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Chapter 1 

General introduction 
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Natural ecosystems are increasingly affected by human activities (Rockström et al. 2009). In addition 

to major anthropogenic pressures such as land use change, pollution, hunting, and fishing, organisms 

in these ecosystems also have to cope with human-induced climate change (Walther et al. 2002; 

Parmesan & Yohe 2003; Parmesan 2006; Poloczanska et al. 2013). Due to, among other factors, rising 

emission levels of greenhouse gasses  and feedbacks between increasing temperatures and greenhouse 

gas emissions from natural ecosystems (Crowther et al. 2016), global temperatures might increase as 

much as 3⁰C by 2100 (Rogelj et al. 2016). These rapid changes in global climate are unprecedented in 

recent evolutionary history. Understanding how natural communities respond to direct and indirect 

consequences of human-induced climate change therefore has become one of the major research 

challenges in contemporary ecology (Lavergne et al. 2010).  

Ecological responses to climate change 

Local responses: adaptation & ecological mismatches 

To cope with climate change and to avoid local extinction, species have to become adapted to the new 

local conditions (Jump & Peñuelas 2005; Berg et al. 2010). Because of the speed of climate change, 

adaptation to these new conditions often fails. This can have disastrous consequences for ecosystem 

function, such as the bleaching of coral reefs (Hoegh-Guldberg et al. 2007). Local species persistence 

is especially difficult when climate warming disrupts key interactions between species. For example, 

many plant and insect species can show rapid responses to changing temperature regimes, e.g. by 

advancing their phenology by means of plastic responses to temperature cues (Menzel et al. 2006), 

while other groups of species cannot.  

When the offsets of life history events are determined by different environmental cues, long-

established interactions between different organisms may become disrupted or imbalanced because of 

climate change (Visser & Both 2005). For example, due to increasing spring temperatures, the peak of 

plant growth in the Arctic tundra has advanced, and no longer corresponds with the timing of calve 

birth of Caribou (Rangifer tarandus), as their reproduction is timed in response to day length. This 

trophic mismatch has resulted in a decline of Caribou numbers (Post & Forchhammer 2008). 

Similarly, in temperate forests, the timing of reproduction of migratory and non-migratory songbirds 
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is increasingly disconnected from the peak of moth caterpillar availability for bird chicks (Both et al. 

2006; Reed et al. 2013). Additionally, climate warming can affect host-disease interactions, with 

potentially disastrous effects. In the Neotropics, the extinction of numerous amphibians has been 

related to increasingly severe outbreaks of the fungal pathogen Batrachochytrium dendrobatidis, that 

thrives under hot conditions (Pounds et al. 2006).  

Range boundaries on the move: retractions and expansions  

The failure and success to adapt to the new local abiotic and biotic conditions caused by climate change 

may affect the spatial distribution of species. Under this assumption many plant species have been 

predicted to go extinct or to strongly decline in distribution, as their niche will no longer be present in 

places where the species previously occurred (Thomas et al. 2004; Thuiller et al. 2005). Indeed, range 

retractions have been reported for many species. For example, several butterfly species are in decline 

at the southern edge of their original range (Franco et al. 2006). In mountains, many plant species are 

not anymore found at the lower altitudes of their original range (Rumpf et al. 2018). In contrast, 

climate warming also creates opportunities for range expansion, as plant and animal species favouring 

warm conditions may colonize areas that previously were too cold. For example, in Europe, bird 

species such as the Great egret, previously associated with Mediterranean areas, have been expanding 

their range northwards and are now successfully reproducing in north-western Europe (Ławicki 

2014). Similarly, many south-European invertebrate species (e.g. Wasp spider and Scarlet dragonfly) 

show northward range expansions in Europe (Ott 2001; Krehenwinkel & Tautz 2013). Moreover, 

many plant species have been expanding their range, both to higher latitudes and altitudes (Chen et 

al. 2011).  

Globally, tree lines in mountain areas are elevated, and also boreal forests are extending polewards 

(Gehrig-Fasel, Guisan & Zimmermann 2007; Kelly & Goulden 2008). In North-western Europe, 

dozens of South-European plant species, e.g. Dittrichia graveolens, Rorippa austriaca and Tragopogon 

dubius, have become established or are expanding their range (Tamis et al. 2005; van Grunsven et al. 

2010; Macel et al. 2017; Lustenhouwer et al. 2018). Also urbanization may facilitate the establishment 

and expansion of plant species that previously occurred at lower latitudes as urbanized areas are often 
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relatively warm and stony. For example, in The Netherlands several Mediterranean herb and grass 

species, such as Polycarpon tetraphyllum, Catapodium rigidum and Eragrostis minor, are almost 

exclusively found in cities (NDFF 2017), whereas Dittrichia graveolens expands its range along 

highway networks (Lustenhouwer et al. 2018). Thus, while climate change has caused extinctions and 

range retractions of species associated with cold conditions, it has facilitated the range expansion of 

many species associated with warm conditions.  

Variation in rate of range expansion    

Although range expansions have been documented for many plant and animal species, the 

consequences for species interactions and community dynamics are still largely unexplored (Lavergne 

et al. 2010; van der Putten 2012). With range expansion, species interactions could change when 

associated species are not expanding their range at the same rate, due to varying dispersal abilities 

(Morriën et al. 2010; van der Putten 2012). Importantly, aboveground organisms are expected to 

disperse faster than belowground organisms (Berg et al. 2010). Therefore, especially the interactions 

between plants and the associated soil organisms from their original range may become disrupted. In 

this thesis I explore the consequences of climate change-driven range expansion for interactions 

between plants and plant-associated soil organisms.  

Plant-soil interactions 

Rhizosphere communities 

Plants directly and indirectly interact with a wide variety of soil organisms such as bacteria, fungi, 

protists, nematodes, micro-arthropods and other invertebrates (De Deyn & Van der Putten 2005). The 

majority of these interactions take place in the rhizosphere, which is the interface of plant roots and 

the surrounding soil (Philippot et al. 2013). Here, plants exude volatile and non-volatile compounds, 

which in turn directly and indirectly attract soil organisms that together form the rhizosphere 

community (van Dam & Bouwmeester 2016; Venturi & Keel 2016; Schulz-Bohm et al. 2017). As plant 

species vary in some of the chemical compounds they produce, they also attract and stimulate the 

growth of different soil organisms, thereby accumulating species-specific rhizosphere communities. 

Next to differences in root chemistry, variation in root architecture also explains part of these species-
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specific rhizosphere communities. For example, plant species with thick roots are more densely 

colonized by arbuscular mycorrhizal fungi than plant species with thin roots (Cortois et al. 2016; Ma 

et al. 2018). Thus, by variation in chemical and structural root traits each plant species shapes a more 

or less unique rhizosphere community.  

Plant-soil feedbacks 

Organisms in the rhizosphere have varying functions and may either be beneficial, neutral or harmful 

for the plant (Bardgett & van der Putten 2014). Roughly, harmful organisms include bacterial, protist 

and fungal plant pathogens, root-feeding nematodes, and insect larvae, while the group of beneficial 

organisms mostly consists of arbuscular-mycorrhizal fungi, growth-promoting rhizobacteria and 

organisms that suppress plant enemies (Berendsen, Pieterse & Bakker 2012; Bardgett & van der Putten 

2014). Importantly, the balance between harmful and beneficial organisms in attracted rhizosphere 

communities can differ between plant species, with important consequences for future generations of 

plants (Bever, Westover & Antonovics 1997; van der Putten et al. 2016). New generations of plants are 

expected to perform poorly when their conspecific predecessors accumulated considerable amounts 

of harmful organisms. Alternatively, plants may perform well when especially mutualists are 

accumulating. Such ‘plant-soil feedbacks’ (Bever, Westover & Antonovics 1997) are important for the 

dynamics of plant communities, as poor performance of plant species in soils conditioned by 

conspecifics allows the establishment of plant species that are either better defended against these 

harmful organisms (van der Putten, Van Dijk & Peters 1993; Mills & Bever 1998; Kardol, Bezemer & 

van der Putten 2006). Thus, via the conditioning of soil communities plant species persistence at a 

micro-scale indirectly may be either promoted or resisted.  

Soil nematodes and their functions 

The primary group of soil organisms studied in the present thesis are soil nematodes. Nematodes are 

the most abundant soil animals (Bardgett & van der Putten 2014) and, as a result of fundamental 

diversification in food sources, occupy a variety of positions in the soil food web (Yeates et al. 1993). 

In addition to root-feeding nematodes, there are bacterivorous and fungivorous nematodes, predatory 

nematodes that feed on other nematodes or unicellular organisms, and omnivorous nematodes which 
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feed on multiple groups of organisms (Yeates et al. 1993). Because of this wide array of feeding types 

and the relatively straightforward methods to morphologically quantify and identify nematodes to the 

level of feeding type and family, nematodes are often used as indicators of soil quality and of the 

complexity of the soil food web. For example, high numbers of bacterivores indicate a disturbed 

bacteria-dominated soil, whereas high numbers of predatory and omnivorous nematodes indicate 

matured, stable soils with a complex soil community (Bongers 1990; Bongers & Ferris 1999).  

Root-feeding nematodes 

Root-feeding nematodes are especially known as important agricultural pests, as they reduce global 

food production with an annual damage estimated at 80 billion USD (Nicol et al. 2011; Jones et al. 

2013). Less known is their important function in natural systems, where they play a role in plant-soil 

feedback interactions that may contribute to the natural succession of vegetation (van der Putten, Van 

Dijk & Peters 1993; De Deyn et al. 2003). Within the group of root-feeding nematodes there is 

considerable variation in feeding mode, and generally five main feeding types are recognized (Yeates 

et al. 1993). Root-hair feeders, of which most members belong to the family Tylenchidae, have not 

been shown to be detrimental to plant performance and have received little attention in scientific 

literature (Bongers 1988). All other groups of root-feeding nematodes contain species that can be 

detrimental for plant performance (Decraemer et al. 2006). Ectoparasites, which pierce plant roots 

with their stylets, contain several different nematode genera and families, such as Paratylenchus, 

Criconematidae and Dolichodoridae. Semi-endoparasites, primarily species of the genera 

Helicotylenchus and Rotylenchus, partly enter the roots and feed on cells on the inside of the roots 

(Yeates et al. 1993; Decraemer et al. 2006). Migratory endoparasites, such as the root lesion nematodes 

Pratylenchus, can enter the roots of multiple plants, whereas sedentary endoparasites such as 

Meloidogyne are known to create galls in the roots, thereby disturbing plant growth (Decraemer et al. 

2006).  

 

 

 



 

 

15 
 

Plant defences against root-feeding nematodes 

Studies on root-feeding nematodes that occur as agricultural pests have shown that many nematode 

species may have broad host ranges, but also that there can be strong variation in performance on 

different host plants (Wood 1973; Santo et al. 1980; Starr 1991; Decraemer et al. 2006). This indicates 

that plant species vary in their defence mechanisms against root-feeding nematodes. The production 

of certain secondary chemicals is considered to be an important bottom-up defence mechanism 

against root-feeding nematodes (Halbrendt 1996; Potter et al. 1999; Soriano et al. 2004), suggesting 

that variation in root chemistry drives host suitability for root-feeding nematodes. In addition to their 

direct, chemical defence mechanisms, plants possibly also indirectly defend themselves against root-

feeding nematodes via the attraction of soil organisms that parasitize nematodes. Such soil-borne 

nematode-antagonistic organisms include species of protists, fungi and bacteria (Kerry 2000; 

Piskiewicz et al. 2007; Geisen et al. 2015). Plants have been shown to attract other beneficial microbes 

over long distances (Schulz-Bohm et al. 2017) and there is also evidence on plant-mediated top-down 

control of larger root herbivores (Rasmann et al. 2005; Turlings, Hiltpold & Rasmann 2012). 

Therefore, the existence of similar plant-mediated top-down control mechanisms against root-feeding 

nematodes is not unlikely, although this possibility remains to be tested.   

Root-feeding nematodes as model system to test belowground consequences of plant range expansion 

Because of the assumed negative effects of root-feeding nematodes on natural plant performance (van 

der Stoel, van der Putten & Duyts 2002; De Deyn et al. 2003), it is important to examine whether plant-

nematode interactions change between original and new plant ranges. Theoretically, there are two 

possible causes of such changes in plant-nematode interactions (Fig. 1.1.). First, nematode species 

present in the original range of the range-expanding plant species may not be present in the new range. 

So far, studies have shown that there is geographic and latitudinal variation in nematode community 

composition which has partly been related to variation in climate (Nielsen et al. 2014; Song et al. 2017). 

Although these studies did not examine rhizosphere communities, such latitudinal variation suggests 

that range-expanding plants indeed may face partly different nematode communities in their new 

range, provided that they outrun their native nematode community (Berg et al. 2010). Second, even if 
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the composition of nematode communities in general and root-feeding nematode communities in 

particular is comparable between the original and the new range, nematodes may be locally adapted 

to the present community of plants and other organisms. Because gene flow between nematode 

populations is limited due to the relatively poor dispersal capacities of nematodes (Blouin, Liu & Berry 

1999), local adaption of root-feeding nematode populations to native plants seems very well possible 

but remains untested. As nematodes are relatively well identifiable and quantifiable, and because they 

can be cultured and used for experimentation under lab conditions, nematodes are considered to be 

useful for testing proposed effects (Berg et al. 2010, van der Putten 2012) of plant range expansions on 

plant-soil interactions.  

 

Fig. 1.1 Conceptual overview of changes in the interactions between range-expanding plant species and root-feeding 

nematodes that may occur due to range expansion. In their original range, range-expanding plant species may be affected 

by specialized root-feeding nematodes (1) and generalist root-feeding nematodes (2). In the new range, specialized root-

feeding nematodes are not likely to be present, whereas generalist root-feeding nematodes may peform poorly on range-

expanders due to their local adaptation to plant species in the native community (3).  These changes in plant-nematode 

interactions may benefit range-expanding plant species in their new range.  
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Lessons from exotic species: losing old, and gaining new belowground interactions 

Enemy release 

The possibility of disrupted plant-soil interactions has been extensively studied with respect to a 

different ecological phenomenon in the Anthropocene: the intentional or unintentional introduction 

of exotic plant species to continents where they previously did not occur (van Kleunen et al. 2015). A 

considerable number of these exotic plant species show invasiveness in their new range: they have 

become disproportionally abundant after introduction, thereby negatively affecting native biodiversity 

(Hejda, Pyšek & Jarošík 2009; Powell, Chase & Knight 2013). One of the major hypotheses that has 

been tested to explain this invasiveness is the loss of co-evolved specialist natural enemies from the 

new range (Enemy release hypothesis; Keane & Crawley 2002). Indeed, experiments using soils from 

both the original and the new ranges of exotic plant species have shown that in soils from their new 

range, exotic plant species are less negatively affected by soil biota (Reinhart et al. 2003; Callaway et al. 

2004) than in soils from their original range. Moreover, pathogens from the original range have been 

shown to be absent in the new range (Reinhart et al. 2003; Blumenthal et al. 2009; Reinhart et al. 2010). 

These results indeed suggest that enemy release contributes to the disproportional abundance and 

invasiveness of some introduced exotic plant species in their non-native range.  

Establishment of novel interactions and the role of novel chemistry 

Non-native plant species can only strongly benefit from the release of their co-evolved natural enemies 

when natural enemies in the new range do not affect them as strongly as they affect their native host 

plant species. The novel interactions established between exotic plant species and non-coevolved 

native natural enemies therefore play a crucial role in the potential success of exotic plant species in 

their new range (Verhoeven et al. 2009). Whether a plant species will be affected by native natural 

enemies has been proposed to depend on its ecological similarity to plant species already present in 

the community (Elton 1958). Non-native plant species that have chemical compounds and defensive 

strategies similar to native plant species present in the communities in the new range are likely to be 

similarly good hosts for native pathogens and herbivores, allowing host switching of natural enemies 

(Parker & Gilbert 2004). These spill-over events are especially likely to happen when non-native plant 
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species are closely related to members of the native plant community. For example, exotic plant species 

closely related to native plant species may be negatively affected by soil communities accumulated by 

these close relatives in their new range (Callaway et al. 2013). Contrastingly, when non-native plant 

species possess defence traits not possessed by members of the native community, they may strongly 

impact the native community in various ways. Most directly, the production of ‘novel defence 

chemicals’ may benefit the non-native plant species when these chemicals deter native herbivores and 

pathogens. (Schaffner et al. 2011; Macel et al. 2014). Moreover, the exudation of novel root metabolites 

may directly or indirectly affect native plant species by allelopathic effects on neighbouring plants or 

the symbionts of these plants (Callaway & Aschehoug 2000; Stinson et al. 2006; Callaway et al. 2008). 

As non-native plant species that are distantly related to the native community are likely to possess the 

most strongly dissimilar defence traits (Gilbert & Parker 2016), this may explain why on average this 

group of non-natives is most prone to become invasive (Strauss, Webb & Salamin 2006). However, 

the chance to successfully establish in a new plant community is lower for distantly related species 

than for closely related species, as the latter likely are more strongly pre-adapted to the local conditions 

(Park & Potter 2013; Bezeng et al. 2015). 

Evolutionary responses to novel biotic conditions – shifting defences 

In addition to their novel defence chemicals, non-native plant species may also acquire a superior 

defence against local herbivores and pathogens due to an evolutionary process following the invasion 

or range expansion process. The costly defence mechanisms used against specialists are no longer 

necessary when non-native plant species are liberated from co-evolved specialist natural enemies from 

their original range. Instead, genotypes that invest more strongly in defence mechanisms against 

generalist enemies will benefit from the selective pressure against individuals that also invest in 

defences against specialists (Doorduin & Vrieling 2011; Lin, Klinkhamer & Vrieling 2015). 

Additionally, as toxic chemicals that defend plants against generalists are expected to be relatively 

cheap for the plant, non-native plant species may have more resources left to invest in growth than 

native plants that require costly defences against both specialist and generalist herbivores (Joshi & 

Vrieling 2005). This may lead to ‘evolution of increased competitive ability’ (Blossey & Notzold 1995), 

which is another possible key mechanism explaining the success of some plant species in their non-
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native range. However, evidence for this hypothesis is still scarce (Bossdorf 2013; Uesugi & Kessler 

2013). Contrary to populations of intercontinentally introduced exotic species, which are genetically 

isolated from their core population in the native range, populations of intra-continental range-

expanders will likely experience continued gene flow from the original range. Due to this continued 

gene flow, populations in the expanded range may not be able to show strong evolutionary responses 

in response to their novel environment (Kirkpatrick & Barton 1997). However, recent studies showing 

natural selection during intracontinental range expansion (Macel et al. 2017; Lustenhouwer et al. 

2018) indicate that evolutionary responses should be considered when examining the novel 

interactions of climate-driven range-expanding plant species.  

State of the art: plant-soil interactions of intracontinental range-expanders  

The same mechanisms that may benefit introduced exotic plant species in their novel environments, 

usually on other continents, might also benefit intra-continental range-expanders in their new range. 

One of the key questions in current studies on climate-driven range expansion is whether range-

expanding plant species can become released from natural enemies when they establish in areas of 

higher latitude or altitude (van der Putten 2012). Such a disruption of plant-enemy interactions due 

to intra-continental range expansion may not be as strong when compared to intercontinental 

introductions, as some natural enemies of range-expanders may have wider distributions and will 

therefore already be present at higher latitudes (Menendez et al. 2008). Yet, an increasing number of 

studies show that some range-expanding plant species are less affected by soil communities in their 

new range compared to their original range, suggesting a degree of enemy release (van Grunsven et al. 

2010; De Frenne et al. 2014; Dostálek et al. 2015; Van Nuland, Bailey & Schweitzer 2017). However, 

comparisons between the compositions of soil communities from the original and new range of range-

expanding plant species so far have rarely been made (Van Nuland, Bailey & Schweitzer 2017). 

Nevertheless, within their new range, the few studies published thus far have shown that range-

expanding plant species on average accumulate fewer pathogens and root-feeding nematodes, and are 

less negatively affected by soil communities than related native plant species (van Grunsven et al. 2007; 

Engelkes et al. 2008; Morriën, Duyts & Van der Putten 2012; Morriën & van der Putten 2013). 

Altogether, these studies suggest that intra-continental range-expanders can benefit from either 
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specialist enemy release or a superior defence against native natural enemies, or a combination of these 

mechanisms (Fig. 1.1). Currently, the generality of these processes and the actual mechanisms 

underlying them remains to be established.   

Research aim and thesis outline 

To predict the potential impact of range-expanding plant species on native communities, it is 

important to understand how their plant-soil interactions differ from native plant species and how 

these interactions differ between the original and new range. Therefore, in this thesis, I study the shifts 

in belowground communities between the original and new range of range-expanding plant species. 

Moreover, I examine whether there are fundamental differences in plant-soil interactions between 

range-expanders and plant species that are native in both the original and new range of the range-

expanders. I especially focus on the interactions between plants and root-feeding nematodes, but also 

consider other groups of soil organisms, such as protists and other microbes that might act as natural 

enemies of the nematodes. I aim to relate differences in plant-soil interactions between range-

expanders and native plant species to variation in chemical and morphological root traits, and test 

whether plant phylogeny can be used as a predictor of these differences in plant-soil interactions.   

In Chapter 2 I study nematode communities in the rhizospheres of range-expanding and congeneric 

native plant species along a latitudinal transect from south-eastern Europe (the original range of the 

range-expanders studied in this thesis) to north-western Europe (the new range of the range-

expanders). In this way, I examine whether latitudinal changes in rhizosphere nematode communities 

under range-expanders are stronger than under congeneric plant species that are native along this 

entire latitudinal transect.   

To experimentally test whether range-expanding plant species differently affect nematode 

communities in their new range compared to their old range, I performed an experiment with plant 

communities of either native or range-expanding plant species on soil from either northern or 

southern Europe (Chapter 3). Here, I also test whether nematode communities show stronger 

differences between northern and southern soils when they are conditioned by range-expanding plant 
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species that lack phylogenetically close relatives in the new range, compared to when they are 

conditioned by range-expanders that do have phylogenetically close relatives in the new range.  

In Chapters 4 and 5, I examine the differences in plant-nematode interactions within different pairs of 

range-expanding and related native plant species in more detail.  

In a greenhouse experiment with multiple belowground trophic levels, I examine whether top-down 

control (by nematode-antagonistic microbes) and bottom-up control (by plant defences) of root-

feeding nematodes differs between range-expanders and natives (Chapter 4). I test the hypotheses that 

root-feeding nematodes perform more poorly on range-expanders than on natives, but are also less 

affected by nematode-antagonists as these may be less successfully attracted by range-expanders than 

by natives.  

To gain a more mechanistic understanding of possible bottom-up control of root-feeding nematodes, 

I examine how root-feeding nematode attraction and performance differs between range-expanding 

and native plant species and how these patterns relate to differences in plant chemistry between the 

plant species (Chapter 5).   

In the final experiments of this thesis (Chapter 6) I studied effects of plant origin and phylogenetic 

distance on plant-soil interactions using multiple range-expanding and native plant species that all 

belong to the same genus. This approach was aimed at answering the question whether nematode 

reproduction, rhizosphere community composition and plant-soil feedback are phylogenetically 

determined or explained by plant origin. Additionally, I analysed root traits, such as root chemistry, 

in order to obtain a mechanistic understanding of the observed plant-soil interaction patterns in this 

part of my study.  

In Chapter 7 I discuss the findings of the different data chapters in relation to the overall research 

questions and aims of my thesis. I will also discuss linkages between my research on range expansions 

and the research fields of invasion ecology and plant-soil interaction ecology. Finally, I will propose 

future research directions.  
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Soil nematode community composition and climate warming-
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Abstract 

Climate change affects the distribution of organisms by enabling latitudinal and altitudinal range 

expansions. Plant species that expand their range to higher latitude regions have been predicted to 

become released from belowground natural enemies. However, those predictions have not yet been 

tested. Here, we combine novel molecular and classical identification methods in order to examine 

nematode communities in the rhizospheres of four range-expanding and four congeneric native 

species along a 2000 km transect from Mediterranean to North-Western Europe. Nematode 

communities consist of functionally diverse species, including important belowground herbivores, 

bacterivores and fungivores. We tested the hypotheses that 1) nematode communities show a 

consistent change with increasing latitude, 2) range-expanding plant species experience stronger 

latitudinal shifts in nematode community composition than related natives and 3) range-expanding 

plant species accumulate fewer root-feeding nematodes in their new than in their original range. Our 

results indeed show latitudinal variation in nematode community composition, indicating that range-

expanding plant species face different nematode communities when arriving in a novel habitat. 

However, only one of the examined range-expanding plant species, Centaurea stoebe, experienced 

stronger nematode community shifts than its congeneric native and was partly released from root-

feeding nematodes in its new range. All other range-expanding plant species did not experience 

stronger shifts in nematode community composition, and accumulated comparable root-feeding 

nematode numbers in their new compared to their original range. We conclude that while nematode 

communities change with latitude, the release of root-feeding nematodes may not be a general 

mechanism during climate warming-driven plant range expansion.  

Introduction 

Anthropogenic climate change directly and indirectly affects natural communities by impacts on the 

phenology and performance of organisms (Parmesan 2006). To avoid local extinction, species either 

need to adapt to the novel local conditions, or shift their range towards previously unsuitable areas 

(Berg et al. 2010). As a consequence, many organisms have been recorded to expand their range to 

higher latitudes or altitudes (Parmesan & Yohe 2003; Rumpf et al. 2018; Steinbauer et al. 2018). 
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However, expansion rates are not uniform across organismal groups. Plants, for instance, are 

suggested to expand at a faster rate than their intimately connected rhizosphere communities (Berg et 

al. 2010). Among those rhizosphere organisms are mutualists and antagonists that can affect plant 

performance and vegetation dynamics (Kardol, Bezemer & van der Putten 2006; Van Der Heijden, 

Bardgett & Van Straalen 2008). Through plant range-expansions, interactions between plants and 

specific rhizosphere communities can be disrupted with functional consequences for plant 

performance in the new range (Morriën et al. 2010; van der Putten 2012). Indeed, several range-

expanding plant species seem to be less negatively affected by soil communities in their new than in 

their original range, suggesting that range expansion enables release from natural enemies from the 

original range (van Grunsven et al. 2010; De Frenne et al. 2014; Dostálek et al. 2015; Van Nuland, 

Bailey & Schweitzer 2017).  

The actual biotic players that drive plant performance belowground are diverse and include bacteria, 

archaea, fungi, protists, nematodes and larger animals. Particularly nematodes include functionally 

diverse taxa including bacterivores, fungivores, root-feeders, omnivores and predators that interact 

with other members of the soil food web (Yeates et al. 1993; de Ruiter, Neutel & Moore 1995). A 

particular study focus has been on root-feeding nematodes due to their prevalent role as agricultural 

pests. Similarly, a release from root-feeding nematodes has been suggested as an underlying driver of 

successful plant range-expansion (Engelkes et al. 2008; Morriën, Duyts & Van der Putten 2012). 

However, shifts in soil nematode community composition along the plant range expansion transects 

have not been examined yet. 

Survey-based sampling, such as transects, can be useful to explore biogeographic patterns of the 

community structure of soil biota and investigate dependences of organisms to (a)biotic conditions 

(Tedersoo et al. 2014; Thompson et al. 2017; Delgado-Baquerizo et al. 2018). Sampling along transects 

has shown that soil bacteria are mainly influenced by pH, and communities of fungi and protists by a 

combination of moisture and other abiotic factors (Bates et al. 2013; Tedersoo et al. 2014; Delgado-

Baquerizo et al. 2018). For nematodes, survey-based approaches have been rarely performed due to 

methodological constraints, as the time-consuming and expert-dependent morphological 

identification still dominates nematode community analyses over molecular methods (Geisen et al. 
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2018; Griffiths et al. 2018). The few survey- based studies as well as global meta-analyses have shown 

that climate, vegetation and soil abiotic conditions determine nematode community compositions 

(Nielsen et al. 2014; Sylvain et al. 2014; Chen et al. 2015; Song et al. 2017). However, all these studies 

have used a limited number of samples, low taxonomic resolution, or different methodology to 

investigate soil nematode communities.    

Here we used a combination of morphological and molecular techniques to perform high-resolution 

analyses of soil nematode communities along a latitudinal transect of plant range expansion in Europe. 

Next to the composition of nematode communities, we quantified the abundances of nematode 

feeding types and different root-feeding nematode groups, which differ in feeding mode and their 

effects on plant performance (Bongers 1988; Yeates et al. 1993). Across a latitudinal gradient of 

approximately 2000 km long, including six countries in Europe, we collected 356 independent 

rhizosphere nematode community samples of four range-expanding plant species in their new range 

in north-western Europe and their original range in south-eastern and central Europe. To disentangle 

range expansion effects from latitudinal variation in nematode community composition we also 

collected nematode communities from four congeneric plant species that are native along this 

latitudinal gradient. We tested the hypotheses that 1) there is an overall latitudinal gradient in 

nematode community composition, 2) along the latitudinal transect, range-expanding plant species 

would experience stronger nematode community shifts than related native plant species and 3) root-

feeding nematodes in the rhizospheres of range-expanding plant species are less abundant in their new 

that in their original range.  

Methods 

Plant species 

We sampled nematode communities from four plant species that are expanding their range and four 

congeneric species that are native in both the original and new range of the range-expanders. These 

‘climate-driven range-expanders’ naturally occur in southern and/or central Europe and have recently 

expanded their range into north-western Europe (NDFF 2017). The congeneric native plant species 

are native in southern, central and northern Europe. The range-expanders in our study were 
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Centaurea stoebe (Asteraceae), Tragopogon dubius (Asteraceae), Geranium pyrenaicum (Geraniaceae) 

and Rorippa austriaca (Brassicaceae). Congeneric native plant species were Centaurea jacea, 

Tragopogon pratensis, Geranium molle and Rorippa sylvestris, respectively. Such a comparison 

between range-expanders with congeneric natives is aimed at minimizing the possibility that findings 

may be obfuscated by e.g. differences in phylogenetic position (Agrawal et al. 2005; Engelkes et al. 

2008).  In north-western Europe, all plant species occur in the same riverine ecosystem, although 

specific habitat requirements may differ. 

Field sampling  

In the growing seasons of 2013 and 2014 we collected soil around the roots of flowering individuals of 

all eight plant species along a latitudinal transect from south-eastern to north-western Europe, 

including Greece, Montenegro, Slovenia, Austria, Germany and The Netherlands. In each country, we 

aimed to sample 9 individual plants: 3 individuals from one sampling area and three different sampling 

areas. As Centaurea stoebe and Rorippa austriaca do not occur in Greece and Montenegro, these 

species were only sampled from Slovenia northwards. Samples from all other plant species were 

collected from each country mentioned above. After collection, soils were stored in transportable 

coolers and, as soon as logistically possible, at 4˚C until nematode extraction. Additionally, for all 2014 

samples, we measured soil pH, C/N ratio, soil content of plant available NH�
�, NO�

� + NO	
� and 

phosphate (Polsen). 

Nematode extraction  

Before nematode extraction, stones and other large particles were removed from the collected soils, 

after which we used approximately 100 g of soil for nematode extraction. A separate soil sample of 

roughly 10 g was used for soil chemical analyses and to determine soil moisture. Nematodes were 

extracted from a weighed amount of soil using Oostenbrink elutriators (Oostenbrink 1960). 

Suspensions (10 ml) with extracted nematodes were divided into two halves: 50% of each sample was 

used for DNA-extraction and amplicon sequencing (see below) while the other 50% was used for 

nematode quantification. Before nematode counting, these suspensions were concentrated to 2 ml, 

after which 4 ml hot (90˚ C) and 4 ml cold (20˚ C) formaldehyde was added to heat-kill and fixate the 
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nematodes. Nematodes were counted using an inverse-light microscope (200x; Olympus CK40) and 

nematode numbers were expressed per 100 g dry soil.  

DNA extraction and amplicon sequencing 

DNA from the other subsample was extracted using the Clear Detections Nematode DNA extraction 

and purification kit™ (Clear Detections, Wageningen, Netherlands). DNA isolates were stored at -20 

°C until further use. To obtain taxonomic information on the complete soil nematode community we 

amplified the most variable part of the 18S rDNA, the V4 region (Pawlowski et al. 2012) using the 

universal eukaryotic primers 3NDf together with 1132rmod as previously described (Geisen et al. 

2018). For all primers we used pre-tagged primers with Illumina adapters, a 12 bp long barcode to 

allow demultiplexing of the reads after sequencing, a primer linker and the sequencing primers. All 

PCRs were conducted in duplicate, product quality was visually verified on agarose gel and duplicates 

were pooled before PCR cleanup with Agencourt AMPure XP magnetic beads (Beckman Coulter). 

PCR cycling conditions were as follows: initiation for 5 min at 94 °C, followed by 35 cycles of 45 sec at 

94 °C, 1 min at 53 °C and 90 sec at 72° with a final elongation for 10 min at 72 °C). PCR-products were 

pooled in equimolar ratios after determining concentrations with a fragment analyser (Advanced 

Analytical) and sent for sequencing to BGI, China.  

Bioinformatics 

The obtained raw 18S rDNA sequence reads were curated in the Hydra pipeline (de Hollander 2017) 

implemented in Snakemake (Köster & Rahmann 2012); in short, after filtering contaminants and 

removing barcodes, the forward reads were used for annotation. Thereafter, vsearch (Rognes et al. 

2016) was used to cluster all reads into OTUs using the UPARSE strategy by de-replication followed 

by sequence-sorting by abundance (singletons were removed) and clustering using the UCLUST 

smallmem algorithm (Edgar 2010). Chimeric sequences were removed using UCHIME (Edgar et al. 

2011), as implemented in vsearch. To create an OTU table, all reads were mapped to OTUs using the 

usearch_global method (vsearch). Sequences were aligned to the PR2 database (Guillou et al. 2013). 

Reference sequences were first trimmed with forward and reverse primer using cutadapt (Martin 

2011). Moreover, we deleted all reference sequences of environmental nematode DNA, to improve 
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annotation success. Prior to further analyses, we removed samples with fewer than 1000 reads. We 

then recalculated read numbers to relative abundances of the OTU’s. OTUs that could be assigned to 

nematode genera allowed estimates of relative abundances of functional groups (Yeates et al. 1993). 

Statistical analyses  

For both multivariate and univariate analyses, nematode communities collected under individual 

plants were treated as independent replicates. We decided not to include sampling area as a random 

factor in our models, as within-sampling area variation was variable among the sampling areas, due to 

strong differences in distance between collected plants.  

 

Multivariate analyses of nematode community composition: Prior to multivariate analyses, we 

assembled two databases, one containing relative abundance data of nematode OTU’s and one with 

relative abundance data of nematode genera. All multivariate analyses were performed in Canoco 5 

(Ter Braak & Smilauer 2012; Šmilauer & Lepš 2014), and all analyses were performed for both the 

OTU-level and genus-level datasets. With all samples collected in 2014, for which soil characteristics 

were measured, we first ran forward selection RDA’s to estimate the importance of the nominal factor 

plant species and the continuous factors latitude, soil moisture, pH, soil C/N, NH�
�, NO�

�
 + NO	

� and 

available phosphate to the variation in nematode community composition. All factors explaining at 

least 5% of the variation in the model were included in PCA’s to visualize their contribution to the 

separation of the samples. Subsequently, using the combined 2013 and 2014 data, we tested for each 

plant pair whether range-expanding plant species showed stronger differences in nematode 

community composition between the different parts of the range than native plant species. For this, 

we combined the country data to compose three latitude region: south (Greece and Montenegro), 

middle (Slovenia and Austria) and north (Germany and The Netherlands). To examine the differences 

in nematode community shifts, we performed PCA-analyses per plant genus and tested the 

plant*range interaction using RDA-analyses.   

Univariate analyses of functional group abundance: Per nematode genus/functional group, the 

abundance per 100 g dry soil was determined by combining relative abundances based on 18S rDNA 
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and total nematode counts per sample. Per plant pair, we then modelled absolute abundances (per 100 

g soil), relative abundances of bacterivorous, fungivorous, predatory-omnivorous and root-feeding 

nematodes, as well as absolute abundances of the four groups of root-feeding nematodes: 

endoparasites, semi-endoparasites, ectoparasites and root hair feeders. Absolute abundances were 

treated as count data and converted to integer values, as required in count data analyses. All 

subsequent analyses were performed in R (R Core Development Team 2012). To account for 

overdispersion, abundance data were modelled using generalized linear models with a negative 

binomial distribution, glm.nb in MASS (Ripley et al. 2013), which included species, range, and the 

species*range interaction as fixed factors. Models were validated by inspection of residual plots. 

Relative abundance data were modelled with general linear models (lm in the stats package), including 

the same factors as the models for total abundance data.  

Results 

Nematode abundances ranged from 12 to 17664 per 100 g dry soil. After removal of samples with 

fewer than 1,000 reads, our database consisted of 5,368,503 sequences (average of approximately 

15,000 sequences per sample). From all 961 detected OTUs, 653 were nematodes. Of these OTUs, 356 

could be assigned to 92 known nematode genera with 297 OTUs remaining as unclassified nematodes.  

Drivers of nematode community composition  

All factors included in the RDA-analyses together explained 13.3% of the variation in the nematode 

community composition on the OTU-level (pseudo-F all axes test = 3.7, df = 14, p < 0.01) and 15.1% 

of the variation in nematode community composition based on nematode genus level (pseudo-F all 

axes test = 2.9, df = 14, p < 0.01). Of the individual factors, latitude contributed most strongly to the 

variation in nematode community composition, both on the OTU-level and on the level of genera 

(Table S2.1). The amount of available phosphate also contributed strongly to the nematode 

community separation on both the OTU- and genus-level (Table S2.1). In the analysis of the OTU-

based communities, the majority of the plant species contributed for at least 5% to the variation 

explained by the RDA-model (Table S2.1), whereas plant effects were not as strong when the 

community composition was based on nematode genera (Table S2.1).  In the PCA ordination of OTU-
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based nematode community composition, both latitude and plant species corresponded with the first 

PCA-axis, whereas available phosphate and soil moisture corresponded most strongly with the second 

PCA-axis (Fig. 2.1). Latitude also most strongly corresponded to the first PCA-axis in the ordination 

of the genus-based nematode community composition, while in this ordination differences in 

community composition between plant species did not clearly correspond with the first or the second 

PCA-axis. Instead, the effects of soil available phosphate, NO�
�

 + NO	
�content and soil pH showed the 

clearest correspondence with the second PCA-axis (Fig. 2.1).  

Notably, the four plant genera varied in differences between nematode community composition of the 

native and congeneric range expander. The two Geranium species had similar nematode community 

compositions, both on the OTU-and genus-level, while the Tragopogon species were separated only 

along the second PCA-axis. The Rorippa and Centaurea species pairs showed the strongest within-

genus separation in nematode community composition (Fig 2.1).  

 

Fig. 2.1 Ordination plots based on principal component analyses (PCA) of the composition of nematode communities, on 

the level of OTUs (left) or nematode genera (right). Black arrows represent the effects of continuous factors latitude, soil 

moisture (SM), pH and the available NO�
�

 + NO	
� (N) and phosphate (P). Small signs indicate individual communities 

from different latitudinal areas. Centroids of plant species are indicated with coloured circles and squares.  
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Nematode community composition shifts between original and new range 

Strength of the differences in nematode communities between the latitude regions varied between 

plant genera and species, and changes in nematode community composition between the latitude 

regions were not consistently stronger for range-expanding plant species than for related natives. 

Within Centaurea, OTU-level nematode communities of the two plant species were strongly separated 

(Fig 2.2A), while the effect of latitude region had opposite directions between the plant species (Fig 

2.2A; RDA range*species: explained variation = 14.0%, df = 3, pseudo-F all axes test = 3.6, p < 0.01). 

In Geranium, OTU-level nematode communities were more strongly separated by latitude region than 

by plant species, and this separation between latitude regions were stronger for native G. molle than 

for range-expanding G. pyrenaicum (Fig. 2.2B; RDA range*species: explained variation = 12.1%, df = 

5, pseudo-F all axes test = 2.6, p < 0.01). In Rorippa, OTU-level nematode communities were not 

strongly separated in the central latitude region, while this was the case in the northern latitude region 

(Fig. 2.2C; RDA range*species: explained variation = 14.4%, df = 3, pseudo-F all axes test = 2.4, p < 

0.01). OTU-level nematode communities of Tragopogon were separated based on latitude region, but 

there were no overall linear effects of either plant species or latitude region in this genus (Fig. 2.2D; 

RDA (OTU) interaction species*range: explained variation = 12.9%, df = 5, pseudo-F all axes test = 

2.6, p < 0.01).  

Effects of plant species and latitude region on genus-based nematode communities were mostly similar 

to the effects on OTU-based nematode communities (Fig. S2.1). Most notably, in Centaurea, genus-

based communities strongly differed between the central and northern latitude regions for range-

expanding C. stoebe, while they were comparable in the case of congeneric native C. jacea (Fig. S2.1), 

indicating stronger shifts in nematode community composition for the range-expander than for the 

native. Also for Rorippa the separation of genus-based nematode communities between central and 

northern latitude region appeared to be stronger for range-expanding R. austriaca compared to native 

R. sylvestris (Fig. S2.1).   
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Fig. 2.2 Ordination plots based on principal component analyses (PCA) of OTU-based nematode communities in the 

rhizospheres of range-expanding and native Centaurea (A), Geranium (B), Rorippa (C), and Tragopogon (D). Centroid 

circles and squares represent range-expanders and natives, respectively. Sign colours represent southern latitude soils 

(white; Greece and Montenegro), central latitude soils (grey; Slovenia and Austria) and northern latitude soils (black; 

Central-West Germany and The Netherlands).  

 

Abundances of nematode feeding groups 

The abundances of nematode feeding groups depended on the plant species and/or latitude region, 

and none of the feeding groups showed systematic differences between the range-expanding plant 

species and the native plant species (Fig. 2.3). In Centaurea (Fig. 2.3A), absolute abundances of root-

feeding nematodes were consistently higher in native C. jacea than in range-expanding C. stoebe (Χ2 = 

34.2, df = 1, p < 0.001) and consistently lower in the northern latitude regions than in the central 

latitude regions (Χ2 = 4.2, df = 1, p < 0.05). Moreover, the latitude effect on absolute abundances of 
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fungivores depended on the plant species (Χ2 = 10.9, df = 1, p <0.001): whereas nematode communities 

of native C. jacea had more fungivores in northern latitude regions than in central latitude regions, 

fungivore abundance under C. stoebe was lower in northern latitude regions than in central latitude 

regions (Fig. 2.3A). Independent of plant species, absolute root-feeding nematode abundances in 

Geranium samples were lower at central latitudes than at northern and southern latitudes (Χ2 = 7.8, df 

= 2, p < 0.05; Fig. 2.3B). Rhizospheres of G. pyrenaicum contained more predatory-omnivorous and 

bacterivorous nematodes at southern latitudes than at central and northern latitudes, whereas this was 

not the case for G. molle (Species*Latitude effect predatory-omnivorous nematodes: Χ2 = 17.64, df = 

2, p < 0.001; Species*Latitude effect bacterivorous nematodes: Χ2 = 13.56, df = 2, p < 0.01; Fig. 2.3B). 

In G. molle fungivores were less abundant lower at southern latitudes than at central and northern 

latitudes, whereas in G. pyrenaicum they did not differ in abundance between the latitude regions 

(Region*Species interaction: Χ2 = 8.24, df = 2, p < 0.05; Fig. 2.3B). For Rorippa, the absolute abundance 

of predatory-omnivorous nematodes was lower in samples of the range-expander R. austriaca than in 

samples of native R. sylvestris (Χ2 = 10.77, df = 1, p < 0.01; Fig. 2.3C), whereas the other nematode 

feeding groups did not show significant differences in absolute abundance. In samples of Tragopogon, 

species effects on absolute abundances of fungivores and bacterivores depended the latitude region 

(Region*Species fungivores: Χ2 = 18.94, df = 2, p < 0.001; Region*Species interaction bacterivores: Χ2 

= 6.30, df = 2, p < 0.05; Fig. 2.3D): at southern latitudes fungivores were lowest in T. pratensis but 

highest in T. dubius, whereas bacterivores were less numerous at northern latitudes than at central and 

southern latitudes in T. dubius, but not in T. pratensis.    

Analyses of relative abundances of the different nematode feeding types revealed patterns that were 

comparable to the analyses of total abundances (Fig. S2.1 versus Fig. 2.3). Most importantly, although 

some nematode groups showed significant differences in relative abundance between plant species or 

latitude regions, these patterns did not necessarily hold when absolute abundances were analysed.  
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Fig. 2.3 Absolute abundances (N/100 g dry soil; see Methods) of four major nematode feeding groups in rhizosphere 

samples of range-expanding Centaurea stoebe, Geranium pyrenaicum, Rorippa austriaca and Tragopogon dubius and 

native plant species Centaurea jacea, Geranium molle, Rorippa sylvestris and Tragopogon pratensis in southern and central 

original range soils S (Greece and Montengro; only Geranium and Tragopogon) and C (Slovenia and Austria) and new 

range soils N (Central-West Germany and The Netherlands). Small letters indicate significant within-species differences 

according to post-hoc Wald tests. Significant between-species differences of nematode feeding type abundances are 

indicated with *. Note that x-axes differ between the genera.  

 

Abundances of root-feeding nematode types 

All four root-feeding nematode types were more abundant in native Centaurea jacea than in range-

expanding C. stoebe (Fig. 2.4). In range-expanding C. stoebe the abundance of endoparasitic 

nematodes appeared to be lower in the new range (northern latitude region) than in the original range 

(central latitude region), while such differences were not found in C. jacea (marginally significant 

interaction effect: Χ2 = 3.60, df = 1, p = 0.058; Fig. 2.4). The abundance of semi-endoparasites was also 

reduced in the northern latitude region compared to the central latitude region, but this effect was not 
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significantly stronger in C. stoebe than in C. jacea (Fig. 2.4). Moreover, whereas numbers of 

ectoparasitic nematodes tended to increase in the new range compared to the original range in C. jacea 

samples, they tended to decrease in C. stoebe samples (Fig. 4). In range-expanding Geranium 

pyrenaicum samples, there were significantly fewer endoparasites in northern latitude than in 

southern latitude samples (Fig. 4), whereas this was not found for native G. molle. The abundance of 

ectoparasites was higher in G. pyrenaicum than in G. molle samples and higher in northern latitude 

samples than in central and southern latitude samples. Finally, the latitudinal variation in numbers of 

root-hair feeders depended on the plant species: in G. molle, central and northern samples contained 

fewer nematodes than southern samples. In G. pyrenaicum, root-hair feeders were less abundant in 

central latitude samples than in northern and southern latitude samples. Between range-expanding R. 

austriaca and native Rorippa sylvestris only the abundance of semi-endoparasites differed, as they were 

more numerous in R. austriaca samples (Fig. 2.4). In Tragopogon, the absolute abundance of 

endoparasites was higher in central latitude samples, irrespective of plant species (Fig. 2.4). Latitude 

region also significantly affected the semi-endoparasite abundance, but post-hoc analyses did not 

reveal significant differences between southern, central and northern latitude samples. Abundances of 

semi-endoparasites and ectoparasites were higher in range-expanding T. dubius than in native T. 

pratensis. Finally, the abundance of ectoparasites was higher in northern latitude samples than in 

central and southern latitude samples.  
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Fig. 2.4 Absolute abundances (N/100 g dry soil; see Methods) of four root-feeding nematode types in rhizosphere samples 

of four pairs of congeneric range-expanding and native plant species in southern original range soils S (Greece and 

Montenegro; only Geranium and Tragopogon) and central original range soils C (Slovenia and Austria; all genera), and in 

new range soils N (Central-West Germany and The Netherlands; all genera). Statistical significance levels, based on 

negative binomial GLM, of the effects of plant species (Spec), latitude region (Lat) and the interaction (Spec x Lat) are 

noted with *** (p<0.001), ** (p<0.01), * (p<0.05), (*) (marginally significant, p <0.06) and ns (non-significant). Small 

letters and bars are used to visualize statistical interactions and range effects based on post-hoc Wald tests. Overall species 

effects are noted with *. Note that y-axes vary among panels.  
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Discussion 

Our results show latitudinal variation in soil nematode communities along a range expansion gradient, 

which is in support of our first hypothesis. Such latitudinal variation may include temperature and 

precipitation, as both have been proposed as drivers of nematode community composition (Nielsen et 

al. 2014; Song et al. 2017). Next to latitude, also plant species identity appeared to be an important 

driver of soil nematode community composition such as shown before (Song et al. 2017). Compared 

to latitude, soil characteristics, such as available phosphate, pH and soil moisture, were less important 

in explaining nematode community composition. Available phosphate appeared to be more important 

for nematode community composition than the other soil characteristics, which corresponds with 

previously observed effects of fertilizers on nematode communities (Hu & Qi 2010; Zhao et al. 2014). 

Our analysis suggests that nematode community composition along such a latitudinal gradient is 

driven in fundamentally different ways than community compositions of bacteria, that strongly 

correspond with pH (Fierer et al. 2009). Instead, the responses of nematode communities resemble 

those of fungal and protist communities, for which climatic factors are most important (Bates et al. 

2013; Tedersoo et al. 2014) 

The latitudinal variation in nematode community composition confirms our assumption that plant 

species that are expanding their range northwards in response to climate change will face different 

nematode communities in their new range. Moreover, it shows that plant species with widespread 

distributions are associated with different nematode communities in different parts of their native 

range. We found mixed support for our second hypothesis that across the latitudinal gradient shifts in 

nematode community composition were stronger for range-expanding plant species than for related 

natives. Most notably, genus-based nematode communities of range-expanding Centaurea stoebe 

differed between the original range in Central Europe and the new range in North-Western Europe, 

while nematode communities of C. jacea were comparable between these areas. While this result 

suggest different responses of nematodes in the new compared to the original range, such shifts in 

nematode communities may also partly be explained by differences in abiotic conditions between the 

original and new range areas. Nevertheless, the nematode community shift as observed in range-

expanding Centaurea is in line with differences in seed-associated communities of fungi between 
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northern and southern C. stoebe populations, which were not found between C. jacea populations 

(Geisen et al. 2017).  

Our third hypothesis that range-expanding plant species are exposed to lower numbers of root-feeding 

nematodes in the expanded range was only supported by Centaurea stoebe. Especially numbers of 

endoparasites were reduced in the new range, while such a strong decrease was not evident for native 

C. jacea. Overall, however, the reduction of root-feeding nematodes between the new and the original 

range was not stronger for C. stoebe than for C. jacea. This indicates that not all root-feeding nematode 

types will respond similarly to plant range expansions. The low accumulation of endoparasitic root-

feeding nematodes in the rhizosphere of C. stoebe in the new range is likely linked to its strong 

chemical repellence of root-feeding nematodes from the new range (Chapter 5). The other three range-

expanding plant species did not show lower numbers of root-feeding nematodes in the new compared 

to the original range, indicating that latitudinal shifts in nematode community composition of range-

expanding plant species do not necessarily imply that they are exposed to fewer numbers of root-

feeding nematodes. Functional consequences of eventual changes in exposure to root-feeding 

nematodes need to be examined by performing inoculation experiments.   

Effects of range-expanding plant species on numbers of fungivorous nematodes varied more strongly 

along the latitudinal transect than effects on other nematode feeding types. Both range-expanding 

Centaurea and Tragopogon accumulated few fungivorous nematodes in northern latitude sites 

compared to central and southern latitude sites, respectively, whereas the opposite was found for their 

congeneric natives. These results correspond with a previous study showing lower abundances of 

fungivores in the rhizospheres of range-expanders compared to natives (Morriën, Duyts & Van der 

Putten 2012). Possibly, this effect can be explained by inhibitory effects of the range-expanders on soil 

fungi in their new range, as has been shown for introduced exotic species (Callaway et al. 2008), 

although this remains to be tested for range-expanders.  

We analyzed nematode community composition by a combination of rapid nematode quantification 

followed by high-taxonomic classification beyond genus-level using high-throughput sequencing. 

Molecular analyses only would have limited comparisons to relative abundances, rather than enabling 
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quantitative analyses (Vandeputte et al. 2017; Geisen et al. 2018). However, we acknowledge that the 

community composition that we provide might not represent abundances as provided by 

morphological identifications (Darby, Todd & Herman 2013). For instance, we find high numbers of 

large-sized omnivores and predators compared to morphological studies (Song et al. 2017) suggesting 

that our data might include information on nematode biomasses rather than only nematode 

abundances (Zhu et al. 2005). While other biases, e.g. those related with PCR amplification, might also 

affect the resulting nematode community composition (Griffiths et al. 2018), these biases are 

indifferent across all samples. 

Conclusion 

Our study shows that nematode community composition along a latitudinal transect of plant range 

expansion varies more strongly with latitude and plant species identity than with soil characteristics. 

The strength of nematode community shifts between the original and new range of four range-

expanding plant species depended on plant species identity, and latitudinal community shifts were not 

always stronger for range-expanding plant species than for related natives. Only one of the four 

examined range-expanding plant species accumulated fewer root-feeding nematodes in its new range 

than in its original range. Therefore, enemy release from root-feeding nematodes may not be a general 

phenomenon for range-expanding plant species. Nevertheless, our results are among the first to 

empirically test predictions on belowground community shifts (Berg et al. 2010) suggesting that 

consequences of plant range shifts for belowground community (re)organization depend on range-

expanding plant identity.  
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Supplementary information 

 

Table S2.1: results of Redundancy analyses (RDA) with forward selection on the composition of nematode communities 

based on nematode OTUs or nematode genera. Factors contributing more than 5% to the explained variation by the RDA-

model are listed.  

 

Database: Genus-level 

Explains 

% 

Contribution 

% 

pseudo-

F P P(adj) 

Latitude 3.1 19.1 8.9 0.002 0.03 

Phosphate 1.6 10 4.7 0.002 0.03 

Soil moisture 1.8 11 5.3 0.002 0.03 

Plant species: Centaurea stoebe 1.5 9 4.4 0.002 0.03 

pH 1.3 8 3.9 0.002 0.03 

Plant species: Rorippa sylvestris 1.2 7.3 3.6 0.002 0.03 

NO�
�+ NO	

� 1.1 6.6 3.3 0.002 0.03 

Plant species: Tragopogon pratensis 0.8 5.1 2.5 0.002 0.03 

      

Database:  OTU-level 

Explains 

% 

Contribution 

% 

pseudo-

F P P(adj) 

Latitude 2.1 15.6 6 0.002 0.03 

Phosphate 1.3 9.5 3.7 0.002 0.03 

Plant species: Centaurea stoebe 1.2 9 3.5 0.002 0.03 

Soil moisture 1.1 8.5 3.4 0.002 0.03 

pH 1.1 8.4 3.3 0.002 0.03 

Plant species: Rorippa sylvestris 1.1 8 3.2 0.002 0.03 

Plant species: Tragopogon pratensis 0.9 6.9 2.8 0.002 0.03 

Plant species: Centaurea jacea 0.8 6 2.4 0.002 0.03 

Plant species: Geranium pyrenaicum 0.8 6 2.4 0.002 0.03 

NO�
�

 + NO	
� 0.7 5.5 2.2 0.002 0.03 

Plant species: Rorippa austriaca 0.7 5.2 2.1 0.002 0.03 
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Fig. S2.1 Ordination plots based on principal component analyses (PCA) of genus-based nematode communities in the 

rhizospheres of range-expanding and native Centaurea (A), Geranium (B), Rorippa (C), and Tragopogon (D). Centroid 

circles and squares represent range-expanders and natives, respectively. Sign colours represent southern latitude soils 

(white; Greece and Montengro), central latitude soils (grey; Slovenia and Austria) and northern latitude soils (black; 

Central-West Germany and The Netherlands).  

 

Fig. S2.2 Relative abundances of four major nematode feeding groups in rhizosphere samples of range-expanding 

Centaurea stoebe, Geranium pyrenaicum, Rorippa austriaca and Tragopogon dubius, and of native plant species Centaurea 

jacea, Geranium molle, Rorippa sylvestris and Tragopogon pratensis in southern original range soils S (Greece and 

Montengro; only Geranium and Tragopogon) and central  original range soils C (Slovenia and Austria) and new range soils 

N (Central-West Germany and The Netherlands). Small letters indicate significant within-species differences according to 

post-hoc Wald tests. Significant between-species differences of nematode feeding type abundances are indicated with *.  
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Chapter 3 

Nematode community responses to range-expanding and native 

plant communities in original and new range soils 

 

R.A. Wilschut, O. Kostenko, K. Koorem & W.H. van der Putten 
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Abstract 

Many plant species expand their range to higher latitudes in response to climate change. However, it 

is poorly understood how biotic interactions in the new range differ from interactions in the original 

range. Here, in a mesocosm experiment, we analyzed nematode community responses in original and 

new range soils to plant communities with either 1) species native in the original and new range, 2) 

range-expanding plant species related to these natives (related range-expanders), or 3) range-

expanding plant species without native congeneric species in the new range (unrelated range-

expanders). We hypothesized that nematode community shifts between ranges are strongest for 

unrelated range-expanders and minimal for plant species that are native in both ranges. As a part of 

these community shifts, we hypothesized that range-expanders, but not natives, would accumulate 

fewer root-feeding nematodes in their new range compared to their original range. Our study reveals 

that none of the plant communities experienced evident nematode community shifts between the 

original and new range. However, in the new range, root-feeding nematode communities of natives 

and related range-expanders were more comparable than in the original range, whereas the nematode 

community of unrelated range-expanders was distinct in both ranges. The abundances of root-feeding 

nematodes were comparable between the original and new range for all plant communities. 

Remarkably, unrelated range-expanders overall accumulated most root-feeding nematodes, whereas 

related range-expanders accumulated fewest. We conclude that nematode communities differ between 

communities of range-expanding and native plant species, but that nematode communities associated 

to native and range-expanding plant species do not strongly differ between original and new range 

soils. 

Introduction 

Worldwide, many native plant communities are invaded by exotic species that have been introduced 

intentionally or unintentionally by humans (van Kleunen et al. 2015). In addition to exotic species that 

originate from other continents, current climate change enables intra-continental range expansion of 

plant and animal species to higher latitudes and altitudes (Walther et al. 2002; Parmesan 2006). While 

such range-expanders have become increasingly common (Tamis et al. 2005), little is known about 
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their influence on native above- and belowground plant-associated biota in their novel habitat (Van 

Nuland, Bailey & Schweitzer 2017). The limited co-evolutionary history may result in naïve responses 

of either plants or associated biota (Verhoeven et al. 2009; Pearse et al. 2013), which makes outcomes 

of such novel interactions difficult to predict. 

 

The success of introduced exotic plant species has often been related to their possession of traits that 

are not present in the invaded native community. Next to novel traits such as fire resistance 

(D'Antonio & Vitousek 1992) and nitrogen fixation (Stock, Wienand & Baker 1995),  non-native plant 

species may also benefit from the production of metabolites that are not produced by native plant 

species (Cappuccino & Arnason 2006). In the new range, such ‘novel weapons’ may suppress the 

growth of neighboring plant species (Callaway & Aschehoug 2000), mutualists of native species 

(Stinson et al. 2006; Callaway et al. 2008), and natural enemies (Schaffner et al. 2011; Macel et al. 2014). 

Because plant traits such as root chemistry are often phylogenetically conserved (Agrawal et al. 2009; 

Pearse & Hipp 2009; Gilbert & Parker 2016), exotic species that are phylogenetically closely related to 

native flora may host more natural enemies in the invaded range than distantly related range-

expanders (Gilbert & Parker 2016). These, so-called spill-over effects of local enemies (Malmstrom et 

al. 2005) are considered as one of the possible explanations why phylogenetically distinct exotic species 

can become more abundant than exotic species that are strongly related to native species (Strauss, 

Webb & Salamin 2006). 

 

Some intra-continental range-expanders are closely related to plant species in the native plant 

community, but are nonetheless found to be more successful in suppressing generalist insects, fungal 

pathogens and root-feeding nematodes than their related native species (Engelkes et al. 2008; Morriën, 

Duyts & Van der Putten 2012; Morriën & van der Putten 2013). Range-expanders that are 

phylogenetically more distinct from native flora can be expected to have even stronger suppressive 

effects on these native natural enemies, but such evidence is lacking so far. Moreover, it is still largely 

unknown if the interactions between range-expanding plant species and their natural enemies differ 
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between their original and new range as only a couple of studies (van Grunsven et al. 2010; Dostálek 

et al. 2015; Macel et al. 2017) have addressed these questions experimentally.  

 

The aim of the present study was to examine plant-nematode interactions of natives, range-expanders 

related to these natives (hereafter: related range-expanders) and range-expanders without native 

species from the same genus in their new range (hereafter: unrelated range-expanders), in soils from 

the new and original range. We focus on belowground plant-nematode interactions, as nematodes 

have important roles in the soil food-web (Ferris, Bongers & De Goede 2001) and can affect spatio-

temporal dynamics in natural vegetation (De Deyn et al. 2003; Brinkman et al. 2015). We established 

mesocosms with soil from either the original or the new range, in which we grew communities of each 

of the three groups of plant species. We recorded the abundance of root-feeding nematodes, as well as 

bacterivores, fungivores, omnivores and predators in the root zones of all plant communities growing 

in soils from the original and the new range. 

 

We tested the hypotheses that 1) range-expanders, but not natives, associate with different nematode 

communities in the original compared to the new range, mostly by accumulating fewer root-feeding 

nematodes in soil from their new range, 2) these shifts in nematode communities will be stronger for 

unrelated than for related range-expanders, and 3) we expect that numbers of bacterivorous, 

fungivorous, omnivorous and predatory nematodes vary less between the plant communities than 

root-feeding nematodes, as they are only indirectly interacting with the plants (De Deyn et al. 2004; 

Scherber et al. 2010).  

Methods 

We tested our hypotheses using three types of plant communities consisting either of: 1) four plant 

species that are native in both South-Eastern Europe, where the range-expanders originate from, and 

North-Western Europe, where range-expanders have expanded to, 2) four plant species belonging to 

the same genera as the natives that have expanded their range from South-Eastern Europe to North-

Western Europe, or 3) four plant species that have expanded their range from South-Eastern Europe 

to North-Western Europe and have no native species in the same genus in the new range. In a 
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greenhouse experiment, we grew all three plant communities in mesocosms with a sterilized 

background soil, inoculated with individual replicates of soil from either the original or the new range 

(see below). After a growth period of 14 weeks, we extracted the nematode communities from the soil 

of each mesocosm for counting and identification. 

Plant species and seed collection 

All plant species occur in central Netherlands in riparian habitats of the two rivers that are branches 

of the Rhine. The majority of these plant species can be found in the same nature reserves (Dutch 

nature observation website: https://www.waarneming.nl). The native plant species were Centaurea 

jacea L. (Asteraceae), Tragopogon pratensis L. (Asteraceae), Geranium molle L. (Geraniaceae) and 

Rorippa sylvestris (L.) Besser (Brassicaceae). As related range-expanders we used Centaurea stoebe L., 

Tragopogon dubius Scop., Geranium pyrenaicum Burm. f. and Rorippa austriaca Crantz. The four 

unrelated range-expanders were Dittrichia graveolens (L.) Greuter (Asteraceae), Lactuca serriola L. 

(Asteraceae), Rapistrum rugosum (L.) All. (Brassicaceae) and Bunias orientalis L. (Brassicaceae). 

Centaurea stoebe, T. dubius, R. austriaca, D. graveolens and R. rugosum colonized the Netherlands 

from the 20th or early 21st century onwards, while G. pyrenaicum, L. serriola and B. orientalis already 

occurred in suitable habitats of the Netherlands before the 20th century, but strongly expanded their 

range during recent decades (NDFF 2017). Seeds of all 12 plant species originated from single, wild 

populations growing in the Netherlands. For G. pyrenaicum, T. dubius and T. pratensis seeds were 

supplied by Cruydthoeck, a company that grows plants from field-collected seeds in the Netherlands 

for seed production. For all other plant species we collected seeds directly from plants growing in 

natural areas, mainly in riverine systems in eastern Netherlands.  

Soil collection 

We collected soil from areas in Slovenia and Austria where all plant species occur naturally and from 

the riverine system in The Netherlands where all the range-expanding plant species have become 

established. In all three countries, we selected three riverine areas of approximately 30 ha each for soil 

collection. In each area, soils were collected from three sub-locations separated by a distance of 

minimally 300 m. First we removed the upper 3 cm soil layer and then collected the soil between 3 and 
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15 cm depth, where most living roots occur. Thereafter, soil was sieved using a 4 mm mesh and gently 

homogenized, while keeping sub-locations separate. Half the soil from each sub-location was stored 

at 4-8 °C, while the other half was sterilized by gamma irradiation (>25 KGray) at Steris AST (Ede, 

The Netherlands). To compare the effects of soil biota under the same abiotic conditions, we used a 

common sterilized background soil that was a mixture of soil additionally collected from all sub-

locations in the Netherlands. Background soil was sieved, homogenized and then gamma-sterilized as 

indicated above. 

Experimental set-up 

We first created nine soil replicates for both the original and the new range. To obtain soil replicates 

with communities of soil organisms that represented the new and original range in a general and not 

location-specific way, each of these nine replicate soils consisted of sterilized background soil to which 

live soil from two sub-locations, originating from two different main areas in either the original or the 

new range, was inoculated (see Koorem et al. 2017). This approach resulted in nine soil mixes that 

were non-identical, yet partly overlapping in donor soils, and avoided the risk of idiosyncratic 

differences among individual soil samples. All soils were collected from sites where at least several of 

the plant species that were used in the experiment occurred. However, we did not collect soil directly 

beneath our focal plant species to avoid potential experimental biases. The soil mixes representing soils 

from the original range were a combination of soil from one of the nine Slovenian and one of the nine 

Austrian sub-locations (See Table S3.1). For the new range, nine soil mixes were created by combining 

soils from two different locations in the riverine system in the Netherlands (See Table S3.1), so that 

each sub-location was used in two different soil mixes. Each mesocosm (7L, diameter 26 cm, height 

20 cm) in the experiment was filled with 1.5 kg of gravel (4-8 mm particles) at the bottom on top of 

which 4.2 kg of soil was added, consisting of 80% sterilized background soil and 10% live soil inoculum 

from the two sub-locations. To avoid potential abiotic differences between soils from the original and 

the new ranges, we added 10% of sterilized inoculum soil from the complementary range, so that in all 

cases every mesocosm had 10% of (sterilized or unsterilized, respectively) soil from the original and 

10% from the new range. 
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Per range, each of the nine soil mixes was divided over three different mesocosms, resulting in 54 

mesocosms (9 soil mixes × 3 plant communities × 2 soil origins) in total. Each mesocosm was planted 

with two seedlings of each of the four plant species of the same plant type in the Netherlands, so that 

on each soil mix all three plant communities were grown. Seedlings were planted in a circle in a fixed 

order at approximately 4 cm of each other, in such a way that conspecific seedlings were not close 

neighbours. Mesocosms were placed in a climate-controlled greenhouse of 16 h 21° (day) and 8 h 16° 

(night) and were watered three times per week in order to keep soil moisture at 60% water holding 

capacity. After 12 weeks of plant growth two Mamestra brassicae L. (Lepidoptera: Noctuidae) 

caterpillars were introduced to pots with the soil replicates 1-5 in order to test their response to the 

different plant communities (see Koorem et al. 2017). We did not aim to test the effects of 

aboveground herbivory on nematode community composition. The herbivory treatment was assigned 

to soil mixes 1-5 (Table S3.1), which due to their origin likely more closely resemble each other than 

they resemble soil mixes 6-9. Because of this non-random assignment of the herbivory treatment, it is 

impossible to disentangle herbivory effects from soil mix effects in the presented study.  

Harvest 

After 14 weeks of growth, shoots of all individual plants were clipped, dried at 70 °C and weighed. As 

it was not possible to disentangle the roots of each individual plant, roots of all plants were washed 

from the soil collectively and dried at 70 °C to constant weight. We used 50 g of soil (wet weight) from 

each pot for nematode extraction, morphological identification, and counting to feeding type. 

Additionally, soil samples were taken for determining soil moisture content, so that the number of 

nematodes could be expressed per dry weight of soil. Nematodes were extracted from soil using an 

Oostenbrink elutriator (Oostenbrink 1960). After extraction, we concentrated the nematode 

suspensions to 2 ml, after which 4 ml hot (90 ⁰C) and 4 ml cold (20 ⁰C) formaldehyde was added to 

fixate the nematodes before identification and counting. 

Nematode identification  

Morphological identification and counting of nematodes was done using an inverse-light microscope 

at 200× magnification. Per sample, all nematodes were classified to one of the five feeding types 
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(predators, root-feeders, fungivores, omnivores or bacterivores) according to Yeates et al. (1993) and 

counted. Root-feeding nematodes were further identified to either family or genus level using Bongers 

(1988). Root-feeding nematode genera identified were Meloidogyne (Heteroderidae), Paratylenchus 

(Tylenchulidae), Pratylenchus (Pratylenchidae), Psilenchus (Psilenchidae), and root-feeding 

nematode families identified were Hoplolaimidae, Tylenchidae, Anguinidae, Dolichodoridae, 

Criconomatidae, Hemicycliophoridae and Heteroderidae.  

Statistical analyses  

Prior to statistical analyses, soil moisture percentages were used to calculate nematode numbers per 

100 g dry soil. We also calculated the density of root-feeding nematode taxa per gram root, as an 

indication of the root-feeding nematode density on plant roots. For this, we calculated total number 

of nematodes of each taxon per mesocosm and divided those numbers by total root dry weight in that 

mesocosm (Table S3.2; also presented in Koorem et al. 2017).  

 

Multivariate analyses: First, we performed a Principal Component Analysis (PCA in Canoco 5; 

Šmilauer and Lepš 2014) comparing nematode community composition based on the abundances of 

the five nematode feeding types. Second, in another PCA analysis, we compared community 

composition of only the root-feeding nematode community, as root-feeding nematodes were expected 

to show the strongest responses to plant status in the Netherlands. Nematode taxa with fewer than 3 

occurrences in the data set were excluded from the analyses to avoid strong effects caused by rare taxa. 

We used the factors ‘plant community’ and ‘soil origin’ to independently classify the mesocosms. In 

both PCA’s we included soil mix as a covariate in order to account for variation between the nine soil 

mixes. To test the effects of plant community, soil origin and their interaction on the nematode 

community composition we used redundancy analyses (RDA). The significance of the RDA-models 

is based on 999 Monte Carlo permutations, which were restricted to incorporate the effect of soil mix. 

 

Univariate analyses: All univariate analyses were performed in R version 3.1.0 (R Core Development 

Team 2012). We selected four nematode feeding types and four root-feeding nematode 

genera/families that - based on the PCA - contributed most to the separation of the treatments. We 
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used generalized linear models with a negative binomial error distribution (Hilbe 2014) to model 

densities of the nematode feeding types in soil (N/100 g soil), and densities in soil (N/100 g soil) and 

densities per g root (N/g root) of the selected root-feeding nematode genera and families. Generalized 

linear models included the fixed factors soil mix (nested in soil origin), plant community, soil origin 

and the soil origin*plant community interaction. Post-hoc Wald tests were performed using the phia 

package (De Rosario-Martinez 2013) to individually test differences between plant communities. 

Densities of predators were low (average 1.27 per sample), and therefore not modelled. 

Results 

Nematode feeding type community composition 

The nematode community composition based on feeding types was significantly affected by the 

interaction between plant community and soil origin (RDA: total variation explained: 22.1%; pseudo-

F = 2.7, df = 5, p = 0.003). In particular, the nematode communities accumulated by related range-

expanders differed between soils from the original range and soils from the new range, while nematode 

communities accumulated by natives and unrelated range-expanders did not differ between original 

and new range soils (Fig. 3.1A).  

Root-feeding nematode community composition 

The community composition of root-feeding nematodes was affected by the interaction between plant 

community and soil origin (RDA: total variation explained: 21.4%; pseudo-F = 2.6, df = 5, p = 0.001, 

Fig. 3.1B). In particular, all three plant communities had differently composed root-feeding nematode 

communities. However, in the original range nematode communities of native and related range-

expanders were more strongly separated than in the new range. In contrast, the nematode community 

of the unrelated range-expanders was more separated from the other nematode communities in the 

new range compared to the old range. The root-feeding nematode groups that contributed most 

strongly to the separation between the treatments were Meloidogyne, Paratylenchus, Hoplolaimidae 

and Tylenchidae.   
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Fig. 3.1 Ordination diagrams of principal component analyses (PCA) showing the centroids of nematode community 

composition based on nematode feeding types (left) and the community of root-feeding nematodes (right). Centroids 

represent nematode communities in mesocosms inoculated with soils from the original range (filled signs) or new range 

(open signs), grown with either natives (NAT; squares), related range-expanders (RRE; triangles) or unrelated range-

expanders (URE; circles). Arrows represent the relation between nematode feeding types (a) or root-feeding nematode 

taxa (b) and the variation in nematode community along the PCA-axes. Horizontal and vertical error bars represent 

standard errors along the first and second PCA-axes. Percentages of total explained variation by the PCA-axes are shown 

in the parentheses. 

 

Abundances of the nematode feeding types 

Differences in densities of root-feeding nematodes (N/100 g soil) were solely explained by plant 

community type (Χ2 = 44.55, df =2, p < 0.0001; Fig. 3.2A). Overall, unrelated range-expanders 

accumulated more root-feeding nematodes (N/100 g soil) than natives (Χ2 = 14.74, p < 0.001) and 

related range-expanders (Χ2 = 43.63, p < 0.0001), whereas natives accumulated more root-feeding 

nematodes than their related range-expanders (Χ2 = 7.69, p < 0.01). Numbers of bacterivorous and 

omnivorous nematodes (N/100 g soil) differed between original and new range soil: bacterivorous 

nematodes were most abundant in soil from the new range (Χ2 = 22.32, df =1, p < 0.0001; Fig. 3.2B), 

whereas omnivorous nematodes (N/100 g soil) were most abundant in soils from the original range 

(Χ2 = 26.81, df =1 p < 0.0001; Fig. 3.2C). The numbers of fungivores (N/100 g soil) depended on the 

interaction between soil origin and plant community type (Χ2 = 6.11, df = 2, p < 0.05). In soils from 

the original range, fungivore densities (N/100 g soil) were higher in mesocosms with unrelated range-
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expanders than with native plant species (Χ2 = 7.13, p < 0.01; Fig. 3.2D), whereas there were no 

differences between plant community types in soils from the new range. 

 

Fig. 3.2 Densities of root-feeding, bacterivorous, fungivorous and omnivorous nematodes in soil (N/100 g dry soil) in 

mesocosms with native plant species (NAT; white), related range-expanders (RRE; light grey) and unrelated range-

expanders (URE; dark grey) in soils from the original range (south) and the new range (north) of the range-expanders. 

Bars represent averages ± standard errors. Horizontal bars and asterisks indicate significant differences between soil origins 

and different letters indicate significant (p < 0.05) differences between plant communities within ranges based on Negative 

binomial GLM and Post-hoc Wald tests.  

 

Abundances of root-feeding nematodes  

Responses of all root-feeding nematodes to soil origin and plant community composition depended 

on genus/family and whether nematode numbers were analysed per 100 g soil or per g root (Fig. 3.3). 

Meloidogyne was the most abundant root-feeder, as 44% of the root-feeding nematodes in the 

mesocosms with natives, 30% with related and 82% with unrelated range-expanders belonged to this 

genus. Meloidogyne densities were strongly affected by plant community type (N/100 g soil: Χ2 = 55.15, 

df =2, p <0.0001; N/g root: Χ2 = 99.82, df =2, p < 0.0001; Fig. 3.3A, E). Densities of Meloidogyne in soil, 

as well as Meloidogyne densities on roots, were higher in mesocosms with unrelated range-expanders 
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than with natives (N/100 g soil: Χ2 = 21.35, p < 0.0001; N/g root: Χ2 = 53.33, p < 0.001; Fig. 3.3A,E), or 

related range-expanders (N/100 g soil: Χ2 = 55.49, p < 0.0001; N/g root: Χ2 = 97.99, p < 0.0001; Fig. 

3.3B,F). Meloidogyne densities in mesocosms with natives were higher than in mesocosms with related 

range-expanders (N/100 g soil: Χ2 = 8.12, p < 0.01; N/g root: Χ2 = 6.77, p < 0.01; Fig. 3.3A, E).  

 

Soils from the original range contained more Hoplolaimidae (N/100 g soil: Χ2 = 13.12, df =1, p < 0.001; 

N/g root: Χ2 = 10.64, df =1 p < 0.01; Fig. 3.3B, F) and Tylenchidae (N/100 g soil: Χ2 = 21.06, df =1, p < 

0.0001; N/g root: Χ2 = 18.02, df = 1, p < 0.0001; Fig. 3.3C, G) than soils from the original range. The 

densities of Hoplolaimidae on roots differed also between plant communities (Χ2 = 22.83, df =2, p < 

0.0001; Fig. 3.3F): unrelated range-expanders had more Hoplolaimidae per g root than natives (Χ2 = 

10.83; p < 0.001) and related range-expanders (Χ2 = 18.67, p < 0.0001). Tylenchidae densities in soil 

were also affected by plant community type (Χ2 = 8.25, df =2, p < 0.05; Fig. 3.3C): both natives (Χ2 = 

7.02, p < 0.01) and related range-expanders (Χ2 = 7.92, p < 0.01) had higher Tylenchidae densities than 

unrelated range-expanders. Neither plant community nor soil origin significantly affected numbers of 

Paratylenchus (Fig. 3.3D, H).  
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Fig. 3.3 Plant community effects on densities in soil (N/100 g dry soil) and on roots (N/g root) of root-feeding nematode 

groups Meloidogyne (a,e), Hoplolaimidae (b,f), Tylenchidae (c,g) and Paratylenchus (d,h) in soils from the original and 

new range. Different bars represent the communities of native plants (NAT; white), related range-expanders (RRE; light 

grey) and unrelated range-expanders (URE; dark grey). Bars represent averages ± standard errors. Horizontal bars and 

asterisks represent significant (p < 0.05) differences between soil origins and different letters indicate significant (p < 0.05) 

differences between plant communities within the ranges based on Negative binomial GLM and Post-hoc Wald tests. 
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Discussion 

Climate warming-induced range-expanding plant species can experience weaker negative impact in 

soil from the new than from the original range (van Grunsven et al. 2010; De Frenne et al. 2014; 

Dostálek et al. 2015; Van Nuland, Bailey & Schweitzer 2017). This may be caused by the loss of 

belowground natural enemies, such as root-feeding nematodes and soil-borne pathogens, as a result 

of plants having higher dispersal capacities than soil biota (Berg et al. 2010; Morriën et al. 2010). 

However, biogeographic studies on soil-borne enemies along expansion gradients are scarce (Van 

Nuland, Bailey & Schweitzer 2017), and to our knowledge such studies are non-existent along intra-

continental latitudinal gradients. Our study shows that, differently as hypothesized, for none of the 

plant communities there were evident differences in root-feeding nematode community composition 

between original and new range soils, suggesting that range-expanding plant species do not experience 

strong shifts in root-feeding nematode communities as a consequence of latitudinal range expansion. 

Between new and original range soils, we did observe differences in the community composition based 

on nematode feeding types, but only for related range-expanders. Therefore, our hypothesis of 

stronger nematode community shifts between the original and new range for unrelated range-

expanders than for range-expanders with native relatives was not confirmed.  

Plant community effects on root-feeding nematode community composition were not the same 

between the ranges. Most notably, in the new range the root-feeding nematode community 

composition of unrelated range-expanders was more distinct from the communities of natives and 

related range-expanders in the original range (Fig. 3.1B), suggesting distinct nematode responses to 

these phylogenetically distant plant species in the new range. Moreover, root-feeding nematode 

communities of natives and related range-expanders were more comparable in the new range than in 

the original range, suggesting nematode spill-over effects from natives to related range-expanders. In 

spite of this interactive effect between plant community and soil origin on the root-feeding nematode 

community composition, we did not find such significant interaction effects on densities of root-

feeding nematodes or on root-feeding nematode groups (Figs. 3.2 and 3.3, respectively). This may 

indicate relatively subtle shifts in multiple root-feeding nematode groups that only could be detected 

when the full root-feeding nematode community was analyzed. Densities of Hoplolaimidae and 
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Tylenchidae were higher in soils from the original than from the new range, but these effects did not 

depend on plant community (Fig. 3.3) and therefore do not underlie the observed interactive effect. 

Also the interactive effect of plant community and soil origin on the nematode community 

composition based on nematode feeding types could not be explained by differences in in the densities 

of the different nematode feeding groups. Possibly, densities of predatory nematodes play a role in the 

statistical separation between the original and new range for the plant community of related range-

expanders, but total predatory nematode densities were too low to reliably model in a univariate 

analysis.   

The root-feeding nematode community of unrelated range-expanders differed from those of native 

and related range-expanders. These differences in nematode community composition may be 

explained by plant phylogeny, as the unrelated range-expanders belong to different genera than the 

natives and related range-expanders and therefore have different traits (Gilbert & Webb 2007). 

However, as the community of unrelated range-expanders was largely dominated by annuals, whereas 

the other two communities include mostly perennials (Koorem et al. 2017), it is also possible that 

nematode responses were the result of differences in plant life history strategies. Annual plant species 

are often early-successional colonizers known to develop strongly negative plant-soil feedbacks 

(Kardol, Bezemer & van der Putten 2006), which corresponds with the strong accumulation of root-

feeding nematodes found in the plant community of unrelated range-expanders. While the plant 

species in the community of unrelated range-expanders had the smallest root systems (Table S3.2;  

Koorem et al. 2017), they accumulated the highest numbers of root-feeding nematodes, suggesting 

poor defence against nematodes. As a result, differences between plant communities were even 

stronger when nematode densities were expressed per gram of root (Fig. 3.3).  

While intercontinentally exotic early colonizers have been shown to accumulate fewer natural enemies 

in their new than in their original range (Blumenthal et al. 2009), we found no such pattern in our 

study. Experimental comparisons between the group of unrelated range-expanders and native plant 

species with an annual life history strategy are needed in order to examine whether there is any benefit 

for this group of range-expanders over ecologically comparable native plant species in the new range. 

However, in order to examine the effects of ecological novelty associated with phylogenetic 
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distinctiveness (Strauss, Webb & Salamin 2006) in the context of climate-driven range expansion, 

future studies also need to focus on unrelated range-expanders with a perennial life history. Overall, 

our results emphasize that plant species’ life histories need to be taken into account when analyzing 

effects of biotic interactions on range-expanding and exotic plant species.  

As hypothesized, root-feeding nematodes were more clearly affected by the different plant 

communities than the other nematode feeding groups. The community of related range-expanders 

accumulated fewer root-feeding nematodes than their congeneric natives, which is in line with a study 

on range-expanding plant species in their new range soil (Morriën, Duyts & Van der Putten 2012). 

Our study, which considered responses of nematode communities from both the new and original 

range, shows that range-expanders also accumulate fewer root-feeding nematodes in soil from their 

original range than related species native in both areas of soil origin (Fig. 3.2). These results suggest 

that related range-expanders on average are better defended against root-feeding nematodes than 

related native species, regardless of the origin of the nematodes. This corresponds with a previous 

study showing that intracontinental range-expanders were better defended against an aboveground 

herbivore that was naïve to all of the examined plant species (Engelkes et al. 2008). However, all plants 

used in the study by Engelkes et al. (2008), as well as in the present study originated from seeds that 

were collected from the new range (The Netherlands). We therefore cannot exclude that the strong 

defence against root-feeding nematodes by these related range-expanders is the result of natural 

selection during range expansion for genotypes that are especially well-defended against generalist 

herbivores (Doorduin & Vrieling 2011; Lin, Klinkhamer & Vrieling 2015). Future experiments using 

plant populations from both the original and the new ranges of the range-expanders are needed in 

order to examine whether such shifts in plant defence traits may have occurred during climate-driven 

range expansion (Macel et al. 2017).  

The nematode abundances presented in our study are the net effects of bottom-up and top-down 

control by both the plants and the micro-organisms present in the soils (Chapter 4). While bottom-up 

effects on nematode numbers are stronger than top-down effects, potential differences between the 

plant communities in their ability to attract natural enemies of root-feeding nematodes, such as 

bacteria, fungi and protists (Stirling et al. 1998; Piskiewicz et al. 2007; Geisen et al. 2015) could add 
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additional variation in root-feeding nematode accumulation. Interestingly, plant effects strongly 

differed between root-feeding nematode groups: while Meloidogyne and Hoplolaimidae densities 

strongly depended on the plant community, such differences were not found in Paratylenchus and 

Tylenchidae, indicating that the latter may be more generalistic and not strongly responsive to species-

specific plant traits, such as root chemistry (Chapter 5). This could be due to their feeding strategy 

(Yeates et al. 1993): while Meloidogyne and Hoplolaimidae partly or completely feed inside the roots, 

Paratylenchus and Tylenchidae are ectoparasites or root-hair feeders and therefore may be less affected 

by defence chemistry.  

We conclude that there are no consistent shifts in nematode community composition between the 

original and new range of range-expanding plant species, and that range-expanders do not accumulate 

fewer root-feeding nematodes in the new range than in the original range. Unexpectedly, the range-

expanders without native congeners accumulated more root-feeding nematodes than the natives and 

their congeneric related range-expanders, but this might also be due to their annual life-history 

strategy. The community of congeneric related range-expanders was found to be the most suppressive 

to root-feeding nematodes compared to the natives, which may have benefitted their range expansion. 

Subsequent studies are needed where plant populations from both ranges will be included in the 

analysis, in order to elucidate the impact of range-expanding plant species on native soil communities. 
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Supplementary information  

Table S3.1: overview of soil collections for original and new range soil. Coordinates for the collection sites are given for 

three sub-locations per collection area in each of the three countries where soil was collected. Non-sterilized soil from each 

sub-location was used in one of the 9 soil mixtures of either the original range (O) or the new range (N). Note that we 

accounted for potential abiotic between the new range and original range soil mixes by the addition of sterilized soil from 

the complementing range (see methods).  

Range Location ID Sub-location  Coordinates Mix 

  Austria (AU)       

Original 1 AU 1.1 N 48.26557 E 13.24619 O1 

   AU 1.2 N 48.30533 E 13.30192 O2 

   AU 1.3 N 48.30513 E 13.30614 O3 

  2 AU 2.1 N 48.32249 E 14.33575 O4 

   AU 2.2 N 48.31162 E 14.33176 O5 

   AU 2.3 N 48.32202 E 14.31814 O6 

  3 AU 3.1 N 48.31063 E 14.33555 O7 

   AU 3.2 N 48.31239 E 14.33491 O8 

   AU 3.3 N 48.30348 E 14.33887 O9 

  Slovenia (SL)       

Original 1 SL 1.1 N 46.37294 E 14.16777 O6 

   SL 1.2 N 46.37294 E 14.16777 O7 

   SL 1.3 N 46.37294 E 14.16777 O3 

  2 SL 2.1 N 45.92891 E 15.50848 O1 

   SL 2.2 N 45.92891 E 15.50848 O5 

   SL 2.3 N 45.93038 E 15.49567 O2 

  3 SL 3.1 N 46.13559 E 14.60972 O9 

   SL 3.2 N 46.16527 E 14,75565 O8 

   SL 3.3 N 45.96904 E 14.54572 O4 

  The Netherlands (NL)       

New 1 NL 1.1 N 51.87657 E 6.00357 N1, N7 

   NL 1.2 N 51.87937 E 6.00413 N2, N8 

   NL 1.3 N 51.86766 E 5.99216 N3, N9 

  2 NL 2.1 N 51.85399 E 5.88374 N1, N4 

   NL 2.2 N 51.85884 E 5.88557 N2, N5 

   NL 2.3 N 51.86067 E 5.89020 N3, N6 

  3 NL 3.1 N 51.89423 E 5.63424 N4, N7 

   NL 3.2 N 51.89265 E 5.64489 N5, N8 

    NL 3.3 N 51.89569 E 5.64446 N6, N9 

 

 

 



 

 

63 
 

Table S3.2: Shoot and root biomass (g) of the plant communities ‘natives’ (NAT), ‘related range-expanders’ (RRE) and 

‘unrelated range-expanders’ (URE) in original and new range soils.  

 

 Shoot biomass (g) Root biomass (g) 

Community (N=9)  Mean ±SE Mean ±SE 

NAT Original  10.93 0.44 16.64 0.76 

NAT New  11.81 0.61 17.04 0.94 

RRE Original 12.44 0.67 14.86 0.71 

RRE New 13.33 0.64 16.22 0.47 

URE Original 20.28 0.74 6.19 0.28 

URE New 21.53 0.99 6.63 0.56 
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Chapter 4 

Interspecific differences in nematode control between range-

expanding plant species and their congeneric natives 

R.A. Wilschut, S. Geisen, F.C. ten Hooven & W.H. van der Putten 
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Abstract 

Climate change enables range expansions of plants, animals and microbes to higher altitudes and 

latitudes. Plants may benefit from range expansion when they escape from natural enemies, however, 

range expansion becomes a disadvantage when plants become disconnected from organisms that 

control enemies in the new range. Here, we examined nematode control in the root zone of range-

expanding plant species and congeneric natives. In a greenhouse, we determined bottom-up (by the 

plants) and top-down (by natural enemies of the nematodes) control of two root-feeding nematode 

species (Helicotylenchus pseudorobustus and Meloidogyne hapla) in the rhizospheres of two range-

expanding species, Centaurea stoebe and Geranium pyrenaicum, and two congeneric natives, C. jacea 

and G. molle. Pots with plants growing in sterilized soil were inoculated with either a microbial soil 

community from the newly colonized natural habitat, or a mixture of native microbial nematode 

antagonists, or a mixture of these two communities. We tested the hypotheses that bottom-up control 

of root-feeding nematodes would be strongest in the root zone of range-expanders and that top-down 

control would be strongest in the root zone of native plant species. We observed profound intra- and 

interspecific differences in bottom-up and top-down control among all four plant species. Bottom-up 

control by the range-expanding plant species was either strong or weak. Top-down control by 

microbes was strongest in native Centaurea. The addition of a mixture of both microbial communities 

reduced control of M. hapla in the root zones of the native plant species, and enhanced its control in 

the root zones of range-expanding plant species. We conclude that there was species-specific bottom-

up and top-down control of root-feeding nematodes among the four plant species tested. Range-

expanding plant species influence their microbial rhizosphere community differently compared to 

native plant species, but top-down control in the root zone of natives was not systematically superior 

to that of range-shifting plant species. 
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Introduction  

Recent climate warming has enabled altitudinal and latitudinal range expansions of many animal and 

plant species (Parmesan 2006; Chen et al. 2011). Such range expansions can lead to disruptions of co-

evolved biotic interactions, as individual species shift range at contrasting rates (Berg et al. 2010). 

While some plant species, aboveground vertebrates and invertebrate species may be able to shift range 

relatively quickly, belowground organisms are likely to lag behind (Berg et al. 2010). Eventually, such 

complex interactions might become re-established in the new range, when slower range-expanding 

species colonize the new areas. However, it is currently unknown what happens in the initial phases of 

range-expansion, when plant species are colonizing new areas and encounter novel enemies and their 

antagonists, which are both non-adapted to the introduced plant species.  

Some recent studies have shown that climate warming-induced range-expanding plant species or 

populations can be less strongly affected by belowground enemies in their new range than in their old 

range (van Grunsven et al. 2010; De Frenne et al. 2014). Moreover, these range-expanders may 

experience less negative effects of soil organisms in their new range than congeneric natives (van 

Grunsven et al. 2007; Engelkes et al. 2008). This suggests that range shifts result in a release from 

natural enemies, which has been proposed as an important cause of invasiveness of introduced exotic 

species (Keane & Crawley 2002; Mitchell & Power 2003). However, compared to exotic species 

introduced from geographically isolated areas, plant species expanding their range within a continent 

are less likely to be completely released from natural enemies as some of these enemies might be 

widespread in a larger geographical area.    

Despite the presence of natural enemies, successful range-expanding plant species might have a benefit 

over native plants, as range-expanders have been shown to be more strongly defended against naïve 

aboveground herbivores than congeneric natives (Engelkes et al. 2008). This stronger defence against 

generalists by the range-expanding plant species could be due to increased resource allocation to 

general defence mechanisms, due to reduced specialist herbivore and pathogen pressure (Müller-

Schärer, Schaffner & Steinger 2004; Joshi & Vrieling 2005; Oduor et al. 2011; Lin, Klinkhamer & 

Vrieling 2015). Additionally, range-expanders might possess certain allelochemicals in roots or 
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shoots, to which the native soil community is not well adapted (Cappuccino & Arnason 2006; 

Schaffner et al. 2011). Indeed, range-expanders produce more unique metabolites than related natives 

(Macel et al. 2014). Together, these defence mechanisms may provide the range-expanding plant 

species with a competitive benefit over native plant species as they suffer less from specialist herbivores 

and the generalists are not well adapted to their novel defence mechanisms (Bossdorf 2013; Uesugi & 

Kessler 2013).  

Also belowground, range-expanding plants may be better defended against generalist herbivores from 

the new range than their native congeners. In soil from the new range, range-expanders indeed were 

shown to accumulate fewer root-feeding nematodes per unit root mass than congeneric species that 

are native in the new range (Morriën, Duyts & Van der Putten 2012). Such reduced densities of root-

feeding nematodes might be due to either enhanced control by the plant roots (also named bottom-

up, or resource control) or control by natural enemies (also named top-down or predator control), or 

a combination of both mechanisms. Previous studies in other systems have shown that bottom-up 

control by direct plant defence mechanisms (van der Stoel, Duyts & van der Putten 2006) and top-

down control by fungi, bacteria, micro-arthropods and protists are all possible (Kerry 2000; 

Piskiewicz, Duyts & van der Putten 2008; Costa et al. 2012; Geisen et al. 2015). These control 

mechanisms can operate on nematodes in species-specific ways (Piskiewicz, Duyts & van der Putten 

2008). Range-expanding plant species have been shown to accumulate different microbial 

communities in their rhizospheres compared to closely related natives (Morriën & van der Putten 

2013). However, it is unknown whether these community differences have consequences for root-

feeding nematode control, for example due to longer shared co-evolutionary histories of microbial 

nematode antagonists with native than with range-expanding plant species. 

Here, we quantify and compare effects of top-down and bottom-up control of root-feeding nematodes 

in the rhizosphere of range-expanding plant species and congeneric natives. We tested the hypotheses 

that 1) if top-down control of nematodes by soil microbes is plant-species specific, we expect this 

control within congeneric pairs to be stronger in the native than in the range expander and 2) range-

expanding plant species exert stronger bottom-up control on root-feeding nematodes than congeneric 

natives. In order to test the hypotheses, we conducted a greenhouse experiment to examine the 
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microbial control of two native generalist root-feeding nematode species, Meloidogyne hapla and 

Helicotylenchus pseudorobustus, in the rhizospheres of two range-expanding plant species and their 

native congeners. This experiment will provide insights in how complex multi-trophic interactions 

may function in the rhizospheres of climate-driven range-expanding plant species in their new range, 

and how these interactions differ from those of related native plant species. The experimental results 

will contribute to enhanced insights in how multi-trophic interactions of non-native plant species may 

become assembled in their new range. 

Methods 

Plant species and seed collection 

We tested our hypotheses using two range-expanding plant species that originate from southern 

Europe, Centaurea stoebe L. and Geranium pyrenaicum Burm. f., and two congeneric species that are 

native in the newly colonized range in north-western Europe, Centaurea jacea L. and Geranium molle 

L. Centaurea stoebe originates from the Danube area and since the late 1990’s invaded the Rhine valley 

and some suitable habitats in The Netherlands (NDFF 2017). Geranium pyrenaicum originally has a 

more widespread south-European distribution and although it colonized Northwestern Europe 

already in the 19th century, it only showed a strong expansion in the Netherlands since the 1980’s, 

where it now is common (NDFF 2017). Both congeneric native species C. jacea and G. molle are also 

common throughout northern and southern Europe. 

All seeds used for the present study originated from plant populations from the Netherlands. Seeds of 

C. stoebe and G. molle were collected directly from the field. Seeds of C. jacea originated from an 

experimental garden in Wageningen. They were collected from first generation plants grown from 

seeds of plants growing in Dutch field sites. Seeds of G. pyrenaicum were delivered by the seed 

production company Cruydthoeck (Nijeberkoop, The Netherlands), where plant species are cultured 

from seeds collected in Dutch field sites. Seeds of all plant species were surface-sterilized by washing 

them for 3 min in 10% bleach solution, after which they were rinsed with demineralized water, and 

germinated on glass beads in a growth cabinet (20/10 °C; 16 h light/8 h dark). 
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Nematode cultures  

Two generalist root-feeding nematodes that commonly occur throughout Europe were extracted from 

cultures originating from Dutch field sites. An inoculum of the sedentary endoparasite Meloidogyne 

hapla Chitwood (hereafter referred to as Meloidogyne) was collected from a field near Bovensmilde 

(Drenthe, The Netherlands), subsequently cultured on tomato (Solanum lycopersicum L.) at PPO-

AGV (Lelystad, The Netherlands) and extracted using a mistifier (Funnel-spray method; Oostenbrink 

1960). A population of the ectoparasite Helicotylenchus pseudorobustus Steiner (hereafter referred to 

as Helicotylenchus), originating from coastal sand dunes, was cultured on Marram grass (Ammophila 

arenaria L.) at NIOO-KNAW (Wageningen, the Netherlands) and extracted using an Oostenbrink 

elutriator (Oostenbrink 1960).  

Microbial inocula 

We prepared three different microbial inocula and tested their effects on root-feeding nematode 

abundance on range-expanders and congeneric natives: a general microbial inoculum obtained from 

field soil, a specific nematode-antagonist inoculum and a combination of the two. The used field soil 

was collected from riverine grasslands where most of the plant species used in the present study are 

present in the immediate surroundings. To obtain the general microbial inoculum, we used a serial 

wet-sieving approach to establish a community of  predominantly microbes <20µm (see: van de 

Voorde, van der Putten & Bezemer 2012). We used nine batches of 2 kg top soil collected from 3 sites 

(6 kg per site) in a riverine grassland (Wageningen, The Netherlands; 51˚57’N, 5˚39’E) that were 

mixed with 1.5 l demineralized water, stirred and left for 15 min. This stirring procedure was then 

repeated for each batch, after which the supernatant went through sieves with mesh sizes of 1 mm, 180 

µm, 75 µm, 45 µm (twice) and 20 µm. Hence, we obtained 12.5 l inoculum with a general microbial 

wash from 18 kg of field soil.  

The inoculum of nematode antagonists included three nematophagous fungi and the nematophagous 

amoeba Cryptodifflugia operculata, which was cultured on a mixed prokaryotic community in a liquid 

wheat grass medium (Geisen et al. 2015). The nematophagous fungi were obtained from field soil from 

a riverine grassland (Millingerwaard, Netherlands; 51˚52’N, 6 ˚0’E), by adding 0.1 g of soil to three 



 

 

71 
 

Petri dishes filled with water that contained a free-living nematode community from different trophic 

groups, which was collected from the same grassland. After one week, an inverted microscope 

(Olympus CK40) at 100 and 200 x magnification was used to detect killed or parasitized nematodes. 

Dead nematodes with hyphae or spores of potentially nematophagous fungal or oomycete origin were 

transferred individually to 1 % water agar for subsequent cultivation. Three well-growing monoclonal 

fungal cultures were selected and used for the experiment. We collected spores using a sterile metal 

cell-scraper after adding 1 ml double-distilled water. Spore numbers were determined using an 

inverted microscope (Olympus CK40) at 400x magnification. The amoebae were acquired by 

detaching one week old, well active cultures from the surface of five 10 cm Petri dishes by vigorous 

shaking. The amoebae-suspension then immediately was transferred to 50 ml centrifuge tubes and 

carefully centrifuged at 800rpm for 5 min. The supernatant was then decanted, after which the 

suspensions were pooled and enumerated. The three fungal and the amoebae cultures were combined 

and named nematode-antagonist inoculum. Each pot inoculated with the nematode-antagonist 

mixture received 1.4 ml suspension containing 1.6 x 106 C. operculata amoebae, as well as 3.4 x 106, 1.3 

x 106 and 1.5 x 106 spores of fungal isolates Mil3, Mil4, and Mil5b, respectively.  

Experimental set-up 

A three-factor pot experiment was set up using 4 plant species (C. jacea, C. stoebe, G. molle and G. 

pyrenaicum), 3 nematode treatments (Helicotylenchus, Meloidogyne and a control without root-

feeding nematodes), and 4 soil treatments (microbial inoculum, nematode antagonist inoculum, 

combined microbial and nematode antagonist inoculum and a control without live inoculum), with 

each treatment replicated 5 times, resulting in 240 pots. Sandy clay soil was collected from a former 

agricultural field in the riparian area of the same river system as Millingerwaard (Beneden-Leeuwen, 

The Netherlands; N51° 53.952, E05° 33.670). This soil was homogenized with sand (2:1 soil:sand) and 

sterilized using gamma-sterilization (McNamara et al. 2003; 25 KGray, Syngenta bv, Ede, The 

Netherlands). Pots of 1 L were filled with 830 g of the sterilized soil. Of each plant species 60 seedlings 

were planted in individual pots.  After 10 days, two thirds of all pots were inoculated with 2 ml water 

suspension containing 200 juveniles of either Meloidogyne or Helicotylenchus. One third of all pots did 

not receive any nematodes. Next, microbial treatments were established: pots received either 50 ml of 
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the general microbial inoculum, 1.4 ml of the nematode-antagonist inoculum, or a combined 

inoculum of both the general microbial (50 ml) and the nematode-antagonist inoculum (1.4 ml). 

Control pots did not receive any live inoculum. To compensate for potential nutrient and moisture 

effects control pots received 50 ml sterilized general microbial inoculum and 1.4 ml sterilized 

nematode-antagonist inoculum, pots containing the general microbial community received sterilized 

1.4 ml nematode-antagonist inoculum and pots with the nematode-antagonist community received 

50 ml sterilized general microbial inoculum. The pots were placed in a greenhouse compartment at 16 

h light (20 °C), 8 h dark (15 °C) and 60% relative humidity according to a randomized block design on 

carts, which were rotated weekly. Throughout the experiment the pots were watered twice per week. 

Once a week, pots were reset to a weight of 860 g by adding demineralized water, representing a 

moisture content of approximately 15 %.  

Harvest  

Fifteen weeks after inoculation, the aboveground plant parts were harvested and dried at 70 °C until 

constant weight. Subsequently, all soil from every pot was collected for nematode extraction, and 2-

ml centrifuge tubes with well-homogenized soil were stored at -20 °C for DNA extraction. To reduce 

the loss of nematodes from the rhizosphere, roots were first washed in 200 ml water, after which the 

washout was stored at 4 ˚C until nematode extraction. Root systems from Helicotylenchus pots were 

placed in a mistifier (Funnel-spray method; Oostenbrink 1960) for 24 hours to extract remaining root-

attached nematodes of this ectoparasitic species. The roots were dried at 70 °C until they reached 

constant weight. Root systems from pots containing the endoparasitic Meloidogyne were split: one half 

was placed in a mistifier for 4 weeks in order to extract nematodes from developing eggs inside the 

roots, and the other half was weighed fresh, dried at 70 °C until constant weight, and weighed again. 

Once per week nematodes were collected from the mistifier and stored at 4 °C. After 4 weeks, all 

nematode subsamples harvested from the same root sample were combined into one single pot and 

concentrated to 10 ml. For both the pots with Helicotylenchus or Meloidogyne, as well as 3 replicates 

of the non-nematode treatments, free-living nematodes were extracted from the bulk soil and the 

rhizosphere soil suspension using an Oostenbrink elutriator (Oostenbrink 1960), and concentrated to 

10 ml prior to counting.  
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Nematode counting 

Nematodes were counted alive using an inverted microscope (Olympus CK40, 40x and 100x 

magnification). Either the full sample was counted or, in case of high densities, 2 subsamples of 1 ml, 

each diluted 10 times. During nematode counting, all samples were carefully checked for 

contamination with other root-feeding nematodes. Because of contamination with Meloidogyne, 2 

samples from pots inoculated with Helicotylenchus were excluded from further analysis. In all samples 

bacterivorous nematodes were found, which could originate from both co-inoculations of 

bacterivorous nematode eggs with the microbial inocula and natural colonization of the pots via air.  

Bacterial and fungal quantification 

We quantified bacteria and fungi using quantitative (q)PCR in the pots containing Meloidogyne, as we 

found stronger inoculum effects on this nematode species than on Helicotylenchus. Soil DNA was 

extracted using the PowerSoil DNA isolation kit (Mo Bio Laboratories Inc, Carlsbad, USA) and stored 

at -20 °C. Bacterial 16s rDNA copy numbers were quantified using the primer combination 515F and 

806R (Caporaso et al. 2011). The qPCR mastermix contained 0.25 µl BSA (Roche Diagnostics, Basel, 

Switzerland), 10 µl SensiFAST SYBR® No-ROX (Bioline, Taunton, USA), 0.25 µl 515F (10 uM; Apha 

DNA, Montréal, Canada), 0.25 µl 806R (10 uM; Apha DNA) and 5 µl DNA template in a total volume 

of 20µl. Cycling conditions were the following: initiation for 3 min at 95 °C, followed by 40 cycles of 

30 sec at 95 °C, 30 sec at 50 °C, 1 min at 72 °C with a final elongation for 5 min at 72 °C). Fungal ITS 

copy numbers were quantified using the primer combination ITS4 and ITS9 targeting the fungal ITS2 

region (White et al. 1990; Ihrmark et al. 2012). The qPCR mix contained 1 µl MgCl2 (Roche 

Diagnostics), 0.25 µl forward ITS4 primer (30 uM; Alpha DNA), 0.25 µl reverse ITS9 primer (30 uM; 

Alpha DNA), 10 µl SensiFAST SYBR® No-ROX, 5 µl DNA template in a total volume of 20 µl. Cycling 

conditions were the following: initiation for 3 min at 95 °C, followed by 40 cycles of 30 sec at 95 °C, 30 

sec at 60 °C and 1 min at 72° with a final elongation for 5 min at 72 °C). Both qPCR approaches were 

replicated twice for each sample. Analyses of the qPCRs were done using Biorad CFX manager (Bio-

Rad Laboratories B.V., Veenendaal, The Netherlands). The average number of PCR-cycles needed to 

reach a threshold value determined by the software was used to calculate total abundances of bacteria 
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(16S rDNA copy numbers) and fungi (ITS2 copy numbers) in each sample. The ratio between the 

inverse of these abundance measures was used to calculate the bacterial/fungal-ratio.  

Statistical analyses  

All statistical analyses were performed in R Studio (Version 0.98.507; R Core Development Team 

2012). Nematode count data were analyzed using negative binomial generalized linear models, as the 

data were strongly overdispersed (Hilbe 2014). Helicotylenchus and Meloidogyne counts were analyzed 

separately. We modeled total numbers per pot and numbers per gram root as the response of each 

nematode species to the fixed factors block, plant species and inoculum, as well as to the interaction 

between plant species and inoculum. Because of the use of only 2 species pairs, we did not include the 

factor origin (range-expander or native). As negative binomial generalized linear models have to be 

provided with integer values, and Helicotylenchus numbers were low, we expressed Helicotylenchus 

numbers per 10 gram root to avoid introduction of zeroes in the model. Model fit was checked using 

residual plots and AIC-values. Using post-hoc Wald tests performed with the R-package phia (De 

Rosario-Martinez 2013) we determined for each plant species the pairwise differences in nematode 

numbers between the different inocula and overall differences in nematode numbers between plant 

species. A general linear model and subsequent post-hoc Wald tests were used to test the effects of 

nematode species, inoculum and plant species on total plant biomass data. Two-way ANOVA models 

were used to analyze the effect of plant species and inocula on the relative abundance of bacteria, fungi 

and the bacterial/fungal ratio for the pots inoculated with Meloidogyne hapla. Residual plots and 

Shapiro-Wilk normality tests were used to confirm that model assumptions were not violated. 

Results  

Plant biomass  

There was a significant main treatment effect of inoculum addition (F= 2.68, p < 0.05), because plants 

receiving the combined microbial and nematode antagonist community produced significantly less 

biomass than plants receiving the nematode-antagonist and the microbial communities alone (Fig. 

S4.1). However, this effect size was relatively minor.  
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Root-feeding nematode numbers 

Meloidogyne hapla: We found strong differences in total Meloidogyne numbers among plant species 

(Χ2 = 111.89, df = 3, p < 0.001). Total numbers of Meloidogyne were significantly (Χ2 = 434.54, df = 1, 

p < 0.01) higher in native C. jacea than in range-expanding C. stoebe (Fig. 4.1). Meloidogyne also 

performed significantly poorer on C. stoebe than on both native and range-expanding Geranium 

species (Fig. 4.1). However, the range-expander G. pyrenaicum was a better host for Meloidogyne than 

the native G. molle (Χ2 = 51.76, df = 1, p < 0.01; Fig. 4.1). Effects of plant species on the total numbers 

of Meloidogyne depended on soil inoculum (interaction effect: Χ2 = 86.53, df = 9, p < 0.01). The 

nematode-antagonist community significantly reduced Meloidogyne numbers in C. jacea (Χ2 = 4.58, 

df = 1, p < 0.05; Fig. 4.2A). This reduction, however, disappeared when the nematode antagonists were 

added in combination with the general microbial community; in that case Meloidogyne numbers were 

significantly higher than in pots with only the nematode antagonist community (Χ2 = 5.91, df = 1, p < 

0.05; Fig. 4.2A). There were no strong inoculum effects in the root zone of C. stoebe. However, in this 

species, the combined microbial and nematode antagonist community significantly reduced 

Meloidogyne numbers compared to the general microbial community (Χ2 = 8.94, df = 1, p < 0.01; Fig. 

4.2B). In G. molle, pots with nematode antagonists added had significantly lower numbers of 

Meloidogyne than pots with the combined microbial and nematode antagonist community  added (Χ2 

= 4.65, df = 1, p < 0.05; Fig. 4.2C). In G. pyrenaicum the opposite pattern ocurred: pots with the 

combined microbial and nematode antagonist community had lower numbers of Meloidogyne than 

pots with only nematode antagonists (total: Χ2 = 4.24, df = 1, p < 0.05; Fig. 4.2D). Overall, patterns of 

Meloidogyne numbers per gram root strongly corresponded with total Meloidogyne numbers per pot 

with some minor exceptions: while C. jacea was found to accumulate the highest Meloidogyne 

numbers per pot, numbers of Meloidogyne per gram root were higher in G. pyrenaicum than in C. 

jacea  (Fig. S4.2). Furthermore, in G. molle, pots inoculated with the nematode antagonists did not 

have lower Meloidogyne numbers per gram root than pots inoculated with the combined microbial 

and nematode antagonist community (Fig. S4.3).  
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Helicotylenchus pseudorobustus: Numbers of the ectoparasite Helicotylenchus in all 4 plant species 

were substantially lower than numbers of Meloidogyne (Fig. 4.1). Nevertheless, we found a significant 

plant species effect on total Helicotylenchus numbers (Χ2 = 104.85, df = 3, p < 0.01); there were 

significantly higher numbers of Helicotylenchus on G. pyrenaicum than on all other plant species (all 

p-values <0.01). Effects of plant species on total numbers of Helicotylenchus depended on soil 

inoculum (significant species*inoculum interaction; Χ2 = 85.11, df = 9, p < 0.05). Inoculum type did 

not have a significant effect on numbers of Helicotylenchus in both native species C. jacea and G. molle 

(Fig. 4.2E, G). In C. stoebe, nematode antagonists significantly reduced total numbers of 

Helicotylenchus compared to adding the combined microbial and nematode antagonist community 

(Χ2 = 5.22, df = 1, p < 0.05; Fig. 4.2F). In G. pyrenaicum, the total number of Helicotylenchus was 

significantly lower in pots with the combined microbial and nematode antagonist community than in 

pots with the general microbial inoculum (Χ2 = 6.66, df = 1, p < 0.01), or in pots with the nematode 

antagonists (Χ2 = 6.01, df = 1, p < 0.05; Fig. 4.2H). Helicotylenchus densities per gram root were 

significantly different among plant species (all p-values < 0.05; Fig. S4.2). Both range-expanding plant 

species contained more Helicotylenchus per gram root than their native congenerics (Fig. S4.2), and 

plant species effects did not depend on inoculum, which differs from the data on total numbers per 

pot. There was also no main effect of inoculum when Helicotylenchus densities were expressed as 

numbers per g root. 

Fig. 4.1 Mean total numbers (N pot-1) of root-feeding nematodes Meloidogyne hapla (left; logarithmic scale) and 

Helicotylenchus pseudorobustus (right; linear scale) on range-expanding (black) plants Centaurea stoebe and Geranium 

pyrenaicum species and related natives Centaurea jacea and Geranium molle (grey). Vertical bars show means ± standard 

errors. Different letters indicate significant (p < 0.05) pairwise post-hoc Wald tests between plant species. 
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Fig. 4.2 Microbial inoculum effects on mean total numbers of root-feeding nematodes Meloidogyne hapla (A,B,C,D) and 

Helicotylenchus pseudorobustus (E,F,G,H) on native plant species Centaurea jacea and Geranium molle (left) and range-

expanding plant species Centaurea stoebe and Geranium pyrenaicum (right). Vertical bars show means ± standard errors. 

Different letters indicate significant (p < 0.05) pairwise post-hoc Wald tests between plant species. Per panel, the four bars 

represent following inoculum treatments: control (C; red), general microbial community (M; blue), nematode antagonists 

(A; yellow) and the mixed community (MA; green).  
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Bacterial and fungal abundances  

Between plant species, abundances of soil bacteria, expressed as 16S rDNA copy numbers, were 

significantly different (F3,63 = 3.18, p < 0.05; Fig. 4.3). Geranium species harboured more bacteria than 

Centaurea species, whereas differences within species pairs were not significant. Fungal abundances, 

based on ITS copy numbers, depended on a combination of plant species and soil inoculum 

(species*inoculum interaction F9,63 = 2.19, p < 0.05). Centaurea stoebe had fewer fungi in the control 

than in the three soil inoculation treatments (all p-values < 0.05), and fungal abundance was lower in 

the combined microbial and nematode antagonist community than in the nematode-antagonist 

community (F = 4.91, df = 1, p < 0.05; Fig. 4.4). The C. stoebe control treatment had a lower fungal 

abundance than the control treatments of C. jacea (F = 8.71, df = 1, p = 0.052) and G. molle (F = 11.82, 

df = 1, p < 0.01; Fig. S4.4). Overall, the bacterial/fungal ratio was significantly (F = 3.45, p < 0.05) 

influenced by soil inoculation, and the bacterial/fungal ratio in the nematode antagonist treatment was 

significantly lower than in the control and other inoculum treatments (Fig. 4.5). This change in 

bacterial/fungal ratio occurred due to both a relatively low bacterial abundance and a relatively high 

fungal abundance.  

Fig. 4.3 Plant species effects on bacterial abundances (1/qPCR threshold value) of native plant species Centaurea jacea and 

Geranium molle and range-expanding plant species Centaurea stoebe and Geranium pyrenaicum. Vertical bars show means 

± standard errors. Different letters indicate significant (p < 0.05) pairwise post-hoc Wald tests between plant species per 

inoculum treatment. 
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Fig. 4.4 Microbial community effects on fungal abundances (1/qPCR threshold value) per plant species. Vertical bars show 

means ± standard errors. Different letters indicate significant (p < 0.05) pairwise post-hoc Wald tests between inoculum 

treatments per plant species. Microbial treatments are abbreviated: control (C), general microbial community (M), 

nematode antagonists (A) and the combined microbial and nematode antagonist community (MA). 

Fig. 4.5 Ratios of bacterial and fungal abundances per inoculum treatment, quantified by the ratio between the inverse 

qPCR Cq-values of bacterial 16s and fungal ITS copy numbers. Vertical bars show means ± standard errors. Different 

letters indicate significant (p < 0.05) pairwise post-hoc Wald tests between inoculum treatments. X-axis labels represent 

inoculum treatments: control (C), general microbial community (M), nematode antagonists (A) and the mixed community 

(MA). 
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Discussion  

Our results show species-specific patterns of bottom-up and top-down control of generalist root-

feeding nematodes, both between and within two pairs of range-expanding and related native plant 

species. Our hypothesis that bottom-up control of root-feeding nematodes is stronger in the root zone 

of range-expanding plant species than of their congenerically related natives was supported in the case 

of the range-expander C. stoebe. This plant species had considerably stronger bottom-up defence 

against the endoparasite Meloidogyne than the congeneric native C. jacea (Fig. 4.1). However, 

Meloidogyne showed stronger multiplication on roots of the range-expanding G. pyrenaicum than on 

the native G. molle (Fig. 4.1). Geranium pyrenaicum was also a better host for the ectoparasitic 

Helicotylenchus than G. molle. Helicotylenchus numbers did not differ between the two Centaurea 

species. When expressed per unit of root weight, Helicotylenchus densities tended to be higher on both 

range-expanders than on related natives (Fig. S4.2), which is not in support of our hypothesis. On all 

plant species, numbers of Helicotylenchus were relatively low. 

Although range-expanding plant species are thought to benefit when released from their specialized 

soil-borne enemies after latitudinal range-expansion (van Grunsven et al. 2010; De Frenne et al. 2014), 

plants will still be exposed to natural enemies in the new range, including widespread generalist 

enemies. Both Meloidogyne hapla and Helicotylenchus pseudorobustus are widespread throughout 

Europe (Bongers 1988), which does not exclude a co-evolutionary history with all four plant species. 

However, the limited dispersal capacity of nematodes and low gene flow between nematode 

populations (Blouin, Liu & Berry 1999) could have led to local adaptation of the nematodes to native 

plant species of Northwest European populations. A similar event of local adaptation of a natural 

enemy was also found for range-expanding butterflies and their parasitoids in Great Britain 

(Menendez et al. 2008). Therefore, plant-nematode interactions that are established when range-

expanding plant species encounter individuals of these root-feeding nematodes populations in newly 

colonized areas, may at least to some extent result in novel interactions when the plants encounter 

non-adapted populations of the same herbivores in the new range.  
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Both strong suppression by, or release from aboveground and belowground herbivores has been 

argued a possible outcome of novel plant-herbivore interactions, as both plant and herbivore might be 

maladapted to their new host or enemy (Verhoeven et al. 2009). The strong bottom-up control of 

Meloidogyne by C. stoebe corresponds with low levels of herbivory on this plant species as found in 

several studies in North America (Cappuccino & Carpenter 2005; Schaffner et al. 2011), where C. 

stoebe is an invasive exotic. Native generalist moths grow poorer on C. stoebe than European 

generalists (Schaffner et al. 2011). Moreover, C. stoebe is less prone to aboveground herbivory than the 

non-invasive exotic C. jacea (Cappuccino & Carpenter 2005), indicating that C. stoebe mayproduce 

secondary compounds to which the native community is not adapted. In our study, the strong bottom-

up control of Meloidogyne by C. stoebe suggests a similar maladaptation of the nematode to the root 

compounds of this plant species. Interestingly, we also found evidence for lower fungal abundances in 

the control soils of C. stoebe than in control soils grown with the other plant species, suggesting an 

inhibiting effect of C. stoebe root compounds or exudates on fungal growth. In contrast to the strong 

direct defence of C. stoebe, the high Meloidogyne numbers found in G. pyrenaicum point to a non-

existent or weak bottom-up defence of the plant, allowing herbivores associated with related native 

plants to easily exploit the new host (Louda et al. 1997).  

We found strong plant species-specific effects on top-down control of both root-feeding nematode 

species (Fig. 4.2). We expected  the microbial communities to have strong nematode control potential 

in the rhizospheres of the native plant species. However, the nematode antagonist community 

effectively controlled Meloidogyne numbers only in the root zone of the native C. jacea. Therefore, we 

found mixed evidence to support the hypothesis that top-down control of root-feeding nematodes is 

strongest in native plant species. Remarkably, unlike in other experiments on nematode control by 

microbial communities (Piskiewicz et al. 2007; Viketoft & van der Putten 2014) there was no effective 

top-down control of the two root-feeding nematode species by the general microbial inoculum. 

Interestingly, the controlling effect of the nematode antagonists in the root zone of C. jacea was lost 

when they were added in combination with the general microbial community (Fig. 4.2). In both native 

plant species, numbers of Meloidogyne were higher in the presence of the combined microbial and 

nematode antagonist community than in pots with the nematode-antagonist community alone. 
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Possibly the nematode antagonists could have been outcompeted by micro-organisms from the 

general microbial community resulting in a reduced top-down control of the nematodes. 

Alternatively, as none of the inoculated nematode antagonists are obligatory nematophagous (the 

three fungi can grow purely saprophytically, the amoeba merely on bacteria and fungi (Geisen et al. 

2016)), they could predominantly feed on other food sources in the presence of a diverse microbial 

community, thereby releasing the nematodes from their control. Interestingly, in both range-

expanders Meloidogyne numbers were found to be reduced by the combined microbial and nematode 

antagonist community compared to the other microbial communities, suggesting a synergistic effect 

of potential nematode antagonists from both communities. 

Top-down control of Helicotylenchus differed from Meloidogyne. While there were no top-down 

control effects in both native plants, Helicotylenchus was effectively controlled in the root zone of G. 

pyrenaicum, both by the combined microbial and nematode antagonist community and by the 

nematode-antagonist community in C. stoebe (Fig. 4.2). The overall differences in top-down control 

patterns of two root-feeding nematode species in four plant species indicate that interactions between 

soil microbes, nematode antagonists and root-feeding nematodes are strongly plant and also 

nematode species-specific. Such plant species-specific interactions in the rhizosphere can probably be 

best explained by plant species-specific root chemistry, influencing rhizosphere communities 

differently (Shi et al. 2011), by which top-down control of nematodes is altered. As bacterial or fungal 

abundances do not seem to explain differences in root-feeding nematode abundances, it is likely  that 

interspecific differences in top-down control effects on root-feeding nematodes are caused by 

differences in the microbial rhizosphere community composition rather than sheer microbial 

abundances (Fig. 4.3-5).  

In a recent study (Viketoft & van der Putten 2014) native microbes showed effective top-down control 

of root-feeding nematodes in the root zones of both native and range-expanding plant species, 

although top-down control effects were highly plant species-specific. We show such plant species-

specific top-down control effects as well, but we also show that range-expanding plant species interact 

with their microbial community differently than their related natives. As a result, patterns of top-down 

(and bottom-up) control turned out to be highly species-specific. As in the experiment of Viketoft and 



 

 

83 
 

van der Putten (2014) root-feeding nematodes did not decrease plant biomass. Only plants treated 

with the combined microbial and nematode antagonist community tended to produce less plant 

biomass, potentially caused by an increased competition for nutrients between the plants and the 

microbial community (Clarholm 1985) or by mild pathogenic effects only affecting plant biomass 

when the combined microbial and nematode antagonist community was added. The absence of a 

negative effect of Meloidogyne on plant biomass might be explained by the low nematode densities in 

the early phases of the experiment. The strong differences in nematode densities between the root 

zones of native C. jacea and range-expanding C. stoebe that build up over the course of time might 

have strong effects on next generations of conspecifics, but we did not test such feedback effects.  

In conclusion, we show that range-expanding plant species influence top-down control of root-

feeding nematodes in their root zones differently than related native plant species. Our results add to 

the findings that range-expanding plant species accumulate different soil microbial communities 

compared to related native species (Morriën & van der Putten 2013), as we provide novel evidence 

that these different soil communities affect root-feeding nematodes differently. Furthermore, we show 

that bottom-up control of root-feeding nematodes can both be strong and weak in the root zones of 

range-expanding plant species. The root-feeding nematode abundance patterns indicate that range-

expanding plant species influence root-feeding nematode populations in a plant species-specific 

manner, which likely will result in strongly different plant-soil feedback outcomes. Range-expanding 

plant species that escaped their specialized enemies and have strong defence mechanisms, even against 

generalist nematodes, could eventually become increasingly abundant. Thereby they might negatively 

influence the native vegetation, while other range-expanding plant species are more likely to develop 

similar negative plant-soil feedbacks as related natives.  
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Supplementary information 

Fig. S4.1 Plant biomass (shoots + roots) in response to the four different inoculum treatments: control (C), general 

microbial community (M), nematode antagonists (A) and the mixed community (MA). Vertical bars show means ± 

standard errors. Different letters indicate significant (p < 0.05) pairwise post-hoc Wald tests between inocula.  

 

Fig. S4.2 Relative numbers of root-feeding nematodes Meloidogyne hapla (left; N g root-1) and Helicotylenchus 

pseudorobustus (right; N 10 g root-1) on range-expanding plant species Centaurea stoebe and Geranium pyrenaicum (black)  

and related natives Centaurea jacea and Geranium molle (grey). Vertical bars show means ± standard errors. Different 

letters indicate significant (p < 0.05) pairwise post-hoc Wald tests between plant species.  
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Fig. S4.3 Microbial inoculum effects on numbers of Meloidogyne hapla per gram root of native plant species Centaurea 

jacea and Geranium molle (left) and range-expanding plant species Centaurea stoebe and Geranium pyrenaicum (right). 

Vertical bars show means ± standard errors. Different letters indicate significant (p < 0.05) pairwise post-hoc Wald tests 

between plant species. Per panel, the four bars represent following inoculum treatments: control (C; red), general microbial 

community (M; blue), nematode antagonists (A; yellow) and the mixed community (MA; green). 

Fig. S4.4 Plant species effects on fungal abundances (1/qPCR threshold value) per inoculum treatment. Vertical bars show 

means ± standard errors. Different letters indicate significant (p < 0.05) pairwise post-hoc Wald tests between plant species 

per inoculum treatment. Plant species names are abbreviated: Centaurea jacea (CJ), Centaurea stoebe (CS), Geranium 

molle (GM) and Geranium pyrenaicum (GP). 
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Abstract 

An increasing number of studies report plant range expansions to higher latitudes and altitudes in 

response to global warming. However, consequences for interactions with other species in the novel 

ranges are poorly understood. Here, we examine how range-expanding plant species interact with 

root-feeding nematodes from the new range. Root-feeding nematodes are ubiquitous belowground 

herbivores that may impact the structure and composition of natural vegetation. Because of their 

ecological novelty, we hypothesized that range-expanding plant species will be less suitable hosts for 

root-feeding nematodes than native congeneric plant species. In greenhouse and lab trials we 

compared nematode preference and performance of two root-feeding nematode species between 

range-expanding plant species and their congeneric natives. In order to understand differences in 

nematode preferences, we compared root volatile profiles of all range-expanders and congeneric 

natives. Nematode preferences and performances differed substantially among the pairs of range-

expanders and natives. The range-expander that had the most unique volatile profile compared to its 

related native was unattractive and a poor host for nematodes. Other range-expanding plant species 

that differed less in root chemistry from native congeners, also differed less in nematode attraction 

and performance. We conclude that the three climate-driven range-expanding plant species studied 

varied considerably in their chemical novelty compared to their congeneric natives, and therefore 

affected native root-feeding nematodes in species-specific ways. Our data suggest that through 

variation in chemical novelty, range-expanding plant species may vary in their impacts on 

belowground herbivores in the new range.  

Introduction  

One of the most evident ecological consequences of current climate change is the latitudinal and 

altitudinal range expansion of many plant and animal species (Walther et al. 2002; Parmesan 2006; Le 

Roux & McGeoch 2008). As not all species expand their range at similar rates (Berg et al. 2010), 

coevolved interactions between plants, aboveground and belowground organisms are likely to become 

disrupted, whereas novel interactions can be developed in the new range (Lavergne et al. 2010; van der 

Putten 2012). Range-expanding plant species might benefit from these new biotic conditions when 
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they do not encounter coevolved natural enemies in the expanded range (De Frenne et al. 2014; 

Dostálek et al. 2015). At the same time, range-expanders will become exposed to non-coevolved 

natural enemies that are native to these new areas. The strength of the enemy release effect will be 

largely determined by the inability of the novel natural enemies to exploit the range-expanders and the 

ability of the range-expanders to successfully defend themselves (Verhoeven et al. 2009). The present 

study was initiated in order to examine how root herbivores in the new range respond to range-

expanding plant species.  

Range-expanding plant species could benefit from the lack of coevolved novel natural enemies when 

they produce chemicals to which these enemies are not adapted. Such novel chemicals make the plants 

either less attractive or less digestible. For intercontinental introductions of exotic plant species, this 

possibility has been investigated under the “novel weapon hypothesis” (Callaway & Ridenour 2004; 

Schaffner et al. 2011). Several studies have shown that invasive exotic plant species produce more 

unique shoot compounds than native plant species in the invaded range (Cappuccino & Arnason 2006; 

Macel et al. 2014), thereby negatively affecting the performance of native aboveground invertebrate 

herbivores (Macel et al. 2014). The strength of novel weapon effects could differ between introduced 

exotic plant species and intra-continental range-expanders as more natural enemies may be shared 

between the original range and the new range of intra-continental range-expanders than of 

intercontinentally introduced exotic species. Yet, aboveground herbivores that lack a co-evolutionary 

history with both the range-expanding and the related native plant species performed less well on some 

successful range-expanders than on related natives (Engelkes et al. 2008). This suggests a role for plant 

chemistry in the success of range-expanding plants. However, the novel weapon hypothesis so far has 

not been tested in studies on intracontinental range-expanding plant species. Moreover, there is a 

paucity of studies testing the effects of novel chemistry on belowground herbivores, both for 

introduced exotics and intra-continental range-expanders.  

In their new range, successful range-expanding plant species on average are less negatively affected by 

soil communities than congeneric natives (van Grunsven et al. 2007; Engelkes et al. 2008). This effect 

has been explained by the on average lower accumulation of soil-borne fungal pathogens (Morriën & 

van der Putten 2013) and root-feeding nematodes (Morriën, Duyts & Van der Putten 2012) on the 
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roots of range-expanding plant species than on congeneric natives. However, there is considerable 

variation in the outcome of plant-nematode interactions among range-expanding plant species 

(Chapter 4, Morriën, Duyts & Van der Putten 2012; Viketoft & van der Putten 2014). A likely 

explanation for this variation that has not yet been studied is the role of novel plant chemistry. 

Therefore, the aim of the present study was to examine how differences in plant-nematode interactions 

between range-expanding and native plant species relate to differences in root chemistries.  We 

compared preference and reproductive performance of root herbivores on range-expanders with 

congeneric plant species that are native in the new range, in order to confound our tests as minimal as 

possible with general differences in plant chemistry. 

We tested the hypotheses that native generalist root-feeding nematodes (1) are more strongly attracted 

to native than to range-expanding plant species, (2) prefer native plant species over range-expanding 

plant species and (3) show higher reproduction on native than on range-expanding plant species. We 

studied differences in nematode attraction to single plants of all tested plant species (hypothesis 1), 

differences in nematode preference between range-expanders and related natives (hypothesis 2) and 

differences in nematode performance between range-expanders and related natives (hypothesis 3) 

under both lab and greenhouse conditions. As root volatiles are known to influence attraction of 

entomo-pathogenic nematodes (Rolfe, Barrett & Perry 2000; Rasmann et al. 2005; Turlings, Hiltpold 

& Rasmann 2012), we examined volatile profiles of all 6 plant species as they also may explain patterns 

in root-feeding nematode attraction and preference. Together, our results will contribute to the 

understanding of how novel chemistry might affect belowground plant-herbivore interactions of 

range-expanding plant species.   

Methods 

Plant species and seed collections  

We selected three plant species that recently expanded their range naturally from lower latitude areas 

to higher latitude areas in North-Western Europe and that have a related native species in their new 

range. Range-expanding plant species that were examined in the experiments were Centaurea stoebe 

L., Geranium pyrenaicum Burm. f., and Rorippa austriaca Crantz and their congeneric native species 
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were Centaurea jacea L., Geranium molle L. and Rorippa sylvestris (L.) Besser. All six plant species now 

co-occur in riparian grassland areas in the eastern part of the Rhine-Waal area in The Netherlands. 

Therefore, these plant species are subjected to at least partly overlapping abiotic and biotic conditions. 

Range-expanding R. austriaca and G. pyrenaicum naturally established in the Netherlands at the end 

of the 19th century and are now widespread, while the first population of range-expanding C. stoebe 

in the Netherlands was recorded in the last decade of the 20th century (NDFF 2017). Seeds of all six 

plant species originate from natural areas in the Netherlands. Seeds of C. stoebe, G. molle, R. austriaca 

and R. sylvestris were directly collected from single populations the field. Seeds of C. jacea were 

collected from mother plants that were grown in an outside experiment at NIOO-KNAW 

(Wageningen, The Netherlands) from seeds collected in a natural population. Seeds of G. pyrenaicum 

were delivered by the company Cruydthoeck (Nijeberkoop, The Netherlands), that grows wild plants 

under field conditions from seeds that originate from natural field sites. For all experiments, seeds of 

Centaurea and Geranium species were surface-sterilized by washing for 3 min in a 10% bleach 

solution, followed by rinsing with demineralized water, after which they were germinated on glass 

beads. Due to their small size, seeds of both Rorippa species were not surface-sterilized, but directly 

germinated on sterilized soil. Seeds were germinated in a climate cabinet at 20/10 °C and 16 h light/8 

h darkness. 

Nematodes 

We used cultures of two root-feeding nematode species, the ectoparasitic Helicotylenchus 

pseudorobustus Steiner (hereafter Helicotylenchus) and the sedentary endoparasitic Meloidogyne hapla 

Chitwood (hereafter Meloidogyne), originating from populations in The Netherlands. We selected 

these species as they both have a wide host range, are common and widely distributed throughout 

Europe (Bongers 1988). Both used cultures were previously established in a greenhouse at NIOO-

KNAW. The culture of Helicotylenchus on Marram grass (Ammophila arenaria L.) originates from 

nematodes collected from coastal dunes. The culture of Meloidogyne originates from nematodes 

collected from a field near Bovensmilde (Drenthe, The Netherlands) which were subsequently 

cultured on tomato (Solanum lycopersicum L.).  
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Nematode choice experiments  

To study differences in nematode attraction and preference, we performed choice experiments on agar 

and in soil, where nematodes could move to one of two opposing treatments. To examine nematode 

attraction to a plant species, we planted one seedling of a species at one side and left the other side 

unplanted. To examine nematode preference for either natives or range-expanders we planted single 

seedlings of congeneric native and range-expanding plant species at opposing sides of the test units. 

As a control for attraction and preference, we examined nematode movement in test units without 

seedlings. We calculated the percentage of nematodes moving to either one of the sides of the test 

units.  

Choice experiment on agar: to examine nematode choice in vitro, we used Petri dishes of 9 cm diameter 

filled with 20 ml 0.5% microbial agar (Merck kGaA, Germany) (Piskiewicz et al. 2009). We used eight 

independent replicates for each treatment. We placed 20-days-old seedlings 4 cm from the center of 

the Petri dish. Thereafter, the Petri dishes were placed in a climatized chamber at 16/8 h light/dark and 

20 °C. After two days, 20 μl of tap water suspension containing 40 juveniles of either Helicotylenchus 

or Meloidogyne was pipetted at the center of the Petri dishes. Nematode choice was examined two days 

after inoculation by counting using a stereo-microscope (200× magnification). We considered a 

nematode to be significantly attracted to one treatment when it moved at least 0.5 cm into the half of 

the Petri dish oriented towards that treatment. 

Choice experiment in soil:  To examine nematode choices under more natural conditions than on agar, 

we performed a choice experiment in soil-filled Y-tubes (van Tol et al. 2001; Piskiewicz et al. 2009) in 

a greenhouse at 16/8 h light/dark and 20/15 °C. We used 6 independent replicates for each treatment. 

Each Y-tube consisted of a core piece and two removable arms, which were all filled with gamma-

sterilized soil (25 KGray, Syngenta bv, Ede, The Netherlands). The soil originated from a former 

agricultural field (Beneden-Leeuwen, The Netherlands; N51° 53.952, E05° 33.670) in a riparian system 

where all plant species can occur. Prior to sterilization, the field soil was homogenized with sand at a 

rate of 2:1 (w:w) in order to reduce the relative clay content. Seedlings of 20 days old were planted in 

the Y-tube arms. Soil moisture was adjusted to 10% (w:w) and maintained at this level until nematode 
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inoculation. Five days after planting the seedlings, two ml of water suspension with 200 

Helicotylenchus or Meloidogyne juveniles was inoculated two cm deep in both sides of the core piece, 

to have an equal distribution of nematodes throughout the core piece. Then, both units with the 

planted seedlings were placed on the Y-tube and for the remaining experimental time the arms were 

moistened daily with five ml of demineralized water. After that, nematodes could enter an arm in 

which the roots were growing. Four days after inoculation, the two arms of the Y-tube were separated 

and nematodes from each arm and the core piece were extracted by Cobb’s decantation (Cobb 1918) 

and counted using an inverted light microscope (200x magnification).  

Nematode reproduction experiment 

For each plant species, ten 12-days-old seedlings were planted separately in 11x11x12 cm pots filled 

with soil homogenized and sterilized as explained above. The pots were placed in a greenhouse in a 

randomized block design with five replicate blocks. After 12 days, pots were inoculated with two ml 

water suspension with either 200 Meloidogyne or 200 Helicotylenchus juveniles. During the subsequent 

16 weeks the pots were watered twice a week and kept on the same weight of approximately 870 g, of 

appr. 15% (w:w) soil moisture content. Thereafter, roots and soils were separated and used for 

nematode extraction. All roots were washed in 200 ml tap water, after which the washing water 

containing nematodes that were present in the rhizosphere was stored. Nematodes of each individual 

replicate were combined into a single sample by extracting all nematodes from the wash and soil using 

an Oostenbrink elutriator (Oostenbrink 1960). Roots collected from pots inoculated with the 

ectoparasite Helicotylenchus were dried at 70 ˚C. Roots from pots inoculated with Meloidogyne were 

split and both halves were weighed fresh. One half of the roots was dried at 70 ̊ C until constant weight, 

whereas the other half was cut into pieces of 1-2 cm and placed for four weeks in a mistifier to extract 

nematodes from the inside of the roots (Funnel-spray method; Oostenbrink 1960). Total dry root 

biomass was assessed using total fresh weight and fresh/dry weight ratio of each sample. Nematode 

suspensions were harvested from the mistifier after two and four weeks, combined, and concentrated 

to 10 ml. Nematodes were counted using an inverted light microscope (200x magnification).  
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Root volatile analysis 

To relate nematode attraction, preference, and performance to root chemistry, we analyzed root 

volatile profiles by Gas Chromatography Quadrupole Time of Flight (GC-QTOF) analysis.  

Volatile trapping: Four 20-days-old seedlings of each plant species were placed in individual 70 ml 

glass pots filled with sterilized soil (see choice experiment in soil). After 15 days, steel traps containing 

the volatile absorbants Tenax TA (150 mg) and Carbopack B (150 mg; Markes International Ltd., 

Llantrisant, United Kingdom) were attached at both sides of the glass pots. After 24 hours of 

incubation the traps were removed, capped and stored at 4 ˚C until GC-QTOF analysis. 

GC-QTOF analysis of volatiles compounds: The volatiles were collected from the traps using an 

automated thermos desorption unit (Unity TD-100, Markes International Ltd., Llantrisant, UK) at 210 

°C for 12 min (Helium flow 50 ml/min) and trapped on a cold trap at -10 °C. The volatiles were 

introduced into the GC-QTOF (model Agilent 7890B GC and the Agilent 7200A QTOF, Santa Clara, 

USA) by heating the cold trap for 3 min to 280 °C. Split ratio was set to 1:10, and the column used was 

a 30 × 0.25 mm ID RXI-5MS, film thickness 0.25 μm (Restek 13424-6850, Bellefonte, PA, USA). The 

following temperature program was used: 39 °C for 2 min, from 39 °C to 95 °C at 3.5 °C/min, then to 

165 °C at 6 °C/min, to 250 °C at 15 °C/min and finally to 300 °C at 40 °C/min and 20 min at 300 °C. 

The volatiles were detected by a mass spectrometer (MS) operating at 70 eV in EI mode. Mass spectra 

were acquired in full-scan mode (30–400AMU, 4 scans/s). GC-MS-data were collected and converted 

to a mzData file using the Chemstation B.06.00 (Agilent Technologies, USA). Data were further 

processed with MZmine 2.14.2 (Pluskal et al. 2010) with the tools mass detection (centroid mode, 

noise level = 1000), chromatogram builder (min time span = 0.05 min, min height = 1.5E03, m/z 

tolerance of 1 m/z or 5 ppm), and chromatogram deconvolution (local minimum search, 

chromatographic threshold = 40%, Min in RT range = 0.1 min, Min relative height = 2.0%, Min 

absolute height = 1.5E03, Min ratio of peak top/edge = 2, peak duration = 0.0–0.5 min). Detected and 

deconvoluted peaks were identified by their mass spectra using NIST MS Search and NIST 2014 

(National Institute of Standards and Technology, USA) and aligned using Random Sample Consensus 

(RANSAC) aligner (mz tolerance = 1 m/z or 5 ppm, RT tolerance = 0.1, RT tolerance after correction 
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= 0.05, RANSAC iteration = 10000, Min number of points = 60%, threshold value = 0.1). Processed 

data were exported for further statistical analysis as explained under ‘Statistical analysis’. The 

identification of detected compounds was further evaluated using the software AMDIS 2.72 (Stein 

1999; http://chemdata.nist.gov/). The retention indexes were calculated for each compound and 

compared with those found in NIST 2014 and in-house databases.  

Statistical analyses  

Differences in nematode attraction and preference were tested by pair-wise t-tests in SigmaPlot (Systat 

software, Inc). Overall differences in nematode attraction between natives and range-expanders were 

tested using general linear models with origin as fixed factor and plant species as random factor 

(packages lme4 and lmerTest; Bates et al. 2014; Kuznetsova, Brockhoff & Christensen 2015) using R 

studio (version 0.98.507; R Core Development Team 2012). Differences in nematode numbers 

between plant species were tested for each nematode species separately using generalized linear models 

with a negative binomial error distribution (MASS package; Venables & Ripley 2013) modeling fixed 

factors ‘plant species’ and ‘experimental block’. Wald post-hoc tests were then used to test for 

differences between plant species using the phia package (De Rosario-Martinez 2013). Using Pearson 

correlation tests, we examined whether nematode reproduction corresponded with nematode 

attraction in the y-tubes. Analyses on volatile data were performed using MetaboAnalyst V3.0 

(www.metaboanalyst.ca; Xia et al. 2015). Prior to One-way ANOVA and multivariate analyses (PLS-

DA) data were normalized via log-transformation and auto scaling. To identify mass features 

significantly differing between plant species, a one-way-ANOVA with post-hoc Tukey HSD-tests was 

performed. Mass features were considered to be statistically relevant when p- and FDR-values were ≤ 

0.05.  

Results  

Nematode attraction 

First, we confirmed that the controls in the nematode attraction experiments were effective. Indeed, 

when the tests were performed in the absence of plants both on agar and in soil neither Helicotylenchus 

nor Meloidogyne showed significant movement away from the point of addition (Fig. 5.1, Fig. S5.1).  
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Meloidogyne: On average, there was a trend of stronger attraction of Meloidogyne to natives than to 

range-expanding plant species on agar (natives: 25.3 ± 3.6 %, range-expanders: 10.9 ± 3.9%; F = 7.56, 

p = 0.051), but this was not significant in soil (natives: 21.9 ± 4.4 %, range-expanders: 9.0 ± 3.8%; F = 

4.86, p = 0.09). On agar, all natives significantly attracted Meloidogyne away from the empty control 

(all t-values > 3.48, all p-values < 0.05; Fig. S5.1A), whereas none of the range-expanders did so (Fig. 

S5.1A). In soil, all three native species significantly attracted Meloidogyne away from the empty 

controls (all t-values > 6.65, all p-values < 0.01; Fig. 5.1A). Both range-expanding Geranium and 

Rorippa also attracted Meloidogyne away from the empty control in soil (t-values > 4.84, p-values 

<0.01; Fig. 5.1A). Interestingly, the range-expanding Centaurea significantly repelled Meloidogyne 

towards the empty control in both agar and soil (t-values < -3.21, p-values < 0.05; Fig. 5.1a, Fig. S5.1A). 

Thus, all natives significantly attracted Meloidogyne, whereas range-expanders either repelled 

Meloidogyne or attracted Meloidogyne only in one of the two test units.  

Helicotylenchus: On average, native plant species did not attract Helicotylenchus more strongly than 

range-expanders on agar (natives: 21.9 ± 8.0%, range-expanders: 13.6 ± 2.4%; F = 0.99, p = 0.38), while 

they did so in soil (natives: 17.2 ± 0.8%, range-expanders: 7.4 ± 3.3%; F = 7.83, p < 0.05).  Individually, 

all native plant species significantly attracted Helicotylenchus in both test units, when compared to 

empty controls (all t-values > 3.2, all p-values < 0.05; Fig. 5.1A, Fig. S5.1A). On agar only range-

expanding Geranium significantly attracted Helicotylenchus away from the empty control (t = 4.34, p 

< 0.01; Fig. S5.1A), while in soil both range-expanding Geranium and Rorippa did so (t-values > 6.57, 

p-values <0.01; Fig. 5.1A). Range-expanding Centaurea significantly repelled Helicotylenchus towards 

the empty control on agar (t = -2.83, p <0.05; Fig. S5.1A), but not in soil (t = -1.98, p = 0.10; Fig. 5.1A). 

Overall, native plant species always significantly attracted Helicotylenchus, whereas attraction and 

repellence by range-expanding plant were species-specific and depended on test unit.  
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Nematode preference 

Meloidogyne and Helicotylenchus preferred native Centaurea and Rorippa over their congeneric range-

expanders (t-values > 3.68, p-values < 0.05; Fig. 5.1B; Fig. S5.1B), although the preference of 

Helicotylenchus for native Rorippa was not significant on agar (t = 1.47, p = 0.19).  Both Meloidogyne 

and Helicotylenchus did not show a preference for either native or range-expanding Geranium on 

either agar or in soil (all t-values < 1.59, all p-values > 0.15; Fig. 5.1B, Fig. S5.1B). Therefore, our results 

show that two out of three native plant species were preferred over related range-expanding plant 

species by both nematode species, whereas in the third plant pair both nematode species did not show 

a preference for either the native or the range-expander.  

 

 

Fig. 5.1 (A) Attraction or repellence (% individuals migrated) of the nematode species Meloidogyne hapla and 

Helicotylenchus pseudorobustus by native and range-expanding plant species in sterilized soil. (B) Nematode preference 

between native plant species Centaurea jacea, Geranium molle and Rorippa sylvestris and congeneric range-expanders 

Centaurea stoebe, Geranium pyrenaicum and Rorippa austriaca. In both panels horizontal bars show averages ± standard 

errors and asterisks represent significant paired t-test values (p < 0.05) between empty control and plant (A) or between 

native and range-expanding plant species (B). 
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Nematode reproductive performance  

Meloidogyne reproduction differed significantly among plant species (Χ2 = 182.45, df = 5, p < 0.0001). 

Meloidogyne numbers were higher on native C. jacea than on range-expanding C. stoebe (Χ2 = 251.94, 

df = 1, p < 0.0001; Fig. 5.2) and higher on native R. sylvestris than on range-expanding R. austriaca (Χ2 

= 12.18, df = 1, p < 0.001; Fig. 5.2). However, in Geranium, Meloidogyne numbers were higher on the 

range-expander G. pyrenaicum than on the native G. molle (Χ2 = 5.87, df = 1, p < 0.05; Fig. 5.2). 

Helicotylenchus numbers also differed significantly among plant species (Χ2 = 114.05, df = 5, p < 

0.0001; Fig. 5.2). There were significantly more Helicotylenchus on native C. jacea than on range-

expander C. stoebe (Χ2 = 10.10, df = 1, p < 0.05; Fig. 5.2). However, post-hoc analysis of the other two 

plant pairs did not reveal any significant differences in Helicotylenchus numbers between range-

expanders and congeneric natives. Meloidogyne numbers per plant species strongly correlated with 

the attraction by these plant species in y-tubes (R2 = 0.92, p < 0.01; Fig. 5.3A), while this correlation 

was not significant for Helicotylenchus (R2 = 0.11, p = 0.52; Fig. 5.3B).  

 

Fig. 5.2 Mean total numbers (N pot-1) of root-feeding nematodes Meloidogyne hapla (left; logarithmic scale) and 

Helicotylenchus pseudorobustus (right; linear scale) on range-expanding plant species Centaurea stoebe, Geranium 

pyrenaicum and Rorippa austriaca (grey), and congeneric natives Centaurea jacea, Geranium molle and Rorippa sylvestris 

(black). Vertical bars show means ± standard errors. Asterisks indicate levels of significance (* = p < 0.05, ** = p < 0.01, 

*** = p < 0.001, n.s. = not significant) of pairwise post-hoc Wald tests within plant pairs. 
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Fig. 5.3 Correlation plots between nematode attraction (x-axis) and nematode reproduction (y-axis), for root-feeding 

nematodes (A) Melodoigyne hapla and (B) Helicotylenchus pseudorobustus. Dots represent the 6 different plant species 

tested. R2-values and p-values of the Pearson correlation tests are given.  

Root volatiles 

We detected 1964 putative volatile compounds in all samples, of which approximately 25 % (491 

volatile compounds) were produced by plants (Fig. S5.2). The other 1473 volatile compounds were 

detected in the tubes containing only gamma-sterilized soil. When the root volatiles of all six plant 

species were analyzed together, the strongest overlap between species was found within the pairs of 

congeneric species, indicating that chemistry varies more strongly between genera than within genera 

(Fig. S5.3). Within the Centaurea pair 21 volatile compounds were significantly different between the 

native and range-expander, resulting in a clear separation of their volatile profiles (Fig. 5.4A). Five of 

these compounds were detected only in the headspace of C. stoebe: indene, tridecane and nonadecane 

(alkanes), 1,2-benzisothiazole (benzenoids/ketone) and alpha-gurjunene (sesquiterpene), and three 

volatiles were detected only in the headspace of the native C. jacea: petasitene (sesquiterpene), 

benzophenone (benzenoids/ketone), and an unknown terpene (Table 5.1). Thirteen compounds 

where found in both Centaurea species, but in different abundances (Table 5.1). Volatile profiles from 

native and range-expanding Geranium and Rorippa were less clearly separated in the PLS-DA score 

plots, although samples from controls, native and range-expanding plants could still be divided into 

three distinct groups with 95% confidence intervals (Fig. 5.4B,C). There were 11 volatiles that showed 

significant differences between the Geranium species and 6 between the Rorippa species (all p-values 

<0.05). Native G. molle produced five unique volatile compounds, compared to four by range-

expanding G. pyrenaicum, while two volatiles differed in production levels between the species. The 
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native R. sylvestris produced four unique compounds compared to two unique compounds that were 

produced exclusively by the range-expander R. austriaca. Therefore, differences in volatile profiles 

between range-expanders and congeneric natives depended on the species pair; in two out of three 

cases, the range-expander produced fewer unique volatiles than the congeneric native. 

 

Fig. 5.4 Partial least square-discriminant analysis (PLS-DA) score plots of root volatile profiles measured with GC-QTOF-

MS. The semi-transparent ovals outline the 95% confidence intervals of natives (red triangles), range-expanders (blue 

crosses) and sterilized control soils (green crosses) for Centaurea (A), Geranium (B) and Rorippa (C). Sample numbers 

and position of the volatile trap (left or right) are given.  
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Table 5.1 Volatile organic compounds produced by native Centaurea jacea and range-expanding Centaurea stoebe. 

Tentative compound names are shown, which are based on retention time (RT) and ELRI (Experimental linear retention 

index) values, measured with GC-QTOF-MS. All compounds are significantly more produced by either C. jacea (CJ) or C. 

stoebe (CS). Compounds that are produced solely by C. jacea are indicated with ‘*’ and compounds produced solely by C. 

stoebe with ‘**’. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Compound name RT ELRI Plant 

sulfur dioxide 

dimethylsulfide 

carbondisulfide 

furan, 2-methyl 

1,3-dioxolane, 2-methyl- 

benzene 1,2 dimethyl 

dimethylsulfone 

dimethyl-trisulfide 

mesitylene 

indene** 

acetophenone 

1,2-benzisothiazol** 

tridecane** 

petasitene* 

alpha-gurjunene** 

unknown terpene* 

phenyl maleic anhydride 

benzophenone* 

pentadecanoic acid 

nonadecane** 

diphenylsulfone 

2.04 

2.4 

2.5 

2.9 

3.4 

10.1 

10.9 

13.1 

14.3 

15.7 

17.4 

23.9 

26.8 

30.1 

30.4 

32.73 

34.29 

36.9 

40.02 

40.4 

40.7 

488 

529 

541 

583 

639 

890 

916 

963 

990 

1023 

1062 

1229 

1299 

1398 

1407 

1448 

1534 

1620 

1867 

1901 

1934 

CJ 

CS 

CJ 

CJ 

CS 

CJ 

CS 

CS 

CJ 

CS 

CS 

CS 

CS 

CJ 

CS 

CJ 

CJ 

CJ 

CS 

CS 

CS 
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Discussion 

Several studies have proposed that invasiveness of intercontinentally introduced exotic plant species 

can be enhanced by their novel chemistry, e.g. through allelopathy (Callaway & Aschehoug 2000; 

Zheng et al. 2015), or by the suppression of the local natural enemies (Schaffner et al. 2011). Yet, little 

is known about the effects of novel chemistry of intra-continental climate-driven range-expanders on 

communities in the new range. Moreover, empirical studies testing novel chemistry effects on 

belowground plant-herbivore interactions in the novel range are lacking. Here, we show that root-

feeding nematodes from the novel range were strongly attracted to native plant species, while, in 

support of our hypothesis, the average attraction by range-expanders mostly was less strong. Yet, we 

also found substantial differences in nematode attraction among range-expanding plant species: while 

the range-expanding C. stoebe repelled both nematode species in at least one of the attraction 

experiments, range-expanding G. pyrenaicum and R. austriaca attracted nematodes. Therefore, we 

show that some range-expanding plant species will attract considerable amounts of root-feeding 

nematodes in their new range, while other species will repel them, potentially leading to profound 

differences in herbivore pressure between range-expanders in their new range.    

In test units with both natives and congeneric range-expanders, both nematode species preferred 

native Centaurea and Rorippa over their congeneric range-expanders, while our hypothesis of stronger 

nematode preference for natives was not confirmed when comparing the Geranium species. In plant 

communities in the new range, the preference for native plant species could lead to apparent 

competition (Holt 1977), when natives experience stronger herbivore pressure (Orrock, Witter & 

Reichman 2008), leading to indirect competitive benefits for the range-expanders. For Meloidogyne, 

reproduction strongly corresponded with the attraction to the different plant species, as we found that 

Meloidogyne reproduction was significantly higher in the roots of native Centaurea and Rorippa than 

in the roots of their congeneric range-expanders. Notably, the differences in Meloidogyne 

reproduction between the Centaurea species were more substantial than between the Rorippa species. 

This was especially due to poor nematode reproduction on the range-expanding Centaurea stoebe, 

which is in line with a previous study (Chapter 4). Helicotylenchus numbers did not fully correspond 

with the attraction to the different plant species. Although they were lower in the rhizosphere of range-
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expanding Centaurea than in that of native Centaura, no differences were found in the other two plant 

pairs. The overall very low Helicotylenchus numbers indicate that no – or hardly any – reproduction 

of this species took place in this experiment. While the species did show profound chemical attraction 

to some of the plant species, we could therefore not properly estimate differences in performance on 

these different plant species. 

Contrary to our hypothesis, but in line with a previous study (Chapter 4), the range-expanding 

Geranium hosted slightly higher numbers of Meloidogyne than the native Geranium, indicating that 

not all range-expanding plant species are poorer nematode hosts than congeneric natives. Depending 

on naivety of either the host plant species or the herbivore in a novel plant-herbivore novel interaction, 

herbivore performance can be found to be strong or weak (Verhoeven et al. 2009). We did not perform 

experiments using Meloidogyne and Helicotylenchus populations from the original range of the range-

expanding plant species, so our data do not allow to draw conclusions on nematode preference and 

performance of the range-expanding plant species in their native range. However, as gene flow 

between soil-born nematode populations is expected to be low (Blouin, Liu & Berry 1999), a certain 

degree of local adaptation is well possible, so that it may well be that the nematode populations in the 

new range differ, at least to some extent, from populations in the original range. The use of nematode 

populations originating from natural areas in the new range and the subsequent culturing on plant 

species that is phylogenetically unrelated to the examined plant species allowed a phylogenetically 

unbiased test of the effects of the natural co-evolutionary histories between the nematode and plant 

species on nematode attraction and performance.  

We expected that the patterns in nematode attraction, preference and reproduction found in the 

present study would be caused by differences in root chemistry between native and range-expanding 

plant species. Indeed, the analyses of volatile compounds revealed that range-expanding C. stoebe 

produced more unique volatile compounds than native C. jacea. These results correspond with a study 

on aboveground herbivores, in which herbivore performance was also shown to be low on range-

expanding and exotic plants with more unique chemistry than their related natives (Macel et al. 2014). 

In addition to higher numbers of unique compounds, our study also reveals differences in the 

production levels of several shared volatile compounds between the Centaurea species. Therefore, the 
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nematode repellence and the poor nematode reproduction on the range-expanding C. stoebe, 

compared to the native C. jacea, might be explained by both the production of higher numbers of 

unique compounds and by different production levels of shared compounds. Interestingly, novel 

chemistry of C. stoebe has also been related to the poor performance of aboveground generalist 

herbivores in North America (Schaffner et al. 2011), where this plant species is invasive. In contrast to 

range-expanding Centaurea, both range-expanding Rorippa and Geranium produced fewer unique 

volatiles than their congeneric natives. Differences in volatile profiles were stronger in Geranium than 

in Rorippa, which was not reflected in the patterns of nematode preference and reproduction. Native 

Rorippa hosted higher nematode numbers and was more attractive to both nematode species than 

range-expanding Rorippa, while in Geranium there was no clear nematode preference for either the 

native or the range-expander, and nematode reproduction levels were higher in the range-expander 

than in the native. These results suggest that when unique volatile compounds play a role in nematode 

attraction or distraction, the identity, rather than the number of unique compounds may influence the 

outcome of plant-nematode interactions. Interestingly, but not unexpectedly, the differences in 

volatile profiles between all three pairs of congeneric native and range-expanding plant species were 

smaller than the differences among the three genera. This suggests that while root-feeding nematode 

species such as Meloidogyne have adapted to plant species with strongly different root chemistries, 

they may still perform poorly on range-expanding plant species that possess root chemistries slightly 

deviating from that of the plant species the nematodes are adapted to.    

Our volatile analyses revealed, next to many plant volatiles, a large diversity of volatiles emitted by 

gamma-sterilized soils, which is in line with earlier studies (Schulz-Bohm et al. 2015; Kai, Effmert & 

Piechulla 2016). Possibly, the chemical background of the soil caused the differences in nematode 

attraction between the tests on agar and soil, namely the higher numbers of nematodes moving to the 

unplanted side on agar. Alternatively, this effect could be caused by a stronger diffusion of root 

metabolites in the Petri dishes than in the soil-filled Y-tubes, resulting in a more equal distribution of 

root metabolites throughout the Petri dishes. Based on the differences between the two choice 

experiments we therefore conclude that choice experiments with root-feeding nematodes should 

preferably be performed in soil. 
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The application of GC-QTOF for volatile analysis allowed to obtain the tentative identification of the 

measured root volatiles. We identified several volatile compounds that were only detected in range-

expanding C. stoebe, and therefore could cause the nematode-repelling effect found for this plant 

species. Root-emitted volatiles are known to play versatile roles in long distance below-ground 

interactions (Erb et al. 2013; van Dam & Bouwmeester 2016) and some of the volatile compounds 

identified in the present study have been shown to negatively affect nematodes (Piluk, Hartel & Hanies 

1998). Future studies testing the identified metabolites in different combinations and ratios could 

reveal which compounds cause the nematode-repelling effect found in C. stoebe. Yet, pin-pointing of 

the observed effects to a single volatile compound can be complicated, because nematodes might react 

to a blend of volatiles, rather than to single compounds (McCormick, Unsicker & Gershenzon 2012).   

Successful range-expanding plant species have been shown to be better defended against naïve 

aboveground generalist herbivores than congeneric native plant species (Engelkes et al. 2008), 

indicating that they may possess superior defence mechanisms compared to related native species in 

the new range. Such defence mechanisms may especially be effective when they are novel to the natural 

enemies in the new range. Our results suggest that together with the release of soil enemies from the 

original range (van Grunsven et al. 2007), the possession of novel chemistry could explain why range-

expanding plant species are less negatively affected by soil communities than related native plant 

species (van Grunsven et al. 2007; Engelkes et al. 2008). As range-expanding plant species without 

closely related species in the new range are likely to possess the most unique root chemistries 

compared to native species present in the community, a phylogenetic approach (as in Strauss, Webb 

& Salamin 2006) may be considered to forecast which range-expanding plant species have the 

strongest potential to affect native communities in their novel range (Gilbert & Parker 2016).  

In conclusion, we provide evidence that novel belowground chemistry of the root system of range-

expanding plant species may suppress root herbivores in the new range. A range-expander that had 

the most different root chemistry compared to its related native suppressed root-feeding nematodes 

more strongly than range-expanders with root chemistries that were more comparable to those of 

related natives. However, our study included six plant species from three genera. Therefore, while our 

results elucidate the variation in potential impact of range-expanding plant species on native 
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communities in their novel range, further studies are needed in order to be able to generalize these 

results and predict which range-expanding plant species may have strong impacts on native 

communities in the future.  
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Supplementary information 

 

Fig. S5.1 (A) Attraction or repellence (% individuals migrated) of the nematode species Meloidogyne hapla and 

Helicotylenchus pseudorobustus by native and range-expanding plant species on agar. Grey bars represent the plant sides 

and white bars the control sides of the agar plates. (B) Nematode choice between native plant species Centaurea jacea, 

Geranium molle and Rorippa sylvestris (dark grey) and congeneric range-expanders Centaurea stoebe, Geranium 

pyrenaicum and Rorippa austriaca (light grey). In both panels horizontal bars show averages ± standard errors and asterisks 

represent significant paired t-test values (p < 0.05) between empty control and plant (a) or between native and range-

expanding plant species (B). 

Fig. S5.2 Total volatile numbers found in pots grown with range-expanding plant species Centaurea stoebe (C.s), Geranium 

pyrenaicum (G.p) and Rorippa austriaca (R.a) (black) and related native species Centaurea jacea (C.j), Geranium molle 

(G.m) and Rorippa sylvestris (R.s) (grey). Vertical bars show averages ± standard errors. 
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Fig. S5.3 Partial least square-discriminant analysis (PLS-DA) score plots of root volatile profiles measured with GC-QTOF-

MS. The semi-transparent ovals outline the 95% confidence intervals of native plant species Centaurea jacea (Cj), 

Geranium molle (Gm) and Rorippa sylvestris (Rs), and congeneric range-expanding plant species Centaurea stoebe (Cs), 

Geranium pyrenaicum (Gp) and Rorippa austriaca (Ra).  
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Chapter 6 

Root traits and root herbivores explain plant-soil feedback 

variation among congeners 

Rutger A. Wilschut, Wim H. van der Putten, Paolina Garbeva, Paula Harkes, Wouter 

Konings, Purva Kulkarni, Henk Martens & Stefan Geisen  
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Abstract 

Soil biota play important roles in plant community dynamics by causing positive or negative plant-

soil feedback effects (Kardol, Bezemer & van der Putten 2006; Van Der Heijden, Bardgett & Van 

Straalen 2008), which differ among plant species (Cortois et al. 2016). Plant-soil feedbacks on 

conspecifics vary with phylogenetic distance (Anacker et al. 2014) and are affected by plant origin 

(Klironomos 2002) when phylogenetically diverse plant species were examined. However, it remains 

unknown if these explanatory variables also predict plant soil feedback differences between closely 

related plant species. Here, we show that among eight congeneric native and non-native, range-

expanding plant species, differences in belowground community composition are predicted more by 

root trait variation than by plant origin or phylogenetic distance. After conditioning soil from the new 

range with each of the eight plant species, fungal community composition correlated with variation in 

specific root length, whereas bacterial community variation was associated with differences in root 

chemical profiles. Protist and nematode communities co-varied with bacterial communities. Plant 

performance in soil conditioned by conspecifics was independent of plant origin, and did not vary 

with phylogenetic distance. Plant performance strongly correlated with root-feeding nematode 

abundance, and not with microbial rhizosphere community composition. We conclude that plant-soil 

interactions of closely related species may be explained more strongly by root traits than by 

phylogenetic distance or plant origin, and that the strength of plant-soil feedback may be predicted by 

root-feeding nematode abundances.  

Introduction 

Soil biota play an important role in controlling species diversity in plant communities (Van Der 

Heijden, Bardgett & Van Straalen 2008; Mangan et al. 2010). Over time, many plant species 

accumulate plant species-specific antagonistic and symbiotic-mutualistic soil organisms, thereby 

reducing or promoting themselves, while often having the opposite effect on neighbouring  plant 

species (van der Putten et al. 2013). Plant species differentially shape soil communities (Bais et al. 2006; 

Burns et al. 2015), for example by producing different root exudates and volatiles (van Dam & 

Bouwmeester 2016; Venturi & Keel 2016). As phylogenetically closely related plant species are more 
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likely to share such chemical traits than distantly related species (Gilbert & Parker 2016; Senior et al. 

2016), it may be expected that close relatives condition soil communities more similarly than distantly 

related species. In turn, natural enemies in the attracted soil communities will likely have comparable 

effects on closely related plant species (Gilbert & Webb 2007; Parker et al. 2015). Therefore, 

conspecific plant-soil feedback as a whole may, at least in part be phylogenetically determined. While 

plant-soil feedback differences among taxonomically diverse plant species might be explained by 

phylogeny (Anacker et al. 2014), very few -if any- studies have tested whether closely related 

congeneric species, such as sister species, have a more similar pattern of plant-soil feedback than 

distantly related congeneric species. Likewise, only few studies have studied the whole rhizosphere 

microbiome including nematodes among plant species (Leff et al. 2018), while differences of only 

distinct parts of the microbiome were compared between congeneric plant species (Bouffaud et al. 

2014; Schlaeppi et al. 2014).  

Reduced negative plant-soil feedbacks have been proposed to determine the success of non-native 

plant species in their new range (Klironomos 2002; Engelkes et al. 2008). However, the mechanisms 

underlying plant-soil feedback differences between non-natives and natives, such as interactions 

between plants and root-feeding nematodes, vary with the degree of chemical differences between 

congeneric non-native and native plant species (Chapter 5). Therefore, the differences in plant-soil 

feedback outcomes between natives and non-natives may largely be predicted by phylogenetic 

distance. However, it is unknown whether plant origin itself, in addition to phylogenetic distance, may 

predict plant-soil interactions of non-native plant species in their new range, for example by the 

consistent absence of co-evolved specialists (Reinhart et al. 2010). Here, we tested the hypothesis that 

differences in rhizosphere community composition and plant-soil feedback among range-expanding 

and congeneric native plant species, and the traits underlying this variation, can be explained by their 

phylogenetic distances.  

We tested our hypothesis using eight congeneric Geranium species that all occur in north-western 

Europe. Four of these species are native, whereas the other four recently have become established in 

the last century (see methods), most likely as a consequence of climate warming (Parmesan 2006). We 

were able to test of plant origin effects irrespective of phylogenetic distance, because native and range-
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expanding plant species were not phylogenetically clustered (Fig. S6.1). We combined a plant-soil 

feedback experiment with sequencing of the communities of prokaryotes and eukaryotes conditioned 

by the different plant species, and performed analyses of root chemical profiles and structural root 

traits, allowing us to relate plant-soil feedback effects to soil communities and plant traits.  

Methods 

Plant species and germination  

Seeds of native Geranium species G. dissectum L., G. molle L., G. pusillum L. and G. robertianum L. 

and range-expanding species G. lucidum L., G. purpureum Vill., G. pyrenaicum Burm.f. and G. 

rotundifolium L. were collected from single natural populations in The Netherlands. All natives 

naturally occur in The Netherlands, whereas the range-expanders established populations in north-

western Europe in the late 20th century (G. lucidum and G. purpureum), or were already present in 

restricted areas and strongly expanded their range in the last decades of the 20th century (NDFF 2017; 

BRC 2018). For each experiment, seeds were surface-sterilized by washing them for 3 min in a 10% 

bleach solution, followed by rinsing with demineralized water, after which they were germinated on 

glass beads. 

Phylogeny reconstruction 

We concatenated three barcoding regions commonly used to infer plant phylogenies: rbcL (Wolf, 

Soltis & Soltis 1994), the trnL gene (Fangan et al. 1994) and the intergeneric spacer trnL-trnF (Bortiri 

et al. 2001). Due to multiple sequences for rbcL present in GenBank we decided to re-amplify the rbcL 

gene for all plants used in our experiment. For this, root DNA was extracted from all Geranium species 

using the PowerSoil DNA Isolation kit (Qiagen, USA), which was adjusted by using iron beads to 

increase physical impact. We amplified the large chain of the ribulose bisphosphate carboxylase (rbcL) 

using the primers 1F(Wolf, Soltis & Soltis 1994) and the newly designed primer 1361rMod (5’-

TATCCGTAAGGCTTGCAAGTGGAGT-3’) modified from a previously described primer 

(Schuettpelz & Pryer 2007), with PCR cycling conditions as follows: initiation for 5 min at 95 °C, 

followed by 30 cycles of 30 sec at 95 °C, 1 min at 59 °C and 75 sec at 72° with a final elongation for 5 

min at 72 °C). DNA sequencing was performed by LGC Limited (Middlesex, United Kingdom). 
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Obtained sequence chromatograms were manually curated in Chromas Lite v 2.11 (http://chromas-

lite.software.informer.com/2.1/; Technelysium, Queensland, Australia). Curated sequences were 

aligned using MAFFT (Katoh & Standley 2013) and visualized in Seaview v4.6.3 (Gouy, Guindon & 

Gascuel 2009). Maximum likelihood analyses were run directly in Seaview using PhyML using the 

GTR model with four rate categories based on 2251 nucleotide sites. The stability of the branches in 

the resulting phylogenetic tree was assessed based on 1000 bootstrap replicates.  

Soil conditioning experiment 

The plant-soil feedback experiment consisted of two phases. For the conditioning phase, we prepared 

a common background soil by homogenizing sandy clay soil from a former agricultural field 

(Beneden-Leeuwen, Netherlands; N51° 53.952, E05° 33.670) with sand, after which it was sterilized 

using gamma-sterilization (25 KGray, Syngenta bv, Ede, Netherlands). To establish independent 

replicates, we collected field soil from five different sites in the same river valley in the region of 

Wageningen (The Netherlands), each with 4 different sub-samples. These subsamples were pooled, 

sieved and homogenized, after which the mixtures were kept separate throughout the experiment as 5 

replicate soils. Per replicate soil, 16 2.5L pots were filled with a mixture of 1.8 kg of sterilized 

background soil and 200 g of sieved (1 cm) alive field soil. For each replicate soil, 8 pots were planted 

with one of the eight different Geranium species, while the other pots were left unplanted. All pots 

were then positioned in a randomized block design with 5 replicate blocks in a climatised greenhouse 

(16/8 h light/dark and 20/15°C). For the next 14 weeks the pots were watered twice per week and kept 

at the same soil moisture content (~15%). Thereafter, shoots were clipped, dried and weighed, while 

roots were washed, dried and weighed. Soils from each pot were collected and kept separate and a sub-

sample was stored at -4 ˚C for DNA-extraction.  

Feedback experiment 

In the second phase, soils from each of the first phase pots were individually transferred to 1L pots, 

which were filled with 830 g soil (moisture content ~15%) and put in the same randomized block 

design as in the first experimental phase. Soils that were conditioned by a plant in the first phase, were 

planted with a seedling of the same species in the second phase. Each pot with unconditioned soil was 
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also planted with one of the eight species. The same watering regime was applied as in the first phase. 

To compensate for differences in nutrient availability originating from the conditioning phase, all pots 

each week received 10 ml of 25% Hoagland solution from the second week onwards, so that all plants 

had ample available nutrients. After seven weeks of plant growth, shoots and roots were harvested as 

described above.   

Soil DNA extraction  

For each pot with conditioned soil, DNA was isolated from 1 gram of soil based on the principle of the 

MoBio PowerSoil DNA isolation kit. Ceramic beads were replaced by iron spheres (ø 3mm) in order 

to have a higher physical impact. Instead of spin filters a vacuum manifold was used.   

16S and 18S rDNA amplicon sequencing 

The community structure of prokaryotes (bacteria and archaea) was determined using the prokaryote-

wide primers 515F/806R targeting the V4 region of the 16S rDNA gene (Caporaso et al. 2012). The 

eukaryotic community structure was assessed using the general eukaryotic primers 3NDf (Cavalier-

Smith et al. 2009) and 1132rmod (Geisen et al. 2018) targeting the most variable V4 region of the 18S 

rDNA (Pawlowski et al. 2012). In short, all primers were pre-tagged with Illumina adapters, a 12 bp 

long barcode to allow demultiplexing of the reads after sequencing, a primer linker and the sequencing 

primers. All PCRs were performed in duplicates, before quality assessment on 1.5% agarose gel. PCR 

duplicates were pooled and cleaned using Agencourt AMPure XP magnetic beads (Beckman Coulter). 

DNA concentrations were assessed with a fragment analyser (Advanced Analytical), pooled in 

equimolar ratios and sent for sequencing to BGI, China. 

Bioinformatics 

The obtained raw 16S and 18S rDNA sequence reads were curated in the Hydra pipeline (de Hollander 

2017) implemented in Snakemake (Köster & Rahmann 2012); in short, after filtering contaminants 

and removing barcodes, 16S rDNA reads were merged with the fastq_mergepairs option of vsearch 

(Rognes et al. 2016), while for the 18S data the forward reads were used. Thereafter, for both 16S and 

18S rDNA reads VSEARCH was used to cluster all reads into OTUs using the UPARSE strategy by de-
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replication followed by sequence-sorting by abundance (singletons were removed) and clustering 

using the UCLUST smallmem algorithm (Edgar 2010). Chimeric sequences were removed using 

UCHIME(Edgar et al. 2011), implemented in VSEARCH. To create an OTU table, all reads were 

mapped to OTUs using the usearch_global method (VSEARCH). OTUs obtained from 16S rDNA 

sequences were taxonomically assigned by aligning them to the SILVA database (Yilmaz et al. 2014), 

18S rDNA sequences were aligned to the PR2 database (Guillou et al. 2013). Reference sequences were 

first trimmed with forward and reverse primer using cutadapt (Martin 2011). Prior to the analyses, we 

deleted all OTUs present in less than 25% of the samples. Moreover, we removed samples with fewer 

than 3,000 18S rDNA reads from further analyses. All 16S rDNA samples contained at least 17,000 

reads and therefore none were discarded from further analyses. We then recalculated read numbers to 

relative abundances of the OTUs. OTUs were then manually assigned into the functional groups, 

allowing estimates of relative abundances of root-feeding nematodes (Yeates et al. 1993), arbuscular 

mycorrhizal fungi (Glomeromycota), and plant pathogens (Plasmodiophorida, Oomycetes and 

Rhizoctonia sp.).  

Nematode reproduction experiment 

A sterilized background soil was prepared as described above. Forty 1L pots were filled with 830 g of 

sterilized background soil, and were assigned to one of the eight plant species. After planting of single 

seedlings per pots, the pots were placed in a randomized block design under the same greenhouse 

conditions as described above. After two weeks of plant growth, a suspension containing 

approximately 400 Meloidogyne hapla juveniles was inoculated near the main root of each of the 

plants. The same watering regime was applied as in the feedback experiment. After twelve weeks, 

shoots were clipped and dried and root systems were carefully separated from the soil. All soil from 

each pot was individually bagged and stored at 4 ˚C until nematode extraction. Nematodes were 

subsequently extracted using an Oostenbrink elutriator (Oostenbrink 1960) and concentrated to 10 

ml. Subsequently, we extracted nematodes from the roots. For this, roots from all plants were separated 

in two parts, which both were weighed fresh. One part of the roots then was dried at 70°C until 

constant weight, while the other half was cut into pieces of 1–2 cm and placed in a mistifier for 4 weeks 

to extract nematodes from the inside of the roots (Oostenbrink 1960). Nematode suspensions were 
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harvested from the mistifier after 2 and 4 weeks, combined, and concentrated to 10 ml. Both nematode 

samples were then counted using an inverse light microscope (200x; Olympus CK40)). Using the total 

fresh weight and the dry-fresh root weight ratio, total nematode numbers inside the roots were 

estimated.  

Structural root traits  

For each plant species, three seedlings were grown individually in sterilized soil as described above. 

After four weeks of growth, all plants were stored at 4 °C until root trait analyses. Prior to this analysis, 

shoots were clipped and dried at 70°C until constant weight, whereas root systems were carefully 

washed. Individual root systems then were fragmented and scanned using an Epson Perfection V850 

Pro scanner (Epson America, Inc). Scans were subsequently analysed using WINRHIZO Pro 

v.2005b(Arsenault et al. 1995) for total root lengths and mean diameters. After scanning, root systems 

were dried until constant weight and weighed, after which the root/shoot ratio was determined.  

Root chemistry analysis  

For all plant species, four 5-week old plants were harvested from sterilized soil, after which their root 

systems were carefully washed. Thereafter, we used Direct Analysis in Real Time mass spectrometry 

(DART-HRMS) to determine the root chemical profile of all plant species. The DART mass 

spectrometry set-up consists of a DART ion source (model DART-SVP, IonSence, Saugus, USA) 

coupled with Q Exactive Focus high-resolution mass spectrometer (Thermo Fisher Scientific, San Jose, 

CA, USA). The mass spectrometer was calibrated prior to the samples measurements. The Xcalibur 

software (v.3.0) was used for instrument control and data acquisition. The distance between mass inlet 

and the DART outlet was kept at ~3cm. To standardize the measurements, root samples were placed 

on glass plates, and automatically moved (0.4 mm/s) along the ion source. DART settings were: 

Helium as ionizing gas, fixed flow of ~3.5L/min; gas beam temperature set at 450 ⁰C; grid electrode 

voltage +350V. The resolution was set at ultrahigh and a scan rate of 1Hz was used. The mass spectra 

were recorded in the m/z range 100-1500 at acquisition rate of 2 spectra s-1.  
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Mass spectrometry data processing 

The DART-MS spectra were acquired and converted from their respective raw data formats to open-

source mzXML file format using MSConvertGUI (64-bit) available from ProteoWizard (Kessner et al. 

2008). For further mass spectral data processing, the open-source software package MZmine 2.20 

(Pluskal et al. 2010) was used. Acquired mass spectrometry data from the samples was imported in 

MZmine 2.20 and the total ion current (TIC) chromatographic data was evaluated. Based on the 

evaluation, mass detection, chromatogram building and chromatogram deconvolution was performed 

in a step-wise manner using the available functionalities in the software. The detected and 

deconvoluted peaklists containing mass features for each sample were aligned using the RANSAC 

aligner available in MZmine. The aligned peaklists were exported in .csv format for subsequent 

chemometric analysis.  

Chemometric analysis was performed using MetaboAnalyst 3.0 (Xia et al. 2015). Prior to applying 

chemometrics, the uploaded data was filtered and normalized. Thereafter, differences of ion 

abundances within the samples were investigated by applying Partial Least Square Discriminate 

Analysis (PLS-DA). To visualize the degree of relatedness amongst different samples, hierarchical 

clustering was performed using complete linkage and Euclidean distance. Dendrograms were 

constructed using the stats package in R(R Core Development Team 2012) (version 3.3.3). To generate 

the distance matrix and dendrogram, the resulting peaklists exported from MZmine were averaged 

over the four replicates for each sample, giving an average peaklist per sample.  

Statistical analyses 

Variations in prokaryotic and eukaryotic communities were explored by running separate PCA 

analyses in Canoco 5 (Ter Braak & Smilauer 2012), comparing the communities between plant origins 

and plant species, while including soil replicate as a covariate. We then performed partial RDA-

analyses to individually test the effect of plant origin and plant species on variation in prokaryotic and 

eukaryotic communities, while partialling out the variation explained by the different soils. Similar 

analyses were performed to test plant origin and species effects on variation in the major subgroups of 

the eukaryotic communities: fungi, protists and nematodes. We then used ‘vegdist’ in the R vegan 
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package (Oksanen et al. 2007) to calculate pairwise community dissimilarities of prokaryotes and all 

eukaryotes and the eukaryotic subgroups fungi, protists and nematodes between all eight plant species 

in each independent soil. Overall pairwise community dissimilarities were calculated by averaging the 

pairwise dissimilarities in the five independent soil replicates.  

We examined the phylogenetic effects on community composition by testing the correlation between 

pairwise phylogenetic distances and community dissimilarities using Mantel tests in vegan, with 

correlation method ‘pearson’ and 999 permutations. To determine whether closely related species had 

more similar root traits than distantly related species, we similarly tested the correlations between 

pairwise phylogenetic distances and absolute differences in specific root length, average root diameter 

and chemical dissimilarity based on the DART-analysis. Subsequently, also the correlations between 

rhizosphere community dissimilarities and trait dissimilarities were tested.  

Plant-soil feedback variation among plant species was tested by modelling the biomass response in a 

general linear model including fixed factors block, soil treatment and plant species, and the plant 

species*treatment interaction (lm in R). A significant plant species*treatment interaction would 

indicate that plant species differ in their biomass response to soil conditioning. Overall feedback 

differences between native and range-expanding plant species were tested by the specification of a 

contrast. Significant differences in biomass in the conditioning and control treatments were tested 

using with the package lsmeans. Average plant-soil feedback values per plant species were calculated 

by averaging the feedback value (ln(biomassconditioned/biomasscontrol)) in each of the five independent 

soil replicates. To test whether feedback differences were stronger between more distantly related 

species than between closely related species, we tested the correlation between pairwise phylogenetic 

distance and pairwise feedback differences using a Mantel test. Moreover, correlations between plant-

soil feedback outcome and the relative abundance of root-feeding nematodes (genera), plant 

pathogens (genera/families) and arbuscular mycorrhizal fungi were tested to examine whether these 

groups may have determined the observed plant-soil feedback patterns.  The reproduction of 

Meloidogyne hapla was modelled using a generalized linear model with a negative binomial 

distribution (Hilbe 2014) that included the fixed factors species and soil replicate. Between-species 
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differences were tested using post-hoc Wald tests with the package phia (De Rosario-Martinez 2013). 

Finally, we tested the correlation between Meloidogyne numbers and plant-soil feedback.  

Results 

The conditioned prokaryotic (16S rDNA) and eukaryotic (18S rDNA) rhizosphere communities 

varied between the eight plant species (Fig. 6.1A,B; Table S6.1). The composition of the three distinct 

taxonomic groups composing the 18s rDNA, fungi, protists and nematodes, also differed between the 

plant species (Table S6.1, Fig. S6.2). Compositional differences in any of these communities were not 

explained by plant origin, indicating that soil communities in general were not differently conditioned 

by natives than by related range-expanders (Table S6.1). Between-species dissimilarity of the full 

prokaryotic and eukaryotic rhizosphere communities did not correlate with the phylogenetic distance 

between the plant species (Fig. 6.1C, Table S6.1). However, distantly related plant species had more 

dissimilar fungal communities than closely related plant species (R2 = 0.15, p < 0.05; Fig. 6.1D).  

Fig. 6.1 Compositional variation in rhizosphere communities of A) prokaryotes (16S rDNA reads) and B) eukaryotes (18S 

rDNA reads) among native (black: G. dissectum (DIS), G. molle (MOL), G. pusillum (PUS) and G.robertianum (ROB)) and 

range-expanding plant species (red: G. lucidum (LUC), G. pyrenaicum (PYR), G. purpureum (PUR) and G. rotundifolium 

(ROT)). Correlations of phylogenetic distance with community dissimilarity of prokaryotes and eukaryotes (C) and 

eukaryotic groups nematodes (orange), fungi (blue) and protists (grey) (D). The Pearson R2 for each correlation is shown.  
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Further analyses showed that variation in fungal community composition correlated with differences 

in specific root length, whereas differences in bacterial community composition appeared to 

correspond with variation in root metabolic profiles (Fig. 6.2, Fig. S6.3). Average root diameter did 

not explain variation in any of the groups in the rhizosphere community (Fig. S6.3). Between-species 

variation in root chemical profiles could not be explained by phylogenetic distance, whereas 

differences in specific root length and average root diameter marginally significantly correlated with 

phylogenetic distance (Fig. S6.4). Among plant species, protist and nematode communities co-varied 

with the community composition of bacteria, whereas the composition of nematode communities also 

co-varied with the composition of fungal communities (Fig. 6.2).  

 

Fig. 6.2 Overview of correlational links (correlations with p < 0.1 are shown) between rhizosphere community 

dissimilarities of bacteria, nematodes, protists and fungi (all based on 18S and 16S rDNA OTUs) and between root trait 

variation (Root chemical profile, Specific root length) and dissimilarities of rhizosphere communities. Significant 

correlations (based on Mantel-tests) are depicted with solid lines, whereas trends (p > 0.05, <0.10) are depicted with dashed 

lines. Line thickness represents the relative strength of the correlational link based on R2.  
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There was an overall effect of soil conditioning (F1,60 = 435.6, p < 0.001) on plant performance in the 

feedback phase, and all species grew equally poor in soil conditioned by their conspecifics (Fig. 6.3A). 

However, the species differed profoundly in their proportional loss of biomass in response to soil 

conditioning and thus in their plant-soil feedback responses (conditioning*species: F7,60 = 6.20, p < 

0.001). On average, range-expanding plant species responded more negatively to soil conditioning 

than natives (contrast range-expanders-natives: F: 13.81, p < 0.001), which was likely mainly due to 

the high biomass of the range-expander G. purpureum in unconditioned soils and its low biomass in 

conditioned soils (Fig. 6.3A). Pairwise comparisons of plant-soil feedback strength did not reveal that 

plant-soil feedback is phylogenetically determined (R2 = 0.001, p = 0.49) in this group of plant species 

(Fig. 6.3B). 

 

Fig. 6.3 A) Plant biomass of eight Geranium species in soils conditioned by conspecifics (green) or in unconditioned soils 

(white). Native plant species are G. dissectum (DIS), G. molle (MOL), G. pusillum (PUS) and G.robertianum (ROB) and 

range-expanding plant species are G. lucidum (LUC), G. pyrenaicum (PYR), G. purpureum (PUR) and G. rotundifolium 

(ROT). Bars and whiskers represent average biomass ± standard errors. Small letters show post-hoc test results between 

plant species in unconditioned soils. B) Between species average differences in plant-soil feedback (Ln(own/control)) do 

not correlate with pairwise phylogenetic distance.  

Plant-soil feedback variation was neither correlated with dissimilarity in complete 16S and 18S 

communities, nor with the dissimilarity in fungal, nematode or protist communities (Fig. S6.5). These 

results motivated us to explore the relationship between specific organismal groups and the strength 

of plant-soil feedbacks. We tested the correlation between the relative abundances of potential 
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mutualistic, arbuscular mycorrhizal fungi (AMF) and eukaryotic plant pathogens and root-feeding 

nematodes (see methods). Relative abundances of root-feeding nematodes correlated with plant-soil 

feedback strength (R2 = 0.67, p < 0.05; Fig. 6.4). There was a weak trend that also the relative abundance 

of plant pathogens correlated with the strength of negative plant-soil feedback, whereas there was no 

correlation between plant-soil feedback and AMF abundance (Fig. 6.4). Relative abundances of root-

feeding nematodes did not correlate with plant biomass in the conditioning phase, indicating that root 

traits other than biomass determine the accumulation of these organisms (Fig. S6.6). 

To test whether plant-soil feedback is also related to absolute root-feeding nematode abundance, we 

correlated plant-soil feedback with the reproduction of a species of Meloidogyne (Fig. S6.7). This was 

the most dominant root-feeding nematode genus in the conditioned soils (68% of root-feeding 

nematodes reads per sample). Plant species that developed the most negative feedbacks indeed were 

the best hosts for Meloidogyne (R2 = 0.80, p < 0.01; Fig. 6.4). 

 

Fig. 6.4 Correlations between plant-soil feedback (ln(biomassconditioned/biomasscontrol); average of five independent replicate 

soils) of eight Geranium species and the relative abundances (% 18S rDNA reads) of root-feeding nematodes, plant 

pathogens (see Methods) and arbuscular mycorrhizal fungi (AMF) in the conditioned soils, and the absolute abundance 

of Meloidogyne hapla in a nematode reproduction experiment with each of the eight plant species. Pearson R2 and p-values 

of Pearson correlation tests are given.  
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Discussion 

The results show that variation in rhizosphere community composition among eight congeneric 

native and climate warming-driven range-expanding plant species could be explained most strongly 

by variation in their root chemical profiles and morphological root traits. Only differences in fungal 

community composition could be explained, at least in part, by phylogenetic distance, likely underlain 

by the phylogenetic signal in specific root length. Communities of fungi varied with specific root 

length, which is possibly explained by plant interactions with root-associated fungi, such as AMF 

(Smith & Read 2010). The direct link between root chemistry and bacterial community composition 

is in line with previous research (Schulz-Bohm et al. 2017). Interestingly, there was evident co-

variation in the composition of the different rhizosphere groups among plant species, especially 

between bacteria and protists. This is likely explained by feeding relationships between these two 

groups (Xiong et al. 2017). Variation in plant-soil feedback could not be directly linked to the 

composition of the rhizosphere community, but rather to the abundances of groups of antagonistic 

soil organisms, especially root-feeding nematodes. Such root-feeding nematodes have been widely 

acknowledged as major agricultural pests (Nicol et al. 2011), but here we add evidence that they also 

function as drivers of natural succession (De Deyn et al. 2003).   

Our experiment revealed no plant origin effect on rhizosphere community composition, unlike 

previously assumed (Morriën & van der Putten 2013). In contrast to previous work (Engelkes et al. 

2008), we found that range-expanding plant species on average developed a more negative plant-soil 

feedback than native species. However, this effect was likely mainly driven by one single range-

expanding plant species (Geranium purpureum; Fig. 6.3A), and plant-soil feedback outcomes differed 

within both native and range-expanding plant species. The present study shows that the negative 

plant-soil feedbacks of the range-expanding Geranium species have not hampered them from 

successful establishment in the new range.  

Phylogenetic distance has been successfully used as a measure of ecological (dis)similarity and as a 

predictor of biotic interaction outcomes in studies that included plant species from multiple families 

(Anacker et al. 2014; Parker et al. 2015). It is likely that ecological differences in such studies may be 
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influenced by deeply conserved traits that vary between families and therefore are phylogenetically 

determined. Our study shows that among a group of congeneric species, even the most closely related 

species (e.g., G. robertianum and G. purpureum) can have more strongly different rhizosphere 

communities and plant-soil feedback than less closely related species. Therefore, our study challenges 

the use of phylogenetic distance as a measure to explain plant-soil interaction patterns in the case of 

closely related plant species. Instead, we show that non-phylogenetically conserved root traits may 

help to understand plant-soil interaction variation between closely related plant species, such as 

congeners.   

Our results raise the question under which conditions phylogenetic distance will explain variations in 

plant-soil interactions among closely related species. The examined Geranium species show notable 

variation in abiotic niche conditions (Table S6.2), and do not all grow together in the same plant 

communities, suggesting that their root traits have been selected in the presence of different soil 

communities, which co-vary with abiotic soil conditions (de Vries et al. 2012). Congeneric plant 

species that have limited abiotic niche differences may face more similar selection pressures (Parker et 

al. 2015) and in turn have root traits that more strongly resemble their phylogenetic history. We 

conclude that root traits are good predictors of rhizosphere community composition variation among 

congeneric plant species, and propose root-feeding nematodes as potential drivers of plant-soil 

feedback in this this study system. We propose that an integrated approach of root traits and phylogeny 

may need to be taken to fully understand variation in plant-soil interactions among plant species. 
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Supplementary information 

 

Fig. S6.1 Phylogenetic relationships among native plant species G. dissectum, G. molle, G. pusillum and G.robertianum, 

and range-expanding plant species G. lucidum, G. pyrenaicum, G. purpureum and G. rotundifolium (ROT), based on DNA-

regions rbcL, the trnL gene and the trnL-trnF intergeneric spacer. Bootstrap support is visualized with black dots (100% 

support) or numbers indicating the percentage support. Branch lengths indicate average nucleotide substitution rates per 

base. 

Table S6.1 RDA-results of plant species and plant origin effects on the composition of the components of the Geranium 

rhizosphere communities, and results of Mantel test on the correlations between pairwise phylogenetic distances and 

pairwise community dissimilarity among the eight Geranium species. 

 Species effect Origin effect Phylogeny 

 Expl. Var. Permutation test Expl. Var. Permutation test Mantel cor, p 

16S (all OTUs) 23.2% Pseudo-F: 1.2, p<0.01 3.1% Pseudo-F: 1.1, p = 0.22 -0.23, p = 0.84 

18S (all OTUs) 24.5% Pseudo-F: 1.2, p<0.01 3.2% Pseudo-F: 1.1, p = 0.27 0.04, p = 0.42 

Fungi 26.2% Pseudo-F: 1.3, p<0.01 3.4% Pseudo-F: 1.1, p = 0.21 0.39, p < 0.05 

Protists 23.9% Pseudo-F: 1.2, p<0.01 3.1% Pseudo-F: 1.0, p = 0.44 -0.09, p = 0.63 

Nematodes 28.2% Pseudo-F: 1.5, p<0.01 3.8% Pseudo-F: 1.3, p = 0.16 0.10, p = 0.31 
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 Fig. S6.2 Average relative abundances (% 18S reads) of taxonomic groups of fungi and protists and functional groups of 

nematodes in the rhizospheres of native (black) and range-expanding (red) Geranium species.  
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Fig. S6.3 Correlations between root traits (root chemical profile, specific root length and average root diameter) and Bray-

Curtis community dissimilarities (16S, 18S, Fungi, Nematode, Protists; also see Fig. 6.2). R2 and p-values based on Mantel 

tests are shown.  

Fig. S6.4 Correlations between phylogenetic distance and variation in root traits (root chemical profile, specific root length 

and average root diameter). R2 and p-values based on Mantel tests are shown.  
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Fig. S6.5 Correlations between Bray-Curtis community dissimilarities (16S, 18S, Fungi, Nematode, Protists) and plant-soil 

feedback differences show no association between community dissimilarity of different Geranium species and their 

pairwise differences in plant-soil feedback.  

 

Fig. S6.6: Correlation between plant root biomass and the relative abundance of root-feeding nematodes at the end of the 

soil conditioning phase shows that high relative abundances of root-feeding nematodes are not associated with high root 

biomass.  
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Fig. S6.7 Abundances of root-feeding nematode Meloidogyne hapla on native (black) and range-expanding (red) Geranium 

species in a nematode reproduction experiment. Bars represent average nematode numbers ± standard errors. Letters 

indicate the significant differences based on negative binomial GLM and post-hoc Wald tests. Note that the x-axis has a 

logarithmic scale.   

Table S6.2 Ellenberg indicator values for all eight Geranium species (Hill et al. 1999). Ellenberg values (scaled from 1 to 9) 

indicate species preferences for light, moisture, pH and nitrogen conditions. Conditions associated with the values are 

given in brackets (low numbers-high numbers).  

 
Light Moisture Reaction Nitrogen 

 
(shaded-light) (dry-wet) (acidic-alkaline) (low-high) 

G. dissectum 7 5 7 6 

G. lucidum 6 4 7 6 

G. molle 7 5 6 5 

G. purpureum 7 3 6 3 

G. pusillum 7 4 7 7 

G. pyrenaicum 8 4 7 6 

G. robertianum 5 6 6 6 

G. rotundifolium 7 4 7 6 

 

    

 



 

 

132 
 

 

  



 

 

133 
 

Chapter 7 

General discussion 
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The ecological consequences of climate change-driven range expansions are only starting to be 

explored. For plants, potential changes in their interactions with belowground organisms, such as soil 

nematodes, could alter their performance in the new range. However, changes in these interactions 

between the original and new range have not yet been examined, and plant-soil interactions of range-

expanders in the new range still are poorly studied. The main aims of my thesis were to examine 

whether range-expanding plants indeed experience shifts in nematode community composition 

between the original and new ranges, and to study how plant-nematode interactions differ between 

range-expanding and native species in the new range. Most often, I compared the interactions of 

range-expanding plant species with those of congeneric native plant species, so that comparisons were 

phylogenetically constrained. However, I also studied a group of range-expanding plant species that 

don’t have congeneric species in the new range. Here, I discuss the results of my thesis and place them 

in the broader context of invasion ecology and plant-soil interaction research.  

Latitudinal shifts in rhizosphere nematode communities  

Range-expanding plant species have been shown to perform better in soils from their new range than 

in soils from their original range (van Grunsven et al. 2010; Dostálek et al. 2015; Van Nuland, Bailey 

& Schweitzer 2017). These results suggest that range-expanding plant species experience shifts in soil 

communities during the range expansion process, and suffer less from belowground natural enemies 

in the new range. Using a latitudinal survey approach, I showed that the composition of nematode 

communities to some extent varies with latitude for both range-expanding and native plant species 

(Chapter 2). Out of four studied species, only one range-expanding plant species, Centaurea stoebe, 

clearly experienced a more substantial shift in nematode community composition between central and 

northern Europe than a congeneric native species. Centaurea stoebe also was the only of all examined 

range-expanders that accumulated fewer root-feeding nematodes in its new range than in its original 

range; especially numbers of endoparasitic nematodes in the rhizosphere were reduced towards the 

north. Thereby, this study provides the first direct evidence for ‘enemy release’ from feeding-specialist 

root herbivores due to latitudinal range expansion. However, range-expanding Geranium, Rorippa 

and Tragopogon did not accumulate fewer root-feeding nematodes in their new range than in their 

original range. Therefore, the increased performance of range-expanders Rorippa austriaca and 
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Tragopogon dubius in new range soils compared to original range soils (van Grunsven et al. 2010; 

Dostálek et al. 2015) does not seem be attributable to changes in root-feeding nematode abundance.  

In a greenhouse experiment (Chapter 3), an experimental plant community consisting of the same 

four range-expanding plant species as used for the field survey did not accumulate fewer root-feeding 

nematodes in soils from the new range compared to soils from the original range. However, due to the 

community approach of this study, single-species effects may have been masked: Centaurea stoebe 

may still have had different effects on nematode communities and root-feeding nematode numbers in 

new range compared to original range soils, as observed in the transect study. Moreover, it must be 

noted that the morphology-based identification approach used in the plant community experiment 

did not provide an equally high taxonomic resolution of the nematode community as the molecular 

analyses of the transect study did (Geisen et al. 2018), thereby decreasing the detection probability of 

nematode community shifts between plant species and ranges. Nevertheless, this community 

approach showed that range-expanding plant species on average did not accumulate functionally 

different nematode communities in the new compared to the original range.  

True enemy release?  

The low numbers of endoparasitic root-feeding nematodes found in the rhizosphere of C. stoebe in the 

new range correspond with findings in a study on native and exotic populations of marram grass 

Ammophila arenaria (van der Putten et al. 2005). Whereas native range populations of this grass 

harbour several specialized endoparasitic nematode species (Karssen, Aelst & Putten 1998; de la Pena 

et al. 2006; Van der Stoel & Van der Putten 2006), none or only few specialized taxa were found in 

exotic range populations (van der Putten et al. 2005), indicating that the release from natural enemies 

of non-native plant species may apply to these specialized root-feeding nematodes as well. However, 

in the transect study, the reduction of endoparasitic nematodes could not be traced back to a certain 

nematode species, as most OTUs could not be assigned to species level. Nevertheless, given the low 

number of described root-feeding nematode species, e.g. approximately 90 species of Meloidogyne 

(Karssen, Wesemael & Moens 2013), it also seems unlikely that there are many taxa truly specialized 

on a single or a small set of plant species. Therefore, variation in performance of generalistic and 
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widespread, but locally adapted, nematode taxa on C. stoebe between the new and the original range 

may be a more likely mechanism underlying the observed differences in endoparasite numbers.  

Plant-nematode interactions in the new range 

The transect study showed that not all range-expanding plant species accumulated fewer root-feeding 

nematodes in their new range when compared to related native plant species. On average, however, a 

community of related range-expanders accumulated fewer root-feeding nematodes than a community 

of congeneric natives (Chapter 3). Root-feeding nematodes on average were also more strongly 

attracted to native than to range-expanding plant species (Chapter 5). These findings seem to confirm 

the results of previous studies that on average, range-expanding plant species are better defended 

against generalist herbivores than related native plant species (Engelkes et al. 2008; Morriën, Duyts & 

Van der Putten 2012). However, the variation in both attraction and reproduction patterns among 

range-expanders of different genera suggests that ability of native root-feeding nematodes to exploit 

these plants will be strongly plant species-specific (Chapters 4 & 5). In line, also within a group of eight 

plant species from a single genus, root-feeding nematode abundance markedly differed within the 

group of range-expanders and the group of natives, and was not higher on natives than on range-

expanders (Chapter 6). This result also highlights that, in studies comparing pairs of congeneric native 

and range-expanding plant species, rejection or conformation of the tested hypothesis will strongly 

depend on which native species have been selected for comparison. Therefore, studies with high 

numbers of species pairs will be needed to reliably examine average effects of plant origin on, for 

example, plant-soil feedbacks.  

The species-specific nature of plant-nematode interactions of range-expanding plant species may be 

explained by the strength of chemical differences between the range-expanders and plant species in 

the native community. Of the three examined range-expanders, Centaurea stoebe chemically was 

strongly divergent from its congeneric native Centaurea jacea, whereas the root chemical profiles of 

range-expanding Geranium and Rorippa species largely overlapped with those of congeneric natives. 

In addition to patterns of nematode attraction and reproduction, the chemical variation between 

range-expanders and natives may also explain the variation in the even more complex, multi-trophic 
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interactions examined in Chapter 4. Here, range-expanders appeared to be less well able to attract 

nematode-antagonistic microbes than congeneric natives. Yet, given the complexity of the tested 

belowground communities, it could not be established which microbes were exactly responsible for 

the observed differences in the top-down control of root-feeding nematodes. More concise 

experiments, possibly with single nematode-antagonists, are needed to examine how differences in 

plant chemistry could affect such belowground multi-trophic interactions (Rasmann et al. 2005; 

Schulz-Bohm et al. 2017). Alternatively, studies using labelled CO2 could target the question whether 

soil food webs show divergent functioning under range-expanding plant species that possess novel 

chemistry (Morriën et al. 2017).  

In line with other studies (e.g. Santo et al. 1980), the results of Chapter 5 show that root-feeding 

nematodes like Meloidogyne hapla can exploit a wide and chemically diverse range of native plant 

species. It may therefore not be surprising that native root-feeding nematodes will only show naïve 

responses to range-expanding plant species that, compared to native plant species, strongly differ in 

root chemistry (Verhoeven et al. 2009). Therefore, the number of range-expanding plant species to 

which root-feeding nematodes will show naïve responses may be very low. Altogether, these 

experiments showed that there are no fundamental differences between the interactions of range-

expanding and native plant species with native root-feeding nematodes; root-feeding nematodes only 

seem to show responses to differences in traits and not to differences in plant origin.  

The curious case of Centaurea stoebe  

The combination of the reduced numbers of -often highly detrimental- endoparasitic nematodes in 

the new compared to the original range and the poor performance of native root-feeding nematodes 

on this plant species, suggests that range-expanding populations of Centaurea stoebe benefit from their 

possession of ‘novel’ chemistry. Also in its non-native range in North America, where the species was 

accidentally introduced and now is strongly invasive in natural grassland systems (Tyser & Key 1988; 

Marrs, Sforza & Hufbauer 2008), C. stoebe appears to benefit from novel chemistry (Schaffner et al. 

2011). Whether the plant species will affect the native community in its new range in North-Western 

Europe as negatively as the community in its invaded range in North America, will largely depend on 
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how naïve the native plant and soil community are regarding their interactions with this species 

(Callaway et al. 2004; Callaway et al. 2011). In the Netherlands, the occurrence of C. stoebe so far is 

limited to a small, but increasing, number of populations (NDFF 2017). Although it is difficult to 

forecast the future, the easily dispersing seeds of C. stoebe (Sheley, James & Michael 1998) make a 

further increase of the species quite likely.  

Phylogenetic distance as a predictor of plant-soil interaction variation   

In my thesis I selected pairs of congeneric species to make a phylogenetically-constrained comparison 

between range-expanding and native plant species. However, the differences in root chemistry 

between the range-expanding plant species and congeneric natives may nevertheless be linked to 

phylogeny, as phylogenetic distance has been shown to explain variation in root chemistry among 

congeners (Senior et al. 2016). Based on root chemistry, Centaurea stoebe might therefore be less 

closely related to C. jacea than G. pyrenaicum is related to G. molle. In line, the species in the 

community of ‘unrelated range-expanders’ (Chapter 3), range-expanders without a native relative, 

were expected to be chemically very dissimilar from native plant species. Therefore, I expected them 

to be poor hosts of native root-feeding nematodes. Unexpectedly, these unrelated range-expanding 

plant species on average were the best hosts for root-feeding nematodes of all plant species examined 

in my study. I proposed that these weak defences may relate to their annual life history, in which fast 

growth is favoured over strong defences. Importantly, this result indicates that not all non-native plant 

species that are distantly related to plant species in the native community have the traits to become 

invasive (Strauss, Webb & Salamin 2006). Moreover, it shows that the life history of non-native plant 

species should be considered to understand the response of native natural enemies in the new range: 

only plant species that have evolved strong defence mechanisms in their native range, are likely to 

benefit from these mechanisms when they are facing non-coevolved herbivores or pathogens in their 

new range (Verhoeven et al. 2009; Gilbert & Parker 2016).   

With the study system of eight congeneric native and range-expanding plant species I aimed to further 

disentangle the effects of phylogenetic distance and plant origin on plant-nematode interactions and 

plant-soil feedback (Chapter 6). Firstly, and in line with the results of Chapters 3, 4 and 5, patterns of 
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rhizosphere community composition and plant-soil feedback showed no general differences between 

intracontinental range-expanding and native plant species. These results are in contrast with previous 

studies that examined other range-expanding plant species (van Grunsven et al. 2007; Engelkes et al. 

2008; Morriën & van der Putten 2013). Importantly, my study indicates that despite accumulating a 

negative plant-soil feedback in new range soils, the examined range-expanding plant species have 

successfully established and have become widespread in North-Western Europe (NDFF 2017). 

Successful range expansion therefore does not necessarily require a reduced enemy impact (Engelkes 

et al. 2008).  

Secondly, the results of Chapter 6 showed that of all groups of rhizosphere organisms, only the 

community composition of fungi was more similar in closely than in distantly related plant species, 

which is in line with a previous study showing that plant phylogeny is a better predictor of community 

variation of fungi than of bacteria (Barberán et al. 2015). The apparent phylogenetic conservation of 

specific root length may be the underlying mechanism of the relation between phylogenetic distance 

and fungal community dissimilarity. In contrast to fungi, communities of bacteria appeared to vary 

with chemical dissimilarity among plant species. However, closely related congeners did not have 

more similar root chemical profiles than distantly related congeners, and therefore phylogenetic 

distance did not predict variation in bacterial community composition between the plant species. 

Apparently, and unlike previously shown (Senior et al. 2016), root chemistry can be highly variable 

between closely related plant species. In line with the results of Chapter 3, the results of Chapter 6 

therefore show that phylogenetic distance cannot be easily used to estimate differences in chemical 

profiles between plant species.  

The observed differences in plant-soil interactions between the eight Geranium species may be linked 

to the differences in habitat between the plant species. For example, Geranium purpureum, which 

developed the strongest negative feedback and accumulated the highest numbers of root-feeding 

nematode, of all species occurs in the driest habitats (Hill et al. 1999). In The Netherlands, this species 

usually grows between stones along railways (NDFF 2017). As a result it may have evolved weak 

chemical defences, due to, for example, the absence of strong root herbivory in its native habitat. 

Instead, G. purpureum might have invested in fast growth, as demonstrated by my observation that 
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this species was the first to flower in the greenhouse experiment. Contrastingly, its sister species, G. 

robertianum that grows in moist and shaded soils, might experience a completely different soil 

community in its natural habitat (Brockett, Prescott & Grayston 2012). This could have resulted in 

different selective pressures during the evolution of root chemistry profiles. Future studies are needed 

to point out whether root traits and plant-soil interactions of congeneric species indeed have diverged 

in response to changes in abiotic niche.   

Root-feeding nematodes – drivers or predictors of plant-soil feedback? 

Variation in plant-soil feedback between the eight Geranium species was strongly correlated with the 

relative abundance of root-feeding nematodes in the conditioned soils, as well as with the 

multiplication of the endoparasitic nematode Meloidogyne hapla. These results have several possible 

implications that require further experimental testing. Either root-feeding nematodes drive the 

observed plant-soil feedbacks, or they indicate the strength of belowground defences against a wide 

array of natural enemies. Few studies have tested the effect of root-feeding nematodes on plant 

performance, and the majority of these studies show that the effect of nematodes alone cannot fully 

explain reductions in plant performance (De Rooij-Van der Goes 1995; Zoon 1995; Brussaard, Kuyper 

& de Goede 2001; van der Stoel, van der Putten & Duyts 2002). As also the group of OTUs identified 

as root pathogens appeared to co-vary in relative abundance with the negative plant-soil feedback 

strength, root-feeding nematode abundance may be hypothesized to be one of the drivers, rather than 

the only driver of plant-soil feedback. Although my study contributes to developing further hypotheses 

on how root-feeding nematodes may affect plant performance in natural communities, their impact 

on plants, both alone and in combination with other biotic and abiotic factors, needs further testing.  

Future directions 

The results of my thesis show that the reduction of negative plant-soil feedback that some range-

expanding plant species experience in their new compared to their original range (van Grunsven et al. 

2010; Dostálek et al. 2015), cannot be attributed to a reduction of root-feeding nematode numbers. 

Other taxonomic groups also need to be examined to understand in which ways biotic interactions of 

range-expanding plant species may change between their original and new range (Morriën et al. 2010; 
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Geisen et al. 2017). For example, the virulence of certain groups of pathogens may differ between the 

original and new range of the range-expanders, as has been demonstrated for the intercontinentally 

introduced exotic invader Prunus serotina (Reinhart et al. 2010). Moreover, studies on changes in 

plant-soil feedbacks along range expansion trajectories are still very rare (van Grunsven et al. 2010; 

Van Nuland, Bailey & Schweitzer 2017) and it is so far not yet examined whether range-expanders 

actually experience a gradual or a sudden reduction of negative plant-soil feedback as they expand 

their range northwards.  

In their new range, range-expanding plant species will not only face different soil communities, but 

will also enter communities of plant species that may be different to the communities in their original 

range. In turn, native plant species will experience these range-expanding plant species as novel 

competitors that may be able to become dominant (Alexander, Diez & Levine 2015). Such a superior 

competitive ability could have multiple causes. First, range-expanders might benefit from novel root 

chemistry due to allelopathic effects on neighbouring native plant species (Callaway & Aschehoug 

2000; Hierro & Callaway 2003) or on the mutualists of these plant species (Stinson et al. 2006). Second, 

based on the diversity and densities of aboveground herbivores and pathogens, plants from low 

latitude areas are predicted to have stronger defences than plants from higher latitude areas (Rasmann 

& Agrawal 2011; Baskett, Schemske & Novotny 2018). In the new range, differences in defence 

strength between plant species may result in enhanced apparent competition, when well-defended 

plants benefit indirectly from higher levels of herbivory on less well-defended neighbours (Holt 1977). 

Altogether, these mechanisms could result in enhanced dominance of range-expanding plant species 

in their new compared to their original range, even when they are still exposed to new, or co-migrating, 

belowground natural enemies. However, the competitive ability of latitudinal range-expanders has 

rarely been examined (Koorem et al. 2017) and additional experiments are needed to fully understand 

the potential impact of range-expanding plant species in their new range.  

Finally, the considerable variation in plant-soil interactions and plant-soil feedback observed between 

congeneric species triggers the question how variation in plant-soil interactions has evolved and how 

patterns in non-studied species may be predicted from information on studied species. Recent 

research has shown that some structural root traits show a global organization, as plants adapted to 
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dry and seasonal conditions generally have thinner roots than plants adapted to humid, non-seasonal 

conditions (Ma et al. 2018). In turn, this variation in structural root traits will also affect mycorrhizal 

dependency and colonization of the plant species, as thin roots can replace the functions otherwise 

performed by mycorrhizal fungi (Cortois et al. 2016; Ma et al. 2018). Potentially, adaptations to 

specific environments and soil communities may also, at least in part, explain differences in plant-soil 

interactions observed in Chapter 6. In grassland communities, aboveground pathogen pressure is 

determined by the phylogenetic structure of the plant community (Parker et al. 2015). Whether 

belowground pathogen pressure is explained in a similar way has not yet been studied (but see Leff et 

al. 2018). However, in case of such a phylogenetically structured belowground pathogen community,   

related plant species will experience similar pathogen pressures and therefore will likely show similar 

defence mechanisms. In this way, plant-soil feedback may be phylogenetically conserved among co-

occurring grassland species (Parker et al. 2015). Alternatively, deeply conserved traits also can underlie 

the explanatory power of phylogeny in this study, and future experiments are needed to point out how 

niche differentiation may explain plant-soil interaction variation between related plant species.   

Conclusions 

In my thesis, I show that range-expanding plant species will face different nematode communities in 

their new range compared to their original range, as nematode community composition varied with 

latitude. However, in their new range, plant-nematode interactions and plant-soil feedbacks of range-

expanding plant species did not fundamentally differ from the interactions and plant-soil feedbacks of 

related native plant species. Yet, in case the root chemistry of range-expanding plant species differs 

substantially from the root chemistry of native plant species, as is the case with Centaurea stoebe, 

range-expanders may benefit from a reduced performance of native root-feeding nematodes. In my 

study, this reduced performance was predictable from the chemical attractiveness of the plant to the 

root-feeding nematodes. Importantly, the phylogenetic distance between range-expanding plant 

species and the native community cannot be used as a proxy for such a reduced performance of root-

feeding nematodes, and thus does not predict the ecological novelty of range-expanding plant species 

in terms of their belowground defences. Therefore, the potential impact of range-expanding plant 
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species on the native community will depend on their species-specific traits and interactions with 

organisms that are native in the new range.   

My results also show that among congeneric native and range-expanding plant species, variation in 

rhizosphere communities can be explained by a combination of structural and chemical root traits. 

Differences in these traits between congeneric plant species are not all explained by phylogeny, and 

instead may have originated from niche differentiation of closely related species. As a result, both 

rhizosphere communities and plant-soil feedback can be highly species-specific. Within the genus 

Geranium, abundances of root-feeding nematodes were a significant predictor of plant-soil feedback 

outcomes. Altogether, my results show that naïve responses of native soil communities to range-

expanding plant species are likely to be relatively rare, as a minority of the range-expanding plant 

species seemed to be strongly chemically distinct from the native congener. Although patterns of plant 

competition and aboveground interactions may show otherwise, the ability of native soil communities 

to negatively affect range-expanders therefore suggests that very few range-expanding plant species 

will become disproportionally abundant in the future. In that respect, invasiveness among range-

expanders may not differ largely from invasiveness among inter-continental introduced exotics, of 

which only one out of a hundred to a thousand becomes invasive (Williamson 1996)
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Summary 

Human-induced climate change is causing strong pressure on plant and animal species, community 

interactions, and the functioning of natural ecosystems. Therefore, understanding and predicting 

ecological responses to climate change has become a key challenge in ecology. In order to survive as a 

species, organisms need to become adapted to new local conditions, or to migrate to higher latitude 

and altitude areas that were previously unsuitable. Whereas such range expansions of plant and animal 

species are increasingly acknowledged, ecological consequences are still largely unknown.  

It has been predicted that during range expansion plant species outrun their associated soil organisms, 

when the latter are constrained in dispersal. Such soil organisms, like microbial pathogens and root-

feeding nematodes, play important roles in the dynamics of vegetation, because of their plant species-

specific effects. Consequently, the disruption of interactions between range-expanding plant species 

and co-evolved soil organisms may affect plant performance in their newly colonized range, where 

native soil organisms may show naïve responses to the new hosts. However, neither the shifts in soil 

communities between the original and new range, nor the establishment of novel interactions in the 

new range have been studied in detail.  

In this thesis, I examined whether range-expanding plant species indeed experience shifts in soil 

community composition between their original and new ranges. I also studied whether plant 

interactions with soil organisms in the new range may differ from interactions of these soil organisms 

with native plant species. In my thesis, I particularly focussed on the interactions between plants and 

root-feeding nematodes, as these are ubiquitous belowground herbivores that can be relatively easily 

identified and quantified.  

In Chapter 2, I used a combination of molecular and morphological identification methods to study 

nematode community composition and nematode abundances along a 2000 km long latitudinal 

transect from Greece to The Netherlands. Nematode communities were collected from four range-

expanding plant species that are native in the southern and/or the central parts of this transect, and 

from four congeneric plant species that are native along the entire transect. I expected that 1) nematode 

community composition would vary with latitude, 2) range-expanding plant species would experience 



 

 

158 
 

stronger shifts in nematode community composition than native plant species and 3) that numbers of 

root-feeding nematodes in the rhizospheres of range-expanding plants would be lower in the new 

compared to the original range.  

Overall, the composition of nematode communities indeed varied with latitude, indicating that 

nematode communities in northern Europe differ from those in southern Europe. This also showed 

that range-expanding plant species will face different nematode communities during range expansion. 

However, only one range-expanding plant species, Centaurea stoebe, experienced stronger shifts in 

nematode community composition than its congeneric native species, and accumulated fewer root-

feeding nematodes in its new compared to its original range. The other range-expanding plant species 

did not experience stronger shifts in nematode community composition than their related natives, and 

accumulated similar numbers of root-feeding nematodes in their new and original range.  

The hypotheses of Chapter 2 were also tested in a greenhouse experiment (Chapter 3). Here, the same 

four range-expanding and congeneric native species were grown in separate plant communities. In 

addition, communities of four range-expanding plant species that do not have congeneric natives in 

their new range were established. I hypothesized that, because of their potential ecological novelty, 

these ‘unrelated range-expanders’ would cause more strongly naïve responses of nematodes in the 

new range than ‘related range-expanders’. Consequently, I expected unrelated range-expanders to 

show the strongest shifts in nematode community composition between original and new soils and to 

accumulate fewest root-feeding nematodes. However, the results showed that there were no strong 

nematode community shifts between soil from the original and soil from the new range irrespective of 

the plant communities being natives, related, or unrelated range-expanders. Moreover, the 

communities of range-expanders did not accumulate fewer root-feeding nematodes in new range soils 

than in original range soils. Instead, the community of unrelated range-expanders accumulated the 

highest numbers of root-feeding nematodes. I proposed that this may be explained by their annual life 

history, in which fast growth might have been traded off with poor defences. While individual plant 

species effects may have been masked by the community approach, and the taxonomic resolution of 

the nematode data was considerably lower than in Chapter 2, these results show that on average range-
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expanding plant species will not experience major shifts in the functional composition of rhizosphere 

nematode communities between their original and new range.  

In Chapters 4 and 5, I examined the interactions between range-expanding and congeneric native 

plant species and two specific root-feeding nematode species from the new range to test whether these 

nematodes would show lower performance on range-expanders than on related natives. In Chapter 4, 

I set up a greenhouse experiment to examine nematode reproduction on individuals of two range-

expanding plant species and congeneric natives, in the presence or absence of communities of native 

nematode-antagonistic microbes. Range-expanders were expected to be poor hosts for root-feeding 

nematodes, but also to be unable to attract the enemies of these nematodes. In line with Chapter 2, 

range-expanding Centaurea stoebe was found to be a very poor host for both root-feeding nematode 

species. However, range-expanding Geranium pyrenaicum accumulated more root-feeding 

nematodes than its native congener. In support of my expectation, native plant species appeared to be 

better capable of attracting the natural enemies of root-feeding nematodes than range-expanding plant 

species, but these belowground multi-trophic interactions turned out to be highly plant species-

specific.  

The experiments described in Chapter 5 were aimed at unravelling potential chemical mechanisms 

underlying the differences in root-feeding nematode reproduction on range-expanders and related 

natives. Attraction experiments showed that root-feeding nematodes on average were less strongly 

attracted by three range-expanding plant species than by three congeneric natives. Interestingly, 

range-expanding Centaurea stoebe was found to chemically repel root-feeding nematodes, whereas 

the other range-expanders did attract nematodes - though less strongly than native plant species.  

Comparisons of the blends of root volatiles, which are gaseous compounds, produced by the different 

plant species, showed that Centaurea stoebe produced considerably more unique volatile compounds 

compared to its related native than the other range-expanding plant species. This suggests that the 

degree of chemical novelty of range-expanding plant species will determine the chemical attraction of 

root-feeding nematodes in the new range. As the chemical attraction appeared to be a good predictor 
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of nematode reproduction, range-expanding plant species may benefit from the possession of root 

chemistry unknown to native root-feeding nematodes. 

The variation in chemical dissimilarity between range-expanding and native species observed in 

Chapter 5 might be explained by differences in phylogenetic distance between the examined range-

expanding and native plant species. In order to further disentangle the effects of plant origin and 

phylogenetic distance on plant-soil interactions, I developed a series of experiments using four range-

expanding and four native plant species that all belong to the same genus (Chapter 6). In this way I 

tested the hypothesis that closely related congeners have more similar morphological and chemical 

root traits, and condition soil communities more comparably than distantly related congeners. I also 

tested whether variation in plant-soil feedback - the performance of the plant species in soil 

conditioned by a conspecific plant - was explained by plant origin or by phylogenetic distance.  

The results showed that plant origin did not explain variation in rhizosphere community composition 

or plant-soil feedback. I found that closely related plant species did not have more similar root 

chemistries than distantly related species within the same genus, but that phylogenetic proximity 

correlated with similarity in structural root traits. The community composition of fungi was related to 

specific root length, which is a measure of root system architecture. However, the composition of 

bacterial community related to variation in root chemistry, whereas communities of protists and 

nematodes appeared to co-vary with bacterial communities. Therefore, within the genus Geranium 

only differences in fungal community composition could be explained by the phylogenetic distances 

among plant species.  

Finally, in the same Geranium study, I showed that differences in plant-soil feedback related to the 

numbers of root-feeding nematodes in the rhizospheres of the different species. Altogether, these 

results show that variation in plant-soil interactions among closely related species neither resembles 

their evolutionary history, nor their origin, thereby suggesting that the (chemical) root traits of these 

species have evolved in response to species-specific conditions.  

Theory predicts that range-expanding plant species may escape their belowground natural enemies, 

and benefit from naïve responses of natural enemies in the new range. In my thesis, I show that in the 
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new range only range-expanding plant species that have a strongly different root chemistry compared 

to native plant species may be less affected by root-feeding nematodes. My work emphasizes that 

phylogenetic distance does not necessarily indicate ecological novelty, and that very closely related 

species do not necessarily have comparable plant-soil interactions. Although other groups of soil 

organisms may show different responses to range-expanding plant species, my results suggest that it 

is unlikely that range-expanders will become highly dominant in their new range, unless they bring in 

traits that are not present in the native community. 
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Samenvatting 

De recente, door de mens veroorzaakte, klimaatverandering heeft sterke invloeden op plant- en 

diersoorten, hun onderlinge interacties, en het functioneren van natuurlijke ecosystemen. Het 

begrijpen en voorspellen van ecologische veranderingen veroorzaakt door klimaatverandering is 

daarom een van de speerpunten van de hedendaagse ecologie. Om te overleven als soort zullen 

organismen zich ofwel moeten aanpassen aan de nieuwe omstandigheden in hun leefgebied, of hun 

leefgebied moeten verplaatsen of uitbreiden naar gebieden die in het verleden nog niet geschikt waren. 

Dit soort areaal-uitbreidingen, vaak naar gebieden die noordelijker of hoger liggen, worden steeds 

vaker waargenomen, maar hun ecologische consequenties zijn grotendeels onbekend.  

Een belangrijke voorspelling omtrent areaal-uitbreidingen is dat plantensoorten tijdens hun areaal-

uitbreiding hun geassocieerde bodemorganismen te snel af zijn, doordat veel bodemorganismen zich 

slecht verspreiden. Deze bodemorganismen, zoals microbiële pathogenen en wortel-etende 

nematoden, spelen een belangrijke rol in de dynamiek van natuurlijke vegetatie, omdat ze niet elke 

plantensoort in dezelfde mate aantasten. Als gevolg van de disruptie van de interacties tussen 

plantensoorten en hun geassocieerde bodemorganismen zouden areaal-uitbreidende plantensoorten 

in hun nieuwe leefgebied minder onderdrukt kunnen worden, doordat de hoeveelheden ondergrondse 

natuurlijke vijanden hier laag zijn. Deze voorspellingen omtrent de verschuivingen in 

gemeenschappen van bodemorganismen als gevolg van areaal-uitbreiding zijn echter nog niet getest.  

In mijn promotie-onderzoek heb ik gekeken of areaal-uitbreidende planten inderdaad veranderingen 

ervaren in de gemeenschappen van bodemorganismen tussen gebieden in hun oorspronkelijke en 

nieuwe areaal. Daarnaast heb ik gekeken of de interacties tussen bodemorganismen en areaal-

uitbreidende planten in het nieuwe leefgebied verschillen van dergelijke interacties bij meer of minder 

nauw verwante inheemse plantensoorten. Wortel-etende nematoden hebben een hoofdrol in mijn 

experimenten, omdat dit wijdverbreide en belangrijke ondergrondse herbivoren zijn, die bovendien 

relatief makkelijk te identificeren en kwantificeren zijn.  

In hoofdstuk 2 gebruikte ik een combinatie van moleculaire en morfologische identificatiemiddelen 

om nematodegemeenschappen kwalitatief en kwantitatief in kaart te brengen langs een 2000 kilometer 
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lang transect van Griekenland tot in Nederland. Nematoden werden verzameld in de wortelgrond van 

areaal-uitbreidende planten die inheems zijn in de zuidelijke gebieden langs dit transect en die zich 

pas recentelijk in de meer noordelijk gelegen gebieden hebben gevestigd. Daarnaast werden ook 

nematodegemeenschappen verzameld uit de wortelgrond van verwante plantensoorten die inheems 

zijn langs het gehele transect. Ik verwachtte dat langs het transect een geleidelijke verandering in de 

compositie van nematodengemeenschappen waarneembaar zou zijn door onderliggende 

veranderingen in abiotische omstandigheden. Daarnaast verwachtte ik dat de veranderingen in de 

compositie van de nematodengemeenschappen sterker zouden zijn voor areaal-uitbreidende planten 

dan voor inheemse planten, en dat areaal-uitbreidende planten in hun nieuwe leefgebied minder 

wortel-etende nematoden in hun wortelgrond zouden hebben dan in hun oorspronkelijke leefgebied.  

Globaal gezien veranderde de samenstelling van de nematode-gemeenschappen langs het transect, 

hetgeen betekent dat nematodegemeenschappen in Zuid-Europa verschillen van die in Noord-

Europa. Dit laat zien dat areaal-uitbreidende planten in hun nieuwe leefgebied inderdaad met een 

andere nematodegemeenschap in aanraking komen dan in hun oorspronkelijke leefgebied. Er was 

echter maar één areaal-uitbreidende plantensoort die langs het transect een sterkere verandering in 

nematodegemeenschappen ondervond dan de nauw verwante inheemse soort: Centaurea stoebe. Deze 

areaal-uitbreider was ook de enige soort die minder wortel-etende nematoden had in wortelgrond in 

het nieuwe dan in het oorspronkelijke leefgebied. Alle andere areaal-uitbreidende soorten ervoeren 

geen sterkere veranderingen in nematodegemeenschappen dan verwante inheemse soorten en hadden 

net zoveel nematoden in wortelgrond van hun nieuwe als van hun oorspronkelijke leefgebied.  

De hypothesen uit hoofdstuk 2 heb ik ook getest in een kasexperiment (Hoofdstuk 3). In dit 

experiment groeiden dezelfde areaal-uitbreidende en verwante inheemse plantensoorten in 

afzonderlijke plantengemeenschappen. Daarnaast werd een plantengemeenschap van areaal-

uitbreiders zonder verwante inheemse soorten gecreëerd. Ik verwachtte dat, vanwege hun potentiele 

ecologische noviteit, deze ‘niet-verwante areaal-uitbreiders’ nog sterker naïeve responsen van 

inheemse nematoden zouden veroorzaken dan areaal-uitbreiders met verwante soorten in hun nieuwe 

leefgebied. Daarom verwachtte ik dat de niet-verwante areaal-uitbreiders de sterkste verschillen in de 

compositie van nematodegemeenschappen tussen bodems uit hun oorspronkelijke en nieuwe 
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verspreidingsgebieden zouden laten zien en de laagste aantallen wortel-etende nematoden zouden 

opbouwen in bodem uit het nieuwe verspreidingsgebied.  

Ongeacht aan welke plantengemeenschap de bodems werden blootgesteld (conditionering genoemd), 

waren er echter geen duidelijke verschillen in nematode-gemeenschappen te zien tussen de bodems 

uit Zuid- en Noord-Europa. Daarnaast waren er geen verschillen tussen deze bodems in de aantallen 

wortel-etende nematoden. Verrassend was dat de bodems van niet-verwante areaal-uitbreiders de 

hoogste aantallen wortel-etende nematoden bevatten. De eenjarige levenswijze van de meeste soorten 

in deze gemeenschap zou hier een verklaring voor kunnen zijn, aangezien snelle groei vaak ten koste 

gaat van een goede verdediging tegen natuurlijke vijanden. Hoewel de individuele effecten van de 

plantensoorten gemaskeerd zijn in deze proef en de taxonomische resolutie lager was dan in het werk 

beschreven in hoofdstuk 2, wijst deze proef wel uit dat areaal-uitbreidende plantensoorten gemiddeld 

gezien geen sterke verschuivingen in nematode-gemeenschappen ervaren tussen hun oorspronkelijke 

en nieuwe verspreidingsgebied.  

In de hoofdstukken 4 en 5 heb ik gekeken naar de interacties die areaal-uitbreidende en verwante 

inheemse plantensoorten aangaan met twee wortel-etende nematodensoorten uit het nieuwe 

leefgebied van de areaal-uitbreiders. In hoofdstuk 4 beschrijf ik de resultaten van een reproductieproef 

van deze nematoden op twee areaal-uitbreiders en twee verwante plantensoorten, in de aan- en 

afwezigheid van gemeenschappen van bacteriën. Ik verwachtte dat areaal-uitbreiders slechte gastheren 

zijn voor inheemse wortel-etende nematoden, maar dat ze ook slecht in staat zijn om natuurlijke 

vijanden van de nematoden uit de bodemgemeenschap aan te trekken. In overeenstemming met de 

resultaten van hoofdstuk 2 vond ik dat Centaurea stoebe een zeer slechte gastheer is voor beide 

nematodesoorten. De andere areaal-uitbreider, Geranium pyrenaicum, was echter een betere gastheer 

dan de verwante inheemse soort. In lijn met mijn hypothese vond ik dat inheemse plantensoorten 

inderdaad beter leken te zijn in het aantrekken van de vijanden van wortel-etende nematoden, maar 

ook dat dit soort ondergrondse multitrofe interacties zeer soort-specifiek zijn.  

De experimenten in hoofdstuk 5 werden opgezet om de chemische mechanismen te ontrafelen die de 

verschillen in de reproductie van wortel-etende nematoden tussen areaal-uitbreiders en verwante 
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inheemse plantensoorten zouden kunnen verklaren. Experimenten waarmee de aantrekkingskracht 

van planten op nematoden kan worden getest, lieten zien dat de wortel-etende nematoden gemiddeld 

minder sterk werden aangetrokken door areaal-uitbreiders dan door de verwante inheemse soorten. 

Een interessante observatie was dat de areaal-uitbreidende plantensoort Centaurea stoebe de geteste 

nematodensoorten afstootte, in plaats van aantrok. De andere areaal-uitbreidende planten trokken 

nematoden weliswaar aan, maar niet zo sterk als de verwante inheemse plantensoorten.  

Vergelijkingen tussen de mixen van vluchtige stoffen die in de wortels van de verschillende 

plantensoorten worden geproduceerd, lieten zien dat, wanneer vergeleken met de verwante inheemse 

soorten, Centaurea stoebe aanzienlijk meer unieke vluchtige stoffen produceert dan de andere areaal-

uitbreidende plantensoorten. Dit suggereert dat de mate van chemische noviteit van areaal-

uitbreidende plantensoorten de aantrekking van wortel-etende nematoden zou kunnen bepalen. 

Aangezien de chemische aantrekkingskracht van nematoden een goede voorspeller van nematoden-

reproductie was, lijkt het erop dat areaal-uitbreidende plantensoorten profiteren van de aanmaak van 

wortelstoffen waar inheemse wortel-etende nematoden niet eerder mee in aanraking zijn geweest.  

De variatie in de mate van chemische overeenkomst tussen areaal-uitbreidende en verwante inheemse 

soorten zou kunnen worden verklaard door onderliggende verschillen in fylogenetische afstanden 

tussen de verwante soorten. Om de effecten van geografische oorsprong en fylogenetische afstand op 

plant-bodeminteracties van elkaar te kunnen onderscheiden, ontwikkelde ik een serie experimenten 

met vier areaal-uitbreidende en vier inheemse soorten, die allemaal tot hetzelfde geslacht behoren 

(Hoofdstuk 6). Op deze manier kon ik de hypothese testen dat de meest nauw verwante soorten sterker 

overeenkomen in morfologische en chemische worteleigenschappen, en hun invloed op 

bodemgemeenschappen, dan minder nauw verwante soorten. Daarnaast testte ik of variatie in plant-

bodem-terugkoppelingen - de groei van planten in door soortgenoten geconditioneerde grond - 

verklaard kon worden door de geografische oorsprong van de planten of door onderlinge 

fylogenetische afstanden.  

De resultaten lieten zien dat de verschillen in geografische oorsprong tussen de plantensoorten niet de 

variatie in bodemgemeenschappen of plant-bodem-terugkoppelingen konden verklaren. Daarnaast 
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vond ik dat de meest nauw verwante soorten niet méér overeenkwamen in de chemische 

wortelsamenstelling dan minder nauw verwante soorten uit hetzelfde geslacht, maar dat 

fylogenetische afstand wel correleerde met de variatie in sommige morfologische 

worteleigenschappen. De variatie in schimmelgemeenschappen was gerelateerd aan de variatie in 

specifieke wortellengte, een maat voor de structuur van het wortelsysteem. Variatie in 

gemeenschappen van bacteriën correleerden aan verschillen in de chemische wortelsamenstelling 

tussen de planten, terwijl variatie in de gemeenschappen van protisten en nematoden co-varieerden 

met de bacteriegemeenschappen. Daarom konden alleen verschillen in schimmelgemeenschappen 

verklaard worden door onderlinge fylogenetische afstanden tussen de plantensoorten.  

Tenslotte liet ik in hetzelfde experiment met Geranium-soorten zien dat verschillen in plant-bodem-

terugkoppelingen correleerden met de aantallen wortel-etende nematoden in de bodems van de 

verschillende planten. Samengevat laten deze resultaten zien dat variatie in plant-bodem-interacties 

tussen nauw verwante soorten noch hun evolutionaire geschiedenis, noch hun geografische oorsprong 

weerspiegelen, wat suggereert dat de (chemische) worteleigenschappen van deze soort zijn 

geëvolueerd in respons op soort-specifieke condities.  

Ecologische theorie voorspelt dat plantensoorten door areaal-uitbreiding aan hun ondergrondse 

natuurlijke vijanden kunnen ontsnappen, en in hun nieuwe areaal profiteren van een naïve respons 

van inheemse natuurlijke vijanden. In mijn proefschrift laat ik zien dat alleen areaal-uitbreidende 

plantensoorten die sterk afwijken in wortelchemie ten opzichte van inheemse soorten minder worden 

aangetast door inheemse wortel-etende nematoden. Mijn studies laten zien dat fylogenetische afstand 

geen goede maat is voor ecologische noviteit en dat sterk verwante soorten niet per se vergelijkbare 

plant-bodeminteracties hebben. Hoewel andere groepen bodemorganismen anders zouden kunnen 

reageren op areaal-uitbreidende planten, suggereren mijn resultaten dat het niet aannemelijk is dat de 

meeste areaal-uitbreiders zeer dominant zullen worden in hun nieuwe verspreidingsgebied, tenzij ze 

eigenschappen hebben die niet aanwezig zijn in de inheemse gemeenschap en kunnen bijdragen aan 

het gaan woekeren van deze soorten.
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