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Propositions

1. Deep learning is such a powerful technology that it will be the basis for all future

weed control systems.

(this thesis)

2. For weed control to be really successful, weed classification should be accompanied

by confidence values of the estimates.

(this thesis)

3. Nature is the source of answers to all the questions in science.

4. For automotive applications, the hydrogen fuel cell offers a far more sustainable

solution than the electric energy stored in Li-ion batteries.

5. Bram Peper’s report has had most influence on the Dutch agricultural sector in

the past one and a half decade.

(“Duurzame Kennis, Duurzame Landbouw - Een advies aan de Minister van Land-

bouw, Natuurbeheer en Visserij over de kennisinfrastructuur van de landbouw

in 2010”)

6. Computer programming should be a compulsory course starting at the first

classes in primary school.

7. In legislation, smoking nearby children should be treated as an act of violence.

Propositions belonging to the thesis, entitled:

“Advanced classification of volunteer potato in a sugar beet field”
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Wageningen, 19-September-2018
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CHAPTER 1

General Introduction

1.1 A brief history of weed control

When biblical Adam and Eve were banished from the Garden of Eden, they were

promised to have thorns and thistles (Genesis 3:18). Perhaps from then on, weeds

(thorns and thistles) have troubled humanity and made mankind fight against them in

crop productions (Young & Pierce, 2014). The earliest known weed control method

was, according to the drawings made in ancient Egypt and Mesopotamia (6000 BC),

hand-weeding which merely implied pulling weeds by hand or cutting plants out with

a knife and with hoes (Timmons, 2005). Since then, hand-weeding has long been a

primary means of “technology” for weed control (Bell, 2015). In due course of time,

however, the weeding technology was gradually improved, thanks to the advancement

of the weeding tools as well as the use of animal power, by utilising T-shaped wooden

implements, V-shaped tools tipped with bronze and A-shaped logs with pegs which

were often pulled by animals such as cattle or horses (Smith & Frederiksen, 2000).

Only in the mid-19th century, animal-power used for ploughing was replaced by

steam-engine which was ultimately substituted by combustion engines in the 1930s.

Chemicals have also been used for weed control for quite a long time. The very

first known chemical treatment for weed control was to use a rock salt as was done

by the Romans during the 1st century BC (Zimdahl, 2013). Since then, salt had
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long been used as a “weed-killer” because salt was known to destroy plant life quite

well (Dreiling, 2017). Only in the beginning of the 20th century, the modern ways

of chemical treatment for weed control have begun with the introduction of effective

synthetic herbicides. Chemical weed control has gradually become a viable alternative

for laborious mechanical weed removal (Kelton & Price, 2011). In addition, the

application of herbicides using a tractor-pulled spraying system significantly reduced

the labour burdens associated with the weeding. Nowadays with the advent of

automation and precision agriculture technologies, site-specific weed management is

becoming feasible. In site-specific weed management, i.e. differentiated application of

herbicides on an individual plant level provides an efficient way to minimise herbicide

costs and environmental impact.

1.2 A specific case: volunteer potato control in sugar

beet

Potato and sugar beet are major crops grown in the Netherlands (IRS, 2005). Potato

is frequently rotated followed by sugar beet because a proper sequence of crops is

beneficial for crop production. However, some of the potato tubers that remain in the

field after harvest may survive a mild winter and will emerge in the next crop (sugar

beet) during the following spring and summer or even the year after. These emerged

potatoes are known as volunteer potatoes and are considered to be a weed.

Volunteer potato is a major problem in sugar beet production in the Netherlands.

Not only because volunteer potato may overgrow the sugar beet (Rahman, 1980) but

also volunteer potato competes with sugar beet for water, nutrients and space in the

field, which in most cases lead to a loss of crop yield (Boydston & Seymour, 2002;

Nieuwenhuizen et al., 2010). In a sugar beet field, for example, five volunteer potato

plants per square meter can lead to a loss of sugar beet yield of up to 16.5 t/ha

(MacEwan et al., 2017). Moreover, volunteer potato provides a hideout for harmful

diseases such as nematodes and pests, and is also known as the point source for the

spread of one of the most notorious potato diseases, called late blight, caused by

Phytophthora infestans. This is a major threat to potato production in north-western

Europe and is one of the most devastating plant pathogens in agriculture (Cooke et al.,

2011; Moushib et al., 2013).

2
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These are unwanted effects, and therefore adequate control of volunteer potato is

critical. This is stressed by a statutory obligation in the Netherlands under which

farmers have to remove volunteer potato plants from their fields before the 1st of July

in the growing season, to a maximum level of two remaining plants per square meter

(Kienhuis & Berge, 2003).

For the control of volunteer potato, Dutch farmers generally apply glyphosate to

the weeds, and this chemical application is mainly done manually and selectively. Such

manual application is not the desired solution for weed control in the field as it is

labour-intensive and time-consuming which typically comes with high labour cost. On

top of the manual application, mechanized methods are also carried out in practice

but are less effective, like dipping the volunteer potato plants with glyphosate using

a pass of a roll or a stick by their higher height as compared to the crop (Boonman,

2013). For a proper control in practice, each stem of the volunteer potato plant has to

be handled with glyphosate to destroy it completely.

As manual control was becoming too expensive and yielded incomplete control,

an automated system for detection and control of volunteer potato was developed by

Nieuwenhuizen et al. (2010) (Figure 1.1a). This tractor-pulled system was equipped

with machine vision device inside the hood and with a weeding actuator on the back.

Once volunteer potato plants were detected and identified by machine vision, a micro

sprayer deposited a droplet of 3.2 µL for the selective control of volunteer potato. This

system demonstrated the potential of automated and plant-specific weed control with

a vision-based approach for an agricultural field application. However, with a success

rate of 83% the system did not reach the required 95% control of volunteer potato

plants. The system yielded an unsatisfactory result in field conditions because the

classification between sugar beet and volunteer potato was mainly based on colour

features. Besides, due to the use of colour as a primary discriminative feature, artificial

lighting (five xenon lamps) was needed to attain a constant and sufficient level of

illumination under the hood which required a large amount of energy (Figure 1.1b).

The whole system was designed to be mounted behind a tractor, which was a limiting

factor as well. The use of a (human-driven) tractor for weed control may bring

about other issues such as soil compaction, environmental pollution, additional fuel

consumption and driver fatigue in a case for human-driven tractor (Stemp, 2005).

These issues can be minimised or avoided with a small-sized and lightweight

autonomous system because such a system may have less environmental impact with

3
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lower usage of energy as well as less soil compaction. Additionally, such a system may

have less critical safety issues than heavy and large agricultural machinery (Pedersen

et al., 2006; Sørensen et al., 2010; Van Henten et al., 2009).

(a) (b)

Figure 1.1: (a) Automated system for detection and removal of volunteer potato
developed by Nieuwenhuizen et al. (2010). (b) Schematic drawing of measurement
setup inside of the system. Two cameras and five xenon work lamps (XE) are located
under the blue cover with grey plastic flaps. Two cameras (RGB, NIR), ultrasonic
sensors (US), the micro sprayer (MS) and wheel encoder (WE) are connected on the
system.

1.3 The EU SmartBot project: a small-sized robot

for volunteer potato control

In 2011, the EU SmartBot project1, a cross-border collaboration project which involved

24 different partners from Germany and the Netherlands, was initiated to develop

a robotic system for several applications including for agricultural use. In AgroBot,

part of the SmartBot project, a small-sized and vision-based autonomous weed control

system was to be developed for effective control of volunteer potato plants in a sugar

beet field. As a robotic platform, the Clearpath Husky A200 UGV (Unmanned Ground

Vehicle) was to be used in this project (Figure 1.2). The robot was to be equipped

with a camera on the front and a weeding actuator on the back.

1Interreg IVa, European Fund for the Regional Development of the European Union and Product
Board for Arable Farming.
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Due to the reduced carrying capacity of the robotic platform (Husky), additional

infrastructure like a hood was not a viable option. Moreover, artificial lighting was not

considered feasible either because the mobile platform was battery operated. Thus,

the system should be able to perform robustly in scenes that are fully exposed to

ambient lighting conditions.

Requirements

Within the context of the SmartBot weeding application, the following requirements

were set, similar to those of the previous study of Nieuwenhuizen (2009). The resulting

automatic weeding system should:

• effectively control more than 95% of the volunteer potato;

• ensure less than 5% of undesired control of sugar beet plants;

• ensure a classification time of less than 1 second per field image for real-time

operation in the field.

The overall control accuracy depends both on the accuracy of the classification

and the accuracy of the weed control (actuation) device. In a real-life situation, it

is questionable that the actuation device would perform with 100% success in weed

control. Therefore, to achieve in the end the required volunteer control of 95% or

more, the classification accuracy should be considerably higher than 95%.

Figure 1.2: The robotic platform, Clearpath Husky A200 UGV (Unmanned Ground
Vehicle) (left), and side view of the Husky robot with its dimension (right) (Clearpath,
2014).
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1.4 A fundamental pipeline for weed control and

scope of this thesis

For autonomous weed control in an agricultural field, following three core functionalities

are typically required (Slaughter et al., 2008): I) (autonomous) vehicle navigation

in the field, II) weed identification and classification, and III) actuation of a weed

removal device. A fundamental pipeline for weed control is presented in Figure 1.3.

Among these three core functionalities, the identification and classification of weeds

from cash crop using machine vision under agricultural field conditions still remains

the greatest challenge (Liu et al., 2014; Slaughter et al., 2008). Consequently, this

thesis focuses on II) weed identification and classification (in Figure 1.3), specifically

for volunteer potato detection within SmartBot project. For this, three essential steps

are needed as follows:

(a) Any plant materials are first segmented in an acquired field image. During this

vegetation segmentation, background pixels (soil-related pixels) are removed,

and foreground pixels (plant-related pixels) are left (Figure 1.3a).

(b) Individual objects (plants) are identified (Figure 1.3b).

(c) Each individual object is classified either as a sugar beet plant or a volunteer

potato plant (Figure 1.3c).

Of the three steps above, this thesis covers two processes, the first (a) and the third

(c) steps, to identify and classify volunteer potato in a sugar beet field: 1) vegetation

segmentation (Figure 1.3a), and 2) classification of vegetation into volunteer potato

plants (weeds) and sugar beet plants (crop) (Figure 1.3c). Dealing with variability

in colour, shape and size of the plants and varying light conditions are amongst the

research challenges. The details are explained in the following sections.

The identification of individual plants, the second step (b), was manually carried

out mainly using blob detection, and this was not covered in this thesis. Overlapping

plants of similar and different species were not considered in this study.
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I. Field navigation III. Actuation of removal device

II. Weed identification and classification

(a) Vegetation segmentation
(with shadow removal)

(b) Individual 
object 

identification

(c) Classification
of each object

① ④

② ③

Figure 1.3: A fundamental pipeline for autonomous weed control. An autonomous weed
control system requires three core functionalities: I) (autonomous) vehicle navigation
in the field, II) weed identification and classification, and III) actuation of a weed
removal device. This thesis focuses on II) volunteer potato (weed) identification and
classification. The required three steps are listed: (a) vegetation segmentation removes
soil background and segments plant materials in a field image, (b) the individual objects
(plants) are identified, and then (c) each identified object is classified either as a sugar
beet plant (blue square) or a volunteer potato plant (red square).
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1.5 Problem description

Concerning the application of a vision-based system in an agricultural field environment,

researchers have commonly addressed the issues of varying illumination and shadows

by using a hood covering both the scene and the vision acquisition device (Figure 1.4).

By doing so, any ambient light was blocked (Ahmed et al., 2012; Haug et al., 2014;

Lottes et al., 2017), and constant illumination under the cover was then obtained

using artificial lighting (Nieuwenhuizen et al., 2010; Polder et al., 2014).

However, such an approach using a hood/cover was not feasible within the context

of the SmartBot project because a small-sized mobile robotic platform (Husky) was to

be used (Figure 1.2). Additional infrastructure such as a hood and lighting equipment

to overcome the challenges of ambient lighting conditions in the field, as for example

were used by Nieuwenhuizen et al. (2010) and Haug et al. (2014) in Figure 1.4, was

not considered viable. The resulting system in SmartBot should perform robustly in

scenes that are fully exposed to ambient lighting conditions in the field.

There are two challenging issues for vision-based applications that are fully exposed

to ambient lighting conditions in an agricultural field: 1) strongly varying natural

illumination (Jeon et al., 2011; Wang et al., 2012); 2) shadows under direct sunlight

conditions (Guo et al., 2013; Zhang et al., 2010). In a field environment, illumination

conditions constantly change depending on the sky and weather conditions, and this

change affects colour pixel values of acquired field images and leads to an inconsistent

Figure 1.4: Example applications of vision-based systems in an agricultural field. Des-
pite different appearances, these systems have one common design approach: the vision
system was placed under a cover to block any ambient light, and constant illumination
under the cover was then obtained using artificial lighting. These applications were
developed by Polder et al. (2014), Nieuwenhuizen et al. (2010), and Haug et al. (2014)
(from left to right).
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colour representation of plants (Sojodishijani et al., 2010; Teixidó et al., 2012). The

dynamic range of the scene in such field environments is much larger than a traditional

machine-vision camera covers (Dworak et al., 2013), and thus a traditional RGB

camera may not be able to capture stable and reliable images. In addition, shadows

often create extreme illumination contrasts, causing substantial luminance differences

within a single image scene under direct sunlight conditions when the scene in the

field is not covered by a hood or similar structure. Shadows influence colour values of

the object in an image scene, and in many cases in vegetation segmentation, shadows

tend to be classified as part of the foreground, i.e., as vegetation regions. These issues

make vegatation segmentation a very challenging task.

When it comes to the classification of weeds amongst cash crops, the use of

conventional features (intuitive features), such as colour, shape (biological morphology)

and texture leads to relatively poor classification result. These conventional features

on an individual basis or as a combination of multiple of them have been commonly

used for the classification of weed and crop (Ahmed et al., 2012; Åstrand & Baerveldt,

2002; Gebhardt & Kühbauch, 2007; Pérez et al., 2000; Persson & Åstrand, 2008;

Slaughter et al., 2008; Swain et al., 2011; Zhang et al., 2010). These features are

intuitive and easy-to-implement, but may have limited discriminative power under

widely varying natural light conditions in an agricultural field. The use of colour

features, for example, may not yield robust classification in a system that has to work

under ambient light conditions (Lee et al., 2010). For a case of volunteer potato and

sugar beet, it is sometimes hard if not impossible to differentiate between them using

colour features. Usually, volunteer potato has a darker green colour than sugar beet

(Figure 1.5a) which results in a separable pixel distribution in the EG-RB colour plane

(Figure 1.5c). However, as is shown in Figure 1.5b, volunteer potato occasionally

has the same or very similar colour as sugar beet which then yields an inseparable

distribution in the EG-RB colour plane (Figure 1.5d). Besides, the colour of plants

may change depending on the growth stage and nutritional status, and the green plant

leaves sometimes even turn yellow in the summer time (Muñoz-Huerta et al., 2013).

Shape and texture may also not be sufficiently discriminating features for successful

classification of sugar beet and volunteer potato in the field. Therefore, a substantial

effort has to be made in the classification of weeds amongst cash crops using novel

discriminative features; however, it is still unknown which features work best for the

classification of sugar beet and volunteer potato in agricultural field conditions.
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Figure 1.5: (a) In general, volunteer potato has a darker green colour than sugar
beet. (c) In such a case, sugar beet and volunteer potato are separable (based on the
colour) in the EG-RB plane. (b) An example case of volunteer potato having the same
colour distribution as sugar beet. (d) Sugar beet and volunteer potato are then visually
inseparable in the EG-RB plane. The EGRBI transformation was used to compare the
colour difference between sugar beet and volunteer potato (Nieuwenhuizen et al., 2007).

1.6 Objectives, research questions and thesis out-

line

Within the SmartBot project the objective of this research was:

to develop a computer vision procedure

that detects volunteer potato plants

under ambient light conditions in a sugar beet field

Based on this main objective, three sub-objectives were formulated addressing two

critical processes to discriminate between volunteer potato and sugar beet: vegetation
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segmentation (sub-objectives 1 and 2) and classification of vegetation into volunteer

potato and sugar beet (sub-objective 3). In line with these three sub-objectives,

research questions were derived. The research questions are dealt with in the four

research chapters in this thesis (Chapter 2 to 5) and are written in bold in below:

Sub-objective 1: To develop an algorithm for robust vegetation segmentation that

can cope with the influence of shadows and natural illumination conditions in a sugar

beet field, using a camera that has a wide dynamic range.

a. Does a ground shadow detection and removal method enhance the

performance of vegetation segmentation under natural illumination

conditions in the field, using a High Dynamic Range (HDR) camera?

Chapter 2 proposes an algorithm for ground shadow detection and removal

based on colour space conversion and a multilevel threshold. The advantage of

using the proposed algorithm was assessed for vegetation segmentation with field

images that were acquired by an HDR camera under natural illumination. An

HDR camera was used because it enables the capture of stable and reliable images

even under intense and direct solar radiation or under faint starlight (Reinhard

et al., 2010).

Sub-objective 2: To evaluate which combination of colour indices and threshold

techniques performs best under field conditions given varying illumination conditions,

presence of shadows and differences in plant size.

a. Do different combinations of colour index and threshold technique

result in different segmentation performance when evaluated on field

images? Do certain combinations stand out positively in performance

compared to others and, the other way around, do certain combina-

tions stand out negatively when compared to others?

b. If differences in segmentation performance do exist, which combina-

tion works the best given the field conditions like illumination intens-

ity, shadow presence and plant size?

c. Given the varying conditions in the field, is it better to use one com-

bination (at all times) or should the combination be adapted to the

conditions at hand for best segmentation performance?

11



1

Chapter 1

E
xc

es
si

ve
 G

re
en

 (E
G

)

Red minus Blue (RB)
0.3 0.60

0.
2

0.
4

Sugar beet
+ Volunteer potato E

xc
es

si
ve

 G
re

en
 (E

G
)

Red minus Blue (RB)
0.3 0.60

0.
2

0.
4

Sugar beet
+ Volunteer potato

(a) (b)

(c) (d)

Figure 1.5: (a) In general, volunteer potato has a darker green colour than sugar
beet. (c) In such a case, sugar beet and volunteer potato are separable (based on the
colour) in the EG-RB plane. (b) An example case of volunteer potato having the same
colour distribution as sugar beet. (d) Sugar beet and volunteer potato are then visually
inseparable in the EG-RB plane. The EGRBI transformation was used to compare the
colour difference between sugar beet and volunteer potato (Nieuwenhuizen et al., 2007).

1.6 Objectives, research questions and thesis out-

line

Within the SmartBot project the objective of this research was:

to develop a computer vision procedure

that detects volunteer potato plants

under ambient light conditions in a sugar beet field

Based on this main objective, three sub-objectives were formulated addressing two

critical processes to discriminate between volunteer potato and sugar beet: vegetation

10

General Introduction

segmentation (sub-objectives 1 and 2) and classification of vegetation into volunteer

potato and sugar beet (sub-objective 3). In line with these three sub-objectives,

research questions were derived. The research questions are dealt with in the four

research chapters in this thesis (Chapter 2 to 5) and are written in bold in below:

Sub-objective 1: To develop an algorithm for robust vegetation segmentation that

can cope with the influence of shadows and natural illumination conditions in a sugar

beet field, using a camera that has a wide dynamic range.

a. Does a ground shadow detection and removal method enhance the

performance of vegetation segmentation under natural illumination

conditions in the field, using a High Dynamic Range (HDR) camera?

Chapter 2 proposes an algorithm for ground shadow detection and removal

based on colour space conversion and a multilevel threshold. The advantage of

using the proposed algorithm was assessed for vegetation segmentation with field

images that were acquired by an HDR camera under natural illumination. An

HDR camera was used because it enables the capture of stable and reliable images

even under intense and direct solar radiation or under faint starlight (Reinhard

et al., 2010).

Sub-objective 2: To evaluate which combination of colour indices and threshold

techniques performs best under field conditions given varying illumination conditions,

presence of shadows and differences in plant size.

a. Do different combinations of colour index and threshold technique

result in different segmentation performance when evaluated on field

images? Do certain combinations stand out positively in performance

compared to others and, the other way around, do certain combina-

tions stand out negatively when compared to others?

b. If differences in segmentation performance do exist, which combina-

tion works the best given the field conditions like illumination intens-

ity, shadow presence and plant size?

c. Given the varying conditions in the field, is it better to use one com-

bination (at all times) or should the combination be adapted to the

conditions at hand for best segmentation performance?

11



1

Chapter 1

d. Do results obtained from a-c hold true when validated on a different

independent image dataset?

Chapter 3 evaluates the performance of 40 combinations of eight colour and

five thresholding techniques to identify which combination performs best under

field conditions given varying illumination conditions, presence of shadows and

differences in plant size. The performance of one combination at all times was

compared with the combinations that were adapted to the conditions. In this way,

it was assessed if it is better to adapt the combinations based on the conditions

for best segmentation performance.

Sub-objective 3: To develop algorithms for the classification of volunteer potato

(weed) among sugar beet (cash crop) using discriminative features that are not dependent

on illumination, colour, and shadow.

a. Does an algorithm using a Bag-of-Visual-Words (BoVW) model and

SIFT or SURF descriptors meet the requirements set for the classific-

ation of volunteer potato and sugar beet under natural and varying

daylight conditions?

b. b. If the BoVW model does not meet the requirements, does a deep

learning approach, particularly transfer learning based on Convolu-

tional Neural Network (ConvNet, or CNN) provide an effective and

better performance to meet the requirements with limited amount of

dataset?

d. Are the processing times (or calculation times) fast enough for real-

time application?

Chapter 4 discusses an algorithm using a Bag-of-Visual-Words (BoVW) model

and SIFT or SURF descriptors as well as crop row information in the form of the

Out-of-Row Regional Index (ORRI) was proposed for the classification of sugar

beet and volunteer potato under natural and varying daylight conditions. The

BoVW approach has demonstrated good performance in many computer vision

applications such as object and scene classification (Law et al., 2014; Tsai, 2012;

Zhou et al., 2013). The SIFT descriptor has been used for weed classification

and recognition in several recent studies (Kazmi et al., 2015a; Wilf et al., 2016).
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The performance difference between SIFT and SURF was verified by assessing

classification accuracy and computation time. Crop row information in the form of

ORRI was added to the feature set to assess any performance improvement. Three

different classifiers (SVM, random forest, and neural network) were compared

to get more insight into performance differences amongst classifiers. A posterior

probability of the output of the SVM was calculated using a method proposed by

Platt (1999).

Chapter 5 evaluates a transfer learning procedure with three different imple-

mentations of AlexNet (Part I) and then assesses the performance difference

amongst the six network architectures (Part II). In Part I, AlexNet was used

as a pre-trained ConvNet. Based on two available options in transfer learning

(use of ConvNet as a feature extractor and use of ConvNet as a classifier), three

scenarios for transfer learning were formulated: 1) pre-trained AlexNet as a fixed

feature extractor followed with a classifier, 2) modified and fine-tuned AlexNet

as a binary classifier, and 3) modified and fine-tuned AlexNet as a fixed feature

extractor followed with a classifier. In Part II, following six pre-trained deep

networks were evaluated to assess the classification performance amongst different

ConvNet architectures: AlexNet, VGG-19, GoogLeNet, ResNet-50, ResNet-101

and Inception-v3. These networks are available as pre-trained ConvNets which

have been trained on ImageNet Dataset, and are used as pre-trained networks.

These nets were used to classify sugar beet and volunteer potato images taken

under ambient varying light conditions in agricultural environments. The classi-

fication performance in both Part I and II was analysed regarding classification

accuracy as well as training and classification time.

Lastly, in Chapter 6, the main results are evaluated with a general discussion in

relation to the objectives of the research. The major contribution of the thesis is

reviewed in a broader perspective and further discussed in connection with existing

literature. Furthermore, the limitations and implications of the results are discussed

for practical application of a weeding robot, and recommendations are proposed for

future research.
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Abstract

A vision-based weed control robot for agricultural field application requires robust

vegetation segmentation. The output of vegetation segmentation is the fundamental

element in the subsequent process of weed and crop discrimination as well as weed

control. There are two challenging issues for robust vegetation segmentation under

agricultural field conditions: (1) to overcome strongly varying natural illumination; (2)

to avoid the influence of shadows under direct sunlight conditions. A way to resolve

the issue of varying natural illumination is to use High Dynamic Range (HDR) camera

technology. HDR cameras, however, do not resolve the shadow issue. In many cases,

shadows tend to be classified during the segmentation as part of the foreground, i.e.

vegetation regions. This study proposes an algorithm for ground shadow detection

and removal, which is based on color space conversion and a multilevel threshold,

and assesses the advantage of using this algorithm in vegetation segmentation under

natural illumination conditions in an agricultural field. Applying shadow removal

improved the performance of vegetation segmentation with an average improvement

of 20%, 4.4%, and 13.5% in precision, specificity and modified accuracy, respectively.

The average processing time for vegetation segmentation with shadow removal was

0.46 s, which is acceptable for real-time application (< 1 s Required). The proposed

ground shadow detection and removal method enhances the performance of vegetation

segmentation under natural illumination conditions in the field and is feasible for

real-time field applications.
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Vegetation segmentation with ground shadow removal

2.1 Introduction

This work was part of the EU-funded project SmartBot, a project with the research

goal to develop a small-sized vision-based robot for control of volunteer potato (weed)

in a sugar beet field. Such a vision-based weed control robot for agricultural field

application requires robust vegetation segmentation, i.e. a vegetation segmentation

that has good performance under a wide range of circumstances. The output of

vegetation segmentation is the fundamental element in the subsequent process of weed

and crop discrimination as well as weed control (Meyer & Camargo Neto, 2008; Steward

et al., 2004). There are two challenging issues for robust vegetation segmentation in

agricultural field conditions: 1) to overcome the strongly varying natural illumination

(Jeon et al., 2011; Wang et al., 2012); 2) to avoid the influence of shadows under direct

sunlight conditions (Guo et al., 2013; Zheng et al., 2009).

Illumination conditions constantly change in an agricultural field environment de-

pending on the sky and weather conditions. These illumination variations greatly affect

(RGB) pixel values of acquired field images and lead to the inconsistent color represent-

ation of plants (Sojodishijani et al., 2010; Teixidó et al., 2012). In addition, shadows

often create extreme illumination contrast, causing substantial intensity/luminance

differences within a single image scene. These extreme intensity differences make

vegetation segmentation a very challenging task.

Researchers addressed the above two problems by using a hood covering both

the scene and the vision acquisition device. By doing so, any ambient visible light

was blocked (Ahmed et al., 2012; Åstrand & Baerveldt, 2002; Haug et al., 2014; Lee

et al., 1999). Constant illumination under the cover was then obtained using artificial

lighting (Nieuwenhuizen et al., 2010; Polder et al., 2014).

Such a solution was not feasible within the framework of the Smartbot project

because a small-sized mobile robotic platform was to be used. An extra structure

for the cover was not viable due to the reduced carrying capacity of the platform.

Moreover, using additional energy for artificial lighting would be another critical issue,

considering the mobile platform was battery operated. Therefore, a solution was

needed that uses the ambient light while overcoming the drawbacks mentioned earlier.

A way to resolve the issue of varying natural illumination and substantial intensity

differences within a single image scene is to use High Dynamic Range (HDR) camera

technology as has been indicated by a number of studies (Graham, 2011; Hrabar et al.,

17
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2009; Irie et al., 2012; Lapray et al., 2012; Mann et al., 2012; Slaughter et al., 2008).

Under direct sunlight conditions, the dynamic range of the scene is much larger than

a traditional non-HDR camera covers, especially if an image scene contains shadows

(Dworak et al., 2013). Having a larger dynamic range, an HDR camera enables the

capture of stable and reliable images even under strong and direct solar radiation or

under faint starlight (Reinhard et al., 2010).

HDR cameras, however, do not resolve the shadow issue. When the scene in the field

is not covered by a hood or similar structure, shadows are inevitable. In many cases

in vegetation segmentation, shadows tend to be classified as part of the foreground,

i.e. vegetation regions (Figure 2.1). Therefore, shadows need to be detected and

preferably removed for better segmentation performance. However, shadow detection is

extremely challenging especially in an agricultural field environment because shadows

change dramatically throughout the day depending on position and intensity of the

sun. Besides, shadows have no regular shape, size, or texture, and can even be

distorted on an uneven ground surface. In recent years, many shadow detection and

removal algorithms were proposed in computer vision research area using a feature-

based or a brightness/contrast compensation (Sanin et al., 2012). However, these

shadow detection and removal algorithms are difficult to implement and require a

significant amount of computation time, which is an important issue for real-time field

applications. Moreover, these algorithms provide poor shadow removal output for

outdoor scenes (Al-Najdawi et al., 2012). Therefore, a simple and effective shadow

detection and removal algorithm is needed for real-time weed detection and control

application in an agricultural field environment.

This paper proposes an algorithm for ground shadow detection and removal, and

Figure 3: Example of shadow images (top) and ExG+Otsu (bottom)

contained no shadows. The vegetation regions were also manually labelled

for ground truth.

Within a stereo image, left camera sensor image with the resolution of

1280× 580 pixels was chosen for the image datasets. All the images were

processed with the Image Processing Toolbox in Matlab (MathWorks, USA).

1.4. Ground shadow detection

As shown in Fig. 3, shadows in agricultural field images are often classified

as part of vegetation using ExG with Otsu threshold. This is mainly because

red colour pixel values in shadow regions are particularly lower than other

green and blue pixel values, whose ExG calculation output is in the similar

range of those of vegetation. To have further processing on shadows, a ground

shadow detection algorithm was developed using colour space conversion.

Colour pixel values in RGB space are highly influenced by the change of

illumination conditions because the illumination and colour parts are not sep-

arated in its colour representation (Florczyk, 2005). Using a different colour

space (or conversion to another colour space) whose colour representation

separates colours and illumination, can bring less influence (or invariant)

of illumination conditions on the shadow detection procedure. Many stud-

ies have shown that colour space conversion approach is generally simple to

4

Figure 2.1: Example of shadow images (top), and vegetation segmentation output
with excess green (ExG) segmentation (bottom). Shadows are partially segmented as
vegetation.
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assesses the effectiveness of using this algorithm in vegetation segmentation under

natural illumination conditions in an agricultural field. The proper quantitative

measure to evaluate the performance of vegetation segmentation are discussed.

2.2 Materials and Methods

2.2.1 High Dynamic Range (HDR) camera

A common definition of the dynamic range of an image is the ratio of maximum and

minimum illuminance in a given scene. More precisely, Bloch (2007) defines dynamic

range as the logarithmic ratio between the largest and the smallest readable signal

(an image is treated as a signal from the camera hardware aspect):

Dynamic Range (dB) = 20× log10(
MaxSignal

MinSignal
) (2.1)

The illumination difference in a real-life image scene can easily exceed a dynamic

range of 80 dB. In outdoor field conditions, the dynamic range can exceed 120 dB

(Radonjić et al., 2011). Human eyes have a dynamic range of around 200 dB, while

a conventional imaging device such as a non-HDR CCD digital camera typically

has a dynamic range of around 60 dB (Bandoh et al., 2010; Ohta, 2007). Under

direct sunlight conditions, the dynamic range of the scene can be much higher than

a traditional non-HDR camera can cover, especially when the image scene contains

sharp dark shadows. Thus, a conventional imaging device is not feasible for machine

vision applications in a natural agricultural environment, because strong direct solar

radiation and shadows frequently cause extreme lighting intensity changes. Piron et al.

(2010) used an exposure fusion method to generate a high dynamic range scene of

plant images and reported that high dynamic range acquisition supported obtaining a

quality image of the scene with a strong signal to noise ratio. In the past few years,

HDR cameras have become commercially available at an affordable price.

In this study, a HDR camera (NSC1005c, New Imaging Technologies, Paris, France)

having a dynamic range of 140 dB and a bit depth of 36 bits per pixel was used

(Figure 2.2). This camera has two identical CMOS sensors providing the stereo images

(left and right), but only the left sensor image was used in this study.

Example images of a similar scene made with the HDR and traditional non-HDR
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radiation and shadows frequently cause extreme lighting intensity changes. Piron et al.
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plant images and reported that high dynamic range acquisition supported obtaining a

quality image of the scene with a strong signal to noise ratio. In the past few years,

HDR cameras have become commercially available at an affordable price.
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(Figure 2.2). This camera has two identical CMOS sensors providing the stereo images

(left and right), but only the left sensor image was used in this study.

Example images of a similar scene made with the HDR and traditional non-HDR
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CCD cameras are shown in Figure 2.3. The HDR camera captures the objects even in

the dark shadow region (Figure 2.3a) whereas a traditional non-HDR CCD camera

(Sony NEX-5R) captures no objects but produces black pixels (Figure 2.3c). The

histogram of the HDR image is well balanced across the darkest and lightest margins

(Figure 2.3b) while the histogram of a traditional non-HDR CCD camera image is

imbalanced with peaks both on the left and right edges due to clipping (Figure 2.3d).

An example field image that was acquired with an HDR camera under very bright

sunny conditions is shown in Figure 2.4. Some pixels in the green leaves were bright

due to specular reflection; while some pixels in the shadow region were very dark. The

extreme lighting intensity difference with a high dynamic range is often found in a

field image scene. In such a condition in the field, a conventional non-HDR imaging

device would not be able to adequately capture the objects in both the bright regions

as well as in the dark shadow regions but an HDR camera does adequately capture

these objects under these lighting conditions.

26

546

Fig. 2 – Field images were acquired with an HDR camera (left) which was mounted at a height of 1 m viewing 547

perpendicular to the ground surface, resulting in a field of view: 1.3 × 0.7 m (right).548

549

1m

0.45m

Field of view
: 1.3x0.7 m

Figure 2.2: Field images were acquired with an HDR camera (left) which was mounted
at a height of 1m viewing perpendicular to the ground surface, resulting in a field of
view: 1.3m× 0.7m (right).
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(a)

(c)

(b)

(d)

Figure 2.3: An example outdoor image scene on a sunny day: (a) HDR camera image
with (b) image histogram, (c) traditional non-HDR CCD camera (Sony NEX-5R, ISO
100, 1/80, f/11, dynamic range optimizer activated) image with (d) image histogram.
The red ellipses indicate that (b) the histogram of the HDR image is well balanced
across the darkest and lightest margins, but (d) the histogram of a traditional non-HDR
CCD camera image is imbalanced with peaks both on the left and right edges due to
clipping.

2.2.2 Algorithm - Ground shadow detection and removal

As was shown in Figure 2.1, shadows in agricultural field images are often classified as

part of vegetation when applying a commonly used vegetation segmentation method

based on the excessive green index (2g-r-b), ExG (Woebbecke et al., 1995). To further

process the shadows, a ground shadow detection algorithm was developed using color

space conversion. Color pixel values in RGB space can be highly influenced by the

illumination conditions because illumination and color parts are not separated in this

color representation (Florczyk, 2005). Using a different color space (or conversion of

21



2

Chapter 2

CCD cameras are shown in Figure 2.3. The HDR camera captures the objects even in

the dark shadow region (Figure 2.3a) whereas a traditional non-HDR CCD camera

(Sony NEX-5R) captures no objects but produces black pixels (Figure 2.3c). The

histogram of the HDR image is well balanced across the darkest and lightest margins

(Figure 2.3b) while the histogram of a traditional non-HDR CCD camera image is

imbalanced with peaks both on the left and right edges due to clipping (Figure 2.3d).

An example field image that was acquired with an HDR camera under very bright

sunny conditions is shown in Figure 2.4. Some pixels in the green leaves were bright

due to specular reflection; while some pixels in the shadow region were very dark. The

extreme lighting intensity difference with a high dynamic range is often found in a

field image scene. In such a condition in the field, a conventional non-HDR imaging

device would not be able to adequately capture the objects in both the bright regions

as well as in the dark shadow regions but an HDR camera does adequately capture

these objects under these lighting conditions.

26

546

Fig. 2 – Field images were acquired with an HDR camera (left) which was mounted at a height of 1 m viewing 547

perpendicular to the ground surface, resulting in a field of view: 1.3 × 0.7 m (right).548

549

1m

0.45m

Field of view
: 1.3x0.7 m

Figure 2.2: Field images were acquired with an HDR camera (left) which was mounted
at a height of 1m viewing perpendicular to the ground surface, resulting in a field of
view: 1.3m× 0.7m (right).

20

Vegetation segmentation with ground shadow removal

(a)

(c)

(b)

(d)

Figure 2.3: An example outdoor image scene on a sunny day: (a) HDR camera image
with (b) image histogram, (c) traditional non-HDR CCD camera (Sony NEX-5R, ISO
100, 1/80, f/11, dynamic range optimizer activated) image with (d) image histogram.
The red ellipses indicate that (b) the histogram of the HDR image is well balanced
across the darkest and lightest margins, but (d) the histogram of a traditional non-HDR
CCD camera image is imbalanced with peaks both on the left and right edges due to
clipping.

2.2.2 Algorithm - Ground shadow detection and removal

As was shown in Figure 2.1, shadows in agricultural field images are often classified as

part of vegetation when applying a commonly used vegetation segmentation method

based on the excessive green index (2g-r-b), ExG (Woebbecke et al., 1995). To further

process the shadows, a ground shadow detection algorithm was developed using color

space conversion. Color pixel values in RGB space can be highly influenced by the

illumination conditions because illumination and color parts are not separated in this

color representation (Florczyk, 2005). Using a different color space (or conversion of
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solve (or to minimize) varying natural illumination issue using a HDR cam-

era, and to present a real-time based simple and effective ground shadow

removal processing technique with proper quantitative performance evalua-

tion. The first section of this paper describes the schematic and processing

steps of ground shadow detection technique. The following section describes

quantitative performance measures to quantify segmentation performance.

Then, the vegetation segmentation performance was compared before and

after ground shadow removal based on the given measures to evaluate any

improvement.
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3

Figure 2.4: HDR camera image in a sugar beet field (left) and its image histogram
(right). The red circles indicate that some pixels in the green leaves are bright due to
specular reflection; while some pixels in the shadow region are very dark.

the RGB image to another color space) that uses a color representation separating

color and illumination, pixel values are less influenced by the illumination conditions

with the shadow detection procedure. Many studies have shown that a color space

conversion approach is simple to implement and computationally inexpensive; thus, is

very useful for real-time field applications (Sanin et al., 2012).

In this study, the XYZ color space was chosen because the normalized form of

this color space separates luminance from color (or rather from chromaticity). Also

this color space is based on how a human would perceive light (Pascale, 2003). The

XYZ system provides a standard way to describe colors and contains all real colors

(Corke, 2011). Besides, this particular color space has been shown to be robust under

illumination variations (Lati et al., 2013a).

The procedure used for ground shadow detection and removal is shown in Figure 2.5.

Two main processes are shown: 1) ExG with Otsu (1979) threshold (Figure 2.5 steps

a to c), and 2) ground shadow detection and removal (Figure 2.5 steps d to h).

The left column in Figure 2.5, steps (a) to (c), shows the conventional vegetation

segmentation procedure. ExG, one of the most commonly used methods, was used

in this study to compare the performance of vegetation segmentation before and

after shadow removal because ExG showed good performance in most cases in our

preliminary studies. The Otsu threshold was used because the Otsu method showed

good performance in a preliminary study.

The right column in Figure 2.5, step (d) to (h), shows the ground shadow detection
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and removal procedure. The three individual steps (d) to (f) are referred to as a ground

shadow detection, and pixel-by-pixel subtraction in step (g) is referred to as ground

shadow removal. The detected ground shadow region was subtracted from ExG with

Otsu threshold (ExG+Otsu) which resulted from step (c). Then, the shadow-removed

image (Figure 2.5h) was compared with ExG+Otsu (Figure 2.5c) to evaluate the

performance improvement when using vegetation segmentation after shadow detection

and removal. The details of the algorithms are described below.
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Ground Shadow(GS)

Detection and removal

Ground Shadow(GS) Detection

RGB image

Excess green (ExG)

Otsu threshold

ExG+Otsu
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Colour space conver-
sion: RGB to XYZ

Contrast enhancement
(Ground Shadow region)

Otsu multi-
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Shadow removal: pixel-
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ExG+Otsu(i,j)-GS(i,j)

ExG+Otsu
+shadow removal

d

e

f

g
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ExG+Otsu

Ground Shadow(GS)

Figure 4: Flow diagram of ground shadow removal procedure

7

Figure 2.5: Flow diagram of ground shadow detection and removal algorithm.
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era, and to present a real-time based simple and effective ground shadow

removal processing technique with proper quantitative performance evalua-

tion. The first section of this paper describes the schematic and processing

steps of ground shadow detection technique. The following section describes
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(right). The red circles indicate that some pixels in the green leaves are bright due to
specular reflection; while some pixels in the shadow region are very dark.
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with the shadow detection procedure. Many studies have shown that a color space

conversion approach is simple to implement and computationally inexpensive; thus, is

very useful for real-time field applications (Sanin et al., 2012).

In this study, the XYZ color space was chosen because the normalized form of

this color space separates luminance from color (or rather from chromaticity). Also

this color space is based on how a human would perceive light (Pascale, 2003). The

XYZ system provides a standard way to describe colors and contains all real colors

(Corke, 2011). Besides, this particular color space has been shown to be robust under

illumination variations (Lati et al., 2013a).

The procedure used for ground shadow detection and removal is shown in Figure 2.5.

Two main processes are shown: 1) ExG with Otsu (1979) threshold (Figure 2.5 steps

a to c), and 2) ground shadow detection and removal (Figure 2.5 steps d to h).

The left column in Figure 2.5, steps (a) to (c), shows the conventional vegetation

segmentation procedure. ExG, one of the most commonly used methods, was used

in this study to compare the performance of vegetation segmentation before and

after shadow removal because ExG showed good performance in most cases in our

preliminary studies. The Otsu threshold was used because the Otsu method showed

good performance in a preliminary study.

The right column in Figure 2.5, step (d) to (h), shows the ground shadow detection
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and removal procedure. The three individual steps (d) to (f) are referred to as a ground

shadow detection, and pixel-by-pixel subtraction in step (g) is referred to as ground

shadow removal. The detected ground shadow region was subtracted from ExG with

Otsu threshold (ExG+Otsu) which resulted from step (c). Then, the shadow-removed

image (Figure 2.5h) was compared with ExG+Otsu (Figure 2.5c) to evaluate the

performance improvement when using vegetation segmentation after shadow detection

and removal. The details of the algorithms are described below.
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Figure 2.5: Flow diagram of ground shadow detection and removal algorithm.
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Step a: Excess Green (ExG)

The excess green index (ExG = 2g− r− b) was applied to the RGB image (Woebbecke

et al., 1995). The normalized spectral r, g and b components, in the range [0,1], were

obtained (Gée et al., 2008).

r =
Rn

Rn +Gn +Bn
, g =

Gn

Rn +Gn +Bn
, b =

Bn

Rn +Gn +Bn
(2.2)

where Rn, Gn, and Bn are the normalized RGB coordinates ranging from 0 to 1. They

were obtained as follows:

Rn =
R

Rmax
, Gn =

G

Gmax
, Bn =

B

Bmax
(2.3)

where Rmax = Gmax = Bmax = 255

Step b: Otsu threshold

The Otsu threshold method was applied to obtain an optimum threshold value. The

pixels of the image were divided into the two classes: C0 for [0, · · · , t] and C1 for

[t+ 1, · · · , L], where t was the threshold value (0 ≤ t < L), and L was the number of

distinct intensity levels. An optimum threshold value t∗ was chosen by maximizing

the between-class variances, σ2
B (Otsu, 1979):

t∗ = argmax
0≤t<L

{σ2
B(t)} (2.4)

Step c: ExG+Otsu

With an optimum threshold value t∗ (Eq. 2.4), vegetation pixels were classified.

{
Background region if ExG(i, j) < t∗

V egetation region if ExG(i, j) ≥ t∗

where ExG(i, j) was the ExG value of the pixel (i, j).

Step d: Color space conversion

The first step involved color space conversion. The RGB values were converted to the

1931 International Commission on Illumination (CIE) XYZ space using the following
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matrix (Lati et al., 2013a):




X

Y

Z


 =




0.4124 0.3576 0.1805

0.2126 0.7152 0.0722

0.0193 0.1192 0.9505







R

G

B


 (2.5)

where R, G, B were pixel values in RGB color space in the range [0, 255]. X, Y , Z

were pixel values in XY Z color space. Finally, XY Z values were then normalized

using the following equation:

x =
X

X + Y + Z
, y =

Y

X + Y + Z
, z =

Z

X + Y + Z
(2.6)

Step e: Contrast enhancement of the ground shadow region

The contrast of the ground shadow region was enhanced from the rest of the image.

This contrast enhancement was achieved by dividing the product of the chromaticity

values x and y by z:

Contrasted Ground Shadow(CGS(i, j)) =
x(i, j) · y(i, j)

z(i, j)
(2.7)

where CGS(i, j) was the contrasted pixel (i, j) of the ground shadow, and x(i, j),

y(i, j), z(i, j) were normalized values of the pixel (i, j) in the XY Z color space.

Step f: Otsu multi-level threshold

The Otsu multi-level threshold method was applied to the image based on the obser-

vation that the shadow image contained three components - ground shadow, plant

material and soil background. The previous steps (d) and (e) made the ground shadow

region more distinct from other components. Thus, the Otsu multi-level threshold

enabled to separate the ground shadow region, which had the lowest intensity level,

from plant material and soil background. The lowest intensity level was selected as

the ground shadow region, but plant material and soil background regions were not

separated because they were not clearly distinct from each other.

All pixels of the image obtained in the previous step (e) were divided into the

following three classes: C0 for [0, · · · , t1], C1 for [t1+1, · · · , t2], and C2 for [t2+1, · · · , L],
where t1 and t2 were threshold values (0 ≤ t1 < t2 < L), and L was the number of
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[t+ 1, · · · , L], where t was the threshold value (0 ≤ t < L), and L was the number of

distinct intensity levels. An optimum threshold value t∗ was chosen by maximizing

the between-class variances, σ2
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With an optimum threshold value t∗ (Eq. 2.4), vegetation pixels were classified.
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where ExG(i, j) was the ExG value of the pixel (i, j).
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matrix (Lati et al., 2013a):
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where R, G, B were pixel values in RGB color space in the range [0, 255]. X, Y , Z

were pixel values in XY Z color space. Finally, XY Z values were then normalized

using the following equation:

x =
X

X + Y + Z
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Step e: Contrast enhancement of the ground shadow region

The contrast of the ground shadow region was enhanced from the rest of the image.

This contrast enhancement was achieved by dividing the product of the chromaticity
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z(i, j)
(2.7)
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vation that the shadow image contained three components - ground shadow, plant
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region more distinct from other components. Thus, the Otsu multi-level threshold
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the ground shadow region, but plant material and soil background regions were not

separated because they were not clearly distinct from each other.

All pixels of the image obtained in the previous step (e) were divided into the

following three classes: C0 for [0, · · · , t1], C1 for [t1+1, · · · , t2], and C2 for [t2+1, · · · , L],
where t1 and t2 were threshold values (0 ≤ t1 < t2 < L), and L was the number of
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distinct intensity levels. An optimal set of threshold values t∗1 and t∗2 was chosen by

maximizing the between-class variances, σ2
B (Otsu, 1979):

{t∗1, t∗2} = argmax
0≤t1<t2<L

{σ2
B(t1, t2)} (2.8)

For the ground shadow detection, the optimal threshold value t∗1 was used. The

threshold value t∗2 was ignored since it did not have any added value in this ground

shadow detection process. Consequently, the ground shadow pixels were classified in

two classes as follows

For the ground shadow detection, threshold value t1 was used, and ground shadow

pixels were selected as follows:

{
Ground shadow (GS) if CGS(i, j) < t∗1

Non-ground shadow (NGS) if CGS(i, j) ≥ t∗1

Step g: Ground shadow removal by subtraction

Once the ground shadow region was identified, the shadow-removed image was gener-

ated by a pixel-by-pixel subtraction from the ExG+Otsu. The shadow-removed pixel

values were simply the values of ExG minus the corresponding pixel values from the

ground shadow region image (Eq. 2.9).

F (i, j) = ExG(i, j)−GS(i, j) (2.9)

where F (i, j) was the shadow-removed pixel (i, j), and GS(i, j) was the detected

ground shadow pixel (i, j).

2.2.3 Field image collection

For crop image acquisition, the HDR camera was mounted at a height of 1m viewing

perpendicular to the ground surface on a custom-made frame carried by a mobile

platform (Husky A200, Clearpath, Canada), as was shown in Figure 2.2. The camera

was equipped with two identical Kowa 5mm lenses (LM5JC10M, Kowa, Japan) with

a fixed aperture. The camera was set to operate in automatic acquisition mode with

automatic point and shoot, having an image resolution of 1280× 580 pixels per image

of left and right sensors. The ground-covered area was 1.3m× 0.7m, corresponding to
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three sugar beet crop rows. The acquisition program was implemented in LabVIEW

(National Instruments, Austin, USA) to acquire five images per second. Field images

were taken while the mobile platform was manually controlled with a joystick and

driven along crop rows using a controlled traveling speed of 0.5m/s.

Sugar beet was seeded three times (Spring, Summer, and Fall) in 2013 and 2014

in two different soil types (sandy and clay soil) on the Unifarm experimental sites in

Wageningen, The Netherlands. Crop images were acquired under various illumination

and weather conditions on several days in June, August and October of 2013 as well

as in May, July and September of 2014.

2.2.4 Image dataset

The following image datasets were chosen for this study: 1) Set 1: only containing

images with shadow to purely test and evaluate the performance of the shadow

detection algorithm against human generated ground truth, and 2) Set 2: containing a

mix of images with and without shadows to assess the effectiveness of shadow removal

on segmentation.

Set 1 consisted of 30 field images that all contained shadows ranging from shallow

to dark with various shadow shapes (Figure 2.6). The images in this set were acquired

on several days under various weather conditions at different growth stages of the crop.

Ground truth images for shadow regions was manually generated.

For Set 2, a total of 110 field images was selected from all acquired field images.

During the selection of this set, a wide range of natural conditions was considered,

including different stages of plant growth, various illumination conditions from a cloudy

dark to sunny bright day conditions and extreme illumination scenes caused by strong

Figure 2: Example images of shadow set (top) and its human-labelled ground truth of

ground shadow regions (bottom)

illumination and weather conditions on numerous days in June, August, and

October 2013 as well as in May, July, and September 2014.

1.3. The image dataset

Two image datasets were chosen for this study: 1) shadow set, and 2)

segmentation set. Shadow set was used to evaluate the performance of the

shadow detection algorithm; while the segmentation set was used to compare

vegetation segmentation performance using the excess green vegetation index

(ExG: 2g-r-b) with and without shadow removal.

The shadow set consisted of 30 selected field images which contained

clear shadows from shallow to dark with various shadow shapes (Fig. 2).

The ground truth images for shadow regions were manually generated using

Photoshop CC (Adobe Systems Inc., USA).

The segmentation set was a selection of 110 field images among all the

acquired field images. In the selection of this image set, a wide range of

natural conditions were considered such as different stages of plant growth

and various illumination from cloudy dark to sunny bright day condition,

including extreme illumination scenes caused by strong direct sunlight and

shadow. Half of images in this set contained shadows; while the other half

3

Figure 2.6: Flow diagram of ground shadow detection and removal algorithm.
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direct solar radiation and shadows. Half of the images in this set contained shadows

(from shallow to dark shadows) while the other half contained no shadows. Vegetation

regions were manually labeled for ground truth. All images were processed with the

Image Processing ToolboxTM in Matlab (The MathWorks Inc., Natick, USA).

2.2.5 Quantitative performance measures of vegetation seg-

mentation

The vegetation segmentation results were compared and evaluated at pixel level with

human-labelled ground truth images. The ground truth images were generated by

two people. In this study, a set of quantitative measures based on the confusion

matrix (Table 2.1) was used to assess the performance of the vegetation segmentation.

Positive prediction value (precision), true-positive rate (recall or sensitivity), true-

negative rate (specificity) and modified accuracy (MA) were used. Each of these has a

different goal to measure, thus assessing above measures altogether helps to evaluate

the performance of vegetation segmentation in a balanced way. The details of the

measures are described below (Metz, 1978; Prati et al., 2003):

Precision (Positive Predict V alue) =
TP

TP + FP
(2.10)

Recall (True positive rate or Sensitivity) =
TP

TP + FN
(2.11)

Specificity (True negative rate) =
TN

TN + FP
(2.12)

where TP is true-positive; FP is false-positive; TN is true-negative, and FN is

false-negative.

Precision indicates how many of the positively segmented pixels are relevant, and it

refers to the ability to minimize the number of false-positives. Recall indicates how well

a segmentation performs in detecting the vegetation and thus relates to the ability to

correctly detect vegetation pixels that belong to the vegetation region (true-positive).

Specificity, on the other hand, specifies how well the segmentation algorithm performs

in avoiding false-positive error, which also indicates the ability to correctly detect

non-vegetation pixels that belong to non-vegetation regions (true-negative). A single
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Table 2.1: Confusion matrix
(TR:true-positive, TN:true-negative, FP:false-positive, and FN:false-negative)

Algorithm

Vegetation Background

Ground truth Vegetation TP FN
Background FP TN

measure above does not fully reflect the performance of vegetation segmentation

because each can have a biased value under certain conditions. For example, if a

segmentation produces vegetation pixels only when there are strong green components,

precision will have a higher value (close to 1) in a poorly segmented image. Moreover,

if a segmentation always identifies all the pixels as vegetation, recall will attain large

values.

Accuracy is commonly used as a single representative performance indicator in the

literature. However, this measure has a drawback if there is a significant imbalance

between vegetation and background (Bac et al., 2013; Rosin & Ioannidis, 2003). An

alternative way to measure the performance would be balanced accuracy, i.e. the

average of sensitivity and specificity. However, this measure can also provide a biased

value if segmentation output has a large number of false-positives in case an image

contains only a small amount of vegetation. Therefore, the amount of vegetation

(foreground area) needs to be considered to reflect better the performance of vegetation

segmentation. Sezgin & Sankur (2004) used the relative foreground area error (RAE)

and combined this indicator with accuracy (misclassification error). Many studies

have used this combined approach since then (Guan & Yan, 2013; Nacereddine et al.,

2005; Navarro et al., 2010; Shaikh et al., 2011). Inspired by these studies, the modified

accuracy (MA) was defined in this study. This performance indicator uses a harmonic

mean of relative vegetation area error (RVAE) and balanced accuracy (BA). Both

measures have values between 0 and 1, where 0 represents very poor segmentation,

and 1 represents perfect segmentation. The harmonic mean indicates if there is a

large imbalance between these two measures, thus providing a better indication of the

performance. The equations are described below:

Balanced accuracy (BA) =
Recall + Specificity

2
(2.13)
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Relative V egetation Area Error (RV AE) =



1− AGT−ASEG

AGT
if ASEG < AGT

1− ASEG−AGT

ASEG
if AGT ≤ ASEG

(2.14)

Modified accuracy (MA) =
2 ·BA ·RV AE

BA+RV AE
(2.15)

where AGT is the vegetation area in ground truth (TP+FN); ASEG is the vegetation

area in segmented image (TP+FP).

In addition, receiver operating characteristic (ROC) and precision-recall curves

were used. These curves have been used in several studies on image processing helping

to visually assess the segmentation performance (Bai et al., 2014; Bulanon et al.,

2009). One performance indicator that is often used in these curves is the Area Under

Curve (AUC), a measure represented with a single scalar value ranging from 0 to 1.

AUC indicates how reliably the segmentation can be performed. An AUC value of 1

indicates a perfect segmentation (Mery & Pedreschi, 2005).

Finally, processing time was measured to indicate how fast the algorithm performed.

The processing time was measured on a PC equipped with an Intel® Core™ i7-377T

2.5 GHz processor and 8 GB RAM running 64-bit Windows 7.

2.3 Results

2.3.1 Ground shadow detection

The performance measures of the ground shadow detection in Set 1 is shown in Table 2.2.

Ground shadow detection was generally successful under natural lighting conditions

(modified accuracy ≥ 0.9). An average processing time (0.33 s) is satisfactory for real-

time application as well. Example images in Set 1 and their ground shadow detection

output are shown in Figure 2.7. From the original field images (Figure 2.7a), enhanced

contrast of the ground shadow region is shown in the second column (Figure 2.7b).

The third column shows the detected ground shadow region (Figure 2.7c), and its

ground truth images are displayed in the fourth column (Figure 2.7d). The last column

(Figure 2.7e) displays the difference image between detected shadow and ground truth.
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Table 2.2: Quantitative performance measure of ground shadow detection in Set 1 (30
images). The mean, median, and standard deviation (SD) of the performance measures
are indicated.
(PPV:Positive Predictive Value, TNR:True Negative Rate)

Precision
(PPV)

Recall
(Sensitivity)

Specificity
(TNR)

Modified
Accuracy

Processing
time (sec)

Mean 0.94 0.87 0.99 0.92 0.33
Median 0.96 0.87 0.99 0.92 0.33
SD 0.07 0.04 0.01 0.03 0.01

(a) (b) (c) (d) (e)

Figure 1: Examples images in shadow set with ground shadow detection process output:

(a) original image, (b) ground shadow contrasted, (c) detected ground shadow region, (d)

ground truth, and (e) difference between (c) and (d).

2

Figure 2.7: Example images in Set 1 using the ground shadow detection process: (a)
original image, (b) contrasted ground shadow region, (c) ground shadow detected, (d)
ground truth, and (e) difference between (c) and (d).
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2.3.2 Ground shadow removal and vegetation segmentation

performance

The images with shadow removal (ExG+Otsu+shadow removal, Figure 2.5h) were

compared with those without shadow removal (ExG+Otsu, Figure 2.5c) to assess

the performance improvement in vegetation segmentation when using ground shadow

removal. The quantitative performance comparison is shown in Figure 2.8. When it

comes to precision, sensitivity and modified accuracy, the figure indicates that the

vegetation segmentation with shadow removal has a higher performance than the

segmentation without shadow removal. The average values of precision, specificity and

modified accuracy for vegetation segmentation with shadow removal were 0.67, 0.96

and 0.71, respectively, indicating 20%, 4.4% and 13.5% improvement over indicator

values achieved without shadow removal. A T-test revealed that these improvements

are significantly different (P < 0.001 ). Only recall indicated that there were some

losses of true-positive pixels (vegetation pixels) due to the shadow subtraction process.
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Figure 2.8: The performance of vegetation segmentation: without shadow removal
(ExG+Otsu) vs. with shadow removal (ExG+Otsu+shadow removal).
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This minor loss was mainly observed when the shadow removal was applied to images

without shadows (see the last column in Figure 2.9). The combined measure, modified

accuracy, indicated considerable improvement (13.5%) in vegetation segmentation.

The average processing time for vegetation segmentation without shadow removal was

0.12 s, and was 0.46 s for segmentation with shadow removal. This is acceptable for a

real-time application (< 1 s Required).

Figure 2.9 shows the results of the segmentation process with ground shadow

removal applied to Set 2, including images without and with shadows. When there was

a shadow in the image scene, the ground shadow detection algorithm was, in general,

successful in detecting the ground shadow region; but when there was no shadow in the

image scene, almost the entire soil background was classified as a ground shadow region

(Figure 2.9d). In both cases, however, green-related pixels (plant materials) were not

included in the ground shadow region, leading to no significant loss of vegetation pixels

in the shadow removal process (Figure 2.9e). The last column in Figure 2.9 contains

some examples of vegetation pixel loss with shadow removal indicated by circles.

The ROC and precision-recall curves with a shadow image before and after the

ground shadow removal are shown in Figure 2.10. The AUC before and after shadow

removal in ROC analysis were 0.944 and 0.987 respectively, and those in the precision-

recall analysis were 0.729 and 0.908 respectively. Both curves showed that after ground

shadow removal the performance improved and the vegetation segmentation (with a

shadow image) succeeded (AUC ≥ 0.9).

The ROC and precision-recall curves are shown in Figure 2.11 for segmentation

with ground shadow removal applied to an image which contained no shadows. Then,

the AUC values before and after shadow removal in ROC analysis were 0.981 and

0.980 respectively, and those in the precision-recall analysis were 0.957 and 0.951

respectively. Both curves showed that the performance was not considerably different

before and after ground shadow removal. The vegetation segmentation in an image

without shadows was successful even after ground shadow removal. The ground shadow

removal led to better performance of vegetation segmentation when applied to an

image containing a shadow and did not negatively affect the result when applied to an

image without shadows (Figure 2.10 and 2.11).
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This minor loss was mainly observed when the shadow removal was applied to images

without shadows (see the last column in Figure 2.9). The combined measure, modified

accuracy, indicated considerable improvement (13.5%) in vegetation segmentation.

The average processing time for vegetation segmentation without shadow removal was

0.12 s, and was 0.46 s for segmentation with shadow removal. This is acceptable for a

real-time application (< 1 s Required).

Figure 2.9 shows the results of the segmentation process with ground shadow

removal applied to Set 2, including images without and with shadows. When there was

a shadow in the image scene, the ground shadow detection algorithm was, in general,

successful in detecting the ground shadow region; but when there was no shadow in the

image scene, almost the entire soil background was classified as a ground shadow region

(Figure 2.9d). In both cases, however, green-related pixels (plant materials) were not

included in the ground shadow region, leading to no significant loss of vegetation pixels

in the shadow removal process (Figure 2.9e). The last column in Figure 2.9 contains

some examples of vegetation pixel loss with shadow removal indicated by circles.

The ROC and precision-recall curves with a shadow image before and after the

ground shadow removal are shown in Figure 2.10. The AUC before and after shadow

removal in ROC analysis were 0.944 and 0.987 respectively, and those in the precision-

recall analysis were 0.729 and 0.908 respectively. Both curves showed that after ground

shadow removal the performance improved and the vegetation segmentation (with a

shadow image) succeeded (AUC ≥ 0.9).

The ROC and precision-recall curves are shown in Figure 2.11 for segmentation

with ground shadow removal applied to an image which contained no shadows. Then,

the AUC values before and after shadow removal in ROC analysis were 0.981 and

0.980 respectively, and those in the precision-recall analysis were 0.957 and 0.951

respectively. Both curves showed that the performance was not considerably different

before and after ground shadow removal. The vegetation segmentation in an image

without shadows was successful even after ground shadow removal. The ground shadow

removal led to better performance of vegetation segmentation when applied to an

image containing a shadow and did not negatively affect the result when applied to an

image without shadows (Figure 2.10 and 2.11).
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Figure 3: Example of images with ExG and ground shadow removal process: (a) original

image, (b) ExG+Otsu, (c) contrasted ground shadow region, (d) ground shadow detected,

(e) ground shadow removed, (f) vegetation ground truth, (g) difference between ExG and

ground truth, and (h) difference between shadow removed and ground truth. The last

column indicated with circles show some vegetation pixel loss during shadow removal.

5

Figure 2.9: Example of images with vegetation segmentation and ground shadow
removal process: (a) original image, (b) vegetation segmentation without shadow
removal (ExG+Otsu), (c) contrasted ground shadow region, (d) ground shadow detected,
(e) vegetation segmentation with shadow removal (ExG+Otsu+shadow removal), (f)
vegetation ground truth, (g) difference between (b) and (f), and (h) difference between
(e) and (f). Indicated with circles in the last column are some vegetation pixels lost
during shadow removal.
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Figure 4: A shadow image with ground shadow removal and its vegetation segmentation

performance analysis: (a) original image, (b) ExG+Otsu, (c) ground shadow removed, (d)

ground truth, (e) difference between ExG+Otsu and ground truth, (f) difference between

shadow removed and ground truth, (g) and (h) ROC and precision-recall curves for ExG

and ExG with shadow removal, the area under curve (AUC) in parenthesis.
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Figure 2.10: Segmentation of a shadow image with ground shadow removal and
its performance analysis: (a) original image, (b) vegetation segmentation without
shadow removal (ExG+Otsu), (c) vegetation segmentation with shadow removal
(ExG+Otsu+shadow removal), (d) ground truth, (e) difference between (b) and (d),
(f) difference between (c) and (d), (g) and (h) ROC and precision-recall curves for
vegetation segmentation with and without shadow removal, the area under curve (AUC)
in parenthesis.

35



2

Chapter 2

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 3: Example of images with ExG and ground shadow removal process: (a) original

image, (b) ExG+Otsu, (c) contrasted ground shadow region, (d) ground shadow detected,

(e) ground shadow removed, (f) vegetation ground truth, (g) difference between ExG and

ground truth, and (h) difference between shadow removed and ground truth. The last

column indicated with circles show some vegetation pixel loss during shadow removal.
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Figure 2.9: Example of images with vegetation segmentation and ground shadow
removal process: (a) original image, (b) vegetation segmentation without shadow
removal (ExG+Otsu), (c) contrasted ground shadow region, (d) ground shadow detected,
(e) vegetation segmentation with shadow removal (ExG+Otsu+shadow removal), (f)
vegetation ground truth, (g) difference between (b) and (f), and (h) difference between
(e) and (f). Indicated with circles in the last column are some vegetation pixels lost
during shadow removal.
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Figure 2.10: Segmentation of a shadow image with ground shadow removal and
its performance analysis: (a) original image, (b) vegetation segmentation without
shadow removal (ExG+Otsu), (c) vegetation segmentation with shadow removal
(ExG+Otsu+shadow removal), (d) ground truth, (e) difference between (b) and (d),
(f) difference between (c) and (d), (g) and (h) ROC and precision-recall curves for
vegetation segmentation with and without shadow removal, the area under curve (AUC)
in parenthesis.

35



2

Chapter 2

(a) Original image (b) Without shadow

removal (ExG+Otsu)

(c) With shadow

removal

(ExG+Otsu+SR)

(d) Ground truth (GT) (e) Difference between

(b) and (d)

(f) Difference between

(c) and (d)

0 0.5 1
0

0.5

1

False-Positive Rate

T
ru

e-
P
os

it
iv

e
R

at
e

Without shadow removal (0.981)
With shadow removal (0.98)

(g) ROC curve

0 0.5 1
0

0.5

1

Recall

P
re

ci
si

on

Without shadow removal (0.957)
With shadow removal (0.951)

(h) Precision-Recall curve

Figure 5: A non-shadow image with ground shadow removal and its vegetation segmenta-

tion performance analysis: (a) original image, (b) ExG+Otsu, (c) ground shadow removed,

(d) ground truth, (e) difference between ExG+Otsu and ground truth, (f) difference be-

tween shadow removed and ground truth, (g) and (h) ROC and precision-recall curves for

ExG and ExG with shadow removal, the area under curve (AUC) in parenthesis.
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Figure 2.11: Segmentation of a non-shadow image with and without ground shadow
removal and its performance analysis: (a) original image, (b) vegetation segmentation
without shadow removal (ExG+Otsu), (c) vegetation segmentation with shadow removal
(ExG+Otsu+shadow removal), (d) ground truth, (e) difference between (b) and (d),
(f) difference between (c) and (d), (g) and (h) ROC and precision-recall curves for
vegetation segmentation with and without shadow removal, the area under curve (AUC)
in parenthesis.
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2.4 Discussion

2.4.1 High Dynamic Range (HDR) camera

The HDR camera enabled capture of quality images in the high dynamic range scene

of the field. During the field image acquisition, no image saturation caused by strong

direct solar radiation was observed, and plants under sharp dark shadows were still

clearly noticeable. Two other studies (Dworak et al., 2013; Piron et al., 2010) also

reported that high dynamic range acquisition enabled a strong signal to noise ratio

for all pixels of the image as well as a better Normalized Difference Vegetation Index

(NDVI). In this study, however, an HDR and a conventional non-HDR cameras were

not simultaneously used in parallel in the field. Thus, a quantitative comparison

between these two cameras under agricultural field conditions could not be made.

However, the added value of using a HDR camera is expected in the agricultural field

under natural light conditions.

2.4.2 Shadow detection and removal

Although the proposed algorithm effectively detects and removes ground shadows,

and thus improves the performance of vegetation segmentation, the algorithm itself

alone does not extract any green material. The algorithm has to be combined with

vegetation extraction methods (vegetation index), such as ExG, NDVI and CIVE.

However, the shadow detection and removal algorithm is not limited to any specific

vegetation extraction method because the algorithm is a separate procedure that can

work as an add-on process.

The algorithm is based on color space conversion and chromaticity difference. This

approach is simple, easy-to-implement and computationally inexpensive. Sanin et al.

(2012) reported that the color space conversion approach needed the least computation

time among the reviewed methods. However, the color space conversion approach

requires the selection of an optimal threshold value that relies on the assumption that

the image scene consists of a fixed number of components. In this study, a hypothesis

was made that the field image scene can be divided into three classes: vegetation (green

plants), background (soil) and ground shadow. Although hardly any other materials

than these three were found in field images, a crop image scene may contain, according

to Yang et al. (2015), various kinds of straw, straw ash or non-green plants. If an
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Figure 5: A non-shadow image with ground shadow removal and its vegetation segmenta-

tion performance analysis: (a) original image, (b) ExG+Otsu, (c) ground shadow removed,

(d) ground truth, (e) difference between ExG+Otsu and ground truth, (f) difference be-

tween shadow removed and ground truth, (g) and (h) ROC and precision-recall curves for

ExG and ExG with shadow removal, the area under curve (AUC) in parenthesis.

7

Figure 2.11: Segmentation of a non-shadow image with and without ground shadow
removal and its performance analysis: (a) original image, (b) vegetation segmentation
without shadow removal (ExG+Otsu), (c) vegetation segmentation with shadow removal
(ExG+Otsu+shadow removal), (d) ground truth, (e) difference between (b) and (d),
(f) difference between (c) and (d), (g) and (h) ROC and precision-recall curves for
vegetation segmentation with and without shadow removal, the area under curve (AUC)
in parenthesis.
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than these three were found in field images, a crop image scene may contain, according
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image scene contains a significant amount of the above mentioned or other materials,

the algorithm may have limited performance.

There were few losses of true-positive pixels (vegetation pixels) during the shadow

removal process. Although this loss was not critical, there are two ways to improve

this procedure: post-image processing, and selective application of shadow removal.

Post-image processing such as a hole filling or erode/dilate operation can recover

some true-positive pixels that were lost during the removal process. Alternatively,

applying shadow removal only when an image contains a shadow can improve the

performance. In this study, shadow removal was applied to all images (images with

and without shadows). However, technically there is no need to apply shadow removal

when the image contains no shadows. This selective approach, however, would require

a procedure that detects the presence of shadows in a given image scene. An alternative

might be to use an illuminant-invariant image based on physical models of illumination

and colors (Álvarez & Lopez, 2011; Finlayson et al., 2006).

The processing time for vegetation segmentation with shadow removal was 0.46 s,

and this should be acceptable in a real-time application (< 1 s Required). There

is a way to further reduce the processing time. If the processing time is highly

critical for certain applications, a faster processor with multiple/parallel processing

implementations might be an alternative approach to reduce the processing time.

2.5 Conclusions

In this study, a ground shadow detection and removal method based on color space

conversion and multi-level threshold was proposed. This method is to be used in a

real-time automated weed detection and control system that has to operate under

natural light conditions. Then vegetation segmentation is challenging due to shadows.

Applying shadow removal improved the performance of vegetation segmentation

with an average improvement of 20%, 4.4% and 13.5% in precision, specificity and

modified accuracy, respectively, compared with no shadow removal. The average

processing time for vegetation segmentation with shadow removal was 0.46 s, which is

acceptable for the real-time application (< 1 s Required).

The proposed method for ground shadow detection and removal enhances the

performance of vegetation segmentation under natural illumination conditions in the

field, and is feasible for real-time field applications and does not reduce segmentation
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performance when shadows are not present.
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Abstract

Robust vegetation segmentation is required for a vision-based weed control robot in an

agricultural field operation. The output of vegetation segmentation is a fundamental

element in the subsequent process of weed/crop discrimination as well as weed control

actuation. Given the abundance of colour indices and thresholding techniques, it is

still far from clear how to choose a proper threshold technique in combination with

a colour index for vegetation segmentation under agricultural field conditions. In

this research, the performance of 40 combinations of eight colour indices and five

thresholding techniques was assessed to identify which combination works the best

given varying field conditions in terms of illumination intensity, shadow presence and

plant size. It was also assessed whether it was better to use one specific combination

at all times or whether the combination should be adapted to the field conditions

at hand. A clear difference in performance, represented in terms of MA (Modified

Accuracy), was observed among various combinations under the given conditions.

On the image dataset that was used in this study, CIVE+Kapur showed the best

performance while VEG+Kapur showed the worst. When adapting the combination

to the given conditions yielded a slightly higher performance than when using a single

combination for all (in this case CIVE+Kapur). Consistent results were obtained

when validated on a different independent image dataset. The expected advantage

of adapting the combination to the field condition is not large because it seems that

for practical use, the slight improvement when adapting the combination to the field

conditions does not outweigh the investment in sensor technology and software needed

to accurately determine the different conditions in the field.
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3.1 Introduction

Within the EU-funded project SmartBot, a small-sized robot was developed to be

used for vision-based precise control of volunteer potato (weed) in a sugar beet field.

Due to its small size and the necessary battery operation, the platform design had to

refrain from additional infrastructure and should be able to robustly detect weeds in a

scene that is fully exposed to ambient lighting conditions. Additional infrastructure

such as a hood and lighting equipment to overcome the challenges of ambient lighting

conditions in the field, like the one used by for instance Nieuwenhuizen et al. (2010)

and Haug et al. (2014), was considered not viable. Additionally, the system had to deal

with different sizes of cash crop and weeds as well as shadows which are unavoidable

in a system like this.

Such a vision-based weed control robot requires robust vegetation segmentation,

i.e. a vegetation segmentation that has good performance under a wide range of cir-

cumstances. The output of vegetation segmentation is the fundamental element in the

subsequent process of weed and crop discrimination as well as weed control (Suh et al.,

2018b). It is challenging to come up with a proper segmentation of vegetation from

soil under field conditions with varying natural illumination (Hernández-Hernández

et al., 2016).

The segmentation of vegetation can be done in three ways (Guijarro et al., 2015):

1) using colour-based indices, 2) learning-based methods, and 3) discrete wavelet

transform. The colour-based indices are easier to comprehend as well as simple

to implement and they are the most commonly used approaches in agricultural

applications; while learning-based methods and the discrete wavelet transform require

extensive domain knowledge (Guijarro et al., 2015; Guo et al., 2013; Romeo et al.,

2013). While the latter will have to be explored further for potential benefits, colour-

based indices remain popular and common in many applications nowadays because

the colour is a crucial feature for plant recognition (Hernández-Hernández et al., 2016).

Still, in colour-based segmentation, some questions remained unanswered so far, and

this paper aims to address some of these questions. They will be defined in more

detail hereafter.

The segmentation of vegetation using colour-based indices principally contains

two steps (Guerrero et al., 2013; Tellaeche et al., 2008): 1) transformation of the

RGB image into a near-binary intensity image (monochrome), and 2) application of a
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threshold to convert the near-binary image to a full-binary image

Several methods have been used for the transformation of the RGB image into a near-

binary image: ExG (Excess Green), CIVE (Colour Index of Vegetation Extraction),

NDI (Normalized Difference Index), ExGR (Excess Green minus Excess Red), VEG

(Vegetative Index), COM (Combination of Green), GA (Greenness Accentuation), and

HIT (Hue-Invariant Transformation) (Guerrero et al., 2013; Hague et al., 2006; Hamuda

et al., 2016; Kataoka et al., 2003; Lati et al., 2013b; Meyer & Camargo Neto, 2008). Each

of these indices uses different mathematical formulae for near-binary transformation,

but all of them have essentially been proposed to enhance the differentiation between

the pixels associated with the vegetation (green pixels) and the pixels related to the

background (soil pixels). Hamuda et al. (2016) assessed the performance of different

colour indices; however, the same test data were not used in all cases which made

a direct comparison more difficult. Besides, for segmentation, a colour index always

requires a threshold to yield a segmentation result.

For thresholding, several options exist too. A fixed threshold value, typically

determined by an empirical analysis, has been widely used. The biggest disadvantage

of this type of threshold is that it produces a poor output when the image scene is

exposed to varying natural light conditions. Consequently, the threshold needs to be

reset depending on the illumination conditions (Burgos-Artizzu et al., 2010). The Otsu

method (Otsu, 1979), which uses variance to separate foreground and background

classes, is considered a good option to automatically calculate a threshold value for a

given image, and it was used in several studies (Guo et al., 2013; Romeo et al., 2013;

Shrestha & Steward, 2005). At the same time, other more sophisticated thresholding

methods are also reported in the literature, for instance the iterative threshold (Ridler

& Calvard, 1978), the max-entropy threshold (Kapur et al., 1985), the minimum-error

threshold (Kittler & Illingworth, 1986), and the unimodal threshold (Rosin, 2001).

Some studies used abovementioned thresholds for vegetation segmentation. However,

hardly any studies have investigated the details of these thresholds and compared the

performance of vegetation segmentation in agricultural field conditions.

After all, when it comes to the choice of a combination of colour index and threshold

technique for vegetation segmentation, some studies used ExG with Otsu threshold

(ExG+Otsu), while some others used ExG with Kapur threshold (ExG+Kapur) or

NDI with Otsu threshold (NDI+Otsu) (Meyer & Camargo Neto, 2008; Montalvo

et al., 2013; Tellaeche et al., 2008). It is still far from clear how to choose a proper
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threshold technique in combination with a colour index for vegetation segmentation

under agricultural field conditions. To the best of our knowledge, comparative studies

on this matter seem to be lacking so far, and it is still unclear which combination

performs best under field conditions given varying illumination conditions, the presence

of shadows and differences in plant size.

Based on the above, in this paper three questions will be addressed:

1) Do different combinations of colour index and threshold technique result in

different segmentation performance when evaluated on field images? Do certain

combinations stand out positively in performance compared to others and, the

other way around, do certain combinations stand out negatively when compared

to others?

2) If differences in segmentation performance do exist, which combination works

the best given the field conditions like illumination intensity, shadow presence

and plant size?

3) Given the varying conditions in the field, is it better to use one combination (at

all times) or should the combination be adapted to the conditions at hand for

best segmentation performance?

3) Do results obtained from 1-3 hold true when validated on a different independent

image dataset?

Section 3.2 describes the collection of colour indices as well as threshold techniques

used in this research. Section 3.3 describes the experimental setup including field image

dataset collection and implemented procedure as well as the performance measures

used for evaluation of the segmentation techniques. Then, in Section 3.4, experimental

results are then presented followed by the discussion. Lastly, the conclusions are

drawn.

3.2 Materials and Methods

In this study, 40 different combinations of colour indices and threshold techniques

were evaluated. Details of the eight colour indices and five threshold techniques are

described in sections 3.2.1 and 3.2.2, respectively. Section 3.3.1 presents the image
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acquisition as well as the selection and categorisation of the images for the image sets

used to assess the segmentation performance. Section 3.3.2 contains the performance

criteria used to quantify the segmentation performance.

3.2.1 Colour based indices

The RGB images were first normalised using following equations (Guerrero et al.,

2012):

r =
Rn

Rn +Gn +Bn
, g =

Gn

Rn +Gn +Bn
, b =

Bn

Rn +Gn +Bn
(3.1)

where Rn, Gn, and Bn are the normalized RGB coordinates ranging from 0 to 1 and

are obtained as follows:

Rn =
R

Rmax
, Gn =

G

Gmax
, Bn =

B

Bmax
(3.2)

where Rmax = Gmax = Bmax = 255 for 24-bit colour images.

ExG (Excess Green)

Woebbecke et al. (1995) introduced the excess green index described as follows:

ExG = 2 · g − r − b (3.3)

NDI (Normalized Difference Index)

Pérez et al. (2000) used the normalised difference index (NDI), equal to the ratio of

the difference and the sum of the green and red colour channels:

NDI =
G−R

G+R
(3.4)

CIVE (Colour Index of Vegetation Extraction)

Kataoka et al. (2003) introduced the colour index of vegetation extraction (CIVE) to

enhance green information in the image. This index was derived based on the analysis
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of the principal components of acquired crop images. The CIVE is defined as follows:

CIV E = 0.441 · r − 0.811 · g + 0.385 · b+ 18.78745 (3.5)

ExGR (Excess Green minus Excess Red)

Meyer et al. (2004) proposed the difference of excess green index (ExG) and excess

red index (ExR), based on the observation that red pixel values were found in certain

soils and crop residues.

ExGR = ExG− ExR = (2 · g − r − b)− (1.4 · r − g) (3.6)

VEG (Vegetative Index)

Hague et al. (2006) used a vegetative index (VEG) that is insensitive to illumination

changes. They reported that VEG provided good contrast between plant and soil.

This index was based on Marchant & Onyango (2000)’s blackbody approximation.

V EG =
G

Ra ·B(1−a)
(3.7)

where a is a constant value equal to 0.667.

COM (Combination of Green)

Guerrero et al. (2012) introduced a combination of three colour indices: ExG, CIVE,

and VEG. They showed that this combination approach provided better performance

than the individual application of each index. Each index was weighted based on its

relative importance having an overall sum of 1. The combination is defined as follows:

COM = 0.36 · ExG+ 0.47 · CIV E + 0.17 · V EG (3.8)

GA (Greenness Accentuation)

Guerrero et al. (2013) proposed a greenness accentuation based on the reasoning that

the pixels associated with plants should have dominant green colour. They obtained a
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greenness accentuation by multiplying the COM (Eq. 3.8) by g (Eq. 3.1). The formula

for GA is as follows:

GA = COM · g (3.9)

HIT (Hue-Invariant Transformation)

Lati et al. (2013b) used a hue-invariant transformation based on the xyY colour space.

The illumination invariant image was obtained by converting an RGB image into the

xyY model followed by log transformation. The formula for HIT is as follows:




X

Y

Z


 =




0.4124 0.3576 0.1804

0.2126 0.7151 0.0721

0.0193 0.1191 0.9503







R

G

B


 (3.10)

x =
X

X + Y + Z
, y =

Y

X + Y + Z
, z =

Z

X + Y + Z
(3.11)

HIT = a
x
y (3.12)

where a is the hue calibration parameter which depends on the camera manufacturer

(camera sensor). In this study, the value of 0.45 was used.

An example of an original image and the resulting near-binary intensity images

after applying each of the transformations presented before is shown in Figure 3.1.

3.2.2 Thresholding techniques

Thresholding is one of the most common and straightforward techniques for image

segmentation. The goal of this process is to convert the near-binary image into a

full-binary image. In this binary image, the vegetation pixels are generally represented

as white while the background soil pixels are represented as black. From a near-binary

image I(x, y), a full-binary image B(x, y) is obtained by applying some threshold T

(gray level) as in Eq. 3.13

B(x, y) =



1, if I(x, y) ≥ T

0, if I(x, y) < T
(3.13)
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The threshold techniques used in this research are shortly described hereafter.

Otsu (Variance-based threshold)

Otsu’s method finds an optimal threshold that maximises the between-class variances,

σ2
B, of the foreground and background classes. Otsu’s method is known to be very

robust, and provides good results when the intensity distribution of the pixels in an

image is bimodal (Chaki et al., 2014). The optimal threshold value, Topt, is calculated

as follows (Otsu, 1979):

Topt = argmax
0≤t<L

{σ2
B(t)} (3.14)

where T is the threshold value (0 ≤ T < L), and L is the number of distinct intensity

levels.

(a) Original image (b) ExG (c) NDI

(d) CIVE (e) ExGR (f) VEG

(g) COM (h) GA (i) HIT

Figure 3.1: An example of near-binary intensity images after applying the colour
transformations to the original image shown in (a).
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Ridler (Iterative threshold)

This threshold technique was proposed by Ridler & Calvard (1978). An optimal

threshold value is obtained with an intensity value using an iterative procedure. From

an initially estimated threshold (e.g. mean image intensity), the optimal threshold

value is reestimated in an iterative process using two class means. The iteration

continues until the threshold value does not change or the change becomes small. The

iterative threshold process is as follows Kaur (2013):

1) An initial threshold value, T , is estimated using a mean image intensity (average

intensity of image is assumed as a good initial threhold value).

2) Pixels above and below the threshold are assigned to the crop and soil background,

respectively.

3) Of both classes, crop and soil background, mean values, u1 and u2, are calculated

of the grey values of each class.

4) A new threshold valuee, T , is computed such that value of T is the average of

two means u1 and u2:

T =
u1 + u2

2
(3.15)

5) Iterate steps 2-4 until the change in threshold value is less than a very small

number.

Kapur (Max-Entropy threshold)

Kapur et al. (1985) proposed entropy-based thresholding. This technique uses the

entropy of the foreground and background regions within an image. The optimal

threshold is obtained by maximising the sum of the entropy values which can be

explained as measures of class compactness and separability (Drobchenko et al.,

2011). Sezgin & Sankur (2004) reported that the best thresholding performance was

achieved with this max-entropy method. Tellaeche et al. (2008) used this max-entropy

thresholding for vegetation segmentation. Following is the formula:

Topt = argmax
T

{Hf (T ) +Hb(T )} (3.16)
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where the entropy of the foreground, Hf (T ) and the entropy of the background, Hb(T ),

as a function of threshold T , are defined as follows:

Hf (T ) = −
T∑

g=0

h(g)

Pf (T )
log

h(g)

Pf (T )
, Hb(T ) = −

G∑
g=T+1

h(g)

Pb(T )
log

h(g)

Pb(T )
(3.17)

Kittler (Min-Error threshold)

Kittler & Illingworth (1986) considered an error measure in calculating the optimal

threshold and proposed minimum error thresholding that is computationally efficient.

This method uses a cost function, which is based on the Bayesian classification rule,

with the underlying assumption that foreground and background grayscale values

are normally distributed (Chaki et al., 2014). The optimal threshold value, Topt, is

calculated as follows (Kittler & Illingworth, 1986):

Topt = argmax
T

{[Pf (T ) log σf (T ) + Pb(T ) log σb(T )]

− [Pf (T ) logPf (T ) + Pb(T ) logPb(T )]}
(3.18)

where σf (T ) and σb(T ) are the standard deviation of the foreground and background,

respectively.

Rosin (Unimodal threshold)

Abovementioned threshold techniques assume that the intensity histogram of the

grayscale image is non-unimodal. However, unimodal histogram distribution in an

image can also be observed depending on the conditions in an agricultural field.

For example, if either one of the classes (foreground or background) dominates the

histogram, causing an unbalance between the classes, the intensity histogram becomes

unimodal. In such circumstances, many of the standard threshold selection algorithms

will fail. Rosin’s threshold method (Rosin, 2001) was designed to deal specifically with

unimodal histograms. The unimodal threshold process is as follows (Figure 3.2):

1) A straight line is drawn from the peak of the histogram to the last non-zero

element of the histogram
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2) The optimal threshold is selected at the point of the histogram furthest from

the straight line

Figure 3.2: The unimodal threshold process of Rosin is described. (1) A straight line
is drawn from the peak of the histogram to the last non-zero element of the histogram.
(2) The optimal threshold is selected at the point of the histogram furthest from the
straight line.

3.3 Experimental setup

3.3.1 Image dataset and experiment

Image acquisition is described in detail in Suh et al. (2018b). Sugar beet was sown

three times (Spring, Summer, and Fall) each year in 2013, 2014 and 2015 in sandy and

clay soil at Unifarm experimental sites in Wageningen, The Netherlands. One week

after sowing the sugar beet, the potato was planted in random locations throughout

the fields. The plant images were acquired under a wide range of illumination and

weather conditions during several days in June, August and October 2013, in May,

June, July and September 2014 and in May, June, July and October 2015.

From all acquired images, a total of 200 images was selected for further analysis. The

200 images were categorized according to plant size (estimated crown diameter of the

plant 0− 50mm indicated with ‘S’ for category Small; 51− 150mm: indicated with ‘M’

for category Medium; > 150mm: indicated with ‘L’ for category Large), illumination
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Table 3.1: The image dataset categories based on plant size (estimated crown diameter
of the plant 0−50mm indicated with ‘S’ for category Small; 51−150mm: indicated with
‘M’ for category Medium; > 150mm: indicated with ‘L’ for category Large), illumination
condition (‘S’ indicating sunny conditions or ‘C’ indicating cloudy conditions), presence
of shadows (‘Y’ indicating ‘Yes’ or ‘N’ indicating ‘No’). The number of images in
each group is shown in the last column. A total of 200 images was divided over two
Image Subsets, Subset 1 and Subset 2, containing each 100 images and with an almost
equal distribution over the 9 image categories as indicated in the Table.

Category Plant size Illumination Shadows
Number of instances
(Image Subset 1 and 2)

SSY Small Sunny Yes 25 (training set:13, validation set:12)

SSN Small Sunny No 19 (training set:9, validation set:10)

SCN Small Cloudy No 22 (training set:11, validation set:11)

MSY Medium Sunny Yes 26 (training set:13, validation set:13)

MSN Medium Sunny No 23 (training set:11, validation set:12)

MCN Medium Cloudy No 27 (training set:14, validation set:13)

LSY Large Sunny Yes 18 (training set:9, validation set:9)

LSN Large Sunny No 20 (training set:10, validation set:10)

LCN Large Cloudy No 20 (training set:10, validation set:10)

Total 200 (Subset 1: 100, Subset 2: 100)

condition (‘S’ indicating sunny conditions or ‘C’ indicating cloudy conditions), presence

of shadows (‘Y’ indicating ‘Yes’ or ‘N’ indicating ‘No’). This yielded nine categories of

field conditions in total, i.e. SSY, SSN, SCN, MSY, MSN, MCN, LSY, LSN and LCN.

While assuring that all nine categories were equally distributed, the 200 images

were randomly divided into two subsets of 100 images each, which will be referred to

as Image Subset 1 and Image Subset 2. See Table 3.1 for details. Example images of

each group are shown in Figure 3.3.

Then the following procedure was implemented to answer the four research questions

mentioned in the introduction:

1) To answer research question 1, of all 40 combinations of vegetation index and
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2) The optimal threshold is selected at the point of the histogram furthest from

the straight line

Figure 3.2: The unimodal threshold process of Rosin is described. (1) A straight line
is drawn from the peak of the histogram to the last non-zero element of the histogram.
(2) The optimal threshold is selected at the point of the histogram furthest from the
straight line.

3.3 Experimental setup

3.3.1 Image dataset and experiment

Image acquisition is described in detail in Suh et al. (2018b). Sugar beet was sown

three times (Spring, Summer, and Fall) each year in 2013, 2014 and 2015 in sandy and

clay soil at Unifarm experimental sites in Wageningen, The Netherlands. One week

after sowing the sugar beet, the potato was planted in random locations throughout

the fields. The plant images were acquired under a wide range of illumination and

weather conditions during several days in June, August and October 2013, in May,

June, July and September 2014 and in May, June, July and October 2015.

From all acquired images, a total of 200 images was selected for further analysis. The

200 images were categorized according to plant size (estimated crown diameter of the

plant 0− 50mm indicated with ‘S’ for category Small; 51− 150mm: indicated with ‘M’

for category Medium; > 150mm: indicated with ‘L’ for category Large), illumination
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Table 3.1: The image dataset categories based on plant size (estimated crown diameter
of the plant 0−50mm indicated with ‘S’ for category Small; 51−150mm: indicated with
‘M’ for category Medium; > 150mm: indicated with ‘L’ for category Large), illumination
condition (‘S’ indicating sunny conditions or ‘C’ indicating cloudy conditions), presence
of shadows (‘Y’ indicating ‘Yes’ or ‘N’ indicating ‘No’). The number of images in
each group is shown in the last column. A total of 200 images was divided over two
Image Subsets, Subset 1 and Subset 2, containing each 100 images and with an almost
equal distribution over the 9 image categories as indicated in the Table.

Category Plant size Illumination Shadows
Number of instances
(Image Subset 1 and 2)

SSY Small Sunny Yes 25 (training set:13, validation set:12)
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MCN Medium Cloudy No 27 (training set:14, validation set:13)

LSY Large Sunny Yes 18 (training set:9, validation set:9)

LSN Large Sunny No 20 (training set:10, validation set:10)

LCN Large Cloudy No 20 (training set:10, validation set:10)

Total 200 (Subset 1: 100, Subset 2: 100)
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of shadows (‘Y’ indicating ‘Yes’ or ‘N’ indicating ‘No’). This yielded nine categories of

field conditions in total, i.e. SSY, SSN, SCN, MSY, MSN, MCN, LSY, LSN and LCN.

While assuring that all nine categories were equally distributed, the 200 images

were randomly divided into two subsets of 100 images each, which will be referred to

as Image Subset 1 and Image Subset 2. See Table 3.1 for details. Example images of

each group are shown in Figure 3.3.

Then the following procedure was implemented to answer the four research questions

mentioned in the introduction:

1) To answer research question 1, of all 40 combinations of vegetation index and
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SSY
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Figure 3.3: Example images in each group in the image dataset (Table 3.1). During
the selection of the image dataset, a wide range of natural conditions was considered,
including different stages of plant growth, illumination conditions from a cloudy to
a sunny day, and extreme illumination scenes caused by strong direct sunlight and
resulting in shadows.
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threshold technique the segmentation performance was assessed on Image Subset

1 with the aim to identify combinations that stand out positively in performance

when compared to others and to identify combinations that stand out negatively

when compared to others.

2) To answer research question 2, the segmentation performance on Image Subset 1

was analysed to identify which combination works the best for each of the nine

categories of field conditions: SSY, SSN, SCN, MSY, MSN, MCN, LSY, LSN

and LCN.

3) To answer research question 3, segmentation performance on the whole Image

Subset 1 was assessed using 1) a single fixed combination of colour index and

threshold technique for the whole dataset (the best combination obtained in

procedure 1 was used), or 2) using the best combination of colour index and

threshold technique for each of the nine categories, as obtained in procedure 2.

In this way, the potential advantage of adapting the colour index and threshold

combination to the field conditions was evaluated.

4) The results obtained under 1 to 3 were validated on Image Subset 2 to assess

the results obtained from the procedure 1 to 3 on Image Subset 1 hold true on a

different independent image dataset.

Vegetation regions were manually labelled for ground truth. All images were

processed with Image Processing ToolboxTM in Matlab 2015b (The MathWorks Inc.,

Natick, USA) on a PC equipped with an Intel® Core™ i7-377T 2.5 GHz processor

and 8 GB RAM running 64-bit Windows 7.

3.3.2 Criteria for evaluating segmentation performance

The segmentation results were compared and evaluated pixel-to-pixel with human-

labelled ground truth images, using the modified accuracy (MA) as a representative

overall performance measure (Eq. 3.21). The modified accuracy (MA) is the harmonic

mean of relative vegetation area error (RVAE) and balanced accuracy (BA) and is

valued between 0 and 1, where 0 represents the poorest segmentation, and 1 the best

segmentation. The harmonic mean indicates if there is a significant imbalance between
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Figure 3.3: Example images in each group in the image dataset (Table 3.1). During
the selection of the image dataset, a wide range of natural conditions was considered,
including different stages of plant growth, illumination conditions from a cloudy to
a sunny day, and extreme illumination scenes caused by strong direct sunlight and
resulting in shadows.
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threshold technique the segmentation performance was assessed on Image Subset

1 with the aim to identify combinations that stand out positively in performance

when compared to others and to identify combinations that stand out negatively

when compared to others.

2) To answer research question 2, the segmentation performance on Image Subset 1

was analysed to identify which combination works the best for each of the nine

categories of field conditions: SSY, SSN, SCN, MSY, MSN, MCN, LSY, LSN

and LCN.

3) To answer research question 3, segmentation performance on the whole Image

Subset 1 was assessed using 1) a single fixed combination of colour index and

threshold technique for the whole dataset (the best combination obtained in

procedure 1 was used), or 2) using the best combination of colour index and

threshold technique for each of the nine categories, as obtained in procedure 2.

In this way, the potential advantage of adapting the colour index and threshold

combination to the field conditions was evaluated.

4) The results obtained under 1 to 3 were validated on Image Subset 2 to assess

the results obtained from the procedure 1 to 3 on Image Subset 1 hold true on a

different independent image dataset.

Vegetation regions were manually labelled for ground truth. All images were

processed with Image Processing ToolboxTM in Matlab 2015b (The MathWorks Inc.,

Natick, USA) on a PC equipped with an Intel® Core™ i7-377T 2.5 GHz processor

and 8 GB RAM running 64-bit Windows 7.

3.3.2 Criteria for evaluating segmentation performance

The segmentation results were compared and evaluated pixel-to-pixel with human-

labelled ground truth images, using the modified accuracy (MA) as a representative

overall performance measure (Eq. 3.21). The modified accuracy (MA) is the harmonic

mean of relative vegetation area error (RVAE) and balanced accuracy (BA) and is

valued between 0 and 1, where 0 represents the poorest segmentation, and 1 the best

segmentation. The harmonic mean indicates if there is a significant imbalance between
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RVAE and BA, and thus provides a better description of the performance. The details

of the performance measures are described in Suh et al. (2018b).

Balanced accuracy (BA) =
Recall + Specificity

2
(3.19)

Relative V egetation Area Error (RV AE) =



1− AGT−ASEG

AGT
if ASEG < AGT

1− ASEG−AGT

ASEG
if AGT ≤ ASEG

(3.20)

Modified accuracy (MA) =
2 ·BA ·RV AE

BA+RV AE
(3.21)

where: AGT is the vegetation area in ground truth (TP+FN); ASEG is the vegetation

area in segmented image (TP+FP).

3.4 Results

3.4.1 Vegetation segmentation performance of all combinations

of colour indices and threshold techniques on Image Sub-

set 1

Among 40 combinations of colour indices and threshold techniques, the top five highest-

performing combinations, as well as the bottom five lowest-performing combinations

on Image Subset 1, are shown in Table 3.2. The top five high performing combina-

tions were found to be CIVE+Kapur, CIVE+Rosin, CIVE+Kittler, ExGR+Kapur,

and GA+Rosin; while the five poorest performing combinations were NDI+Kittler,

ExG+Kapur, NDI+Rosin, NDI+Kapur, and VEG+Kapur.

Figure 3.4 shows the MA of all combinations of colour indices and threshold

techniques on Image Subset 1 as box-and-whisker plots. MA values widely vary

over the whole range from 0 to 1 for all combinations except for CIVE+Kapur, a

combination that showed less variations in MA.

The results for CIVE+Kapur, CIVE+Rosin, CIVE+Kittler, and GA+Rosin that

were listed in the top five high performing combinations (Table 3.2) show that in about

75% of the images they produced a MA of 0.6 and higher in vegetation segmentation.
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Table 3.2: Segmentation performance expressed as MA (Modified Accuracy) of the
top five highest-performing combinations as well as the bottom five lowest-performing
combinations, assessed on Image Subset 1.

Rank Combination
MA
(Modified Accuracy)

The five highest-performing
combinations

1 CIVE+Kapur 0.87

2 CIVE+Rosin 0.81

3 CIVE+Kittler 0.79

4 ExGR+Kapur 0.73

5 GA+Rosin 0.73

The five lowest-performing
combinations

36 NDI+Kittler 0.56

37 ExG+Kapur 0.53

38 NDI+Rosin 0.47

39 NDI+Kapur 0.44

40 VEG+Kapur 0.43

Among these combinations, CIVE+Kapur showed the highest performance as about

75% of the images produced a MA value of 0.82 and higher. The minimum MA

value obtained with CIVE+Kapur was 0.46, which was considerably higher than

any other combination’s minimum value. Figure 3.5 and 3.6 show example cases

where CIVE+Kapur showed better performance in vegetation segmentation than

other combinations under sunny and cloudy conditions. However, in some cases,

CIVE+Kapur produced a poor vegetation segmentation result while the other methods

such as CIVE+Ridler, CIVE+Kittler, CIVE+Otsu, and CIVE+Rosin yielded good

results (Figure 3.7). In this case, the threshold value of Kapur was considerably higher

than others. It is worth noting that for that case the histogram has a multimodal

distribution as shown in Figure 3.7i.

In general, various thresholds performed better in combination with CIVE than in

combination with other colour indices. CIVE in combination with Kapur, Kittler, and

Rosin showed an average MA of 0.79 and higher. However, CIVE together with Otsu

and Ridler showed large performance variations.
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RVAE and BA, and thus provides a better description of the performance. The details

of the performance measures are described in Suh et al. (2018b).
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where: AGT is the vegetation area in ground truth (TP+FN); ASEG is the vegetation

area in segmented image (TP+FP).

3.4 Results

3.4.1 Vegetation segmentation performance of all combinations

of colour indices and threshold techniques on Image Sub-

set 1

Among 40 combinations of colour indices and threshold techniques, the top five highest-

performing combinations, as well as the bottom five lowest-performing combinations

on Image Subset 1, are shown in Table 3.2. The top five high performing combina-

tions were found to be CIVE+Kapur, CIVE+Rosin, CIVE+Kittler, ExGR+Kapur,

and GA+Rosin; while the five poorest performing combinations were NDI+Kittler,

ExG+Kapur, NDI+Rosin, NDI+Kapur, and VEG+Kapur.

Figure 3.4 shows the MA of all combinations of colour indices and threshold

techniques on Image Subset 1 as box-and-whisker plots. MA values widely vary

over the whole range from 0 to 1 for all combinations except for CIVE+Kapur, a

combination that showed less variations in MA.

The results for CIVE+Kapur, CIVE+Rosin, CIVE+Kittler, and GA+Rosin that

were listed in the top five high performing combinations (Table 3.2) show that in about

75% of the images they produced a MA of 0.6 and higher in vegetation segmentation.
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Table 3.2: Segmentation performance expressed as MA (Modified Accuracy) of the
top five highest-performing combinations as well as the bottom five lowest-performing
combinations, assessed on Image Subset 1.

Rank Combination
MA
(Modified Accuracy)

The five highest-performing
combinations

1 CIVE+Kapur 0.87

2 CIVE+Rosin 0.81

3 CIVE+Kittler 0.79

4 ExGR+Kapur 0.73

5 GA+Rosin 0.73

The five lowest-performing
combinations

36 NDI+Kittler 0.56

37 ExG+Kapur 0.53

38 NDI+Rosin 0.47

39 NDI+Kapur 0.44

40 VEG+Kapur 0.43

Among these combinations, CIVE+Kapur showed the highest performance as about

75% of the images produced a MA value of 0.82 and higher. The minimum MA

value obtained with CIVE+Kapur was 0.46, which was considerably higher than

any other combination’s minimum value. Figure 3.5 and 3.6 show example cases

where CIVE+Kapur showed better performance in vegetation segmentation than

other combinations under sunny and cloudy conditions. However, in some cases,

CIVE+Kapur produced a poor vegetation segmentation result while the other methods

such as CIVE+Ridler, CIVE+Kittler, CIVE+Otsu, and CIVE+Rosin yielded good

results (Figure 3.7). In this case, the threshold value of Kapur was considerably higher

than others. It is worth noting that for that case the histogram has a multimodal

distribution as shown in Figure 3.7i.

In general, various thresholds performed better in combination with CIVE than in

combination with other colour indices. CIVE in combination with Kapur, Kittler, and

Rosin showed an average MA of 0.79 and higher. However, CIVE together with Otsu

and Ridler showed large performance variations.
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Figure 3.4: Box-and-whiskers plot of the MA (Modified Accuracies) for all the combin-
ations of colour indices and threshold techniques evaluated on Image Subset 1. The
left and right bars indicate the min to max values for each combination, whereas the
box and centre line indicate the Q1 (1st quartile), mean, and Q3 (3rd quartile).
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(a) Original image (b) Ground truth (c) CIVE+Kapur

(d) CIVE+Otsu (e) ExG+Rosin (f) NDI+Ridler

Figure 3.5: An example case for which CIVE+Kapur showed better performance in
vegetation segmentation than any other combinations under sunny conditions.

(a) Original image (b) Ground truth (c) CIVE+Kapur

(d) COM+Otsu (e) GA+Rosin (f) VEG+Kittler

Figure 3.6: An example case for which CIVE+Kapur showed better performance in
vegetation segmentation than any other combinations under cloudy condition.

3.4.2 Assessing the best combination for each of the nine im-

age categories in Image Subset 1

Table 3.3 shows which combination performs best for each of the nine image categories

in Image Subset 1. In total, six different combinations appeared to be the best

combination for a particular image category; CIVE+Kapur in case of four different

image categories and CIVE+Kittler, CIVE+Otsu, COM+Kapur, GA+Rosin, and

HIT+Kittler each in case of one of the categories
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Figure 3.4: Box-and-whiskers plot of the MA (Modified Accuracies) for all the combin-
ations of colour indices and threshold techniques evaluated on Image Subset 1. The
left and right bars indicate the min to max values for each combination, whereas the
box and centre line indicate the Q1 (1st quartile), mean, and Q3 (3rd quartile).
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(a) Original image (b) Ground truth (c) CIVE+Kapur

(d) CIVE+Otsu (e) ExG+Rosin (f) NDI+Ridler

Figure 3.5: An example case for which CIVE+Kapur showed better performance in
vegetation segmentation than any other combinations under sunny conditions.

(a) Original image (b) Ground truth (c) CIVE+Kapur

(d) COM+Otsu (e) GA+Rosin (f) VEG+Kittler

Figure 3.6: An example case for which CIVE+Kapur showed better performance in
vegetation segmentation than any other combinations under cloudy condition.

3.4.2 Assessing the best combination for each of the nine im-

age categories in Image Subset 1

Table 3.3 shows which combination performs best for each of the nine image categories

in Image Subset 1. In total, six different combinations appeared to be the best

combination for a particular image category; CIVE+Kapur in case of four different

image categories and CIVE+Kittler, CIVE+Otsu, COM+Kapur, GA+Rosin, and

HIT+Kittler each in case of one of the categories
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(a) Original image (b) Near-binary
(CIVE)

(c) Ground truth (d) CIVE+Ridler

(e) CIVE+Kapur (f) CIVE+Kittler (g) CIVE+Otsu (h) CIVE+Rosin

(i) Histogram with threshold values

Figure 3.7: An example case for which CIVE+Kapur produced poor vegetation seg-
mentation while the other methods CIVE+Ridler, CIVE+Kittler, CIVE+Otsu, and
CIVE+Rosin yielded good results. (a) The original image, (b) near-binary intensity
image transformed from RGB image using CIVE, (c) ground truth for vegetation
segmentation, (d)-(h) resulting images of the combinations of CIVE with threshold
techniques, and (i) histogram of near-binary intensity image with threshold techniques
and threshold values (drawn in vertical lines). In this example, the threshold value of
Kapur was considerably higher than others. It is worth noting the histogram has a
multimodal character.
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Table 3.3: The best combination of colour index and threshold technique is shown for
each category on Image Subset 1. In total, six different combinations appeared to be
the best combination; CIVE+Kapur in case of four different image categories and
CIVE+Kittler, CIVE+Otsu, COM+Kapur, GA+Rosin, and HIT+Kittler each in case
of one of the categories.

Category Best combination Mean MA Std. Deviation MA

SSY CIVE+Kapur 0.76 0.11

SSN CIVE+Kittler 0.81 0.14

SCN COM+Kapur 0.91 0.04

MSY CIVE+Kapur 0.87 0.09

MSN CIVE+Kapur 0.90 0.06

MCN GA+Rosin 0.95 0.02

LSY CIVE+Kapur 0.88 0.11

LSN CIVE+Otsu 0.92 0.03

LCN HIT+Kittler 0.94 0.04

3.4.3 Assessing the advantages of adapting the combination to

the field conditions for Image Subset 1

Table 3.4 shows for Image Subset 1 the overall MA when using one combination for all

image categories (in this case CIVE+Kapur) and when using for each image category

the combination which performed best, as found in section 3.4.2. When adapting the

combination to the image category yielded a slightly higher MA (0.88) than when

using a single combination for the whole image set (MA of 0.86).

3.4.4 Validation of results on Image Subset 2

Finally, the results obtained in steps 1 to 3 (sections 3.4.1 to 3.4.3) were validated on

Image Subset 2 to assess whether the results obtained from the procedure 1 to 3 on

Image Subset 1 hold true on a different independent image dataset, Image Subset 2.

To start with, for Image Subset 2, the performance of all 40 combinations were

assessed. The five highest-performing and five lowest-performing combinations are

61



3

Chapter 3

(a) Original image (b) Near-binary
(CIVE)

(c) Ground truth (d) CIVE+Ridler
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Figure 3.7: An example case for which CIVE+Kapur produced poor vegetation seg-
mentation while the other methods CIVE+Ridler, CIVE+Kittler, CIVE+Otsu, and
CIVE+Rosin yielded good results. (a) The original image, (b) near-binary intensity
image transformed from RGB image using CIVE, (c) ground truth for vegetation
segmentation, (d)-(h) resulting images of the combinations of CIVE with threshold
techniques, and (i) histogram of near-binary intensity image with threshold techniques
and threshold values (drawn in vertical lines). In this example, the threshold value of
Kapur was considerably higher than others. It is worth noting the histogram has a
multimodal character.
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Table 3.3: The best combination of colour index and threshold technique is shown for
each category on Image Subset 1. In total, six different combinations appeared to be
the best combination; CIVE+Kapur in case of four different image categories and
CIVE+Kittler, CIVE+Otsu, COM+Kapur, GA+Rosin, and HIT+Kittler each in case
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LSY CIVE+Kapur 0.88 0.11

LSN CIVE+Otsu 0.92 0.03

LCN HIT+Kittler 0.94 0.04

3.4.3 Assessing the advantages of adapting the combination to

the field conditions for Image Subset 1

Table 3.4 shows for Image Subset 1 the overall MA when using one combination for all

image categories (in this case CIVE+Kapur) and when using for each image category

the combination which performed best, as found in section 3.4.2. When adapting the

combination to the image category yielded a slightly higher MA (0.88) than when

using a single combination for the whole image set (MA of 0.86).

3.4.4 Validation of results on Image Subset 2

Finally, the results obtained in steps 1 to 3 (sections 3.4.1 to 3.4.3) were validated on

Image Subset 2 to assess whether the results obtained from the procedure 1 to 3 on

Image Subset 1 hold true on a different independent image dataset, Image Subset 2.

To start with, for Image Subset 2, the performance of all 40 combinations were

assessed. The five highest-performing and five lowest-performing combinations are
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Table 3.4: Overall MA of two approaches is shown on Image Subset 1: using one
combination for all categories (CIVE+Kapur) vs. using the best performing category
specific combination.

Category

Using one combination
obtained for all categories
in Image Subset 1

Using the best performing
category specific combination
for Image Subset 2

SSY CIVE+Kapur CIVE+Kapur

SSN CIVE+Kapur CIVE+Kittler

SCN CIVE+Kapur COM+Kapur

MSY CIVE+Kapur CIVE+Kapur

MSN CIVE+Kapur CIVE+Kapur

MCN CIVE+Kapur GA+Rosin

LSY CIVE+Kapur CIVE+Kapur

LSN CIVE+Kapur CIVE+Otsu

LCN CIVE+Kapur HIT+Kittler

Overall MA 0.86 0.88

shown in Table 3.5. For this image dataset, the top best performers were CIVE+Kapur,

CIVE+Rosin and CIVE+Kittler; whereas the poor performers were NDI+Rosin,

NDI+Kapur and VEG+Kapur.

The three highest-performing combinations were consistent with the results ob-

tained on Image Subset 1 as shown in section 3.4.1. Consistent results were also found

for the four lowest-performing combinations. In section 3.4.1, ExGR+Kapur and

GA+Rosin were the fourth and fifth highest-performing combinations respectively

on Image Subset 1, but on Image Subset 2 they were ranked in sixth and seventh

place with a MA of 0.74 and 0.73, respectively. These performances, however, did

not significantly differ from the performances of the two combinations in the fourth

and fifth highest-performing combinations (MA of 0.75 and 0.74) for Image Subset

2. Similarly, in section 3.4.1 for Image Subset 1, NDI+Kittler was ranked in 36th
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Table 3.5: Segmentation performance expressed as Modified Accuracy of the top five
of high performing combinations as well as the five lowest-performing combinations,
assessed on Image Subset 2.

Rank Combination
MA
(Modified Accuracy)

Top five highest-performing
combinations

1 CIVE+Kapur 0.85

2 CIVE+Rosin 0.82

3 CIVE+Kittler 0.78

4 ExG+Kittler 0.75

5 GA+Kittler 0.74

Bottom five lowest-performing
combinations

36 GA+Kapur 0.56

37 ExG+Kapur 0.53

38 NDI+Rosin 0.48

39 NDI+Kapur 0.40

40 VEG+Kapur 0.38

place with a MA of 0.56, but this combination was ranked in 34th place with MA of

0.58 for Image Subset 2. However, the performance was not considerably different

between NDI+Kittler and the one that was ranked in 36th place on Image Subset 2

(GA+Kapur).

In Table 3.6, overall MA of three different approaches validated on Image Subset 2

is shown:

1) Using one combination obtained in Image Subset 1 for all categories in Image

Subset 2 (in this case CIVE+Kapur);

2) Using the category specific combination obtained from Image Subset 1 (best

performers for each of the nine categories on Image Subset 1 in section 3.4.2) on

Image Subset 2;

3) Using the best performing category specific combination for Image Subset 2.

Again, using an adapted combination for each image category yielded a slightly

better MA (0.86 and 0.87 in approach 2 and 3, respectively) than using one combination
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Table 3.4: Overall MA of two approaches is shown on Image Subset 1: using one
combination for all categories (CIVE+Kapur) vs. using the best performing category
specific combination.
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SCN CIVE+Kapur COM+Kapur

MSY CIVE+Kapur CIVE+Kapur

MSN CIVE+Kapur CIVE+Kapur

MCN CIVE+Kapur GA+Rosin

LSY CIVE+Kapur CIVE+Kapur

LSN CIVE+Kapur CIVE+Otsu

LCN CIVE+Kapur HIT+Kittler

Overall MA 0.86 0.88
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Table 3.6: Overall MA of different approaches validated on Image Subset 2 is shown:
1) using one combination obtained in Image Subset 1 for all categories in Image Subset
2, 2) using the category specific combination obtained from Image Subset 1 on Image
Subset 2, and 3) using the best performing category specific combination for Image
Subset 2.

Category

Using one
combination obtained
in Image Subset 1
for all categories
in Image Subset 2

Using the category
specific combination
obtained from
Image Subset 1 on
Image Subset 2

Using the best
performing category
specific combination
for Image Subset 2

SSY CIVE+Kapur CIVE+Kapur CIVE+Kapur

SSN CIVE+Kapur CIVE+Kittler CIVE+Rosin

SCN CIVE+Kapur COM+Kapur HIT+Kapur

MSY CIVE+Kapur CIVE+Kapur CIVE+Kapur

MSN CIVE+Kapur CIVE+Kapur CIVE+Kapur

MCN CIVE+Kapur GA+Rosin CIVE+Rosin

LSY CIVE+Kapur CIVE+Kapur CIVE+Kapur

LSN CIVE+Kapur CIVE+Otsu CIVE+Otsu

LCN CIVE+Kapur HIT+Kittler HIT+Kittler

Overall
MA 0.85 0.86 0.87

for all image categories (MA of 0.85). Although the differences are minute, the adaptive

approach 3 performed the best as was expected. Adaptive approach 2, based on Image

Subset 2, performed only very slightly less. And in line with the results represented in

Table 3.4, using one combination yielded again a slightly worse performance.

3.5 Discussion

Under the given conditions of this research, some combinations of colour index and

threshold technique performed consistently well while some other combinations per-

formed consistently poor. For example, the combination of CIVE and Kapur performed

best on both Image Subset 1 and 2. Interestingly enough, however, to the best of the

knowledge, CIVE+Kapur has not been proposed or used for vegetation segmentation
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under natural field conditions before. Supporting our findings, the colour index CIVE

was used in recent studies. For instance, Ye et al. (2015) reported that CIVE showed

better and stable performance over ExG, NDI and VEG. Hamuda et al. (2016) sugges-

ted using CIVE under cloudy and overcast conditions because CIVE showed a better

performance under these conditions than other colour-based indices. Their findings

are in line with the results obtained in this study.

The combination of ExG and Kapur, for example, performed consistently poor

on both Image Subset 1 and 2. Yet Tellaeche et al. (2008) used ExG+Kapur for

vegetation segmentation to identify weeds in corn crops. They indicated that the

best performance was achieved with Kapur threshold, but the paper did not provide

sufficient detail to get proper insight into these results. These contradicting findings

might indicate that selection of a combination of colour index and threshold technique

is sensitive to plant type and thus this needs further validation in a future study.

Regarding the Kapur threshold, several studies indeed reported Kapur generally

performed better than Otsu, Ridler, or Rosin thresholds (Bhandari et al., 2015; Oliva

et al., 2014; Rosin & Ioannidis, 2003; Sezgin & Sankur, 2004). Again, in this study, the

highest performance was shown in the combination of CIVE with Kapur on both Image

Subset 1 and 2. Under noisy conditions, however, the Kapur threshold was reported

to tend to perform poorly leading to a multimodal intensity histogram (Prasad et al.,

2011; Su & Amer, 2006). This was observed in this study as well, as was shown

in Figure 3.7, when the images produced a multimodal histogram due to noise or

irregular illuminations, Kapur performed poorer than other thresholds. In a recent

study, Zheng et al. (2017) proposed an entropic thresholding based on Kapur that

takes into account the spatial correlation between pixels to improve the performance

of Kapur threshold. They reported their proposed approach performed better than a

traditional Kapur threshold when using some of the images from the Berkeley image

segmentation dataset (Martin et al., 2001). A future study topic might be to evaluate

their approach for vegetation segmentation.

The results of this research indicate that for volunteer potato in sugar beet, using

different combinations for vegetation segmentation depending on the field conditions

like light intensity, shadow presence and plant size might be beneficial although the

performance difference compared to using a single combination for all images, in this

case CIVE+Kapur, was not very large. To the best of our knowledge, there is no

evidence in the scientific literature supporting or contradicting these findings. It seems
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worth a while to investigate this aspect further and to expand the set of conditions

to include for instance different crop types. Given the current findings, it seems that

for practical use, the slight improvement when adapting the combination to the field

conditions does not outweigh the investment in sensor technology and software needed

to accurately determine the different conditions in the field.

3.6 Conclusions

In this paper, the performance of 40 combinations of eight colour and five thresholding

techniques was evaluated under natural field conditions. A clear difference in perform-

ance, represented in terms of MA (Modified Accuracy), was observed among various

combinations under the given conditions. CIVE+Kapur showed the best performance

on Image Subset 1, while VEG+Kapur showed the worst performance on the dataset.

In a total of nine image categories related to light intensity, shadow presence

and plant size in Image Subset 1, six different combinations appeared to be the best

combination; CIVE+Kapur in case of four different image categories and CIVE+Kittler,

CIVE+Otsu, COM+Kapur, GA+Rosin, and HIT+Kittler each in case of one of the

categories. When adapting the combination to the image category yielded a slightly

higher MA (0.88) than when using a single combination for the whole image set (MA

of 0.86) on Image Subset 1. The expected advantage of adapting the combination to

the field condition was not large.

The results obtained from the procedure 1 to 3 on Image Subset 1 were consistent

when validated on a different independent image dataset, Image Subset 2.

Using different combinations for vegetation segmentation depending on the field

conditions like light intensity, shadow presence and plant size might be beneficial

although the performance difference compared to using a single combination for all

images, in this case CIVE+Kapur, was not very large. Given the current findings, it

seems that for practical use, the slight improvement when adapting the combination

to the field conditions does not outweigh the investment in sensor technology and

software needed to accurately determine the different conditions in the field.
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Abstract

One of the most important steps in vision-based weed detection systems is the

classification of weeds growing amongst crops. In EU SmartBot project it was required

to effectively control more than 95% of volunteer potatoes and ensure less than 5%

of damage of sugar beet. Classification features such as colour, shape and texture

have been used individually or in combination for classification studies but they

have proved unable to reach the required classification accuracy under natural and

varying daylight conditions. A classification algorithm was developed using a Bag-

of-Visual-Words (BoVW) model based on Scale-Invariant Feature Transformation

(SIFT) or Speeded Up Robust Feature (SURF) features with crop row information

in the form of the Out-of-Row Regional Index (ORRI). The highest classification

accuracy (96.5% with zero false-negatives) was obtained using SIFT and ORRI with

Support Vector Machine (SVM) which is considerably better than previously reported

research although its 7% false-positives deviated from the requirements. The average

classification time of 0.10−0.11 s met the real-time requirements. The SIFT descriptor

showed better classification accuracy than the SURF, but classification time did not

vary significantly. Adding location information (ORRI) significantly improved overall

classification accuracy. SVM showed better classification performance than random

forest and neural network. The proposed approach proved its potential under varying

natural light conditions, but implementing a practical system, including vegetation

segmentation and weed removal may potentially reduce the overall performance and

more research is needed.

keywords

Weed classification; Bag-of-Visual-Words; SIFT; SURF; posterior probability
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4.1 Introduction

Within the EU-funded project SmartBot (SmartBot), a small-sized robot was developed

for vision based precision control of volunteer potatoes (weed) in a sugar beet field

(Figure 4.1). Due to the small size of the robot and its battery operation, the platform

design had to refrain from using additional infrastructure and should be able to

robustly detect weeds in scenes that are fully exposed to ambient lighting conditions

(Suh et al., 2018b). Additional infrastructure such as a hoods and lighting, as for

example were used by Nieuwenhuizen et al. (2010) and Haug et al. (2014), was not

considered viable

One of the most important steps in vision-based weed detection is the classification

of weeds among crops. The output of this classification is a fundamental element in the

subsequent process of weed control either by chemical spraying or mechanical actuation

(Behmann et al., 2015). In a system for weed detection, vegetation segmentation

is followed by classification of the segmented vegetation into weeds and crop. This

classification step traditionally involves two aspects: 1) selection of the discriminative

features and 2) selection of the classification technique (classifier) to differentiate

between weeds and crop.

Fig. 1. The robotic platform for volunteer potato control in a sugar beet field.

color, shape (biological morphology) and texture on an individual basis or as22

a combination of multiple features [6, 7, 8, 9, 10, 11, 12, 13]. However, these23

features have shown poor performance under widely varying natural light24

conditions [14]. Other features such as Scale Invariant Feature Transform25

(SIFT) [15] and Speeded Up Robust Features (SURF) [16], have shown their26

potential in recent studies in the classification of plant species [17, 5, 18].27

However, the highest classification accuracy using SIFT and SURF obtained28

3

Figure 4.1: The robotic platform for volunteer potato control in a sugar beet field.
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Regarding the features used for discrimination, many studies have used colour,

shape (biological morphology) and texture on an individual basis or in combination

(Ahmed et al., 2012; Åstrand & Baerveldt, 2002; Gebhardt & Kühbauch, 2007; Pérez

et al., 2000; Persson & Åstrand, 2008; Slaughter et al., 2008; Swain et al., 2011; Zhang

et al., 2010). These features are intuitive and easy-to-implement but may have limited

discrimination ability under ambient lighting conditions.

In a system that has to work under ambient light conditions, the use of colour

features may not yield robust classification (Lee et al., 2010). In the field, illumination

constantly changes because of the varying sunlight and weather conditions. These

variations in illumination greatly affect the Red-Green-Blue (RGB) pixel values of

the acquired field images and lead to an inconsistent colour representation of plants

(Sojodishijani et al., 2010; Teixidó et al., 2012). Additionally, irrespective of the

illumination, it is sometimes hard, if not impossible, to differentiate between volunteer

potato and sugar beet using colour features. Usually, volunteer potato has a darker

green colour than sugar beet (Figure 4.2a) which results in a separable pixel distribution

in the EG-RB colour plane (Figure 4.2c). However, as is shown in Figure 4.2b, volunteer

potato occasionally has the same colour as sugar beet which makes them inseparable

in the EG-RB colour plane (Figure 4.2d). Also, the colour of plants may change

depending on their growth stage and nutritional status with plant leaves sometimes

even turning yellow in the summer (Muñoz-Huerta et al., 2013) (Figure 4.3).

Shape and texture may also not be sufficiently discriminating features for successful

classification of sugar beet and volunteer potato in the field. Camargo Neto et al.

(2006), Swain et al. (2011), and Rumpf et al. (2012) showed that leaf edge information,

plant orientation, and shape could serve as discriminative features. However, results

obtained under laboratory conditions in a highly structured environment do not easily

translate to real field conditions. Wind, shadow, and specular reflection of sunlight

make it difficult for clear recognition of the shape of the plants in the field (Kazmi

et al., 2015a). Some studies have shown that texture has the potential to discriminate

between broad- and narrow-leaf plants as both have clearly different textural properties

(Gebhardt & Kühbauch, 2007; Ishak et al., 2009; Van Evert et al., 2009). However,

sugar beet and volunteer potato have similar textural properties that cannot easily be

discriminated (Vollebregt, 2013). Therefore, a solution was needed to classify sugar

beet and volunteer potato that would not depend on colour, shape, and textural

features.
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beet. (c) In such a case, sugar beet and volunteer potato are separable (based on the
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inseparable in the EG-RB plane. The EGRBI transformation was used to compare the
colour difference between sugar beet and volunteer potato (Nieuwenhuizen et al., 2007).
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Figure 4.3: Example plant images in the field. The plant leaves often turn yellow in
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Figure 4.3: Example plant images in the field. The plant leaves often turn yellow in
the summer as indicated in squares.
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A potential method to resolve the afore-mentioned issues and meet the performance

requirements is to use counter-intuitive features (i.e. local descriptors) extracted by

Scale-Invariant Feature Transform (SIFT) (Lowe, 2004) or Speeded Up Robust Features

(SURF) (Bay et al., 2008). Both SIFT and SURF are invariant to illumination and

colour while providing strong performance against noise. The SIFT descriptor has

been used for weed classification and recognition in several recent studies (Kazmi

et al., 2015a; Kounalakis et al., 2016; Wilf et al., 2016). Using the SIFT descriptor,

Wilf et al. (2016) proposed a leaf identification procedure based on a machine learning

approach. Although they acquired images under controlled environmental conditions

with the manual arrangement of the leaves, their study showed the potential of the

SIFT descriptor for leaf classification. Kazmi et al. (2015a) used both SIFT or SURF

descriptors to classify sugar beet and creeping thistle under field conditions. Their

study showed the potential of using local descriptor features for thistle detection. They

combined these local descriptors with the features of surface colour and edge shapes.

Using k-Nearest Neighbours (kNN) and SVM classifiers a very promising classification

performance was achieved. However, their study was limited to detecting creeping

thistle in a sugar beet crop, two species having clearly different textural features. Also,

the field images were mostly acquired using a cover preventing direct access of sunlight

to the scene, quite a distinct difference with the daylight conditions the SmartBot

robot is confronted with.

A common way for classifying images using SIFT or SURF descriptors is to use

a Bag-of-Visual-Words (BoVW) approach. The BoVW approach has demonstrated

good performance in many computer vision applications such as object and scene

classification (Law et al., 2014; Tsai, 2012; Zhou et al., 2013). The BoVW evolved from

the original Bag-of-Words methodology which was first proposed in the field of text

analysis and information retrieval (Bosch et al., 2007). In text analysis and information

retrieval, each appearance of a word is recognised as a feature and is represented

in the form of a bag of words, an orderless document representation of vocabulary

(Salton & McGill, 1983). Once the Bag-of-Words model learns a vocabulary from all

the documents, then each document can be classified by the number of times each

word appears (occurrence). The same methodology and concept are applied in image

classification in BoVW. The extracted features from an image are treated as a visual

word, and the BoVW model is formed based on the occurrence of each visual word.

Once the BoVW approach has learned each visual word from all the images, then each
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image can be classified by the number of times each visual word appears (occurrence).

This paper presents a classification algorithm using a Bag-of-Visual-Words model,

SIFT or SURF descriptors. SIFT is known to provide better classification performance

than SURF, but it is said to be several times slower than SURF (Csurka et al., 2004;

Khan et al., 2011; Wu et al., 2013). This research aimed to verify the difference

in performance between SIFT and SURF by assessing classification accuracy and

computation time on similar datasets (images) obtained in the field in 2015. Since

neither SIFT nor SURF uses location related features, crop row information was used

as an additional feature and added to the feature set to assess whether that would

improve the classification accuracy.

SURF, SIFT and crop row information provide the features but require further pro-

cessing for classification. Due to the challenging nature of the agricultural environment,

and complexity of plant materials, it is hard to select a-priori one particular classifier

which performs best in the classification task at hand (Suh et al., 2018b). To provide

more insight into the performance differences found amongst different classifiers, the

Support Vector Machine (SVM), random forest, and neural network classifiers were

compared. These classifiers have been used in many agricultural applications (Ahmed

et al., 2012; Cho et al., 2002; Jeon et al., 2011; Lottes et al., 2017).

To estimate the amount of certainty of the classification output, a posterior

probability of the output of the SVM was calculated using a method proposed by Platt

(1999). The posterior probability might provide useful information for weed control

in practice since the action of removing volunteer potato should only be applied to

those potato plants that are classified with a high confidence, while the control action

should be skipped for those potato plants that are classified with a low confidence to

prevent undesired destruction of the sugar beet.

Within the context of the SmartBot weeding application, following requirements

were set by the previous study of Nieuwenhuizen (2009): the resulting automatic

weeding system should be able to effectively control more than 95% of the volunteer

potatoes as well as ensuring less than 5% of damage of the sugar beet plants. Therefore,

classification accuracy should be considerably higher than 95% with a misclassification

level of both sugar beet (false-negative) and volunteer potato (false-positive) of less

than 5%. In addition, a classification time of less than 1 s per field image is required for

feasible real-time field application. In this paper the classification process is evaluated

in view of these requirements.
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feasible real-time field application. In this paper the classification process is evaluated
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The first section of this paper describes the processing method of the BoVW model

construction using the SIFT or SURF features. The following section describes the

acquisition and selection of the image dataset, quantitative performance measure, and

estimation of the posterior probability of SVM outputs. The experimental results are

shown with the corresponding discussions. Lastly, conclusions are drawn.

4.2 The classification process

The classification process consists of the following procedures: 1) feature extraction

using SIFT or SURF descriptors as well as crop row information, 2) feature clustering

for visual vocabulary generation, 3) feature quantisation, 4) classification with SVM,

random forest or neural network classifiers. The image classification process is shown

in Figure 4.4, and each component will be described in more detail in the following

section.

4.2.1 Feature extraction with SIFT or SURF descriptors and

Out of Row Regional Index (ORRI)

The first step involved the extraction of local features from the training images

(Figure 4.4a, Figure 4.5a). For the selection of the feature extraction point (keypoint)

within an image, a regular grid-point based sampling was used as several studies

reported that it provided robust performance (Fei-Fei & Perona, 2005; Law et al.,

2014; Tsai, 2012). Grid size refers to the density of the feature extraction within a

given image. In a preliminary study (Table 4.4) it was found that a grid size of 3× 3

pixels proved to perform best for SIFT and 6× 6 pixels for SURF.

During the generation of the visual vocabulary, the spatial location of the feature

within an image was ignored. However, the spatial location may contain some valuable

information especially for weed and crop discrimination in the field. Uijlings et al. (2009)

reported that the classification performance of BoVW using SVM was considerably

improved when they included spatial information (contextual information) into the

algorithm.

In a classification problem with one single object in an image scene, the location

of the object within an image may not carry any additional and useful information.

However, with weed detection in the field, the location of each plant can play a
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Image dataset
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Feature clustering
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Figure 4.4: Flowchart of image classification using Bag-of-Visual-Words.

significant role in the plant recognition. For example, sugar beet plants are cultivated

in rows (Åstrand & Baerveldt, 2002). Due to precision seeding, the crop row width

and plant spacing within a row are fixed. For this reason, most of the sugar beet are

found inside crop rows whilst weeds can be found randomly distributed across the

field. Any green plant that is located far away from the crop rows is unlikely to be a

crop but very likely to be a weed.

Inspired by the details mentioned above, an out-of-row regional index (ORRI) was

generated for each plant on the basis of the out-of-row distance (Figure 4.6), a distance
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between the centre of the plant to the nearest crop row. The ORRI was added to the

BoVW feature set. Identifying weeds as weeds when located outside the crop row may

sound trivial, which it is. However, it was hypothesised that adding ORRI information

during the learning process might add an extra discriminatory dimension, and thus

might enhance the discriminative power in the classification. The details of the ORRI

generation are described below.

First, the location of three crop rows was manually estimated. Second, a distance

between the centers of each plant to the nearest crop row, the out-of-row distance, was

estimated. Third, each plant received a value for the ORRI from the set [0.3, 0.6, 0.9]

(a) Feature extraction (SIFT, SURF descriptors)

...
Feature vector

(b) Feature clustering using k-means clustering

Sugar Beet
Volunteer Potato

(c) Feature quantization to construct a histogram of visual words

Classifier

(d) Classifier training

Figure 4.5: Overview of BoVW model generation. (a) SIFT or SURF features (local
descriptors) were extracted from the training images. (b) The extracted features
were then clustered for visual vocabulary generation using k-means clustering. (c) A
histogram of visual words was constructed from each training image, (d) which was
used for classifier training.
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based on the following rules:

ORRI =




0.3, if out-of-row distance < 80 pixels

0.6, if 80 ≤ out-of-row distance < 160 pixels

0.9, otherwise

(4.1)

where the out-of-row distance is represented as a pixel value (one pixel corresponds to

approximately 1mm in the field).

Out-of-row distance

Estimated crop rows

80	px

160	px 160	px

80	px

★

Figure 4.6: The location of the three crop rows in the field of view was manually
estimated (yellow dotted lines). An individual plant was extracted, then the distance
between the centre position of a plant (marked as a star) to the nearest crop row, the
out-of-row distance, was estimated. Two distances from the central crop row (80 and
160 pixels) are shown (blue lines).
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For the regional index discrete values of 0.3, 0.6 and 0.9 were used instead of

continuous values because it was expected that the estimation of the crop rows and

centre point of the plant would be likely to introduce noise.

4.2.2 Feature clustering for visual vocabulary generation

In this step, extracted features were clustered using k-means clustering, a common

method for visual vocabulary generation (Figure 4.4b, Figure 4.5b). Each cluster

centroid determined by k-means clustering was considered as a visual word. Based on

a preliminary study, the number of clusters and thus the vocabulary size was set to

500 (Table 4.4).

If the vocabulary size (number of clusters) is too small, the set of visual words

may be too limited to represent all the important features of images, and thus may

lead to poor classification performance (Yang et al., 2007). On the other hand, if the

vocabulary size is too large, there is a higher chance of overfitting the training dataset.

In addition, a large size of the vocabulary also requires more processing power.

4.2.3 Feature quantisation

Once the visual vocabulary was generated, the features (descriptors) extracted from

each image were assigned to each visual word to construct a histogram of visual word

occurrences (Figure 4.4c, Figure 4.5c). Using the Euclidean distance, each extracted

feature was allocated to its nearest visual word (nearest neighbour). A histogram

of visual words was then generated by counting the number of features that were

assigned to each visual word. The length of the histogram was equal to the number of

cluster centres generated by k-means clustering, where the nth value in the histogram

was the occurrence of the nth visual word. This process is commonly called feature

quantisation (Kato & Harada, 2014). A histogram of visual word occurrence generated

from images of sugar beet and volunteer potato is shown in Figure 4.7.

4.2.4 Classification based on supervised learning

Supervised learning was used to train the classifiers for differentiation between sugar

beet and potatoes (Figure 4.4d, Figure 4.5d). Three classifiers were used in this study:

SVM, random forest and a neural network. In the SVM, three different polynomial
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kernels (linear, quadratic and cubic) were assessed. For the evaluation of the classifiers,

10-fold cross-validation was used. Some details of random forest and neural network

are described below.

Support Vector Machine (SVM)

The SVM is a supervised learning model based on the theory of statistical learning

(Vapnik, 1995). SVM is one of the most widely used classification models in machine

learning applications and often reaches high performance in high-dimensional problems

with small sample problems (Csurka et al., 2004; Li, 2011). The basic principle of

SVM is to find the optimal hyperplane which separates classes with minimum error.

Random forest (Ensemble Classifier)

A random forest classifier, an ensemble method that consists of multiple decision

trees, was used for this study. Random forest, as the name says, is constructed from

decision trees, more precisely it is a collection of tree-structured classifiers. Each

Sugar	beet

Volunteer	potato

(a)

(b)

Figure 4.7: Images of (a) sugar beet and (b) volunteer potato on the left, with the
associated histograms of visual word occurrences on the right.
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feature was allocated to its nearest visual word (nearest neighbour). A histogram

of visual words was then generated by counting the number of features that were

assigned to each visual word. The length of the histogram was equal to the number of

cluster centres generated by k-means clustering, where the nth value in the histogram

was the occurrence of the nth visual word. This process is commonly called feature

quantisation (Kato & Harada, 2014). A histogram of visual word occurrence generated

from images of sugar beet and volunteer potato is shown in Figure 4.7.

4.2.4 Classification based on supervised learning

Supervised learning was used to train the classifiers for differentiation between sugar

beet and potatoes (Figure 4.4d, Figure 4.5d). Three classifiers were used in this study:

SVM, random forest and a neural network. In the SVM, three different polynomial
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kernels (linear, quadratic and cubic) were assessed. For the evaluation of the classifiers,

10-fold cross-validation was used. Some details of random forest and neural network

are described below.

Support Vector Machine (SVM)

The SVM is a supervised learning model based on the theory of statistical learning

(Vapnik, 1995). SVM is one of the most widely used classification models in machine

learning applications and often reaches high performance in high-dimensional problems

with small sample problems (Csurka et al., 2004; Li, 2011). The basic principle of

SVM is to find the optimal hyperplane which separates classes with minimum error.

Random forest (Ensemble Classifier)

A random forest classifier, an ensemble method that consists of multiple decision

trees, was used for this study. Random forest, as the name says, is constructed from

decision trees, more precisely it is a collection of tree-structured classifiers. Each

Sugar	beet

Volunteer	potato

(a)

(b)

Figure 4.7: Images of (a) sugar beet and (b) volunteer potato on the left, with the
associated histograms of visual word occurrences on the right.
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decision tree provides a classification “vote,” and the majority vote is selected for

the final classification (Chan & Paelinckx, 2008; Liaw & Wiener, 2002; Polikar, 2006).

Breiman (2001) reported that the performance of a random forest was superior to

other learning algorithms. Rodriguez-Galiano et al. (2012) indicated that the random

forest is relatively robust to outliers and noise as well as computationally less expensive

than other tree ensemble methods.

Neural network

The artificial neural network consists of multiple nodes and neurons that are connected

in the layers. Compared to other classifiers, according to Behmann et al. (2015), a

neural network requires less prior information and is robust to noise thus particularly

suitable for the modeling of optical sensor data. In this study, a feed-forward back

propagation neural network was used. The neural network used in this research

consists of one hidden layer with 150 neurons besides an input and an output layer.

In the input layer, histograms of visual words were utilized, and in the output layer,

sugar beet was represented by [1, 0] while volunteer potato was represented by [0, 1].

4.3 Experiment setup

4.3.1 Field image collection and image dataset

To acquire crop images, a camera was mounted at the height of 1m perpendicular

to the ground on a custom-made frame carried by a mobile platform (Husky A200,

Clearpath, Canada) (Figure 4.8). A stereo camera (NSC1005c, NIT, France) was

equipped with two Kowa 5mm lenses (LM5JC10M, Kowa, Japan) with a fixed aperture.

The camera was set to operate in an automatic acquisition mode with default settings.

The camera images from left and right sensors were acquired each having an image

resolution of 1280× 580 pixels. The ground-covered area was 1.3m× 0.7m per image

(pair), corresponding to three crop rows of sugar beet. The acquisition program was

implemented in LabVIEW (National Instruments, Austin, TX, USA) and acquired

five images per second. Raw format images (TIFF) were initially acquired in the

field, and debayer was processed offline to convert the raw format image into RGB

colour. Field images were taken while the mobile platform was manually controlled

with a joystick and driven along crop rows using a controlled traveling speed of 0.5m/s.
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Sugar beet were sown in April 2015 in sandy and clay soil at Unifarm experimental

sites in Wageningen, The Netherlands. One week after sowing the sugar beet, potatoes

were planted in random locations throughout the fields. Crop images were acquired

for two days in the morning and afternoon on 1-June and 5-June, 2015.

For the labelled image dataset used in this study, a total of 400 individual plant

images was manually extracted from selected field images: 200 sugar beet plants and

200 volunteer potato plants. During the selection of this image dataset, images with

different illuminations levels were considered as well as images containing shadows.

The size of each plant image in the dataset varied from the smallest size of 65× 65

pixels to the largest of 305× 315 pixels. Example images in the dataset are shown in

Figure 4.9.

1m

0.45m

Field	of	view
:	1.3x0.7	m

Figure 4.8: Field images were acquired with a stereo camera mounted at the height
of 1m viewing perpendicular to the ground surface resulting in a field of view of
1.3m× 0.7m. A mobile platform, Clearpath Husky, was manually controlled with a
joystick and driven along crop rows using a controlled travelling speed of 0.5m/s.
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sugar beet was represented by [1, 0] while volunteer potato was represented by [0, 1].

4.3 Experiment setup

4.3.1 Field image collection and image dataset

To acquire crop images, a camera was mounted at the height of 1m perpendicular

to the ground on a custom-made frame carried by a mobile platform (Husky A200,

Clearpath, Canada) (Figure 4.8). A stereo camera (NSC1005c, NIT, France) was

equipped with two Kowa 5mm lenses (LM5JC10M, Kowa, Japan) with a fixed aperture.

The camera was set to operate in an automatic acquisition mode with default settings.

The camera images from left and right sensors were acquired each having an image
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(pair), corresponding to three crop rows of sugar beet. The acquisition program was

implemented in LabVIEW (National Instruments, Austin, TX, USA) and acquired

five images per second. Raw format images (TIFF) were initially acquired in the

field, and debayer was processed offline to convert the raw format image into RGB

colour. Field images were taken while the mobile platform was manually controlled

with a joystick and driven along crop rows using a controlled traveling speed of 0.5m/s.
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1.3m× 0.7m. A mobile platform, Clearpath Husky, was manually controlled with a
joystick and driven along crop rows using a controlled travelling speed of 0.5m/s.
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In the image dataset, all sugar beet were found inside crop rows (out-of-row distance

< 80 pixels), having an ORRI of 0.3. On the other hand, volunteer potatoes were

found inside and outside crop rows. The number of volunteer potatoes found inside

the crop row (out-of-row distance < 80 pixels), i.e. ORRI = 0.3, was 55; while the

number of volunteer potatoes found outside the crop row (out-of-row distance ≥ 80

pixels), i.e. ORRI > 0.3, was 145.

4.3.2 Performance measure and system platform

In this study, a binary classification was carried out; i.e. sugar beet or volunteer

potato. The classification performance measures in this study are described below.

A confusion matrix (Table 4.1) was used to assess and compare the classification

performances. The classification accuracy was calculated along with training and

classification time since this approach should, in the end, yield a real-time field applic-

ation. Each classifier was validated using 10-fold cross-validation. The classification

accuracy and training time were averaged over ten trials with a random split of the

dataset. The training time included times for classifier training as well as extracting

Figure 4.9: Example images from the field image dataset containing a total of 400
plant images with 200 sugar beet (top) and 200 volunteer potatoes (bottom). During
the generation of this dataset, images with different illumination levels were selected
as well as images containing shadows.
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Table 4.1: Confusion matrix
(TR:true-positive, TN:true-negative, FP:false-positive, and FN:false-negative)

Predicted Class

Sugar Beet (SB) Volunteer Potato (VP)

Actual Class Sugar Beet (SB) TP FN

Volunteer Potato (VP) FP TN

features and building a visual vocabulary. The classification time was measured for

the prediction of one plant image. All images were processed in Matlab® 2015b (The

MathWorks Inc, Natick, MA, USA) using the Computer Vision System ToolboxTM,

Neural Network ToolboxTM, and VLFeat library for Matlab (Vedaldi & Fulkerson,

2008). Processing time was measured on an Intel® CoreTM i7-377T 2.5 GHz processor

with 8 GB memory running 64-bit Windows 7.

ClassificationAccuracy =
TP + TN

TP + FN + FP + FN
(4.2)

where TP is true-positives; FP is false-positives; TN is true-negative, and FN is

false-negative.

4.3.3 Estimated posterior probability of SVM outputs

Platt (1999) proposed a method using a sigmoid function to calculate and estimate

the posterior probability for SVM classifier. Since then, this method has been used in

many applications as it is a useful measure to provide the degree of certainty (belief)

of the classification output (Lin et al., 2007). In this study, a posterior probability was

estimated for the SVM using a linear kernel and employing the ORRI in the feature

set.

4.4 Results

The classification performances of BoVW using SIFT or SURF descriptors are sum-

marized with true-positive (TP), false-negative (FN), false-positive (FP), true-negative

(TN), classification accuracy, training time and classification time in Table 4.2 and

Table 4.3. In these tables, it is also indicated whether the ORRI was used.
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Table 4.2: The classification performance using SIFT features is shown. The classifiers
were trained and validated with a total of 400 images (200 of sugar beet and 200 of
volunteer potato) using 10-fold cross-validation. The final classification performance
was averaged over ten repetitions. The training time includes the time for training of
the classifier as well as for extracting SIFT features and building a visual vocabulary.
The classification time includes the time required to classify the class of a single plant
image using the trained classifier.
(TR:true-positive, TN:true-negative, FP:false-positive, FN:false-negative, and
ORRI:Out-of-Row Regional Index)

Classifier models TP FN FP TN Classification
accuracy (%)

Training
time (s)

Classification
time (s/image)

(% of total)

SVM Linear without ORRI 183 17 20 180 90.8 218.6 0.107

(91.5) (8.5) (10) (90)

with ORRI 200 0 20 180 95.0 221.4 0.108

(100) (0) (10) (90)

Quadratic without ORRI 186 14 17 183 92.3 216.6 0.106

(93) (7) (8.5) (91.5)

with ORRI 200 0 14 186 96.5 218.8 0.107

(100) (0) (7) (93)

Cubic without ORRI 188 12 18 182 92.5 219.3 0.106

(94) (6) (9) (91)

with ORRI 196 4 17 183 94.8 222.6 0.106

(98) (2) (8.5) (91.5)

Random forest without ORRI 172 28 38 162 83.5 228.9 0.109

(86) (14) (19) (81)

with ORRI 183 17 21 179 90.5 238.9 0.108

(91.5) (8.5) (10.5) (89.5)

Neural network without ORRI 187 12 23 177 91.2 245.4 0.125

(93.5) (6) (11.5) (88.5)

with ORRI 195 5 12 188 95.8 260.5 0.130

(97.5) (2.5) (6) (94)
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Table 4.3: The classification performance using SURF features is shown. The classifiers
were trained and validated with a total of 400 images (200 of sugar beet and 200 of
volunteer potato) using 10-fold cross-validation. The final classification performance
was averaged over ten repetitions. The training time includes the time for training of
the classifier as well as for extracting SURF features and building a visual vocabulary.
The classification time includes the time required to classify the class of a single plant
image using the trained classifier.
(TR:true-positive, TN:true-negative, FP:false-positive, FN:false-negative, and
ORRI:Out-of-Row Regional Index)

Classifier models TP FN FP TN Classification
accuracy (%)

Training
time (s)

Classification
time (s/image)

(% of total)

SVM Linear without ORRI 175 25 42 158 83.3 175.8 0.099

(87.5) (12.5) (21) (79)

with ORRI 200 0 22 178 94.5 182.9 0.099

(100) (0) (11) (89)

Quadratic without ORRI 179 21 35 165 86.0 175.7 0.099

(89.5) (10.5) (17.5) (82.5)

with ORRI 196 4 18 182 94.5 182.9 0.105

(98) (2) (9) (91)

Cubic without ORRI 176 24 29 171 86.8 175.7 0.099

(88) (12) (14.5) (85.5)

with ORRI 195 5 20 180 93.8 183.1 0.101

(97.5) (2.5) (10) (90)

Random forest without ORRI 170 30 55 145 78.8 178.9 0.106

(85) (15) (27.5) (72.5)

with ORRI 179 21 42 159 84.5 186.2 0.104

(89.5) (10.5) (21) (79.5)

Neural network without ORRI 165 35 27 173 84.5 195.1 0.115

(92.5) (17.5) (13.5) (86.5)

with ORRI 190 10 21 179 92.3 190.1 0.119

(95) (5) (10.5) (89.5)
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Table 4.2: The classification performance using SIFT features is shown. The classifiers
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Table 4.3: The classification performance using SURF features is shown. The classifiers
were trained and validated with a total of 400 images (200 of sugar beet and 200 of
volunteer potato) using 10-fold cross-validation. The final classification performance
was averaged over ten repetitions. The training time includes the time for training of
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4.4.1 Classification accuracy

In Table 4.2, using SIFT features and ORRI, the highest classification accuracy

obtained was 96.5%; while the lowest classification accuracy obtained was 83.5%.

Three classifier models (SVM linear, SVM quadratic, and neural network) showed the

classification accuracies ≥ 95%, thus meeting the requirements. Likewise, in Table 4.3,

using SURF features and ORRI, the highest classification accuracy obtained was 94.5%;

while the lowest classification accuracy obtained was 84.5%. None of the classifier

models showed a classification accuracy of ≥ 95%, and thus using SURF features and

ORRI did not meet the requirements set at the beginning of this research.

4.4.2 Misclassification rate (false-positive and false-negative)

The false-negative values obtained for the cases with the highest classification accuracies

using SIFT features with ORRI and using SURF features with ORRI were both zero

(Table 4.2 and Table 4.3). Meeting the requirements, in these cases all the sugar

beet plants were correctly classified as a sugar beet, and thus no crop would be

eliminated by a weed control operation (0% of undesired control of sugar beet plants).

However, in these cases the false-positive values obtained with the highest classification

accuracies using SIFT with ORRI, and using SURF with ORRI were 14 (7%) and 22

(11%), respectively. So, 7% and 11% of volunteer potato were classified as sugar beet,

respectively, and thus would not be destroyed. These false-positive values do not meet

the requirements (misclassification: less than 5%).

4.4.3 Training and classification time

Training time in this work includes the time needed for training of the classifiers as well

as for extracting SIFT or SURF features and building the visual vocabulary. SVMs

required 218−222 s and 175−183 s of training time using SIFT with ORRI and SURF

with ORRI, respectively; while the neural network required 260 s and 190 s of training

time using SIFT with ORRI and SURF with ORRI, respectively. The training times

needed by all classifiers were reasonable, considering the training can be done offline

and may not have to be repeated very often.

The classification time indicates the time required to classify the class of a single

plant image using a trained classifier. For all classifiers, an average time of 0.10−0.11 s
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was needed for classification, which is a reasonable value when real-time application in

the field is considered.

4.4.4 SIFT compared to SURF

SIFT is known to provide better classification performance than SURF, however,

at the expense of more computation time. In view of classification accuracy, this

observation was confirmed in this research. Overall, in line with findings reported in

the literature, using SIFT features resulted in better classification accuracy than using

SURF features. Without ORRI, the accuracy improved on average 6.2% when using

SIFT features instead of using SURF features. With ORRI this difference reduced,

and on average, the accuracy improved by 2.6% when using SIFT features instead

of SURF features. SIFT features required more training time than SURF features.

On average 46 s more training time was required when using SIFT instead of SURF.

Classification time did not differ much for SIFT and SURF; however, this result does

not match with observations reported in the literature. On average 0.11 s and 0.10 s

was needed when using SIFT and SURF, respectively.

4.4.5 Out-of-Row Regional Index (ORRI)

For all classifiers classification accuracy improved with ORRI. It was earlier hypo-

thesized that adding spatial information (ORRI) during the learning process adds

an extra discriminatory dimension which enhances the discriminative power of the

classification of sugar beet and volunteer potato. This hypothesis was confirmed by the

results, showing that the classification accuracy considerably improved when using the

ORRI. Averaged over all classifiers, the improvement in classification accuracy using

the ORRI was 4.5% and 8% when using the SIFT and SURF features, respectively.

For comparison, it is worth noting that using the ORRI as the only feature, a

classification accuracy of 86.3% was obtained in all classifiers with TP, FN, FP and

TN of 200, 0, 55, 145, respectively. This is a relevant result because, as mentioned

earlier, in the dataset a total of 255 plants (200 sugar beet and 55 volunteer potatoes)

were found inside crop rows (out-of-row distance < 80 pixels, having an ORRI of 0.3).

In Table 4.3, it can be seen that adding ORRI to SURF and classifying with a SVM

and a linear kernel results in a change of classification for 45 plants (FN:from 25 to

0, FP:from 42 to 22). Further analysis of the individual images revealed that 29 of
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time using SIFT with ORRI and SURF with ORRI, respectively. The training times

needed by all classifiers were reasonable, considering the training can be done offline

and may not have to be repeated very often.

The classification time indicates the time required to classify the class of a single

plant image using a trained classifier. For all classifiers, an average time of 0.10−0.11 s
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was needed for classification, which is a reasonable value when real-time application in

the field is considered.

4.4.4 SIFT compared to SURF

SIFT is known to provide better classification performance than SURF, however,

at the expense of more computation time. In view of classification accuracy, this

observation was confirmed in this research. Overall, in line with findings reported in

the literature, using SIFT features resulted in better classification accuracy than using

SURF features. Without ORRI, the accuracy improved on average 6.2% when using

SIFT features instead of using SURF features. With ORRI this difference reduced,

and on average, the accuracy improved by 2.6% when using SIFT features instead

of SURF features. SIFT features required more training time than SURF features.

On average 46 s more training time was required when using SIFT instead of SURF.

Classification time did not differ much for SIFT and SURF; however, this result does

not match with observations reported in the literature. On average 0.11 s and 0.10 s

was needed when using SIFT and SURF, respectively.

4.4.5 Out-of-Row Regional Index (ORRI)

For all classifiers classification accuracy improved with ORRI. It was earlier hypo-

thesized that adding spatial information (ORRI) during the learning process adds

an extra discriminatory dimension which enhances the discriminative power of the

classification of sugar beet and volunteer potato. This hypothesis was confirmed by the

results, showing that the classification accuracy considerably improved when using the

ORRI. Averaged over all classifiers, the improvement in classification accuracy using

the ORRI was 4.5% and 8% when using the SIFT and SURF features, respectively.

For comparison, it is worth noting that using the ORRI as the only feature, a

classification accuracy of 86.3% was obtained in all classifiers with TP, FN, FP and

TN of 200, 0, 55, 145, respectively. This is a relevant result because, as mentioned

earlier, in the dataset a total of 255 plants (200 sugar beet and 55 volunteer potatoes)

were found inside crop rows (out-of-row distance < 80 pixels, having an ORRI of 0.3).

In Table 4.3, it can be seen that adding ORRI to SURF and classifying with a SVM

and a linear kernel results in a change of classification for 45 plants (FN:from 25 to

0, FP:from 42 to 22). Further analysis of the individual images revealed that 29 of
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these 45 images had an ORRI 0.3, so were inside crop rows: 25 of them were sugar

beet plants, and four of them were volunteer potato plants. Interestingly enough,

these 25 sugar beet, though being inside the crop rows, were not properly classified by

SURF only (without ORRI). This is no surprise because SURF does not employ any

locational feature. More interesting is to note that four of the images were volunteer

potato plants. So, by adding a location feature in training improved the classification

for volunteer potato inside crop rows, which is a real challenge in weed classification.

When training time is considered with ORRI, SIFT required on average 6.7 s more

training time when training without ORRI. Likewise, training with ORRI using SURF

required on average 7.2 s more time than training without ORRI. When it comes to

classification, however, the use of ORRI did not lead to a considerable increase in

calculation time.

4.4.6 Comparison of SVM, Random forest and Neural network

classifiers

SVM classifiers with a linear and quadratic showed better classification accuracies

than random forest and neural network, though the SVM and neural network did not

differ much. In Table 4.2, using SIFT features and ORRI, the highest classification

accuracy of 96.5% was obtained with a SVM and a quadratic kernel; while the lowest

classification accuracy of 90.5% was obtained with the random forest. In Table 4.3,

using SURF features and ORRI, the highest classification accuracy of 94.5% was

obtained with a SVM and both a linear and a quadratic kernel; while the lowest

classification accuracy of 84.5% was obtained with the random forest.

4.4.7 Grid size and vocabulary size

Classification accuracy with different sizes of grid and vocabulary are compared in

Table 4.4. Using small grid sizes tended to produce better result than large grid sizes.

However, vocabulary size did not seem to produce any regular pattern of performance.

In fact, grid and vocabulary size are not formally related, but a certain combination (in

this case, a grid size of 6× 6 and vocabulary size of 500) showed a better performance

than others in this study. Therefore, a grid size of 6× 6 pixels and vocabulary size

of 500 were used as an optimal combination when employing the SURF descriptor

because the highest classification accuracy (94.5%) was achieved with these settings.
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Table 4.4: Comparison of classification accuracy (%) with different grid and vocabulary
sizes. Using SURF descriptor, the classification accuracy of SVM linear with ORRI is
shown.

Vocabulary size

100 200 300 400 500 600

Grid size
(pixels)

4x4 92.5 93.2 91.2 93.7 93.8 92.7

6x6 91.7 93.0 93.5 92.5 94.5 92.7

8x8 90.5 91.0 93.7 92.0 90.7 92.2

10x10 91.2 92.7 93.6 93.2 92.7 92.7

12x12 91.2 91.5 91.5 91.5 91.0 91.5

For the SIFT descriptor, a grid size of 3× 3 pixels with a vocabulary size of 500 was

used as the highest classification accuracy was achieved with these settings.

4.4.8 Estimated posterior probability

The posterior probabilities of the SVM with linear kernel using SIFT features and ORRI

were calculated and visualized in the form of a box-and-whiskers plot in Figure 4.10.

All sugar beet images were correctly classified as sugar beet (true-positive), and on

average the posterior probability was 0.96 with a standard deviation of 0.09. A total of

180 volunteer potato images (out of 200) was correctly classified as volunteer potatoes

(true-negative), and for these images the average posterior probability was 0.98 with

a standard deviation of 0.02. However, 20 volunteer potato images were incorrectly

classified as sugar beet (false-positive). With an average value of 0.49 and standard

deviation of 0.27, in these cases, the average posterior probability was lower than in

the true-positive and true-negative cases. These results indicate that the classifier was

more confident in case of correct classification than when making a false classification.

The above results indicate that the posterior probability might provide useful

information for weed control in practice. Using the posterior probability, the action

to remove volunteer potato should only be applied to those plants that are classified

with a high confidence. Figure 4.11a, for example, shows the classification results with
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to remove volunteer potato should only be applied to those plants that are classified

with a high confidence. Figure 4.11a, for example, shows the classification results with
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the posterior probability with a field image. Plants 1 to 6 are sugar beet whereas

plants 7 to 9 are volunteer potatoes (Figure 4.11b). In Figure 4.11c, plants 2 to 6 are

correctly classified as sugar beet with a posterior probability of 0.86 and higher; and

plants 7 to 9 are correctly classified as volunteer potatoes with a posterior probability

of 1.0. However, plant 1 (sugar beet) is incorrectly classified as a volunteer potato

(false-negative). In this case, the posterior probability is 0.54 and considerably lower

than the others. In such a case, based on the lower posterior probability, it might be

beneficial to skip the weed control action because since it would lead to the destruction

of the crop.
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Figure 4.10: A box-and-whisker plot of the estimated posterior probabilities of true-
positive, false-positive and true-negative classifications using the SVM with linear
kernel on SIFT features and ORRI. All sugar beet images were correctly classified
as sugar beet (true-positive) with an average posterior probability of 0.96. A total of
180 volunteer potato images (out of 200) was correctly classified as volunteer potatoes
(true-negative) with an average posterior probability of 0.98. However, 20 volunteer
potato images were incorrectly classified as sugar beet (false-positive) with a Q1 (1st
quartile), median and Q3 (3rd quartile) of 0.24, 0.49 and 0.66, respectively.
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821 Fig. 11. An example of the classification results with posterior probability with a field image. (a) A field image with plant 
822 number. Each plant was manually extracted, and then put into the classification algorithm proposed in this study. (b) The 
823 ground truth of the given image. Plants 1 to 6 are sugar beet, and plants 7 to 9 are volunteer potatoes. (c) Classification results 
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Figure 4.11: An example of the classification results with posterior probability with a
field image. (a) A field image with plant number. Each plant was manually extracted,
and then put into the classification algorithm proposed in this study. (b) The ground
truth of the given image. Plants 1 to 6 are sugar beet, and plants 7 to 9 are volunteer
potatoes. (c) Classification results with posterior probability. Plants 2 to 6 are correctly
classified as sugar beet (true-positive) with a posterior probability of 0.86 and higher,
and plants 7 to 9 are correctly classified as volunteer potatoes (true-negative) with a
posterior probability of 1.0. However, plant 1 is incorrectly classified as a volunteer
potato (false-negative) and results in a posterior probability of 0.54.
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the posterior probability with a field image. Plants 1 to 6 are sugar beet whereas

plants 7 to 9 are volunteer potatoes (Figure 4.11b). In Figure 4.11c, plants 2 to 6 are

correctly classified as sugar beet with a posterior probability of 0.86 and higher; and
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than the others. In such a case, based on the lower posterior probability, it might be

beneficial to skip the weed control action because since it would lead to the destruction
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Figure 4.11: An example of the classification results with posterior probability with a
field image. (a) A field image with plant number. Each plant was manually extracted,
and then put into the classification algorithm proposed in this study. (b) The ground
truth of the given image. Plants 1 to 6 are sugar beet, and plants 7 to 9 are volunteer
potatoes. (c) Classification results with posterior probability. Plants 2 to 6 are correctly
classified as sugar beet (true-positive) with a posterior probability of 0.86 and higher,
and plants 7 to 9 are correctly classified as volunteer potatoes (true-negative) with a
posterior probability of 1.0. However, plant 1 is incorrectly classified as a volunteer
potato (false-negative) and results in a posterior probability of 0.54.
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4.5 Discussion

4.5.1 Classification accuracy

The classification accuracy obtained using BoVW approach with ORRI exceeded

previously reported accuracies; e.g. Nieuwenhuizen et al. (2010) and Persson &

Åstrand (2008). Considering the different illuminations levels and shadows in the

image dataset, the highest classification accuracy (96.5%) obtained in this study is

considerably better than any other approaches with colour, shape, and texture features

in the literature for weed classification. However, the overall performance of weed

control also depends on the performance of vegetation segmentation as well as the

actuation performance of the weeding device. If the individual performance of either

one of these two operations would be ¡ 100%; thus the classification accuracy should be

considerably higher than 95% in order for the automatic weeding system to effectively

control more than 95% of the volunteer potatoes in the field. In this regard, the

highest classification accuracy achieved in this study (96.5%) may not be enough to

satisfy the overall performance of volunteer potato control since it is not significantly

higher than 95%.

The obtained results were based on manually extracted plant images. Thus, the

proposed approach itself does not lead to the precise detection of volunteer potato

in field images. To make a complete system for the use of weed control in the field,

vegetation segmentation and weed removal operation needs to be integrated. During

integration, overlapping plant cases need to be considered as well.

4.5.2 Misclassification rate (false-positive and false-negative)

For weed control in practice, it is critical to have a large as possible number of

true-positives as well as a large as possible number of true-negatives. Not only that,

but it is also important to consider both the number of false-negatives (the number

of sugar beet plants that are classified as volunteer potatoes) and the number of

false-positives (the number of volunteer potato plants that are classified as sugar beet).

The false-negatives lead to the removal of the cash crop caused by the misclassification,

thus keeping the number of false-negatives as small as possible is critical (Lottes

et al., 2016). However, it is desirable to keep the number of false-positives as small as

possible. If there are many left over volunteer potato plants caused by misclassification,
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then a weed control robot may need to drive repetitively acrodd the field to meet

the statutory regulation in the Netherlands (Nieuwenhuizen, 2009). The economic

consequences of false-negative and false-positive detections require further research.

4.5.3 Calculation time

From general observations of the field images, there is an average of 6-8 plants in one

image. Based on these number of plants in an image, the whole plant classification

of one field image may take up to 0.8 seconds (including all other steps in the image

processing) using SVM classifiers, which is acceptable for our real-time application

(< 1 s for one field image). The classification time, of course, depends on the size of

each plant found in an image, and can be further improved with a parallel-processing

approach. In addition, the size of the grid and vocabulary also influences the clas-

sification and processing time. If the processing time is highly critical for certain

applications, grid and vocabulary size can be changed to reduce the processing time

at the expense of classification accuracy.

4.5.4 SIFT and SURF

Several studies have indicated that SURF is rapid for computation and matching

(Khan et al., 2011; Panchal et al., 2013; Wu et al., 2013; Zagoris et al., 2014). In this

research SIFT required more training time than SURF. However, the classification

times required for SIFT and SURF were not considerably different in this study. This

result is not accord with the literature. The different grid sizes used for SIFT and

SURF in this study may have caused classification times to be similar.

There is room for improvement in terms of the classification accuracy. During the

extraction of SIFT and SURF descriptors, dataset images were converted to greyscale

ignoring all the colour information (RGB) because SIFT and SURF operate on intensity

information only. However, colour may carry some discriminative information for the

classification of sugar beet and volunteer potato. To overcome the abovementioned

weakness of SIFT and SURF descriptors, several variations of SIFT and SURF have

been proposed in the literature using colour features such as rgSIFT, Transformed

colour SIFT, and Color-SURF (Fan et al., 2009; Van De Sande et al., 2008) to improve

classification accuracy. Similarly, Rassem & Khoo (2011) proposed not to convert RGB

image to greyscale but to apply the feature extraction on each RGB channel. The
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image to greyscale but to apply the feature extraction on each RGB channel. The
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extracted features from the individual colour channels may add extra discriminative

power for classification, and validating this hypothesis is, therefore, a topic of a future

study. As indicated in Figure 4.2, the added value of using also colour might be limited

in cases where, as here, crop and weed plants have similar colour values.

4.5.5 Out-of-Row Regional Index (ORRI)

Combining ORRI considerably improved the classification accuracy enhancing the

discriminative power of the classification. However, spatial information of each plant

(ORRI) including crop rows and out-of-row distance was manually estimated in this

study. For an automated field application using a mobile robot, the estimation of

crop rows and out-of-row distance should be automated as well. Algorithms for crop

row detection have been presented in several studies (Guerrero et al., 2013; Hiremath

et al., 2014; Kise et al., 2005; Leemans & Destain, 2006; Romeo et al., 2012; Søgaard &

Olsen, 2003), but these algorithms are likely to introduce noise. Thus, in the current

approach, regional index (0.3, 0.6 and 0.9) was used instead of a precise number for

the out-of-row distance to compensate any potential noise.

4.5.6 Classifiers

Based on the results obtained in this study SVM classifiers would be an easy and

plain choice for field applications, not only because SVM classifiers showed better

classification performance in most cases than random forest and neural network, but

also because SVMs are easier to implement than other classifiers. However, the

neural network also performed quite well, showing similar classification performance

as SVMs, although a simple network structure (1 hidden layer) was used in this study.

Kanellopoulos & Wilkinson (1997) indicated that multi-layer network architecture

might be potentially more powerful than a simple network. This has been confirmed

over the past few decades in various applications (LeCun et al., 2015). Thus, adding

more layers is likely lead to better classification performance.

4.5.7 Posterior probability

The posterior probability estimated by Platt’s method offers additional information

during the weed control action, which can be useful in practice. Using this posterior
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probability, the action to remove volunteer potato should only be applied to those

volunteer potato plants that are classified with a high confidence. Volunteer potato

plants that are classified with lower confidence might be better skipped because it

might lead to the undesired destruction of the sugar beet. However, the characteristics

and applicability of this approach need further study.

Two studies have indicated that probability estimation using Platt’s method could

be ineffective in some cases especially for large datasets (Niculescu-Mizil & Caruana,

2005; Pérez-Cruz et al., 2007). To compensate for the weakness of Platt’s method, Lin

et al. (2007) proposed an improved algorithm which theoretically avoids numerical

difficulties. When large datasets are concerned, their proposed method for probability

estimation might be a better choice.

In this study, the posterior probability was estimated only for SVM classifier.

However, the posterior probability for other classifiers, such as random forest and

neural network, can also be estimated using a method proposed by Niculescu-Mizil &

Caruana (2005). They reported that random forest and the neural network classifiers

provided well-calibrated probabilities having no bias compared to SVM. Investigating

the posterior probability for other classifiers would be a future study topic.

4.5.8 Reflection on contribution to weed control

In this study, binary classification (between sugar beet and volunteer potato) was

proposed based on the assumption that in most cases plants found in sugar beet fields

are either sugar beet or volunteer potato. However, in an agricultural field, a variety

of different weed species is likely to be found. A future study topic might include a

multiclass classification of weed species within a crop. Classification of other crop

species may also benefit from the proposed approach.

4.6 Conclusions

In this study, an algorithm using a Bag-of-Visual-Words model and SIFT or SURF

descriptors as well as crop row information in the form of the ORRI (Out-of-Row

Regional Index) was proposed for the classification of sugar beet and volunteer potato

under natural and varying daylight conditions. In EU SmartBot project it was

required to effectively control > 95% of volunteer potatoes (weed) and to ensure < 5%
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extracted features from the individual colour channels may add extra discriminative

power for classification, and validating this hypothesis is, therefore, a topic of a future

study. As indicated in Figure 4.2, the added value of using also colour might be limited

in cases where, as here, crop and weed plants have similar colour values.

4.5.5 Out-of-Row Regional Index (ORRI)

Combining ORRI considerably improved the classification accuracy enhancing the

discriminative power of the classification. However, spatial information of each plant

(ORRI) including crop rows and out-of-row distance was manually estimated in this

study. For an automated field application using a mobile robot, the estimation of

crop rows and out-of-row distance should be automated as well. Algorithms for crop

row detection have been presented in several studies (Guerrero et al., 2013; Hiremath

et al., 2014; Kise et al., 2005; Leemans & Destain, 2006; Romeo et al., 2012; Søgaard &

Olsen, 2003), but these algorithms are likely to introduce noise. Thus, in the current

approach, regional index (0.3, 0.6 and 0.9) was used instead of a precise number for

the out-of-row distance to compensate any potential noise.

4.5.6 Classifiers

Based on the results obtained in this study SVM classifiers would be an easy and

plain choice for field applications, not only because SVM classifiers showed better

classification performance in most cases than random forest and neural network, but

also because SVMs are easier to implement than other classifiers. However, the

neural network also performed quite well, showing similar classification performance

as SVMs, although a simple network structure (1 hidden layer) was used in this study.

Kanellopoulos & Wilkinson (1997) indicated that multi-layer network architecture

might be potentially more powerful than a simple network. This has been confirmed

over the past few decades in various applications (LeCun et al., 2015). Thus, adding

more layers is likely lead to better classification performance.

4.5.7 Posterior probability

The posterior probability estimated by Platt’s method offers additional information

during the weed control action, which can be useful in practice. Using this posterior

96

Sugar beet and volunteer potato classification: Bag-of-Visual-Words model
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of undesired control of the sugar beet crop. Considering the different illuminations

levels and shadows in the image dataset, the highest classification accuracy of 96.5%

with false-negative of 0% which was obtained using SIFT features and ORRI with SVM

classifier is considerably better than any other approaches found in the literature that

used colour, shape and textural features. Therefore, the proposed approach proved its

potential under ambient light conditions although the false-positive rate of 7% deviates

from the requirements (misclassification: < 5%). An average time of 0.10−0.11 s was

needed for classification, which is a reasonable value when the real-time application in

the field is considered and is well within the required 1 s. However, implementing a full

pipeline including vegetation segmentation and weed removal operation by actuator

may potentially further reduce the overall performance. The SIFT descriptor showed

better classification accuracy than using the SURF descriptor. Using SIFT required

more training time than SURF, but the classification time required for SIFT and

SURF was not considerably different.

Adding crop row information as an additional feature (ORRI) significantly improved

the overall classification accuracy. However, for an automated field application using

a weed control robot, the estimation of crop rows and out-of-row distance should be

automated and might potentially introduce noise.

In this application, SVM classifiers showed better classification performance than

random forest and neural network. However, a neural network with multi-layer

architecture would potentially improve the performance.

The posterior probability estimation can be useful in practice which provides an

another decision moment for weed control action, but characteristics and applicability

of it need further study.

This study has shown the potential benefit of using counter-intuitive features such

as SIFT and SURF instead of colour, shape and texture for weed classification under

natural daylight conditions.
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Abstract

Classification of weeds amongst cash crops is a core procedure in automated weed

control. Addressing volunteer potato control in sugar beets, in the EU Smartbot

project the aim was to control more than 95% of volunteer potatoes and ensure less

than 5% of undesired control of sugar beet plants. A promising way to meet these

requirements is deep learning. Training an entire network from scratch, however,

requires a large dataset and a substantial amount of time. Then, transfer learning

can be a promising solution. This study evaluates, in Part I, a transfer learning

procedure with three different implementations of AlexNet and then, in Part II,

assesses the performance difference amongst the six network architectures: AlexNet,

VGG-19, GoogLeNet, ResNet-50, ResNet-101 and Inception-v3. All nets had been

pre-trained on the ImageNet Dataset. These nets were used to classify sugar beet and

volunteer potato images taken under ambient varying light conditions in agricultural

environments. In Part I, the highest classification accuracy of 98.0% was obtained with

an AlexNet architecture modified to generate binary output. In Part II, the highest

classification accuracy of 98.7% was obtained with VGG-19 modified to generate

binary output. Transfer learning proved to be effective and showed robust performance

with plant images acquired in different periods of the various years on two types of

soils. All scenarios and pre-trained networks were feasible for real-time applications

(classification time < 0.1 s). Classification is only one step in weed detection, and a

complete pipeline for weed detection may potentially reduce the overall performance.
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5.1 Introduction

Volunteer potato is a source of potato blight (Phytophthora infestans) and viral diseases.

Volunteer potato in a sugar beet field can reduce the crop yield by 30% (O’Keeffe,

1980). Under statutory obligation, sugar beet farmers in the Netherlands are required

to control volunteer potato plants up to two remaining plants per m2 by 1st of July

(Nieuwenhuizen, 2009). For the automated control of volunteer potato in a sugar beet

field, a vision-based and small-sized robot was developed within the EU-funded project

SmartBot. Due to the small size of the robot and the required battery operation, the

platform design had to refrain from additional infrastructure and should be able to

robustly detect weeds in a scene that is fully exposed to ambient lighting conditions.

Additional infrastructure such as a hood and lighting equipment, as used for instance

by Nieuwenhuizen et al. (2010) and Lottes et al. (2016), was not considered viable.

The robotic platform is shown in Figure 5.1.

Fig. 1. The robotic platform for volunteer potato control in a sugar beet field.

color, shape (biological morphology) and texture on an individual basis or as22

a combination of multiple features [6, 7, 8, 9, 10, 11, 12, 13]. However, these23

features have shown poor performance under widely varying natural light24

conditions [14]. Other features such as Scale Invariant Feature Transform25

(SIFT) [15] and Speeded Up Robust Features (SURF) [16], have shown their26

potential in recent studies in the classification of plant species [17, 5, 18].27

However, the highest classification accuracy using SIFT and SURF obtained28

3

Figure 5.1: The robotic platform for volunteer potato control in a sugar beet field.
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The classification of weeds amongst cash crops, i.e. weed/crop discrimination, is

the core procedure for automated weed detection. In a pipeline for weed detection,

vegetation segmentation is followed by classification of the segmented vegetation into

weeds and crop. This classification step traditionally involves two aspects: selection of

the discriminative features as well as selection of the classification techniques (Suh

et al., 2016).

Regarding the features used for discrimination, many studies have used color,

shape (biological morphology) and texture on an individual basis or as a combination

of multiple features (Ahmed et al., 2012; Åstrand & Baerveldt, 2002; Gebhardt &

Kühbauch, 2007; Pérez et al., 2000; Persson & Åstrand, 2008; Slaughter et al., 2008;

Swain et al., 2011; Zhang et al., 2008). However, these features have shown poor

performance under widely varying natural light conditions (Suh et al., 2018a). Other

features such as Scale Invariant Feature Transform (SIFT) (Lowe, 2004) and Speeded

Up Robust Features (SURF) (Bay et al., 2008), have shown their potential in recent

studies in the classification of plant species (Kazmi et al., 2015a; Suh et al., 2016;

Wilf et al., 2016). However, the highest classification accuracy using SIFT and

SURF obtained in Suh et al. (2016) is still not satisfactory for the requirements set

by the previous study of Nieuwenhuizen (2009): the resulting automatic weeding

system should effectively control more than 95% of the volunteer potatoes as well as

ensure less than 5% of undesired control of the sugar beet plants. Therefore, within

the framework of the EU Smartbot Project, a solution was needed that achieves a

classification accuracy of 95% or more as well as a misclassification of both sugar beet

(false-negative) and volunteer potato (false-positive) of less than 5%. In addition, a

classification time of less than 0.1 s per image was also needed because these algorithms

should be used in a real-time field application.

A promising way to meet above mentioned requirements is to use a deep learning

approach. In recent studies, the deep neural network has shown its potential in an

agricultural context for plant identification and classification. Grinblat et al. (2016)

used a convolutional neural network (ConvNet, or CNN), a specific type of deep network,

for plant identification from leaf vein patterns. Although the binary images of vein

patterns were used, the study showed the potential of ConvNet for plant identification.

Sun et al. (2017) used a residual network (ResNet), one of the most common ConvNet

architectures used for classification tasks, for plant species identification with images

acquired by mobile phones. A 91.78% of classification accuracy was obtained, but they
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needed 10 000 images to train the network. Dyrmann et al. (2016) classified 22 plants

species using a ConvNet and obtained 86.2% of classification accuracy. In their study,

images were acquired under controlled conditions, a quite distinct difference with the

conditions that SmartBot is confronted with, and the number of images needed to

train the network from scratch was even more than 10 000. Obtaining such a large

number of images, however, is a challenging task in agricultural fields (Xie et al., 2016).

Besides, training an entire ConvNet from scratch requires a substantial amount of

time (Jean et al., 2016; Yosinski et al., 2014) and is an expensive task that may be

hard to realise in practice. Then, transfer learning can be a promising solution.

The objective and novelty of this paper are to deal with crop/weed classification

under uncontrolled agricultural environments as well as to reduce the amount of data

and time using transfer learning.

Transfer learning has gained its success in real-world applications (Jean et al., 2016;

Shin et al., 2016; Sun et al., 2014; Xie et al., 2016). Transfer learning, according to

Goodfellow et al. (2016), refers to exploiting what has been learned from one setting

into another different setting. In transfer learning, the base network is trained on

a base dataset and task, and then the (pre-)trained network is reused for another

task (Yosinski et al., 2014). Interestingly enough, though the ConvNet is trained

with a specific dataset to perform a specific task, the generic features extracted from

ConvNet seem to be powerful and perform very well on other classification tasks as

well (Donahue et al., 2014; Razavian et al., 2014). Transfer learning has recently been

applied in several agricultural applications such as disease detection (Fuentes et al.,

2017); however, the transfer learning procedure has not yet been investigated in detail

in plant classification.

In this study, in Part I, three different transfer learning scenarios were evaluated

using AlexNet (Krizhevsky et al., 2012). In Part II, the performance of following

six pre-trained networks was compared: AlexNet, VGG-19 (Simonyan & Zisserman,

2015), GoogLeNet (Szegedy et al., 2015), ResNet-50 and -101 (He et al., 2016a) and

Inception-v3 (Szegedy et al., 2016). The classification performance in both Part I and

II was analysed regarding classification accuracy as well as training and classification

time, given the fact that this approach should be used in a real-time field application.

The first section of this paper describes ConvNets and their popular architectures.

The following section, Part I, describes three different scenarios in transfer learning.

In Part II, the performance assessment amongst six pre-trained networks is described.
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The experimental setup including field image dataset collection and the performance

measures to be used are described. Then, the experimental results are shown with the

corresponding discussions. In the end, conclusions are drawn.

5.2 Convolutional neural networks and popular ar-

chitectures

Convolutional neural networks (ConvNets, or CNNs) are a specialised type of neural

networks that are designed to process multi-dimensional data such as signals (1D),

images (2D), and videos (3D) (LeCun et al., 1998, 2015). ConvNets have gained huge

success in many applications since AlexNet has won the ImageNet competition in 2012

with a breakthrough performance (Sainath et al., 2013; Schwing & Urtasun, 2015;

Sermanet et al., 2014; Zeiler & Fergus, 2014).

Motivated by the success of AlexNet, further deep ConvNets were proposed in

the recent literature such as VGG-19, GoogLeNet, ResNet and Inception-v3. These

ConvNets contain from several to hundred layers of convolutions with non-linear

activation functions, such as Sigmoid, Tanh, and ReLU (Rectified Linear Units),

applied to the results. A different set of convolution filters is applied over each layer,

and then the output of the convolutions are combined to maintain the local connectivity

between neurons of adjacent layers. This local connectivity enables each neuron to

be connected only to a small local subset of the given image which helps to reduce

the number of parameters in the whole network as well as to make the computation

more efficient (Chen et al., 2014). Such a deep layered ConvNet structure enables the

network to learn the best features during the training process automatically and will

in most cases outperform hand-crafted feature extractors which generally require an

extensive engineering skill and knowledge (Hu et al., 2015; LeCun et al., 2015).

AlexNet, one of the first ConvNets, contains seven layers besides input and output

layers (Figure 5.2). The first five layers are convolutional layers (Conv layers) each

followed by ReLU and max-pooling, which are non-linear activation and down-sampling

functions to enhance the training time efficiency. The last three layers are fully-

connected layers (FC layers) composed of two FC layers each with a 4096 dimensional

activation vector followed by one FC layer (Softmax layer) with 1000 activation neurons,

thus producing the classification score in terms of 1000 different categories.
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In VGG-19, only 3× 3 filters are used in all convolutional layers to reduce the

number of parameters in the network. Furthermore, the usage of max pooling in

between convolutional layers largely reduces the network volume (Simonyan & Zisser-

man, 2015). Like AlexNet, the last layers are two fully-connected layers, each with a

4096-dimensional activation vector, followed by a softmax layer.

In GoogLeNet, the Inception Module was introduced to process the required

operations in parallel. The Inception Module acts as an efficient multi-level feature

extractor and makes the network considerably smaller and faster. Szegedy et al. (2015)

reported that GoogLeNet was smaller and faster than VGG-19 even though GoogLeNet

contained more layers (22 layers) than VGG-19 (19 layers).

ResNet (Residual Network) consists of several basic residual blocks which provide

a shortcut connection between layers. This shortcut connection makes it possible

to train hundreds or more layers while achieving enhanced performance. ResNet is

primarily designed for large-scale data analysis and is developed with many different

numbers of layers including 50 and 101 (Alom et al., 2018). ResNet-50 and ResNet-101

contain, respectively, 50 and 101 convolutional layers including one fully-connected

layer at the end of the network (He et al., 2016b).

Inception-v3 extends the original GoogLeNet implementation and enhances the In-

ception Module to improve the accuracy by factorisation of convolutions and improved
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Figure 5.2: The overall structure of AlexNet. The network is composed of five convolu-
tional layers (Conv layer 1-5) and three fully-connected layers (FC layers 6-8). FC
layer 6 and 7 produce a 4096 dimensional activation vector. The last layer, FC layer
8, is the output layer which produces classification scores on 1000 categories as the
AlexNet was originally designed to classify 1000 different classes. The output size of
each layer changes as a convolution process is being applied (Conv layer 1-5).
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The experimental setup including field image dataset collection and the performance

measures to be used are described. Then, the experimental results are shown with the

corresponding discussions. In the end, conclusions are drawn.

5.2 Convolutional neural networks and popular ar-

chitectures

Convolutional neural networks (ConvNets, or CNNs) are a specialised type of neural

networks that are designed to process multi-dimensional data such as signals (1D),
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Sermanet et al., 2014; Zeiler & Fergus, 2014).
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In VGG-19, only 3× 3 filters are used in all convolutional layers to reduce the
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normalisation (Szegedy et al., 2016, 2017). V3 simply indicates that this network is

the 3rd version, updated and released by Google.

All these networks are available as pre-trained ConvNets which have been trained

on ImageNet Dataset1 to classify 1000 object categories such as desk, chair, keyboard,

animals, etc. These ConvNets are used as pre-trained networks in this paper.

5.3 Part I: three scenarios for transfer learning

Transfer learning aims to overcome the shortage of training data and time by transfer-

ring information or features that are extracted from the pre-trained ConvNets (Oquab

et al., 2014; Weiss et al., 2016). In Part I, AlexNet was used as a pre-trained ConvNet.

Two options are available in transfer learning: use of ConvNet as a feature extractor

and use of ConvNet as a classifier. Based on these available options, three scenarios

for transfer learning were formulated based on the following hypotheses:

1) Scenario 1: In this scenario the hypothesis was tested whether or not without

retraining AlexNet, a classification accuracy of 95% or more could be achieved

using the features extracted from FC6 and FC7 and using conventional classifiers.

2) Scenario 2: AlexNet is modified to produce binary classification output (i.e.

sugar beet or volunteer potato). Once AlexNet was modified, it is fine-tuned

with training images of sugar beet and volunteer potato. In this case, using more

training data leads to a better classification accuracy than the one obtained in

scenario 1.

3) Scenario 3: Once AlexNet was modified and fine-tuned as in scenario 2, the

hypothesis was that an improved classification accuracy might be achieved using

the features extracted from FC6 and FC7 and using a conventional classification

scheme as used in scenario 1.

A total of 1100 labelled plant images was used. Each plant image was resized to

227× 227 pixels (RGB) using a default image resizing function in Matlab as AlexNet

has a predefined 227× 227 pixel input size. No data augmentation was applied in Part

I. In all scenarios, the classification performance was averaged over ten repetitions.

1The ImageNet Dataset contains 1.2 million labelled training images and 50 000 test images, with
each image labeled with one of 1000 classes (Yosinski et al., 2014).
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The classifiers in scenario 1 and 3 were validated by 10-fold random cross-validation

over ten repetitions on a separate set of random images.

To get more insight into performance differences amongst different classifiers for

scenario 1 and 3, the Support Vector Machine (SVM), random forest and linear

discriminant analysis (LDA) were used for classification. These classifiers have been

used in many agricultural applications (Ahmed et al., 2012; Longchamps et al., 2009;

Lottes et al., 2016; Zhang et al., 2008), but it was not known a priori which classifier

performs best on the classification task at hand. In the SVM, three different polynomial

kernels (linear, quadratic and cubic) were evaluated. The classification performance

was analysed regarding classification accuracy as well as training and classification

time, given the fact that this approach should be used in a real-time field application.

5.3.1 Scenario 1 - AlexNet as a fixed feature extractor

One of the transfer learning approaches is to use a pre-trained ConvNet as a feature

extractor (Jean et al., 2016). Without retraining the whole network, the features

extracted from the last layers in ConvNets can be used as a feature vector which has

generic properties applicable to other tasks using a conventional classification scheme

(Donahue et al., 2014; Gong et al., 2013). In this scenario, the 4096 dimensional

feature vector, was extracted from each of the last two fully-connected layers FC layer

6 (FC6) and FC layer 7 (FC7) as AlexNet yields vectors with 4096 feature values in

these last layers. To investigate the difference in classification performance between

the two layers of FC6 and FC7 in AlexNet, the extracted features in FC6 and FC7

were used individually to train and validate the following classifiers: SVM (with three

different kernels), random forest, and LDA (Figure 5.3). The flowchart of scenario 1 is

shown in Figure 5.4.

5.3.2 Scenario 2 - Modified and fine-tuned AlexNet as a binary

classifier

Inspired by Papadomanolaki et al. (2016) who modified a pre-trained ConvNet to

classify satellite data, in this scenario, AlexNet was modified to generate a binary

classification output: sugar beet or volunteer potato. The original AlexNet was

designed to classify 1000 objects, having 1000 activation neurons in the last layer of

the network (Krizhevsky et al., 2012). This last layer in the original AlexNet was
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Figure 5.3: Scenario 1 - AlexNet as a feature extractor. Two fully-connected layers, FC
layer 6 and 7, were each used individually as a feature extractor. For the classification
of sugar beet and volunteer potato, three classifiers were evaluated: SVM (with linear,
quadratic, and cubic kernels), random forest, and LDA.

removed, and two new fully-connected layers (FC layer 8' and 9') were added. The

modification details are as follows (Figure 5.5):

1) The last fully-connected layer in AlexNet was removed (FC layer 8 in Figure 5.2).

2) A new fully-connected layer with 64 neurons (a square root of 4096) was added

to the end, followed by a ReLU (Rectified Linear Unit), as ReLU was applied to

the output of every layer in the original AlexNet.

3) A new fully-connected layer with two neurons was added with a 2-way softmax

to produce the binary classification output.

Between FC layer 7 (size of 4096 neurons) and FC layer 9' (size of two neurons for

binary output), FC layer 8' with 64 neurons was added to help smooth the dimensional

reduction from 4096 to two (Figure 5.5). Preliminary experimentation showed that

this addition produced slightly better performance compared to having no layer in

between.

The modified AlexNet was then fine-tuned on our image dataset, which had been

acquired during three different periods of three different years on two different soil
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Figure 5.4: Flowchart of scenario 1. A total of 1100 labelled plant images was used.
Each plant image was resized to 227× 227 pixels (RGB). The classifier results were
validated by 10-fold random cross-validation over ten repetitions.
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Each plant image was resized to 227× 227 pixels (RGB). The classifier results were
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images in the dataset. Then, new classifiers including SVM, random forest, and LDA

were trained and validated using features extracted from the fully-connected layers 6

and 7 (FC6 and FC7) separately as described in scenario 1. For classifier training and

validation, 300 images were randomly selected from the remaining images.

During the fine-tuning process, the modified AlexNet was expected to adjust its

node weights based on the given plant images. This change would alter the value of

the activation vectors in (all) layers in the network, which was likely to improve the

classification performance compared to scenario 1.

5.4 Part II: classification performance amongst dif-

ferent ConvNet architectures

Following six pre-trained deep networks were evaluated to assess the classification

performance amongst different ConvNet architectures: AlexNet, VGG-19, GoogLeNet,

ResNet-50, ResNet-101 and Inception-v3. Each network was modified to produce

binary classification output of sugar beet and volunteer potato, as was done in scenario

2 with AlexNet (section 5.3.2), by removing the last original layer and adding two

new fully-connected layers. Then, each modified network was fine-tuned with 500

randomly selected images of sugar beet and volunteer potato; while the remaining

600 images were used for validation. The number of 500 was chosen for fine-tuning

based on our preliminary studies as well as based on the fact that in scenario 2 with

AlexNet, the accuracy improvement started to flatten after 500 (Figure 5.8). Plant

images were resized to correspond to the input size of each network. Unlike in Part

I, data augmentation was applied in Part II based on image transformations such

as translation, rotation and flipping. Data augmentation includes a wide range of

techniques used to generate new training images from the original ones by applying

above-mentioned random image transformations. Data augmentation is to increase

the generalizability of the model, and in most cases leads to an improvement in

classification accuracy. It can then be assessed if applying data augmentation in Part

II may yield a better performance compared to no data augmentation in scenario 2 in

Part I (in the case of AlexNet).

The training parameters in Part II were the same as those described in Part I,

but two different epochs, 20 and 30, were used for training to gain insight into the
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performance difference between the two number of training epochs. No layers were

frozen during training as it yielded slightly better performance than freezing some

portion of the layers in our preliminary examination. The classification performance

of each network in Part II was averaged over five repetitions.

5.5 Experimental setup

5.5.1 Field image collection and image dataset

For crop image acquisition, a camera was mounted at the height of 1m perpendicular

to the ground on a custom-made frame carried by a mobile platform (Husky A200,

Clearpath, Canada) (Figure 5.6). A camera (NSC1005c, NIT, France) was equipped

with two Kowa 5mm lenses (LM5JC10M, Kowa, Japan) with a fixed aperture. The

camera was set to operate in automatic acquisition mode with default settings. The

camera had two identical CMOS sensors providing left and right images. Though

this camera is intended to be used for stereovision, this feature was not used in this

research. Left and right images were individually treated and separately used having

each image resolution of 1280× 580 pixels.

Sugar beet was sown three times (Spring, Summer, and Autumn) each year in 2013,

2014 and 2015 in sandy and clay soil at Unifarm experimental sites in Wageningen,

The Netherlands. One week after sowing the sugar beet, potatoes were planted in

random locations throughout the fields. The plant images were acquired under a wide

range of illumination and weather conditions for several days in June, August and

October of 2013, in May, June, July and September of 2014 and in May, June, July

and October of 2015.

For the labelled image dataset used in this study, a total of 1100 individual plant

images was manually extracted from selected field images: 550 sugar beet plants and

550 volunteer potato plants. During the selection of this dataset, images with different

ambient light conditions were included as well as images containing various stages of

plant growth and shadows which were caused by neighbouring plants and/or robotic

platform. The size of each plant image in the dataset varied from the smallest size of

73× 60 pixels to the largest of 310× 315 pixels. Example images from this dataset

are shown in Figure 5.7
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5.5.2 Software and hardware platform

All procedures were implemented in Matlab® (The MathWorks Inc, Natick, MA, USA)

using the Neural Network ToolboxTM, Statistics and Machine Learning ToolboxTM and

MatConvNet toolbox (Vedaldi & Lenc, 2015). As computing hardware platforms, two

cloud servers were used from Amazon Elastic Compute Cloud (EC2) and Paperspace

GPU Cloud. Amazon EC2 was used in Part I, and Paperspace GPU Cloud was used

in Part II. These cloud servers provided a simple and easy setup of a high-performance

computing platform with reduced cost of maintenance. Amazon EC2 was equipped

with an Intel® Xeon® CPU E5-2670 2.5 GHz processor, 15 GB memory and Nvidia

GridTM K520 GPU running 64-bit Windows Server 2012. Paperspace GPU cloud was

equipped with an Intel® Xeon® CPU E5-2623 2.6 GHz processor, 30 GB memory

and Nvidia QuadroTM P5000 16GB GPU running 64-bit Ubuntu 16.04 LTS.

1m

0.45m

Field of view
: 1.3x0.7 m

Figure 5.6: Field images were acquired with a camera mounted at the height of 1m
viewing perpendicular to the ground surface resulting in a field of view of 1.3m× 0.7m.
A mobile platform, Clearpath Husky, was manually controlled with a joystick and
driven along crop rows using a controlled travelling speed of 0.5m/s.
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5.5.3 Performance measures

A binary classification was performed in this study: sugar beet or volunteer potato.

The classification performance measures for this study are described below.

A confusion matrix (Table 5.1) was used to assess and compare the classification

performance. The classification accuracy was calculated along with training and classi-

fication time considering this work is for real-time field application. The classification

accuracy and training time were averaged over ten and five trials in Part I and II,

respectively. The classification time was measured for the time required to classify a

single plant image on the cloud servers.

ClassificationAccuracy =
TP + TN

TP + FN + FP + FN
(5.1)

where TP is true-positives; FP is false-positives; TN is true-negative, and FN is

false-negative.
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Figure 5.7: Example images from the field image dataset containing a total of 1100
plant images with 550 sugar beet (top) and 550 volunteer potato plants (bottom).
During the selection of this dataset, images with different ambient light conditions were
included taken on both in sandy and clay soils as well as images containing shadows
and various stages of plant growth.
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Table 5.1: Confusion matrix
(TR:true-positive, TN:true-negative, FP:false-positive, and FN:false-negative)

Predicted Class

Sugar Beet (SB) Volunteer Potato (VP)

Actual Class Sugar Beet (SB) TP FN

Volunteer Potato (VP) FP TN

5.6 Results

5.6.1 Part I: three scenarios for transfer learning

Scenario 1 - AlexNet as a fixed feature extractor

Three classifiers were trained, using supervised learning, based on the 4096 feature

values that were extracted from each of AlexNet's two fully-connected layers FC6 and

FC7 separately. The classification performance was evaluated with TP, FN, FP, TN,

classification accuracy, training time and classification time as shown in Table 5.2.

Using the features from FC6, the highest classification accuracy of 97.0% was

obtained with a SVM with a quadratic kernel; while the lowest classification accuracy

of 90.8% was obtained with LDA. Likewise, using the features extracted from FC7, a

highest classification accuracy of 95.8% was obtained with a SVM and a quadratic

kernel; while the lowest classification accuracy of 91.9% was obtained with LDA. Using

the features extracted from FC6 provided a better classification accuracy with the

SVMs and the random forest than using the features from FC7; while with LDA, using

the features extracted from FC7 provided a better classification accuracy than using

the features from FC6.

The smallest false-negative and false-positive values were 21 and 12, respectively,

which were obtained using the features extracted from FC6 and the SVM with a

quadratic kernel. The false-negative number of 21 indicates that in total 3.8% of

sugar beet was classified as volunteer potato, and thus would be eliminated by the

weed control robot. The false-positive of 12 indicates that 2.2% of volunteer potato

was classified as sugar beet, and thus would not be killed.
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Table 5.2: Scenario 1 - The classification performance is shown using features that
were extracted from each of AlexNet's two fully-connected layers in FC6 and FC7
separately. The classifiers were trained and validated with a total of 1100 images
(550 of sugar beet and 550 of volunteer potato) using 10-fold random cross-validation.
The final classification performance was averaged over ten repetitions. The training
time includes times for feature extraction as well as training of the classifier. The
classification time was measured for the time required to classify the class of a single
plant image using a trained classifier.
(TR:true-positive, TN:true-negative, FP:false-positive, and FN:false-negative)

Input layer
and classifier models

TP FN FP TN Classification
accuracy (%)

Training
time (s)

Classification
time (s/image)

(% of total)

FC6 SVM Linear 526 24 18 532 96.2 13.3 0.0143

(95.6) (4.4) (3.3) (96.7)

Quadratic 529 21 12 538 97.0 13.3 0.0143

(96.2) (3.8) (2.2) (97.8)

Cubic 527 23 16 534 96.5 13.3 0.0142

(95.8) (4.2) (2.9) (97.1)

Random forest 513 37 45 505 92.5 15.5 0.0154

(93.3) (6.7) (8.2) (91.8)

LDA 490 60 41 509 90.8 13.9 0.0217

(89.1) (10.9) (7.5) (92.5)

FC7 SVM Linear 515 35 24 526 94.6 14.6 0.0160

(93.6) (6.4) (4.4) (95.6)

Quadratic 523 27 19 531 95.8 14.6 0.0161

(95.1) (4.9) (3.5) (96.5)

Cubic 524 26 21 529 95.7 14.6 0.0161

(95.3) (4.7) (3.8) (96.2)

Random forest 512 38 47 503 92.3 16.7 0.0170

(93.1) (6.9) (8.5) (91.5)

LDA 499 51 38 512 91.9 15.2 0.0229

(90.7) (9.3) (6.9) (93.1)
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The training time includes the time needed for feature extraction as well as training

of the classifier itself. Using the features extracted from FC6, the SVMs and LDA

required 13 –14 s of training time while the random forest required 16 s of training

time. Similarly, using the features extracted from FC7, the SVMs and LDA required

15 s of training time while the random forest required 17 s of training time. The

average training time for one plant image was 0.014 s. The training times needed by

all classifiers are reasonable, considering the training can be done offline and may not

have to be repeated very often.

The classification time indicates the time required to classify (or predict) the class

of a single plant image using a trained classifier. For all classifiers, an average of

0.016 s was needed using the features extracted from FC6, and an average of 0.018 s

was needed using the features extracted from FC7. This classification time is fast

enough for real-time application in the field (classification time < 0.1 s)

Scenario 2 - Modified and fine-tuned AlexNet as a binary classifier

The classification performance of the modified and fine-tuned AlexNet is shown in

Figure 5.8. As expected, when the number of training images increased from 200 to 900,

the classification accuracy increased from 89.1% to 98.0%. However, the classification

accuracy did not linearly increase with the number of training images. The largest

improvement in classification accuracy (4.4%) was found when the number of training

images changed from 200 to 300; while the smallest improvement in classification

accuracy (0.3%) was found when the number of training images was changed from

800 to 900.

The highest classification accuracy obtained in scenario 1 was 97.0% as shown in

Table 5.2. However, in scenario 2, only when more than 700 training images were used,

a classification accuracy higher than 97.0% was obtained.

The training time required for fine-tuning of the AlexNet linearly increased with

the number of training images. For fine-tuning with 200 and 900 images, a training

time of 94.9 s and 656.4 s was needed, respectively. The average training time for one

plant image was 0.6 s. Comparing this training time with the training time in scenario

1 (0.014 s), training the deep network is found to be computationally more expensive

than training the conventional classifiers.

In all cases, the classification time required to classify (or predict) the class of a

single plant was 0.012 s, showing the fastest classification time among all scenarios.
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Table 5.2: Scenario 1 - The classification performance is shown using features that
were extracted from each of AlexNet's two fully-connected layers in FC6 and FC7
separately. The classifiers were trained and validated with a total of 1100 images
(550 of sugar beet and 550 of volunteer potato) using 10-fold random cross-validation.
The final classification performance was averaged over ten repetitions. The training
time includes times for feature extraction as well as training of the classifier. The
classification time was measured for the time required to classify the class of a single
plant image using a trained classifier.
(TR:true-positive, TN:true-negative, FP:false-positive, and FN:false-negative)
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The training time required for fine-tuning of the AlexNet linearly increased with

the number of training images. For fine-tuning with 200 and 900 images, a training

time of 94.9 s and 656.4 s was needed, respectively. The average training time for one
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Scenario 3 - Modified and fine-tuned AlexNet as a fixed feature extractor

The classification performance when the modified AlexNet was fine-tuned with 300

plant images is shown in Table 5.3. Using the features extracted from FC6, the highest

classification accuracy of 96.7% was obtained with a SVM and linear kernel; while

the lowest classification accuracy of 93.0% was obtained with the random forest and

LDA. A similar trend in the results was found when using the features from FC7. The

highest classification accuracy of 96.3% was obtained with SVM and linear kernel;

while the lowest classification accuracy of 91.0% was obtained with LDA.

In Table 5.3, the smallest false-negative and false-positive were 6 and 4, respectively,

which were obtained using the features extracted from FC6 and the SVM with a linear

kernel. The false-negative value of 6 indicates that in total 4.0% of sugar beet was

classified as volunteer potato, and thus would be killed by the weed control robot.

The false-positive value of 4 indicates that 2.7% of volunteer potato was classified as

sugar beet, and thus would be left untreated by the weed control robot.
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Figure 5.8: Scenario 2 - AlexNet was modified to produce binary output for the
classification of sugar beet and volunteer potato. The modified AlexNet was fine-tuned
with a varying number of training images. The bars are classification accuracy and the
line is training time as a function of the number of images for fine-tuning of AlexNet.
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In Table 5.4, the classification performance is shown when the modified AlexNet

was fine-tuned with 800 plant images. Using the features extracted from FC6, a highest

classification accuracy of 97.3% was obtained with the SVM and linear kernel; while

the lowest classification accuracy of 95.3% was obtained with LDA. Using the features

from FC7, the highest classification accuracy of 97.3% was obtained with random

forest; while the lowest classification accuracy of 96.0% was obtained with the LDA.

In Table 5.4, the smallest false-negative and false-positive were 4 and 4, respectively,

which were obtained using the features extracted from FC7 and using the random

forest classifier. This misclassification indicates that 2.7% of sugar beet would be

treated by the weed control device; while 2.7% of volunteer potato would not be

treated. It should be noted that the same classification accuracy of 97.3% was achieved

using FC6 with SVM linear and using FC7 with random forest. However, different

false-negative and false-positive were obtained. Using FC6 with SVM linear, false-

negative and false-positive values were 5 and 3, representing misclassification of 3.3%

of sugar beet and 2.0% of volunteer potato, respectively. Furthermore, using FC7

with random forest, false-negative and false-positive values were 4 and 4, representing

misclassification of 2.7% of sugar beet and 2.7% of volunteer potato, respectively.

Fine-tuning with 800 images produced better classification accuracy in all classifiers

when compared to using 300 images for fine-tuning: a 0.6% and 1.3% increase in the

highest classification accuracies using the features from FC6 and FC7, respectively;

and a 2.4% and 4.7% increase in the lowest classification accuracies obtained when

using the features from FC6 and FC7, respectively.

The training time includes the time needed for fine-tuning of AlexNet as well as

training of the classifier. Using 300 images for fine-tuning, 195 to 197 s of training

time was needed for all classifiers; while using 800 images for fine-tuning, 583 to

586 s of training time was needed for all classifiers. The average time for training the

classifiers was 4.3 s showing that the major part of the required training time was used

for fine-tuning of AlexNet. Again, training the deep network is a computationally

more expensive task than training conventional classifiers.

The classification time required to classify a single plant image was 0.013 to 0.022 s

for all classifiers. SVMs showed the fastest classification time; while LDA showed the

slowest classification time among all classifiers. This classification time is fast enough

for real-time application in the field (classification time < 0.1 s).
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Scenario 3 - Modified and fine-tuned AlexNet as a fixed feature extractor
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In Table 5.4, the classification performance is shown when the modified AlexNet

was fine-tuned with 800 plant images. Using the features extracted from FC6, a highest

classification accuracy of 97.3% was obtained with the SVM and linear kernel; while

the lowest classification accuracy of 95.3% was obtained with LDA. Using the features

from FC7, the highest classification accuracy of 97.3% was obtained with random

forest; while the lowest classification accuracy of 96.0% was obtained with the LDA.
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which were obtained using the features extracted from FC7 and using the random

forest classifier. This misclassification indicates that 2.7% of sugar beet would be
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slowest classification time among all classifiers. This classification time is fast enough
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Table 5.3: Scenario 3 - After fine-tuning of the AlexNet with 300 images, the classifiers
were trained with features extracted each from FC6 and FC7 separately. A total of 300
training images for fine-tuning was randomly selected from 1100 plant images in the
dataset. From the remaining images, a total of 300 images was randomly selected for
classifier training and validation. The training time includes times for fine-tuning of
AlexNet and training of the classifier. The classification time was measured for the
time required to classify the class of a single plant image using a trained classifier.
(TR:true-positive, TN:true-negative, FP:false-positive, and FN:false-negative)

Input layer
and classifier models

TP FN FP TN Classification
accuracy (%)

Training
time (s)

Classification
time (s/image)

(% of total)

FC6 SVM Linear 144 6 4 146 96.7 195.8 0.0130

(96.0) (4.0) (2.7) (97.3)

Quadratic 142 8 5 145 95.7 196.3 0.0131

(94.7) (5.3) (3.3) (96.5)

Cubic 142 8 6 144 95.3 195.2 0.0130

(94.7) (5.3) (4.0) (96.0)

Random forest 140 10 11 139 93.0 198.5 0.0134

(93.3) (6.7) (7.3) (92.7)

LDA 138 12 9 141 93.0 197.9 0.0180

(92.0) (8.0) (6.0) (94.0)

FC7 SVM Linear 143 7 4 146 96.3 196.3 0.0144

(95.3) (4.7) (2.7) (97.3)

Quadratic 143 7 5 145 96.0 197.1 0.0143

(95.3) (4.7) (3.3) (96.7)

Cubic 142 8 6 144 95.3 196.4 0.0143

(94.7) (5.3) (4.0) (96.0)

Random forest 143 7 9 141 94.7 197.9 0.0146

(95.3) (4.7) (6.0) (94.0)

LDA 135 15 12 138 91.0 196.4 0.0183

(90.0) (10.0) (8.0) (92.0)
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Table 5.4: Scenario 3 - After fine-tuning of the AlexNet with 800 images, the classifiers
were trained with features extracted each from FC6 and FC7 separately. A total of
800 training images for fine-tuning was randomly selected from 1100 plant images in
the dataset. The remaining images, 300 images, were used for classifier training and
validation. The training time includes times for fine-tuning of AlexNet and training of
the classifier. The classification time was measured for the time required to classify
the class of a single plant image using a trained classifier.
(TR:true-positive, TN:true-negative, FP:false-positive, and FN:false-negative)

Input layer
and classifier models

TP FN FP TN Classification
accuracy (%)

Training
time (s)

Classification
time (s/image)

(% of total)

FC6 SVM Linear 145 5 3 147 97.3 581.4 0.0135

(96.7) (3.3) (2.0) (98.0)

Quadratic 146 4 5 145 97.0 584.8 0.0135

(97.3) (2.7) (3.3) (96.7)

Cubic 145 5 5 145 96.7 583.2 0.0136

(96.7) (3.3) (3.3) (96.7)

Random forest 145 5 6 144 96.3 586.2 0.0140

(96.7) (3.3) (4.0) (96.0)

LDA 142 8 6 144 95.3 584.9 0.0204

(94.7) (5.3) (4.0) (96.0)

FC7 SVM Linear 145 5 4 146 97.0 583.9 0.0148

(96.7) (3.3) (2.7) (97.3)

Quadratic 146 4 5 145 97.0 584.5 0.0148

(97.3) (2.7) (3.3) (96.7)

Cubic 146 4 5 145 97.0 585.4 0.0149

(97.3) (2.7) (3.3) (96.7)

Random forest 146 4 4 146 97.3 586.9 0.0159

(97.3) (2.7) (2.7) (97.3)

LDA 143 7 5 145 96.0 585.8 0.0221

(95.3) (4.7) (3.3) (96.7)
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Table 5.3: Scenario 3 - After fine-tuning of the AlexNet with 300 images, the classifiers
were trained with features extracted each from FC6 and FC7 separately. A total of 300
training images for fine-tuning was randomly selected from 1100 plant images in the
dataset. From the remaining images, a total of 300 images was randomly selected for
classifier training and validation. The training time includes times for fine-tuning of
AlexNet and training of the classifier. The classification time was measured for the
time required to classify the class of a single plant image using a trained classifier.
(TR:true-positive, TN:true-negative, FP:false-positive, and FN:false-negative)

Input layer
and classifier models

TP FN FP TN Classification
accuracy (%)

Training
time (s)

Classification
time (s/image)

(% of total)

FC6 SVM Linear 144 6 4 146 96.7 195.8 0.0130

(96.0) (4.0) (2.7) (97.3)

Quadratic 142 8 5 145 95.7 196.3 0.0131

(94.7) (5.3) (3.3) (96.5)

Cubic 142 8 6 144 95.3 195.2 0.0130

(94.7) (5.3) (4.0) (96.0)

Random forest 140 10 11 139 93.0 198.5 0.0134

(93.3) (6.7) (7.3) (92.7)

LDA 138 12 9 141 93.0 197.9 0.0180

(92.0) (8.0) (6.0) (94.0)

FC7 SVM Linear 143 7 4 146 96.3 196.3 0.0144

(95.3) (4.7) (2.7) (97.3)

Quadratic 143 7 5 145 96.0 197.1 0.0143

(95.3) (4.7) (3.3) (96.7)

Cubic 142 8 6 144 95.3 196.4 0.0143

(94.7) (5.3) (4.0) (96.0)

Random forest 143 7 9 141 94.7 197.9 0.0146

(95.3) (4.7) (6.0) (94.0)

LDA 135 15 12 138 91.0 196.4 0.0183

(90.0) (10.0) (8.0) (92.0)
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Table 5.4: Scenario 3 - After fine-tuning of the AlexNet with 800 images, the classifiers
were trained with features extracted each from FC6 and FC7 separately. A total of
800 training images for fine-tuning was randomly selected from 1100 plant images in
the dataset. The remaining images, 300 images, were used for classifier training and
validation. The training time includes times for fine-tuning of AlexNet and training of
the classifier. The classification time was measured for the time required to classify
the class of a single plant image using a trained classifier.
(TR:true-positive, TN:true-negative, FP:false-positive, and FN:false-negative)

Input layer
and classifier models

TP FN FP TN Classification
accuracy (%)

Training
time (s)

Classification
time (s/image)

(% of total)

FC6 SVM Linear 145 5 3 147 97.3 581.4 0.0135

(96.7) (3.3) (2.0) (98.0)

Quadratic 146 4 5 145 97.0 584.8 0.0135

(97.3) (2.7) (3.3) (96.7)

Cubic 145 5 5 145 96.7 583.2 0.0136

(96.7) (3.3) (3.3) (96.7)

Random forest 145 5 6 144 96.3 586.2 0.0140

(96.7) (3.3) (4.0) (96.0)

LDA 142 8 6 144 95.3 584.9 0.0204

(94.7) (5.3) (4.0) (96.0)

FC7 SVM Linear 145 5 4 146 97.0 583.9 0.0148

(96.7) (3.3) (2.7) (97.3)

Quadratic 146 4 5 145 97.0 584.5 0.0148

(97.3) (2.7) (3.3) (96.7)

Cubic 146 4 5 145 97.0 585.4 0.0149

(97.3) (2.7) (3.3) (96.7)

Random forest 146 4 4 146 97.3 586.9 0.0159

(97.3) (2.7) (2.7) (97.3)

LDA 143 7 5 145 96.0 585.8 0.0221

(95.3) (4.7) (3.3) (96.7)
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All scenarios: summary

The classification accuracies are summarised in Figure 5.9. Among all scenarios, both

the highest and lowest classification accuracies were obtained in scenario 2. The

highest classification accuracy achieved in scenario 2 was 98.0% while highest accuracy

in scenarios 1 and 3 were 97.0% and 97.3%, respectively. In scenario 2, a higher

classification accuracy than 97.3% was obtained when the number of images used for

fine-tuning was more than 700. On the other hand, the lowest classification accuracy

achieved in scenario 2 was 89.1% while those in scenario 1 and 3 were 90.8% and

91.0%, respectively. In case only a small number of training dataset was used, training

conventional classifier yielded a better performance than fine-tuning the AlexNet.

However, a large number of images for fine-tuning resulted in a better classification

accuracy compared to the conventional classifier training.

Using the conventional classifiers in scenario 1 and 3, SVMs showed better classi-
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Figure 5.9: The obtained classification accuracies using SVM with a linear kernel,
random forest and LDF in scenario 1 and 3 are summarised. The classifiers were
trained using the features extracted each from FC6 (fully-connected layer 6) and FC7
(fully-connected layer 7) separately. In scenario 3, the AlexNet was fine-tuned with
300 and 800 images separately.
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fication accuracy than the other classifiers. However, the difference in classification

accuracy among the classifiers tended to decrease as AlexNet was fine-tuned with

more training images.

5.6.2 Part II: classification performance amongst different pre-

trained networks

The classification performance of the modified and fine-tuned deep networks (based

on scenario 2) is shown in Table 5.5.

When the training was stopped after 30 epochs, again the highest classification

accuracy of 98.7% was obtained with VGG-19; while the lowest classification accuracy

of 94.8% was obtained with Inception-v3. However, this accuracy obtained with

Inception-v3 was largely improved compared to when the training was stopped after

20 epochs. Yet AlexNet, VGG-19 and GoogLeNet did not yield such improvements.

The values in Table 5.5 indicate an average over five repetitions. Together with

the stochastic nature of the training, this will result in some variation in the accuracy.

This probably explains the decrease in accuracy with AlexNet when the training was

Table 5.5: The classification performance among six pre-trained deep networks was
evaluated with two training epochs (20 and 30). Based on scenario 2, each network
was modified and fine-tuned to classify sugar beet and volunteer potato. Randomly
selected 500 images were used for training, while the remaining 600 images were used
for validation. The classification performance was averaged over five repetitions and
validated with classification accuracy, training time and classification time.

Training 20 epoch Training 30 epoch

Accuracy
(%)

Training
time (m)

Classification
time (s/image)

Accuracy
(%)

Training
time (m)

Classification
time (s/image)

AlexNet 97.9 9.0 0.0038 97.7 15.6 0.0040

VGG-19 98.4 37.4 0.0130 98.7 71.4 0.0124

GoogLeNet 97.0 23.8 0.0033 97.3 36.9 0.0035

ResNet-50 96.2 40.3 0.0072 97.2 69.8 0.0075

ResNet-101 97.5 106.6 0.0118 98.5 162.7 0.0111

Inception-v3 90.8 88.7 0.0088 94.8 133.3 0.0086
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All scenarios: summary

The classification accuracies are summarised in Figure 5.9. Among all scenarios, both

the highest and lowest classification accuracies were obtained in scenario 2. The

highest classification accuracy achieved in scenario 2 was 98.0% while highest accuracy

in scenarios 1 and 3 were 97.0% and 97.3%, respectively. In scenario 2, a higher

classification accuracy than 97.3% was obtained when the number of images used for

fine-tuning was more than 700. On the other hand, the lowest classification accuracy

achieved in scenario 2 was 89.1% while those in scenario 1 and 3 were 90.8% and

91.0%, respectively. In case only a small number of training dataset was used, training

conventional classifier yielded a better performance than fine-tuning the AlexNet.

However, a large number of images for fine-tuning resulted in a better classification

accuracy compared to the conventional classifier training.

Using the conventional classifiers in scenario 1 and 3, SVMs showed better classi-
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Figure 5.9: The obtained classification accuracies using SVM with a linear kernel,
random forest and LDF in scenario 1 and 3 are summarised. The classifiers were
trained using the features extracted each from FC6 (fully-connected layer 6) and FC7
(fully-connected layer 7) separately. In scenario 3, the AlexNet was fine-tuned with
300 and 800 images separately.
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fication accuracy than the other classifiers. However, the difference in classification

accuracy among the classifiers tended to decrease as AlexNet was fine-tuned with

more training images.

5.6.2 Part II: classification performance amongst different pre-

trained networks

The classification performance of the modified and fine-tuned deep networks (based

on scenario 2) is shown in Table 5.5.

When the training was stopped after 30 epochs, again the highest classification

accuracy of 98.7% was obtained with VGG-19; while the lowest classification accuracy

of 94.8% was obtained with Inception-v3. However, this accuracy obtained with

Inception-v3 was largely improved compared to when the training was stopped after

20 epochs. Yet AlexNet, VGG-19 and GoogLeNet did not yield such improvements.

The values in Table 5.5 indicate an average over five repetitions. Together with

the stochastic nature of the training, this will result in some variation in the accuracy.

This probably explains the decrease in accuracy with AlexNet when the training was

Table 5.5: The classification performance among six pre-trained deep networks was
evaluated with two training epochs (20 and 30). Based on scenario 2, each network
was modified and fine-tuned to classify sugar beet and volunteer potato. Randomly
selected 500 images were used for training, while the remaining 600 images were used
for validation. The classification performance was averaged over five repetitions and
validated with classification accuracy, training time and classification time.

Training 20 epoch Training 30 epoch

Accuracy
(%)

Training
time (m)

Classification
time (s/image)

Accuracy
(%)

Training
time (m)

Classification
time (s/image)

AlexNet 97.9 9.0 0.0038 97.7 15.6 0.0040

VGG-19 98.4 37.4 0.0130 98.7 71.4 0.0124

GoogLeNet 97.0 23.8 0.0033 97.3 36.9 0.0035

ResNet-50 96.2 40.3 0.0072 97.2 69.8 0.0075

ResNet-101 97.5 106.6 0.0118 98.5 162.7 0.0111

Inception-v3 90.8 88.7 0.0088 94.8 133.3 0.0086
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stopped after 20 epochs (97.9%) and 30 epochs (97.7%).

In Figure 5.10, the loss and accuracy for each epoch of the training with Inception-

v3 and VGG-19 are shown. The accuracy for Inception-v3 still gradually improved

even after 20 epochs; while the accuracy for VGG-19 more or less stabilised after

only a small number of epochs. Likewise, the loss for Inception-v3 slowly reduced

even after 20 epochs; while the loss for VGG-19 rapidly reduced from the first to

five epochs and then reasonably stabilised although values were fluctuating a bit in

between zero and 0.15. This result indicates that Inception-v3 requires more epochs

to reach the highest accuracy and lowest loss than VGG-19. A similar trend in the

results was also found with ResNet-50 and ResNet-101. Again, GoogLeNet required

less training time than VGG-19. Also, in classification time, GoogLeNet still required

the shortest classification time, even less than AlexNet, while VGG-19 required the

longest classification time among all networks. The classification time in all networks

was found to be fast enough for real-time application in the field.

40

60

80

100

0

0.2

0.4

0.6

0.8

1

0 4 8 12 16 20 24 28

Ac
cu

ra
cy

 (v
al

id
at

io
n)

 (%
)

Lo
ss

 (t
ra

in
in

g)

Epoch

Loss (training)

Accuracy (validation)

40

60

80

100

0

0.2

0.4

0.6

0.8

1

0 4 8 12 16 20 24 28 Ac
cu

ra
cy

 (v
al

id
at

io
n)

 (%
)

Lo
ss

 (t
ra

in
in

g)

Epoch

Loss (training)

Accuracy (validation)

Figure 5.10: The loss and accuracy for each epoch of the training with Inception-v3
(left) and VGG-19 (right).

5.7 Discussion

The classification performance obtained using transfer learning in this study exceeds

previously reported accuracies for instance by Persson & Åstrand (2008), Nieuwen-

huizen et al. (2010), and Suh et al. (2016). Given the widely varying circumstances in
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natural fields, the highest classification accuracy (98.7%) obtained in this study is con-

siderably better, to the best of our knowledge, than any other approaches mentioned

in the literature for crop and weed classification. To further substantiate the claim of

considerable progress being made by using transfer learning, it would be beneficial

to compare different algorithms, including ones previously used, on the same dataset.

However, associating previously mentioned algorithms with this study might not yield

a proper comparison because most, if not almost all, algorithms developed so far were

based on image acquisition hardware including a hood covering the scene from ambient

light and by illuminating the scene with artificial light. Algorithms were tuned for

that purpose and for those conditions. However, in the current research approach no

hood or artificial lighting were used. To compare algorithms on the current dataset

would require retraining of the previously used algorithms which would not result in a

fair comparison of results. Though a proper comparison is lacking, it seems fair to

claim that with transfer learning of a ConvNet progress can be made in this field.

The proposed approach in this study was a partial implementation of a full pipeline

for weed detection. The obtained results were based on manually extracted plant

images, and vegetation segmentation procedure was not integrated. Implementing a

full pipeline may potentially reduce the performance. In other words, the proposed

approach does not lead to the precise detection of volunteer potato in field images.

The individual plant detection procedure needs to be integrated as well. Sa et al.

(2016) proposed a fruit detection system using ConvNet that detects each fruit in

the large image even under occlusion. A similar approach can be used to detect each

individual plant in crop fields.

Part I: proper scenario selection in transfer learning

When using transfer learning with ConvNets for weed classification, the most proper

scenario needs to be selected based on the number of available training images. It

was in scenario 2 that the highest classification accuracy was obtained, as the results

in Part I indicated, only if a large number of images were used for fine-tuning. If

a large number of images is not available, scenarios 1 and 3 would provide a better

classification accuracy than scenario 2. Determining the required number of training

images for the selection of scenarios may not be trivial, and perhaps may need more

study as well. At least in Part I, 700 training images were needed in scenario 2 to

obtain better classification accuracy than in scenarios 1 and 3. However, by applying
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stopped after 20 epochs (97.9%) and 30 epochs (97.7%).

In Figure 5.10, the loss and accuracy for each epoch of the training with Inception-

v3 and VGG-19 are shown. The accuracy for Inception-v3 still gradually improved

even after 20 epochs; while the accuracy for VGG-19 more or less stabilised after

only a small number of epochs. Likewise, the loss for Inception-v3 slowly reduced

even after 20 epochs; while the loss for VGG-19 rapidly reduced from the first to

five epochs and then reasonably stabilised although values were fluctuating a bit in

between zero and 0.15. This result indicates that Inception-v3 requires more epochs

to reach the highest accuracy and lowest loss than VGG-19. A similar trend in the

results was also found with ResNet-50 and ResNet-101. Again, GoogLeNet required

less training time than VGG-19. Also, in classification time, GoogLeNet still required

the shortest classification time, even less than AlexNet, while VGG-19 required the

longest classification time among all networks. The classification time in all networks

was found to be fast enough for real-time application in the field.
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The classification performance obtained using transfer learning in this study exceeds

previously reported accuracies for instance by Persson & Åstrand (2008), Nieuwen-

huizen et al. (2010), and Suh et al. (2016). Given the widely varying circumstances in
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natural fields, the highest classification accuracy (98.7%) obtained in this study is con-

siderably better, to the best of our knowledge, than any other approaches mentioned

in the literature for crop and weed classification. To further substantiate the claim of

considerable progress being made by using transfer learning, it would be beneficial

to compare different algorithms, including ones previously used, on the same dataset.

However, associating previously mentioned algorithms with this study might not yield

a proper comparison because most, if not almost all, algorithms developed so far were

based on image acquisition hardware including a hood covering the scene from ambient

light and by illuminating the scene with artificial light. Algorithms were tuned for

that purpose and for those conditions. However, in the current research approach no

hood or artificial lighting were used. To compare algorithms on the current dataset

would require retraining of the previously used algorithms which would not result in a

fair comparison of results. Though a proper comparison is lacking, it seems fair to

claim that with transfer learning of a ConvNet progress can be made in this field.

The proposed approach in this study was a partial implementation of a full pipeline

for weed detection. The obtained results were based on manually extracted plant

images, and vegetation segmentation procedure was not integrated. Implementing a

full pipeline may potentially reduce the performance. In other words, the proposed

approach does not lead to the precise detection of volunteer potato in field images.

The individual plant detection procedure needs to be integrated as well. Sa et al.

(2016) proposed a fruit detection system using ConvNet that detects each fruit in

the large image even under occlusion. A similar approach can be used to detect each

individual plant in crop fields.

Part I: proper scenario selection in transfer learning

When using transfer learning with ConvNets for weed classification, the most proper

scenario needs to be selected based on the number of available training images. It

was in scenario 2 that the highest classification accuracy was obtained, as the results

in Part I indicated, only if a large number of images were used for fine-tuning. If

a large number of images is not available, scenarios 1 and 3 would provide a better

classification accuracy than scenario 2. Determining the required number of training

images for the selection of scenarios may not be trivial, and perhaps may need more

study as well. At least in Part I, 700 training images were needed in scenario 2 to

obtain better classification accuracy than in scenarios 1 and 3. However, by applying

127



5

Chapter 5

data augmentation in Part II, even 500 training images were enough to obtain higher

classification accuracy than in scenarios 1 and 3. Nevertheless, some studies did not

apply data augmentation as the performance improvement was not considered to be

significant (Wan et al., 2013; Wang et al., 2017; Yosinski et al., 2014).

In addition, the number of classes (plant species in this case) may need to be

considered for a proper scenario selection as well. Hasan et al. (2016) reported that

when the number of classes was large, the performance of ConvNet was worse than

SVM classifier in their classification task. It is unclear how a different number of

classes would influence the performance in crop and weed classification. Only binary

classification was performed in this study based on the assumption that in most cases

plants found in sugar beet fields, especially in The Netherlands, are either sugar beet

or volunteer potato. However, in some agricultural fields, several different weed species

are often found together. A future study topic might be the multiclass classification

for crop and several weed species as well as the classification performance assessment

among a different number of plant species.

Using a SVM in scenarios 1 and 3, the extracted features from FC6 provided

better classification accuracy than using features from FC7. Hu et al. (2015) also

reported that the extracted features from the first FC layer consistently provided

better performance compared to the second FC layer. However, when using other

classifiers such as random forest and LDA, the extracted features from FC7 provided

better classification accuracy than the ones from FC6. The behaviour or function of

each layer in the deep network is not yet fully understood, and the deep network is

still seen as a “black-box.” Research has revealed that the first layer in many deep

neural networks, when trained on images, tends to learn general features similar to

the Gabor filter and colour blobs (Yosinski et al., 2014). More understanding of the

function of each layer is, therefore, a topic for the future study.

Part II: different ConvNets architectures for weed classification

AlexNet showed a classification accuracy of 97.9% in Part II. Considering the fact

that AlexNet contains far less layers than the other networks used in the study, the

classification accuracy obtained with AlexNet was surprisingly good even compared to

the top performers such as VGG-19 (98.7%) and ResNet-101 (98.5%). Moreover, the

training time required by AlexNet was considerably less than others. This training

time can even be further reduced, without sacrificing the performance, if training stops
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after only 5-10 epochs since the accuracy during training was shown to be more or less

stabilised after 5 epochs. Regarding the classification time, AlexNet was one of the

fastest networks for classification, followed by GoogLeNet but only by a very small

margin, which very well suits real-time applications. Given these results, it seems fair

to use AlexNet in our application for the classification of sugar beet and volunteer

potato, although AlexNet is already considered to be an “old-fashioned” network.

The number of epochs for training largely influences the classification performance

depending on the network architecture. To reach the highest desired accuracy, some

shallow networks such as AlexNet and VGG-19 require only a small number of epochs;

while some deeper networks such as ResNet-101 and Inception-v3 require a relatively

large number of epochs. It is unclear how to choose the optimum number of epochs for

the training of the deep networks since selecting the optimum number has been mainly

based on empirical experience (Jozefowicz & Com, 2015; Schmidhuber, 2015). For

this reason, monitoring the training process with the loss and accuracy is particularly

important to determine when to stop the training. Also, training of a deep network

depends on other parameter settings such as learning rate, momentum and batch size,

which in many cases also relies on empirical knowledge (LeCun et al., 2015). All these

parameter settings are likely to influence the classification performance which may also

influence the required number of training images and epochs needed to obtain high

classification accuracy. It is worth investigating and thus worth to better understand

the influence of various parameters used in the deep learning on the performance of

the deep neural network.

VGG-19 is known to be an expensive and complex architecture regarding compu-

tational cost and number of parameters, which makes the network less suitable for

real-time applications (Canziani et al., 2016). He et al. (2016a) discussed that VGG-19

has higher complexity and requires more computations than ResNet-101, even though

VGG-19 has considerably less layers than ResNet. This was confirmed in Part II

(Table 5.5) as VGG-19 needed the longest classification time than any other networks.

According to Yosinski et al. (2014), the effectiveness of transfer learning is expected

to decline if there is less similarity between the network’s original task and the new

task at hand. All networks in our study were originally (pre-)trained with ImageNet

Dataset which contained object images commonly found in ordinary life such as desk,

computer, car, etc. ImageNet Dataset is quite distinctly different, so to speak, from

sugar beet and volunteer potato images; yet, the performance obtained using transfer
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data augmentation in Part II, even 500 training images were enough to obtain higher

classification accuracy than in scenarios 1 and 3. Nevertheless, some studies did not

apply data augmentation as the performance improvement was not considered to be

significant (Wan et al., 2013; Wang et al., 2017; Yosinski et al., 2014).

In addition, the number of classes (plant species in this case) may need to be

considered for a proper scenario selection as well. Hasan et al. (2016) reported that

when the number of classes was large, the performance of ConvNet was worse than

SVM classifier in their classification task. It is unclear how a different number of

classes would influence the performance in crop and weed classification. Only binary

classification was performed in this study based on the assumption that in most cases

plants found in sugar beet fields, especially in The Netherlands, are either sugar beet

or volunteer potato. However, in some agricultural fields, several different weed species

are often found together. A future study topic might be the multiclass classification

for crop and several weed species as well as the classification performance assessment

among a different number of plant species.

Using a SVM in scenarios 1 and 3, the extracted features from FC6 provided

better classification accuracy than using features from FC7. Hu et al. (2015) also

reported that the extracted features from the first FC layer consistently provided

better performance compared to the second FC layer. However, when using other

classifiers such as random forest and LDA, the extracted features from FC7 provided

better classification accuracy than the ones from FC6. The behaviour or function of

each layer in the deep network is not yet fully understood, and the deep network is

still seen as a “black-box.” Research has revealed that the first layer in many deep

neural networks, when trained on images, tends to learn general features similar to

the Gabor filter and colour blobs (Yosinski et al., 2014). More understanding of the

function of each layer is, therefore, a topic for the future study.

Part II: different ConvNets architectures for weed classification

AlexNet showed a classification accuracy of 97.9% in Part II. Considering the fact

that AlexNet contains far less layers than the other networks used in the study, the

classification accuracy obtained with AlexNet was surprisingly good even compared to

the top performers such as VGG-19 (98.7%) and ResNet-101 (98.5%). Moreover, the

training time required by AlexNet was considerably less than others. This training

time can even be further reduced, without sacrificing the performance, if training stops
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after only 5-10 epochs since the accuracy during training was shown to be more or less

stabilised after 5 epochs. Regarding the classification time, AlexNet was one of the

fastest networks for classification, followed by GoogLeNet but only by a very small

margin, which very well suits real-time applications. Given these results, it seems fair

to use AlexNet in our application for the classification of sugar beet and volunteer

potato, although AlexNet is already considered to be an “old-fashioned” network.

The number of epochs for training largely influences the classification performance

depending on the network architecture. To reach the highest desired accuracy, some

shallow networks such as AlexNet and VGG-19 require only a small number of epochs;

while some deeper networks such as ResNet-101 and Inception-v3 require a relatively

large number of epochs. It is unclear how to choose the optimum number of epochs for

the training of the deep networks since selecting the optimum number has been mainly

based on empirical experience (Jozefowicz & Com, 2015; Schmidhuber, 2015). For

this reason, monitoring the training process with the loss and accuracy is particularly

important to determine when to stop the training. Also, training of a deep network

depends on other parameter settings such as learning rate, momentum and batch size,

which in many cases also relies on empirical knowledge (LeCun et al., 2015). All these

parameter settings are likely to influence the classification performance which may also

influence the required number of training images and epochs needed to obtain high

classification accuracy. It is worth investigating and thus worth to better understand

the influence of various parameters used in the deep learning on the performance of

the deep neural network.

VGG-19 is known to be an expensive and complex architecture regarding compu-

tational cost and number of parameters, which makes the network less suitable for

real-time applications (Canziani et al., 2016). He et al. (2016a) discussed that VGG-19

has higher complexity and requires more computations than ResNet-101, even though

VGG-19 has considerably less layers than ResNet. This was confirmed in Part II

(Table 5.5) as VGG-19 needed the longest classification time than any other networks.

According to Yosinski et al. (2014), the effectiveness of transfer learning is expected

to decline if there is less similarity between the network’s original task and the new

task at hand. All networks in our study were originally (pre-)trained with ImageNet

Dataset which contained object images commonly found in ordinary life such as desk,

computer, car, etc. ImageNet Dataset is quite distinctly different, so to speak, from

sugar beet and volunteer potato images; yet, the performance obtained using transfer
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learning in this study is still very impressive. If the networks were (pre-)trained with

crop/weed field image dataset, further promising performance may likely be achieved

as similarity will be higher between the network’s original task and the new task at

hand.

Practical considerations for weed control

For weed control in practice, it is critical to have a large as possible number of true-

positives as well as a large as possible number of true-negatives. Not only that, it is

also important to consider both the number of false-negatives (the number of sugar

beet plants that are classified as volunteer potatoes) and the number of false-positives

(the number of volunteer potato plants that are classified as sugar beet). The false-

negatives lead to the removal of the cash crop caused by the misclassification, thus

keeping the number of false-negatives as small as possible is critical (Lottes et al.,

2016). At the same time, however, keeping the number of false-positives as small as

possible is also desired. If there are many left over volunteer potato plants caused by

misclassification, the weed control robot may have to drive repetitively through the field

for Dutch farmers to meet the statutory regulation in the Netherlands (Nieuwenhuizen,

2009). The economic consequences of the different numbers of false-negatives and

false-positives deserve further research.

Training and application of deep neural network require sophisticated hardware;

high-performance GPUs. This requirement has been a limiting factor in many applica-

tions (Sa et al., 2016). However, cloud services (e.g. Amazon Elastic Compute Cloud

and Paperspace GPU Cloud), as used in this study, provided a simple and easy way of

using high-performance computing hardware without having to acquire and maintain

the hardware on site.

Although the calculation time was measured on an EC2 server in this study, it

is reasonable to think that a similar calculation speed (or even better calculation

speed) can be achieved during on-field application because high-performance PCs (e.g.

gaming laptops with high-performance GPUs) compared to the EC2 server used in

this study are already available in the market.
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amongst different ConvNet architectures for the classification of sugar beet and volun-

teer potato under ambient varying light conditions. Three different implementation

scenarios were assessed using AlexNet in Part I, and the performance of following

six pre-trained networks was compared in Part II: AlexNet, VGG-19, GoogLeNet,

ResNet-50, ResNet-101 and Inception-v3.

Transfer learning provided very promising performance for the classification of

sugar beet and volunteer potato images under ambient varying light conditions. In

Part I, the highest classification accuracy (98.0%) was obtained with AlexNet in

Scenario 2. In scenario 1 and 3, the highest classification accuracy of 97.0% and 97.3%

were obtained, respectively.

All three scenarios were feasible for real-time field applications, but training the

deep network was a computationally more expensive task than training the conventional

classifiers.

The highest classification accuracy (98.7%) obtained in Part II, to the best of

our knowledge, was considerably better than any other approaches mentioned in

the literature for crop and weed classification. Data augmentation may improve the

classification accuracy. VGG-19 yielded the highest classification accuracy but needed

the longest classification time. AlexNet required the shortest training time; while

ResNet-101 required the longest training time. With Inception-v3 using 30 epochs

instead of 20 epochs for training yielded a significant improvement in performance.

Such improvements were not observed when using more training epochs with AlexNet,

VGG-19 and GoogLeNet.

Three different scenarios as well as six different ConvNet architectures for transfer

learning showed robust performance with the plant images acquired in different periods

of the various years with two types of soils. However, implementing a full pipeline for

weed detection may potentially reduce the overall performance.
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CHAPTER 6

Conclusions, General Discussion and

Recommendations

As a final chapter of the thesis, this chapter lists the conclusions of the research and the

sub-objectives each corresponding to Chapter 2 to 5 in Section 6.1. Then, section 6.2

will put the results obtained into perspective by reflecting on the required functionality

of a fully autonomous weeding robot and by doing so identify directions for future

research.

6.1 Conclusion

As was described in Chapter 1, the primary objective of this research was “to develop

a computer vision procedure that detects volunteer potato plants under ambient light

conditions in a sugar beet field.” The developed procedure was to be used for a weed

control robot in the framework of the EU SmartBot project.

For a complete weed control pipeline, including weed detection and weed removal,

the following requirements were set. The resulting automatic weeding system should:

• effectively control more than 95% of the volunteer potato;

• ensure less than 5% of undesired control of sugar beet plants;

• ensure a classification time of less than 1 second per field image for real-time

operation in the field.
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It was indicated that due to the potential non-perfect performance of actual weed

removal, classification accuracy should be considerably higher than 95%.

To realize the main objective, various sub-procedures for vegetation segmentation

(Chapter 2 and 3) and sugar beet/volunteer potato classification (Chapter 4 and 5)

were developed.

Chapter 2 addressed the research question:“Does a ground shadow detection and

removal enhance the performance of vegetation segmentation under natural illumination

conditions in the field?”

In Chapter 2, an algorithm was described and evaluated for ground shadow

detection and removal based on colour space conversion and a multilevel threshold.

The advantage of using the proposed algorithm was assessed for vegetation

segmentation with field images that were acquired by a High Dynamic Range

(HDR) camera under natural illumination. Compared with no shadow removal,

applying shadow removal enhanced the performance of vegetation segmentation

under natural illumination conditions in the field with an average of 20%, 4.4%

and 13.5% in precision, specificity and modified accuracy, respectively, and did not

reduce segmentation performance when shadows were not present. The average

processing time was 0.46 s, which is feasible when real-time application in the

field is considered.

Chapter 3 addressed the research question:“Do different combinations of colour index

and threshold technique result in different segmentation performance when evaluated on

field images? Given the varying conditions in the field, is it better to use one specific

combination at all times or the combination should be adapted to the field conditions

at hand for best segmentation performance?”

In Chapter 3, the performance of 40 combinations of eight colour indices and

five threshold techniques for vegetation segmentation were evaluated. A clear

difference in performance, represented in terms of MA (Modified Accuracy), was

observed among various combinations under the given conditions of this research.

CIVE+Kapur showed the best performance, while VEG+Kapur showed the worst

on the dataset. When adapting the combination to the given conditions yielded
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a slightly higher performance than when using a single combination for all (in

this case CIVE+Kapur). Consistent results were obtained when validated on a

different independent image dataset. The expected advantage of adapting the

combination to the field condition is not large because it seems that for practical

use, the slight improvement when adapting the combination to the field conditions

does not outweigh the investment in sensor technology and software needed to

accurately determine the different conditions in the field.

Chapter 4 and 5 focussed on classification and addressed the following research

questions:“Does an algorithm using a Bag-of-Visual-Words (BoVW) model and SIFT

or SURF descriptors meet the requirements set for the classification of volunteer potato

and sugar beet under natural and varying daylight conditions? If the BoVW model does

not meet the requirements, does a deep learning approach, particularly transfer learning

based on Convolutional Neural Network (ConvNet, or CNN) provide an effective and

better performance to meet the requirements with limited amount of dataset? Are the

processing times (or calculation times) fast enough for real-time application?”

For the classification of sugar beet and volunteer potato under ambient varying

daylight conditions, Chapter 4 proposed a classification algorithm using a Bag-

of-Visual-Words (BoVW) model based on SIFT or SURF features as well as

crop row information in the form of the Out-of-Row Regional Index (ORRI).

The highest classification accuracy of 96.5% with false-negative of 0% obtained

using SIFT and ORRI with SVM is considerably better than previously reported

approaches for weed classification; however, the false-positive rate of 7% deviates

from the requirements since misclassification should be less than 5%. The average

classification time of 0.10 - 0.11 s met the real-time requirements. Adding location

information (ORRI) improved overall classification accuracy significantly. The

proposed approach proved its potential under varying natural light conditions.

Since the required classification accuracy was not obtained in Chapter 4,

further research was carried out for the classification of sugar beet and volunteer

potato under ambient varying daylight conditions. Chapter 5 evaluated a transfer

learning procedure with three different implementations of AlexNet (Part I), and

then assessed the performance amongst different ConvNet architectures (Part

II): AlexNet, VGG-19, GoogLeNet, ResNet-50, ResNet-101 and Inception-v3. In

Part I, the highest classification accuracy (98.0%) was obtained with AlexNet in
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Scenario 2. In scenario 1 and 3, the highest classification accuracy of 97.0% and

97.3% were obtained, respectively. In Part II, the highest classification accuracy

of 98.7% was obtained. This result, to the best of our knowledge, was considerably

better than any other approaches mentioned in the literature for crop and weed

classification. Transfer learning provided very promising performance for the

classification of sugar beet and volunteer potato images under ambient varying

light conditions. A deep learning approach based on ConvNet provided better

performance than the one in Chapter 4, and satisfied the requirements. All

procedures were feasible for real-time field applications (the classification time

< 0.1 s).

As was indicated in the introduction in Chapter 1, the full pipeline for volunteer

potato detection consists of three steps: 1) vegetation segmentation, i.e. separating

pixels in an image into plant pixels and non-plant pixels, 2) individual object (plant)

identification, i.e. identification of individual plants in the set of plant pixels obtained

after segmentation, and 3) classification of the plants into two classes, sugar beet

(crop) and volunteer potato (weed).

In this thesis, steps 1 and 3, i.e. image segmentation and classification of sugar

beet/volunteer potato were successfully addressed. Step 2, the identification of

individual plants in the images was not addressed. Despite this limitation, it can be

concluded that significant progress has been made in this area of study, given the fact

that reported algorithms were developed using images captured in full daylight with

significant variations in light colour and intensity; a distinct challenge that so far has

been circumvented by using hoods and artificial lighting. Yet, the question remains

unanswered whether a full pipeline, including all three steps, would be able to meet

the requirements identified at the onset of the research.

With current hardware and suitable implementation of software, it seems that

the requirement of 1 s per image for real-time operation of a weed control system

can be attained. The highest classification accuracy of 98.7% obtained in Chapter 5

is supportive in meeting the required 95% control of volunteer potatoes, but when

the ConvNet classification would be implemented in a full pipeline also containing

vegetation segmentation and individual plant identification, a degraded performance

can be expected. Preliminary results of Li (2017), in which a full pipeline for weed

detection was implemented, indicate that a bottleneck in individual object identifica-
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tion, step 2 in the pipeline, results in an overall classification performance of 87.5%,

which does not meet or exceed the required 95% correct classification. Non-perfect

weed control based on such a weed detection algorithm will therefore show an even

lower performance of the overall weed control system. Yet, the results of Li (2017)

show the potential of this approach as they were obtained under varying daylight

conditions, and compare favourably with classification results in the range of 85-90%

that were obtained in various previous researches using hoods and artificial lighting

(e.g. Nieuwenhuizen et al. (2010) and Haug et al. (2014)). Therefore, it is safe to say

that this research has laid the foundation for a small-sized robotic platform to come

into action for weed control in the field.

6.2 Reflections and future directions

The introduction in Chapter 1 outlined the functionalities of a fully autonomous weed

control robot: 1) autonomous navigation of a mobile platform carrying a sensor based

weed removal device, 2) classification and identification of weed and crop, 3) removal

of weeds. Each of these functionalities will be (shortly) addressed and reflected upon

to identify potential future directions for research.

6.2.1 An autonomous small-sized mobile robotic platform

An increasing desire and concern in sustainable and environment-friendly production

in arable farming has raised an issue with heavy machinery usage. Heavy machinery

is often associated with soil compaction and irreparable damage to the soil as well

as with adverse impacts of fossil fuel consumption. For instance, some of the most

massive agricultural machines weigh 60 tonnes which leave a trail of soil compaction

that could last for years (King, 2017). These issues can be minimised or avoided with

a small-sized and autonomous robotic platform because such a lightweight system

would not crush the soil. Moreover, a small robotic platform may have less critical

safety issues than large machines as well as less environmental impact with lower usage

of energy or battery operation.

A single small-sized robotic platform, however, may not be practical to cover a

vast area of the crop field due to the limited operating hours. For example, a robotic

platform used in this study, Husky A200 (Figure 1.2), can drive only up to two hours
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due to the limited battery capacity. This working time will likely be further reduced

when spraying actuation in the field is concerned. A potential way to increase the

operating hours would be to mount a solar panel on the platform which can generate

extra electricity during field operation, such as RIPPA (Robot for Intelligent Perception

and Precision Application), the University of Sydney’s solar-powered prototype robot.

RIPPA has an array of solar cells mounted on the top, and it can run more than 20

hours converting solar radiation continuously into electric energy in the field (Sukkarieh,

2016). Another option to extend the operation time would be to use a supplementary

power generator mounted to the rear or top side of the mobile robotic platform (Furgale

& Barfoot, 2010). A compact size and lightweight power generator may add weight

and mass to the overall system, but will provide extended operating time in the field.

Along with these, a collection of small-sized robotic platforms collaborating as a fleet

of robots, a swarm robotics approach, may have the potential to cover a large area

for weed control (Emmi & Gonzalez-de Santos, 2017). The practicability of a swarm

robotics approach in agricultural field applications is still an open research topic.

Autonomous navigation is one of the critical functionalities required for an auto-

mated weed control system using a small-size robotic platform. Autonomous navigation

of such systems would require not only following the crop row without damaging any

cash crops, but also moving to the next crop row when the system gets to the headland,

in other words, the headland turn (Backman et al., 2015; English et al., 2014). Within

the SmartBot project, crop row following functionality was implemented using a Husky

platform during BSc and MSc thesis works (Janssen, 2015; Jol, 2015). In this work,

a particle filter was used based on the method reported by (Hiremath et al., 2014).

Satisfactory performance was achieved during the short field test in 2015 (Janssen,

2015). However, for complete autonomous navigation in agricultural fields, headland

turn functionality needs to be developed and integrated into the robotic platform.

Additionally, if the robotic platform uses the battery, the battery needs to be

continuously checked to avoid any potential stop due to battery depletion in the

middle of the crop field. This issue needs to be considered and taken into account in

autonomous navigation as well. Moreover, the system should have obstacle awareness

as the system may encounter puddles or (dead) animals during navigation, although

this is an unlikely situation in crop fields in the Netherlands.
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6.2.2 Volunteer potato classification and identification

To bring vision-based weed classification and identification further to practice various

issues require attention. Here are the issues for further consideration.

Camera technology

In this study, a HDR camera (NSC1005c, New Imaging Technologies, Paris, France)

having a dynamic range of 140 dB was used. This camera was one of the cameras on the

market in 2013 having a very high dynamic range. As was stated in Chapter 2, a HDR

camera was known to provide a way to resolve the issue of varying natural illumination

and substantial intensity differences within a single image scene in agricultural field

conditions. Thus, using a HDR camera in an agricultural field under natural light

conditions was expected to have added value. However, the difference in performance

between a HDR camera and a traditional non-HDR camera was not quantitatively

evaluated, as this was out of the scope of this research. It is suggested to investigate

the performance of different dynamic range cameras under agricultural field conditions

in a future study.

While the HDR camera is expected to bring an added value in agricultural applica-

tions, the use of deep learning seems to reduce the importance of camera performance

compared to when traditional computer vision algorithms are used. In recent stud-

ies, even with a simple and cheap camera, deep learning has shown very promising

performance under challenging agricultural environments where traditional computer

vision algorithms most likely fail to achieve any successful results (Fuentes et al., 2017;

Mohanty et al., 2016; Tibbetts, 2018). Therefore, it is worth investigating the benefit

of the HDR camera in relation to the processing pipeline in the future study.

Limitation of colour- and threshold-based approach for vegetation segment-

ation

For vegetation segmentation in Chapter 2 and 3, all the methods were mainly based on

RGB pixel values, which means that vegetation segmentation in this research depended

on colour. Colour is indeed one of the most discriminative features for discriminating

vegetation and soil background; however, using a colour-based approach may not yield

sufficient vegetation segmentation performance in a system that has to work under
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due to the limited battery capacity. This working time will likely be further reduced
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6.2.2 Volunteer potato classification and identification
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ambient light conditions (Yu et al., 2015). Unlike the controlled indoor environment,

the illumination in an agricultural field changes dramatically with time and weather

conditions, which often causes serious misclassification. These illumination variations

significantly affect colour RGB pixel values of acquired field images and lead to

the inconsistent colour representation of plants and soil background, which makes a

colour-only approach very challenging to resolve. Moreover, the colour-only approach

can be sensitive to noise disturbance especially in uncontrolled lighting conditions

(Mythili & Kavita, 2011). To overcome these limitations, several recent studies have

proposed hybrid approaches for plant segmentation. A hybrid approach proposed by

Chopin et al. (2016) utilizes basic apriori information about the plant shape and local

image orientations. Mancini et al. (2017)’s proposed algorithm takes into account

muti-spectral as well as synthetic features that were derived from their developed

models. Pande-Chhetri et al. (2017) utilized an object-based analysis using spectral,

textural and geometrical object features computed from the individual pixels within

each object. These hybrid approaches seem to offer the potential for future research.

On the other hand, thresholding techniques, in general, have their limitations

because they only consider the intensity of the given images, not any spatial coherence

between the pixels nor any consideration of object structure in the image. Thus, the

pixels or objects identified by the threshold are not contiguous. Solomon & Breckon

(2011) reported that using only the intensity of histogram does not guarantee for an

optimum threshold value. Besides, the thresholds in Chapter 3 were based on the

assumption that an image contains only plants and soil background (two classes),

in which the histogram of the near-binary image needs to be partitioned into two

classes. Although hardly any other objects than soil and plants were found in field

images, a crop image scene may contain various kinds of straw, straw ash, and rocks

(Yang et al., 2015). If an image scene contains a significant amount of the above

mentioned or other materials, the thresholds would have limited performance. To

overcome these limitations, Liu et al. (2012) proposed a new threshold method that

utilises spatial information by combining image gradient with class uncertainty, and

thus requires no predefined number of classes. Alternatively, several other methods

for an improved threshold are also mentioned in the literature such as multiband

thresholding, thresholding from a texture in the combination of regional boundaries,

multiple thresholding criteria, and thresholding based on conditional histograms (Russ

& Neal, 2015). Moreover, other threshold techniques than these are also found in the
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literature: Sauvola (Sauvola & Pietikäinen, 2000), improved Sauvola (Shafait et al.,

2008), Wang threshold using Parzen window technique (Wang et al., 2008), Ramesh

threshold using functional approximation of the given histogram (Ramesh, 1995), etc.

These threshold techniques are not reported to be used in agricultural applications

and would be interesting research subjects in the future.

Individual object (plant) identification and overlapping plants

In a full pipeline for weed detection (Chapter 1), individual object (plant) identification

is followed by vegetation segmentation, and each identified plant is the fundamental

element in the subsequent process of weed and crop classification. Blob-based detection

and DBSCAN (Density-Based Spatial Clustering of Applications with Noise) are

commonly used algorithms for the identification of individual objects in computer

vision applications. In agricultural applications, these algorithms were also used to

identify individual plant and fruit in recent studies (Li, 2017; Li et al., 2016; Yamamoto

et al., 2014). They can be potential options for a full pipeline in weed detection.

Blob-based detection and DBSCAN, however, do not resolve the overlapping issue

(Kurtulmuş & Kavdir, 2014). In an agricultural field, weeds are often found to be

overlapped by crops. When crops and weeds grow close together and thus overlap each

other, they tend to be identified as a single plant (Persson & Åstrand, 2008; Xia et al.,

2013). This misidentification causes a substantial error in crop/weed classification, and

therefore a solution is needed to identify an individual plant when they are overlapped.

A potential way to solve this issue is perhaps to use 3D imaging since depth

information over 2D images provided satisfactory results to separate individual plant

even overlapping conditions in a recent study of Li & Tang (in press). Young & Pierce

(2014) also discussed the potentials of 3D imaging for an individual plant detection in

overlapping conditions. However, for a practical application in the field, computation

time needs to be reduced since 3D imaging requires a significant amount of processing

time (Kapach et al., 2012). Kazmi et al. (2015b) further discussed that 3D sensing may

have its own set of challenges especially when it comes to outdoor field applications.

Alternatively, a recent study of Wang et al. (2018) proposed an algorithm based on

Chan-Vese model and Sobel operator to segment overlapping plant regions. Although

potential results were obtained using the images acquired in a partially controlled

environment, they discussed that their proposed algorithm was not robust against
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potential results were obtained using the images acquired in a partially controlled

environment, they discussed that their proposed algorithm was not robust against

141



6

Chapter 6

illumination changes and direct sunlight.

Other potential ways to detect the overlapping plants are to use Selective Searches

or Region-based ConvNet (R-CNN) (Girshick et al., 2014; Uijlings et al., 2013). R-

CNN has shown its potential to detect overlapping objects in many applications

(Schmidhuber, 2015). Sa et al. (2016) showed the promising performance of R-CNN

for the detection of overlapping fruits in an orchard.

Interestingly enough, Faster R-CNN is known to provide an “end-to-end” solution,

producing detection and classification results simultaneously by merging all the required

steps such as region proposal extraction, feature extraction and object classification,

and bounding box regression (which can translate in this study vegetation segmentation

and weed/crop classification) into the CNN (Lu et al., 2016; Tychsen-Smith & Petersson,

2017). Multi-task training and significant weight sharing within the CNN have not

only enabled higher detection speeds, but also ensured higher detection quality than

a non-end-to-end approach (Akselrod-Ballin et al., 2016). Such a solution offers a

convenient way for detection because managing a pipeline of sequentially-trained tasks

is no longer needed. In literature, Faster R-CNN has shown promising performance for

real-time detection applications in challenging conditions in agricultural fields (Bargoti

& Underwood, 2017; Fuentes et al., 2017; Sa et al., 2016). However, such solution

requires a large amount of training data, which is one of the drawbacks of using deep

neural network training in practice.

Field and crop conditions

Field and crop conditions need to be considered for the actual application of the weed

control system in an agricultural field. Nieuwenhuizen (2009) reported that soil type

might have a significant influence on the performance of vision-based weed detection,

which in consequence will affect the control performance. In this research, both clay

and sandy soil fields were considered during image acquisition. The proposed methods

in this study seemed to work quite well in vegetation segmentation and weed/crop

classification on both types of soils. However, the algorithms that are tuned to a

particular soil type may likely perform better on that soil, which leaves a potential

topic for future study. Also, the other types of soils need to be studied for further

verification.

In addition, depending on irrigation management, tillage intensity and weather
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situation, the soil field conditions can vary and influence the system performance.

Under dry soil conditions, for example, when the weed control system rides on the

field, a cloud of dust may continuously arise from the dry ground which negatively

affects the performance of the camera system.

Similarly, different crop conditions shown by shape, colour, and growth pattern

can be observed depending on cultivar, culture type, nutritional status, etc., and this

may also influence the performance of weed detection and classification. Deep learning

appears to be able to offer a promising solution in plant species classification even in

irregular shape and pattern (Dyrmann et al., 2016; Ghazi et al., 2017); however, the

performance details need to be further investigated.

Image dataset and ground truth

The image datasets in Chapter 2 and 3 contained a broad range of natural illumination

encountered in the field, including extreme situations, and was meant to be represent-

ative of the conditions that can appear in the field (from different days and different

seasons). Although a representative selection was made with at least some extreme

situations, a substantial number of images in the dataset might have brought more

insights. However, this would require ground truth assessment of many more images

which was not considered feasible within the current project. The proper identification

of different conditions was not considered feasible either.

In Chapter 3, the image dataset was divided into nine groups based on the plant

size, illumination, and presence of shadow. Illumination and the presence of shadows

were categorised only by two conditions: either sunny or cloudy (illumination), and

either yes or no (the presence of shadow). In an agricultural field environment, however,

illumination and shadow conditions are more complicated than categorising into merely

two different conditions. More diverse categories could be generated based on some

quantified criteria for better grouping of the environmental conditions.

The ground truth images in Chapter 2 and 3 were labelled by only two persons.

Although the images were binary-labelled, either plant materials or background soil, the

ground truth labelling in this study may bring a concern due to the lack of validation

of additional annotators. Bac (2015) indicated that labelling of objects in images could

differ among annotators, and thus one should employ several annotators to improve

the reliability of ground truth. However, it is uncertain how many annotators might
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be needed for reliable ground truth labelling.

The use of the term “ground truth” might be debatable because strictly speaking

there might be no “truth” to the values measured in situ versus values measured

proximally or remotely by a digital device. There is always a chance that measurement

errors may occur in the process of making in situ measurements on the ground using

digital devices. The use of an alternative term such as “ground observation” or “in-situ

observation” might be an option although these alternative terms may likely create

more confusion and ambiguity. Still, the term “ground truth” is one of the most

commonly used terms in computer vision and image processing applications.

6.2.3 Actuation system for weed control

Even though there has been an environmental concern regarding the use of chemicals to

control volunteer potatoes in a sugar beet field, the chemical application is considered

one of the most cost-effective and practical control methods (Kunz et al., in press;

Pedersen et al., 2006). Once the precise location of a volunteer potato plant is detected,

the minimum amount of chemical deposition to the exact target location is required

not only to minimise the environmental impact but also to prevent sugar beet plants

being damaged by chemical drift.

For precision chemical application, some studies have attempted to control and

regulate micro sprayer nozzles. Midtiby et al. (2011) developed a micro-spraying

system based on inkjet printer nozzles. They showed the potential of a micro-spraying

system for real-time weed control although they discussed the system lacked sufficient

timing precision to target and control small plants. Nieuwenhuizen et al. (2010)

developed micro-sprayers in an automated weed control system, showing selective

weed control with minimum and precise use of chemicals in the field. For weeding

in SmartBot, the micro-sprayer developed by Nieuwenhuizen et al. (2010) was to be

reused with suitable modification to fit into the small-sized robotic platform. Precise

timing and positioning of chemical droplets may need to be further enhanced for a

small-sized robotic platform.

Other options than chemical control are also available in literature including a

mechanical device using cutting tools, thermal flaming, and laser (Fennimore et al.,

2016). Such weeding devices are advantageous for organic farmers as they are organic-

compliant, and thus they can be a promising alternative for integrated weed man-
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agement. However, further improvements seem to be needed for a practical usage

in the field using a small-sized robotic platform. Frasconi et al. (2017) developed a

weeding system based on mechanical and thermal flaming to remove weeds in maize

fields. Although a promising performance was achieved, the total mass of the machine

of more than 900 kg makes it difficult to be used with a small-sized robotic platform.

Xiong et al. (2017) developed a prototype laser weeding system and showed the po-

tential of laser weeding on a small-sized robotic platform. However in their research,

the performance test was conducted under laboratory conditions, and thus further

evaluation in an agricultural field condition is needed.
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Lottes, P., Hoeferlin, M., Sander, S., Müter, M., Schulze Lammers, P., & Stachniss, C.

(2016). An Effective Classification System for Separating Sugar Beets and Weeds

for Precision Farming Applications. In IEEE International Conference on Robotics

and Automation (ICRA 2016) (pp. 5157–5163). Stockholm, Sweden: IEEE.

Lottes, P., Hörferlin, M., Sander, S., & Stachniss, C. (2017). Effective Vision-based

Classification for Separating Sugar Beets and Weeds for Precision Farming. Journal

of Field Robotics , 34 , 1160–1178.

Lowe, D. G. (2004). Distinctive Image Features from Scale-Invariant Keypoints.

International Journal of Computer Vision, 60 , 91–110.

Lu, Y. H., Kadin, A. M., Berg, A. C., Conte, T. M., Debenedictis, E. P., Garg, R.,

Gingade, G., Hoang, B., Huang, Y., Li, B., Liu, J., Liu, W., Mao, H., Peng, J.,

Tang, T., Track, E. K., Wang, J., Wang, T., Wang, Y., & Yao, J. (2016). Rebooting

Computing and Low-Power Image Recognition Challenge. In 2015 IEEE/ACM

International Conference on Computer-Aided Design (ICCAD 2015) (pp. 927–932).

Austin, USA: IEEE.

MacEwan, C., Stevens, M., Bowen, S., & Broom, C. (2017). Sugar beet reference book

by British Beet Research Organization. Technical Report British Beet Research

Organization Norwich, UK.

Mancini, A., Dyson, J., Frontoni, E., & Zingaretti, P. (2017). Soil/crop segmentation

from remotely sensed data acquired by Unmanned Aerial System. In 2017 Interna-

tional Conference on Unmanned Aircraft Systems (ICUAS 2017) (pp. 1410–1417).

Miami, USA: IEEE.

Mann, S., Lo, R. C. H., Ovtcharov, K., Gu, S., Dai, D., Ngan, C., & Ai, T. (2012).

Realtime HDR (High Dynamic Range) video for eyetap wearable computers, FPGA-

based seeing aids, and glasseyes (EyeTaps). In 25th IEEE Canadian Conference on

Electrical and Computer Engineering (CCECE 2012). Montreal, Canada: IEEE.

Marchant, J. a., & Onyango, C. M. (2000). Shadow-invariant classification for scenes

illuminated by daylight. Journal of the Optical Society of America, 17 , 1952–1961.

158

References

Martin, D., Fowlkes, C., Tal, D., & Malik, J. (2001). A database of human segmented

natural images and its application to evaluation segmentation algorithms and

measuring ecological statistics. In 8th International Conference on Computer Vision

(ICCV 2001) (pp. 416–423). Vancouver, Canada: IEEE.

Mery, D., & Pedreschi, F. (2005). Segmentation of colour food images using a robust

algorithm. Journal of Food Engineering , 66 , 353–360.

Metz, C. E. (1978). Basic principles of ROC analysis. Seminars in Nuclear Medicine,

8 , 283–298.

Meyer, G. E., & Camargo Neto, J. (2008). Verification of color vegetation indices for

automated crop imaging applications. Computers and Electronics in Agriculture,

63 , 282–293.

Meyer, G. E., Camargo Neto, J., Jones, D. D., & Hindman, T. W. (2004). Intensified

fuzzy clusters for classifying plant, soil, and residue regions of interest from color

images. Computers and Electronics in Agriculture, 42 , 161–180.

Midtiby, H. S., Mathiassen, S. K., Andersson, K. J., & Jørgensen, R. N. (2011).

Performance evaluation of a crop/weed discriminating microsprayer. Computers

and Electronics in Agriculture, 77 , 35–40.

Mohanty, S. P., Hughes, D. P., & Salathé, M. (2016). Using Deep Learning for
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Sauvola, J., & Pietikäinen, M. (2000). Adaptive document image binarization. Pattern

Recognition, 33 , 225–236.

Schmidhuber, J. (2015). Deep Learning in neural networks: An overview. Neural

Networks , 61 , 85–117.

Schwing, A. G., & Urtasun, R. (2015). Fully Connected Deep Structured Networks.

arXiv preprint , (pp. 1–10).

Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., & LeCun, Y. (2014).

OverFeat: Integrated Recognition, Localization and Detection using Convolutional

Networks. In International Conference on Learning Representations (ICLR 2014).

Banff, Canada: ICLR.

Sezgin, M., & Sankur, B. (2004). Survey over image thresholding techniques and

quantitative performance evaluation. Journal of Electronic Imaging , 13 , 146–165.

Shafait, F., Keysers, D., & Breuel, T. (2008). Efficient implementation of local adaptive

thresholding techniques using integral images. In SPIE 6815, Document Recognition

and Retrieval XV . San Jose, California, USA: SPIE.

Shaikh, S. H., Maiti, A., & Chaki, N. (2011). Image binarization using iterative

partitioning: A global thresholding approach. In International Conference on Recent

Trends in Information Technology (ICRTIT 2011) (pp. 281–286). Chennai, India:

IEEE.

Shin, H.-C., Roth, H. R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D., &

Summers, R. M. (2016). Deep Convolutional Neural Networks for Computer-Aided

Detection: CNN Architectures, Dataset Characteristics and Transfer Learning.

IEEE transactions on medical imaging , 35 , 1285–1298.

Shrestha, D. S., & Steward, B. L. (2005). Shape and size analysis of corn plant canopies

for plant population and spacing sensing. Applied Engineering in Agriculture, 21 ,

295–303.

164

References

Simonyan, K., & Zisserman, A. (2015). Very Deep Convolutional Networks for Large-

Scale Image Recognition. In International Conference on Learning Representations

(ICRL) (pp. 1–14).

Slaughter, D. C., Giles, D. K., & Downey, D. (2008). Autonomous robotic weed control

systems: A review. Computers and Electronics in Agriculture, 61 , 63–78.

Smith, C. W., & Frederiksen, R. A. (2000). Sorghum : origin, history, technology, and

production. Wiley Series in Crop Science.

Søgaard, H., & Olsen, H. (2003). Determination of crop rows by image analysis without

segmentation. Computers and Electronics in Agriculture, 38 , 141–158.

Sojodishijani, O., Ramli, A. R. R., Rostami, V., Samsudin, K., & Saripan, M. I. I.

(2010). Just-in-time outdoor color discrimination using adaptive similarity-based

classifier. IEICE Electronics Express , 7 , 339–345.

Solomon, C., & Breckon, T. (2011). Fundamentals of Digital Image Processing: A

Practical Approach with Examples in Matlab. Chichester, UK: John Wiley & Sons,

Ltd.

Sørensen, C. G., Jørgensen, R. N., Maagaard, J., Bertelsen, K. K., Dalgaard, L., &

Nørremark, M. (2010). Conceptual and user-centric design guidelines for a plant

nursing robot. Biosystems Engineering , 105 , 119–129.

Stemp, G. (2005). Agriculture: Green Farming Equipment. Environmental Health

Perspectives , 113 , A590.

Steward, B. L., Tian, L. F., Nettleton, D. S., & Tang, L. (2004). Reduced-dimension

clustering for vegetation segmentation. Transactions of the ASAE , 47 , 609–616.

Su, C., & Amer, A. (2006). A real-time adaptive thresholding for video change

detection. In IEEE International Conference on Image Processing (ICIP 2006) (pp.

157–160). Atlanta, USA: IEEE.

Suh, H. K., Hofstee, J. W., IJselmuiden, J., & Van Henten, E. J. (2016). Discrimination

between Volunteer Potato and Sugar Beet with a Bag-of-Visual-Words Model. In

International Conference on Agricultural Engineering (CIGR-AgEng). Aarhus,

Denmark: EurAgEng.

165



Sanin, A., Sanderson, C., & Lovell, B. C. (2012). Shadow detection: A survey and

comparative evaluation of recent methods. Pattern Recognition, 45 , 1684–1695.
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Summary

Volunteer potato is a major problem in sugar beet production in the Netherlands,

and adequate control of volunteer potato is critical. This is stressed by a statutory

obligation in the Netherlands under which farmers have to remove volunteer potato

plants from their fields before the 1st of July in the growing season every year, to a

maximum level of two remaining plants per square meter.

In 2011, the EU SmartBot project, a cross-border collaboration project which

involved 24 different partners from Germany and the Netherlands, was initiated to

develop a robotic system for several applications including for agricultural use. In

AgroBot, part of the SmartBot project, a small-sized and vision-based autonomous

weed control system was to be developed for effective control of volunteer potato

plants in a sugar beet field. As a robotic platform, the Clearpath Husky A200 UGV

(Unmanned Ground Vehicle) was to be used in this project. Due to the reduced

carrying capacity of the robotic platform (Husky), additional infrastructure like a hood

was not a viable option. Moreover, artificial lighting was not considered feasible either

because the mobile platform was battery operated. Thus, the system should be able

to perform robustly in scenes that are fully exposed to ambient lighting conditions.

Within the EU SmartBot project, the primary objective of this research was

identified as:

to develop a computer vision procedure

that detects volunteer potato plants

under ambient light conditions in a sugar beet field

For a complete weed control pipeline, including weed detection and weed removal, the

following requirements were set. The automatic weeding system should:

• effectively control more than 95% of the volunteer potato;
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• ensure less than 5% of undesired control of sugar beet plants;

• ensure a classification time of less than 1 second per field image for real-time

operation in the field.

It was indicated that due to the potential non-perfect performance of actual weed

removal, classification accuracy should be considerably higher than 95%.

The steps required to fulfil the above-mentioned objective form the main line of this

thesis including vegetation segmentation (Chapter 2 and 3) and sugar beet/volunteer

potato classification (Chapter 4 and 5).

Chapter 2 addressed the research question:“Does a ground shadow detection and

removal enhance the performance of vegetation segmentation under natural illumination

conditions in the field?”

In Chapter 2, an algorithm was described and evaluated for ground shadow

detection and removal based on colour space conversion and a multilevel threshold. The

advantage of using the proposed algorithm was assessed for vegetation segmentation

with field images that were acquired by a High Dynamic Range (HDR) camera under

natural illumination. Compared with no shadow removal, applying shadow removal

enhanced the performance of vegetation segmentation under natural illumination

conditions in the field with an average of 20%, 4.4% and 13.5% in precision, specificity

and modified accuracy, respectively, and did not reduce segmentation performance

when shadows were not present. The average processing time was 0.46 s, which is

feasible when real-time application in the field is considered.

Chapter 3 addressed the research question:“Do different combinations of colour index

and threshold technique result in different segmentation performance when evaluated on

field images? Given the varying conditions in the field, is it better to use one specific

combination at all times or the combination should be adapted to the field conditions

at hand for best segmentation performance?”

In Chapter 3, the performance of 40 combinations of eight colour indices and five

threshold techniques for vegetation segmentation were evaluated. A clear difference in

performance, represented in terms of MA (Modified Accuracy), was observed among

various combinations under the given conditions of this research. CIVE+Kapur

showed the best performance, while VEG+Kapur showed the worst on the dataset.
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Summary

When adapting the combination to the given conditions yielded a slightly higher

performance than when using a single combination for all (in this case CIVE+Kapur).

Consistent results were obtained when validated on a different independent image

dataset. The expected advantage of adapting the combination to the field condition

is not large because it seems that for practical use, the slight improvement when

adapting the combination to the field conditions does not outweigh the investment in

sensor technology and software needed to accurately determine the different conditions

in the field.

Chapter 4 and 5 focussed on classification and addressed the following research

questions:“Does an algorithm using a Bag-of-Visual-Words (BoVW) model and SIFT

or SURF descriptors meet the requirements set for the classification of volunteer potato

and sugar beet under natural and varying daylight conditions? If the BoVW model does

not meet the requirements, does a deep learning approach, particularly transfer learning

based on Convolutional Neural Network (ConvNet, or CNN) provide an effective and

better performance to meet the requirements with limited amount of dataset? Are the

processing times (or calculation times) fast enough for real-time application?”

For the classification of sugar beet and volunteer potato under ambient varying

daylight conditions, Chapter 4 proposed a classification algorithm using a Bag-of-

Visual-Words (BoVW) model based on SIFT or SURF features as well as crop row

information in the form of the Out-of-Row Regional Index (ORRI). The highest

classification accuracy of 96.5% with false-negative of 0% obtained using SIFT and

ORRI with SVM is considerably better than previously reported approaches for weed

classification; however, the false-positive rate of 7% deviates from the requirements

since misclassification should be less than 5%. The average classification time of 0.10 -

0.11 s met the real-time requirements. Adding location information (ORRI) improved

overall classification accuracy significantly. The proposed approach proved its potential

under varying natural light conditions.

Since the required classification accuracy was not obtained in Chapter 4, further

research was carried out for the classification of sugar beet and volunteer potato

under ambient varying daylight conditions. Chapter 5 evaluated a transfer learning

procedure with three different implementations of AlexNet (Part I), and then assessed

the performance amongst different ConvNet architectures (Part II): AlexNet, VGG-19,

GoogLeNet, ResNet-50, ResNet-101 and Inception-v3. In Part I, the highest classifica-
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• ensure less than 5% of undesired control of sugar beet plants;

• ensure a classification time of less than 1 second per field image for real-time

operation in the field.

It was indicated that due to the potential non-perfect performance of actual weed
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The steps required to fulfil the above-mentioned objective form the main line of this

thesis including vegetation segmentation (Chapter 2 and 3) and sugar beet/volunteer

potato classification (Chapter 4 and 5).

Chapter 2 addressed the research question:“Does a ground shadow detection and

removal enhance the performance of vegetation segmentation under natural illumination

conditions in the field?”

In Chapter 2, an algorithm was described and evaluated for ground shadow

detection and removal based on colour space conversion and a multilevel threshold. The
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with field images that were acquired by a High Dynamic Range (HDR) camera under

natural illumination. Compared with no shadow removal, applying shadow removal

enhanced the performance of vegetation segmentation under natural illumination

conditions in the field with an average of 20%, 4.4% and 13.5% in precision, specificity

and modified accuracy, respectively, and did not reduce segmentation performance

when shadows were not present. The average processing time was 0.46 s, which is
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and threshold technique result in different segmentation performance when evaluated on
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In Chapter 3, the performance of 40 combinations of eight colour indices and five
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performance, represented in terms of MA (Modified Accuracy), was observed among

various combinations under the given conditions of this research. CIVE+Kapur

showed the best performance, while VEG+Kapur showed the worst on the dataset.
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tion accuracy (98.0%) was obtained with AlexNet in Scenario 2. In scenario 1 and 3,

the highest classification accuracy of 97.0% and 97.3% were obtained, respectively. In

Part II, the highest classification accuracy of 98.7% was obtained. This result, to the

best of our knowledge, was considerably better than any other approaches mentioned

in the literature for crop and weed classification. Transfer learning provided very

promising performance for the classification of sugar beet and volunteer potato images

under ambient varying light conditions. A deep learning approach based on ConvNet

provided better performance than the one in Chapter 4, and satisfied the requirements.

All procedures were feasible for real-time field applications (the classification time

< 0.1 s).

The full pipeline for weed detection consists of three steps: 1) vegetation segment-

ation, i.e. separating pixels in an image into plant pixels and non-plant pixels, 2)

individual object identification, i.e. identification of individual plants (objects) in the

set of plant pixels obtained after segmentation, and 3) classification of the plants into

two classes, sugar beet (crop) and volunteer potato (weed).

In this thesis, steps 1 and 3, i.e. image segmentation and classification of sugar

beet/volunteer potato were successfully addressed. Step 2, the identification of

individual plants in the images was not addressed. Despite this limitation, it can be

concluded that significant progress has been made in this area of study, given the fact

that reported algorithms were developed using images captured in full daylight with

significant variations in light colour and intensity; a distinct challenge that so far has

been circumvented by using hoods and artificial lighting. Yet, the question remains

unanswered whether a full pipeline, including all three steps, would be able to meet

the requirements identified at the onset of the research.

With current hardware and suitable implementation of software, it seems that

the requirement of 1 s per image for real-time operation of a weed control system

can be attained. The highest classification accuracy of 98.7% obtained in Chapter 5

is supportive in meeting the required 95% control of volunteer potatoes, but when

the ConvNet classification would be implemented in a full pipeline also containing

vegetation segmentation and individual plant identification, a degraded performance

can be expected. Given the fact that the images in this research were obtained under

varying daylight conditions, the results showed potential of the proposed approach

and compared favourably with classification results in the range of 85-90% that were
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Summary

obtained in various previous researches using hoods and artificial lighting. Therefore,

it is safe to say that this research has laid the foundation for a small-sized robotic

platform to come into action for weed control in the field.
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