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Abstract 24 

Combating illegal timber trade requires the ability to identify species and verify geographic origin of 25 

timber. Forensic techniques that independently verify the declared species and geographic origin are 26 

needed, as current legality procedures are based on certificates and documents that can be falsified. 27 

Timber from the genus Cedrela is among the most economically valued tropical timbers worldwide. 28 

Three Cedrela species are included in the Appendix III of CITES: C. fissilis, C. odorata, and C. 29 

angustifolia (listed as C. lilloi). Cedrela timber is currently traded with false origin declarations and 30 

under a different species name, but tools to verify this are lacking. We used Direct Analysis in Real 31 

Time Time-of-Flight Mass Spectrometry (DART-TOFMS) to chemically identify Cedrela species and 32 

sites of origin. Heartwood samples from six Cedrela species (the three CITES-listed species plus C. 33 

balansae, C. montana, and C. saltensis) were collected at 11 sites throughout Bolivia. Mass spectra 34 

detected by DART-TOFMS comprised 1062 compounds; their relative intensities were analysed using 35 

Principal Component Analyses (PCA), Kernel Discriminant Analysis (KDA), and Random Forest 36 

analyses to check discrimination potential among species and sites. Species were identified with a mean 37 

discrimination error of 15-19%, with substantial variation in discrimination accuracy among species. 38 

The lowest error was observed in C. fissilis (Mean=4.4%). Site discrimination error was considerably 39 

higher: 43-54% for C. fissilis and 42-48% for C. odorata. These results provide good prospects to 40 

differentiate C. fissilis from other species, but at present there is no scope to do so for other tested 41 

species. Thus, discrimination is highly species specific. Our findings for tests of geographic origin 42 

suggest no potential to discriminate at the studied scale and for the studied species. Cross-checking 43 

results from different methods (KDA and Random Forest) reduced discrimination errors. In all, the 44 

DART-TOFMS technique allows independent verification of claimed identity of certain Cedrela species 45 

in timber trade. 46 

Keywords: Illegal logging, Cedrela, mass spectrometry, discriminant analysis, Random Forest  47 
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Introduction 48 

Illegal trade in timber is a worldwide environmental problem, resulting in damage of natural resources 49 

and economic loss. It has been estimated that 10% to 80% of the total timber trade is illegal (Seneca 50 

Creek Associates, 2004) and in some countries, such as Papua New Guinea, Liberia, and the Amazon 51 

countries (Stark and Pang Cheung, 2006; Lawson and MacFaul, 2010; Wit, et al., 2010), this percentage 52 

has been as high as 80-90% of all logging operations. The most common type of fraud concerns false 53 

declarations of species and geographic origin, as current legal procedures are generally based on 54 

certificates and documents which can be falsified. Most legislative measures focus at combating 55 

international illegal trade but a high proportion (70-90%) of illegal tropical timber is traded in domestic 56 

markets (Cerutti and Lescuyer, 2011; Kishor and Lescuyer, 2012; Lescuyer et al., 2014). Clearly, there 57 

is a need for forensic techniques to independently verify the origin of traded timber in both domestic 58 

and international markets. 59 

The genus Cedrela (Meliaceae) delivers one of the most important tropical timbers (tropical cedar), but 60 

illegal logging of Cedrela has resulted in CITES-listing of several species in this genus (Compt and 61 

Christy, 2008). As a result, timber from these species can be traded internationally only if the 62 

appropriate permits have been obtained and presented for clearance at the port of entry or exit (CITES, 63 

2017). The problem is that CITES-listed and non-listed Cedrela species are harvested and traded under 64 

the same name (Moya et al., 2013) and are often confused due to wood-anatomical similarities (Gasson, 65 

2011; Gasson et al., 2011; Moya et al., 2013). For authorities enforcing CITES, methods to differentiate 66 

Cedrela species are needed.  67 

Bolivia harbours as many as six Cedrela species, in different climatic zones, from moist to dry tropical 68 

forests, and from low to high altitudes (Mostacedo et al., 2003; Navarro, 2011; Navarro-Cerrillo et al., 69 

2013): Cedrela angustifolia Sessé & Moc. Ex DC., Cedrela balansae C. DC., Cedrela fissilis Vell., 70 

Cedrela montana Moritz ex Turcz., Cedrela odorata L. and Cedrela saltensis M.A. Zapater & del 71 

Castillo. Cedrela species are highly valued locally (Mostacedo and Fredericksen, 1999) and used in 72 

carpentry, fine furniture, doors, windows, joinery, musical instruments, carvings, coatings and plywood 73 

(Toledo et al., 2008). However, Cedrela populations have declined considerably in recent years due to 74 

overexploitation (Mostacedo and Fredericksen, 1999, 2001). As a result, out of the six species, three 75 

are currently listed in Appendix III of CITES: C. odorata, C. fissilis and C. angustifolia (listed as C. 76 

lilloi C. DC.) (CITES, 2017). Despite legal harvesting limitations, these species remain at high risk 77 

because of continued illegal logging and timber trade (ABT, 2017). The high incidence of illegal trade 78 

indicates that control systems have limited effectiveness and methods for independent verification of 79 

species and legal origin are needed.  80 
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Chemical analysis tools, such as mass spectrometry (Fidelis et al., 2012), near-infrared spectroscopy 81 

(Braga et al., 2011; Bergo et al., 2016), and stable isotopes (Kagawa and Leavitt, 2010; Förstel et al., 82 

2011; Vlam et al., 2018), can be used to discriminate species and verify the geographical origin of 83 

traded timber. For example, previous studies used a specific mass spectrometer to discriminate species 84 

that cannot be identified based on wood anatomy in the Americas (Espinoza et al., 2015), Africa 85 

(Deklerck et al., 2017), and Asia (McClure et al., 2015). In this study, we focus on chemical 86 

characterization by Direct Analysis in Real Time (DART) coupled with Time-of-Flight Mass 87 

Spectrometry (TOFMS). This technique has the potential to assist in enforcing protection of Cedrela 88 

species as it cannot be falsified, in contrast to current certificates used for declaration of species origin. 89 

In DART analysis, the mass spectrometer quickly identifies the chemical components by the differing 90 

mass to charge (m/z) of ions/compounds from specimens, without the need for sample preparation. The 91 

resulting chemical spectra can be used as a reference database for species identifications. Because this 92 

methodology has a high potential to identify species and locations, our aim is to test its applicability to 93 

differentiate Cedrela timber obtained from different species and geographic provenances.  94 

We answer the following research questions: (1) To what extent can Bolivian Cedrela species be 95 

differentiated based on wood chemical composition? (2) To what extent can chemical composition help 96 

to differentiate timber sourced from different sites in Bolivia? (3) What is the accuracy for identification 97 

of each Cedrela species and site of origin within Bolivia based on their chemical profiles? As the 98 

geographical sites of the collected samples may have different environmental conditions, we expect to 99 

find distribution patterns of the wood composition that mirror these conditions (Zobel and van 100 

Buijtenen, 1989; Wilkins and Stamp, 1990; Mosedale and Ford, 1996; Moya and Calvo-Alvarado, 101 

2012). We also expect that each Cedrela species will present specific chemicals that distinguish it from 102 

others (Chatterjee et al., 1971; Cordeiro et al., 2012; Eason and Setzer, 2007; Lago et al., 2004; Maia 103 

et al., 2000).  104 

Methods 105 

Study site and species 106 

We studied heartwood samples from 6 Cedrela species in Bolivia, from 11 sites. In total we sampled 107 

127 trees. Altitude of the sites ranged from 145 m.a.s.l. (meters above sea level) in Riberalta to 2022 108 

m.a.s.l. in Postrervalle (Table 1). We selected sites taking into account the distribution of the study 109 

species and we maintained a minimum of 70 km distance between all site pairs to maximize the 110 

sampling coverage across the country (Table 1 and Figure 1). The maximum distance between pairs of 111 

sampled sites was 1300 km (Cobija-Roboré). We used these samples to perform two types of tests: 112 

differentiation of species and differentiation of geographic origin. In the species identification analyses, 113 

we included all Cedrela species in the sample collection to analyse cross-species discrimination. For 114 
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the geographic origin analysis, we only included the two species with the largest sample sizes that we 115 

had sampled at multiple sites: C. odorata from 3 sites and C. fissilis from 6 sites. The maximum distance 116 

between pairs of sites was 80 km for C. fissilis (Espejos-Yapacaní) and 425 km for C. odorata 117 

(Ribertalta-Rurrenabaque). Minimum distances between pairs of sites were 70 km (Concepción-118 

Guarayos) for C. fissilis and 285 km (Ribertalta-Cobija) for C. odorata. We performed a stratified 119 

random sampling: in each of the Cedrela populations found, trees of diameter ≥10 cm were randomly 120 

selected with a minimum distance among trees of at least 50 m in order to obtain a homogeneous 121 

sampling in each site and to reduce genetic noise and confounding impact of sampling relatives on site 122 

(Gillies et al., 1999). This random selection of samples covered different types of forest strata.  123 

Table 1. Cedrela species and sites included in the study. Sample size refers to the number of trees 124 

sampled; botanical samples to the number of trees from which botanical samples were obtained for 125 

verification of identification by taxonomists.  126 

Species Sites Sample 
size 

Botanical 
samples 

Altitude 
(m.a.s.l.) 

C. angustifolia Monteagudo 2 2 1705 
Postrervalle 13 12 2022 

C. balansae Concepción 10 10 432 
C. fissilis Bajo Paraguá 10 * 287 

Concepción 13 13 432 
Espejos 6 6 553 
Guarayos 13 9 260 
Roboré 10 * 632 
Yapacaní 10 5 318 

C. montana Postrervalle 2 2 2022 
C. odorata Cobija 10 * 274 

Riberalta 10 * 145 
Rurrenabaque 10 4 309 

C. saltensis Monteagudo 8 2 1705 
Total  127 65  

*No botanical samples were collected, but identification was based on previous collections. 127 
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 128 

Figure 1 Locations of sampled trees belonging to six Cedrela species in Bolivia. Forest cover: 129 

Autoridad de Bosques y Tierra, 2015. 130 

Preliminary analyses of sapwood and heartwood showed a wider variation of compounds in heartwood 131 

(70.0629-1086.567 m/z) compared with sapwood with a dominance of sugars and starch (69.0285-132 

958.4909 m/z) that were not species-specific. Based on these results, we decided to only include 133 

heartwood samples in our analyses. A single heartwood sample was collected from each tree using a 5 134 

mm diameter increment borer (Haglöf) at 50-100 cm stem height. Species were morphologically 135 

identified in situ with the help of local guides. In addition, botanical samples were collected for species 136 

confirmation when identification in the field was not possible. This was done for 53% of the sampled 137 

trees. The voucher preparation and confirmation of the species based on herbarium collections were 138 

carried out by an experienced botanist, A. Araujo Murakami at the Museo de Historia Natural Noel 139 

Kempff Mercado (Bolivia). 140 

Chemical analysis 141 

We used Direct Analysis in Real Time Time-of-Flight- Mass Spectrometry (DART-TOFMS) to 142 

differentiate Cedrela species and to explore if geographical origin could be determined based on 143 
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chemical composition of heartwood. The DART source consists of an ionization technique that occurs 144 

at atmospheric pressure and is discussed by Cody et al. (2005). Once the molecules from the sample 145 

are ionized, they are directed towards the time-of-flight mass spectrometer (TOFMS) (Cody et al., 146 

2005). The mass spectrometer will then characterize the molecules from the sample by determining the 147 

mass to charge (m/z) of the ions in their protonated forms. 148 

The principal ionization mechanisms for DART-TOFMS have been thoroughly discussed and it has 149 

been used to identify timber species with an accuracy of 70% to 95% (Lancaster and Espinoza, 2012; 150 

Evans et al., 2017). To describe the chemotaxonomic relationship of our Cedrela samples, mass spectra 151 

were acquired using a DART ion source (IonSense, Saugus, MA, USA) coupled to a JEOL AccuTOF 152 

time-of-flight mass spectrometer (JEOL USA, Peabody, MA, USA) in positive ion mode. To check if 153 

preparation of wood was needed, we tested the maximum number of compounds by soaking wood in 154 

methanol versus using wood with no previous treatment. We did not observe any enhancement with 155 

previous preparation of wood samples (data not shown). Hence, we decided to use untreated heartwood 156 

samples. We cut slivers of heartwood no wider than 4 mm from each sample with a scalpel. These 157 

slivers were held in the DART helium gas stream for 8 seconds. A mass calibration standard of 158 

polyethylene glycol 600 (Ultra, Kingstown, RI, USA) was run between each 5 samples. The DART 159 

source parameters were: needle voltage, 3.5 kV; electrode 1 voltage, 150 V; electrode 2 voltage, 250 160 

V; and gas heater temperature, 350°C. The mass spectrometer settings included: rings lens voltage, 5 161 

V; orifice 1 voltage, 20 V; orifice 2, 5 V; cone temperature, 120°C; peaks voltage, 600 V; ion guide 162 

bias, 28 V; focus lens voltage, -120 V; reflectron voltage, 870 V; pusher voltage, 778 V; pulling voltage, 163 

-778 V; suppression voltage, 0.00 V; flight tube voltage, -7000 V; and detector voltage, 2000 V. Spectra 164 

covered the mass range of 70 to 1100 mass-to-charge ratios (m/z) and were obtained at 1 scan per 165 

second. The helium flow rate for the DART source was 2.0 mL s-1. The resolving power of the mass 166 

spectrometer, as stated by the manufacturer, was ±2.0 millimass units (mmu). The diagnostic 167 

compounds for spectrum classification were selected with 250 mmu and 1% threshold (Deklerck et al., 168 

2017). TSS Unity, a mass-spec data-processing software (Shrader Software Solutions, Inc., Grosse 169 

Pointe Park, MI, USA), was used to export the data as text files for further analysis. 170 

Statistical analysis 171 

Our analysis of the masses (m/z) detected and relative intensities obtained from the DART TOFMS 172 

consisted of several steps. To evaluate if chemotypes can enable differentiation of Cedrela species 173 

(research question 1: species identification) we first evaluated the existence of species specific 174 

compounds, reduced the sample-compound data matrix using Principal Component Analysis (PCA) 175 

and finally performed a discriminant analysis to classify the species, determine the importance of each 176 

compound and predict sample assignment. For these analyses we used Kernel Discriminant Analyses 177 

with package ks 1.10.5 (Duong, 2007, 2017), and Random Forest model with package randomForest 178 
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4.6.12 (Liaw and Wiener, 2002) and dplyr 0.7.4 (Wickham et al., 2017) in R version 3.3.3 (R 179 

Development Core Team, 2017). We used PCA in order to reduce the number of variables (compounds) 180 

into principal components that can then be used as input for a first type of discriminant analysis (KDA). 181 

A second discriminant analysis (Random Forest) was used to identify the most important compounds 182 

that can differentiate between species. Both discriminant analyses were based on randomized samples 183 

and variables in every run. The classification results allowed us to assess the classification success by 184 

evaluating frequencies of correct and erroneous identifications. For the analysis of geographic origin 185 

(research question 2: geographic origin identification) for C. fissilis and C. odorata (Table 1), we 186 

followed the same steps. Based on the classifications, cross validation errors were estimated for species 187 

and site assignments (research question 3: identification accuracy). 188 

In detail the method involved four main steps. First, we produced a heat-map graph to visualize the 189 

chemical profiles (or chemotypes) of the specimens and to verify whether heartwood samples of a 190 

particular species contain diagnostic molecules (expressed as mass-to-charge ratio: m/z) that allow it to 191 

be distinguished from other species. The heatmap is a graphical representation of the raw mass spectra 192 

measured by DART-TOFMS and is created using the Mass Mountaineer software (RBC Software, 193 

Peabody, MA, USA). It illustrates the mass-to-charge ratio (m/z) of the detected compounds and their 194 

intensities in a spectrum.  195 

Second, to reduce the large data matrix into a set of variables so that the variation within each set is 196 

maximized (Gotelli and Ellison, 2004), a PCA was necessary for the set which consisted of 125 samples 197 

and 1062 compounds. PCA aims to find the linear combinations of variables by using the covariance 198 

matrix of data. The first axis reflects the linear fit capturing most of the variation and the successive 199 

orthogonal axes reflect the linear capturing of remaining variation not captured in each of the previous 200 

components. We extracted six principal components from the sample-molecule matrix, reflecting the 201 

greatest variation in the data matrix. The loadings of all 125 samples on the first six axes were retained 202 

and this new matrix was used as input in the discriminant analysis. We excluded C. montana due to its 203 

small sample size (2 individuals). 204 

Third, we performed Kernel Discriminant Analysis (KDA) to test species identification and geographic 205 

origin. As KDA cannot cope with more than 6 variables, we performed the PCA analysis described 206 

above, and used the first 6 PCA axes. KDA separates the samples based on an a priori classification 207 

assignment (to species and sites classes) and looks for the optimal non-linear combination of variables 208 

(here the 6 component loadings) for maximal separation of the samples in the six dimensional space 209 

(Baudat and Anouar, 2000). KDA’s learning algorithm uses Bayes discriminant rule which allocates a 210 

point x in the sample space to one (and only one) of the sampled populations. Each population is 211 

associated to a kernel density which was estimated implementing a diagonal data-driven (constrained, 212 

symmetric and positive-definite) bandwidth matrix (Duong, 2007). This learning algorithm needs to be 213 



9 
 

trained in order to assess the discrimination power of KDA. Therefore, our data were split in two sets: 214 

80% for training and 20% for testing the model. The pre-smoothed data were then applied to estimate 215 

a Smoothed Cross Validation (SCV) error (Duong, 2007) as a different procedure to test correctness of 216 

the assignment tests. This delivers the classification error (%) which is the probability that samples are 217 

incorrectly assigned to a provenance. A cross validation error of 0% indicates that all the samples were 218 

correctly assigned.  219 

Finally, we used Random Forest analysis to generate a sample classification model in which splits are 220 

based on just one chemical compound. One Random Forest run created 500 ‘Random Forests’ which 221 

are used to obtain a final model (Breiman, 2001; Liaw and Wiener, 2002). As with KDA, the algorithm 222 

uses 80% of the dataset for training and 20% for model validation. Every run of Random Forest uses a 223 

different training set and may lead to different results. Therefore, we ran Random Forest 100 times and 224 

averaged the results. In this way, a total of 50.000 Random Forests (100 runs x 500 Random Forests) 225 

were built. For each run, the model provided a list of compounds, with their value of importance. We 226 

selected the most important compounds that occurred in >40% of the runs and calculated their 227 

frequency. These tentative assignments were based on 351 molecules described either for the Cedrela 228 

genera or the Meliaceae family (Afendi et al., 2012). Chemical composition in wood can vary not only 229 

among species but also for a given tree species or even a given tree (Pettersen, 1984), but heartwood 230 

extractive and exudates can also be species specific (Hillis, 1987). Therefore we used the list of the 231 

most important compounds to check if any species indicative compound was present. 232 

Random Forest analysis allowed us to identify specific chemical compounds that separate one species 233 

or site from the other. The Out-of-Bag (OOB, take one out) error rate and species class error were 234 

estimated for each of the 100 runs and used to calculate the standard deviation (SD) of these estimates. 235 

The OOB estimate is equivalent to the SCV error of the KDA analysis. 236 

Both KDA and Random Forest analyses generated confusion matrices showing the frequency at which 237 

each species/site was wrongly classified. In addition, the total of samples tested for each species after 238 

100 randomization runs allowed us to check with what species a single sample could be confused. 239 

Finally, the mean errors per species for site identification across the 100 runs were obtained together 240 

with their corresponding standard deviation. 241 

Results 242 

A total of 1062 ions were characterized and their respective intensities were described, in 6 Cedrela 243 

species from 11 sites across Bolivia, from the DART-TOMFS spectra. The results were analysed for 244 

species and sites identification separately. A first inspection of chemical data in the heatmap (Figure 2) 245 

suggests species-specific patterns in the chemical profiles. Further cross-checking with the actual mass 246 
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spectra confirmed that the C. odorata samples had a higher intensity of compounds with molecular 247 

masses around m/z 212 and 480, C. fissilis had higher intensities for compounds in the m/z 484-502 248 

range, C. balansae at m/z 478 and 680, and C. angustifolia showed high intensities for compounds at 249 

m/z 212 and 400. Although the samples of C. montana showed distinctive ions at m/z 275 and 398, this 250 

species was excluded from further analyses due to small sample size.  251 

 252 

Figure 2 Heatmap of the output of the DART-TOMFS for 6 Cedrela species in Bolivia. Each row 253 

represents one sample (one tree). Each column represents a specific mass-to-charge ratio (m/z) of an 254 

ion. Colour gradient represents relative compound intensity (relative to the most abundant compound). 255 

Identification of species 256 

The analysis for species differentiation included five species: C. angustifolia, C. balansae, C. fissilis, 257 

C. odorata, and C. saltensis (Table 1). The PCA analysis showed that the six most important 258 

components together explained 72.1% of the variation across the samples and that the samples were 259 

reasonably well separated in the PCA space (Figure 3). The variances explained by the 6 principal 260 

components (PCs) were: 24%, 20%, 10%, 8%, 6%, and 4% for PC 1-6 correspondingly. These six 261 

components were used as input for the KDA. The KDA (of the 80% sample) resulted in a clear 262 

separation of the species (Table 2).  263 
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 264 

Figure 3 Results of Principal Component Analysis used for KDA analyses for species. Scatterplots 265 

combining (a) PC1 and PC2, and (b) PC1 and PC3.  266 

Table 2. Error classification for species. Mean Smoothed Cross Validation (SCV) error, mean Out-267 

of-bag (OOB) error for classification and their corresponding standard deviations (SD) were estimated 268 

after 100 runs for KDA and Random Forest, respectively.  269 

 KDA Random Forest 

Species Mean error  
(%) 

SD  
(%) 

Mean error 
(%) 

SD  
(%) 

C. angustifolia 26.5 28.0 33.9 7.9 
C. balansae 46.1 36.8 42.4 17.7 
C. fissilis 8.7 7.1 4.4 1.8 
C. odorata 22.3 17.5 15.8 5.3 
C. saltensis  20.2 32.4 29.6 17.2 
Mean 18.9 7.0 14.9 2.3 

 270 

The KDA had a total mean error of 19% for the SCV test (Table 2). Species-specific errors differed 271 

strongly, from 8.7% for C. fissilis to 46.1% for C. balansae. The mean error per species (OOB) from 272 

the 100 Random Forest analyses was 15%, representing a mean identification accuracy of 85% (Table 273 

2; Supplementary Data Figure A.1). Again, these errors differed substantially between species with the 274 

lowest value of 4.4% for C. fissilis and highest error of 42.4% for C. balansae (Supplementary Data 275 

Figure A.1).  276 

In the KDA analysis, identification errors for C. angustifolia and C. balansae included wrong 277 

assignments to all the other species. C. fissilis was wrongly identified as all the species except as C. 278 
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saltensis. C. odorata was mostly identified as C. fissilis (118 samples out of 562) and in some cases 279 

wrongly identified as C. saltensis (11 samples out of 562). It was rarely classified as C. angustifolia (1 280 

sample out of 562) and never as C. balansae. C. saltensis was mostly confused with C. odorata (33 281 

samples out of 188), in some cases with C. angustifolia (10 samples out of 188), rarely as C. balansae 282 

(2 samples out of 188) but never as C. fissilis (Supplementary Data Table A.1). 283 

From the Random Forest analyses, the most important compounds for species discrimination were 284 

selected (Supplementary Data Table A.3). In total, 15 compounds were most frequent in over 58% of 285 

the runs (100 runs). For some compounds we were able to infer the molecular formula and make 286 

tentative assignments. 287 

In most cases of the Random Forest analyses, each species was confused with three other species 288 

(Supplementary Data Table A.2): C. angustifolia was mostly classified as C. fissilis or C. saltensis and 289 

on one occasion as C. balansae. C. balansae was confused with all species except for C. saltensis. A 290 

similar pattern holds for C. fissilis, although this species was mostly confused with C. odorata. Vice 291 

versa, C. odorata was mostly confused with C fissilis, in addition to two samples that were mistakenly 292 

identified as C. saltensis. Finally, C. saltensis was confused with all species, except for C. balansae. 293 

Identification of geographic origin 294 

The analysis for geographic origin was done for C. fissilis and C. odorata separately. Classification 295 

performance was higher for Random Forest compared to Kernel Discriminant analysis. Furthermore, 296 

Random Forest showed similar error rates for both species while Kernel Discriminant showed a 297 

difference of 6.3% between C. fissilis and C. odorata (Table 3a and b). The error rate for site 298 

identification was highly variable for both methods. The first six PCs were selected from the PCA 299 

analysis (Figure 4) as they explained the highest variance: 78.9% in the case of C. fissilis and 86.2% for 300 

C. odorata. 301 



13 
 

 302 

Figure 4 Results of Principal Component Analysis used for KDA analyses for geographic origin. 303 

Scatterplots combining (a) PC1 and PC2, (b) PC1 and PC3 for C. odorata, and (c) PC1 and PC2 and 304 

(d) PC1 and PC3 for C. fissilis.  305 
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Table 3. Error classification for sites of C. fissilis (a) and C. odorata (b) based on KDA with 6 PCs, 306 

and Random Forest analyses. Mean classification and standard deviation (SD) were estimated using 307 

the classification error per site after 100 runs with different training and testing sets.  308 

 309 
 KDA Random Forest 

 Mean error  SD 
(%) 

Mean error SD 
(%) (%) (%)  

a) C. fissilis sites     
Bajo Paraguá 45.8 36.5 38.5 16.9 
Espejos 43.3 44.4 86.7 11.7 
Concepción 37.5 36.8 23.5 13.3 
Guarayos 39.7 32.2 36.9 17.5 
Roboré 80.9 33.3 57.3 17.9 
Yapacaní 60.9 36.8 48.2 20.7 

Mean 53.9 12.5 42.7 4.8 

b) C. odorata sites     
Cobija 47.8 38.5 60.7 15.8 
Riberalta 38.4 38.6 40.9 19 
Rurrenabaque 48.5 38.5 30.4 21.6 

Mean 47.7 19.7 42.4 8.6 

 310 

KDA classification errors for C. fissilis samples were on average 53.9% (range 37.5% to 80.9%), while 311 

those for C. odorata averaged 47.7% (range 38.4% to 48.5%, Table 3). Roboré and Yapacaní showed 312 

the highest total mean error for sites discrimination of C. fissilis samples (Table 3a, Supplementary Data 313 

Figure A.1c), and Concepción and Guarayos the lowest. Rurrenabaque showed the highest mean error 314 

and Riberalta the lowest error for C. odorata sample classification (Table 3b, Supplementary Data 315 

Figure A.1d). 316 

There was misclassification between 3-4 other sites of origin (Supplementary Data Table A.4) with the 317 

trained algorithm in KDA. However, some sites showed chemical characteristics clearly distinct from 318 

other sites. For example, samples from Roboré and Bajo Paraguá were distinct from Espejos but this 319 

site was often confused with Concepción and Guarayos. Samples from Bajo Paraguá and Espejos were 320 

distinct from each other but wrongly assigned to Concepción and Yapacaní. Guarayos and Espejos were 321 

distinct from Bajo Paraguá but were wrongly assigned to Concepción and Yapacaní.  322 

Similarly to KDA, there was misclassification between 2-3 other sites of origin in the Random Forest 323 

analyses (Supplementary Data Table A.5). For example, Bajo Paraguá was distinct from 3 sites: 324 

Espejos, Concepción and Guarayos but some samples were wrongly assigned to Roboré and Yapacaní. 325 

Roboré samples had a higher chance of being wrongly assigned to Bajo Paraguá compared with 326 
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Yapacaní. Samples from Espejos were wrongly assigned to all sites except Bajo Paraguá. The highest 327 

error for the identification of C. fissilis sites using Random Forest was observed in Espejos followed by 328 

Roboré and Yapacaní while Concepción showed the best performance with the lowest error rate 329 

(Supplementary Data Figure A.1e and f) (Table 3).  330 

On the other hand, C. odorata showed the highest classification error for Rurrenabaque and lowest error 331 

for Riberalta. Samples from Cobija were confused with samples from Rurrenabaque and Riberalta 332 

(Supplementary Data Table A.6). However, Rurrenabaque samples were mostly assigned to Riberalta 333 

followed by Cobija. Riberalta was confused by the other two sites but it had the highest number of 334 

correct assignments. 335 

Although Random Forest included a higher number of samples from different sites compared with KDA 336 

(24 samples), it performed similarly in error rates and assignments. Samples from Cobija were mostly 337 

wrongly assigned to Rurrenabaque and to a lesser extent to Riberalta (Supplementary Data Table A.7). 338 

Samples from Rurrenabaque were wrongly assigned to Riberalta and Cobija, at roughly equal 339 

frequencies. With this method, Rurrenabaque showed the highest number of correct assignments. In 340 

each of the 100 Random Forest analyses, the most important compounds for site discrimination were 341 

selected (Supplementary Data Table A.8). 342 

Discussion 343 

To combat the illegal trade in timber, independent methods to identify species and verify geographical 344 

origin need to be developed. In this study, we assessed the effectiveness of DART-TOFMS spectra 345 

followed by multivariate statistical analysis to determine the potential for differentiating Cedrela 346 

species and geographic origin of Cedrela timber. Overall species differentiation error was 15-19% 347 

(range for two statistical methods), while that for geographic origin was significantly higher (42-54%). 348 

These discrimination errors are higher compared with previous studies that applied DART-TOFMS, 349 

which reached discrimination errors of less than 10% for species discrimination (Lancaster and 350 

Espinoza, 2012; Musah et al., 2015; Evans et al., 2017) and of ~30% in distinguishing between sites of 351 

origin (Finch et al., 2017). We also found strong differences in discrimination error between species. 352 

Possible explanations for these differences include (1) low sample sizes for some species, (2) variation 353 

within species, (3) misidentification by the curator, or (4) variation across the sites where the species 354 

are found (e.g. some species are found together as C. fissilis and C. balansae). We will discuss these 355 

possible causes below. 356 

Low sample size can lead to higher error rates. This is exemplified by C. montana, of which only two 357 

samples were collected. Including this species in the analyses increased the error of species 358 

identification from 15 to 30%. Yet other studies that applied DART-TOFMS in species with small 359 
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sample sizes have successfully discriminated between species (Lancaster and Espinoza, 2012; McClure 360 

et al., 2015; Wiemann and Espinoza, 2017). This discrepancy depends on the degree of chemical 361 

variation which is much smaller in some species than in others. This variability was evidenced by C. 362 

fissilis and C. odorata which showed the lowest error rates in the species discrimination analysis 363 

compared with C. angustifolia and C. balansae which showed the highest error rates. This indicates 364 

that the accuracy of discrimination is highly species specific which thwarts extrapolating these results 365 

to other species and sites. Nevertheless, a more accurate conclusion can be reached by identifying 366 

representative chemical compounds in a heatmap. This graphical overview facilitates the discovery of 367 

particular trends, such as species-specific chemicals. Another possible source of error is 368 

misidentification by the curator. This possible observer bias could be solved by having multiple curators 369 

identify and compare herbarium samples before further analysis. In this study, the samples identified 370 

were based on a large herbarium collection and previous identifications of Cedrela samples throughout 371 

Bolivia. 372 

The low accuracy of site discrimination may also be caused by local conditions such as climate, soil 373 

characteristics and nutrient availability which seem to affect tree performance and composition (Gentry 374 

et al., 1995; Medina, 1995; Oliveira‐Filho et al., 1998; Toledo et al., 2011). In the Meliaceae family, 375 

Noldt et al. (2001) found that some species were more sensitive to environmental conditions due to root 376 

systems in the upper soil layers. The Cedrela samples in our study also showed superficial tree roots 377 

and site-specific growth variation (Paredes-Villanueva et al., 2016) which indicates that these trees 378 

display site-specific characteristics that may have played an important role in wood formation. Such 379 

site characteristics vary from large scale, e.g. ecosystem under different climatic regimes to small scale 380 

e.g. the micro site factors that contribute to tree development (Reifsnyder et al., 1971). The scale 381 

variation of site identification may have played a role in our discrimination among sites: C. odorata 382 

sites were more distant than C. fissilis sites. This was confirmed when only Bajo Paraguá, Roboré and 383 

Yapacaní (the most distant sites of C. fissilis) were analysed: the accuracy remained similar with 384 

Random Forest (57%) and increased to 53% with KDA (data not shown). These results suggest that 385 

discriminating between more distant regions or locations may result in higher accuracies than 386 

discriminating among neighboring sites. 387 

Apart from these external factors that influence discrimination error, the two statistical analyses we 388 

used (Random Forest and KDA) also resulted in different error rates. These errors can be reduced by 389 

comparing the probabilities of being assigned to another group. Therefore, KDA and Random Forest 390 

would best be used alongside each other as triangulation methods. Comparing and cross-checking 391 

results between groups and statistical methods will increase the certainty in identifying species and site 392 

of origin. In addition, results should also be complemented by other independent statistical tools. 393 

Consistent results of these statistical methods could increase the confidence of correct identification 394 
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when analysing the spectra generated by DART-TOFMS. Decision Trees (Kamiński et al., 2018; 395 

Therneau et al., 2018) or other machine learning algorithms that would also provide information of the 396 

less abundant chemicals could also be used as multiple approximation methods. 397 

Finally, DART-TOFMS is a qualitative analysis; in order to investigate the role of distance, rainfall, 398 

altitude and the chemical composition of Cedrela trees in predicting the likelihood of belonging to the 399 

conditions of a specific site, it is necessary to apply a quantitative chemical approach. Such an analysis, 400 

in which the effects of sample size and time on the detection accuracy of the chemical signals are 401 

measured, will allow us to interpret the resulting molecular mass spectra across different spatial and 402 

temporal scales. The within-the-tree variation and among-site differentiation of the chemical 403 

compounds of the same species represents a great potential for more specific characterization. 404 

All samples in this study were collected in Bolivia, a country that is severely impacted by illegal trade 405 

in timber, including Cedrela species. The methods used in this study showed the high potential of mass 406 

spectrometry for use in Cedrela species identification in Bolivia, with the highest confidence in 407 

identifying C. fissilis. DART TOFMS analysis can easily separate Cedrela genus trees from the other 408 

look-alike species, like Swietenia macrophylla King and Carapa guianensis Aubl. (Braga et al., 2011; 409 

Bergo et al., 2016), and this would help when false declarations and documents are being used. Previous 410 

studies also found that most of the difficulties of Cedrela identifications were at the species level rather 411 

than at the genus level (Gasson, 2011). Also, the accuracy of identification between samples from the 412 

genera Dalbergia and Machaerium was >95% (Espinoza et al., 2015; Lancaster and Espinoza, 2012). 413 

This suggests that DART TOFMS analysis may perform better in distinguishing between Cedrela and 414 

other look-alike genera, but suffers in species specific assignment within the taxa. 415 

Conclusion 416 

Cedrela species belong to a timber genus that has been overexploited in the last couple of years. The 417 

regulation of their trading has presented many challenges, given that the identification of those species 418 

that belong to the CITES list is difficult because of similar wood anatomical characteristics. Our 419 

approach offers a strategy for improving identification certainty of Cedrela species by using a 420 

complementary approach contributing to their proper forest management and conservation. DART-421 

TOFMS offers an alternative for identification and chemical discrimination among such species. There 422 

are several statistical methods to analyse the data generated by DART-TOFMS. Consistent results of 423 

two statistical methods (discriminant analyses: KDA and Random Forest) were found in this study, and 424 

applying both methods on the same dataset is recommended. Our results reveal potential for Cedrela 425 

species assignment (81-85% accuracy), particularly for C. fissilis (95.6%). Our results also show that 426 

discrimination of geographical origin is not possible due to low assignment (with accuracies of 46-57% 427 

for C. fissilis and 52-58% for C. odorata). Thus, the mass spectrometric approach used here can help to 428 
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identify species provenance of certain Bolivian Cedrela timbers, but not geographic provenance within 429 

the country. 430 
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Supplementary material  607 

608 

609 

 610 

Figure A.1. Mean error rates of a) the Kernel Discriminant Analysis and b) Random Forest 611 
analysis for species analyses. Mean error rates for c) Kernel Discriminant Analysis per site for C. 612 
fissilis and d) Kernel Discriminant Analysis per site for C. odorata, e) Random Forest analyses 613 
per site for C. fissilis and f) Random Forest analyses per site for C. odorata. The whiskers show the 614 
standard error of the data.  615 
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Table A.1. Confusion matrix of species discrimination and frequency of species (%) in each 616 
randomized classification table using KDA 617 

KDA 
C. 

angustifolia 
C. 

balansae C. fissilis C. odorata 
C. 

saltensis Total 

C. angustifolia 
Total 

samples 
232 23 20 20 20 315 

% 73.7 7.3 6.3 6.3 6.3 100 

C. balansae 
Total 

samples 
44 112 44 12 10 222 

% 19.8 50.5 19.8 5.4 4.5 100 

C. fissilis 
Total 

samples 32 18 1107 56 0 1213 

% 2.6 1.5 91.3 4.6 0 100 

C. odorata 
Total 

samples 
1 0 118 432 11 562 

% 0.2 0 21.0 76.9 2.0 100 

C. saltensis 
Total 

samples 
10 2 0 33 143 188 

% 5.3 1.1 0 17.6 76.1 100 
 618 

Table A.2. Confusion matrix of species discrimination and frequency of species (%) in each 619 
randomized classification table using Random Forest 620 

Random Forest 
C. 

angustifolia 
C. 

balansae 
C. 

fissilis 
C. 

odorata 
C. 

saltensis Total 

C. angustifolia 
Total 

samples 
796 1 236 0 162 1195 

% 66.6 0.1 19.7 0 13.6 100 

C. balansae 
Total 

samples 
92 470 177 54 0 793 

% 11.6 59.3 22.3 6.8 0 100 

C. fissilis 
Total 

samples 4 4 4752 211 0 4971 

% 0.1 0.1 95.6 4.2 0 100 

C. odorata 
Total 

samples 
0 0 369 2010 2 2381 

% 0 0 15.5 84.4 0.1 100 

C. saltensis 
Total 

samples 
91 0 13 81 475 660 

% 13.8 0 2.0 12.3 72.0 100 
  621 
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Table A.3. List of the 15 most important chemical compounds obtained from 50,000 runs of 622 
Random Forests. The numbers are the mass-to-charge ratios (m/z). 623 

m/z 

% of runs 
including 

the 
compound 

Molecular formula 
Tentative 

assignments 

501.278 100 C28H38O8 -H 3,7-Dideacetylkhivorin 
500.265 100 C28H34O7 +NH4 Gedunin 
484.245 100 C27H34O9 – H2O Cedrodorin 
483.244 100 C28H34O7 +H Gedunin 
469.344 99 C27H32O7 +H Mexicanolide 
528.412 92 - - 
451.337 92 C27H32O7 - OH Mexicanolide 
229.200 84 - - 
227.095 83 C15H24 +Na delta-Cadinene 
357.136 79 C21H24O5 +H - 
470.335 74 C27H36O8 –H2O Swiemahogin A 
452.307 74 C27H34O7 –H2O Methyl angolensate 
527.418 71 C29H36O10 -OH 6-Acetoxycedrodorin 
471.347 67 C27H34O7 +H Methyl angolensate 
507.399 58 C30H36O7 -H Mahonin 

 624 

Table A.4. Confusion matrix of sites discrimination and frequency of sites (%) in each 625 
randomized classification table using KDA in C. fissilis 626 

KDA 
Bajo 

Paraguá Espejos Concepción Guarayos Roboré Yapacaní Total 

Bajo 
Paraguá 

Total samples 101 0 1 0 82 25 209 
% 48.3 0 0.5 0 39.2 12.0 100 

Espejos 
Total samples 0 83 39 30 0 3 155 

% 0 53.5 25.2 19.4 0 1.9 100 

Concepción 
Total samples 0 0 144 49 17 43 253 

% 0 0 56.9 19.3 6.7 17.0 100 

Guarayos 
Total samples 0 2 95 157 4 6 264 

% 0 0.8 36.0 59.5 1.5 2.3 100 

Roboré 
Total samples 120 0 40 0 36 17 213 

% 56.3 0 18.8 0 16.9 8.0 100 

Yapacaní 
Total samples 48 22 8 0 50 78 206 

% 23.3 10.7 3.9 0 24.3 37.9 100 
  627 
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Table A.5. Confusion matrix of sites discrimination and frequency of sites (%) in each 628 
randomized classification table using Random Forest in C. fissilis 629 

Random Forest 
Bajo 

Paraguá Espejos Concepción Guarayos Roboré Yapacaní Total 

Bajo 
Paraguá 

Total samples 507 0 0 0 235 65 807 
% 62.8 0 0 0 29.1 8.1 100 

Espejos 
Total samples 0 68 216 181 1 3 469 

% 0 14.5 46.1 38.6 0.2 0.6 100 

Concepción 
Total samples 0 12 805 221 0 0 1038 

% 0 1.2 77.6 21.3 0 0 100 

Guarayos 
Total samples 0 11 342 649 0 0 1002 

% 0 1.1 34.1 64.8 0 0 100 

Roboré 
Total samples 369 0 13 0 361 66 809 

% 45.6 0 1.6 0 44.6 8.2 100 

Yapacaní 
Total samples 186 0 17 0 152 420 775 

% 24.0 0 2.2 0 19.6 54.2 100 
 630 

Table A.6. Confusion matrix of sites discrimination and frequency of sites (%) in each 631 
randomized classification table using KDA in C. odorata 632 

KDA Cobija Riberalta Rurrenabaque Total 

Cobija 
Total samples 107 23 80 210 

% 51.0 11.0 38.1 100 

Riberalta 
Total samples 6 114 74 194 

% 3.1 58.8 38.1 100 

Rurrenabaque 
Total samples 34 69 93 196 

% 17.3 35.2 47.4 100 
 633 

Table A.7. Confusion matrix of sites discrimination and frequency of sites (%) in each 634 
randomized classification table using Random Forest in C. odorata 635 

Random Forest Cobija Riberalta Rurrenabaque Total 

Cobija 
Total samples 319 182 288 789 

% 40.4 23.1 36.5 100 

Riberalta 
Total samples 181 485 137 803 

% 22.5 60.4 17.1 100 

Rurrenabaque 
Total samples 112 117 579 808 

% 13.9 14.5 71.7 100 
  636 
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Table A.8. List of the most important chemical compounds obtained from 50,000 of Random 637 
Forests to identify site of origin for C. fissilis and C. odorata. The numbers are the mass-to-charge 638 
ratios (m/z). 639 

C. fissilis C. odorata 

m/z 
% of runs 

including the 
compound 

Molecular 
formula 

Tentative 
assignment 

m/z 

% of runs 
including 

the 
compound 

Molecular 
formula 

Tentative 
assignment 

149.123 100 - - 468.307 97 - - 
122.075 100 - - 467.344 96 - - 

121.067 100 - - 527.418 88 C29H36O9 -H 

Methyl 
3beta-

acetoxy-6-
hydroxy-1-
oxomeliac-
14-enoate 

109.098 100 - - 673.281 77 
C35H46O14 -

OH 
Meliacarpinin 

D 
279.165 100 - - 583.22 77 - - 
123.044 99 - - 81.035 63 - - 
280.164 97 - - 486.349 58 - - 
274.112 96 - - 99.044 58 - - 

274.5 95 - - 192.142 58 - - 

150.072 94 - - 470.335 50 C27H34O7 
Methyl 

angolensate 

95.087 84 - - 117.053 48 - - 
135.103 83 C10H14 +H p-Cymene 303.449 44 - - 
206.201 79 - - 528.412 43 - - 

104.069 53 - - 469.344 41 C27H32O7 +H Mexicanolide 

275.276 50 - -      

81.035 47 - -     

379.292 44 - -     

204.186 40 
C15H26O –

H2O T-Muurolol     

 640 
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