusted location was located at the closest 

position to the real calibration point location on the walked transects (so in a perpendicular line from the 

transect to the calibration point). The GPR travel time at the distance of this adjusted location was used as 

calibration time for calculating the GPR velocity. The exact as possible positioning is important due to the very 

high resolution DEM used and the high local spatial variability in surface elevation in the Bargerveen. To 

illustrate this: in the photo in Figure 6.4 there is quit some elevation difference visible close to CP24B.  

FIGURE 5.2: TRANSECTS, WALKED LINES AND CALIBRATION POINTS VISUALIZED IN THE CASE STUDY AREA. 
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From sampling the calibration points it turned out that the mineral layer underneath the peat is 
indeed cover sand. In Table 5.1 the calibration points that were not sampled can be found, in Table 
5.2 the recorded depths can be found of the sampled calibration points. At all calibration points a 
gouge was used, except at CP26A, here an Edelmanboor was required.  
 

TABLE 5.1: NOT VISITED CALIBRATION POINTS AND THE REASON WHY. 

Name Reason Name Reason 

CP21A Too wet CP28B Not visited, location CP28A satisfies 

CP21B Too wet CP29A Too wet 

CP22A Too wet CP30B Too wet  

CP22B Too wet CP31B Not visited 

CP24A Too wet CP32A Too wet 

CP25B Not visited, location CP25A satisfies CP32B Too wet 

CP27B Not visited, location CP26A satisfies  

 
 
 
 

FIGURE 5.3: DIFFERENCES BETWEEN REAL (YELLOW) AND PLANNED CALIBRATION POINTS (BLACK), WITH INSETS OF ZOOMED 

SITUATIONS, LEFT TOP: CP29B/CP30A AND RIGHT CENTRE: CP23A. GREEN DOTS ARE THE REAL CALIBRATION POINTS THAT ARE NOT 

USED FOR VALIDATION. 
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TABLE 5.2: VISITED CALIBRATION POINTS WITH THE RECORDED TRANSITION DEPTH, THE ESTIMATED TRAVEL TIME AND THE 

CALCULATED TRAVEL VELOCITY. 

Name 
LOI 

Sample 
Remarks 

Transition 
depth [m] 

GPR Travel 
 Time [ns] 

Travel Velocity 
[m/ns] 

CP23A Yes  0,95 53 0,0179 

CP23B No  0,60 26,5 0,0226 

CP24B Yes 
Large local elevation differences (+/- 20 
cm, see also Figure 6.4) 

0,80 30 0,0267 

CP25A Yes Heather 0,90 27 0,0333 

CP26A No 
Barely any peat present, but very close 
peat is present. Lot of spatial variation 
Edelmanboor used (see also Figure 3.4) 

0,05 6,5 0,0077 

CP26B No Heather 0,60 28 0,0214 

CP27A No 
Path, grassland. More loose peat on top 
(compared to other locations)  

0,60 19,5 0,0308 

CP28A No Half heather, half open field 0,65 29 0,0224 

CP29B No 
Wet, very sharp transition peat/cover 
sand (Figure 5.4). 

0,42 14,5 0,0290 

CP30A No 
Path next to fence, road side, 
Very loose peat.  

0,20 2 0,1000 

CP31A Yes 
Seems very much like human interfered, 
very sharp transition border.  

0,30 19,5 0,0154 

 
 
Neglecting the highest and lowest travel velocities, respectively CP30A and CP26A, the average travel 
velocity is 0,0244 m/ns. Using this travel velocity, the depths of the transition border were calculated 
for all other estimated travel times. These results can be found in Appendix E, Table 10.2. The 
calculations of the peat depth lead to errors since the average travel velocity was used for this 
calculation. The errors can be found in Table 5.3. The average error of the difference between 
measured and calculated peat depths was -1.5cm.  

 
 

FIGURE 5.4: PHOTO OF THE SHARP TRANSITION BETWEEN THE  PEAT AND THE COVER SAND AT CP29B. 
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TABLE 5.3: MEASURED DEPTHS (CM) AND CALCULATED DEPTHS CM, WITH A GPR TRAVEL VELOCITY OF 0,0244 M/NS)                             

AND THE DIFFERENCES BETWEEN THEM (* NOT TAKEN INTO ACCOUNT WHEN CALCULATING THE AVERAGE VELOCITY). 

Calibration point Measured depth (cm) Calculated depth (cm) Difference (cm) 

CP23A 95 129,3 -34,3 

CP23B 60 64,6 -4,6 

CP24B 80 73,2 6,8 

CP25A 90 65,9 24,1 

CP26A * 5 15,9 -10,9 

CP26B 60 68,3 -8,3 

CP27A 60 47,6 12,4 

CP28A 65 70,7 -5,7 

CP29B 42 35,4 6,6 

CP30A * 20 4,9 15,1 

CP31A 30 47,6 -17,6 

 
 

5.2. LOSS ON IGNITION 
From the loss on ignition (LOI) experiment the results in Table 5.4 were obtained. From the LOI 
percentages and visual and textual observations in the field it is proven that the used transition 
border is definitely the transition border between the peat and the underlying mineral, cover sand, 
layer. Soils with an organic matter content of 50-90% are very organic and therefore very likely to be 
peat. The loss on ignition percentages of the underlying mineral layers are about  9 to 28 times as 
low as that of the peat, indicating that this is another layer. The iron oxides present in the area can 
have had a little influence on the ignition but this will not lead to different conclusions about the 
peat/cover sand boundary.  
 
TABLE 5.4: LOSS ON IGNITION RESULTS FOR FOUR CALIBRATION POINTS 

Name Position 
Crucible 
Number 

Empty 
crucible 

weight (g) 

Crucible + Dry 
soil weight (g) 

Crucible + Soil 
weight after  
ignition (g) 

Dry soil  
weight (g) 

Soil weight 
after 

ignition (g) 
LOI (%) 

CP23A 
Top 2 24,837 27,450 26,100 2,613 1,263 51,665 

Bottom 3 23,348 31,915 31,419 8,567 8,071 5,790 

CP24B 
(Figure 5.5) 

Top 4 25,881 27,942 26,089 2,061 0,208 89,908 

Bottom 5 22,653 33,553 33,080 10,900 10,427 4,339 

CP25A 
Top 17 26,420 28,268 27,276 1,848 0,856 53,680 

Bottom 25 22,655 31,901 31,727 9,246 9,072 1,882 

CP30A 
Top 30 23,684 26,062 24,112 2,378 0,428 82,002 

Bottom 35 23,714 27,008 26,689 3,294 2,975 9,684 
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5.3. SCRIPTING 
The databases used for reconstructing the pre-peat landscape can be 
found in Appendix F. The full R Markdown script can be found in 
Appendix G and is divided into the used functions and the main 
reconstruction script, where the calculations can be found.  While 
publishing some of the figure headings are cut, therefore captions are 
provided for all figures containing the header (or extending the header). 
Also the maps were deformed a little while publishing, leading to an 
unclear legend. In the HTML version of the Markdown script (provided 
with this thesis) the figures are all displayed correctly. The most 
important results are summarized below. All created maps and figures 
can be found in Appendix G2.  
 

5.3.1. ASSESSMENT 

The minimum and maximum heights of the AHN are 14,96 and 24,61 respectively. The heights of the 
reconstruction should be lower than these values. In Table 5.5 this comparison is visible. The 
reconstructions are further assessed on and standard deviation (Table 5.6) and accuracy (Table 5.7). 
As expected the standard deviations of the reconstructions with transformed data are all close to 1, 
while reconstructions with non-transformed data have lower standard deviations. 
 
What should be noticed is that the predicted heights when using GPR data are inconsistent with 
known observations. This is well visible when comparing the maps of a reconstruction with only GPR 
data and a map with legacy data. Where legacy data point observations are more or less 16-18m 
above sea level (e.g. in the south east), GPR data predicted locations have an elevation of about 18-
20m above sea level (Figure 5.6). Cross validation (Table 5.7) is only done with the own dataset, 
consequently the ME and RMSE indicate that using only GPR data leads to good results, contradicting 
from comparing the maps it is known that the ME and RMSE should be worse.  
 
TABLE 5.5: MINIMUM AND MAXIMUM PREDICTED VALUES COMPARED TO AHN HEIGHTS. PREDICTED HEIGHTS HIGHER THAN THE AHN 

ARE MARKED BOLD AND ITALIC. 

Reconstruction 
Minimum 
prediction 

Compare minimum to 
minimum AHN height 

Maximum 
prediction 

Compare maximum to 
maximum AHN height 

Prepeat.OK_A 13,99061 Lower than AHN 24,29180 Lower than AHN 

Prepeat.OK_A_T 15,47256 Higher than AHN 18,76183 Lower than AHN 

Prepeat.OK_G 14,22666 Lower than AHN 24,33659 Lower than AHN 

Prepeat.OK_G_T 14,22624 Lower than AHN 24,34136 Lower than AHN 

Prepeat.OK_L 13,98010 Lower than AHN 23,74534 Lower than AHN 

Prepeat.OK_L_T 15,73332 Higher than AHN 18,44945 Lower than AHN 

Prepeat.CK_GC 13,91339 Lower than AHN 24,08770 Lower than AHN 

Prepeat.CK_GC_UT 14,75795 Lower than AHN 19,98649 Lower than AHN 

Prepeat.CK_LC 14,28441 Lower than AHN 24,26407 Lower than AHN 

Prepeat.CK_LC_UT 16,07515 Higher than AHN 19,67128 Lower than AHN 

Prepeat.RK_A 14,80655 Lower than AHN 21,48253 Lower than AHN 

Prepeat.RK_A_T 14,86733 Lower than AHN 21,68824 Lower than AHN 

Prepeat.RK_G 14,31440 Lower than AHN 24,12368 Lower than AHN 

Prepeat.RK_L 14,97576 Higher than AHN 20,87845 Lower than AHN 

Prepeat.RK_L_T 15,27232 Higher than AHN 22,34892 Lower than AHN 

FIGURE 5.5: PHOTO OF LOI SAMPLES OF 

CP24B. LEFT: SAND (TOP), RIGHT: PEAT 

(BOTTOM). 
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TABLE 5.6: MINIMUM, MEAN AND MAXIMUM STANDARD DEVIATIONS FOR ALL RECONSTRUCTIONS. 

Reconstruction 
Minimum standard 

deviation (m) 
Mean standard 
deviation (m) 

Maximum standard 
deviation (m) 

Prepeat.OK_A 0,2899544 0,4123490 0,6393189 

Prepeat.OK_A_T 1,0051098 1,0112982 1,0276680 

Prepeat.OK_G 0,1270193 0,3234432 0,4075012 

Prepeat.OK_G_T 1,0079381 1,0566233 1,0861299 

Prepeat.OK_L 0,2585649 0,7690972 0,9590929 

Prepeat.OK_L_T 1,0000000 1,0000000 1,0000000 

Prepeat.CK_GC 0,5996035 0,9587153 1,1229258 

Prepeat.CK_GC_UT 1,0000000 1,0000000 1,0000001 

Prepeat.CK_LC 0,3598494 0,4560307 0,5296123 

Prepeat.CK_LC_UT 1,0000000 1,0000000 1,0000000 

Prepeat.RK_A 0,2926692 0,4003370 0,6070232 

Prepeat.RK_A_T 1,0034438 1,0064923 1,0146510 

Prepeat.RK_G 0,1269510 0,3306926 0,4900378 

Prepeat.RK_L 0,4156591 0,6845412 0,8863981 

Prepeat.RK_L_T 1,0000000 1,0000000 1,0000000 

 
 
TABLE 5.7: MEAN ERROR AND ROOT MEAN SQUARE ERROR FOR ALL RECONSTRUCTIONS. 

Reconstruction ME (m) RMSE (m) 

Prepeat.OK_A 0,06478488 0,58160110 

Prepeat.OK_A_T 0,05245758 0,59176650 

Prepeat.OK_G 0,08396079 0,30890140 

Prepeat.OK_G_T 1,09377850 1,13593050 

Prepeat.OK_L 0,02784783 0,78223710 

Prepeat.OK_L_T 0,05308218 0,77816940 

Prepeat.CK_GC 0,02631493 0,78991060 

Prepeat.CK_GC_UT 0,14036514 1,08620530 

Prepeat.CK_LC 0,05843319 0,36721370 

Prepeat.CK_LC_UT 0,09943318 0,44699580 

Prepeat.RK_A 0,05629054 0,52756320 

Prepeat.RK_A_T 0,52715985 4,39587180 

Prepeat.RK_G 0,08048023 0,30666330 

Prepeat.RK_L 0,01757814 0,70092230 

Prepeat.RK_L_T 0,05341685 0,68731410 
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5.3.2. BEST RECONSTRUCTION 

From the final assessment it becomes clear that the best method for reconstructing is using co-
kriging with untransformed legacy data as covariable (Table 5.8). Although kriging with 
untransformed GPR data leads to a lower total score, these reconstructions are declassified for the 
reason explained above. The new lowest and second lowest total score only differ half a point, but 
because the mean standard deviations for these two reconstructions differ about 5 cm, which is the 
maximum measurement error of the legacy data (Paragraph 6.2), and the difference in RMSE of both 
reconstructions is almost factor 1.5. Therefore the RMSE is in this case predominate.  For the 
assessment it is not taken into account that some predicted elevations of the pre-peat landscape are 
higher than the actual surface level, because the highest ranked reconstruction with this issue scores 
worse on standard deviation and RMSE. Although the ME is better than the top ranked 
reconstruction, the ME is regarded as less important than the RMSE. 
 
TABLE 5.8: FINAL ASSESSMENT OF THE RECONSTRUCTIONS. 

Reconstruction   ME RMSE SD Total Rank Remarks 

Prepeat.CK_LC  4,0 3,0 5,0 11,5 1 RK_A: much worse RMSE, SD almost equal 

Prepeat.RK_A  3,5 5,0 3,0 12,0 2 CK_LC: much better RMSE, SD almost equal 

Prepeat.OK_A  4,5 6,0 4,0 14,5 3  

Prepeat.RK_L  0,5 9,0 6,0 15,5 4 Prediction higher than AHN 

Prepeat.OK_L  1,5 11,0 7,0 19,5 5  

Prepeat.CK_GC  1,0 12,0 8,0 21,0 6  

Prepeat.CK_LC_UT  6,0 4,0 12,0 22,0 7 Prediction higher than AHN 

Prepeat.OK_A_T  2,0 7,0 14,0 23,0 8 
RK_L_T:  better RMSE, SD almost equal, 
Prediction higher than AHN,  

Prepeat.RK_L_T  3,0 8,0 12,0 23,0 9 
OK_A_T:  worse RMSE, SD almost equal, 
Prediction higher than AHN 

Prepeat.OK_L_T  2,5 10,0 12,0 24,5 10  

Prepeat.CK_GC_UT  6,5 13,0 12,0 31,5 11  

Prepeat.RK_A_T  7,0 15,0 13,0 35,0 12  

Prepeat.OK_G  5,5 2,0 1,0 8,5 - No ranking, unreliable cross validation 

Prepeat.RK_G  5,0 1,0 2,0 8,0 - No ranking, unreliable cross validation 

Prepeat.OK_G_T  7,5 14,0 15,0 36,0 - No ranking, unreliable cross validation 

FIGURE 5.6: COMPARISON BETWEEN PREDICTION MAPS OF ORDINARY KRIGING WITH GPR DATA (LEFT) AND ORDINARY KRIGING WITH LEGACY DATA 

(RIGHT). WHERE LEGACY DATA POINT OBSERVATIONS ARE IN BLUE (GREEN CIRCLE), GPR DATA PREDICTIONS ARE PURPLE. 
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For the best reconstruction, Prepeat.CK_LC, a 3D map has been created Figure 5.7. The influence of 
the AHN is very well visible in the reconstruction, with the high peak in the north (the viewpoint, 
Figure 6.2) and in the east and south roads are visible in blue, as well as the sand ridge present in the 
Bargerveen. A 3D rotating plot (.GIF file) of this reconstruction is provided with the thesis. 
 
 

 

5.4. RESOLUTION/SUPPORT 
From the kriging statistics Table 5.9 is derived with the resolution and support. A distinction has been 
made in support for the model fitting (with subsetted data) and support used for kriging (complete 
dataset). The best resolution and support that was reached within this research is a grid of 2 x 2 
meter, kriging a grid of 482188 cells with 455 data points. This means that every observation should 
cover 4239 m2. 
 
 

FIGURE 5.7: 3D MAP WITH ELEVATION PREDICTIONS, RECONSTRUCTED BY CO-KRIGING WITH UNTRANSFORMED LEGACY 

DATA AS COVARIABLE. 
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TABLE 5.9: RESOLUTION AND SUPPORT FOR EACH RECONSTRUCTION. 

Reconstruction   
Number of 
grid cells 

Area per grid 
cell (m2) 

Number of 
data points 
(model fitting) 

Number of 
data points 
(kriging) 

Area covered per  
kriging 
observation (m2) 

Prepeat.CK_LC  482188 2 x 2 238 455 4239,02 

Prepeat.RK_A  482188 2 x 2 238 455 4239,02 

Prepeat.OK_A  482188 2 x 2 238 455 4239,02 

Prepeat.RK_L  482188 2 x 2 178 178 10835,68 

Prepeat.OK_L  482188 2 x 2 178 178 10835,68 

Prepeat.CK_GC  482188 2 x 2 238 455 4239,02 

Prepeat.CK_LC_UT  482188 2 x 2 238 455 4239,02 

Prepeat.OK_A_T  482188 2 x 2 238 455 4239,02 

Prepeat.RK_L_T  482188 2 x 2 178 178 10835,68 

Prepeat.OK_L_T  482188 2 x 2 178 178 10835,68 

Prepeat.CK_GC_UT  482188 2 x 2 238 455 4239,02 

Prepeat.RK_A_T  482188 2 x 2 238 455 4239,02 

Prepeat.OK_G  482188 2 x 2 60 277 6963,00 

Prepeat.RK_G  482188 2 x 2 60 277 6963,00 

Prepeat.OK_G_T  482188 2 x 2 60 277 6963,00 

 

5.5. APPLICABILITY 
Important for this methodology is that the bog landscape has bog remnants. That way the pre-peat 
landscape can be reconstructed by subtracting peat depth from the current surface level elevation. 
This can be the case for comparable bogs in the Netherland, but that is not a real requirement. 
Streefkerk and Casparie (1989) name several ombrotrophic bogs comparable to the Bargerveen that 
also consist of bog remnants. They name amongst others the Deurnse Peel (Northern Brabant), 
Engbertdijksvenen (Overijssel), Fochterloërveen (Drenthe/Friesland), Meerstalblok (another area 
than the case study area within the Bargerveen) and the Odoornerveen (Drenthe). The latter is like 
the Bargerveen part of the former Bourtangerveen, stretching in Groningen, Drenthe and North-
Western Germany (Casparie, 1993). However, for the methodology it should not necessarily be in the 
Netherlands. It could (and does) also work in Hatfield and Thorne Moors (Chapman and Gearey, 
2013), but with this research it is shown that the research can also be done on a much smaller (10x) 
resolution. Moreover, in large parts of North-West Europe ombrotrophic mires can be found. A belt 
with these mires can be found from Ireland, via Great Britain, Northern France, Belgium, the 
Netherlands, Germany, Poland and Scandinavia up to the European parts of the former Soviet Union 
(Eurola et al., 2013). Besides, it should hypothetically also be applicable to other bog remnants found 
in the world. The type of bog found in the remnants should not matter for this sake. What does 
matter for reconstructing another bog, is the availability of a digital elevation model. For bogs in The 
Netherlands this will not form a problem due to the availability of the AHN for the whole 
Netherlands. But when reconstructing outside The Netherlands, a digital elevation model should be 
available with at least the resolution of the desired reconstruction. Another possibility is to use 
legacy data points with surface level elevations recorded, or to record the surface level elevations in 
the field. Both ways will probably not be as accurate as the AHN.  
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The spatial scale is also variable. The methodology can be applied on 
very small scale, but also on very large scale. But it should be kept in 
mind that when extending the spatial scale, the resolution should 
decrease. Computers limitations should be kept in mind here too, 
increasing the spatial scale increases the calculation time and load 
proportionally, while at smaller scale the resolution may be 
increased to handle the calculations with the same time and load. 
Increasing or decreasing the sample density does somewhat 
influence the reconstruction. From the assessment it is visible that 
the legacy kriged data is a little worse than using legacy and GPR 
data points combined explainable by the sample density of the 
legacy data which is twice as low as the sample density of the legacy 
and GPR data combined. It is arguable that when the sample density 
decreases, that the uncertainty will increase. Kriging errors occur 
mostly due to errors made in variogram fitting, both model 
selection as nugget fitting (Brooker, 1986). When data points are far 
apart, the distance from the observation point to prediction point is 
also larger. The farther the prediction point is from the observation 
point, the larger the interpolation error will be (Burgess et al., 
1981). Hence, when the sampling density changes, variograms will 
be influenced as well and consequently the kriging predictions and 
kriging variances. This high kriging variance for a low sampling 
density is well visible in the standard deviation maps of the 
ordinary- and regression kriged untransformed legacy data: Figure 
10.86 and Figure 10.95. These predictions have the lowest sampling 
density, and the highest standard deviation apart from the 
reconstructions with transformed data. A low sampling density is 
not advisable, but neither is a high. As the sampling density 
becomes higher, sampling covariances increase leading to a less 
accurate variograms, but on the other hand this can be corrected 
(Tran, 1994). 
 

FIGURE 5.8: PHOTO OF THE GOUGE 

PROFILE AT CP24B. 
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6. DISCUSSION 

6.1. RESEARCH QUESTIONS 

6.1.1. METHODOLOGY DEVELOPMENT 

SELECTING CASE STUDY AREA 

Selecting a case study area was the objective in this research. The 
first choice of case study area were the Engbertdijksvenen. 
Unfortunately the ranger could not give permission to do more 
external research: “Currently there are a lot of vulnerable 
processes around the measures taken to realise the set goals 
within the management plan of the Natura2000. To preserve the 
peace in the area it is not desirable to conduct extra research 
besides the researches that are executed from the management 
plan.” (A. Hollander, email contact, 03-11-2017). Nevertheless the 
Bargerveen was also a potential interesting area, but somewhat 
too large to cover completely with GPR measurements. Therefore 
a smaller area was selected within the Bargerveen. Although 
careful selecting the case study area, surface water turned out to 
be an issue. Where it was possible to walk the first fieldwork day 
(8 Nov 2017), there was water just below knee level during the 
second day of fieldwork (30 Jan 2018, Figure 6.1). Despite the 
area is not reclaimed, there were traces of human interference in 
the case study area. In the north of the area, just outside the case 
study a new road was built. As well as presence of other roads 
and the panorama viewpoint (Figure 6.2), at the end of line 30 
(see also Figure 5.2), in the north of the case study area.  
 
Available data for the Bargerveen that could directly be used (and 
for most other potential case study areas) were a shapefile 
extracted from the Natura2000, AHN tiles containing surface level elevations above sea level and 
legacy data points from the DINOloket and the BIS. The amount of available legacy data presented in 
Table 4.1 is not the actual amount of used legacy data, because in the table only unprocessed BIS 
data points were used. Only when preparing the databases for kriging, the data points were 
processed and only points that had another recorded mineral layer underneath the peat base were 
used. This is because when this layer is not present underneath the peat layer, exclusion whether the 
depth of that peat base is really the depth of the peat base or whether it is the end of the recording 
with the peat possibly reaching deeper, is impossible. The actual amount of legacy data points used 
was 178 (91 from DINO data and 87 from BIS data). Another implementation that was done with 
optimizing the databases is the cutoff parameter. This cutoff was used for peat layers that are 
identified at depths that do not make sense to relate to the other identified peat layers. These 
“outliers” can be excluded from the database. The identified peat layers can be explained as peat 
developed during the Saalien, as also mentioned in Paragraph 4.4. 
 
 
 

FIGURE 6.1: PHOTO TAKEN DURING SECOND 

FIELDWORK WITH THE SURFACE WATER IN 

THE BARGERVEEN JUST BELOW KNEE LEVEL. 
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GEOSTATISTICAL TECHNIQUES 

To find out which geostatistical technique was most appropriate, several factors have been tested for 
reconstructing the pre-peat landscape. These factors were checking which data (GPR, legacy or 
combined) and which kriging method should be used (ordinary-, co- or regression kriging), whether 
transforming the data was useful and whether peat depth (underneath surface level) or peat height 
(above sea level) had to be used for reconstructing the pre-peat landscape.  
 
KRIGING TECHNIQUE 

The best results was obtained when both legacy and GPR data were used, when using co-kriging with 
legacy data as covariable. The second best reconstruction was obtained when assuming equal 
measurement errors for all databases, but then the reconstruction were less precise. Regression 
kriging with the AHN as regression data and legacy and GPR data combined is better than ordinary 
kriging with this combined data (third best). As a result precision, accuracy and standard deviation 
deteriorate minimally.  
 
TRANSFORMING DATA 

All seven reconstructions with transformed data ended in the bottom of the assessment.  Expected 
was that transformed data was better for reconstructing than untransformed data, but in this 
research it appeared not to be. This is due to the fact that the transformed data was normalized, so it 
had a distribution with a standard deviation of 1. Compared to all standard deviations, 1 is the 
largest. Therefore untransformed data is better for predicting the pre-peat landscape.  
 
PEAT DEPTH VS.  PEAT HEIGHT 

Whether peat depth or peat height is better for kriging cannot be determined in advance, this really 
depends on the dataset and should be determined with use of the variogram function. A lower 
nugget and sill give better kriging parameters. Overall it is most appropriate to use untransformed 
combined GPR and legacy data with co-kriging. 
 
 
 

FIGURE 6.2: PHOTO TAKEN IN THE BARGERVEEN, NEAR CP31A. ON THE RIGHT SIDE THE VIEWPOINT, JUST LEFT OF THE VIEWPOINT A 

SAND DEPOSIT FOR THE ROAD WORK. THE ROAD FOLLOWS THE LANE OF TREES IN THE BACK. 
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6.1.2. QUALITY ASSESSMENT 

ADDITION OF DATA 

The reconstructions were assessed on MSD (Mean Standard Deviation), ME (Mean Error) and RMSE 
(Root Mean Square Error). Looking at the ME only, additional data decreased the quality of the 
reconstruction a little bit, the error increased with more or less 0,03m. Contrary the RMSE and the 
MSD were slightly improved by adding the additional data. The RMSE was halved relative using 
legacy data alone. When adding extra data the RMSE decreased with more or less 0,3m and the MSD 
was decreased by more or less 0,25m. So from adding extra data the standard deviation improved, 
the accuracy decreased slightly but the precision and accuracy combined improved again. Overall, 
the addition did improve the quality, but the differences were very minimal so it did not improve 
significantly.  
 

BEST ACCURACY 

The best accuracy that was reached was by regression kriging transformed legacy data. Accuracy 
cannot be expressed in numbers, but by measures of the ME, as indication for the accuracy, 
calculations showed an error of 0,017. By measures of the RMSE, as indication of the accuracy and 
precision combined, calculations showed a minimum error for regression kriging with GPR data 
alone. But this reconstruction was declassified because it was shown that predictions should have 
been higher compared to observations of legacy data, if these observations were taken along the 
RMSE and ME would have been worse for the reconstruction based on GPR data alone. Neglecting 
these reconstructions, the best accuracy by measures of the RMSE is the RMSE of the best assessed 
reconstruction: of co-kriging with legacy data as covariable: 0,037m. The ME of the best assessed 
reconstruction is 0,058m. 
 

RESOLUTION 

The best obtained resolution and support were also for co-kriged GPR data with legacy data as 
covariable: 482188 grid cells of 2 x 2 m and 455 data points used for kriging.  
 
It is possible to even increase the resolution. The used AHN has grid cells of half a meter by half a 
meter, the current resolution could be adjusted to this, now the AHN is resized to grid cells of two by 
two meter. Of course this can also be done the other way. However, computer limitations should be 
taken into account. The computer used for the kriging stalled multiple times, depending on running 
programmes. When halving the grid cell size twice, there are 16 times more grid cells to be 
predicted, causing a calculation time to increase 16 times and also calculations become heavier. So 
taking computer limitations into account, the best possible resolution is using grid cells of half by half 
a meter. If computer limitations allow a smaller grid cells, a better resolution can be obtained. But to 
get a significant better reconstruction, probably GPS accuracy should also increase to get obtain a 
GPS position accurate on a cm scale. Furthermore it should be taken into account that when the grid 
cell size decreases by 16 times to half a meter by half a meter, the area that one observation should 
cover increases by 16 times, meaning that with the used set of data one observation should cover 
67824,25 m2, doing this the uncertainty in the prediction will also increase, leading to lower accuracy 
and precision and higher kriging variances and consequently higher kriging standard deviations. The 
sample density changes in this case, see also Paragraph 5.5. 
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6.2. ERROR DISCUSSION 

LEGACY DATA 

There is an uncertainty in the identified peat depths in the used data points. For the legacy data this 
is an uncertainty in measurement error. Although all data is checked before it is added to the 
DINO/BIS databases, it is not traceable how large the measurement errors are and it has multiple 
original sources since everyone who has data available may submit this data. Most of the peat depths 
are rounded to 10 cm, leading to a measurement error of maximal 5 cm. Also some records are over 
40 years old, dating from times when GPS technology was less accurate than nowadays. So true 
locations might deviate from the recorded locations of the data points. Even with the used GPS it is 
doubtful whether the GPS is accurate enough position the location on meters accurate (which is the 
used grid cell size for reconstructing).  
 

GPR PROCESSING 

Furthermore, not at every ten meters a GPR record could be registered, for example at line 24 
(Figure 10.21). The measurement was too disturbed to correctly identify a transition border between 
the peat and the cover sand. At these distances the record has been left out. Also at some locations 
the there was no peat, for example at line 30 (Figure 10.27). For these records the peat depth could 

also not been registered and has been set to 0 m. In the optimize 
database function also records might be left out. If the Euclidean 
distance between 2 records is less than the grid cell size, only the 
first recorded record is used. Using both records is not possible 
since one grid cell can only have one value, so two values (in case 
of two records) is not possible.  
 

GPR TRAVEL VELOCITY 

For the GPR data there is also an uncertainty, the travel time can 
be read very accurate, but the conversion to depth is less 
accurate. In line 27 the GPR travel time has been calculated with 
use of a parabola: 0,061 m/ns. When using this travel velocity all 
depths of the transition border were estimated much deeper 
than they actually were. Therefore an average traveling velocity 
of 0,0244 m/ns is used. Because the average is used there is 
already a small error between the recorded and calculated depth. 
Logically this is continuing throughout all depth calculations. In 
Table 5.3 the differences between recorded and calculated 
depths can be found. This differences may be due to different 
field conditions. If the water or organic matter content in the 
peat changes, the GPR transmittance also changes. From the loss 
on ignition results, Table 5.4, it becomes clear that there are 
quite some differences in organic matter content in the peat. 
 
In Appendix A GPR travel velocities can be found for different 
materials. The calculated GPR velocity that turned out to be 
incorrect lies in the range of clays and wet/saturated sands. Peat 
and organic soils have a travel velocity of 0,04, indicating that the 
travel velocity should be lower than the calculated travel velocity. 
On the other hand, the used, average, travel velocity is lower 
than the indicated travel velocity and comes closer to the travel 

FIGURE 6.3: PHOTO OF THE GOUGE PROFILE AT 

CP25A. WOOD DEBRIS WAS ENCOUNTERED AT 

THIS LOCATION. 
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velocity of fresh and salt water. Knowing that the peat was very wet, and even completely saturated 
at some measurement locations, it is not inevitable that the travel velocity is lower than that of sand 
(the parent material) and peat/organic soils. Moreover, it is expected that used travel velocity is 
lower than the calculated velocity, but anyway, this difference is larger than expected on forehand.  
 

LOSS ON IGNITION 

In Paragraph 5.2 it is already shown that there is a clear boundary 
between the peat and the underlying cover sand layer. There is a 
large loss on ignition difference both. As noticed in Paragraph 3.4.3 , 
iron oxides can influence the loss on ignition. There are iron oxides 
observed in the cover sands just outside the Bargerveen, but it 
cannot be said whether the iron oxides are also present in the peat 
and/or underlying cover sands, but in case it is; it will not have 
much influence on the organic matter content (OM). It might be just 
a little bit higher or lower depending whether the iron oxides are 
present in the cover sand (higher OM), peat (lower OM) or both 
(higher and lower OM both possible).  

LOCAL ELEVATION DIFFERENCES 

The local height differences (Figure 6.4) can have quite some 
negative impact on the reconstruction because the pre-peat 
landscape can be about 20 cm higher or lower at that location while 
this is not noticed in the standard deviation or cross validation 
because the assessment is based on the record, which is incorrect in 
the described hypothetical situation.  
 

SURFACE LEVEL CORRECTION 

Another measurement error that occurred in the database is the 
correction for surface elevation. Some records (including some old records) contained a surface level 
elevation. Due to peat settling this elevation can have changed over the years, meaning that the peat 
layer has become thinner. When reconstructing the peat height above sea level it is easy to 
compensate this by subtracting the depth of the transition border from the known surface level. The 
height above sea level does not change over time (assuming the underlying sand layer does not 
settle). But this gives inaccuracies when comparing these reconstructions to reconstructions of which 
the peat depth is predicted for all locations is subtracted from the current surface level. To overcome 
this inaccuracy, all known surface levels are removed from the data base and set to “Unknown”, 
forcing the optimize database function to replace these values by the current AHN values. Another 
benefit of this is that whenever the surface level elevation has not correctly filled out in the 
database, the optimize database function now does extract the AHN height for this location (which 
only happens when the surface level elevation is set to “Unknown”. In addition to that, previously 
the horizontal accuracy of GPS material was already questioned, for vertical accuracy it goes the 
same. So it is questionable whether the recorded surface level elevation in the available data is as 
accurate as the AHN surface level elevation.  
 

SUBSETTING DATA 

Also, deliberately ignoring data may lead to errors, as is done by subsetting data. For subsetting data 
randomly five points are picked from a transect. A seed is set to let every subset contain the same 
five points. Using a different subset of data points will lead to different results. When randomly 
selecting five points and by coincidence these points are all at the start of a transect and 

FIGURE 6.4: PHOTO OF LOCAL HEIGHT 

DIFFERENCE NEAR CP24B, VISUALIZED 

WITH HELP OF THE GOUGE AND BLUE 

LINES INDICATING THE SURFACE  

ELEVATION. 
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hypothetically that transect ascents at the end, this ascending is missed leading to an error. But from 
earlier created reconstructions it became clear that when the data is not subsetted, errors in the 
prediction and variance are even larger due to the strong local coherence between the points on 
each transect. A possible reason for these errors are the difficulties faced with normalizing data. As 
seen in the results it is very beneficial to transform the data to normality, but because of the low 
peat depths at and the length of walked line 30, there was very large bin at the lowest peat depth 
values, making it impossible to normalize data to a very low skewness as is reached with the 
executed methods. The errors that turned out during the research are much lower than the errors 
that would have turned out when the data is not subsetted. By bypassing the local coherence in 
transforming the data and fitting the variogram functions, the final reconstructions have improved 
tremendously. 
 

BACK TRANSFORMATIONS 

When taking the inverse Box-Cox transformation with a non-zero lambda parameter (Equation 9), 
lambda is multiplied by the transformed kriging variance (which should be back transformed). When 
the outcome of this multiplication is lower than -1 (1 is added to the multiplication outcome), rooting 
is impossible because a the root is taken of a negative number and NaNs are produced. As a 

consequence these NaN values are not taken into account when calculating the standard deviation. If 

this occurs it should be checked how many NaN values are produced and whether this will have 
influence on the reconstruction 
 

ASSESSMENT 

Due to the back transformation of normalized data, many standard deviations are (close to) 1. When 
ranking these standard deviations, equal values got equal scores. Where scoring 9th would be most 
appropriate when reconstructions 9 up till 12 have the same mean standard deviation, in the 
assessment these reconstruction got ranked 12th, missing 3 points this way. For the final ranking this 
is not of influence, because these reconstructions with transformed data will not come close to the 
top with these extra points and all these reconstructions are ranked bottom of the total assessment.  
 
Some reconstructions of the pre-peat landscape have a higher elevation than the AHN, within this 
research that is not possible since the peat base of bog remnants is reconstructed, therefore the 
reconstructed pre-peat landscape should always be below the actual surface level elevation.   

AHN INFLUENCE 

Last, the AHN has major influence on the reconstruction, because the pre-peat landscape is 
reconstructed based on the current positioning in the landscape. The influence is e.g. very well visible 
in the 3D reconstruction, where there is a high point in the north. The pre-peat landscape does not 
have such a peak, but the peat base is much deeper at that location. This is missed in all 
reconstructions created. On every prediction map in Appendix G2 there is a high point visible at this 
location. Not only the viewpoint is affected by this, but also e.g. the roads are. As already stated 
before, these are due to human inference.  

6.3. RECOMMENDATIONS 
After having done the research and writing this thesis, I have a couple of recommendations for 
comparable and/or continuation research. The first recommendation is not to add DINO data to the 
BIS data and optimize the databases to find the actual amount of data points used for kriging for 
every potential case study, as this takes a lot of time and it is questionable whether this really 
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influences the decision on case study area selection, since the choice for the Engbertdijksvenen or 
Bargerveen was mainly based on area size and absence of bog remnants. 
 
Secondly, I would recommend not to conduct the fieldwork mid-winter. Due to the timing of the 
second fieldwork (end of January), some of the in advance determined calibration points were not 
accessible due to the wet field conditions. Because of this some of the walked transects did not have 
a calibration to check whether the transition border has been drawn on the right depth. Also it would 
have been better to check during the second fieldwork on iron spots in the soil. It is an easy and fast 
way to say something about the iron oxides within the Bargerveen. 
 
Next, the length of the distance walked with the GPR did not correspond with the length of the GPS 
transects in ArcGIS. This required some recalculations of the lengths. For every transect another 
length recalculation was required. Due to the accurate length recalculations and adjusting the 
selection intervals in ArcGIS during the processing, no errors have occurred with this. But it is 
something I recommend to keep an eye on when working with GPX data (the GPS converted data). 
The same counts for projecting data between RDNew and WGS84, like has been done during the 
processing. 
 
Furthermore, for any continuation research, it might be interesting to do further research on the 
superficial geology of the mineral layer underlying the bog remnants. This cover sand layer is relevant 
for the future landscape evolution studies on spatio-temporal bog development through its influence 
on groundwater hydrology and consequently on peat growth. With the database optimization 
function this layer (or layers if there are more) can be identified. This function is developed in such 
way that also details, like for example the sand median, can be used as identifying layer. 
 
Also a spatial stochastic simulation might be interesting to do for the reconstruction. A spatial 
stochastic simulation is made to see the error in the landscape evolution model (from the Home Turf 
project) when the input, the reconstructed DEM, is not perfectly correct. A   spatial stochastic 
simulation can be used for uncertainty propagation. One of the most used spatial stochastic 
simulations for digital elevation models is the sequential Gaussian simulation (Kyriakidis et al., 1999). 
With this simulation, at every predicted location of the kriged DEM, local ordinary kriging is used to 
estimate a localized mean and variance based on the neighbourhood values. A normal distribution is 
based on this and from this normal distribution randomly new values are selected. These values 
replace the DEM predictions. This process is continued until all predicted values are replaced and 
there are only observed and new simulated values in the DEM (Mowrer, 1997). This can be done in R 
with the predict() function in the gstat package (Pebesma, 2017e).  
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7. CONCLUSION 
A smaller area within the Bargerveen turned out to be a suitable pilot area for this research. For this 
case study area DEM reconstructions were created from legacy (DINO- and BIS data) and newly 
collected GPR data. It was showed that collecting data does improve, but not significantly improve, 
the quality of the reconstruction, providing that untransformed data is used with co-kriging with 
legacy data as covariable. Reconstructing with ordinary kriging with combined legacy and GPR data 
or regression kriging this data with the AHN as regression data also gave a good representation and is 
qualitatively comparable to reconstructions using co-kriging, despite the possible different degrees in 
uncertainty. The method should be applicable to all bogs in the world, as long as there are bog 
remnants and an accurate digital elevation model available.  
 
 
 
 

FIGURE 7.1: PHOTO OF THE VIEW OVER THE BARGERVEEN FROM THE VIEWPOINT IN THE NORTH OF THE AREA. TREE IN THE FRONT ALSO 

ALSO VISIBLE IN FIGURE 6.2. 
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FIGURE 8.2: PHOTO OF CINDY QUIK DOING GPR MEASUREMENTS. 

PHOTO CREDITS: ROY VAN BEEK. 



BEST PRACTICES FOR CREATING HIGH-RESOLUTION 3D PRE-PEAT LANDSCAPES 

 MSC THESIS     DI LLEN BRUIL   47 

9. REFERENCES 
 
AHN, 2018. Over AHN. Available at http://www.ahn.nl/common-nlm/over-ahn.html, accessed on 25-

4-2018. 

ArcGIS, 2017. AHN2 - Download Kaartbladen. Available at 
http://www.arcgis.com/home/webmap/viewer.html?useExisting=1, accessed on 20-11-2017. 

Avenza, 2018. Avenza Maps. Available at https://www.avenza.com/avenza-maps/, accessed on 22-
04-2018. 

Bachmaier, M., Backes, M., 2011. Variogram or semivariogram? Variance or semivariance? Allan 
variance or introducing a new term? Mathematical Geosciences, vol: 43, 735-740. 

Beets, D.J., van der Spek, A.J.F., 2000. The Holocene evolution of the barrier and the back-barrier 
basins of Belgium and the Netherlands as a function of late Weichselian morphology, relative 
sea-level rise and sediment supply. Netherlands Journal of Geosciences, vol: 79, 3-16. 

Box, G.E., Cox, D.R., 1964. An analysis of transformations. Journal of the Royal Statistical Society. 
Series B (Methodological), 211-252. 

Bristow, C.S., Jol, H.M., 2003. An introduction to ground penetrating radar (GPR) in sediments. 
Geological Society, London, Special Publications, vol: 211, 1-7. 

Brooker, P., 1986. A parametric study of robustness of kriging variance as a function of range and 
relative nugget effect for a spherical semivariogram. Mathematical Geology, vol: 18, 477-488. 

Burgess, T., Webster, R., McBratney, A., 1981. Optimal interpolation and isarithmic mapping of soil 
properties. IV Sampling strategy. European Journal of Soil Science, vol: 32, 643-659. 

Candel, J.H.J., Makaske, B., Storms, J.E.A., Wallinga, J., 2017. Oblique aggradation: a novel 
explanation for sinuosity of low‐energy streams in peat‐filled valley systems. Earth Surface 
Processes and Landforms. 

Casparie, W., 1993. The Bourtanger Moor: endurance and vulnerability of a raised bog system, 
Netherlands-Wetlands. Springer, p. 203-215. 

Casparie, W., Tonnis, W., de Vries, J., 2008. Bargerveen: de veengroei in het natuurreservaat 
Bargerveen. Staatsbosbeheer Regio Noord. 

Chapman, H.P., Gearey, B.R., 2013. Modelling Archaeology and Palaeoenvironments in Wetlands: the 
hidden landscape archaeology of Hatfield and Thorne Moors, eastern England. Oxbow Books. 

Cressie, N., 1990. The origins of kriging. Mathematical geology, vol: 22, 239-252. 

Daniels, D.J., 2005. Ground penetrating radar. Wiley Online Library. 

de Brabantse Kempen, 2017. Natuurgebied de Moeren. Available at 
https://www.tipdebrabantsekempen.nl/nl/natuur-omgeving/item/90-natuurgebied-de-
moeren, accessed on 12-10-2017. 

De Zeeuw, J.W., 1978. Peat and the dutch golden Age. The historical meaning of energy attainability, 
vol: 21, 3-31. 

Deforce, K., Bastiaens, J., Ameels, V., 2007. Peat re-excavated at the Abbey of Ename (Belgium): 
archaeobotanical evidence for peat extraction and long distance transport in Flanders around 
1200 AD. Environmental Archaeology, vol: 12, 87-94. 

DINOloket, 2017. Aanleveren Booronderzoek. Available at https://www.dinoloket.nl/aanleveren-
booronderzoek, accessed on 07-09-2017. 

http://www.ahn.nl/common-nlm/over-ahn.html
http://www.arcgis.com/home/webmap/viewer.html?useExisting=1
https://www.avenza.com/avenza-maps/
https://www.tipdebrabantsekempen.nl/nl/natuur-omgeving/item/90-natuurgebied-de-moeren
https://www.tipdebrabantsekempen.nl/nl/natuur-omgeving/item/90-natuurgebied-de-moeren
https://www.dinoloket.nl/aanleveren-booronderzoek
https://www.dinoloket.nl/aanleveren-booronderzoek


BEST PRACTICES FOR CREATING HIGH-RESOLUTION 3D PRE-PEAT LANDSCAPES 

 MSC THESIS     DI LLEN BRUIL   48 

Eurola, S., Hicks, S., Kaakinen, E., 2013. Key to Finnish Mire Types, in: Moore, P.D. (Ed.), European 
mires. Academic Press, p. 11-118. 

European Environment Agency, 2017. Natura 2000 End 2016 - Shapefile. Available at 
https://www.eea.europa.eu/data-and-maps/data/natura-8/natura-2000-spatial-data/natura-
2000-shapefile-1, accessed on 11-10-2017. 

Finlay, P.I., Parry, N.S., Proskin, S.A., Mickle, R.J., 2008. An overview of ice profiling using Ground 
Penetrating Radar (GPR), at 21st EEGS Symposium on the Application of Geophysics to 
Engineering and Environmental Problems. 

Foster, D., Wright Jr, H., Thelaus, M., King, G., 1988. Bog development and landform dynamics in 
central Sweden and south-eastern Labrador, Canada. The Journal of Ecology, 1164-1185. 

Gerding, M., 1995. Vier eeuwen turfwinning. De verveningen in Groningen, Friesland, Drenthe en 
Overijssel tussen 1550–1950. AAG Bijdragen 35.  

Gobin, A., Campling, P., Feyen, J., 2001. Soil-landscape modelling to quantify spatial variability of soil 
texture. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, vol: 
26, 41-45. 

Google Developers, 2017. KML Tutorial. Available at 
https://developers.google.com/kml/documentation/kml_tut, accessed on 02-06-2018. 

Goulard, M., Voltz, M., 1992. Linear coregionalization model: tools for estimation and choice of cross-
variogram matrix. Mathematical Geology, vol: 24, 269-286. 

GPSVisualizer, 2018. Convert a GPS file to plain text or GPX Available at 
http://www.gpsvisualizer.com/convert_input, accessed on 19-01-2018. 

Griffin, S., Pippett, T., 2002. Ground penetrating radar. Geophysical and Remote Sensing Methods for 
Regolith Exploration. CRC LEME Open File report, vol: 144, 80-89. 

Heiri, O., Lotter, A.F., Lemcke, G., 2001. Loss on ignition as a method for estimating organic and 
carbonate content in sediments: reproducibility and comparability of results. Journal of 
paleolimnology, vol: 25, 101-110. 

Hengl, T., Heuvelink, G.B., Stein, A., 2004. A generic framework for spatial prediction of soil variables 
based on regression-kriging. Geoderma, vol: 120, 75-93. 

Kleijnen, J.P., 2009. Kriging metamodeling in simulation: A review. European journal of operational 
research, vol: 192, 707-716. 

Komunjer, I., 2009. Global identification of the semiparametric Box–Cox model. Economics Letters, 
vol: 104, 53-56. 

Kyriakidis, P.C., Shortridge, A.M., Goodchild, M.F., 1999. Geostatistics for conflation and accuracy 
assessment of digital elevation models. International Journal of Geographical Information 
Science, vol: 13, 677-707. 

Lamentowicz, M., Gałka, M., Obremska, M., Kühl, N., Lücke, A., Jassey, V., 2015. Reconstructing 
climate change and ombrotrophic bog development during the last 4000years in northern 
Poland using biotic proxies, stable isotopes and trait-based approach. Palaeogeography, 
palaeoclimatology, palaeoecology, vol: 418, 261-277. 

LANUV NRW, 2013. Naturschutzgebiet Zwillbrocker Venn (BOR-008). Available at 
http://nsg.naturschutzinformationen.nrw.de/nsg/de/fachinfo/gebiete/gesamt/BOR_008, 
accessed on 12-10-2017. 

Lark, R., Papritz, A., 2003. Fitting a linear model of coregionalization for soil properties using 
simulated annealing. Geoderma, vol: 115, 245-260. 

https://www.eea.europa.eu/data-and-maps/data/natura-8/natura-2000-spatial-data/natura-2000-shapefile-1
https://www.eea.europa.eu/data-and-maps/data/natura-8/natura-2000-spatial-data/natura-2000-shapefile-1
https://developers.google.com/kml/documentation/kml_tut
http://www.gpsvisualizer.com/convert_input
http://nsg.naturschutzinformationen.nrw.de/nsg/de/fachinfo/gebiete/gesamt/BOR_008


BEST PRACTICES FOR CREATING HIGH-RESOLUTION 3D PRE-PEAT LANDSCAPES 

 MSC THESIS     DI LLEN BRUIL   49 

Lechler, P., Desilets, M., 1987. A review of the use of loss on ignition as a measurement of total 
volatiles in whole-rock analysis. Chemical Geology, vol: 63, 341-344. 

Leenders, K.A.H.W., 2014. Verdwenen venen. Een onderzoek naar de ligging en exploitatie van thans 
verdwenen venen in het gebied tussen Antwerpen, Turnhout, Geertruidenberg en Willemstad 
1250-1750. Herz. dr. Pictures Publishers. 

Leopold, M., Völkel, J., 2003. GPR images of periglacial slope deposits beneath peat bogs in the 
Central European Highlands, Germany. Geological Society, London, Special Publications, vol: 
211, 181-189. 

LNV, 2018. Natura 2000-gebieden per provincie. Available at 
https://www.synbiosys.alterra.nl/natura2000/gebiedendatabase.aspx?subj=n2k&groep=0, 
accessed on 02-06-2018. 

Lowry, C.S., Fratta, D., Anderson, M.P., 2009. Ground penetrating radar and spring formation in a 
groundwater dominated peat wetland. Journal of Hydrology, vol: 373, 68-79. 

Lunt, I., Hubbard, S., Rubin, Y., 2005. Soil moisture content estimation using ground-penetrating radar 
reflection data. Journal of Hydrology, vol: 307, 254-269. 

Miller, D.M., 1984. Reducing transformation bias in curve fitting. The American Statistician, vol: 38, 
124-126. 

Montanarella, L., Jones, R.J., Hiederer, R., 2006. The distribution of peatland in Europe. Mires and 
Peat, vol: 1, 1-11. 

Mowrer, H.T., 1997. Propagating uncertainty through spatial estimation processes for old-growth 
subalpine forests using sequential Gaussian simulation in GIS. Ecological Modelling, vol: 98, 
73-86. 

Myers, D.E., 1982. Matrix formulation of co-kriging. Journal of the International Association for 
Mathematical Geology, vol: 14, 249-257. 

Neal, A., 2004. Ground-penetrating radar and its use in sedimentology: principles, problems and 
progress. Earth-science reviews, vol: 66, 261-330. 

NWO, 2017. Home Turf. An integrated approach to the long-term development, cultural connections 
and heritage management of Dutch raised bogs. Available at 
https://www.nwo.nl/onderzoek-en-resultaten/onderzoeksprojecten/i/49/26749.html, 
accessed on 06-09-2017. 

Osborne, J.W., 2010. Improving your data transformations: Applying the Box-Cox transformation. 
Practical Assessment, Research & Evaluation, vol: 15, p.2. 

Pebesma, E., 2017a. R Documentation: fit.lmc. Available at 
https://www.rdocumentation.org/packages/gstat/versions/1.1-6/topics/fit.lmc, accessed on 
19-12-2017. 

Pebesma, E., 2017b. R Documentation: fit.variogram. Available at 
https://www.rdocumentation.org/packages/gstat/versions/1.1-4/topics/fit.variogram, 
accessed on 12-09-2017. 

Pebesma, E., 2017c. R Documentation: krige. Available at 
https://www.rdocumentation.org/packages/gstat/versions/1.1-5/topics/krige, accessed on 
12-09-2017. 

Pebesma, E., 2017d. R Documentation: krige.cv. Available at 
https://www.rdocumentation.org/packages/gstat/versions/1.1-5/topics/krige.cv, accessed 
on 12-09-2017. 

https://www.synbiosys.alterra.nl/natura2000/gebiedendatabase.aspx?subj=n2k&groep=0
https://www.nwo.nl/onderzoek-en-resultaten/onderzoeksprojecten/i/49/26749.html
https://www.rdocumentation.org/packages/gstat/versions/1.1-6/topics/fit.lmc
https://www.rdocumentation.org/packages/gstat/versions/1.1-4/topics/fit.variogram
https://www.rdocumentation.org/packages/gstat/versions/1.1-5/topics/krige
https://www.rdocumentation.org/packages/gstat/versions/1.1-5/topics/krige.cv


BEST PRACTICES FOR CREATING HIGH-RESOLUTION 3D PRE-PEAT LANDSCAPES 

 MSC THESIS     DI LLEN BRUIL   50 

Pebesma, E., 2017e. R Documentation: predict. Available at 
https://www.rdocumentation.org/packages/gstat/versions/1.1-5/topics/predict, accessed on 
12-09-2017. 

Pebesma, E., 2017f. R Documentation: spplot. Available at 
https://www.rdocumentation.org/packages/sp/versions/1.2-5/topics/spplot, accessed on 
12-09-2017. 

Perron, T.J., Fagherazzi, S., 2012. The legacy of initial conditions in landscape evolution. Earth Surface 
Processes and Landforms, vol: 37, 52-63. 

Pingoruines, 2017. Zeijen | 1646 | Bollenveen. Available at 
http://www.pingoruines.nl/diversen/locaties/zeijen-1646/, accessed on 12-10-2017. 

Pîrnău, R.G., Mihu-Pintilie, A., Bodi, G., Asăndulesei, A., Niacșu, L., 2014. Ground penetrating radar as 
noninvasive method used in soil science and archaeology. Soil Forming Factors and Processes 
from the Temperate Zone, vol: 13, 15-31. 

Proulx-McInnis, S., St-Hilaire, A., Rousseau, A.N., Jutras, S., 2013. A review of ground-penetrating 
radar studies related to peatland stratigraphy with a case study on the determination of peat 
thickness in a northern boreal fen in Quebec, Canada. Progress in Physical Geography, vol: 37, 
767-786. 

R Studio, 2016. R Markdown. Available at https://rmarkdown.rstudio.com/, accessed on 01-05-2018. 

Refaeilzadeh, P., Tang, L., Liu, H., 2009. Cross-validation, Encyclopedia of database systems. Springer, 
p. 532-538. 

Rossiter, D.G., 2012. Technical note: co-kriging with the gstat package of the R environment for 
statistical computing  

Sarkar, D., 2018. R documentation: 3d Scatter Plot and Wireframe Surface Plot. Available at 
https://www.rdocumentation.org/packages/lattice/versions/0.20-35/topics/B_07_cloud, 
accessed on 16-04-2018. 

Schoorl, J., Sonneveld, M., Veldkamp, A., 2000. Three-dimensional landscape process modelling: the 
effect of DEM resolution. Earth Surface Processes and Landforms, vol: 25, 1025-1034. 

Segal, S., 1966. Ecological studies of peat-bog vegetation in the north-western part of the province of 
Overijsel (The Netherlands). Wentia, vol: 15, 109-141. 

Staatsbosbeheer, 2017a. De Pelen - Over De Pelen. Available at 
https://www.staatsbosbeheer.nl/natuurgebieden/de-pelen/over-de-pelen, accessed on 12-
10-2017. 

Staatsbosbeheer, 2017b. De Pelen - Toegankelijkheid. Available at 
https://www.staatsbosbeheer.nl/natuurgebieden/de-pelen/toegankelijkheid, accessed on 
12-10-2017. 

Staatsbosbeheer, 2017c. Drentse Aa - Over de Drentse Aa. Available at 
https://www.staatsbosbeheer.nl/natuurgebieden/drentsche-aa/over-de-drentsche-aa 
accessed on 12-10-2017. 

Staatsbosbeheer, 2017d. Drentse Aa - Toegankelijkheid. Available at 
https://www.staatsbosbeheer.nl/natuurgebieden/drentsche-aa/toegankelijkheid, accessed 
on 12-10-2017. 

Staatsbosbeheer, 2017e. Kempen - Toegankelijkheid. Available at 
https://www.staatsbosbeheer.nl/Natuurgebieden/kempen/Toegankelijkheid, accessed on 
12-10-2017. 

https://www.rdocumentation.org/packages/gstat/versions/1.1-5/topics/predict
https://www.rdocumentation.org/packages/sp/versions/1.2-5/topics/spplot
http://www.pingoruines.nl/diversen/locaties/zeijen-1646/
https://rmarkdown.rstudio.com/
https://www.rdocumentation.org/packages/lattice/versions/0.20-35/topics/B_07_cloud
https://www.staatsbosbeheer.nl/natuurgebieden/de-pelen/over-de-pelen
https://www.staatsbosbeheer.nl/natuurgebieden/de-pelen/toegankelijkheid
https://www.staatsbosbeheer.nl/natuurgebieden/drentsche-aa/over-de-drentsche-aa
https://www.staatsbosbeheer.nl/natuurgebieden/drentsche-aa/toegankelijkheid
https://www.staatsbosbeheer.nl/Natuurgebieden/kempen/Toegankelijkheid


BEST PRACTICES FOR CREATING HIGH-RESOLUTION 3D PRE-PEAT LANDSCAPES 

 MSC THESIS     DI LLEN BRUIL   51 

Staatsbosbeheer, 2017f. Twente - Over Twente. Available at 
https://www.staatsbosbeheer.nl/natuurgebieden/twente/over-twente, accessed on 12-10-
2017. 

Staatsbosbeheer, 2017g. Twente - Toegankelijkheid. Available at 
https://www.staatsbosbeheer.nl/natuurgebieden/twente/toegankelijkheid, accessed on 12-
10-2017. 

Staatsbosbeheer, 2017h. Veenland - Over het Veenland. Available at 
https://www.staatsbosbeheer.nl/natuurgebieden/veenland/over-het-veenland accessed on 
12-10-2017. 

Staatsbosbeheer, 2017i. Veenland - Toegankelijkheid. Available at 
https://www.staatsbosbeheer.nl/natuurgebieden/veenland/toegankelijkheid, accessed on 
12-10-2017. 

Statistics How To, 2018. What is a Box-Cox Transformation? Available at 
http://www.statisticshowto.com/box-cox-transformation/, accessed on 22-03-2018. 

Stein, M.L., 2012. Interpolation of spatial data: some theory for kriging. Springer Science & Business 
Media. 

Streefkerk, J., Casparie, W., 1989. The hydrology of bog ecosystems. Guidelines for management. 
Staatsbosbeheer, The Netherlands. 

Svensson, G., 1988. Bog development and environmental conditions as shown by the stratigraphy of 
Store Mosse mire in southern Sweden. Boreas, vol: 17, 89-111. 

Temme, A., Armitage, J., Attal, M., Gorp, W., Coulthard, T., Schoorl, J., 2017. Developing, choosing 
and using landscape evolution models to inform field‐based landscape reconstruction studies. 
Earth Surface Processes and Landforms. 

Tran, T.T., 1994. Improving variogram reproduction on dense simulation grids. Computers & 
Geosciences, vol: 20, 1161-1168. 

Van Beek, R., Maas, G., Van den Berg, E., 2015. Home Turf: an interdisciplinary exploration of the 
long-term development, use and reclamation of raised bogs in the Netherlands. Landscape 
History, vol: 36, 5-34. 

Van Beek, R., Paulissen, M., Quik, C., 2017. Home Turf - An integrated approach to Dutch raised bogs. 
Available at http://www.wur.nl/nl/project/Home-Turf.htm, accessed on 06-09-2017. 

Van Geel, B., Buurman, J., Waterbolk, H.T., 1996. Archaeological and palaeoecological indications of 
an abrupt climate change in The Netherlands, and evidence for climatological teleconnections 
around 2650 BP. Journal of Quaternary Science, vol: 11, 451-460. 

Van Hoof, B.I., 2014. Drie locaties nabij het Bargerveen, gemeente Emmen; archeologisch 
vooronderzoek: een bureauonderzoek en verkennend veldonderzoek  

Verhoeven, J.T.A., 2013. Fens and bogs in the Netherlands: vegetation, history, nutrient dynamics and 
conservation. Springer Science & Business Media. 

Wageningen Environmental Research, 2017a. Bodemkundig Informatie Systeem (BIS) Nederland. 
Available at http://www.wur.nl/nl/Expertises-
Dienstverlening/Onderzoeksinstituten/Environmental-Research/Faciliteiten-
Producten/Bodemkundig-Informatie-Systeem-BIS-Nederland.htm, accessed on 04-09-2017. 

Wageningen Environmental Research, 2017b. GeoDesk. Available at 
http://www.wur.nl/nl/Expertises-Dienstverlening/Onderzoeksinstituten/Environmental-
Research/Faciliteiten-Producten/GeoDesk.htm, accessed on 13-07-2017. 

https://www.staatsbosbeheer.nl/natuurgebieden/twente/over-twente
https://www.staatsbosbeheer.nl/natuurgebieden/twente/toegankelijkheid
https://www.staatsbosbeheer.nl/natuurgebieden/veenland/over-het-veenland
https://www.staatsbosbeheer.nl/natuurgebieden/veenland/toegankelijkheid
http://www.statisticshowto.com/box-cox-transformation/
http://www.wur.nl/nl/project/Home-Turf.htm
http://www.wur.nl/nl/Expertises-Dienstverlening/Onderzoeksinstituten/Environmental-Research/Faciliteiten-Producten/Bodemkundig-Informatie-Systeem-BIS-Nederland.htm
http://www.wur.nl/nl/Expertises-Dienstverlening/Onderzoeksinstituten/Environmental-Research/Faciliteiten-Producten/Bodemkundig-Informatie-Systeem-BIS-Nederland.htm
http://www.wur.nl/nl/Expertises-Dienstverlening/Onderzoeksinstituten/Environmental-Research/Faciliteiten-Producten/Bodemkundig-Informatie-Systeem-BIS-Nederland.htm
http://www.wur.nl/nl/Expertises-Dienstverlening/Onderzoeksinstituten/Environmental-Research/Faciliteiten-Producten/GeoDesk.htm
http://www.wur.nl/nl/Expertises-Dienstverlening/Onderzoeksinstituten/Environmental-Research/Faciliteiten-Producten/GeoDesk.htm


BEST PRACTICES FOR CREATING HIGH-RESOLUTION 3D PRE-PEAT LANDSCAPES 

 MSC THESIS     DI LLEN BRUIL   52 

Warner, B.G., Nobes, D.C., Theimer, B.D., 1990. An application of ground penetrating radar to peat 
stratigraphy of Ellice Swamp, southwestern Ontario. Canadian Journal of Earth Sciences, vol: 
27, 932-938. 

Xie, Y., 2018. R documentation: saveGIF. Available at 
https://www.rdocumentation.org/packages/animation/versions/2.5/topics/saveGIF, 
accessed on 09-05-2017. 

Xie, Y., Yu, L., 2017. Convert images to a single animation file (typically GIF) using ImageMagick or 
GraphicsMagick. Available at https://yihui.name/animation/example/savegif/, accessed on 
09-05-2018. 

Zwillbrock Biologische Station, 2017. Betreuung von Schutzgebieten. Available at 
http://www.bszwillbrock.de/biologische-station/betreute-gebiete/, accessed on 12-10-2017. 

 

https://www.rdocumentation.org/packages/animation/versions/2.5/topics/saveGIF
https://yihui.name/animation/example/savegif/
http://www.bszwillbrock.de/biologische-station/betreute-gebiete/


BEST PRACTICES FOR CREATING HIGH-RESOLUTION 3D PRE-PEAT LANDSCAPES 

 MSC THESIS     DI LLEN BRUIL   53 

10. APPENDICES 

 GPR PARAMETERS FOR DIFFERENT MATERIALS Appendix A
TABLE 10.1: GPR VELOCITY TABLE AND ANALYSIS OF VELOCITY, DIELECTRIC CONSTANTS, ATTENUATION AND CONDUCTIVITY FOR 

MATERIALS FROM VARIOUS SOURCES (GPR RENTAL, 2018). 

Material 
Dielectric 
constant K 

Conductivity 
(mS/m) 

GPR velocity 
(m/ns) 

Attenuation 
(dB/m) 

Air 1 0 0.3  

Air   0.31  

Air 1 0 0.3  

Air 1 0 0.3 0 
Air 1 0 0.3 0 
Air 1 0   

Asphalt 3 to 5  

0.173 to 
0.134  

Asphalt   0.14  

Asphalt (dry) 3 
.001 to 
.01   

Asphalt (wet) 9 .01 to .1   

Basalt (Wet)   0.11  

Bauxite (Dry)   0.06  

Clay (Dry)   0.15  

Clay (saturated 
freshwater) 

8 to 12  

.09 to 
0.11  

Clay (wet) 8 to 12 
100 to 
1000 

0.106 to 
0.087  

Clay (Wet)   0.06  

Clay (wet) 10 
100 to 
1000   

Clayey Soil (dry) 2.4 0.27   

Clayey Soil (wet) 15 50   

Clays 5 to 40 2 to 1000 0.06 1 to 300 
Clays 5 to 40 2 to 1000 0.06 1 to 300 

Coal 4 to 5  

0.15 to 
0.134  

Coal   0.14  

Concrete 5 to 10  

0.134 to 
0.095  

Concrete (Dry)   0.13  

Concrete (dry) 7 
.001 to 
.01   

Concrete (Wet)   0.09  

Concrete (wet) 15 
0.01 to 
0.1   

Dolomite 6 to 8  

0.122 to 
0.106  
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Dry Salt   0.13  

Dry Salt 5 to 6 0.01 to 1 0.13  

Dry Salt 5 to 6 0.01 to 1 0.13 .01 to 1 
Dry, sandy, flat coastal 
land 

10 2 0.095  

Dry, sandy, flat coastal 
land 

10  0.09  

Granite 4 to 6 0.01 to 1 0.13 0.01 to 1 
Granite 4 to 6 0.01 to 1 0.13 0.01 to 1 
Granite (dry) 5 0.00001 0.134  

Granite (Dry)   0.14  

Granite (Wet)   0.12  

Granite (wet) 7 1   

Ice   0.15  

Ice 3 to 4 0.01 0.16  

Ice 3 to 4 0.01 0.16 0.01 
Ice 4 1   

Ice Fresh Water 4 0.1 to 10 0.15  

Limestone 4 to 8 0.5 to 2 0.12 0.4 to 1 
Limestone 4 to 8 0.5 to 2 0.12 0.4 to 1 

Limestone (dry) 7 to 9 0.000001 
0.113 to 
0.1  

Limestone (Dry)   0.13  

Limestone (dry) 7  0.11  

Limestone (Wet)   0.11  

Limestone (wet) 8 25   

Loamy Soil (dry) 2.5 0.11   

Loamy Soil (wet) 19 21   

Loamy/Clayey Soils 
(Dry)   0.19  

Mineral/Sandy Soils 
(Dry)   0.13  

Mixed soil components 
saturated 

5 to 15  

0.08 to 
0.13  

Organic Soils   0.04  

Peats   0.04  

Permafrost 4 to 8 
0.01 to 
10 

0.15 to 
0.106  

Permafrost 6 
0.01 to 
10   

Permafrost Frozen Soil   0.13  

Potash Ore   0.13  

PVC, Epoxy, 
Polyesters, Vinyls, 
Rubber 

3  0.173  

Quartz 4  0.15  

Rock (dry) 5 0.00001   
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Sand & Gravel (Dry)   0.13  

Sand & Gravel Frozen   0.14  

Sand (dry) 4 to 6 
0.0001 to 
1 

0.15 to 
0.12  

Sand (Dry)   0.15  

Sand (Dry) 3 to 5 0.01 0.15 0.01 

Sand (Dry) 3 to 5 0.01 0.15 0.01 

Sand (dry) 4.5 
0.0001 to 
1   

Sand (dry) 4 to 6  

0.12 to 
0.15  

Sand (dry) Quartz 1.8 to 6  

0.12 to 
0.22  

Sand (saturated 
freshwater) 

30  0.05  

Sand (wet) 25 0.1 to 1 0.055  

Sand (Wet)   0.08  

Sand (Wet) 20 to 30 
0.1 to 
1.0 

0.06 
0.03 to 
0.3 

Sand (wet) 25 0.1 to 10   

Sand (wet) Quartz, and 
kaolinite, illite and 
smectite clays, 
saturated freshwater 

9 to 67  

0.04 to 
0.10  

Sand and mixed soil 
components, dry 

2 to 6  

0.12 to 
0.21  

Sand Saturated   0.06  

Sand Saturated 20 to 30 
0.1 to 
1.0 

0.06 
0.03 to 
0.3 

Sandstone (Wet)   0.13  

Sandstone (wet) 6 40   

Sandy Soil (dry) 2.6 0.14   

Sandy Soil (wet) 25 6.9   

Sandy Soils (Wet)   0.06  

Sea Ice 4 to 12  

0.15 to 
0.087  

Sea Water 70 400 0.033  

Sea Water 80 3000 0.01 1000 

Sea Water 80 3000 0.01 1000 
Sea Water 81 4000   

Sea Water 81  0.03  

Shale 5 to 15 1 to 100 0.09 1 to 100 
Shale (wet) 7 100   

Shales 5 to 15 1 to 100 0.09 1 to 100 
Silt (saturated) 10  0.09  

Silt (wet) 10 1 to 10 0.095  

Silt (wet) 10 1 to 100   
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Silts 5 to 30 1 to 100 0.07 1 to 100 
Silts 5 to 30 1 to 100 0.07 1 to 100 
Snow   0.25  

Snow 1.4 
0.001 to 
0.01   

Syenite Porphyry   0.13  

Tills   0.09  

Travertine   0.11  

Volcanic Ash   0.09  

Water   0.03  

Water Distilled 80 0.01 0.033 0.002 
Water Distilled 80 0.01 0.033 0.002 

Water Fresh 81 
0.10 to 
30 

0.033  

Water Fresh 81  0.03  

Water Fresh 80 0.5 0.033 0.1 
Water Fresh 80 0.5 0.033 0.1 
Water Fresh 80 0.5   
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 ARCGIS TOOLBOX MODELS Appendix B

B1. EUCLIDEAN DISTANCE 

  

  

FIGURE 10.2: ARCGIS TOOLBOX MODEL FOR CREATING A SAMPLING STRATEGY (EUCLIDEAN DISTANCE CALCULATION 

AND REPROJECTION OF THE SHAPEFILES, PART 1. 

FIGURE 10.1: ARCGIS TOOLBOX MODEL FOR CREATING A SAMPLING STRATEGY (EUCLIDEAN DISTANCE CALCULATION 

AND REPROJECTION OF THE SHAPEFILES, PART 2 
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B2. IMPORT KML 
 

  

FIGURE 10.3: ARCGIS TOOLBOX MODEL FOR IMPORTING KML FILES. 
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B3. PREPARE DINO 

 

  

FIGURE 10.4: ARCGIS TOOLBOX MODEL FOR PREPARING DINO LOCATIONS PER AREA 
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B4. PREPARE BIS 

FIGURE 10.5: ARCGIS TOOLBOX MODEL FOR PREPARING BIS LOCATIONS PER AREA, PART 1. 
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FIGURE 10.6: ARCGIS TOOLBOX MODEL FOR PREPARING BIS LOCATIONS PER AREA, PART 2. 
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B5. ADD AREA NAME TO LAYER INFORMATION BIS DATA 

  

FIGURE 10.7: ARCGIS TOOLBOX MODEL FOR ADDING THE POTENTIAL CASE STUDY AREA NAME TO THE BIS LAYER INFORMATION DATA, PART 1. 
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FIGURE 10.8: ARCGIS TOOLBOX MODEL FOR ADDING THE POTENTIAL CASE STUDY AREA NAME TO THE BIS LAYER INFORMATION DATA, PART 2. 

FIGURE 10.9: ARCGIS TOOLBOX MODEL FOR ADDING THE POTENTIAL 

CASE STUDY AREA NAME TO THE BIS LAYER INFORMATION DATA, PART 3. 
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B6. CREATE CASE STUDY AREA AND ASCII FILE 

 
  

FIGURE 10.10: ARCGIS TOOLBOX MODEL FOR CREATING A SMALLER CASE STUDY AREA AND EXPORTING AN ASCII FILE OF THIS. 
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B7. CREATING LINES FROM THE .GPX DATA 

 

 
 

B8. CREATE AND EXPORT GPR POINTS 

A new point feature class was created and a column was added for the Name of the point. The editor 
was started and the new feature class was edited. The corresponding created line (the GPR transects 
for which the calibration point was created) was selected. With the editor points were constructed 
and the distance was set to the distance of calibration points (in case more than one points were 
created the first point is highlighted). A distinction was made between “single” and “double” points. 
The single points were points that are not included in the 10 meter interval, the double points were 
also points found on the 10 meter interval (so the distance of the calibration point is a multiple of 
10). The names of the points were added manually. The single and double calibration points were 
selected and two new layers were created from the selections. The singles and doubles were merged 
in order to display all calibration points at once and then sorted on name. 
 
To find the coordinates of the 10 meter intervals used for the transition border depth determination, 
the same procedure as above was repeated, but instead of using the distance of the first calibration 
point, the distance was now set to 10 meters. All points on the line were selected and a new layer 
was created from this. Names of the points were calculated based on the ObjectID (ObjectID * 10 = 
distance of interval). Once this was done for all lines, all created points were merged. The “single” 
calibration points were also added to the merge. The points were sorted on name and the X and Y 
coordinates were calculated. Unused fields were deleted and all points were exported to Microsoft 
Excel 
 
 
 
 
 
  

FIGURE 10.11: ARCGIS TOOLBOX MODEL FOR CREATING LINES OF THE WALKED GPR TRANSECTS FROM THE .GPX DATA 
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FIGURE 10.12: ARCGIS TOOLBOX MODEL FOR CREATING AND EXPORTING GPR POINTS, PART 1. 
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FIGURE 10.13: ARCGIS TOOLBOX MODEL FOR CREATING AND EXPORTING GPR POINTS, PART 2. 



BEST PRACTICES FOR CREATING HIGH-RESOLUTION 3D PRE-PEAT LANDSCAPES 

 MSC THESIS     DI LLEN BRUIL   68 

B9. CREATE SHAPEFILES POTENTIAL CASE STUDY AREAS 
 

 

  

FIGURE 10.14: ARCGIS TOOLBOX MODEL FOR CREATING SHAPEFILES OF THE POTENTIAL CASE STUDY AREAS, PART 1. 
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FIGURE 10.15: ARCGIS TOOLBOX MODEL FOR CREATING SHAPEFILES OF THE POTENTIAL CASE STUDY 

AREAS, PART 2. 
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 AREA MEASUREMENT BOLLENVEEN & REUSELSE Appendix C

MOEREN  
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

FIGURE 10.16: AREA DETERMINATION OF THE BOLLENVEEN AND BOLLENVEEN WATER USING GOOGLE 

MAPS. 

FIGURE 10.17: AREA DETERMINATION OF THE REUSELESE MOEREN USING GOOGLE MAPS. 
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FIGURE 10.18: RADARGRAM LINE21. GREEN: TRANSITION BORDER AND YELLOW: 10M INTERVAL POINTS. 

 RADARGRAMS Appendix D
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FIGURE 10.19: RADARGRAM LINE22. GREEN: TRANSITION BORDER AND YELLOW: 10M INTERVAL POINTS. 
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FIGURE 10.20: RADARGRAM LINE23. GREEN: TRANSITION BORDER, BLUE: VISITED CALIBRATION POINTS AND YELLOW: 10M 

INTERVAL POINTS. 
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FIGURE 10.21: RADARGRAM LINE24. GREEN: TRANSITION BORDER, BLUE: VISITED CALIBRATION POINT AND YELLOW: 10M 

INTERVAL POINTS. 
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  FIGURE 10.22: RADARGRAM LINE25. GREEN: TRANSITION BORDER, BLUE: VISITED CALIBRATION POINT AND YELLOW: 10M INTERVAL 

POINTS. 



BEST PRACTICES FOR CREATING HIGH-RESOLUTION 3D PRE-PEAT LANDSCAPES 

 MSC THESIS     DI LLEN BRUIL   76 

  

FIGURE 10.23: RADARGRAM LINE26. GREEN: TRANSITION BORDER, BLUE: VISITED CALIBRATION POINTS AND YELLOW: 10M INTERVAL 

POINTS. 
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FIGURE 10.24: RADARGRAM LINE27. GREEN: TRANSITION BORDER, BLUE: VISITED CALIBRATION POINT AND YELLOW: 10M INTERVAL POINTS. 
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  FIGURE 10.25: RADARGRAM LINE28. GREEN: TRANSITION BORDER, BLUE: VISITED CALIBRATION POINT AND YELLOW: 10M INTERVAL POINTS. 
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  FIGURE 10.26: RADARGRAM LINE29. GREEN: TRANSITION BORDER, BLUE: VISITED CALIBRATION POINT AND YELLOW: 10M INTERVAL POINTS. 
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FIGURE 10.27: RADARGRAM LINE30. GREEN: TRANSITION BORDER, BLUE: VISITED CALIBRATION POINT AND YELLOW: 10M INTERVAL POINTS. 
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FIGURE 10.28: RADARGRAM LINE31. GREEN: TRANSITION BORDER, BLUE: VISITED CALIBRATION POINT AND YELLOW: 10M INTERVAL POINTS. 
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FIGURE 10.29: RADARGRAM LINE32. GREEN: TRANSITION BORDER AND YELLOW: 10M INTERVAL POINTS. 
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 GPR RECORDED PEAT DEPTHS Appendix E
 
TABLE 10.2: ESTIMATED TRAVEL TIMES AND CALCULATED PEAT DEPTHS FOR EVERY GPR INTERVAL OF 10 METER BASED ON AN 

AVERAGE TRAVEL VELOCITY OF 0,0244 M/NS. 

Line 
Distance 
transect 

Estimated  
Travel time [ns] 

Calculated   
peat depth [m] 

Line 
Distance 
transect 

Estimated  
Travel time [ns] 

Calculated   
peat depth [m] 

21 10 51 1,24 28 10 21,5 0,52 

21 20 27,5 0,67 28 20 20 0,49 

21 30 44,5 1,09 28 30 24,5 0,60 

21 40 44 1,07 28 40 27,5 0,67 

21 50 38,5 0,94 28 50 23 0,56 

21 60 36 0,88 28 60 32,5 0,79 

21 70 46,5 1,13 28 65 29,00 0,71 

21 80 42 1,02 28 70 24 0,59 

22 10 54,5 1,33 28 80 25 0,61 

22 20 58 1,41 28 90 27,5 0,67 

22 30 59 1,44 28 100 27 0,66 

22 40 56 1,37 28 110 30,5 0,74 

22 50 43 1,05 28 120 28 0,68 

22 60 47,5 1,16 28 130 26 0,63 

22 70 38,5 0,94 28 140 25 0,61 

22 80 51 1,24 28 150 39,5 0,96 

22 90 58,5 1,43 28 160 36,5 0,89 

23 10 70,5 1,72 28 170 25,5 0,62 

23 20 68 1,66 28 180 20 0,49 

23 30 57,5 1,40 28 190 20,5 0,50 

23 40 65,5 1,60 29 10 39,5 0,96 

23 50 51 1,24 29 20 38,5 0,94 

23 60 50,5 1,23 29 30 43,5 1,06 

23 70 50,5 1,23 29 40 43 1,05 

23 80 38 0,93 29 50 25,5 0,62 

23 90 51 1,24 29 60 18,5 0,45 

23 100 38 0,93 29 70 15 0,37 

23 110 48 1,17 29 80 23 0,56 

23 120 44 1,07 29 90 12 0,29 

23 130 54,5 1,33 29 100 26 0,63 

23 140 53,00 1,29 29 110 9 0,22 

23 150 56 1,37 29 120 14,50 0,35 

23 160 44 1,07 29 130 18,5 0,45 

23 170 48 1,17 29 140 24,5 0,60 

23 180 53 1,29 30 10 1,5 0,04 

23 190 48 1,17 30 16 2,00 0,05 

23 200 39,5 0,96 30 20 2 0,05 

23 210 40,5 0,99 30 30 2 0,05 

23 220 39 0,95 30 40 2 0,05 

23 230 25 0,61 30 50 2 0,05 

23 240 26 0,63 30 60 1,5 0,04 

23 250 28 0,68 30 70 1,5 0,04 

23 260 32,5 0,79 30 80 2,5 0,06 

23 270 24 0,59 30 90 2,5 0,06 

23 280 25,5 0,62 30 100 2 0,05 

23 290 27 0,66 30 110 2 0,05 

23 294 26,50 0,65 30 120 1 0,02 

23 300 24,5 0,60 30 130 1,5 0,04 
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23 310 32 0,78 30 140 2,5 0,06 

23 320 32,5 0,79 30 150 2 0,05 

23 330 54 1,32 30 160 2 0,05 

24 60 27,5 0,67 30 170 2 0,05 

24 70 24,5 0,60 30 180 2 0,05 

24 80 33 0,80 30 190 2 0,05 

24 90 30,5 0,74 30 200 0 0,00 

24 100 20,5 0,50 30 210 0,5 0,01 

24 110 32 0,78 30 220 1,5 0,04 

24 120 33,5 0,82 30 230 0 0,00 

24 130 50 1,22 30 240 0,5 0,01 

24 140 42,5 1,04 30 250 1 0,02 

24 150 43,5 1,06 30 260 2 0,05 

24 160 42,5 1,04 30 270 2 0,05 

24 170 42 1,02 30 280 3 0,07 

24 180 30 0,73 30 290 2 0,05 

24 190 26,5 0,65 30 300 2 0,05 

24 200 24,5 0,60 30 310 2,5 0,06 

24 210 24 0,59 30 320 2,5 0,06 

24 220 30 0,73 30 330 2 0,05 

24 230 32 0,78 30 340 2,5 0,06 

24 240 32,5 0,79 30 350 2 0,05 

24 250 32,5 0,79 30 360 2,5 0,06 

24 260 35 0,85 30 370 2,5 0,06 

24 270 32,5 0,79 30 380 0,5 0,01 

24 280 29 0,71 30 390 2,5 0,06 

24 290 29 0,71 30 400 1,5 0,04 

24 300 30,5 0,74 30 410 2 0,05 

24 310 32 0,78 30 420 2,5 0,06 

24 320 25,5 0,62 30 430 1,5 0,04 

24 330 26 0,63 30 440 2 0,05 

24 331 30,00 0,73 30 450 2 0,05 

24 340 29 0,71 30 460 2 0,05 

24 350 29 0,71 30 470 2 0,05 

25 10 41,5 1,01 30 480 2 0,05 

25 20 32 0,78 30 490 0 0,00 

25 23 27,00 0,66 30 500 0 0,00 

25 30 28 0,68 30 510 0 0,00 

25 40 51 1,24 30 520 0 0,00 

25 50 44,5 1,09 30 530 2,5 0,06 

25 60 48 1,17 30 540 2 0,05 

25 70 45,5 1,11 31 10 15 0,37 

25 80 45 1,10 31 20 14 0,34 

25 90 48,5 1,18 31 26 19,50 0,48 

25 100 42 1,02 31 30 20,5 0,50 

25 110 45 1,10 31 40 27,5 0,67 

25 120 40,5 0,99 31 50 16 0,39 

25 130 49,5 1,21 31 60 13,5 0,33 

26 10 36 0,88 31 70 20,5 0,50 

26 20 39,5 0,96 31 80 35,5 0,87 

26 30 41 1,00 31 90 37,5 0,91 

26 40 49 1,20 31 100 40 0,98 

26 50 47 1,15 31 110 44 1,07 

26 60 49 1,20 31 120 45,5 1,11 

26 70 26 0,63 31 130 42,5 1,04 
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26 80 22 0,54 31 140 32,5 0,79 

26 90 24,5 0,60 31 150 25,5 0,62 

26 100 15 0,37 31 160 22 0,54 

26 110 20,5 0,50 32 10 34 0,83 

26 120 6,5 0,16 32 20 42,5 1,04 

26 130 6,5 0,16 32 30 47,5 1,16 

26 140 25 0,61 32 40 49 1,20 

26 150 22 0,54 32 50 42 1,02 

26 160 20 0,49 32 60 47 1,15 

26 170 31 0,76 32 70 48,5 1,18 

26 180 26,5 0,65 32 80 48,5 1,18 

26 190 34,5 0,84 32 90 45,5 1,11 

26 200 32,5 0,79 32 100 34 0,83 

26 210 28 0,68 32 110 24 0,59 

26 212 28,00 0,68 32 120 25 0,61 

26 220 31 0,76 32 130 31,5 0,77 

26 230 31 0,76 32 140 31,5 0,77 

26 240 31,5 0,77 32 150 25 0,61 

26 250 25 0,61 32 160 24 0,59 

26 260 24,5 0,60 32 170 29 0,71 

26 270 23 0,56 32 180 38 0,93 

26 280 23 0,56 32 190 23 0,56 

26 290 24 0,59 32 200 20,5 0,50 

26 300 20,5 0,50 32 210 19 0,46 

26 310 18,5 0,45 32 220 19,5 0,48 

26 320 18 0,44 32 230 24 0,59 

27 10 15 0,37 32 240 27 0,66 

27 20 16,5 0,40 32 250 28 0,68 

27 30 19,5 0,48 32 260 27 0,66 

27 40 22 0,54 32 270 31 0,76 

27 50 8,5 0,21 32 280 37,5 0,91 

27 60 10 0,24 

 

27 70 19,50 0,48 

27 80 17,5 0,43 

27 90 20,5 0,50 

27 100 19,5 0,48 

27 110 35 0,85 

27 120 39 0,95 

27 130 25 0,61 

27 140 23,5 0,57 

27 150 22 0,54 

27 160 16,5 0,40 

27 170 24 0,59 

27 180 23 0,56 

27 190 22 0,54 

27 200 17,5 0,43 

27 210 22,5 0,55 

27 220 24 0,59 

27 230 17,5 0,43 

27 240 20 0,49 

27 250 20,5 0,50 

27 260 20,5 0,50 

27 270 20,5 0,50 

27 280 21 0,51 
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 USED DATABASES Appendix F
Underneath the databases are presented. Because of the size of the databases, the databases are cut 
into smaller pieces. In Figure 10.30 an overview of the database representation can be found and 
how to recognize where in the database particular pages fit. The borders of the database all have a 
thicker green border. Each page contains the datapoint names (indicated with a “n”), followed by the 
corresponding data. First all the rows in the first columns are presented, then the rows are continued 
with the next columns, ending with the rows in the last columns.  
 
Each of the following pages show part of the databases. The databases are presented the way they 
are used as input for the reconstruction. This means that empty rows occur when no data is recorded 
(which means for the legacy data that the end of the record has already been reached).  
 

 
The legacy data consists of three databases: the DINO data (Table 10.3) and the BIS data divided into 
BPK (Table 10.4) and PFB (Table 10.5). The databases are found on the next pages. 
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FIGURE 10.30: OVERVIEW OF THE REPRESENTATION OF THE 

DATABASES ON DIFFERENT PAGES. 
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F1. LEGACY DATA: DINO DATABASE

TABLE 10.3: LEGACY DATA: DINO DATABASE 
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F2. LEGACY DATA: BIS DATABASE (BPK)  

TABLE 10.4: LEGACY DATA: BPK DATABASE 
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F3. LEGACY DATA: BIS DATABASE (PFB)  

TABLE 10.5: LEGACY DATA: PFB DATABASE 
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F4. GPR DATABASE 

From the data collected with the GPR, the GPR database is completed (Table 10.6). 
 

TABLE 10.6: GPR DATA: GPR DATABASE 
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 RECONSTRUCTION SCRIPT Appendix G

RECONSTRUCTING PRE-PEAT LANDSCAPES 
Dillen Bruil 
2 June 2018 

This script reconstructs and assesses several reconstructions of a pre-peat landscape, if desired it can also be 
used to reconstruct other layers. Most steps are automated with use of functions (found directly 
underneath). But some manual input is required in the main script (where indicated). The main 
reconstruction script is continued directly after the used functions. 

G1. USED FUNCTIONS 

PACKAGE LOADER 

Function to load, and if necessary install, all packages. 

Input can be either a package name (as string) or a vector with the names of the packages (as string). If a 
package does not exist or is not available for this version of R. the function will be aborted and a warning with 
an error will be displayed. 

packageloader <- function(packages){ 
   
# Run the function for every desired package. 
  for (x in packages){ 
     
# Test if package is allready installed. 
    if (!(x %in% rownames(installed.packages()))) { 
       
# If not, install the package. 
      lapply(x, FUN=install.packages) 
    } 
     
# Load the package. 
    lapply(x, FUN=library, character.only=T) 
     
# print the loaded packages. 
    print(paste0("The package '", x, "' is loaded.")) 
  } 
} 

 

OPEN ASCII FILES 

Function to open an ASCII files and adding the RD New projection to it. 

Loading (and if necessary installing) packages. 

packages <- c("rgdal") 
packageloader(packages) 

 

Inputs for the function are: 
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• The filename of the to be opened ASCII file, 

• The directory where the ASCII file can be found, 

• The projection of the ASCII file. 

OpenASCII <- function(filename, directory, projection){ 
   
# Define full path to open the ASCII file. 
  fullpath <- paste0(directory, "/", filename, ".asc") 
   
# Open ASCII file. 
  ASCIIfile <- readGDAL(fullpath) 
   
# Define projection. 
  proj4string(ASCIIfile) <- projection 
   
# Return ASCII file. 
  return(ASCIIfile) 
} 

 

OPEN AHN 

Function to load and merge all AHN (.TIF) tile files in a folder 

.TIF tiles of the AHN are available at: 

http://www.arcgis.com/home/webmap/viewer.html?webmap=ac6b6ecd42424e33bd0e6fa09499c56
3. 

Loading (and if necessary installing) packages. 

packages <- c("raster") 
packageloader(packages) 

 

Input of the function is the name of the directory that contains all the to be merged .TIF tiles. 

open_ahn <- function(data_directory_name) { 
   
# Set proper paths. 
  data_dir  <- paste0(data_directory_name, "/") 
  data_file <- dir(data_dir) 
     
   
# In case only 1 file is present in the folder, merging is not possible:  
  if (length(data_file) == 1){ 
    message(paste("There is", length(data_file), "AHN file in the selected direc
tory")) 
    ahn <- raster(paste0(data_dir, data_file[1])) 
    message("The AHN raster is created") 
  } 
   
# In case more than 1 file is present in the folder: 
  if (length(data_file) > 1){  
     
# Set initial conditions for while loop. 
    i <- 1 

http://www.arcgis.com/home/webmap/viewer.html?webmap=ac6b6ecd42424e33bd0e6fa09499c563
http://www.arcgis.com/home/webmap/viewer.html?webmap=ac6b6ecd42424e33bd0e6fa09499c563
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    message(paste("There are", length(data_file), "AHN files in the selected dir
ectory.")) 
     
# While loop to merge all files in the folder. 
    while (i <= length(data_file)){ 
       
# First merge, starting with the first two .TIF files listed. 
      if (i == 1){ 
        print(paste0("Merging AHN files ", i, " and ", i+1,".")) 
         
# Before merging, a raster should be made from the .TIF files.  
        ahn <- merge(raster(paste0(data_dir, data_file[i])),  
                     raster(paste0(data_dir, data_file[i+1]))) 
         
        print(paste("AHN files", i, "and", i+1, "have merged.")) 
         
# Merging is done for file 1 and 2 listed, so the loop can skip the second 
.TIF file listed. 
        i <- 2 
      } 
       
# Merging continues by adding the next .TIF file (starting with the third) 
to the already merged file. Also here a raster should be made from the the 
.TIF file before merging. 
      if (i > 2){ 
        print(paste("Adding AHN file", i, "to the previous merged AHN files.")) 
        ahn<- merge(ahn, raster(paste0(data_dir, data_file[i]))) 
        print(paste("AHN file", i, "is added to the merged AHN.")) 
      } 
       
# Continue tot the next file in the folder. 
      i <- i + 1 
    } 
  } 
   
# Return the AHN when all files in the folder have been merged. 
  message("The AHN raster is created") 
  return(ahn) 
} 

 

OPTIMIZE DATABASES 

Function that optimizes and complements databases in order to use them for the kriging 

Inputs for the function are: 

• The identifier of the layer that needs to be reconstructed, 

• Optionally details if details are preferred above the identifier, e.g. sand median (default is FALSE) 

• A database in the correct setup, 

• A raster heightfile, 

• The projection of the used coordinate system, 

• Optionally a cutoff (the column with the last plausible depth of the identifier) (default is no cutoff) 

• Size of the rastercells of the final reconstruction 
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The correct setup of the database: 

(df <- data.frame("Name" = c("Name_1", "Name_2", "Name_n"),  
                 "X.Coord" = c("X-Coord_1", "X-Coord_2", "X-Coord_n"),  
                 "Y.Coord" = c("Y-Coord_1", "Y-Coord_2", "Y-Coord_n"),  
                 "SurfaceLevel" = c("SurfaceLevel_1", "SurfaceLevel_2", "SurfaceLe
vel_n"),  
                 "Layer1 Depth" = c("Depth of Layer 1_1", "Depth of Layer 1_2", "D
epth of Layer 1_n"),  
                 "Layer1 Deposit" = c("Layer1_Deposit_1", "Layer1_Deposit_2", "Lay
er1_Deposit_n"),  
                 "Layer1 Details" = c("Sand Median_1", "Sand Median_2", "Sand Medi
an_n"),  
                 "Layer2 Depth" = c("Depth of Layer 2_1", "Depth of Layer 2_2", "D
epth of Layer 2_n"), 
                 "Layer2 Deposit" = c("Layer2_Deposit_1", "Layer2_Deposit_2", "Lay
er2_Deposit_n"), 
                 "Layer2 Details" = c("Sand Median_1", "Sand Median_2", "Sand Medi
an_n"), 
                 "Layer'n' Depth" = c("Depth of Layer n_1", "Depth of Layer n_2", 
"Depth of Layer n_n"), 
                 "Layer'n' Details" = c("Layer'n'_Deposit_1", "Layer'n'_Deposit_2"
, "Layer'n'_Deposit_n"), 
                 "Layer'n' Deposit" = c("Sand Median_1", "Sand Median_2", "Sand Me
dian_n") 
)) 

##     Name   X.Coord   Y.Coord   SurfaceLevel       Layer1.Depth 
## 1 Name_1 X-Coord_1 Y-Coord_1 SurfaceLevel_1 Depth of Layer 1_1 
## 2 Name_2 X-Coord_2 Y-Coord_2 SurfaceLevel_2 Depth of Layer 1_2 
## 3 Name_n X-Coord_n Y-Coord_n SurfaceLevel_n Depth of Layer 1_n 
##     Layer1.Deposit Layer1.Details       Layer2.Depth   Layer2.Deposit 
## 1 Layer1_Deposit_1  Sand Median_1 Depth of Layer 2_1 Layer2_Deposit_1 
## 2 Layer1_Deposit_2  Sand Median_2 Depth of Layer 2_2 Layer2_Deposit_2 
## 3 Layer1_Deposit_n  Sand Median_n Depth of Layer 2_n Layer2_Deposit_n 
##   Layer2.Details     Layer.n..Depth   Layer.n..Details Layer.n..Deposit 
## 1  Sand Median_1 Depth of Layer n_1 Layer'n'_Deposit_1    Sand Median_1 
## 2  Sand Median_2 Depth of Layer n_2 Layer'n'_Deposit_2    Sand Median_2 
## 3  Sand Median_n Depth of Layer n_n Layer'n'_Deposit_n    Sand Median_n 

 

The database is optimized for kriging in five main steps. These steps are indicated with a double hashtag in 
front of the comment. The output is a spatial points data frame. 

optim_database <- function(identifier, details = FALSE, database, heightfile,  
                           projection, cutoff = FALSE, rastersize){ 
   
  name <- deparse(substitute(database)) 
   
   
## Add empty columns and rearrange columns: 
  database["Peatdepth"]  <- NA 
  database["Peatheight"] <- NA 
  col_Peatdepth  <- grep("Peatdepth", names(database)) 
  col_Peatheight <- grep("Peatheight", names(database)) 
  database <- database[, c((1:4),col_Peatdepth, col_Peatheight,(7:ncol(database))-
2)] 
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## Calculate max peat depth under surface level: 
 
# Set Start row and column for finding max peat depth. 
  colnr <- 8 
  rownr <-1 
   
# If cutoff is FALSE, make the cutoff the max column number. 
  if (!cutoff){ 
    cutoff <- length(names(database)) 
  } 
   
# If details are provided look for details as identifier and loop through d
etails column. 
  if (details){ 
    identifier = details 
    colnr <- 9 
  } 
 
# Loop over all columns that describe the layer (Name =  "LayerX"). 
  while (colnr <= length(colnames(database))){ 
 
# Continue loop over all rows. 
    while (rownr <= length(row.names(database))){ 
 
# Only use cells that are not NA and skip outliers by setting a cutoff (too 
deep to be realistic part of the reconstructed pre-peat landscape, this can 
be checked with the printed statements, indicicating which rows and columns 
match the identifier). 
      if (!is.na(database[rownr, colnr]) & colnr <= cutoff){ 
 
# Only use cells that that have the identifier. 
        if ((database[rownr,colnr]) == identifier){ 
          print(paste(identifier, "layer at rownumber:", rownr, "and column numbe
r:", colnr)) 
 
# Replace peatdepth by the depth of the peath of this layer. 
          database$Peatdepth[rownr] <- database[rownr,colnr-1] 
        } 
      } 
 
# Continue to the next row (next sample location). 
      rownr <- rownr + 1 
    } 
 
# Continue to the next LayerX column --> Layer(X+1) and Reset the rownumber
s to start at the first sample location again. 
    colnr <- colnr + 3 
    rownr <- 1 
  } 
   
# Assumption made that no peat has depth 0. Set NA to 0 for peat depth. 
  for (i in seq(row.names(database))){ 
    if (is.na(database$Peatdepth[i])){ 
      database$Peatdepth[i] <- 0 
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    } 
  } 
   
   
## Check whether all depths have a deeper layer to make sure the depth is really t
he bottom of the layer and not only the end of the measurement: 
 
# Set initial values and add 2 empty columns at the end to make the loop po
ssible in case the identifier is identified in the last column. 
  rownr <- 1 
  database$Extra1 <- as.factor("") 
  database$Extra2 <- as.factor("") 
   
# Loop through all rows 
  while (rownr <= length(row.names(database))){ 
     
# Only loop when there is a Peat layer. 
    if (database$Peatdepth[rownr] != 0){  
       
# Find out wichh columnnumber has the deepest layer.  
      match <- which(database$Peatdepth[rownr] == database[rownr,]) 
       
# Take the last matching depth and add 4 to see which layer is underneath. 
      match <- tail(match, n = 1) + 4 
       
# If there is no layer, the Peatdepth should be set to NA. 
      if (database[rownr, match]  == "" | is.na(database[rownr, match])){ 
        database$Peatdepth[rownr] <- NA 
      } 
    } 
     
# Continue to next row. 
    rownr <- rownr + 1 
  } 
   
# Remove extra created columns. 
  database$Extra1 <- NULL 
  database$Extra2 <- NULL 
 
# Remove all data points with NA values for the Peat depth and only continu
e if there is still data left, otherwise return NULL. 
  database <- database[complete.cases(database$Peatdepth),] 
   
  if (is.na(database[1,1])){ 
    message("No data in the database is suited.") 
    message(paste("There is no layer underneath the", identifier,"layer.")) 
    message("An empty variable will be returned.") 
    database <- NULL 
  } 
 
  if (!is.null(database)){  
     
     
## Extract heights from heightfile raster: 
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# Create new dataframe with x and y coordinates of the data to extract the 
surface level heights from the heightfile raster. 
    ahncoords <- data.frame(x = database$X.Coord, y = database$Y.Coord) 
    ahnheight <- extract(heightfile, ahncoords) 
 
# Add the heightfile heights to the levels in the surface level column of t
he dataframe and replace all "Unknown" surface level heights with the heigh
ts extracted from the raster heightfile. 
    levels(database$SurfaceLevel) <- c(levels(database$SurfaceLevel), ahnheight) 
     
    for (i in seq(length(rownames(database)))){ 
      if (database$SurfaceLevel[i] == "Unknown"){ 
        database$SurfaceLevel[i] <- ahnheight[i] 
      } 
    } 
     
# Remove all data points with NA values for the surface level and only cont
inue if there is still data left, otherwise return NULL. 
    database <- database[complete.cases(database$SurfaceLevel),]     
     
    if (is.na(database[1,1])){ 
      message("No data in the database is suited.") 
      message("The datapoints do not have a surfacelevel height and are not locat
ed on the heightfile") 
      message("An empty variable will be returned.") 
      database <- NULL 
    } 
     
    if (!is.null(database)){  
       
       
## Calculate peat depth above sea level: 
       
# Make surface level numeric and replace comma's by dots. 
      database$SurfaceLevel <- as.numeric(gsub("\\,", ".", database$SurfaceLevel)
) 
       
# Calculate Peat depth above sealevel. 
      database$Peatheight <- database$SurfaceLevel - database$Peatdepth 
       
# Make spatial points data frame and add projection. 
      coordinates(database) <- ~ X.Coord + Y.Coord 
      proj4string(database) <- projection 
 
# Remove duplicate points within [the rastersize] meter. 
      database <- remove.duplicates(database, zero = rastersize, remove.second = 
T) 
       
      message(paste(name, "has successfully been optimized for use.")) 
    } 
  } 
   
# Return database. 
  return(database) 
} 
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OPTIMAL LAMBDA (FOR BOXCOX TRANSFORMATION) 

Function to find the most optimal lambda in order to get the least skewed histogram of the dataset Or to 
find the most optimal, universal lamda, for two datasets 

If "forecast" is not yet installed, install it. Do not load it because gstat will give problems 

if (!("forecast" %in% rownames(installed.packages()))) { 
  install.packages("forecast") 
} 

 

Inputs are two datasets, of which the combined most optimal lambda is calculated, to get the lowest skewness 
average of both BoxCox transformed datasets. If for only 1 dataset the most optimal lambda should be 
calculated in order to get the least skewed transformation, dataset 1 should be used for dataset 2 as well 
(default). 

OptimLambda <- function(dataset1, dataset2 = dataset1){ 
   
# Create empty data frame. 
  lambda       <- c() 
  abs.meanskew <- c() 
  abs.BC1skew  <- c() 
  abs.BC2skew  <- c() 
   
  lambdadf <- data.frame(lambda, abs.BC1skew, abs.BC2skew, abs.meanskew) 
  lambdadf <- lambdadf$lambda  
  lambdadf <- lambdadf$abs.BC1skew 
  lambdadf <- lambdadf$abs.BC2skew 
  lambdadf <- lambdadf$abs.meanskew 
   
# set parameters. 
  i <- 1 
  series <- seq(-5, 5, 0.01) 
   
# Loop through every value in the series used for lambda. 
  for (uselambda in series){ 
     
# The used lambda. 
    lambdadf$lambda[i]       <- uselambda 
     
# Calculate absolute skewness value for BoxCox transformation. 
    lambdadf$abs.BC1skew[i]  <- abs(skewness(try(forecast::BoxCox(dataset1, lamb
da = uselambda), silent = T))) 
    lambdadf$abs.BC2skew[i]  <- abs(skewness(try(forecast::BoxCox(dataset2, lamb
da = uselambda), silent = T))) 
     
# Calculate average of both skewnesses. 
    lambdadf$abs.meanskew[i] <- mean(c(lambdadf$abs.BC1skew[i], lambdadf$abs.BC2sk
ew[i])) 
     
# Continue to next value in the serie. 
    i <- i + 1 
  } 
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# Find the belonging lambda value of the minimum avareage absolute skewness
. 
  optimlambda <- lambdadf$lambda[which(min(na.omit(lambdadf$abs.meanskew))==lambd
adf$abs.meanskew)] 
 
# Retaurn the most optimal lambda.  
  return(optimlambda) 
} 

 

TRANSFORM DATA 

Function that tells if a transformation of the data is advisable, if yes it transforms the data 

If "forecast" is not yet installed, install it. Do not load it because gstat will give problems, and loading (and if 
necessary installing) timeDate package. 

if (!("forecast" %in% rownames(installed.packages()))) { 
  install.packages("forecast") 
} 
 
packages <- c("timeDate") 
packageloader(packages) 

 

Inputs for the function are: 

• Dataset1: the data that that needs to be checked on distribution and needs to be transformed to become 
the least skewed, 

• Dataset2: only use to find the best transformation based on two datasets; used to get the same lambda 
for BoxCox transformation. 

• Transformdata is data to be transformed, use if the to be transformed data is different than the data on 
which the distribution is based. Default is dataset 1. if draw=TRUE, it is adviced to use dataset1 here 
instead of calling on dataset1 as default (if not done the title will contain "dataset1" instead of the name 
of dataset1), 

• Transformation: choose a specific transformation (default is "All"). Choose between: 

– "All" 

– "No" 

– "Natural logarithmic" 

– "Logarithmic" 

– "Square root" 

– "Exponential" 

– "BoxCox" 

• Draw: choose to plot the histogram. Default is to plot it (TRUE) 

DoTransform <- function(dataset1, dataset2 = dataset1, transformdata = dataset1,  
                        transformation = "All", draw = T){ 
 
# Copy transformation in order to properly check all transformations and se
lect a transformation based on that checkup and correctly inform the user o
n the transformation. 
  Trans <- transformation 
   
# Identify most likely transformations. 
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  lambda <- OptimLambda(dataset1, dataset2) 
   
  NoTrans     <- dataset1 
  NatLogTrans <- log(dataset1) 
  Log10Trans  <- log10(dataset1) 
  SqrtTrans   <- sqrt(dataset1) 
  ExpTrans    <- exp(dataset1) 
  BCTrans     <- forecast::BoxCox(transformdata, lambda = lambda) 
   
# Create dataframe with most likely transformations and the skewness. 
  Transdf <- data.frame("Transformations"= c("No", "Natural logarithmic", "Logari
thmic",  
                                             "Square root", "Exponential", "BoxCox
"), 
                        "Skewness"= c(skewness(NoTrans), skewness(NatLogTrans), 
skewness(Log10Trans),  
                                      skewness(SqrtTrans), skewness(ExpTrans), s
kewness(BCTrans)))  
   
  if (transformation == "All" |  
      transformation == "No" |  
      transformation == "Natural logarithmic" | 
      transformation == "Logarithmic" | 
      transformation == "Square root" | 
      transformation == "Exponential" | 
      transformation == "BoxCox"){ 
     
# If transformation = All, check all transformations and use the least skew
ed transformation. 
    if (Trans == "All"){ 
       
# Find least skewed transformation and rename Trans. 
      LeastSkew <- min(abs(na.omit(Transdf$Skewness))) 
      LowTrans  <- which(LeastSkew == abs(Transdf$Skewness))[1] 
      Trans     <- Transdf$Transformations[LowTrans] 
    } 
     
# If no transformation is needed: do nothing. 
    if(Trans == "No"){ 
      newData <- NoTrans 
       
# Inform user what is done. 
      message(paste(Trans, "transformation is advised and data is left unchanged"
)) 
      message(paste("The skewness of the data is", skewness(newData))) 
       
# Plot histogram of the distribution and add the skewness to the plot if dr
aw = TRUE. 
      if (draw == T){ 
        hist(newData, xlab = "Untransformed Height of layer", ylab = "Frequency",  
             main = paste("Histogram of", deparse(substitute(transformdata))),  
             sub  = paste("Skewness is", skewness(newData))) 
      } 
    } 
     
# If a transformation is needed: transform data. 
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    if (Trans != "No"){ 
       
      if(Trans == "Natural logarithmic"){ 
        newData <- NatLogTrans 
      } 
      if(Trans == "Logarithmic"){ 
        newData <- Log10Trans 
      } 
      if(Trans == "Square root"){ 
        newData <- SqrtTrans 
      } 
      if(Trans == "Exponential"){ 
        newData <- ExpTrans 
      } 
      if(Trans == "BoxCox"){ 
        newData <- BCTrans 
      } 
       
# Inform user what is done if a transformation advice is given. 
      if (transformation == "All"){ 
        message(paste(Trans, "transformation is advised and executed")) 
        message(paste("The skewness of the transformed data is", skewness(newDat
a))) 
      }  
    
# Inform user what is done if the user choose the transformation. 
      if (transformation != "All"){ 
        message(paste(Trans, "transformation is executed")) 
        message(paste("The skewness of the transformed data is", skewness(newDat
a))) 
      }  
       
# Plot histogram of the new distribution and add the skewness to the plot i
f draw = TRUE. 
      if (draw == T){ 
        hist(newData, xlab = "Transformed height of layer", ylab = "Frequency",  
             main = paste("Histogram of a", Trans, "transformation of", deparse(s
ubstitute(transformdata))),  
             sub = paste("Skewness is", skewness(newData))) 
      } 
    } 
  } 
   
# In case the wrong "transformation" is given. 
  else { 
    warning('Incorrect input for "transformation" , please use one of the followi
ng statements:  
  "All", "No", "Natural logarithmic", "Logarithmic", "Square root", "Exponential" 
or "BoxCox"') 
    newData <- NoTrans 
  } 
   
# Return the new data. 
  return(newData) 
} 
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BEST FIT VARIOGRAM MODEL 

Function that returns the variogram with the lowest sum of square error of all available variogram types 
("vgm()") 

Loading (and if necessary installing) packages. 

packages <- c("gstat") 
packageloader(packages) 

 

Input for the function is a variogram of a gstat object, skip allows to skip one variogram type. 

optim_vgm_model <- function(vg, skip = F){ 
  
# Set parameters and initial (empty) vectors and dataframe. 
  i        <- 1 
  skipnr   <- which(vgm()$short == skip) 
  VgmType  <- c() 
  VgmSSErr <- c() 
  df       <- data.frame(VgmType, VgmSSErr) 
  df       <- df$VgmType 
  df       <- df$VgmSSErr 
   
# Loop through all variogram types. 
  while (i < length(vgm()$short)){ 
    
# vgm() is of class data.frame. For every row the type should be selected a
nd only the short code for the variogram type should be used when autofitti
ng the variogram. Not all variogram types can be used, some throw errors so 
fitting the variogram should be suppressed with a Try(). Warnings are suppr
essed. 
    VgmType[i] <- unlist(strsplit(as.character(vgm()$short[i]), " ")) 
    suppressWarnings(try(vgmX <- fit.variogram(vg, vgm(VgmType[i]), fit.kappa =
T), silent = T)) 
 
     
# Find the belonging sum of squared errors. 
    VgmSSErr[i] <- attr(vgmX, "SSErr") 
     
 
# Store data in the dataframe. 
    df$VgmType[i]  <- VgmType[i] 
    df$VgmSSErr[i] <- VgmSSErr[i] 
     
# Continue to the next row 
    i <- i + 1 
     
# If the next row is the vgm type that should be skipped, continue to secon
d next row. 
    if (skip %in% vgm()$short){ 
      if (i == skipnr){ 
        i <- i + 1 
      } 
    } 
  } 
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# Find variogram type with minimum sum of squared errors, if multiple vario
grams have the lowest sum of squared errors, the first one is used. 
  minSSErr     <- min(na.omit(df$VgmSSErr)) 
  minSSErrRow  <- which(df$VgmSSErr == minSSErr)[1] 
  minSSErrFull <- factor(vgm()$short[minSSErrRow]) 
  print(paste("The best fitted variogram type is:", minSSErrFull)) 
  minSSErrType <- toString((factor(df$VgmType[minSSErrRow]))) 
   
# Return the fitted variogram with the lowest sum of squared errors. 
  vgm <- fit.variogram(vg,vgm(minSSErrType)) 
  return(vgm) 
} 

 

BEST VARIOGRAM MODEL 

Function that tells which of two variogram models is best for kriging, meaning: which variogram model has 
the lowest sill and the lowest nugget. 

The function reports it when no choice can be made. An eye should be kept on the difference in range, with a 
high range difference the sill might look better on small scale. 

Inputs are two variogram models. 

bestvgm <- function(vgm1, vgm2){ 
   
# Calculate the difference in range. 
  rangedif <- abs(vgm1$range[2] - vgm2$range[2]) 
   
# Check if variogram model 1 is best and set variogram model 1 for use. 
  if (vgm1$psill[1] < vgm2$psill[1] & vgm1$psill[2] < vgm2$psill[2]){ 
    use <- vgm1 
    message(deparse(substitute(vgm1)), " is best suited for kriging") 
    message(deparse(substitute(vgm1)), " is the returned variogram model") 
    message("MIND: the range difference is: ", rangedif) 
  } 
 
# Check if variogram model 2 is best and set variogram model 2 for use. 
  if (vgm1$psill[1] > vgm2$psill[1] & vgm1$psill[2] > vgm2$psill[2]){ 
    use <- vgm2 
    message(deparse(substitute(vgm2)), " is best suited for kriging") 
    message(deparse(substitute(vgm2)), " is the returned variogram model") 
    message("MIND: the range difference is: ", rangedif) 
  } 
   
# If the nugget and sill both are not the best option. 
  if (!(vgm1$psill[1] < vgm2$psill[1] & vgm1$psill[2] < vgm2$psill[2]) &  
      !(vgm1$psill[1] > vgm2$psill[1] & vgm1$psill[2] > vgm2$psill[2])){ 
    use <- NULL 
    message("Cannot choose the best variogram model, manual selection is required
") 
    message("No variogram model is returned") 
  } 
   
# Return the variogram model set for use. 
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  return(use) 
} 

 

REVERSE BOXCOX TRANSFORMATION 

Function that reverses (back transforms) BoxCox transformed data 

If "forecast" is not yet installed, install it. Do not load it because gstat will give problems.  

if (!("forecast" %in% rownames(installed.packages()))) { 
  install.packages("forecast") 
} 

 

Inputs for the function are: 

• BoxCox transformed dataset, 

• Original dataset to calculate the optimal lambda used, 

• In case two datasets are compared, the second dataset to calculate the combined most optimal lambda, 

• Variance of the transformed dataset 

revBoxCox <- function(BCTransformedData, OriginalData1, OriginalData2 = OriginalDa
ta1, variance){ 
   
# Calculate lambda based on the original input data for the transformation. 
  lambda   <- OptimLambda(OriginalData1, OriginalData2) 
   
# Back transformation to expected values. 
  normdata <- forecast::InvBoxCox(BCTransformedData, lambda = lambda, biasadj = T
, fvar = variance) 
   
  return(normdata) 
} 

 

CALCULATE RECONSTRUCTION STATISTICS 

Function that returns an asked statistic of input reconstructions and layers 

All inputs as character vectors: 

• One statistic method (e.g. min, max, mean), 

• Multiple reconstructions to be compared, 

• One selectable layer that all reconstructions contain. 

reconstruction_stat <-function(reconstructions, layer, stat){ 
   
# Set parameters. 
  i     <-1 
  value <- c() 
  df    <- data.frame(value) 
  df    <- df$value 
   
# Loop through all reconstructions. 
  for (recons in reconstructions){ 
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# Calculate the asked statistic of the selected layer of the reconstruction
. 
    df$value[i] <- eval(parse(text = paste0(stat, "(", "na.omit(", recons, "$", l
ayer,"))"))) 
     
# Continue to the next reconstruction. 
    i <- i +1 
  } 
   
  return(df$value) 
} 

 

OPTIMIZED BARGERVEEN CASE STUDY PLOT 

Function to automatically plot figures with correct settings, optimized for the Bargerveen case study area. 

Loading (and if necessary installing) packages. 

packages <- c("sp") 
packageloader(packages) 

 

Inputs for the function are: 

• The dataset of class extending Spatial-Class, 

• The character (column) that needs to be plotted (zcol from sp package), 

• Title of the plot, 

• Optional observation data points that are used for kriging, 

• Minimum value to be scaled, 

• Maximum value to be scaled. 

BargerveenCasePlot <- function(data, sp_zcol, title, pts = NULL, minval, maxval) { 
   
# North Arrow. 
  arrow    <- list("SpatialPolygonsRescale", layout.north.arrow(type=2),  
                   offset = c(264900, 522115), scale = 92) 
  arrowlab <- list("sp.text", c(264990, 522160), "N", cex = 1.05) 
   
# Scalebar of the plot and accompanying numbers. 
  scalebar       <- list("SpatialPolygonsRescale", layout.scale.bar(), 
                         offset = c(263670,522115), scale = 1000,  
                         fill=c("white","black")) 
  scalebartext.l <- list("sp.text", c(263670, 522200), "0", cex = 0.7) 
  scalebartext.r <- list("sp.text", c(264670, 522200), "1000 m", cex = 0.7) 
   
# Data points displayed as green circle with a white outline, not displayed 
if pts = NULL. 
  pts1 <- list("sp.points", pts, pch = 20, col = "white", cex = 1.2) 
  pts2 <- list("sp.points", pts, pch = 20, col = "dark green") 
   
   
# Create variables to add to the spplot layout in case data points are give
n as input (pts != NULL). 
  if (!is.null(pts)){ 
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# Box around the extra information 
    poly <- list("sp.polygons", 
                 SpatialPolygons(list(Polygons(list(Polygon(cbind( 
                   c(263625, 265635, 265635, 263625), c(522225, 522225, 522100, 52
2100)))), "bg"))), 
                 fill = "lightgrey") 
     
# Label for the data points in the box, it's location and the symbol in fro
nt of the text. 
    ptslab     <- list("sp.text", c(265400, 522167), "Data Points", cex = 0.9) 
    ptslabloc  <- data.frame("x"= 265200, "y"= 522160) ; coordinates(ptslabloc) 
<- ~x+y 
    ptslabsym1 <- list("sp.points", ptslabloc, pch =20, col="white", cex = 1.2, fi
rst = F) 
    ptslabsym2 <- list("sp.points", ptslabloc, pch =20, col="dark green", cex = 1, 
first = F) 
   } 
   
   
# Create variables to add to the spplot layout in case no data points are g
iven as input (pts = NULL). 
  if(is.null(pts)){ 
     
# Box around the extra information 
    poly <- list("sp.polygons", 
                 SpatialPolygons(list(Polygons(list(Polygon(cbind( 
                   c(263625, 265100, 265100, 263625), c(522225, 522225, 522100, 52
2100)))), "bg"))), 
                 fill = "lightgrey") 
     
# Empty label/symbol for the legend, so it is not displayed. 
    ptslab     <- NULL 
    ptslabsym1 <- NULL 
    ptslabsym2 <- NULL 
    } 
   
   
# Creating the plot. 
  figure <- spplot(obj    = data, 
                   zcol   = sp_zcol, 
                   main   = title, 
                   scales = list(draw = T), 
                   xlim   = c(data@bbox[1,1] - 100, data@bbox[1,2] + 100), 
                   ylim   = c(data@bbox[2,1] - 300, data@bbox[2,2] + 100), 
                   xlab   = "X coordinates", 
                   ylab   = "Y coordinates", 
                   at     = seq(minval, maxval, by= (maxval-minval)/100),  
                   sp.layout = list(poly, arrow, arrowlab, scalebar, scalebartext.
l, scalebartext.r,  
                                    pts1, pts2, ptslab, ptslabsym1, ptslabsym2), 
                   as.table  = T 
  ) 
   
# Displaying the plot. 
  print(figure) 
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# Returning the plot. 
  return(figure) 
} 

 

CROSS VALIDATION WITH NO CLUSTERING 

Function to do a cross validation without influence of local clustering by predicting all clustered observation 
data using all other available observation data that is not clustered. Clustered data should be identified by a 
similar identification in one of the columns of the spatial points data frame). 

The cross validation happens in three steps, first a hold-out cross validation is done for the first cluster, than a 
hold-out cross validation is done for the remaining clusters (if present) and last a leave-one-out cross validation 
is done for the non-clustered data (if present). All cross validations are combined. In the output, the "$fold" 
column indicates the hold-out cross validation (fold = 1), and the leave-one-out cross validation (fold > 1). 

Inputs for the function are: 

• The right cross validation method, depending on kriging method used. Choose between: "gstat.cv" or 
"krige.cv" 

• A vector with the cluster identifiers 

• Character name of the column where the clusters can be identified 

• Character name of the Spatial points data frame with locations to be cross validised 
 

• When using "gstat.cv" method: gstat object 

• When using "krige.cv" method: gstat formula for cross validation 

• When using "krige.cv" method: gstat model for cross validation 

cv.nocluster <- function(method, clusters, ID_column, data_cv, object_cv, formula_
cv, model_cv){ 
   
# Check if method is correct 
  if (method == "gstat.cv"){ 
    message("gstat.cv has been chosen as method") 
  }  
  if (method == "krige.cv"){ 
    message("krige.cv has been chosen as method") 
  } 
  if (method != "gstat.cv" & method != "krige.cv"){ 
    stop('Wrong method chosen, choose "gstat.cv" or "krige.cv"') 
  } 
   
# Select first cluster ID and make selection of all other cluster ID's 
  select1 <- clusters[1] 
  select2 <- clusters[2:length(clusters)] 
   
## Start cross validation for first cluster: 
  message(select1) 
   
# Find location of cluster in the spatialpointdataframe 
  foldclass <- which(grepl(select1, eval(parse(text = paste0(data_cv, "$", ID_co
lumn))))) 
   
# Create vector with "folds": 1 if location is in cluster, 2 if not in clus
ter 
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  foldvect  <- c() 
   
# Loop through all rows in the data and check if the rownumber matches a lo
cation in the cluster 
  for (i in eval(parse(text = paste0(data_cv, "$", ID_column)))){ 
     
# In cluster --> fold 1 
    if (which(eval(parse(text = paste0(data_cv, "$", ID_column))) == i) %in% fol
dclass){ 
      foldvect <- c(foldvect,1) 
    } 
 
# Not in cluster --> fold 2 
    if (!(which(eval(parse(text = paste0(data_cv, "$", ID_column))) == i) %in% f
oldclass)){ 
      foldvect <- c(foldvect,2) 
    } 
  } 
   
# Holdout cross validation, depending on selected method 
  if (method == "gstat.cv"){hocv <- gstat.cv(object  = object_cv,  nfold = foldve
ct)} 
  if (method == "krige.cv"){hocv <- krige.cv(formula = formula_cv, eval(parse(te
xt = data_cv)),  
                                             model   = model_cv,   nfold = foldvec
t)}  
   
# Select the cross validated data in the cluster (fold = 1) 
  combcv <- hocv[hocv$fold== 1,] 
   
   
## If there are more than one cluster, continue:  
  if (length(clusters) > 1){ 
     
# Loop through all other clusters 
    for (select in select2){ 
       
# Start cross validation for remaining clusters 
      message(select) 
       
# Find locations of clusters in the spatialpointsdataframe 
      foldclass <- which(grepl(select, eval(parse(text = paste0(data_cv, "$", ID
_column))))) 
       
# Create vector with "folds": 1 if location is in cluster, 2 if not in clus
ter 
      foldvect  <- c() 
       
# Loop through all rows in the data and check if the rownumber matches a lo
cation in the cluster 
      for (i in eval(parse(text = paste0(data_cv, "$", ID_column)))){ 
         
# In cluster --> fold 1 
        if (which(eval(parse(text = paste0(data_cv, "$", ID_column))) == i) %in% 
foldclass){ 
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          foldvect <- c(foldvect,1) 
        } 
         
# Not in cluster --> fold 2 
        if (!(which(eval(parse(text = paste0(data_cv, "$", ID_column))) == i) %i
n% foldclass)){ 
          foldvect <- c(foldvect,2) 
        } 
      } 
       
# Holdout cross validation, depending on selected method 
      if (method == "gstat.cv"){hocv <- gstat.cv(object  = object_cv,  nfold = fo
ldvect)} 
      if (method == "krige.cv"){hocv <- krige.cv(formula = formula_cv, locations 
= eval(parse(text = data_cv)), 
                                                 model   = model_cv,   nfold = fol
dvect)} 
 
# Select the cross validated data in the cluster (fold = 1) and add to prev
ious selected cross validated cluster data. 
      combcv <- rbind(combcv, hocv[hocv$fold == 1,]) 
    } 
  } 
   
   
## Continue if there is more data that is not clustered: 
  if (length(combcv) != length(eval(parse(text = data_cv)))){ 
     
# Start cross validation for first cluster 
    message("Remaining, non clustered data") 
     
# Find locations of nonclustered data in the spatialpointsdataframe 
    foldclass <- c() 
     
# Loop through all clusters 
    for (cluster in clusters){ 
       
# Find locations per cluster 
      singclust <- which(grepl(cluster, eval(parse(text = paste0(data_cv, "$", I
D_column))))) 
       
# Store cluster locations in vector 
      foldclass <- c(foldclass, singclust) 
    } 
     
# Create vector with "folds": 1 if location is in cluster, 2 if not in clus
ter 
    foldvect  <- c() 
     
# Loop through all rows in the data and check if the rownumber matches a lo
cation in the cluster 
    for (i in eval(parse(text = paste0(data_cv, "$", ID_column)))){ 
       
# In cluster --> fold 1 
      if (which(eval(parse(text = paste0(data_cv, "$", ID_column))) == i) %in% f
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oldclass){ 
        foldvect <- c(foldvect,1) 
      } 
       
# Not in cluster --> fold 2 
      if (!(which(eval(parse(text = paste0(data_cv, "$", ID_column))) == i) %in% 
foldclass)){ 
        foldvect <- c(foldvect,2) 
      } 
    } 
     
# Copy spatialpointsdatframe and create new column with the fold (1 or 2) 
    remain <- eval(parse(text = data_cv)) 
    remain$foldvect <- foldvect 
     
# Only keep rows with fold is 2 (non clustered data) 
    remain <- remain[remain$foldvect == 2, ] 
     
# Leave one out cross validation, depending on selected method 
    if (method == "gstat.cv"){loocv <- gstat.cv(object  = object_cv,  nfold = fol
dvect)} 
    if (method == "krige.cv"){loocv <- krige.cv(formula = formula_cv, locations = 
remain,  
                                                model   = model_cv,   nfold = nrow
(remain))} 
     
# Add 1 to the fold number in order to maintain unique fold number when com
bining all crossvalidations 
    loocv$fold <- loocv$fold + 1 
     
# Add to holdout cross validated cluster data 
    combcv <- suppressWarnings(rbind(combcv, loocv)) 
  } 
   
# Return all cross validated data 
  return(combcv) 
} 

  

G2. MAIN RECONSTRUCTION SCRIPT 

GENERAL SETUP AND GLOBAL PARAMETERS USED FOR RECONSTRUCTING 

Loading (and if necessary installing) packages. 

packages <- c("raster", 
              "sp", 
              "gstat", 
              "timeDate", 
              "lattice", 
              "animation" 
) 
packageloader(packages) 
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Creating a projection variable (RD New). 

projection <- CRS("+init=epsg:28992") 

Setting the resolution (m). 

resolution_CS <- 2 

Open ASCII file of the area with the locations that need to be predicted. 

CaseStudy <- OpenASCII(paste0("bargerveen_casestudy_", resolution_CS, "m"), "ASCI
I", projection) 

## ASCII/bargerveen_casestudy_2m.asc has GDAL driver AAIGrid  
## and has 556 rows and 1112 columns 

 

Open AHN for case study area. 

ahn <- open_ahn("AHNdata") 

 

Creating a reconstruction of the surfacelevel with the same resolution as the final reconstruction by creating a 
spatial points data frame with all locations (coordinates) in the casestudy area and assign values from one to 
the length of the casestudy area. 

area_recon <- SpatialPointsDataFrame(coordinates(CaseStudy), data.frame(ID=1:l
ength(CaseStudy))) 

 

Extract data of the ahn for all locations in the area reconstruction 

ahndata_recon <- extract(ahn, area_recon) 

 

Create Spatial grid data frame for the case study area with all the locations of the casestudy area and data 
extracted from the ahn. 

ahn_area <- SpatialGridDataFrame(CaseStudy, data.frame(SurfaceLevel = ahndata_r
econ), proj4string = projection) 

 

DATABASE SETUP 

Set path. 

csvpath <- "Databases/" 

 

Open csv files with database data. 

BPKcsv  <- "Bargerveen_BPK.csv" 
DINOcsv <- "Bargerveen_DINO.csv" 
PFBcsv  <- "Bargerveen_PFB.csv" 
GPRcsv  <- "Bargerveen_GPR.csv" 
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Create dataframes from csv files 

BPKdf  <- read.csv2(paste0(csvpath,  BPKcsv), header = T) 
DINOdf <- read.csv2(paste0(csvpath, DINOcsv), header = T) 
PFBdf  <- read.csv2(paste0(csvpath,  PFBcsv), header = T) 
GPRdf  <- read.csv2(paste0(csvpath,  GPRcsv), header = T) 

 

There are two ways of reconstruction the peat height: 

• Kriging: (surface level - peatdepth) --> peatheight reconstruction 

• Surface level - (Kriging: peatdepth) --> peatdepth reconstruction 

The optim_databases() function replaces all "Unknown" surface level heights. In order to have the same 
surfacelevel heights for both ways of reconstructing, all known surface levels are replaced by ahn surface level 
heights. 

Make all surfacelevels "Unknown". 

for (i in seq(DINOdf$SurfaceLevel)){DINOdf$SurfaceLevel[i] <- "Unknown"}  

 

Create databases. 

BISdf    <- merge(PFBdf, BPKdf,  all = T) 
Legacydf <- merge(BISdf, DINOdf, all = T) 
Alldf    <- merge(Legacydf, GPRdf, all =T) 

 

Optimize databases. 

GPR    <- optim_database("Peat", details = F, GPRdf,    ahn, proj = projection,  
                         cutoff = F,  rastersize = 1) 

## GPRdf has successfully been optimized for use. 

Legacy <- optim_database("Peat", details = F, Legacydf, ahn, proj = projection,  
                         cutoff = 26, rastersize = 1)  

## Legacydf has successfully been optimized for use. 

All    <- optim_database("Peat", details = F, Alldf,    ahn, proj = projection,  
                         cutoff = 26, rastersize = 1)  

## Alldf has successfully been optimized for use. 

 

Subsetting the walked transect lines with the GPR. 

L21GPR <- subset(GPR, grepl("FW_L21", GPR$Name)); L21All <- subset(All, grepl("F
W_L21", All$Name)) 
L22GPR <- subset(GPR, grepl("FW_L22", GPR$Name)); L22All <- subset(All, grepl("F
W_L22", All$Name)) 
L23GPR <- subset(GPR, grepl("FW_L23", GPR$Name)); L23All <- subset(All, grepl("F
W_L23", All$Name)) 
L24GPR <- subset(GPR, grepl("FW_L24", GPR$Name)); L24All <- subset(All, grepl("F
W_L24", All$Name)) 
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L25GPR <- subset(GPR, grepl("FW_L25", GPR$Name)); L25All <- subset(All, grepl("F
W_L25", All$Name)) 
L26GPR <- subset(GPR, grepl("FW_L26", GPR$Name)); L26All <- subset(All, grepl("F
W_L26", All$Name)) 
L27GPR <- subset(GPR, grepl("FW_L27", GPR$Name)); L27All <- subset(All, grepl("F
W_L27", All$Name)) 
L28GPR <- subset(GPR, grepl("FW_L28", GPR$Name)); L28All <- subset(All, grepl("F
W_L28", All$Name)) 
L29GPR <- subset(GPR, grepl("FW_L29", GPR$Name)); L29All <- subset(All, grepl("F
W_L29", All$Name)) 
L30GPR <- subset(GPR, grepl("FW_L30", GPR$Name)); L30All <- subset(All, grepl("F
W_L30", All$Name)) 
L31GPR <- subset(GPR, grepl("FW_L31", GPR$Name)); L31All <- subset(All, grepl("F
W_L31", All$Name)) 
L32GPR <- subset(GPR, grepl("FW_L32", GPR$Name)); L32All <- subset(All, grepl("F
W_L32", All$Name)) 
remain1 <- subset(All, grepl("BPK",  All$Name)) 
remain2 <- subset(All, grepl("DINO", All$Name)) 
remain3 <- subset(All, grepl("PFB",  All$Name)) 

 

Select 5 random numbers from the lines (subsetted GPR and All have the same length, so random selection is 
used for both. 

set.seed(275); rand21 <- sort(sample(1:length(L21GPR), 5))   
set.seed(275); rand22 <- sort(sample(1:length(L22GPR), 5))   
set.seed(275); rand23 <- sort(sample(1:length(L23GPR), 5))   
set.seed(275); rand24 <- sort(sample(1:length(L24GPR), 5))   
set.seed(275); rand25 <- sort(sample(1:length(L25GPR), 5))   
set.seed(275); rand26 <- sort(sample(1:length(L26GPR), 5))   
set.seed(275); rand27 <- sort(sample(1:length(L27GPR), 5))   
set.seed(275); rand28 <- sort(sample(1:length(L28GPR), 5))   
set.seed(275); rand29 <- sort(sample(1:length(L29GPR), 5))   
set.seed(275); rand30 <- sort(sample(1:length(L30GPR), 5))   
set.seed(275); rand31 <- sort(sample(1:length(L31GPR), 5))  
set.seed(275); rand32 <- sort(sample(1:length(L32GPR), 5))   

 

Select the random data points from the subsetted lines for both GPR and All data. 

S21GPR <- L21GPR[rand21, ];  S21All <- L21All[rand21, ]   
S22GPR <- L22GPR[rand22, ];  S22All <- L22All[rand22, ]   
S23GPR <- L23GPR[rand23, ];  S23All <- L23All[rand23, ]   
S24GPR <- L24GPR[rand24, ];  S24All <- L24All[rand24, ]   
S25GPR <- L25GPR[rand25, ];  S25All <- L25All[rand25, ]   
S26GPR <- L26GPR[rand26, ];  S26All <- L26All[rand26, ]   
S27GPR <- L27GPR[rand27, ];  S27All <- L27All[rand27, ]   
S28GPR <- L28GPR[rand28, ];  S28All <- L28All[rand28, ]   
S29GPR <- L29GPR[rand29, ];  S29All <- L29All[rand29, ]   
S30GPR <- L30GPR[rand30, ];  S30All <- L30All[rand30, ]   
S31GPR <- L31GPR[rand31, ];  S31All <- L31All[rand31, ]   
S32GPR <- L32GPR[rand31, ];  S32All <- L32All[rand31, ]   

 

Combine the subsetted random points, use to get less disturbance of local clustering in variogram. 
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GPR_subset <- rbind(S21GPR, S22GPR, S23GPR, S24GPR, S25GPR, S26GPR,  
                    S27GPR, S28GPR, S29GPR, S30GPR, S31GPR, S32GPR) 
All_subset <- rbind(S21All, S22All, S23All, S24All, S25All, S26All,  
                    S27All, S28All, S29All, S30All, S31All, S32All, remain1, remai
n2, remain3) 

 

The subsetted data is used for variagram fitting and thus for transforming data. The complete dataset is used 
for the reconstruction. The latter needs the same transformation (and consequently back transformation) as 
the subsetted data. 

Check for distribution, and transform data. 

All$T_Peatdepth            <- DoTransform(All_subset$Peatdepth,   
                                          transformdata = All$Peatdepth,  transfor
mation = "BoxCox") 

 

FIGURE 10.31: HISTOGRAM OF A BOX-COX TRANSFORMATION OF ALL$PEATDEPTH. 

All$T_Peatheight           <- DoTransform(All_subset$Peatheight,  
                                          transformdata = All$Peatheight, transfor
mation = "BoxCox") 
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FIGURE 10.32: HISTOGRAM OF A BOX-COX TRANSFORMATION OF ALL$PEATHEIGHT. 

All_subset$T_Peatdepth     <- DoTransform(All_subset$Peatdepth,  transformdata = 
All_subset$Peatdepth) 

 

FIGURE 10.33: HISTOGRAM OF A BOX-COX TRANSFORMATION OF ALL_SUBSET$PEATDEPTH. 

All_subset$T_Peatheight    <- DoTransform(All_subset$Peatheight, transformdata = 
All_subset$Peatheight) 
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FIGURE 10.34: HISTOGRAM OF A BOX-COX TRANSFORMATION OF ALL_SUBSET$PEATHEIGHT. 

GPR$T_Peatdepth            <- DoTransform(GPR_subset$Peatdepth,   
                                          transformdata = GPR$Peatdepth,  transfor
mation = "BoxCox") 

 

FIGURE 10.35: HISTOGRAM OF A BOX-COX TRANSFORMATION OF GPR$PEATDEPTH. 
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GPR$T_Peatheight           <- DoTransform(GPR_subset$Peatheight,  
                                          transformdata = GPR$Peatheight, transfor
mation = "BoxCox") 

 

FIGURE 10.36: HISTOGRAM OF A BOX-COX TRANSFORMATION OF GPR$PEATHEIGHT. 

GPR_subset$T_Peatdepth     <- DoTransform(GPR_subset$Peatdepth,  transformdata = 
GPR_subset$Peatdepth) 
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FIGURE 10.37: HISTOGRAM OF A BOX-COX TRANSFORMATION OF GPR_SUBSET$PEATDEPTH. 

GPR_subset$T_Peatheight    <- DoTransform(GPR_subset$Peatheight, transformdata = 
GPR_subset$Peatheight) 

 

FIGURE 10.38: HISTOGRAM OF A BOX-COX TRANSFORMATION OF GPR_SUBSET$PEATHEIGHT. 

Legacy$T_Peatdepth         <- DoTransform(Legacy$Peatdepth,  transformdata = Lega
cy$Peatdepth) 
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FIGURE 10.39: HISTOGRAM OF A BOX-COX TRANSFORMATION OF LEGACY$PEATDEPTH. 

Legacy$T_Peatheight        <- DoTransform(Legacy$Peatheight, transformdata = Lega
cy$Peatheight) 

 

FIGURE 10.40: HISTOGRAM OF A BOX-COX TRANSFORMATION OF LEGACY$PEATHEIGHT. 
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KRIGING SETUP 

ORDINARY KRIGING 

Create gstat objects for variogram fitting. 

g.h.All      <- gstat(id=c("Peatheight"),   formula = Peatheight~1,   data = All_
subset) 
g.h.All_T    <- gstat(id=c("T_Peatheight"), formula = T_Peatheight~1, data = All_
subset) 
g.h.GPR      <- gstat(id=c("Peatheight"),   formula = Peatheight~1,   data = GPR_
subset) 
g.h.GPR_T    <- gstat(id=c("T_Peatheight"), formula = T_Peatheight~1, data = GPR_
subset) 
g.h.Legacy   <- gstat(id=c("Peatheight"),   formula = Peatheight~1,   data = Lega
cy) 
g.h.Legacy_T <- gstat(id=c("T_Peatheight"), formula = T_Peatheight~1, data = Lega
cy) 
 
g.d.All      <- gstat(id=c("Peatdepth"),   formula = Peatdepth~1,   data = All_su
bset) 
g.d.All_T    <- gstat(id=c("T_Peatdepth"), formula = T_Peatdepth~1, data = All_su
bset) 
g.d.GPR      <- gstat(id=c("Peatdepth"),   formula = Peatdepth~1,   data = GPR_su
bset) 
g.d.GPR_T    <- gstat(id=c("T_Peatdepth"), formula = T_Peatdepth~1, data = GPR_su
bset) 
g.d.Legacy   <- gstat(id=c("Peatdepth"),   formula = Peatdepth~1,   data = Legacy
) 
g.d.Legacy_T <- gstat(id=c("T_Peatdepth"), formula = T_Peatdepth~1, data = Legacy
) 

 

Select most optimal variogram model for kriging and compare whether using peatheight or peatdepth is better 
for kriging (lower nugget & lower sill give better kriging parameters). 

Variogram selection for All data. 

vgm.h.All       <- optim_vgm_model(variogram(g.h.All)) 
vgm.d.All       <- optim_vgm_model(variogram(g.d.All)) 
vgm.All         <- bestvgm(vgm.h.All, vgm.d.All)                  

## vgm.d.All is best suited for kriging 

## vgm.d.All is the returned variogram model 

## MIND: the range difference is: 2824.90031478646 

plotvgm.height  <- plot(variogram(g.h.All), vgm.h.All, main ="Peatheight") 
plotvgm.depth   <- plot(variogram(g.d.All), vgm.d.All, main ="Peatdepth") 
plotvgm.height; plotvgm.depth 
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FIGURE 10.41: VARIOGRAM MODEL ORDINARY KRIGING ALL PEATHEIGHT. 

 

FIGURE 10.42: VARIOGRAM MODEL ORDINARY KRIGING ALL PEATDEPTH. 

High range difference, but peatdepth is indeed the best of the two for kriging. 

 

Variogram selection for transformed All data. 
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vgm.h.All_T     <- optim_vgm_model(variogram(g.h.All_T)) 
vgm.d.All_T     <- optim_vgm_model(variogram(g.d.All_T)) 
vgm.All_T       <- bestvgm(vgm.h.All_T, vgm.d.All_T)              

## Cannot choose the best variogram model, manual selection is required 

## No variogram model is returned 

plotvgm.height  <- plot(variogram(g.h.All_T), vgm.h.All_T, main ="Peatheight") 
plotvgm.depth   <- plot(variogram(g.d.All_T), vgm.d.All_T, main ="Peatdepth") 
plotvgm.height; plotvgm.depth 

 

FIGURE 10.43: VARIOGRAM MODEL ORDINARY KRIGING ALL TRANSFORMED PEATHEIGHT. 
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FIGURE 10.44: VARIOGRAM MODEL ORDINARY KRIGING ALL TRANSFORMED PEATDEPTH. 

No choice has been made by the function, but peatheight is chosen as the best of the two for kriging. 

vgm.All_T       <- vgm.h.All_T 

 

Variogram selection for GPR data. 

vgm.h.GPR       <- optim_vgm_model(variogram(g.h.GPR)) 
vgm.d.GPR       <- optim_vgm_model(variogram(g.d.GPR)) 
vgm.GPR         <- bestvgm(vgm.h.GPR, vgm.d.GPR) 

## vgm.d.GPR is best suited for kriging 

## vgm.d.GPR is the returned variogram model 

## MIND: the range difference is: 142.639744690239 

 

Variogram selection for transformed GPR data. 

vgm.h.GPR_T     <- optim_vgm_model(variogram(g.h.GPR_T)) 
vgm.d.GPR_T     <- optim_vgm_model(variogram(g.d.GPR_T)) 
vgm.GPR_T       <- bestvgm(vgm.h.GPR_T, vgm.d.GPR_T)             

## vgm.d.GPR_T is best suited for kriging 

## vgm.d.GPR_T is the returned variogram model 

## MIND: the range difference is: 158.668843780792 
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Variogram selection for Legacy data. 

vgm.h.Legacy    <- optim_vgm_model(variogram(g.h.Legacy)) 
vgm.d.Legacy    <- optim_vgm_model(variogram(g.d.Legacy)) 
vgm.Legacy      <- bestvgm(vgm.h.Legacy, vgm.d.Legacy)            

## vgm.d.Legacy is best suited for kriging 

## vgm.d.Legacy is the returned variogram model 

## MIND: the range difference is: 12839.8904431321 

plotvgm.height  <- plot(variogram(g.h.Legacy), vgm.h.Legacy, main = "Peatheight") 
plotvgm.depth   <-plot(variogram(g.d.Legacy), vgm.d.Legacy, main = "Peatdepth")     
plotvgm.height; plotvgm.depth 

 

FIGURE 10.45: VARIOGRAM MODEL ORDINARY KRIGING LEGACY PEATHEIGHT. 
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FIGURE 10.46: VARIOGRAM MODEL ORDINARY KRIGING LEGACY PEATDEPTH. 

High range difference, but peatdepth is indeed the best of the two for kriging. 

 

Variogram selection for transformed Legacy data. 

vgm.h.Legacy_T  <- optim_vgm_model(variogram(g.h.Legacy_T)) 
vgm.d.Legacy_T  <- optim_vgm_model(variogram(g.d.Legacy_T)) 
vgm.Legacy_T    <- bestvgm(vgm.h.Legacy_T, vgm.d.Legacy_T)        

## Cannot choose the best variogram model, manual selection is required 

## No variogram model is returned 

plotvgm.height  <- plot(variogram(g.h.Legacy_T), vgm.h.Legacy_T, main = "Peatheig
ht") 
plotvgm.depth   <- plot(variogram(g.d.Legacy_T), vgm.d.Legacy_T, main = "Peatdept
h") 
plotvgm.height; plotvgm.depth 
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FIGURE 10.47: VARIOGRAM MODEL ORDINARY KRIGING LEGACY TRANSFORMED PEATHEIGHT. 

 

FIGURE 10.48: VARIOGRAM MODEL ORDINARY KRIGING LEGACY TRANSFORMED PEATDEPTH. 

No choice has been made by the function, but peatheight is chosen as the best of the two for kriging. 

vgm.Legacy_T    <- vgm.h.Legacy_T 
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CO-KRIGING 

TRANSFORMATIONS 

For co-kriging one universal transformation, for both the GPR and Legacy data, is needed. To do so the lowest 
absolute average skewness of the two databases combined is determined, using both peatheight and 
peatdepth data. 

Identify different transformation cases. 

cases <- c("No", "Natural logarithmic", "Logarithmic", "Square root", "Exponential
", "BoxCox") 

Create peatheight skewness dataframe. 

i <- 1; case.h <- c(); skew.h <- c(); skewdf.h <- data.frame(case.h, skew.h)  
skewdf.h <- skewdf.h$case.h; skewdf.h <- skewdf.h$skew.h 

Find optimal transformation for peatheight. 

for (case in cases){ 
  skewdf.h$case.h[i] <- case 
  skewdf.h$skew.h[i] <- suppressMessages(mean(c(abs(skewness(DoTransform(GPR_s
ubset$Peatheight,  
                                                                         Legacy$Pe
atheight,  
                                                                         transform
ation = case,  
                                                                         draw = F)
)), 
                                                abs(skewness(DoTransform(Legacy$
Peatheight,      
                                                                         GPR_subse
t$Peatheight, 
                                                                         transform
ation = case,  
                                                                         draw = F)
))))) 
  i <- i + 1 
} 
 
(Transform.h.optimcombi <- skewdf.h$case.h[which(min(na.omit(skewdf.h$skew.h))==s
kewdf.h$skew.h)]) 

## [1] "BoxCox" 

 

Create peatdepth skewness dataframe. 

i <- 1; case.d <- c(); skew.d <- c(); skewdf.d <- data.frame(case.d, skew.d);  
skewdf.d <- skewdf.d$case.d; skewdf.d <- skewdf.d$skew.d 

Find optimal transformation for peatdepth. 

for (case in cases){ 
  skewdf.d$case.d[i] <- case 
  skewdf.d$skew.d[i] <- suppressMessages(mean(c(abs(skewness(DoTransform(GPR_s
ubset$Peatdepth,  
                                                                         Legacy$Pe
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atdepth,  
                                                                         transform
ation = case,  
                                                                         draw = F)
)), 
                                                abs(skewness(DoTransform(Legacy$
Peatdepth,      
                                                                         GPR_subse
t$Peatdepth, 
                                                                         transform
ation = case,  
                                                                         draw = F)
))))) 
  i <- i + 1 
} 
 
(Transform.d.optimcombi <- skewdf.d$case.d[which(min(na.omit(skewdf.d$skew.d))==s
kewdf.d$skew.d)]) 

## [1] "BoxCox" 

 

Universal transformed data, using the same transformation. 

GPR_subset$UT_Peatheight <- DoTransform(GPR_subset$Peatheight, Legacy$Peatheight,  
                                        transformdata = GPR_subset$Peatheight, 
                                        transformation = Transform.h.optimcombi) 

 

FIGURE 10.49: HISTOGRAM OF A BOX-COX TRANSFORMATION OF GPR_SUBSET$PEATHEIGHT. 

Legacy$UT_Peatheight     <- DoTransform(GPR_subset$Peatheight, Legacy$Peatheight,  
                                        transformdata = Legacy$Peatheight, 
                                        transformation = Transform.h.optimcombi) 
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FIGURE 10.50: HISTOGRAM OF A BOX-COX TRANSFORMATION OF LEGACY$PEATHEIGHT. 

GPR_subset$UT_Peatdepth <- DoTransform(GPR_subset$Peatdepth, Legacy$Peatdepth,    
                                       transformdata = GPR_subset$Peatdepth, 
                                       transformation = Transform.d.optimcombi) 

 

FIGURE 10.51: HISTOGRAM OF A BOX-COX TRANSFORMATION OF GPR_SUBSET$PEATDEPTH. 
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Legacy$UT_Peatdepth     <- DoTransform(GPR_subset$Peatdepth, Legacy$Peatdepth, 
                                       transformdata = Legacy$Peatdepth, 
                                       transformation = Transform.d.optimcombi) 

 

FIGURE 10.52: HISTOGRAM OF A BOX-COX TRANSFORMATION OF LEGACY$PEATDEPTH. 

  

Univeral transformed data for the complete dataset, using subsetted transformed data parameters 

GPR$UT_Peatheight <- DoTransform(GPR_subset$Peatheight, Legacy$Peatheight,  
                                 transformdata = GPR$Peatheight,  
                                 transformation = Transform.h.optimcombi,  
                                 draw = F) 

## BoxCox transformation is executed 

## The skewness of the transformed data is -0.782763233308501 

GPR$UT_Peatdepth  <- DoTransform(GPR_subset$Peatdepth, Legacy$Peatdepth,  
                                 transformdata = GPR$Peatdepth,      
                                 transformation = Transform.d.optimcombi,  
                                 draw = F) 

## BoxCox transformation is executed 

## The skewness of the transformed data is -0.604355741048921 

 

VARIOGRAM MODELS 

For co-kriging one universal variogram model, for both the GPR and Legacy data, is needed. All variograms are 
created with this model. This is done by looping through all variogram types with fit.variogram and selecting 
the variogram type with the lowest sum of squared errors (SSErr). 
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Creating gstat objects. 

g.h.GPR_UT    <- gstat(id=c("UT_Peatheight"), formula = UT_Peatheight~1, data = G
PR_subset) 
g.h.Legacy_UT <- gstat(id=c("UT_Peatheight"), formula = UT_Peatheight~1, data = L
egacy) 
g.d.GPR_UT    <- gstat(id=c("UT_Peatdepth"),  formula = UT_Peatdepth~1,  data = G
PR_subset) 
g.d.Legacy_UT <- gstat(id=c("UT_Peatdepth"),  formula = UT_Peatdepth~1,  data = L
egacy) 

 

Set up variogram dataframe for untransformed peatheight data. 

SSErr.h <- c(); vgmmodel.h <- c() 
i <- 1; vgmdf.h <- data.frame(vgmmodel.h, SSErr.h)  
vgmdf.h <- vgmdf.h$vgmmodel.h; vgmdf.h <- vgmdf.h$SSErr.h 

Find variogram model with lowest SSErr for untransformed peatheight data. 

for (vgmmod in vgm()$short){ 
  vgmdf.h$vgmmodel.h[i] <- vgmmod 
  vgmdf.h$SSErr.h[i]    <- suppressWarnings(mean(c(attr(try(fit.variogram(vari
ogram(g.h.GPR),     
                                                                          vgm(as.
character(vgmmod))),  
                                                            silent = T), "SSErr"), 
                                                   attr(try(fit.variogram(vario
gram(g.h.Legacy),  
                                                                          vgm(as.
character(vgmmod))),  
                                                            silent = T), "SSErr"))
)) 
  i <- i + 1 
} 

(Vgmmodel.h.optimcombi <- vgmdf.h$vgmmodel.h[which(min(na.omit(vgmdf.h$SSErr.h)) 
== vgmdf.h$SSErr.h)]) 

## [1] "Lin" 

 

Set up variogram dataframe for untransformed peatdepth data. 

SSErr.d <- c(); vgmmodel.d <- c() 
i <- 1; vgmdf.d <- data.frame(vgmmodel.d, SSErr.d) 
vgmdf.d <- vgmdf.d$vgmmodel.d; vgmdf.d <- vgmdf.d$SSErr.d 

Find variogram model with lowest SSErr for untransformed peatdepth data. 

for (vgmmod in vgm()$short){ 
  vgmdf.d$vgmmodel.d[i] <- vgmmod 
  vgmdf.d$SSErr.d[i]    <- suppressWarnings(mean(c(attr(try(fit.variogram(vari
ogram(g.d.GPR),     
                                                                          vgm(as.
character(vgmmod))),  
                                                            silent = T), "SSErr"), 
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                                                   attr(try(fit.variogram(vario
gram(g.d.Legacy),  
                                                                          vgm(as.
character(vgmmod))),  
                                                            silent = T), "SSErr"))
)) 
  i <- i + 1 
} 

(Vgmmodel.d.optimcombi <- vgmdf.d$vgmmodel.d[which(min(na.omit(vgmdf.d$SSErr.d)) 
== vgmdf.d$SSErr.d)]) 

## [1] "Exc" 

 

Set up variogram dataframe for universal transformed peatheight data. 

SSErr.h <- c(); vgmmodel.h <- c() 
i <- 1; vgmdf.h_UT <- data.frame(vgmmodel.h, SSErr.h)  
vgmdf.h_UT <- vgmdf.h_UT$vgmmodel.h; vgmdf.h_UT <- vgmdf.h_UT$SSErr.h 

Find variogram model with lowest SSErr for universal transformed peatheight data. 

for (vgmmod in vgm()$short){ 
  vgmdf.h_UT$vgmmodel.h[i] <- vgmmod 
  vgmdf.h_UT$SSErr.h[i]    <- suppressWarnings(mean(c(attr(try(fit.variogram(v
ariogram(g.h.GPR_UT),     
                                                                             vgm(a
s.character(vgmmod))),  
                                                               silent = T), "SSErr
"), 
                                                      attr(try(fit.variogram(var
iogram(g.h.Legacy_UT),  
                                                                             vgm(a
s.character(vgmmod))),  
                                                               silent = T), "SSErr
")))) 
  i <- i + 1 
} 

(Vgmmodel.h.optimcombi_UT <- vgmdf.h_UT$vgmmodel.h[which(min(na.omit(vgmdf.h_UT$S
SErr.h)) ==  
                                                          vgmdf.h_UT$SSErr.h)]) 

## [1] "Lin" 

 

Set up variogram dataframe for universal transformed peatdepth data. 

SSErr.d <- c(); vgmmodel.d <- c();  
i <- 1; vgmdf.d_UT <- data.frame(vgmmodel.d, SSErr.d) 
vgmdf.d_UT <- vgmdf.d_UT$vgmmodel.d; vgmdf.d_UT <- vgmdf.d_UT$SSErr.d 

Find variogram model with lowest SSErr for universal transformed peatdepth data. 

for (vgmmod in vgm()$short){ 
  vgmdf.d_UT$vgmmodel.d[i] <- vgmmod 
  vgmdf.d_UT$SSErr.d[i]    <- suppressWarnings(mean(c(attr(try(fit.variogram(v
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ariogram(g.d.GPR_UT),     
                                                                             vgm(a
s.character(vgmmod))),  
                                                               silent = T), "SSErr
"), 
                                                      attr(try(fit.variogram(var
iogram(g.d.Legacy_UT),  
                                                                             vgm(a
s.character(vgmmod))),  
                                                               silent = T), "SSErr
")))) 
  i <- i + 1 
} 

(Vgmmodel.d.optimcombi_UT <- vgmdf.d_UT$vgmmodel.d[which(min(na.omit(vgmdf.d_UT$S
SErr.d)) ==  
                                                          vgmdf.d_UT$SSErr.d)]) 

## [1] "Mat" 

 

VARIOGRAMS 

Select most optimal variogram model for kriging and compare whether using peatheight or peatdepth is better 
for kriging (lower nugget & lower sill give better kriging parameters). 

Variogram selection for GPR data as covariable. 

vgm.h.CK_GPR    <- fit.variogram(variogram(g.h.GPR),       model = vgm(Vgmmodel.
h.optimcombi)) 
vgm.d.CK_GPR    <- fit.variogram(variogram(g.d.GPR),       model = vgm(Vgmmodel.
d.optimcombi)) 
vgm.CK_GPR      <- bestvgm(vgm.h.CK_GPR, vgm.d.CK_GPR)      

## vgm.h.CK_GPR is best suited for kriging 

## vgm.h.CK_GPR is the returned variogram model 

## MIND: the range difference is: 722368.18994377 

plotvgm.height  <- plot(variogram(g.h.GPR), vgm.h.CK_GPR, main = "Peatheight") 
plotvgm.depth   <- plot(variogram(g.d.GPR), vgm.d.CK_GPR, main = "Peatdepth") 
plotvgm.height; plotvgm.depth 
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FIGURE 10.53: VARIOGRAM MODEL CO-KRIGING GPR PEATHEIGHT. 

 

FIGURE 10.54: VARIOGRAM MODEL CO-KRIGING GPR PEATDEPTH 

High range difference, but peatdepth is chosen as the best of the two for kriging since the sill is lower at closer 
distances. 

vgm.CK_GPR      <- vgm.d.CK_GPR     



BEST PRACTICES FOR CREATING HIGH-RESOLUTION 3D PRE-PEAT LANDSCAPES 

 MSC THESIS     DI LLEN BRUIL   152 

 

Variogram selection for universal transformed GPR data as covariable. 

vgm.h.CK_GPR_UT <- fit.variogram(variogram(g.h.GPR_UT),    model = vgm(Vgmmodel.
h.optimcombi_UT)) 
vgm.d.CK_GPR_UT <- fit.variogram(variogram(g.d.GPR_UT),    model = vgm(Vgmmodel.
d.optimcombi_UT)) 
vgm.CK_GPR_UT   <- bestvgm(vgm.h.CK_GPR_UT, vgm.d.CK_GPR_UT)            

## vgm.h.CK_GPR_UT is best suited for kriging 

## vgm.h.CK_GPR_UT is the returned variogram model 

## MIND: the range difference is: 4.11432042132395 

 

Variogram selection for Legacy data as covariable. 

vgm.h.CK_Leg    <- fit.variogram(variogram(g.h.Legacy),    model = vgm(Vgmmodel.
h.optimcombi)) 
vgm.d.CK_Leg    <- fit.variogram(variogram(g.d.Legacy),    model = vgm(Vgmmodel.
d.optimcombi)) 
vgm.CK_Leg      <- bestvgm(vgm.h.CK_Leg, vgm.d.CK_Leg)                    

## vgm.d.CK_Leg is best suited for kriging 

## vgm.d.CK_Leg is the returned variogram model 

## MIND: the range difference is: 1732.85153557267 

plotvgm.height  <- plot(variogram(g.h.Legacy), vgm.h.CK_Leg, main = "Peatheight") 
plotvgm.depth   <- plot(variogram(g.d.Legacy), vgm.d.CK_Leg, main = "Peatdepth")   
plotvgm.height; plotvgm.depth 
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FIGURE 10.55: VARIOGRAM MODEL CO-KRIGING LEGACY PEATHEIGHT. 

 

FIGURE 10.56: VARIOGRAM MODEL CO-KRIGING LEGACY PEATDEPTH. 

High range difference, but peatdepth is indeed the best of the two for kriging. 

 

Variogram selection for universal transformed Legacy data as covariable. 
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vgm.h.CK_Leg_UT <- fit.variogram(variogram(g.h.Legacy_UT), model = vgm(Vgmmodel.
h.optimcombi_UT)) 
vgm.d.CK_Leg_UT <- fit.variogram(variogram(g.d.Legacy_UT), model = vgm(Vgmmodel.
d.optimcombi_UT)) 
vgm.CK_Leg_UT   <- bestvgm(vgm.h.CK_Leg_UT, vgm.d.CK_Leg_UT)            

## vgm.h.CK_Leg_UT is best suited for kriging 

## vgm.h.CK_Leg_UT is the returned variogram model 

## MIND: the range difference is: 1885.84814125982 

plotvgm.height  <- plot(variogram(g.h.Legacy_UT), vgm.h.CK_Leg_UT, main = "Peathe
ight") 
plotvgm.depth   <- plot(variogram(g.d.Legacy_UT), vgm.d.CK_Leg_UT, main = "Peatde
pth")       
plotvgm.height; plotvgm.depth 

 

FIGURE 10.57: VARIOGRAM MODEL CO-KRIGING UNIVERSAL TRANSFORMED LEGACY PEATHEIGHT. 
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FIGURE 10.58: VARIOGRAM MODEL CO-KRIGING UNIVERSAL TRANSFORMED LEGACY PEATDEPTH. 

High range difference, but peatheight is indeed the best of the two for kriging. 

 

Manual fitted variagram for combined data. 

vgm.GPRLeg    <- vgm(nugget = 0.022,   range = 2280, psill = 1.17,     model = Vgm
model.d.optimcombi)   
vgm.GPRLeg_UT <- vgm(nugget = 2e-09,   range = 390,  psill = 4.67e-08, model = Vgm
model.h.optimcombi_UT)  
vgm.LegGPR    <- vgm(nugget = 0.0019,  range = 310,  psill = 0.79,     model = Vgm
model.d.optimcombi)  
vgm.LegGPR_UT <- vgm(nugget = 1.8e-09, range = 290,  psill = 4.75e-08, model = Vgm
model.h.optimcombi_UT) 

 

LINEAR MODELS OF COREGIONALIZATION 

The manual fitted variograms (above) are fitted for subsetted data, but the linear model of coregionalization 
needs to be found for the complete dataset. This manual fitting requires some 'trial and error' until a linear 
model of coregionalization is found when predicting the data. 

Using untransformed GPR data as covariable data 

g.CK_GC <- gstat(NULL,    id = c("Peatdepth.Legacy"),     formula = Peatdepth~1,  
                 data = Legacy,     model = vgm.CK_Leg) 
g.CK_GC <- gstat(g.CK_GC, id = c("Peatdepth.GPR_subset"), formula = Peatdepth~1,  
                 data = GPR_subset, model = vgm.CK_GPR) 
g.CK_GC <- gstat(g.CK_GC, id = c("Peatdepth.Legacy","Peatdepth.GPR_subset"),  
                 model = vgm.LegGPR) 
plot(variogram(g.CK_GC), model = g.CK_GC$model) 
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FIGURE 10.59: VARIOGRAM MODELS CO-KRIGING, GPR AS COVARIABLE. 

g.CK_GC <- gstat(NULL,    id = c("Peatdepth.Legacy"), formula = Peatdepth~1,  
                 data = Legacy, model = vgm.CK_Leg) 
g.CK_GC <- gstat(g.CK_GC, id = c("Peatdepth.GPR"),    formula = Peatdepth~1,  
                 data = GPR,    model = vgm.CK_GPR) 
g.CK_GC <- gstat(g.CK_GC, id = c("Peatdepth.Legacy","Peatdepth.GPR"),  
                 model = vgm.LegGPR) 
fit.CK_GC <- fit.lmc(variogram(g.CK_GC), g.CK_GC, model=vgm.LegGPR, fit.ranges=F
, fit.lmc=T) 

 

Using universal transformed GPR data as covariable data 

g.CK_GC_UT <- gstat(NULL,       id = c("Peatheight.Legacy_UT"),     formula = UT_
Peatheight~1,  
                    data = Legacy,     model = vgm.CK_Leg_UT) 
g.CK_GC_UT <- gstat(g.CK_GC_UT, id = c("Peatheight.GPR_subset_UT"), formula = UT_
Peatheight~1,  
                    data = GPR_subset, model = vgm.CK_GPR_UT) 
g.CK_GC_UT <- gstat(g.CK_GC_UT, id = c("Peatheight.Legacy_UT","Peatheight.GPR_sub
set_UT"),  
                    model = vgm.LegGPR_UT) 
plot(variogram(g.CK_GC_UT), model = g.CK_GC_UT$model) 
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FIGURE 10.60: VARIOGRAM MODELS CO-KRIGING, UNIVERSAL TRANSFORMED GPR AS COVARIABLE. 

g.CK_GC_UT <- gstat(NULL,       id = c("Peatheight.Legacy_UT"), formula = UT_Peat
height~1,  
                    data = Legacy, model = vgm.CK_Leg_UT) 
g.CK_GC_UT <- gstat(g.CK_GC_UT, id = c("Peatheight.GPR_UT"),    formula = UT_Peat
height~1,  
                    data = GPR,    model = vgm.CK_GPR_UT) 
g.CK_GC_UT <- gstat(g.CK_GC_UT, id = c("Peatheight.Legacy_UT","Peatheight.GPR_UT"
),  
                    model = vgm.LegGPR_UT) 
fit.CK_GC_UT <- fit.lmc(variogram(g.CK_GC_UT), g.CK_GC_UT, model=vgm.LegGPR_UT, 
fit.ranges=F, fit.lmc=T) 

 

Using untransformed Legacy data as covariable data 

g.CK_LC <- gstat(NULL,    id = c("Peatdepth.GPR_subset"), formula = Peatdepth~1,  
                 data = GPR_subset, model = vgm.CK_GPR) 
g.CK_LC <- gstat(g.CK_LC, id = c("Peatdepth.Legacy"),     formula = Peatdepth~1,  
                 data = Legacy,     model = vgm.CK_Leg) 
g.CK_LC <- gstat(g.CK_LC, id = c("Peatdepth.GPR_subset","Peatdepth.Legacy"),  
                 model = vgm.GPRLeg) 
plot(variogram(g.CK_LC), model = g.CK_LC$model) 
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FIGURE 10.61: VARIOGRAM MODELS CO-KRIGING, LEGACY AS COVARIABLE. 

g.CK_LC <- gstat(NULL,    id = c("Peatdepth.GPR"),    formula = Peatdepth~1,  
                 data = GPR,    model = vgm.CK_GPR) 
g.CK_LC <- gstat(g.CK_LC, id = c("Peatdepth.Legacy"), formula = Peatdepth~1,  
                 data = Legacy, model = vgm.CK_Leg) 
g.CK_LC <- gstat(g.CK_LC, id = c("Peatdepth.GPR","Peatdepth.Legacy"),  
                 model = vgm.GPRLeg) 
fit.CK_LC <- fit.lmc(variogram(g.CK_LC), g.CK_LC, model=vgm.GPRLeg, fit.ranges=F
, fit.lmc=T) 

 

Using universal transformed Legacy data as covariable data 

g.CK_LC_UT <- gstat(NULL,       id = c("Peatheight.GPR_subset_UT"), formula = UT_
Peatheight~1,  
                    data = GPR_subset, model = vgm.CK_GPR_UT) 
g.CK_LC_UT <- gstat(g.CK_LC_UT, id = c("Peatheight.Legacy_UT"),     formula = UT_
Peatheight~1,  
                    data = Legacy,     model = vgm.CK_Leg_UT) 
g.CK_LC_UT <- gstat(g.CK_LC_UT, id = c("Peatheight.GPR_subset_UT","Peatheight.Leg
acy_UT"),  
                    model = vgm.GPRLeg_UT) 
plot(variogram(g.CK_LC_UT), model = g.CK_LC_UT$model) 
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FIGURE 10.62: VARIOGRAM MODELS CO-KRIGING, UNIVERSAL TRANSFORMED LEGACY AS COVARIABLE. 

g.CK_LC_UT <- gstat(NULL,       id = c("Peatheight.GPR_UT"),    formula = UT_Peat
height~1,  
                    data = GPR,    model = vgm.CK_GPR_UT) 
g.CK_LC_UT <- gstat(g.CK_LC_UT, id = c("Peatheight.Legacy_UT"), formula = UT_Peat
height~1,  
                    data = Legacy, model = vgm.CK_Leg_UT) 
g.CK_LC_UT <- gstat(g.CK_LC_UT, id = c("Peatheight.GPR_UT","Peatheight.Legacy_UT"
),  
                    model = vgm.GPRLeg_UT) 
fit.CK_LC_UT <- fit.lmc(variogram(g.CK_LC_UT), g.CK_LC_UT, model=vgm.GPRLeg_UT, 
fit.ranges=F, fit.lmc=T) 

 

REGRESSION KRIGING 

Regression kriging with using the residuals of a linear model with the surface level as regression data. Create 
linear models of the Peatheight and depth with surfacelevel as regression data. 

linmod.h.A   <- lm(Peatheight   ~ SurfaceLevel, data = All_subset) 
linmod.h.A_T <- lm(T_Peatheight ~ SurfaceLevel, data = All_subset) 
linmod.h.G   <- lm(Peatheight   ~ SurfaceLevel, data = GPR_subset) 
linmod.h.G_T <- lm(T_Peatheight ~ SurfaceLevel, data = GPR_subset) 
linmod.h.L   <- lm(Peatheight   ~ SurfaceLevel, data = Legacy) 
linmod.h.L_T <- lm(T_Peatheight ~ SurfaceLevel, data = Legacy) 
 
linmod.d.A   <- lm(Peatdepth   ~ SurfaceLevel, data = All_subset) 
linmod.d.A_T <- lm(T_Peatdepth ~ SurfaceLevel, data = All_subset) 
linmod.d.G   <- lm(Peatdepth   ~ SurfaceLevel, data = GPR_subset) 
linmod.d.G_T <- lm(T_Peatdepth ~ SurfaceLevel, data = GPR_subset) 
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linmod.d.L   <- lm(Peatdepth   ~ SurfaceLevel, data = Legacy) 
linmod.d.L_T <- lm(T_Peatdepth ~ SurfaceLevel, data = Legacy) 

 

Check the summaries of the linear model whether the linear model is relevant for regression kriging. 

summary(linmod.h.A)    

##  
## Call: 
## lm(formula = Peatheight ~ SurfaceLevel, data = All_subset) 
##  
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -3.0065 -0.5277  0.1841  0.6849  1.6603  
##  
## Coefficients: 
##              Estimate Std. Error t value Pr(>|t|)     
## (Intercept)   3.35696    1.01208   3.317  0.00105 **  
## SurfaceLevel  0.73977    0.05548  13.334  < 2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 0.9605 on 236 degrees of freedom 
## Multiple R-squared:  0.4297, Adjusted R-squared:  0.4272  
## F-statistic: 177.8 on 1 and 236 DF,  p-value: < 2.2e-16 

There is a very significant relation, and satisfying residual standard error, p-value and (adjested) r squared. 

 

summary(linmod.h.G)    

##  
## Call: 
## lm(formula = Peatheight ~ SurfaceLevel, data = GPR_subset) 
##  
## Residuals: 
##      Min       1Q   Median       3Q      Max  
## -0.87541 -0.26057  0.03058  0.21278  0.75063  
##  
## Coefficients: 
##              Estimate Std. Error t value Pr(>|t|)     
## (Intercept)   0.07738    1.36214   0.057    0.955     
## SurfaceLevel  0.95404    0.07427  12.845   <2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 0.3694 on 58 degrees of freedom 
## Multiple R-squared:  0.7399, Adjusted R-squared:  0.7354  
## F-statistic:   165 on 1 and 58 DF,  p-value: < 2.2e-16 

There is a very significant relation, and satisfying residual standard error, p-value and (adjested) r squared. 

 

summary(linmod.h.L)    

##  
## Call: 
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## lm(formula = Peatheight ~ SurfaceLevel, data = Legacy) 
##  
## Residuals: 
##      Min       1Q   Median       3Q      Max  
## -2.68728 -0.71166  0.05838  0.76141  1.92556  
##  
## Coefficients: 
##              Estimate Std. Error t value Pr(>|t|)     
## (Intercept)   3.90510    1.09585   3.564 0.000471 *** 
## SurfaceLevel  0.69758    0.06018  11.591  < 2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 0.9959 on 176 degrees of freedom 
## Multiple R-squared:  0.4329, Adjusted R-squared:  0.4297  
## F-statistic: 134.4 on 1 and 176 DF,  p-value: < 2.2e-16 

There is a very significant relation, and satisfying residual standard error, p-value and (adjested) r squared. 

 

summary(linmod.h.A_T)  

##  
## Call: 
## lm(formula = T_Peatheight ~ SurfaceLevel, data = All_subset) 
##  
## Residuals: 
##      Min       1Q   Median       3Q      Max  
## -0.77607 -0.13509  0.05121  0.17736  0.41334  
##  
## Coefficients: 
##              Estimate Std. Error t value Pr(>|t|)     
## (Intercept)   2.94072    0.26114   11.26   <2e-16 *** 
## SurfaceLevel  0.19096    0.01432   13.34   <2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 0.2478 on 236 degrees of freedom 
## Multiple R-squared:  0.4299, Adjusted R-squared:  0.4275  
## F-statistic: 177.9 on 1 and 236 DF,  p-value: < 2.2e-16 

There is a very significant relation, and satisfying residual standard error, p-value and (adjested) r squared. 

 

summary(linmod.h.G_T)  

##  
## Call: 
## lm(formula = T_Peatheight ~ SurfaceLevel, data = GPR_subset) 
##  
## Residuals: 
##    Min     1Q Median     3Q    Max  
## -55605 -18501   2035  14118  46986  
##  
## Coefficients: 
##              Estimate Std. Error t value Pr(>|t|)     
## (Intercept)   -831631      85598  -9.716 8.94e-14 *** 
## SurfaceLevel    57792       4668  12.382  < 2e-16 *** 
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## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 23210 on 58 degrees of freedom 
## Multiple R-squared:  0.7255, Adjusted R-squared:  0.7208  
## F-statistic: 153.3 on 1 and 58 DF,  p-value: < 2.2e-16 

There is a very significant relation, satisfying p-value and (adjested) r squared.but the residual standard error is 
not satisfying.  

summary(linmod.h.L_T) 

##  
## Call: 
## lm(formula = T_Peatheight ~ SurfaceLevel, data = Legacy) 
##  
## Residuals: 
##        Min         1Q     Median         3Q        Max  
## -5.440e-04 -1.351e-04  2.899e-05  1.679e-04  3.227e-04  
##  
## Coefficients: 
##               Estimate Std. Error t value Pr(>|t|)     
## (Intercept)  4.907e-01  2.227e-04 2203.07   <2e-16 *** 
## SurfaceLevel 1.435e-04  1.223e-05   11.73   <2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 0.0002024 on 176 degrees of freedom 
## Multiple R-squared:  0.4388, Adjusted R-squared:  0.4356  
## F-statistic: 137.6 on 1 and 176 DF,  p-value: < 2.2e-16 

There is a very significant relation, and satisfying residual standard error, p-value and (adjested) r squared. 

 

summary(linmod.d.A)    

##  
## Call: 
## lm(formula = Peatdepth ~ SurfaceLevel, data = All_subset) 
##  
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -1.6603 -0.6849 -0.1841  0.5277  3.0065  
##  
## Coefficients: 
##              Estimate Std. Error t value Pr(>|t|)     
## (Intercept)  -3.35696    1.01208  -3.317  0.00105 **  
## SurfaceLevel  0.26023    0.05548   4.691 4.61e-06 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 0.9605 on 236 degrees of freedom 
## Multiple R-squared:  0.08528,    Adjusted R-squared:  0.0814  
## F-statistic:    22 on 1 and 236 DF,  p-value: 4.614e-06 

There is a very significant relation, and satisfying residual standard error, p-value and (adjested) r squared. 

 

summary(linmod.d.A_T)  
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##  
## Call: 
## lm(formula = T_Peatdepth ~ SurfaceLevel, data = All_subset) 
##  
## Residuals: 
##      Min       1Q   Median       3Q      Max  
## -2.41929 -0.53227 -0.03379  0.56894  1.83566  
##  
## Coefficients: 
##              Estimate Std. Error t value Pr(>|t|)     
## (Intercept)  -3.16962    0.89068  -3.559 0.000451 *** 
## SurfaceLevel  0.18403    0.04883   3.769 0.000207 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 0.8453 on 236 degrees of freedom 
## Multiple R-squared:  0.05678,    Adjusted R-squared:  0.05278  
## F-statistic: 14.21 on 1 and 236 DF,  p-value: 0.000207 

There is a very significant relation, and satisfying residual standard error, p-value and (adjested) r squared. 

 

summary(linmod.d.G)    

##  
## Call: 
## lm(formula = Peatdepth ~ SurfaceLevel, data = GPR_subset) 
##  
## Residuals: 
##      Min       1Q   Median       3Q      Max  
## -0.75063 -0.21278 -0.03058  0.26057  0.87541  
##  
## Coefficients: 
##              Estimate Std. Error t value Pr(>|t|) 
## (Intercept)  -0.07738    1.36214  -0.057    0.955 
## SurfaceLevel  0.04596    0.07427   0.619    0.538 
##  
## Residual standard error: 0.3694 on 58 degrees of freedom 
## Multiple R-squared:  0.006559,   Adjusted R-squared:  -0.01057  
## F-statistic: 0.3829 on 1 and 58 DF,  p-value: 0.5385 

There is no relation, a satisfying residual standard error, but no satisfying (adjusted) R squared and p value. 

 

summary(linmod.d.G_T)  

##  
## Call: 
## lm(formula = T_Peatdepth ~ SurfaceLevel, data = GPR_subset) 
##  
## Residuals: 
##      Min       1Q   Median       3Q      Max  
## -0.78436 -0.21177 -0.02645  0.26585  0.87351  
##  
## Coefficients: 
##              Estimate Std. Error t value Pr(>|t|) 
## (Intercept)  -1.08664    1.38574  -0.784    0.436 
## SurfaceLevel  0.04617    0.07556   0.611    0.544 
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##  
## Residual standard error: 0.3758 on 58 degrees of freedom 
## Multiple R-squared:  0.006397,   Adjusted R-squared:  -0.01073  
## F-statistic: 0.3734 on 1 and 58 DF,  p-value: 0.5435 

There is no relation, a satisfying residual standard error, but no satisfying (adjusted) R squared and p value. 

 

summary(linmod.d.L)    

##  
## Call: 
## lm(formula = Peatdepth ~ SurfaceLevel, data = Legacy) 
##  
## Residuals: 
##      Min       1Q   Median       3Q      Max  
## -1.92556 -0.76141 -0.05838  0.71166  2.68728  
##  
## Coefficients: 
##              Estimate Std. Error t value Pr(>|t|)     
## (Intercept)  -3.90510    1.09585  -3.564 0.000471 *** 
## SurfaceLevel  0.30242    0.06018   5.025 1.23e-06 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 0.9959 on 176 degrees of freedom 
## Multiple R-squared:  0.1255, Adjusted R-squared:  0.1205  
## F-statistic: 25.25 on 1 and 176 DF,  p-value: 1.229e-06 

There is a very significant relation, and satisfying residual standard error, p-value and (adjested) r squared. 

 

summary(linmod.d.L_T)  

##  
## Call: 
## lm(formula = T_Peatdepth ~ SurfaceLevel, data = Legacy) 
##  
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -2.4178 -0.5627  0.0387  0.6605  1.6961  
##  
## Coefficients: 
##              Estimate Std. Error t value Pr(>|t|)     
## (Intercept)  -3.64324    0.94124  -3.871 0.000153 *** 
## SurfaceLevel  0.22175    0.05169   4.290 2.94e-05 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 0.8554 on 176 degrees of freedom 
## Multiple R-squared:  0.09467,    Adjusted R-squared:  0.08953  
## F-statistic:  18.4 on 1 and 176 DF,  p-value: 2.942e-05 

There is a very significant relation, and satisfying residual standard error, p-value and (adjested) r squared. 

 

Add relevent residiuals to data 
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All_subset$residuals.h   <- linmod.h.A$residuals 
All_subset$T_residuals.h <- linmod.h.A_T$residuals 
GPR_subset$residuals.h   <- linmod.h.G$residuals 
Legacy$residuals.h       <- linmod.h.L$residuals 
Legacy$T_residuals.h     <- linmod.h.L_T$residuals 
 
All_subset$residuals.d   <- linmod.d.A$residuals 
All_subset$T_residuals.d <- linmod.d.A_T$residuals 
Legacy$residuals.d       <- linmod.d.L$residuals 
Legacy$T_residuals.d     <- linmod.d.L_T$residuals 

 

Create variogram models 

g.resid.h.A   <- gstat(id=c("residuals.h"),   formula = residuals.h~1,   data = A
ll_subset) 
g.resid.h.A_T <- gstat(id=c("T_residuals.h"), formula = T_residuals.h~1, data = A
ll_subset) 
g.resid.h.G   <- gstat(id=c("residuals.h"),   formula = residuals.h~1,   data = G
PR_subset) 
g.resid.h.L   <- gstat(id=c("residuals.h"),   formula = residuals.h~1,   data = L
egacy) 
g.resid.h.L_T <- gstat(id=c("T_residuals.h"), formula = T_residuals.h~1, data = L
egacy) 
 
g.resid.d.A   <- gstat(id=c("residuals.d"),   formula = residuals.d~1,   data = A
ll_subset) 
g.resid.d.A_T <- gstat(id=c("T_residuals.d"), formula = T_residuals.d~1, data = A
ll_subset) 
g.resid.d.L   <- gstat(id=c("residuals.d"),   formula = residuals.d~1,   data = L
egacy) 
g.resid.d.L_T <- gstat(id=c("T_residuals.d"), formula = T_residuals.d~1, data = L
egacy) 

 

Select most optimal variogram model for kriging and compare whether using peatheight or peatdepth is better 
for kriging (lower nugget & lower sill give better kriging parameters). 

Variogram selection for All data. A "Linear" model gives no kriging output, so linear may be skipped. 

vgm.resid.h.A   <- optim_vgm_model(variogram(g.resid.h.A), skip = "Lin") 
vgm.resid.d.A   <- optim_vgm_model(variogram(g.resid.d.A), skip = "Lin") 
vgm.resid.A     <- bestvgm(vgm.resid.h.A, vgm.resid.d.A)                    

## vgm.resid.d.A is best suited for kriging 

## vgm.resid.d.A is the returned variogram model 

## MIND: the range difference is: 1.30439912027214e-06 

 

Variogram selection for transformed all data. A "Linear" model gives no kriging output, so linear may be 
skipped. 

vgm.resid.h.A_T <- optim_vgm_model(variogram(g.resid.h.A_T), skip = "Lin") 
vgm.resid.d.A_T <- optim_vgm_model(variogram(g.resid.d.A_T), skip = "Lin") 
vgm.resid.A_T   <- bestvgm(vgm.resid.h.A, vgm.resid.d.A_T)                  
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## Cannot choose the best variogram model, manual selection is required 

## No variogram model is returned 

plotvgm.height  <- plot(variogram(g.resid.h.A_T), vgm.resid.h.A_T, main="Peatheig
ht") 
plotvgm.depth   <- plot(variogram(g.resid.d.A_T), vgm.resid.d.A_T, main="Peatdept
h")  
plotvgm.height; plotvgm.depth 

 

FIGURE 10.63: VARIOGRAM MODELS RESIDUALS TRANSFORMED ALL PEATHEIGHT. 
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FIGURE 10.64: VARIOGRAM MODELS RESIDUALS TRANSFORMED ALL PEATDEPTH. 

No choice has been made by the function, but peatheight is chosen as the best of the two for kriging. 

vgm.resid.A_T   <- vgm.resid.h.A_T 

 

Variogram selection for GPR data. 

vgm.resid.G     <- optim_vgm_model(variogram(g.resid.h.G))      

## [1] "The best fitted variogram type is: Mat" 

 

Variogram selection for Legacy data. 

vgm.resid.h.L   <- optim_vgm_model(variogram(g.resid.h.L)) 
vgm.resid.d.L   <- optim_vgm_model(variogram(g.resid.d.L)) 
vgm.resid.L     <- bestvgm(vgm.resid.h.L, vgm.resid.d.L)                    

## vgm.resid.d.L is best suited for kriging 

## vgm.resid.d.L is the returned variogram model 

## MIND: the range difference is: 3.7708377931267e-07 

 

Variogram selection for transformed Legacy data. 

vgm.resid.h.L_T <- optim_vgm_model(variogram(g.resid.h.L_T)) 
vgm.resid.d.L_T <- optim_vgm_model(variogram(g.resid.d.L_T)) 
vgm.resid.L_T   <- bestvgm(vgm.resid.h.L_T, vgm.resid.d.L_T)                
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## vgm.resid.h.L_T is best suited for kriging 

## vgm.resid.h.L_T is the returned variogram model 

## MIND: the range difference is: 2023.35253785549 

plotvgm.height  <- plot(variogram(g.resid.h.L_T), vgm.resid.h.L_T, main="Peatheig
ht") 
plotvgm.depth   <- plot(variogram(g.resid.d.L_T), vgm.resid.d.L_T, main="Peatdept
h")  
plotvgm.height; plotvgm.depth 

 

FIGURE 10.65: VARIOGRAM MODELS RESIDUALS TRANSFORMED LEGACY PEATHEIGHT. 
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FIGURE 10.66: VARIOGRAM MODELS RESIDUALS TRANSFORMED LEGACY PEATDEPHT. 

High range difference, but peatheight is indeed the best of the two for kriging. 

 

KRIGING 

Ordinary Kriging. 

Peatdepth.OK_A    <- krige(formula = Peatdepth~1,    locations = All,  
                           newdata = CaseStudy, model = vgm.All) 
Peatheight.OK_A_T <- krige(formula = T_Peatheight~1, locations = All, 
                           newdata = CaseStudy, model = vgm.All_T) 
Peatdepth.OK_G    <- krige(formula = Peatdepth~1,    locations = GPR, 
                           newdata = CaseStudy, model = vgm.GPR) 
Peatdepth.OK_G_T  <- krige(formula = T_Peatdepth~1,  locations = GPR, 
                           newdata = CaseStudy, model = vgm.GPR_T) 
Peatdepth.OK_L    <- krige(formula = Peatdepth~1,    locations = Legacy, 
                           newdata = CaseStudy, model = vgm.Legacy) 
Peatheight.OK_L_T <- krige(formula = T_Peatheight~1, locations = Legacy, 
                           newdata = CaseStudy, model = vgm.Legacy_T) 

 

Co - kriging. 

Peatdepth.CK_LC     <- predict(object = fit.CK_LC,    newdata = CaseStudy) 
Peatheight.CK_LC_UT <- predict(object = fit.CK_LC_UT, newdata = CaseStudy) 
Peatdepth.CK_GC     <- predict(object = fit.CK_GC,    newdata = CaseStudy) 
Peatheight.CK_GC_UT <- predict(object = fit.CK_GC_UT, newdata = CaseStudy) 
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Regression kriging 

Peatdepth.RK_A    <- krige(formula = Peatdepth~SurfaceLevel,     locations = All, 
                           newdata = ahn_area, model = vgm.resid.A) 
Peatheight.RK_A_T <- krige(formula = T_Peatheight~SurfaceLevel,  locations = All, 
                           newdata = ahn_area, model = vgm.resid.A_T) 
Peatheight.RK_G   <- krige(formula = Peatheight~SurfaceLevel,    locations = GPR, 
                           newdata = ahn_area, model = vgm.resid.G) 
Peatdepth.RK_L    <- krige(formula = Peatdepth~SurfaceLevel,     locations = Legac
y, 
                           newdata = ahn_area, model = vgm.resid.L) 
Peatheight.RK_L_T <- krige(formula = T_Peatheight~SurfaceLevel,  locations = Legac
y, 
                           newdata = ahn_area, model = vgm.resid.L_T) 

 

Back transforming data. 

Peatheight.OK_A_T$prediction   <- revBoxCox(Peatheight.OK_A_T$var1.pred, All_subs
et$Peatheight, 
                                            variance = Peatheight.OK_A_T$var1.var) 
Peatheight.OK_A_T$variance     <- revBoxCox(Peatheight.OK_A_T$var1.var,  All_subs
et$Peatheight, 
                                            variance = Peatheight.OK_A_T$var1.var) 
Peatdepth.OK_G_T$prediction    <- revBoxCox(Peatdepth.OK_G_T$var1.pred,  GPR_subs
et$Peatdepth, 
                                            variance = Peatdepth.OK_G_T$var1.var) 
Peatdepth.OK_G_T$variance      <- revBoxCox(Peatdepth.OK_G_T$var1.var,   GPR_subs
et$Peatdepth, 
                                            variance = Peatdepth.OK_G_T$var1.var) 
Peatheight.OK_L_T$prediction   <- revBoxCox(Peatheight.OK_L_T$var1.pred, Legacy$P
eatheight, 
                                            variance = Peatheight.OK_L_T$var1.var) 
Peatheight.OK_L_T$variance     <- revBoxCox(Peatheight.OK_L_T$var1.var,  Legacy$P
eatheight, 
                                            variance = Peatheight.OK_L_T$var1.var) 
Peatheight.CK_GC_UT$prediction <- revBoxCox(Peatheight.CK_GC_UT$Peatheight.Legacy
_UT.pred,  
                                            GPR_subset$Peatheight, Legacy$Peatheig
ht,  
                                            variance = Peatheight.CK_GC_UT$Peathei
ght.Legacy_UT.var) 
Peatheight.CK_GC_UT$variance   <- revBoxCox(Peatheight.CK_GC_UT$Peatheight.Legacy
_UT.var,   
                                            GPR_subset$Peatheight, Legacy$Peatheig
ht,  
                                            variance = Peatheight.CK_GC_UT$Peathei
ght.Legacy_UT.var) 
Peatheight.CK_LC_UT$prediction <- revBoxCox(Peatheight.CK_LC_UT$Peatheight.GPR_UT
.pred,     
                                            GPR_subset$Peatheight, Legacy$Peatheig
ht,  
                                            variance = Peatheight.CK_LC_UT$Peathei
ght.GPR_UT.var) 
Peatheight.CK_LC_UT$variance   <- revBoxCox(Peatheight.CK_LC_UT$Peatheight.GPR_UT
.var,      
                                            GPR_subset$Peatheight, Legacy$Peatheig
ht,  
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                                            variance = Peatheight.CK_LC_UT$Peathei
ght.GPR_UT.var) 
Peatheight.RK_A_T$prediction   <- revBoxCox(Peatheight.RK_A_T$var1.pred, All_subs
et$Peatheight, 
                                            variance = Peatheight.RK_A_T$var1.var) 
Peatheight.RK_A_T$variance     <- revBoxCox(Peatheight.RK_A_T$var1.var,  All_subs
et$Peatheight, 
                                            variance = Peatheight.RK_A_T$var1.var) 
Peatheight.RK_L_T$prediction   <- revBoxCox(Peatheight.RK_L_T$var1.pred, Legacy$P
eatheight,  
                                            variance = Peatheight.RK_L_T$var1.var) 
Peatheight.RK_L_T$variance     <- revBoxCox(Peatheight.RK_L_T$var1.var,  Legacy$P
eatheight,  
                                            variance = Peatheight.RK_L_T$var1.var) 

 

Changing names so all PrePeat reconstructions have the same parameters. 

names(Peatdepth.OK_A)[1]  <- "prediction" 
names(Peatdepth.OK_A)[2]  <- "variance" 
names(Peatdepth.OK_G)[1]  <- "prediction" 
names(Peatdepth.OK_G)[2]  <- "variance" 
names(Peatdepth.OK_L)[1]  <- "prediction" 
names(Peatdepth.OK_L)[2]  <- "variance" 
names(Peatdepth.CK_GC)[1] <- "prediction" 
names(Peatdepth.CK_GC)[2] <- "variance" 
names(Peatdepth.CK_LC)[1] <- "prediction" 
names(Peatdepth.CK_LC)[2] <- "variance" 
names(Peatdepth.RK_A)[1]  <- "prediction" 
names(Peatdepth.RK_A)[2]  <- "variance" 
names(Peatheight.RK_G)[1] <- "prediction" 
names(Peatheight.RK_G)[2] <- "variance" 
names(Peatdepth.RK_L)[1]  <- "prediction" 
names(Peatdepth.RK_L)[2]  <- "variance" 

 

Make a multiplier from the ahn for the peatheight data, to get the same "gaps"/NA values in the peatheight 
data as in the peatdepth data. 

multiplier <- ahn_area$SurfaceLevel / ahn_area$SurfaceLevel 

 

Prediction variables for prepeat landscape reconstruction. Regression kriged reconstructions are also multiplied 
by the casestudy ASCII file (with values of '1') to get the same area as other predictions 

Prediction.OK_A     <- ahn_area$SurfaceLevel - Peatdepth.OK_A$prediction  
Prediction.OK_A_T   <- multiplier            * Peatheight.OK_A_T$prediction 
Prediction.OK_G     <- ahn_area$SurfaceLevel - Peatdepth.OK_G$prediction  
Prediction.OK_G_T   <- ahn_area$SurfaceLevel - Peatdepth.OK_G_T$prediction 
Prediction.OK_L     <- ahn_area$SurfaceLevel - Peatdepth.OK_L$prediction  
Prediction.OK_L_T   <- multiplier            * Peatheight.OK_L_T$prediction 
Prediction.CK_GC    <- ahn_area$SurfaceLevel - Peatdepth.CK_GC$prediction 
Prediction.CK_GC_UT <- multiplier            * Peatheight.CK_GC_UT$prediction 
Prediction.CK_LC    <- ahn_area$SurfaceLevel - Peatdepth.CK_LC$prediction 
Prediction.CK_LC_UT <- multiplier            * Peatheight.CK_LC_UT$prediction 
Prediction.RK_A     <- ahn_area$SurfaceLevel - Peatdepth.RK_A$prediction      * Ca
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seStudy$band1 
Prediction.RK_A_T   <- multiplier            * Peatheight.RK_A_T$prediction   * Ca
seStudy$band1 
Prediction.RK_G     <- multiplier            * Peatheight.RK_G$prediction     * Ca
seStudy$band1 
Prediction.RK_L     <- ahn_area$SurfaceLevel - Peatdepth.RK_L$prediction      * Ca
seStudy$band1 
Prediction.RK_L_T   <- multiplier            * Peatheight.RK_L_T$prediction   * Ca
seStudy$band1 

 

Prepeat landscape reconstructions. 

Prepeat.OK_A     <- SpatialGridDataFrame(CaseStudy, data.frame(Prediction.OK_A)
,     proj4string = projection) 
Prepeat.OK_A_T   <- SpatialGridDataFrame(CaseStudy, data.frame(Prediction.OK_A_
T),   proj4string = projection) 
Prepeat.OK_G     <- SpatialGridDataFrame(CaseStudy, data.frame(Prediction.OK_G)
,     proj4string = projection) 
Prepeat.OK_G_T   <- SpatialGridDataFrame(CaseStudy, data.frame(Prediction.OK_G_
T),   proj4string = projection) 
Prepeat.OK_L     <- SpatialGridDataFrame(CaseStudy, data.frame(Prediction.OK_L)
,     proj4string = projection) 
Prepeat.OK_L_T   <- SpatialGridDataFrame(CaseStudy, data.frame(Prediction.OK_L_
T),   proj4string = projection) 
Prepeat.CK_GC    <- SpatialGridDataFrame(CaseStudy, data.frame(Prediction.CK_GC
),    proj4string = projection) 
Prepeat.CK_GC_UT <- SpatialGridDataFrame(CaseStudy, data.frame(Prediction.CK_GC
_UT), proj4string = projection) 
Prepeat.CK_LC    <- SpatialGridDataFrame(CaseStudy, data.frame(Prediction.CK_LC
),    proj4string = projection) 
Prepeat.CK_LC_UT <- SpatialGridDataFrame(CaseStudy, data.frame(Prediction.CK_LC
_UT), proj4string = projection) 
Prepeat.RK_A     <- SpatialGridDataFrame(CaseStudy, data.frame(Prediction.RK_A)
,     proj4string = projection) 
Prepeat.RK_A_T   <- SpatialGridDataFrame(CaseStudy, data.frame(Prediction.RK_A_
T),   proj4string = projection) 
Prepeat.RK_G     <- SpatialGridDataFrame(CaseStudy, data.frame(Prediction.RK_G)
,     proj4string = projection) 
Prepeat.RK_L     <- SpatialGridDataFrame(CaseStudy, data.frame(Prediction.RK_L)
,     proj4string = projection) 
Prepeat.RK_L_T   <- SpatialGridDataFrame(CaseStudy, data.frame(Prediction.RK_L_
T),   proj4string = projection) 

 

Change names. 

names(Prepeat.OK_A)     <- "prediction" 
names(Prepeat.OK_A_T)   <- "prediction" 
names(Prepeat.OK_G)     <- "prediction" 
names(Prepeat.OK_G_T)   <- "prediction" 
names(Prepeat.OK_L)     <- "prediction" 
names(Prepeat.OK_L_T)   <- "prediction" 
names(Prepeat.CK_GC)    <- "prediction" 
names(Prepeat.CK_GC_UT) <- "prediction" 
names(Prepeat.CK_LC)    <- "prediction" 
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names(Prepeat.CK_LC_UT) <- "prediction" 
names(Prepeat.RK_A)     <- "prediction" 
names(Prepeat.RK_A_T)   <- "prediction" 
names(Prepeat.RK_G)     <- "prediction" 
names(Prepeat.RK_L)     <- "prediction" 
names(Prepeat.RK_L_T)   <- "prediction" 

 

Vector with all reconstructions. 

reconstructions <- c("Prepeat.OK_A",      
                     "Prepeat.OK_A_T",    
                     "Prepeat.OK_G",      
                     "Prepeat.OK_G_T", 
                     "Prepeat.OK_L", 
                     "Prepeat.OK_L_T", 
                     "Prepeat.CK_GC", 
                     "Prepeat.CK_GC_UT", 
                     "Prepeat.CK_LC", 
                     "Prepeat.CK_LC_UT", 
                     "Prepeat.RK_A", 
                     "Prepeat.RK_A_T", 
                     "Prepeat.RK_G", 
                     "Prepeat.RK_L", 
                     "Prepeat.RK_L_T") 

 

Minimum and maximum prediction values used for scaling the reconstruction maps. 

(low_AHN  <- min(na.omit(ahndata_recon))) 

## [1] 14.96 

(high_AHN <- max(na.omit(ahndata_recon))) 

## [1] 24.61 

## Minimum and maximum prediction values used for scaling the reconstruction maps 
predmins     <- reconstruction_stat(reconstructions, "prediction", "min") 
predmin      <- min(predmins) 
comp_AHN_low <- predmins < low_AHN 
for (i in seq(comp_AHN_low)){if(comp_AHN_low[i]){comp_AHN_low[i] = "Lower than AHN
"} 
  else{comp_AHN_low[i] = "Higher than AHN"}} 
 
predmaxs      <- reconstruction_stat(reconstructions, "prediction", "max") 
predmax       <- max(predmaxs) 
comp_AHN_high <- predmins < high_AHN 
for (i in seq(comp_AHN_high)){if(comp_AHN_high[i]){comp_AHN_high[i] = "Lower than 
AHN"} 
  else{comp_AHN_high[i] = "Higher than AHN"}} 
 
 
(Pred.df <- data.frame(reconstructions, predmins, comp_AHN_low, predmaxs, comp_AH
N_high)) 
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##     reconstructions predmins    comp_AHN_low predmaxs  comp_AHN_high 
## 1      Prepeat.OK_A 13.99061  Lower than AHN 24.29180 Lower than AHN 
## 2    Prepeat.OK_A_T 15.47256 Higher than AHN 18.76183 Lower than AHN 
## 3      Prepeat.OK_G 14.22666  Lower than AHN 24.33659 Lower than AHN 
## 4    Prepeat.OK_G_T 14.22624  Lower than AHN 24.34136 Lower than AHN 
## 5      Prepeat.OK_L 13.98010  Lower than AHN 23.74534 Lower than AHN 
## 6    Prepeat.OK_L_T 15.73332 Higher than AHN 18.44945 Lower than AHN 
## 7     Prepeat.CK_GC 13.91339  Lower than AHN 24.08770 Lower than AHN 
## 8  Prepeat.CK_GC_UT 14.75795  Lower than AHN 19.98649 Lower than AHN 
## 9     Prepeat.CK_LC 14.28441  Lower than AHN 24.26407 Lower than AHN 
## 10 Prepeat.CK_LC_UT 16.07515 Higher than AHN 19.67128 Lower than AHN 
## 11     Prepeat.RK_A 14.80655  Lower than AHN 21.48253 Lower than AHN 
## 12   Prepeat.RK_A_T 14.86733  Lower than AHN 21.68824 Lower than AHN 
## 13     Prepeat.RK_G 14.31440  Lower than AHN 24.12368 Lower than AHN 
## 14     Prepeat.RK_L 14.97576 Higher than AHN 20.87845 Lower than AHN 
## 15   Prepeat.RK_L_T 15.27232 Higher than AHN 22.34892 Lower than AHN 

 

2D MAPS 

Data points. 

All.pts    <- as.data.frame(All@coords);    coordinates(All.pts)    <- ~X.Coord 
+ Y.Coord 
GPR.pts    <- as.data.frame(GPR@coords);    coordinates(GPR.pts)    <- ~X.Coord 
+ Y.Coord 
Legacy.pts <- as.data.frame(Legacy@coords); coordinates(Legacy.pts) <- ~X.Coord 
+ Y.Coord 

 

*Vectors of the characteristics of the different reconstructions: used data points, used kriging method, used 

data type, and a title for the maps:* 

plotpts  <- c("All.pts", "All.pts", "GPR.pts", "GPR.pts", "Legacy.pts", "Legacy.pt
s",  
              "All.pts", "All.pts", "All.pts", "All.pts", "All.pts", "All.pts",  
              "GPR.pts", "Legacy.pts", "Legacy.pts") 
method   <- c(rep("Ordinary kriging",6), rep("Co-Kriging",4), rep("Regression kri
ging",5)) 
datatype <- c("All data", "All data (transformed)", "GPR data", "GPR data (transfo
rmed)",  
              "Legacy data", "Legacy data (transformed)", "GPR data as covariate d
ata",  
              "GPR data as covariate data (universal transformed)", "Legacy data a
s covariate data",  
              "Legacy data as covariate data (universal transformed)", "All data",  
              "All data (transformed)", "GPR data", "Legacy data", "Legacy data (t
ransformed)") 

 

Create 2D maps of the prediction of all reconstructions. 

title_pred <- "Bargerveen Case Study Area: Predicted pre-peat landscape \n" 
 
for (i in seq(reconstructions)){ 
  BargerveenCasePlot(data   = eval(parse(text = reconstructions[i])), sp_zcol = 

maps:*
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"prediction",  
                     pts    = eval(parse(text = plotpts[i])),  
                     title  = paste0(title_pred, method[i], ", ", datatype[i]),  
                     minval = predmin, maxval = predmax) 
} 

 

FIGURE 10.67: BARGERVEEN CASE STUDY AREA: PREDICTED PRE-PEAT LANDSCAPE. ORDINARY KRIGING, ALL DATA. 
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FIGURE 10.68: BARGERVEEN CASE STUDY AREA: PREDICTED PRE-PEAT LANDSCAPE. ORDINARY KRIGING, ALL DATA (TRANSFORMED). 

 

FIGURE 10.69: BARGERVEEN CASE STUDY AREA: PREDICTED PRE-PEAT LANDSCAPE. ORDINARY KRIGING, GPR DATA. 
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FIGURE 10.70: BARGERVEEN CASE STUDY AREA: PREDICTED PRE-PEAT LANDSCAPE. ORDINARY KRIGING, GPR DATA (TRANSFORMED). 

 

FIGURE 10.71: BARGERVEEN CASE STUDY AREA: PREDICTED PRE-PEAT LANDSCAPE. ORDINARY KRIGING, LEGACY DATA. 
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FIGURE 10.72: BARGERVEEN CASE STUDY AREA: PREDICTED PRE-PEAT LANDSCAPE. ORDINARY KRIGING, LEGACY DATA 

(TRANSFORMED). 

 

FIGURE 10.73: BARGERVEEN CASE STUDY AREA: PREDICTED PRE-PEAT LANDSCAPE. CO-KRIGING, GPR DATA AS COVARIATE DATA. 



BEST PRACTICES FOR CREATING HIGH-RESOLUTION 3D PRE-PEAT LANDSCAPES 

 MSC THESIS     DI LLEN BRUIL   179 

 

FIGURE 10.74: BARGERVEEN CASE STUDY AREA: PREDICTED PRE-PEAT LANDSCAPE. CO-KRIGING, GPR DATA AS COVARIATE DATA 

(UNIVERSAL TRANSFORMED). 

 

FIGURE 10.75: BARGERVEEN CASE STUDY AREA: PREDICTED PRE-PEAT LANDSCAPE. CO-KRIGING, LEGACY DATA AS COVARIATE DATA. 
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FIGURE 10.76: BARGERVEEN CASE STUDY AREA: PREDICTED PRE-PEAT LANDSCAPE. CO-KRIGING, LEGACY DATA AS COVARIATE DATA 

(UNIVERSAL TRANSFORMED). 

 

FIGURE 10.77: BARGERVEEN CASE STUDY AREA: PREDICTED PRE-PEAT LANDSCAPE. REGRESSION KRIGING, ALL DATA. 
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FIGURE 10.78: BARGERVEEN CASE STUDY AREA: PREDICTED PRE-PEAT LANDSCAPE. REGRESSION KRIGING, ALL DATA (TRANSFORMED). 

 

FIGURE 10.79: BARGERVEEN CASE STUDY AREA: PREDICTED PRE-PEAT LANDSCAPE. REGRESSION KRIGING, GPR DATA. 
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FIGURE 10.80: BARGERVEEN CASE STUDY AREA: PREDICTED PRE-PEAT LANDSCAPE. REGRESSION KRIGING, LEGACY DATA. 

 

FIGURE 10.81: BARGERVEEN CASE STUDY AREA: PREDICTED PRE-PEAT LANDSCAPE. REGRESSION KRIGING, LEGACY DATA 

(TRANSFORMED). 

 

ASSESSMENT 
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KRIGING STANDARD DEVIATION 
Peatdepth.OK_A$sd      <- sqrt(Peatdepth.OK_A$variance) 
Peatheight.OK_A_T$sd   <- sqrt(Peatheight.OK_A_T$variance) 
Peatdepth.OK_G$sd      <- sqrt(Peatdepth.OK_G$variance) 
Peatdepth.OK_G_T$sd    <- sqrt(Peatdepth.OK_G_T$variance) 
Peatdepth.OK_L$sd      <- sqrt(Peatdepth.OK_L$variance) 
Peatheight.OK_L_T$sd   <- sqrt(Peatheight.OK_L_T$variance) 
Peatdepth.CK_GC$sd     <- sqrt(Peatdepth.CK_GC$variance) 
Peatheight.CK_GC_UT$sd <- sqrt(Peatheight.CK_GC_UT$variance) 
Peatdepth.CK_LC$sd     <- sqrt(Peatdepth.CK_LC$variance) 
Peatheight.CK_LC_UT$sd <- sqrt(Peatheight.CK_LC_UT$variance) 
Peatdepth.RK_A$sd      <- sqrt(Peatdepth.RK_A$variance)    * CaseStudy$band1 
Peatheight.RK_A_T$sd   <- sqrt(Peatheight.RK_A_T$variance) * CaseStudy$band1 
Peatheight.RK_G$sd     <- sqrt(Peatheight.RK_G$variance)   * CaseStudy$band1 
Peatdepth.RK_L$sd      <- sqrt(Peatdepth.RK_L$variance)    * CaseStudy$band1 
Peatheight.RK_L_T$sd   <- sqrt(Peatheight.RK_L_T$variance) * CaseStudy$band1 

 

Vector of all reconstructions with standard deviation calculated. 

reconstructions.sd <- c("Peatdepth.OK_A", 
                        "Peatheight.OK_A_T", 
                        "Peatdepth.OK_G", 
                        "Peatdepth.OK_G_T", 
                        "Peatdepth.OK_L", 
                        "Peatheight.OK_L_T",  
                        "Peatdepth.CK_GC", 
                        "Peatheight.CK_GC_UT", 
                        "Peatdepth.CK_LC", 
                        "Peatheight.CK_LC_UT", 
                        "Peatdepth.RK_A", 
                        "Peatheight.RK_A_T", 
                        "Peatheight.RK_G", 
                        "Peatdepth.RK_L", 
                        "Peatheight.RK_L_T") 

 

Minimum, minimum average and maximum standard deviation values used for scaling the standard deviation 
maps and assessing the reconstructions. 

sdmins <- reconstruction_stat(reconstructions.sd, "sd", "min") 
sdmin  <- min(sdmins) 
sdavgs <- reconstruction_stat(reconstructions.sd, "sd", "mean") 
sdavg  <- min(sdavgs) 
sdmaxs <- reconstruction_stat(reconstructions.sd, "sd", "max") 
sdmax  <- max(sdmaxs) 
 
(Sd.df <- format(data.frame(reconstructions, sdmins, sdavgs, sdmaxs), scientific 
= FALSE)) 

##     reconstructions    sdmins    sdavgs    sdmaxs 
## 1      Prepeat.OK_A 0.2899544 0.4123490 0.6393189 
## 2    Prepeat.OK_A_T 1.0051098 1.0112982 1.0276680 
## 3      Prepeat.OK_G 0.1270193 0.3234432 0.4075012 
## 4    Prepeat.OK_G_T 1.0079381 1.0566233 1.0861299 
## 5      Prepeat.OK_L 0.2585649 0.7690972 0.9590929 
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## 6    Prepeat.OK_L_T 1.0000000 1.0000000 1.0000000 
## 7     Prepeat.CK_GC 0.5996035 0.9587153 1.1229258 
## 8  Prepeat.CK_GC_UT 1.0000000 1.0000000 1.0000001 
## 9     Prepeat.CK_LC 0.3598494 0.4560307 0.5296123 
## 10 Prepeat.CK_LC_UT 1.0000000 1.0000000 1.0000000 
## 11     Prepeat.RK_A 0.2926692 0.4003370 0.6070232 
## 12   Prepeat.RK_A_T 1.0034438 1.0064923 1.0146510 
## 13     Prepeat.RK_G 0.1269510 0.3306926 0.4900378 
## 14     Prepeat.RK_L 0.4156591 0.6845412 0.8863981 
## 15   Prepeat.RK_L_T 1.0000000 1.0000000 1.0000000 

 

Create 2D maps of the standard deviation of all reconstructions 

title_sd <- "Bargerveen Case Study Area: Standard deviation pre-peat landscape \n" 
 
for (i in seq(reconstructions.sd)){ 
  BargerveenCasePlot(data   = eval(parse(text = reconstructions.sd[i])), sp_zco
l = "sd",   
                     title  = paste0(title_sd, method[i], ", ", datatype[i]),  
                     minval = sdmin, maxval = sdmax) 
} 

 

FIGURE 10.82: BARGERVEEN CASE STUDY AREA: STANDARD DEVIATION PRE-PEAT LANDSCAPE. ORDINARY KRIGING, ALL DATA. 
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FIGURE 10.83: BARGERVEEN CASE STUDY AREA: STANDARD DEVIATION PRE-PEAT LANDSCAPE. ORDINARY KRIGING, ALL DATA 

(TRANSFORMED). 

 

FIGURE 10.84: BARGERVEEN CASE STUDY AREA: STANDARD DEVIATION PRE-PEAT LANDSCAPE. ORDINARY KRIGING, GPR DATA. 
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FIGURE 10.85: BARGERVEEN CASE STUDY AREA: STANDARD DEVIATION PRE-PEAT LANDSCAPE. ORDINARY KRIGING, GPR DATA 

(TRANSFORMED). 

 

FIGURE 10.86: BARGERVEEN CASE STUDY AREA: STANDARD DEVIATION PRE-PEAT LANDSCAPE. ORDINARY KRIGING, LEGACY DATA. 
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FIGURE 10.87: BARGERVEEN CASE STUDY AREA: STANDARD DEVIATION PRE-PEAT LANDSCAPE. ORDINARY KRIGING, LEGACY DATA 

(TRANSFORMED). 

 

FIGURE 10.88: BARGERVEEN CASE STUDY AREA: STANDARD DEVIATION PRE-PEAT LANDSCAPE. CO-KRIGING, GPR DATA AS COVARIATE 

DATA. 
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FIGURE 10.89: BARGERVEEN CASE STUDY AREA: STANDARD DEVIATION PRE-PEAT LANDSCAPE. CO-KRIGING, GPR DATA AS COVARIATE 

DATA (UNIVERSAL TRANSFORMED). 

 

FIGURE 10.90: BARGERVEEN CASE STUDY AREA: STANDARD DEVIATION PRE-PEAT LANDSCAPE. CO-KRIGING, LEGACY DATA AS 

COVARIATE DATA. 
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FIGURE 10.91: BARGERVEEN CASE STUDY AREA: STANDARD DEVIATION PRE-PEAT LANDSCAPE. CO-KRIGING, LEGACY DATA AS 

COVARIATE DATA (UNIVERSAL TRANSFORMED). 

 

FIGURE 10.92: BARGERVEEN CASE STUDY AREA: STANDARD DEVIATION PRE-PEAT LANDSCAPE. REGRESSION KRIGING, ALL DATA. 
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FIGURE 10.93: BARGERVEEN CASE STUDY AREA: STANDARD DEVIATION PRE-PEAT LANDSCAPE. REGRESSION KRIGING, ALL DATA 

(TRANSFORMED). 

 

FIGURE 10.94: BARGERVEEN CASE STUDY AREA: STANDARD DEVIATION PRE-PEAT LANDSCAPE. REGRESSION KRIGING, GPR DATA. 
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FIGURE 10.95: BARGERVEEN CASE STUDY AREA: STANDARD DEVIATION PRE-PEAT LANDSCAPE. REGRESSION KRIGING, LEGACY DATA. 

 

FIGURE 10.96: BARGERVEEN CASE STUDY AREA: STANDARD DEVIATION PRE-PEAT LANDSCAPE. REGRESSION KRIGING, LEGACY DATA 

(TRANSFORMED). 
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ACCURACY 

Accuracy is calculated by means of the Mean Error and the Root Mean Square Error: 

                                         

The residuals are calculated from a cross validation. For the GPR and All data local coherence of clustering may 
not have an influence. 

Clusters for ross validation 

clusters <- c("FW_L21", "FW_L22", "FW_L23", "FW_L24", "FW_L25", "FW_L26",  
              "FW_L27", "FW_L28", "FW_L29", "FW_L30", "FW_L31", "FW_L32") 

 

Cross validation 

cv.OK_A       <- cv.nocluster(method  = "krige.cv", cluster    = clusters,       
ID_column = "Name",  
                              data_cv = "All",      formula_cv = Peatdepth~1,    m
odel_cv = vgm.All)    
cv.OK_A_T     <- cv.nocluster(method  = "krige.cv", cluster    = clusters,       
ID_column = "Name",  
                              data_cv = "All",      formula_cv = T_Peatheight~1, m
odel_cv = vgm.All_T) 
cv.OK_G       <- cv.nocluster(method  = "krige.cv", cluster    = clusters,       
ID_column = "Name",  
                              data_cv = "GPR",      formula_cv = Peatdepth~1,    m
odel_cv = vgm.GPR) 
cv.OK_G_T     <- cv.nocluster(method  = "krige.cv", cluster    = clusters,       
ID_column = "Name",  
                              data_cv = "GPR",      formula_cv = T_Peatdepth~1,  m
odel_cv = vgm.GPR_T) 
 
cv.OK_L       <- krige.cv(formula = Peatdepth~1,    locations = Legacy, 
                          model   = vgm.Legacy,     nfold = nrow(Legacy)) 
cv.OK_L_T     <- krige.cv(formula = T_Peatheight~1, locations = Legacy, 
                          model   = vgm.Legacy_T,   nfold = nrow(Legacy)) 
 
cv.CK_LC      <- cv.nocluster(method  = "gstat.cv", cluster   = clusters, ID_colu
mn = "Name",  
                              data_cv = "GPR",      object_cv = fit.CK_LC) 
cv.CK_LC_UT   <- cv.nocluster(method  = "gstat.cv", cluster   = clusters, ID_colu
mn = "Name",  
                              data_cv = "GPR",      object_cv = fit.CK_LC_UT) 
 
cv.CK_GC      <- gstat.cv(object = fit.CK_GC,    nfold = nrow(Legacy)) 
cv.CK_GC_UT   <- gstat.cv(object = fit.CK_GC_UT, nfold = nrow(Legacy)) 
 
cv.RK_A       <- cv.nocluster(method     = "krige.cv", cluster    = clusters, ID_
column = "Name",  
                              data_cv    = "All",      formula_cv = Peatdepth~Surf
aceLevel,    
                              model_cv   = vgm.resid.A)    
cv.RK_A_T     <- cv.nocluster(method     = "krige.cv", cluster    = clusters, ID_
column = "Name", 
                              data_cv    = "All",      formula_cv = Peatheight~Sur
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faceLevel,  
                              model_cv   = vgm.resid.A_T)    
cv.RK_G       <- cv.nocluster(method     = "krige.cv", cluster    = clusters, 
                              ID_column  = "Name",     data_cv    = "GPR",       
                              formula_cv = Peatheight~SurfaceLevel, model_cv = vgm
.resid.G) 
 
cv.RK_L       <- krige.cv(formula = Peatdepth~SurfaceLevel,    locations = Legacy
,  
                          model   = vgm.resid.L,               nfold     = nrow(Le
gacy)) 
cv.RK_L_T     <- krige.cv(formula = T_Peatheight~SurfaceLevel, locations = Legacy
,  
                          model   = vgm.resid.L_T,             nfold     = nrow(Le
gacy)) 

 

Back transform the predicted and observed values. 

cv.OK_A_T$predicted   <- revBoxCOx(cv.OK_A_T$var1.pred, All_subset$Peatheight,  
                                   variance = cv.OK_A_T$var1.var) 
cv.OK_A_T$observed    <- revBoxCOx(cv.OK_A_T$observed,  All_subset$Peatheight,  
                                   variance = cv.OK_A_T$var1.var) 
cv.OK_G_T$predicted   <- revBoxCOx(cv.OK_G_T$var1.pred, GPR_subset$Peatdepth,   
                                   variance = cv.OK_G_T$var1.var) 
cv.OK_G_T$observed    <- revBoxCOx(cv.OK_G_T$observed,  GPR_subset$Peatdepth,   
                                   variance = cv.OK_G_T$var1.var) 
cv.OK_L_T$predicted   <- revBoxCOx(cv.OK_L_T$var1.pred, Legacy$Peatheight,      
                                   variance = cv.OK_L_T$var1.var) 
cv.OK_L_T$observed    <- revBoxCOx(cv.OK_L_T$observed,  Legacy$Peatheight,      
                                   variance = cv.OK_L_T$var1.var) 
cv.CK_GC_UT$predicted <- revBoxCOx(cv.CK_GC_UT$Peatheight.Legacy_UT.pred, 
                                   GPR_subset$Peatheight, Legacy$Peatheight,  
                                   variance = cv.CK_GC_UT$Peatheight.Legacy_UT.var
) 
cv.CK_GC_UT$observed  <- revBoxCOx(cv.CK_GC_UT$observed, 
                                   GPR_subset$Peatheight, Legacy$Peatheight, 
                                   variance = cv.CK_GC_UT$Peatheight.Legacy_UT.var
) 
cv.CK_LC_UT$predicted <- revBoxCOx(cv.CK_LC_UT$Peatheight.GPR_UT.pred, 
                                   GPR_subset$Peatheight, Legacy$Peatheight, 
                                   variance = cv.CK_LC_UT$Peatheight.GPR_UT.var) 
cv.CK_LC_UT$observed  <- revBoxCOx(cv.CK_LC_UT$observed, 
                                   GPR_subset$Peatheight, Legacy$Peatheight, 
                                   variance = cv.CK_LC_UT$Peatheight.GPR_UT.var) 
cv.RK_A_T$predicted   <- revBoxCOx(cv.RK_A_T$var1.pred, All_subset$Peatheight,  
                                   variance = cv.RK_A_T$var1.var) 
cv.RK_A_T$observed    <- revBoxCOx(cv.RK_A_T$observed,  All_subset$Peatheight,  
                                   variance = cv.RK_A_T$var1.var) 
cv.RK_L_T$predicted   <- revBoxCOx(cv.RK_L_T$var1.pred, Legacy$Peatheight,  
                                   variance = cv.RK_L_T$var1.var) 
cv.RK_L_T$observed    <- revBoxCOx(cv.RK_L_T$observed,  Legacy$Peatheight,  
                                   variance = cv.RK_L_T$var1.var) 

 

Change names of untransformed cross validations in order to properly loop through all cross validations. 
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names(cv.OK_A)[1]  <- "predicted" 
names(cv.OK_G)[1]  <- "predicted" 
names(cv.OK_L)[1]  <- "predicted" 
names(cv.CK_GC)[1] <- "predicted" 
names(cv.CK_LC)[1] <- "predicted" 
names(cv.RK_A)[1]  <- "predicted" 
names(cv.RK_G)[1]  <- "predicted" 
names(cv.RK_L)[1]  <- "predicted" 

Vector with al cross validations. 

crosvals <- c("cv.OK_A", 
              "cv.OK_A_T", 
              "cv.OK_G", 
              "cv.OK_G_T", 
              "cv.OK_L",   
              "cv.OK_L_T", 
              "cv.CK_GC", 
              "cv.CK_GC_UT", 
              "cv.CK_LC", 
              "cv.CK_LC_UT", 
              "cv.RK_A", 
              "cv.RK_A_T", 
              "cv.RK_G", 
              "cv.RK_L", 
              "cv.RK_L_T") 

 

Set up database for calculation the Mean Error and the Root Mean Squared Error. 

Reconstruction <- c(); ME <- c(); RMSE <- c(); Error.df <- data.frame(Reconstruct
ion, ME, RMSE) 
Error.df <- Error.df$Reconstruction; Error.df <- Error.df$ME; Error.df <- Error.df
$RMSE 

 

Create data frame for the ME and RMSE. 

# Loop through all cross validations   
for (i in seq(crosvals)){ 
   
# Identify residuals of each cross validation 
  obs  <- eval(parse(text = paste0(crosvals[i], "$observed"))) 
  pred <- eval(parse(text = paste0(crosvals[i], "$predicted"))) 
   
  # Calculations 
  Error.df$Reconstruction[i] <- reconstructions[i] 
  Error.df$ME[i]             <- abs(mean(obs - pred)) 
  Error.df$RMSE[i]           <- sqrt(mean((obs - pred)^2)) 
} 
 
Error.df <- format(as.data.frame(Error.df), scientific = FALSE) 

 

Replace possible "NaN" character values by NA, to improve assessment ordering. 
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for (i in seq(Error.df[,1])){ 
  for (j in seq(Error.df[1,])){ 
    if (suppressWarnings(is.na(eval(parse(text=Error.df[i,j]))))){ 
      Error.df[i,j] = NA 
    } 
  } 
} 
Error.df 

##      Reconstruction          ME      RMSE 
## 1      Prepeat.OK_A  0.06478488 0.5816011 
## 2    Prepeat.OK_A_T  0.05245758 0.5917665 
## 3      Prepeat.OK_G  0.08396079 0.3089014 
## 4    Prepeat.OK_G_T  1.09377850 1.1359305 
## 5      Prepeat.OK_L  0.02784783 0.7822371 
## 6    Prepeat.OK_L_T  0.05308218 0.7781694 
## 7     Prepeat.CK_GC  0.02631493 0.7899106 
## 8  Prepeat.CK_GC_UT  0.14036514 1.0862053 
## 9     Prepeat.CK_LC  0.05843319 0.3672137 
## 10 Prepeat.CK_LC_UT  0.09943318 0.4469958 
## 11     Prepeat.RK_A  0.05629054 0.5275632 
## 12   Prepeat.RK_A_T  0.52715985 4.3958718 
## 13     Prepeat.RK_G  0.08048023 0.3066633 
## 14     Prepeat.RK_L  0.01757814 0.7009223 
## 15   Prepeat.RK_L_T  0.05341685 0.6873141 

 

ASSESS ALL TOGETHER 

Every 'best' assessment gets value 1, so the lowest ME/RMSE/Mean standard deviation gets value 1, the 
highest gets value 15. All values are added up and the lowest Total is the gets the best assessment based on 
Mean Error, Root Mean Squared Error and Mean Standard Deviation. Because a good RMSE is preferred over a 
good ME (so not only accurate, but also precise) the ME values are halved. 

Set up data frame to assess the ME, RMSE and Standard deviation. 

Assess <- data.frame(); Reconstruction <- c(); ME <- c(); RMSE <- c(); SD <- c(); 
Total <- c() 
Assess <- Assess$Reconstrucion; Assess <- Assess$ME; Assess <- Assess$RMSE;  
Assess <- Assess$SD; Assess <- Assess$Total 

 

Create data frame to assess the ME, RMSE and Standard deviation. 

for (i in seq(reconstructions)){ 
  Assess$Reconstruction[i] <- reconstructions[i] 
   
  Sort_ME   <- sort(Error.df$ME) 
  Sort_RMSE <- sort(Error.df$RMSE) 
  Sort_SD   <- sort(Sd.df$sdavgs) 
   
  Rank_ME   <- which(Sort_ME[i]   == Error.df$ME) 
  Rank_RMSE <- which(Sort_RMSE[i] == Error.df$RMSE) 
  Rank_SD   <- which(Sort_SD[i]   == Sd.df$sdavgs) 
   
  Assess$ME[Rank_ME]     <- i * 0.5 
  Assess$RMSE[Rank_RMSE] <- i 
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  Assess$SD[Rank_SD]     <- i 
} 
 
Assess$Total <- Assess$ME + Assess$RMSE + Assess$SD  
(Assess <- as.data.frame(Assess)) 

##      Reconstruction  ME RMSE SD Total 
## 1      Prepeat.OK_A 3.0    6  4  13.0 
## 2    Prepeat.OK_A_T 4.5    7 14  25.5 
## 3      Prepeat.OK_G 3.5    2  1   6.5 
## 4    Prepeat.OK_G_T 4.0   14 15  33.0 
## 5      Prepeat.OK_L 1.5   11  7  19.5 
## 6    Prepeat.OK_L_T 5.0   10 12  27.0 
## 7     Prepeat.CK_GC 1.0   12  8  21.0 
## 8  Prepeat.CK_GC_UT 7.0   13 12  32.0 
## 9     Prepeat.CK_LC 2.5    3  5  10.5 
## 10 Prepeat.CK_LC_UT 6.5    4 12  22.5 
## 11     Prepeat.RK_A 2.0    5  3  10.0 
## 12   Prepeat.RK_A_T 7.5   15 13  35.5 
## 13     Prepeat.RK_G 6.0    1  2   9.0 
## 14     Prepeat.RK_L 0.5    9  6  15.5 
## 15   Prepeat.RK_L_T 5.5    8 12  25.5 

 

Sorted on total value. 

Assess[with(Assess, order(Total)),] 

##      Reconstruction  ME RMSE SD Total 
## 3      Prepeat.OK_G 3.5    2  1   6.5 
## 13     Prepeat.RK_G 6.0    1  2   9.0 
## 11     Prepeat.RK_A 2.0    5  3  10.0 
## 9     Prepeat.CK_LC 2.5    3  5  10.5 
## 1      Prepeat.OK_A 3.0    6  4  13.0 
## 14     Prepeat.RK_L 0.5    9  6  15.5 
## 5      Prepeat.OK_L 1.5   11  7  19.5 
## 7     Prepeat.CK_GC 1.0   12  8  21.0 
## 10 Prepeat.CK_LC_UT 6.5    4 12  22.5 
## 2    Prepeat.OK_A_T 4.5    7 14  25.5 
## 15   Prepeat.RK_L_T 5.5    8 12  25.5 
## 6    Prepeat.OK_L_T 5.0   10 12  27.0 
## 8  Prepeat.CK_GC_UT 7.0   13 12  32.0 
## 4    Prepeat.OK_G_T 4.0   14 15  33.0 
## 12   Prepeat.RK_A_T 7.5   15 13  35.5 

 

BEST METHOD 

The best assessed method is co-kriging with legacy data as covariate data, using universal transformed data. 

Create data frames of the x (x coordinates), y (y coordinates) and z (reconstructed surface level above sea level) 
axis, values. 

x <- as.data.frame(Prepeat.CK_LC)[,2] 
y <- as.data.frame(Prepeat.CK_LC)[,3] 
z <- as.data.frame(Prepeat.CK_LC)[,1] 

Plot 3D reconstruction of the best assessed pre-peat landscape reconstruction. 
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wireframe(z ~ x * y, 
          shade = TRUE, 
          xlab  = list("X coordinates", rot = 25),  
          ylab  = list("Y coordinates", rot = -55), 
          zlab  = list("height above sealevel (m)", rot = 95), 
          main  = "3D plot best assessed pre-spppeat landscape reconstruction", 
          scales = list(arrows=FALSE), 
          screen = list(z=30, x=-50) 
          ) 

 

FIGURE 10.97: 3D PLOT OF THE BEST ASSESSED PRE-PEAT LANDSCAPE RECONSTRUCTION (CO-KRIGING WITH LEGACY AS COVARIATE 

DATA). 

 

For a rotating 3D plot, the free software of ImageMagick should be installed. This can be done via this link: 

https://www.imagemagick.org/script/download.php, selecting the right download. 

Rotating 3D reconstruction of the best assessed pre-peat landscape reconstruction. 

angles <- seq(from=1,to=360,by=1) 
 
draw.plot <- function(angles){ 
  for(i in 1:length(angles)){ 
    print(wireframe(z ~ x * y,  
                    shade = TRUE, 
                    xlab  = list("X coordinates", rot = angles[i]),  
                    ylab  = list("Y coordinates", rot = angles[i] + 90), 
                    zlab  = list("height above sealevel (m)", rot = 95), 
                    main  = "3D plot best assessed pre-peat landscape reconstructi
on", 
                    scales = list(arrows=FALSE), 
                    screen = list(z=angles[i], x=-50) 

https://www.imagemagick.org/script/download.php
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                    ) 
          ) 
  } 
} 
 
saveGIF(draw.plot(angles), interval = 60/360, movie.name="3D Rotating plot.GIF", 
        ani.height=640,ani.width=640) 

 

 

 

 


