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Abstract 
This paper illustrates the construction of an integrated linkage map with 9 linkage 
groups of hexaploid chrysanthemum x morifolium by using a 183k Affymetrix Axiom SNP 
array. After that, QTL analysis were performed for four leaf traits: leaf width/length 
ratio, stem length, leaf stipule size and leaf number. The results indicate no significant 
QTL regions have been detected for traits leaf width/length ratio, leaf stipule size and 
leaf number. Two significant QTL regions have been found on linkage group 4 and 7 for 
trait stem length. A marker has been confirmed to be significantly linked to this trait. 
Also, a list of candidate genes was generated by performing BLAST with the sequences of 
contigs on the significant QTL regions of this trait. Under the circumstance that the 
genome of chrysanthemum has not yet been fully sequenced, these candidate genes 
could provide reference information for estimating genes in chrysanthemum.  
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1. Introduction 

1.1 General introduction of chrysanthemum 

Chrysanthemum (Chrysanthemum morifolium), which belongs to family Asteraceae, 
is one of the most important ornamental flowers in the world. It is broadly used for 
cut-flower and potted plant. The diversity of its flower traits creates much 
enjoyment for people. Dating back to around 1600 years ago, the famous Chinese 

poet Tao Yuanming wrote the famous sentence ‘秋菊有佳色，裛露掇其英’ (The 

chrysanthemum looks splendid in the autumn, I pick it up with some dew with it) to 
describe the beauty of chrysanthemum.  
 
Chrysanthemum originally comes from China and has a long history of cultivation in 
Asia. In the 18th century it has been transported to Europe from China by a French 
merchant. Now it has become one of the most important ornamental flowers in the 
world markets.  
 
The aim of chrysanthemum breeding is to combine good horticultural traits. The 
traditional way is to cross chrysanthemums with different traits and select the 
offspring with target traits. However, because chrysanthemum genome is very 
complex the traditional breeding can be very much hampered and slowed down. 
With the help of booming development of DNA markers, DNA-informed breeding 
can largely speed up the breeding process. The most important issue of DNA-
informed breeding is to genotype large number of genotypes to get the 
polymorphisms information and associate them with certain phenotypes.  
 

1.2 Genetic study of chrysanthemum 

1.2.1 Polyploids and dosage 

Polyploid plants are those plants containing more than two paired set 
of chromosomes. As a hexaploid plant, chrysanthemum has six homologues of each 
chromosome. This can be very important in generating phenotypic diversity and 
creating new cultivars because of huge segregations in the next generations. For 
each locus, offspring will receive 3 alleles from each of the parent by inheriting 
homologous chromosomes. It has been proved that chrysanthemum shows 

polysomic inheritance mode (see 1.2.2), consequently there are 𝑐(3
6
)  ∗  𝑐(3

6
) = 400 

different segregation scenarios for each locus during the meiosis. However, huge 
segregations can largely complicate the study of inheritance. Hence, it is of much 
difficulty to predict what will be outcome of crosses and to know if certain traits are 
present in young seedlings. 

Unlike diploid plants, due to the multiple numbers of homologues in the 
chromosome set of polyploid plants, there may exist multiple alleles in one locus. 
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Although in some outcrossing diploids, there may also exist multiple kinds of alleles 
in one locus, e.g. in gerbera not uncommon to find 3-4 different alleles in a cross 
(Wernett et al, 1996), but for sure the situation goes more complex in hexaploids. 
There are four homologues chromosomes of each chromosome set in tetraploid 
plants and six in hexaploid plants. Here we call the relative allele composition in each 
locus dosage. 

Inside the chrysanthemum genomes there exist large numbers of polymorphisms. 
Single-nucleotide polymorphism (SNP) is one of the most common polymorphisms. 
SNP is a variation in a single nucleotide occurring at a specific position in 
the genome. SNP loci are generally bi-allelic, which means there are 2 potential 
alleles in one SNP locus. As in the case of chrysanthemum, 7 possible SNP genotypes 
can be generated in one locus: AAAAAA, AAAAAB, AAAABB, AAABBB, AABBBB, 
ABBBBB, BBBBBB, representing dosage from 0 to 6 considering the B allele. 

 

1.2.2 Inheritance mode of chrysanthemum 

The inheritance mode of chrysanthemum has been proven to be hexasomic (van 
Geest, Voorrips, et al., 2017). However, it has been discussed for a long time that 
whether the inheritance mode of chrysanthemum should be hexasomic or disomic, 
or a mix with both. The differences of polysomic and disomic inheritance mode can 
be explained by Fig. 1 (van Geest, Voorrips, et al., 2017).  In disomic inheritance, 6 
alleles in each locus are divided into 3 groups, each group has 2 alleles. During 
meiosis one allele of each of the 3 groups is chosen to pass to the offspring. Hence in 
total there are 23 = 8 kinds of possible gametes for every locus. In hexasomic 
inheritance, 3 alleles out of 6 alleles are randomly paired and delivered to the 

offspring. In total 𝑐(3
6
) = 20 kinds of possible gametes can be generated in each 

locus. 
 
Previous research has shown that polysomic inheritance mode occupies a leading 
role in chrysanthemum. But the disomic mode may also exist (Klie, Schie, Linde, & 
Debener, 2014). There are two methods that have been used to analyse the 
inheritance mode in chrysanthemum: cytological imaging and segregation analysis. 
Cytological imaging shows that polysomic inheritance is indicated in chrysanthemum 
according to the presence of multivalents, but disomic inheritance is not excluded. 
Segregation analysis also shows conclusive evidence of polysomic inheritance of 
flower color (Langton, 1989), segregation of multi-allelic SSR-markers (Klie et al., 
2014; Park, Arens, Esselink, Lim, & Shin, 2015) in chrysanthemum. However, these 
studies are limited because they are restricted to a relative low number of specific 
loci. Further, disomic inheritance is indicated based on segregation of multi-dose 
dominant alleles (De Backer, 2012; De Jong & Rademaker, 1986; Klie et al., 2014)  
 
In order to study the mode of inheritance of chrysanthemum conclusively, a 
genome-wide approach is needed. In 1.2.1 the dosage in polyploids has been 
discussed. It is of great use to do the dosage counting for polyploid plants. For 
analyses of inheritance we first need to establish the dosage type of individual 
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parental plants. It can help to make a clear sight for analysing the inheritance mode 
of polyploid plants. van Geest, Voorrips, et al (2017) desigened an Affymetrix Axiom 
array with 183K SNPs. With the help of this SNP array four bi-parental populations 
have been genotyped and the dosages have been counted. The duplex x nulliplex 
marker segregations in the population supported the evidence for hexasomic 
inheritance in chrysanthemum of genome-wide range. 

 
 

Figure 1. Graphical representation of disomic inheritance and hexasomic 
inheritance. Chromosomes represented by the same letter and colour can pair 

during meiosis I. 

 
 

1.3 SNP genotyping and SNP array 

It is important for research to discover markers linked to a trait. To achieve this a 
good even coverage of markers spreading all homologues is needed. Hence, it is 
important to genotype plant with different genetic constitutions (genotypes) to 
discover polymorphisms distributed over the entire genome. There are multiple 
kinds of polymorphisms, like Single-nucleotide polymorphism (SNP), Restriction 
Fragment Length Polymorphism (RFLP), microsatellites and so on. What makes SNPs 
the good marker of choice is their abundance in the genome but above all the 
possibility to use these markers in high throughput genotyping. 

The genetic polymorphisms can be linked to certain locations of genes which are 
responsible for the trait of interest. Ideally, genotyping a set of polymorphisms that 
cover all homologues in the genome enables the finding of polymorphisms that are 
linked to a trait. The cost of detecting and genotyping large number of 
polymorphisms is dropping down. Hence it can be more and more well applied to 
the breeding of important plant species, including polyploids. The detection and 
analysis of polymorphisms in polyploids is more complex than in diploids. As an 
outcrossing hexaploid, the chrysanthemum genome has not been fully sequenced. 
The polymorphisms detection method of chrysanthemum is restricted to methods 
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using a reduced representation of the genome, like restriction enzyme based 
selection methods (RADseq, GBS, etc), bait capture and RNA sequencing.  

SNP genotyping is the assessment of the allelic composition of individual genotypes. 
It can be very useful to detect the SNP polymorphisms at certain loci. Further these 
polymorphisms can be used to analyse the relationship with target traits. There are 
several high-throughput genomic technologies that have been put into use for SNP 
genotyping, like Genotyping By Sequencing (GBS), bait capture, Whole Genome 
Sequencing, SNP arrays, etc. 

One of the most important technologies for detecting SNP polymorphisms are SNP 
genotyping arrays, which is a DNA microarray used to detect SNP polymorphisms 
within a population. The SNP arrays are very effective. There are hundreds of 
thousands of probes arrayed on the very small chip of SNP array, which can help to 
interrogate many SNPs at the same time. The SNP arrays are very efficient in 
detecting genome SNP polymorphisms among different members in one species. It 
has been shown that commercial probe-based SNP array platforms can now 
genotype about one million SNPs in an individual in one assay with a very high 
accuracy. 

There are already many successful examples of SNP array applied in polyploids. A 
68K rose SNP array by WagRhSNP Axiom has been developed for rose (Smulders et 
al., 2015). An Illumina Infinium array containing 9,277 SNPs has been developed for 
alfalfa (Li et al., 2014). An Axiom genotyping array with 183k SNP markers is designed 
and applied to chrysanthemum (van Geest, Voorrips, et al., 2017). A 20K SolSTW 
Infinium SNP array has been developed for tetraploid potato (Solanum 
tuberosum)(Vos, Uitdewilligen, Voorrips, Visser, & van Eck, 2015). 

However, SNP arrays also have limitations. Because the SNPs are bi-allelic and the 
set of SNP loci is fixed, therefore other alleles that are not tagged in single SNP 
analyses will be ignored. Chrysanthemum crosses may have up to 12 possible 
different alleles/homeologs contributing to diversity in offspring whereas a SNP is 
mostly bi-alleleic. Also, as in the case of hexaploid chrysanthemum, discovering 
successful SNP markers and designing SNP arrays need laborious work. The large 
range of dosage sores in chrysanthemum complicates the dosage number prediction. 
Besides, there is no reference genome sequence available in chrysanthemum, so the 
SNP detection is based on de novo sequence assembly. This assembly for hexaploidy 
usually contains errors. Also, like tetraploids such as potato (Uitdewilligen et al., 
2013), there is high SNP polymorphism densities in chrysanthemum. The 
neighbouring SNPs can have interference with each other. 

 

1.4 Genetic mapping 

Genetic mapping is also called linkage mapping. It is a method of constructing a map 
which shows the relative positions of genetic loci on chromosomes. The construction 
of genetic map is based on estimating the recombination frequency between alleles 
of loci, which are usually represented by genetic markers. The alleles of the 
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polymorphic loci that are close together on the same chromosome have a higher 
potential occurring together in the genome of offspring than random segregation. 
Recombinant frequency is the ratio that two alleles do not show up together in the 
offspring. The linkage between two polysomic loci can be estimated by calculating 
the recombination frequency. 
 
The steps of constructing a linkage map are similar in diploid and polyploid crops. 
First a mapping population needs to be developed. The goal is to acquire enough 
genetic variation in terms of markers. A mapping population consists of large 
variation of phenotypes will increase the possibility of achieving large genetic 
variations in markers. There are different ways to perform this step. As in the case of 
chrysanthemum that is a strictly outcrossing hexaploid, usually we cross two parents 
that differ for the traits of interest distinctively. The next step is genotyping, which is 
to identify polymorphisms of markers in the mapping population. In the case of 
polyploids, there are multiple homologues for each chromosome. Next, dosage 
calling will be performed in order to find out the marker segregations in the 
offsprings. After that we need to do the linkage analysis of the markers to determine 
the degrees of associated segregation between markers. The construction of a 
linkage map will be done after clustering and ordering the markers. 
 
There is already some progress in the construction of linkage maps in 
chrysanthemum. Zhang et al., (2010) developed a preliminary genetic linkage map of 
chrysanthemum cultivars by using RAPD, ISSR and AFLP markers but the map is 
limited to methods developed to diploids. Two separate genetic maps were 
constructed for each parent cultivar using SRAP markers (Zhang, Chen, Chen, Fang, 
Chen, et al., 2011). Van Geest, Bourke, et al., (2017) for the first time constructed an 
integrated genetic linkage map in a polysomic hexaploid chrysanthemum by using R 
package polymapR, which is of great usage to estimate inheritance of parental 
haplotypes in the offspring and detect multi-allelic QTLs afterwards. 

 

1.5 QTL analysis 

Quantitative trait locus (QTL) analysis is a statistical method that links phenotypic 
data (certain quantitative trait phenotype measurements) and genotypic data 
(usually molecular markers) in a mapping population. Many quantitative traits are 
regulated by more than one gene, these genes may act additively or interact with 
each other to a certain degree. The goal of QTL analysis is to investigate which 
chromosome regions on the genomes are associated with a certain quantitative trait 
and subsequently explain the genetic basis of variation in complex traits.  
QTL analysis has been widely applied into diploids. Some polyploids like potato, rose 
and chrysanthemum are also the common targets for QTL analysis. Until very 
recently, the QTL analysis in hexaploids is quite limited, which still applies the simple 
segregation markers from diploid models but the actual situation is much more 
complex (Chang et al., 2009). This approach with only simplex segregating markers 
can only analyze one allele at a certain locus at a time, however other alleles at the 
same locus could also have effects on the phenotype. Consequently, multi-allelic QTL 
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analysis is needed for the estimation of presence or absence of each possible allele 
at one locus. Hackett, McLean, & Bryan, (2013) designed a method to infer the 
inheritance of each parental allele in each F1 individual for tetraploids. A simpler 
method is proposed to directly estimate the haplotype probabilities based on 
recombinant frequency (P. Bourke, 2014). This method can be applied to hexaploids. 

For ornamental flowers, leaf architecture can have important influences on the 
beauty and can be very important to cultivation. In this thesis the target will be put 
on leaf traits: leaf number, stipule size, width/length ratio and stem length. These 
traits can be assumed quantitative traits because they have large variation among 
different individuals. Compared to flower traits, much less studies were focused on 
chrysanthemum leaf traits. Zhang et al., (2012) applied QTL analysis on three leaf 
traits: leaf length, leaf width and leaf length/width ratio. Another study focused on 
QTL analysis of trait plant height. These studies were based on genetic maps using 
sequence-related amplified polymorphism (SRAP) markers (Zhang, Jiang, Chen, Chen, 
& Fang, 2012). This map is not of high density, with the mean inter-marker distance 
of 6.9 cM. New QTL study is urgently needed to be operated based on a more 
marker-dense linkage map.  

 

1.6 Research overview 

Thanks to the development of DNA-informed technologies like SNP array, polyploids 
breeding can be proceeded much more precise than before. In this research, an 
integrated linkage map of chrysanthemum was constructed by using the genotyping 
data from a 183k SNP array. This map integrates the markers in all homologues of 
the both parents and provides basics for further genetic study like QTL analysis on 
chrysanthemum traits. 
 
Leaf traits are very important traits in chrysanthemum, which have large influences 
on the shape of chrysanthemum. A few studies have been focused on 
chrysanthemum leaf traits but it is needed to be explored more in order to make 
improvements in breeding with the benefits of DNA-informed technology. Following 
the construction of an integrated linkage map, this thesis reached on performing QTL 
analysis for leaf traits in order to provide marker information for breeding 
chrysanthemum leaf traits. After that, candidate genes were provided by aligning 
contig sequences of the significant QTL regions with UniProt database, which 
provides reference information to estimate genes related to leaf trait stem length in 
chrysanthemum. 
 
This research could give an overview of genetic analysis in chrysanthemum and 
provide methodologies of linkage mapping in chrysanthemum. In the long run, it also 
can give hints of genetic analysis in other polyploid species. 

 
 

 



 

 7 

 

 

2. Materials and methods 

2.1 Plant materials 

The plant material used in this case is from Deliflor Chrysanten BV, which is a bi-
parental population consists of 409 individuals representing different genotypes. 
Two individuals were served as parents and they were distinctively different from 
each other in the leaf traits of interest. The other 407 individuals were offspring after 
crossing. Considering the large number of individuals, this population had high 
possibilities of crossovers and was used for constructing integrated linkage map. 
Same individual grew in the same plot with multiple propagated replicates. For QTL 
analysis, 100 individuals and 3 replicates for each individual were randomly selected 
within the population for leaf traits phenotyping. 
 

2.2 183k Affymetrix Axiom SNP array development and SNP 
genotyping 

The method of developing a 183k Affymetrix Axiom SNP array used in this case has 
been explained in detail by Van Geest et al., (2017). The plant sources were chosen 
to be as diverse as possible to get as much genetic variations as possible. In total four 
bi-parental populations with were used as the materials for RNA sequencing. Also, 
three bi-parental populations were used for genotyping later. After the step of RNA 
extraction and RNA sequencing, the transcriptome data were achieved. These 
transcriptomes were assembled and the SNP variants were detected. After running 
the SNP filtering process, finally the array arrives in 183130 SNPs in total from the 
four bi-parental populations, among which 34068 could be tiled from both 
directions. 
 
The mapping population was genotyped by an Affymetrix Axiom array with 183K 
SNPs as described by Van Geest et al., (2017). In order to better distinguish 7 
genotype clusters maximumly in hexaploid, 4 replices were used in each probe of the 
Axiom SNP array instead of 2. The raw signals of the 4 replices of the probe were 
turned into normalized signal intensities per probe. The signal intensities are further 
prepared for dosage calling. 
The genotyping data used in this paper was the same as the data from Van Geest, 
Voorrips, et al., (2017). 
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2.3 Dosage calling and marker quality filtering 

Dosage calling is the step that assigns the marker to dosages from the genotyping 
array data. In this case, dosage calling was processed using R package fitPoly which is 
developed based on R package fitTetra (Voorrips, Gort, & Vosman, 2011).  
 
After applying fitPoly, not all markers were qualified enough for further analysis. 
Markers and individuals were defined less qualified and were screened out by the 
following standards: non-segregating markers, markers with 5% missing values, 
individuals with 10% missing values, skewed markers (using χ2 test with p < 0.01) 
and duplicated markers. Duplicated markers were defined as for which all non-
missing dosage scores were equal (van Geest, Bourke, et al., 2017b). A 
representative marker was created for these duplicated markers and added to the 
marker list. 
 

2.4 Integrated linkage map construction 

The linkage analysis of markers and the construction of linkage maps was performed 
using the R package polymapR. The polymapR package is a combination of a set of R 
functions, it relies on dosage data of molecular markers, which is produced by the 
package fitPoly.  
 
The process of constructing a linkage map mainly consists of four parts: data 
inspection, linkage analysis, linkage group assignment and marker ordering.  
The data inspection is the first step, which starts in reading the dosage-scored SNP 
data. The correct input dosage-scoring data should include a column of marker 
dosage for the mother, one for the father followed by a column for each of the 
offspring of the F1 cross. After that, all the marker dosages were assigned to their 
simplest forms in order to reduce the number of redundant marker segregation 
classe (P. M. Bourke et al., 2016). In this case, bi-parental SNP markers were used for 
genotyping. Hence for each locus 7 possible SNP genotypes can be detected: dosage 
0 to 6. Here dosages x (0 – 6) basically has the same effects as dosage (6 – x), 
however the calculation is easier by using low dosages other than high dosages. For 
example, simplex x nulliplex (S x N), pentaplex x nulliplex (P x N), simplex x hexaplex 
(S x H) and pentaplex x hexaplex (P x H) have the same segregation ratio 1:1 hence 
they all can be assigned to the simplest S x N combination for the convenience of 
calculation. After the marker conversion, 49 marker segregation types were reduced 
to 19 in hexaploids (appendix 1).  
 
The linkage analysis is based on the computation of logarithm of odds (LOD) score 
and of the recombination frequencies. For each combination of two marker types, 
there are multiple possible phases depending on the conformations in each of the 
parents: coupling, repulsion, mixed, coupling-coupling, coupling-repulsion, repulsion-
coupling, repulsion-repulsion, coupling-mixed and repulsion-mixed. Before the 
linkage analysis, the phase between two markers is unknown. For every marker 
combination, recombination frequency (rf) was calculated using Maximum of the 
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Log-Likelihood (MLL). Phase with the lowest rf was selected and determined as the 
phase for this marker combination. 
 
We focused on the homologues and integrated chromosomal groups during the 
linkage group assignment. First simplex x nulliplex (S x N) markers were used to 
perform the linkage group clustering at the LOD score 10. Multiallelic markers were 
used as bridge markers to the pairs of S x N markers in order to identify linkage 
groups (LG). In this case, mainly Duplex x Nulliplex (D x N) and simples x simplex (S x 
S) markers were used to separate out the coupling phase homologue clusters and 
reconnect these into chromosomal clusters. Uni-parental D x N markers acted as 
bridge markers between homologues within each LG. Bi-parental S x S markers 
provided bridging information between two parents. This was the backbone of the 
integrated linkage map. Based on this backbone, all the other marker types were 
assigned in to a LG and phased into a homologue based on linkages with S x N 
markers with LOD score over 5. The marker ordering was performed by using 
MDSMap_from_list function, which is a wrapper function of MDSMap (Preedy & 
Hackett, 2016. MDSMap is a rapid marker ordering approach designed for high 
density linkage maps. Configurations were set as defaults: Haldane’s mapping 
function and LOD2 as weights.  

 
 

2.5 Map quality check 

As it is described before, SNP markers were discovered from the assembly of RNA 
sequencing data. Multiple transcript contigs were sequenced and each SNP marker 
can be traced back to its original location in a transcript contig. For markers on the 
same contig should arrive in the same position in the integrated linkage map 
assuming the contigs were successfully assembled. This provided useful information 
for checking the quality of the integrated linkage map. All the markers were grouped 
according to what contigs they belong. For every LG, standard deviations (SD) of the 
positions of SNP markers on the same contig were calculated, which provided as a 
criterion to measure the difference of the positions of these markers in the 
integrated linkage map. A map with good quality should arrive in very few SDs of the 
marker positions for each contig. 
 

2.6 QTL analysis 

2.6.1 Phenotyping  

The shape of chrysanthemum leaf can be very diverse and can largely influence the 
beauty of the plant. In this study we focused on four specific leaf traits: leaf number, 
stem length, total stipule size and leaf width/length ratio. In total 100 individuals 
with different genotypes were phenotyped.  
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Leaf number is the number of leaves on the main stem. For each individual, 3 
replicates were randomly pulled out for each genotype/plot, the number of main-
stem leaves was counted and the averages were taken.  
 
For stem length, we picked 3 replicates for each individual and measured the length 
from the bottom to top and took the average. 
 
Total stipule size is the summed-up area of the stipules at the 3rd node of 
chrysanthemum. We take out all stipules of 3 individuals at the 3rd node, scanned it 
by Canon CanoScan LiDE 220 scanner and calculated the total area using ImageJ. In 
each node there are three leaves, they grow against each other in 120 degrees. For 
each leaf there are two stipules growing at the bottom, at each side of the leaf. So 
usually we can get 6 stipules in one individual at the 3rd node and overall, 18 stipules 
for 3 individuals. But that’s not all the cases. In some genotypes few or none stipule 
can be found. Also, there is a possibility that the stipules fall off from the plant 
during the phenotyping. This is a biological trait and biologists might be more 
interested about it. Breeders want to remove the stipules because they make 
chrysanthemum look furry and not beautiful to most of the people.  
 
Leaf width/length ratio, as its name, is defined by the ratio of width divided by 
length of the chrysanthemum leaf. It indicates the leaf shape (Fig. 2). We took out 1 
leaf at the 6th node for each plant, scanned them and calculated the parameter 
width/length through ImageJ for 3 plants for each genotype and took the average. 
For convenience, we put all the 3 main stem leaves and 18 stipules of 3 individuals in 
each plot together and scanned them on the same image (Fig. 3). 
 
 

 
Figure 2. Different shapes of chrysanthemum leaves 
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Figure 3. Example of scanning 

 

2.6.2 Correlations between the traits 

In the next step correlations between any of the four target leaf traits were 
checked. Although we couldn’t imagine any links from the surface, for example, 
leaf number looks totally unrelated to total stipule size, however, there might be 
some genetic links of their loci regions. The correlation of determinations 
between any of the two target traits were calculated. The outcome could be very 
informative: If the correlation of determinations between two traits is high, then 
we can assume that there is a high possibility that the QTL regions of these two 
traits can be overlapped for some degrees. 

 

2.6.3 Marker dosage model 

Marker dosage model is also called linear model. It is established in order to seek 
potential relationship between the dosages of markers and the phenotypical 
values of target traits: 
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Where: 
𝑦 represents the phenotipic value for one sample plant 
𝑚 reprensents the marker dosage number of marker 𝑀 in different   
sample plants 
𝛼 represents the interval 
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𝛽 represents the slope 
𝜀 represents the error     
 
For every marker, an Analysis of Variance (ANOVA) was performed. 
We expect to get a slope value, its p-value and R-square value for 
every trait. The p-value indicates how well the marker dosage goes 
with the phenotypic value. 20 most important markers were picked 
up with the 20 most p-values. These markers have relatively high 
possibility to be involved in the QTL region for a target trait. R-square 
describes how much the phenotypic variation could be explained by 
the model. 

 

2.6.4 Genotype probability model 

Genotype probability model is also called IBD model. We first calculated the IBD 
probabilities to estimate parental haplotypes in the offspring (P. Bourke, 2014). 
By doing this we created a three-dimensional array for each linkage group with 
three parameters: marker, offspring individuals and homologue. We picked up 
the fully informative dosage scores to fill the array. Then, we used inter-marker 
distance to estimate the IBD probabilities of adjacent markers: 

If 𝑃𝑗 = 1 , 𝑃𝑖 = 𝑃𝑗 − 𝑟𝑖𝑗 

If 𝑃𝑖 = 0 , 𝑃𝑖 = 𝑃𝑗 + 𝑟𝑖𝑗 

Where: 
𝑖 and 𝑗 represent the two markers 
𝑃 represents the IBD probability 
𝑟 represents the recombination frequency 
 
QTL analysis was performed on mean phenotypic value using an IBD probability 
model by P. Bourke (2014) for tetraploid level. This model is modified by van 
Geest, Bourke, et al., (2017) in this case for hexaploid chrysanthemum: 
 

𝑌 = 𝜇 + 𝛼2𝑋2 + 𝛼3𝑋3 + 𝛼4𝑋4 + 𝛼5𝑋5 + 𝛼6𝑋6 + 𝛼8𝑋8 + 𝛼9𝑋9 + 𝛼10𝑋10
+ 𝛼11𝑋11 + 𝛼12𝑋12 

 
Where: 𝛼𝑖 and 𝑋𝑖 represent the main effects and indicator variables for allele 𝑖. 
The parameters of homologues 1 and 7 are set as references.  

 

2.6.5 Model combination and improvement 

The marker dosage model and genotype probability model were combined in this 
case to seek candidate markers associated with leaf traits. For every trait, 20 
most significant markers in the Marker dosage model were selected out 
according to the p-value. For genotype probability model, 10 most significant 
markers in the detected QTL regions were selected. Markers showed significance 
in both of the two models were checked as candidate markers. For each detected 
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QTL region, homologue analysis was performed to check the correspondence 
with the dosage constitutions of the candidate markers.  

 
 

2.7 Candidate genes 

Multiple genes could be involved in affecting chrysanthemum leaf traits. These genes 
could be directly regulating or indirectly influencing these traits by other regulating 
processes. What we can do is to investigate a list of genes affecting the 
chrysanthemum leaf traits by other plants and see whether they are in 
chrysanthemum genome. By combining the results from the significant QTL regions 
in the previous chapter, it is more convenient and precise to see what’s popping up 
in the QTL regions. There could be of higher possibility to find related genes in such 
regions. We aligned the sequences of the contigs from the significant regions against 
the Uniprot swissprot annotated database. The result indicated a list of candidate 
genes and was filtered with the bit-score over 100. The identifiers of these genes 
were extracted and retrieved for the gene function. The GO biological process terms 
were filtered by functions which have potentials to affect the leaf traits. A final list of 
candidate genes gives reference information on estimating genes affecting 
chrysanthemum leaf traits. 

2.8 Software  

To increase the efficiency of performing genetic analysis in polyploids, computer 
methods were used. Various software has been developed to convert the signal from 
e.g. SNP arrays into discrete dosage scores for polyploids, such as fitPoly, fitTetra 
(Voorrips et al., 2011), SuperMASSA (Serang, Mollinari, & Garcia, 2012) or ClusterCall 
(Schmitz Carley et al., 2017). In this case we use fitPoly because this R package can 
be used for polyploids with higher ploidy levels (6) compared to others. 
 
For linkage map construction R package polymapR is applied. polymapR is an R 
package for constructing linkage maps for polysomic tetraploids and hexaploids. It 
consists of 4 parts, data inspection, linkage analysis, linkage group assignment and 
marker ordering. The input data of polymapR is dosage-scored SNP marker data, 
which can be generated in fitpoly.  
 
Software ImageJ is used to analyse the scanning pictures and get the phenotypic 
value of the target traits. The custom R-scripts are used for QTL analysis. 
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3. Results 

3.1 Dosage calling of SNP genotyping data 

According to the data from van Geest et al., (2017), 67870 SNPs were successfully 
called from fitPoly in total from the ratio of signal intensities of the genotyping array. 
These SNPs were the starting point and were imported to polymapR for constructing 
linkage map. 
 

3.2 Linkage map 

3.2.1 Construction of integrated linkage map 

After converting markers to their simplest form, 48022 markers were generated out 
of 67870 in total. They arrived in 19 marker types (Figure 4): 
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Figure 4. Marker segregation summary after converting markers to their simplest 

form 

 
Not all these 48022 markers and 417 individuals were good enough to be used for 
the linkage mapping, hence we progressed the data inspection and selection. The 
selection steps were operated for markers and individuals separately. For 
individuals, 6 individuals were screened out for 10% missing values. 1 individuals 
were screened out for duplicated individuals with cut-off 90%. In the end there were 
402 genotypes (400 F1 progenies and 2 parents) left. For markers, after removal of 
markers with 5% missing values, non-segregating markers, 30532 markers remained 
in the dataset. 9187 markers were screened out for duplicated markers. They were 
reduced to a unique representative marker for linkage determination. The rest 
duplicated markers were added to the integrated linkage map after construction. 
21345 non-duplicated markers were prepared for linkage analysis.  
 
Simplex x Nulliplex and Nulliplex x Simplex markers were used to identify and cluster 
the homologues. 54 homologues have been identified for Parent 1 and 53 for Parent 
2. Simplex x Simplex markers were used to identify the linkage groups (LGs). As a 
result, 9 linkage groups have been identified for both parents. All the other markers 
were assigned to the LGs afterwards. The different marker types were assigned for 
each parent separately and combined to an integrated linkage map at the last step. 
The duplicated markers were removed from the map temporally and assigned to the 
map with the unique representing markers after map ordering.  
 
The ordering of the markers was based on calculating pairwise recombination 
frequency, weighed by LOD2. After calculating the recombination frequencies 
between these assigned markers in the map with Simplex x Nulliplex markers, In 
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total 30014 markers were able to be assigned and phased to their expected 
homologue(s) weighed by at least five significant coupling linkages at LOD 5. The 
integrated linkage map consists of 9 linkage groups whose lengths are ranging from 
64.36 cM to 97.52 cM. Table 1 indicated the summary data of the integrated map. 
 

Table 1. Summary of integrated linkage map 

 

Linkage 
group 

Length(cM) Phased marker 
number 

Contig number 

1 82.36 2516 1259 

2 74.88 3080 1161 

3 64.36 2772 1054 

4 85.02 3197 1265 

5 90.20 3398 981 

6 91.68 3521 1263 

7 81.62 3422 1139 

8 88.10 3479 1206 

9 97.52 3051 1316 

Sum 755.74 30014 10644 
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Figure 5. Integrated linkage map based on all marker types 

 
 
Fig 5. shows the picture of integrated map based on all marker types. As indicated in 
the legend, the colors bands inside the chromosomes represent different marker 
types.  

 
 

3.2.2 Linkage map quality check 

According to the construction of the Affymetrix SNP array, the markers originated 
from the same transcript contig from the RNA-seq assembly should arrive in almost 
the position in the linkage map. We calculated the standard deviation(sd) of the 
positions of the markers from the same contig and took the average of these marker 
positions in the same contig for each LG. For contigs only containing 1 assigned 
marker in the map, the sd was set as 0. The result is shown in Fig 6. 
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Figure 6. Standard deviations of contig positions for each Linkage Group 

 
 

 
The X-axis stands for the mean position of markers from the same contig, the 
Y-axis stands for the standard deviation of the marker positions from the 
same contig. As we can see from the table, the linkage map is of good quality. 
Most of the standard deviations of contig positions in each Linkage groups 
are controlled well below 10, which indicates that the markers from the same 
contigs were mapped close together. However, there are 4 sd peaks on LG2, 
4 and 6,  which indicates markers were diversely spreading of these four 
contigs in the linkage map. For the markers belonging to this four contig 
groups, they are all SxN or NxS markers tagging homologues 1 and 12. It is 
inferred that the extreme dosage distribution hindered these markers 
mapped in same position on the integrated map. 
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3.3 QTL analysis on four leaf traits 

3.3.1 Phenotyping 

The QTL analysis was performed for four leaf traits in chrysanthemum: leaf 
number, stem length, stipule size and leaf width/length ratio. In total there were 
100 individuals been phenotyped. The histograms of phenotyping data on the 
four leaf traits are shown in Fig. 7 - 10. As we can see from the figure, the 
phenotypic values of traits Leaf number, Stem length and Width/length ratio 
have the shape of normal distribution, which indicates the phenotyping data is of 
good quality. For trait Total stipule size, the phenotyping data is left-biased. 

  

Figure 7. Distribution of leaf number trait value 

 

 

 

Figure 8. Distribution of stem length trait value 
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Figure 9. Distribution of total stipule size trait value 

 

 

 

Figure 10. Distribution of width/length ratio trait value 
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3.3.2 Analysis of correlations between every two leaf traits 

 
Figure 11. R-square values among the leaf traits 

 
 

Fig.11 shows the correlation of determination (R2) between every two traits and 
their p-values. In total there are six trait combinations of traits, neither of them 
shows a very strong correlation. The strongest correlation is between trait leaf 
number and total stipule size, which is 0.1348, which indicates 13.48% varience 
of trait leaf number could be explained by trait total stipule size. The distribution 
of leaf number with Total stipule size phenotypic value is shown in Figure 13.  
 
It suggests that the QTL regions of trait leaf number may be partly overlapped 
with trait total stipule size. What have to be stressed is that correlation of 
determination does not logically infer whether one variable moves in response to 
another. It only gives a possible explanation and indicates no strict dependent 
relationship between trait leaf number and total stipule size (Mukaka, 2012). 

 

 
Figure 12. Distribution of phenotypic value: leaf number with Total stipule size. 
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3.3.3 Linear model of each marker with four leaf traits 

A linear model was established for each marker in order to seek potential 
relationship between marker dosages and the target traits. For each leaf trait, we 
extracted the most significant 20 markers with highest p-value which are related 
to it. These markers have high possibilities to be involved in the QTL region for a 
target trait. The results are shown in Appendix 2. 

 

3.3.4 QTL detection 

Fig 13 - 16. shows the QTL plots on four leaf traits. Two models were combined 
together: the IBD model (indicated by blue line) and marker dosage model 
(indicated by grey dots). The thresholds are indicated by the dashed lines, the 
colors are coordinated with the color of the model. For setting QTL thresholds, 
100 permutation tests were performed with ramdom phenotypic values. 

 

 

 

Figure 13. QTL analysis on four leaf traits: leaf width/length ratio. 
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Figure 14. QTL analysis on stem length. 

 

 
Figure 15. QTL analysis on total stipule size 
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Figure 16. QTL analysis on leaf number. 

 
For each trait, from left to right and from up to down lie LG 1 to 9 respectively. Two 
models are indicated with blue lines (IBD model) and grey dots (marker dosage 
model). Significant thresholds are indicated with blue dashed lines (IBD model) and 
grey dashed lines (marker dosage model). 

As we can see from the plot, most of the LG regions are under the thresholds and are 
not significantly associated with the traits. For trait leaf width/length ratio and leaf 
number, clearly there is no QTL region has been found. In stipule size, on LG9 there 
seems to be a minor QTL region at position 65cM. However, the p-value 
(0.0002501646) is slightly below the threshold (0.0002233167). 

For the trait stem length, two QTL regions were found: LG4 at location 35 cM and 
LG7 at location 65cM (with p-value 0.0002849656 and 0.0004309191), 29.82% and 
22.59% phenotypic variation could be explained by these two QTL regions 
respectively. On LG7, homologue 4 and 8 were proved to have positive effects on 
stem length and homologue 5 has a negative effect. On LG4 homologue 1 and 9 
denote positive effects and homologue 3 denotes a negative effect. 

 

Table 2. Summer statistics of different QTL 

 

LG QTL peak position 
(cM) 

p-value p-value 
threshold 

adjusted 
R2 

associated 
homologues* 

Width length ratio  

 None  0.0002593
693 

  

Stem length  
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4 65 0.00043
09191 

0.0007521
758 

0.29817
27 

1+, 3-, 9+ 

7 35 0.00028
49656 

0.0007521
758 

0.22589
29 

4+, 5-, 8- 

Stipule size  

*9 65 0.00025
01646 

0.0002233
167 

0.22879
08 

 

Leaf number  

 None  0.0005887
219 

  

  

*Homologues presenting a significant impact on phenotypes (p<0.01), “+” 
indicates a positive effect and “-“ indicates a negative effect 

 

 

Figure 17. Analysis per homologue for Stem length QTL on LG4. 
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Figure 18. Analysis per homologue for Stem length QTL on LG7. 

 

 

Figure 17 and 18 indicate the analysis per homologue for stem length on LG4 and 
LG7. The colours represent the range of the p values, which indicate the significance 
of explained variance of IBD probabilities of each homologue for trait stem length 
phenotypic values. The more yellow, the more significant, the more red, the less. 
Here we define  homologue regions with -log10(p-value)>2 as significant. The black 
dotted lines represent the estimated effect of alleles on the phenotype. The 
horizontal grey dotted lines indicate zero effects of alleles on phenotype. The 
situation that black line is above the grey line indicates positive effect of the allele, 
vice vera. The black boxes of each homologue show the range of the positive and 
negative effect.  

 

3.3.5 Candidate markers: markers significant in both models 

On LG4 and LG7, the most significant 10 markers with peak p-values from 
genotype probability model were indicated in Table 3 and Table 4. 

 

Table 3. Markers with peak p-values on LG4 of stem length. 

Markers Position Pvals Dosage 

Cm54107_c0g1i1_454_Rnn 69.20389 0.0001081555 1x1 
Cm39099_c0g2i3_409_Rnn 78.99168 0.0006423178 1x1 
Cm11646_c0g3i1_277_Sn   69.78912 0.0008356710 2x0 
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Cm63043_c1g2i1_1075_Sn 79.16417 0.0011702272 1x1 
Cm33966_c0g1i1_588_Pn   70.00404 0.0014190796 0x2 
Cm40117_c2g1i1_1153_Qn 64.20679 0.0016191883   2x0 
Cm14389_c0g1i1_427_Sn   79.54923 0.0016544507 1x1 
Cm29986_c0g1i2_412_Sn   64.63341 0.0018432918   0x1 
Cm34599_c0g2i1_591_Sn   64.60879 0.0021758025   0x1 
Cm36834_c0g1i1_713_Rnn 68.40221 0.0023465271   2x0 

 

Table 4. Markers with peak p-values on LG7 of stem length. 

Markers Position Pvals Dosage 

Cm38566_c0g1i1_1004_Rnn 36.56636 5.453746e-05 2x1 
Cm42710_c0g3i1_348_Sn 57.08772 9.168232e-05 1x0 
Cm41731_c0g1i1_1546_Sn 56.95815 9.198393e-05 1x0 
Cm41924_c0g1i1_534_Sn 54.88245 1.239819e-04 1x0 
Cm58550_c1g1i4_425_Sn 57.38526 1.401005e-04 1x0 
Cm30161_c0g1i1_236_Rnn 57.53419 1.493650e-04 1x0 
Cm54019_c0g1i1_1098_Rnn 56.29650 1.588180e-04 1x0 
Cm62939_c0g1i1_948_Sn 55.83534 1.588180e-04 1x0 
Cm54019_c0g1i1_99_Sn 56.29378 1.588180e-04 1x0 
Cm54019_c0g1i1_283_Sn 56.29650 1.588180e-04 1x0- 

 
Previous study shows the top 20 markers whose dosages have significant 
influence on stem length according to the linear model (Appendix 2.). After 
integrated linkage map construction, some markers were not shown in the map.  
For top 20 significant markers for stem length in linear model, in total there were 
10 markers remained in the linkage map, their positions are shown in table 5. 
The other 10 markers were wiped out because of containing more than 10% 
missing values during the linkage map construction. 

 

Table 5. Positions of significant markers of linear model remained in the linkage 
map for trait stem length. 

Marker name LG Position(cM) 

Cm54107_c0g1i1_454_Rnn 4 69.20389 
Cm4088_c0g1i3_841_Sn 7 44.72649 
Cm36765_c0g1i2_1378_Sn 7 36.26472 
Cm38566_c0g1i1_1004_Rnn 7 36.56636 
Cm42659_c0g4i1_1038_Sn 7 44.65858 
Cm5596_c0g4i1_1231_Sn 7 44.48929 
Cm10191_c0g4i1_174_Sn 7 44.9161 
Cm19355_c2g11i1_300_Sn 7 43.25204 
Cm19355_c2g11i2_218_Sn 7 43.46249 
Cm5596_c0g4i1_1338_Sn 7 44.17874 
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So far two lists of significant markers for trait stem length were generated from 
linear model and genotype probability model (Table 5. and Table 3&4). Markers 
occuring on both of these two lists could be considered of high chance associating 
with the detected QTL regions of trait stem length. After comparing the two lists, 
marker “Cm38566_c0g1i1_1004_Rnn” and “Cm54107_c0g1i1_454_Rnn” show 
significance in both of the two models, their phased dosage constitutions are shown 
in Table 6. 

Table 6. The dosage constitutions of promising marker. 

 

  

Marker “Cm38566_c0g1i1_1004_Rnn” is a Duplex x Simplex marker tagging 
homologues 5, 6 and 8. It locates on LG7 at the position 36.57cM on the linkage 
map. At this position, homologues 6 shows little contributions for the phenotypic 
values (red), homologue 5 doesn’t show strong effect on phenotype (orange) and 
homologue 8 indicates strong significance (yellow) with negative effect. 
Consequently, the alleles tagged by this marker do not all affect the phenotype 
significantly. This marker should not be considered useful associating with the QTL 
regions of stem length. 

Marker “Cm54107_c0g1i1_454_Rnn” is a Simplex x Simples marker tagging 
homologues 1 an 9 and locates on LG4, 69.20 cM. At this position, homologue 1 and 
9 all indicate significant influence on the phenotype (yellow and white). In 
conclusion, marker “Cm54107_c0g1i1_454_Rnn” is of high probabilities for linking 
the QTL of stem length, hence it may be used to track this quantitative trait.  

The boxplot of marker “Cm54107_c0g1i1_454_Rnn” with the phenotypic value in 
marker dosage model is shown in Fig,19. It explains 14.31% phenotypic variation. 

 

Figure 19. The boxplot of the phenotypical value of stem length with the dosage of 
marker “Cm54107_c0g1i1_454_Rnn” 

 

Marker LG Position(cM) Marker 
type 

h
1 

h
2 

h
3 

h
4 

h
5 

h
6 

h
7 

h
8 

h
9 

h
1
0 

h
1
1 

h
1
2 

Cm54107_c0g1i1_454_Rnn 4 69.20389 S x S 1        1    
Cm38566_c0g1i1_1004_Rnn 7 36.56636 D x S     1 1  1     
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3.3.6 Candidate markers: other markers 

By combining the significant marker lists of linear model and genotype probability 
model we successfully acquired two markers occurring in both lists and one of them 
was proved to be significantly associated with trait stem length. Compared to these 
two markers, the rest markers on the significant marker lists of the two models could 
also be possible to associate with the trait. These markers were divided in three 
parts: 18 markers in genotype probability model, 8 markers in marker dosage model 
remained in the linkage map and 10 markers in marker dosage model missing in the 
linkage map. 
 
For the rest 18 markers in the significant marker lists of genotype probability model 
apart from marker “Cm38566_c0g1i1_1004_Rnn” and “Cm54107_c0g1i1_454_Rnn”, 
9 markers are on LG4 and 9 on LG7. Their phased dosage constitutions were 
examined and compared to the per homologue analysis on LG4 and LG7 (Fig. 16 & 
17). The result indicates that 6 markers on LG4 and all 9 markers on LG7 are tagging 
QTL regions for trait stem length. The results are shown in Table 7 and 8. 

Table 7. Candidate markers of genotype probability model on LG4 of stem length. 

Markers Position Dosage Tagging homologues R-square 

Cm39099_c0g2i3_409_Rnn 78.99168 1x1 1,9 0.1135 
Cm63043_c1g2i1_1075_Sn 79.16417 1x1 1,9 0.1065 
Cm14389_c0g1i1_427_Sn 79.54923 1x1 1,9 0.09918 
Cm29986_c0g1i2_412_Sn 64.63341 0x1 9 0.07949 
Cm34599_c0g2i1_591_Sn 64.60879 0x1 9 0.07607 

Cm36834_c0g1i1_713_Rnn 68.40221 2x0 1,2 0.1054 

 

Table 8. Candidate markers of genotype probability model on LG7 of stem length. 

Markers Position Dosage Tagging homologues R-square 

Cm42710_c0g3i1_348_Sn 57.08772 1x0 5 0.1273 
Cm41731_c0g1i1_1546_Sn 56.95815 1x0 5 0.1345 
Cm41924_c0g1i1_534_Sn 54.88245 1x0 5 0.1245 
Cm58550_c1g1i4_425_Sn 57.38526 1x0 5 0.1234 

Cm30161_c0g1i1_236_Rnn 57.53419 1x0 5 0.1208 
Cm54019_c0g1i1_1098_Rnn 56.29650 1x0 5 0.1187 

Cm62939_c0g1i1_948_Sn 55.83534 1x0 5 0.1187 
Cm54019_c0g1i1_99_Sn 56.29378 1x0 5 0.1187 

Cm54019_c0g1i1_283_Sn 56.29650 1x0 5 0.1187 

 
For the significant markers marker dosage model which are remained in the linkage 
map, 6 out of 8 markers were proved to be associated with the QTL regions, the 
result is indicated in Table 9. 
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Table 9. Candidate markers of marker dosage model remained in the linkage map 
for trait stem length. 

Marker name LG Position(cM) Tagging homologues R-square 

Cm42659_c0g4i1_1038_Sn 7 44.65858 8 0.1404 
Cm5596_c0g4i1_1231_Sn 7 44.48929 8 0.1404 
Cm10191_c0g4i1_174_Sn 7 44.9161 8 0.1404 

Cm19355_c2g11i1_300_Sn 7 43.25204 8 0.1404 
Cm19355_c2g11i2_218_Sn 7 43.46249 8 0.1404 
Cm5596_c0g4i1_1338_Sn 7 44.17874 8 0.1385 

 
 
For the 10 significant markers of the marker dosage model, they are missing in the 
linkage map. We need to reconstruct the linkage maps by adding these 10 markers 
manually after the screening process. 
 
However, there are 6 markers that still cannot be arranged into the linkage map. 
Four of them have high dosages which couldn’t be converted to their simplest form. 
One possessed too many missing values and it was screened out by linkage function 
at the threshold 3 (LOD>3) in polymapR. Besides, one marker is in the final maplist 
but it cannot be generated into the phased maplist because polymapR cannot 
distinguish significant homologues it may locate on. 
 
Consequently, we focus on the remaining 4 markers. After performing QTL analysis, 
we compared the dosage constitutions of these markers with the analysis per 
homologue on LG7. The result indicates that none of these four markers coordinate 
with the regions on the homologues which significantly linked to the stem length 
trait. 
 
By comparing the R-square of these candidate markers occurring in only one of the 
two models with the significant marker (‘Cm54107_c0g1i1_454_Rnn’) occurring in 
both models, we can see that the marker ‘Cm54107_c0g1i1_454_Rnn’ is able to 
explain the most phenotypic variations (14.31%). Consequently, it suggests that by 
using one model we could arrive in significant markers, however only by combining 
the two models together we could find the most significant one. 
 

3.3.7 A possible solution on marker dosage model improvement: 
combined-marker analysis 

The linear model has a feature: a marker can only be detected significant if they’re 
tagging the homologues with the same directions of effect. For markers tagging 
homologues with opposite directions, although they are tagging significant regions 
of homologues, would still be regarded as not significant. In other words, we only 
associate the dosage information with the phenotypic value, the phased 
homologue consititution is not been considered. This could lower the explained 
variation on phenotype.  
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One possible modification would be combining two markers whose dosage are 
spreading on specific homologues. By applying linear model to the combined 
dosage information of two markers with phenotypes, explanation of phenotype by 
genotype could be possibly promoted. 
 
In this study, it was more convenient to focus on LG7 than LG4 because the 
detected QTL regions are spreading less complicatedly. In LG7, from 30 cM to 50 
cM three homologues were proved to have QTL regions located: homologue 4, 5 
and 8. Among them homologue 4 has positive effect, homologue 5 and 8 have 
negative effects. In the previous study we have investigated that marker 
“Cm38566_c0g1i1_1004_Rnn” is tagging homologues 5, 6 and 8. We also picked 
out the most significant markers in the linear model which are tagging homologue 
4. The information of these three markers was listed in Table 10. 

 
 
 

Table 10. Information of three markers to be combined 

 

 
 
Here we could arrive in two marker combinations:  1) “Cm38566_c0g1i1_1004_Rnn” 
and “Cm13465_c0g2i3_318_Sn” and 2) “Cm38566_c0g1i1_1004_Rnn” and 
“Cm17795_c0g1i1_253_Sn”. For both of the two combination, there are 4 (0,1,2,3) x 
4 (0,1,2,3) = 16 possible dosage combinations. We reran the linear model by 
associating the combined dosages of these two marker combinations with the 
phenotypic value of trait stem length. The boxplots of the phenotypic value of stem 
length with the combined dosages of the two marker combinations are shown as Fig. 
20 and 21.  

Marker name Marker type Tagging homologues Position 

Cm38566_c0g1i1_1004_Rnn D x S h5 (-), h6, h8 (-) LG7 36.57 cM 

Cm17795_c0g1i1_253_Sn S x D h4 (+), h7, h10 LG7 61.28 cM 

Cm13465_c0g2i3_318_Sn S x D h4 (+), h10, h11 LG7 61.59 cM 
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Figure 20.  The boxplot of the phenotypical value of stem length with the dosage of 
combined marker “Cm38566_c0g1i1_1004_Rnn” and “Cm13465_c0g2i3_318_Sn”. 

 

Figure 21. The boxplot of the phenotypical value of stem length with the dosage of 
combined marker “Cm38566_c0g1i1_1004_Rnn” and “Cm17795_c0g1i1_253_Sn”. 

The R-square value of each model shown in Table 11. The result indicates that the 
linear model based on combined marker dosage has the potential to explain the 
phenotypic variation better than the linear model based on single marker dosage 
(0.1271 > 0.1247). However, genotype probability model still excels the linear model 
with the R-square 0.2982 (LG4 65cM) and 0.2259 (LG7 35cM). 
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Table 11. R-square of each model 

Model R-square 

Linear model: marker “Cm38566_c0g1i1_1004_Rnn” 0.1247 

Modified linear model: 
Combined marker “Cm38566_c0g1i1_1004_Rnn” and 
“Cm13465_c0g2i3_318_Sn” 

0.1272 

Modified linear model: 
Combination: “Cm38566_c0g1i1_1004_Rnn” and 

“Cm17795_c0g1i1_253_Sn” 
 

0.007619 

genotype probability model 0.2981727 (LG4 65cM) 

0.2258929 (LG7 35cM) 

 

 

3.3.8 Investigation of prospect genes related to chrysanthemum 
stem length 

In order to further investigate the prospective genes on the two QTL regions of trait 
stem length, a list of 321 contigs were picked out from these two regions out of the 
linkage map, representing markers locating on the significant QTL regions of trait 
stem length. Of them 194 contigs are located on LG4 and 127 are on LG7. These 
contigs have been aligned against the Uniprot swissprot annotated database. The 
results indicate 46946 aligned genes. Two parameters were considered for the 
alignment quality: E-value and bit-score.  E-value is the expected number of local 
alignments with a given score that would be found in random sequences of the same 
length as the query and database. It reflects how likely a given alignment is due to an 
evolutionary relationship rather than chance similarity. The maximum E-value of the 
blast results is 1.000e-05, which can be regarded as significant still. The bit-score is 
the required size of a sequence database in which the current match could be found 
just by chance. The higher the bit-score, the better the sequence similarity. The 
aligned genes were filtered by bit-score cut-off 100. In total there were 21231 genes 
remained. Their identifiers were extracted and retrieved for the gene function. These 
identifiers were successfully mapped to 9501 UniProtKB IDs. Gibberellins are plant 
hormones that can promote the plant growth (Hedden & Sponsel, 2015).  The GO 
biological process terms were filtered by ‘gibberellin metabolic process’ under 
‘Biological process’. The final candidate genes are shown in Appendix 3.  

These genes can give very informative hints for genetic deduction on genes 
responsible for stem length on chrysanthemum. Before the realization of 
chrysanthemum sequenced genome, this can be very helpful to narrow down 
searching scope for genes responsible for stem length. Further, genes which are 
responsible for other quantitative traits can also be applied with this methodology. 
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4. Discussion 

4.1 linkage map of chrysanthemum 

With the development of DNA informed breeding, genetic analysis in 
polyploids has been achieving progress. In this study, an integrated linkage 
map was developed for chrysanthemum with the help of genotyping data 
from a 183k SNP array. Previously, three linkage maps have been published 
(Zhang et al., 2010; Zhang, Chen, Chen, Fang, Chen, et al., 2011; van Geest, 
Bourke, et al., 2017). A preliminary genetic linkage map was constructed by 
using dominant marker RAPD, ISSR and AFLP (Zhang et al., 2010). Two 
linkage maps for the two parents were established separately covered by 
210 and 190 markers each. 64 intercross markers shared by two parental 
maps were used to construct the integrated map. In another study, two 
separate genetic linkage maps for chrysanthemum cultivars ‘Yuhualuoying’ 
and ‘Aoyunhanxiao’ were constructed with the same method, however 
based on using SRAP markers. For these two separate linkage maps, in total 
500 SRAP markers were used covering 1900 cM in both maps. One map 
consists of 57 linkage groups and the mean inter-marker distance is 6.9 cM. 
The other map has 55 linkage groups with a inter-marker distance 6.6 cM. 
Compared to the preliminary map based on RAPD, ISSR, and AFLP markers 
and the two separate linkage maps using SRAP markers, our integrated map 
has the following advantages: 1) More condensed. With 30014 markers 
successfully saturated in 9 linkage groups and 54 homologues, our map 
arrives into an ultra-dense integrated linkage map. The preliminary linkage 
map only possesses 336 markers in total and is much less condensed. 
Integrated map with higher density will no doubt be beneficial to the further 
genetic studies. 2) Better choice of marker type. In this two studies, RAPD, 
ISSR, AFLP and SRAP markers were used. Compared to SNP marker, these 
markers are difficult to transfer and integrating different linkage maps is very 
difficult (van Geest, Bourke, et al., 2017a). SNP marker is abundantly 
saturated in the genome and it can be flawlessly applied in high throughput 
genotyping. 3) Providing better basis for QTL analysis. An integrated linkage 
map with high density would promote the accuracy of calculating the 
genotype probabilities and is therefore more precise at estimating the 
significant QTL region. 
 
Van Geest, Bourke, et al., (2017a) constructed the first ultra-dense 
integrated linkage map for chrysanthemum. It arrived in 30312 markers 
saturated in 9 linkage groups with total length 752.1 cM. The SNP 
genotyping data used in this study is the same as the first ultra-dense 
integrated linkage map. This study arrived in an integrated linkage map with 
30014 markers and total length 755.74 cM, which is almost the same to this 
map. 
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4.2 Chrysanthemum leaf traits and QTL analysis 

For chrysanthemum, the success of the plant is mainly determined by its 
abundant diversity of flower types, colors and plant architectures (Zhang et 
al. 2010). Leaf traits are very important parts of the plant architecture. Not 
only the shape of the leaves can largely affect the beauty of chrysanthemum, 
but also the leaf architecture strongly affects suitability of a plant for 
cultivation (F. Zhang, J. Jiang, S. Chen, 2012). However, most studies were 
focused on flower traits and other traits that affect plant architecture 
like plant width, the ratio of plant height to plant width, internode length 
(Zhang, et al., 2010), initial blooming time, the duration of flowering (Zhang, 
Chen, Chen, Fang, Deng, et al., 2011), flower neck length (Zhang et al., 2012), 
flowering time (Zhang et al., 2013) and so on. Compared to these studies, less 
researches have been focused on chrysanthemum leaf traits. F. Zhang et al., 
(2010) performed single-locus and epistatic QTL analysis on plant height. 
Same measurement method was taken for plant height as stem length in this 
study, so we could describe them as the same trait. According to the single-
locus QTL analysis, two QTLs were detected explaining 6% and 13.2% 
phenotypic variation. In the epistatic QTL analysis, 3 pairs of digenic epistatic 
QTLs were found, explaining phenotypic variation from 3.5% to 11.8%. In 
comparison, the phenotypic variation explained by the two QTL regions 
detected in this case are 22.59% and 29.82%. However, this study was based 
on the linkage map based on SRAP markers (Zhang, Chen, Chen, Fang, Chen, 
et al., 2011), in which the constitution of the map and the nomination of the 
linkage group and markers are completely different from the integrated 
linkage in this case. Hence the comparisons of detected QTL regions for trait 
plant height/stem length in these two studies needs more investigations. 
Another study focused on QTL analysis with chrysanthemum leaf traits leaf 
length, leaf width and the ratio leaf width to length, in which the last trait is 
also investigated in this study. Two QTL regions were found accounted for 
8.8%, 11.1% and 6.3%, 12.0% of the phenotypical variation of year 2008 and 
2009, a major gene was estimated to be responsible for this trait. Considering 
in this study no significant QTL region was detected for trait leaf width/length 
ratio, the reasons could be as follows: 1). Insufficient phenotyping data. In 
this previous study, in total 142 F1 hybrids and 2 parental lines were 
phenotyped and 3 replicate plants were applied in each F1 hybrid, 5 replicate 
plants were applied for the two parental lines. Comparing to that, this study 
phenotyped 98 F1 hybrids and 2 parental lines with three replicate plants in 
each hybrid/parental line. To achieve more accurate result of QTL detection, 
more phenotyping data is suggested. 2). The differences between using 
dominant markers and co-dominant markers. The detected QTL regions were 
based on genetic map using SRAP markers, which are dominant. Given the 
fact that alleles with the same sequences in a locus would be visualized once, 
the results from SRAP marker-based genotyping would neglect different 
dosage constitution scenarios in polyploids. It has been illustrated that 
chrysanthemum is a hexaploidy with 6 alleles and 0 – 6 dosages could be 
found for each locus, different dosage would have impact on the phenotypes 
as well. It was more accurate to use co-dominant marker like SNP than 
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dominant markers for genotyping. 3). The ratio of leaf width to length could 
be a very complex trait. In fact this trait can be seemed as contributed by two 
sub-traits: leaf length and leaf width. A significant positive correlation 
between this two sub-traits was proved. 5 QTL regions were found for each 
of the two sub-traits and 2 of them were co-localised, which suggest there 
could be same genes regulating both sub-traits 
 (F. Zhang, J. Jiang, S. Chen, 2012). These results were based on a SRAP 
genotyping linkage map, whose disadvantages have been discussed before. 
Consequently, QTL analysis for traits leaf width and leaf length is suggested 
further based on the integrated linkage map constructed in this study. 

 
In this paper, QTL analysis were focused on four leaf traits. As shown in 
Figure 7, the correlation coefficient between trait Leaf number and Total 
stipule size is 13.48%, which was higher than the other trait combinations. 
One possible explanation is that in every shoot of chrysanthemum, generally 
each leaf is growing with two stipules on two sides. More number of leaves 
are grown indicates more vigor on the stem. Hence larger areas of stipules 
can be achieved.  
 
In this study, two models (marker dosage model and genotype probability 
model) were combined to seek candidate markers associating with the 
detected QTL regions on chrysanthemum leaf trait stem length. Marker 
dosage model is a linear model associating different marker dosages with 
phenotypic values. Analysis of Variance (ANOVA) is performed to check the 
single marker dosage regression on phenotypic values. This is a very basic 
approach and treat the effects of marker dosages to the phenotypic values as 
purely additive. No dominant effects are considered (P. Bourke, 2014). Hence 
the biggest drawbacks of this model are: 1). It doesn’t take the dosage 
phasing scenarios into account. Only the dosage number would be 
considered. 2). Markers can only be detected significant if they’re tagging the 
homologues with the same directions of effect. Although some markers are 
tagging significant regions of homologues, however they are tagging 
homologues with opposite directions, would still be regarded as non-
significant. One possible modified solution is using two markers tagging 
specific homologues whose effects on phenotypes are known. By combining 
the dosage information from two markers, the explained phenotypic 
variation is expected to be higher than with single marker dosage. In this 
case, the improvement was not very much (R-square: 12.72% > 12.47%). This 
is due to the complex dosage combinations of the two markers (DxS & SxD), 
maximumly 4 x 4 = 16 possible dosage combinations could be created. Also, 
only 3 out of 6 homologues which the two markers are tagging are associated 
with the QTL regions, too many irrelevant tagged homologues lowered down 
the explanation for phenotypes. The most ideal scenario is using markers 
with low dosages which are tagging all the homologues associating with the 
QTL regions, then the phenotypic variation explained by this model is 
expected to be higher. 
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Compared to Marker dosage model, IBD model is superior. The main reason 
is it checks the effect of each allele. The contributions made by each of the 
twelve alleles from the two parents are taken into account for each locus in 
chrysanthemum.  

4.3 What’s next for breeders  

This paper presents candidate markers proved to be linked to the QTL regions 
for trait stem length. For further application of these markers into 
production, they need to be validated and tested in a new population. Single 
marker assays can be made and used to genotype the new population. One 
possible way is to use one of the two parents of the population to cross with 
a new variety. This parent can contribute the donor QTL and the offspring will 
inherit the QTL regions for stem length with higher chance. Hence co-
segregation between the marker and the QTL regions can be checked. 
It might also happen that under new crosses in different population, there 
are other alleles totally overruling the alleles which the markers are tagging. 
Hence epistatic QTL analysis is suggested. 
 
Breeders may concern most about such questions: ‘What specific markers 
can I use in different populations?’, ‘How to grow the tallest/shortest plant?’. 
To answer these questions, we need to check whether the alleles tagging QTL 
regions can be inherited to the next generation or are still working in other 
genetic background. In this case, combined marker analysis based on the 
marker dosage model could give a hint on estimating the phenotypes by 
selecting plants with markers which are tagging specific homologues. For 
example, for marker combination ‘Cm38566_c0g1i1_1004_Rnn’ and 
‘Cm13465_c0g2i3_318_Sn’, in this study, ‘Cm38566_c0g1i1_1004_Rnn’ with 
dosage 2 (tagging homologue 5 and 8) and ‘Cm13465_c0g2i3_318_Sn’ with 
dosage 0 is proved to associate with the shortest stem length and 
‘Cm38566_c0g1i1_1004_Rnn’ with dosage and ‘Cm13465_c0g2i3_318_Sn’ 
with dosage 4 (tagging homologue 4) is proved to associate with the longest 
stem length. 

4.4 Genome and genes 

In the long run, the chrysanthemum genome is foreseen to be achieved. 
However, the linkage map will still maintain its usage. Plant breeders are 
more interested about the genetic distance than the physical distance. They 
pay more attention to the recombination frequencies on the chromosomes in 
order to make better combinations of good traits in the offspring. Hence 
keep digging the information hidden from the linkage map is always of great 
use in breeding.   
 
In this study, a list of candidate genes is provided to make estimations on the 
genes which are responsible for chrysanthemum growth. These genes were 
acquired by aligning the sequences of contigs on the detected QTL regions 
with the UniProt database. Given the fact that the larger the bit-score, the 
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better quality that alignments have and the choice of bit-score depends on 
the different results, the alignment result was filtered by bit-score 100, which 
sieved half of the data (21231/46946 genes). 
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5.  Conclusion 
 
In this study, an integrated linkage map was constructed for chrysanthemum by 
using genotyping data from a 183k SNP array. With the help of this linkage map, QTL 
analysis was performed on chrysanthemum leaf traits by combining two models: 
Marker dosage model and Genotype probability model. Two QTL regions were 
detected on linkage group 4 and 7 on leaf trait stem length. Candidate markers were 
listed and proved to be associated with the QTL regions. Also, a possible modification 
approach was proposed to modify Marker dosage model by combing dosage 
information of two markers which are tagging specific homologues. A list of 
candidate genes was shown to give reference for estimating genes which are 
responsible to regulate chrysanthemum stem length. 
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Appendix 
 
 
 

Appendix 1. Situations of marker dosage conversion 
 

Marker segregation types before conversion Marker segregation types after conversion 

0x1 0x5 6x1 6x5 0x1 

0x2 0x4 6x2 6x4 0x2 

0x3 6x3 0x3 

1x0 1x6 5x0 5x6 1x0 

1x1 5x5 1x1 

1x2 5x4 1x2 

1x3 5x3 1x3 

1x4 5x2 1x4 

1x5 5x1 1x5 

2x0 4x0 2x6 4x6 2x0 

2x1 4x5 2x1 

2x2 4x4 2x2 

2x3 4x3 2x3 

2x4 4x2 2x4 

3x0 3x6 3x0 

3x1 3x5 3x1 

3x2 3x4 3x2 

3x3 3x3? 

2x5 4x1 4x1 
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Appendix 2. Top 20 sig markers whose dosages have significant influence on four leaf 
traits. 

Stem 
length 

Marker name P-value Leaf number Marker name P-value 

Cm63076_c0g1i1_327_Sn 4.952076e-05 Cm48278_c0g1i1_408_Ss 9.143220e-06 

Cm61216_c0g1i1_831_Sn 7.799028e-05 Cm51968_c0g3i1_247_Sn 4.413587e-05 

Cm28578_c0g1i2_1870_Sn 9.087962e-05 Cm2410_c0g2i1_305_Ss 8.229479e-05 

Cm54019_c0g1i1_240_Sn 9.563958e-05 Cm30361_c0g1i3_73_Sn 1.013483e-04 

Cm38566_c0g1i1_1004_Rnn 1.215021e-04 Cm26300_c0g1i1_1419_Sn 1.090006e-04 

Cm54107_c0g1i1_454_Rnn 1.225519e-04 Cm15004_c0g2i1_1461_Sn 1.157300e-04 

Cm4088_c0g1i3_841_Sn 1.242714e-04 Cm33457_c0g1i2_883_Qn 1.199550e-04 

Cm4088_c0g1i3_839_Sn 1.315800e-04 Cm10224_c0g2i1_405_Qn 1.441883e-04 

Cm36765_c0g1i2_1378_Sn 1.318080e-04 Cm62443_c0g4i1_1231_Pn 1.471396e-04 

Cm42659_c0g4i1_1038_Sn 1.325424e-04 Cm61282_c0g2i1_168_Sn 1.676177e-04 

Cm5596_c0g4i1_1231_Sn 1.325424e-04 Cm19252_c0g1i1_1364_Sn 1.734643e-04 

Cm10191_c0g4i1_174_Sn 1.325424e-04 Cm29284_c0g1i1_346_Sn 1.800957e-04 

Cm4088_c0g1i3_244_Sn* 1.325424e-04 Cm32716_c0g1i1_147_Sn 1.821049e-04 

Cm19355_c2g11i1_300_Sn 1.325424e-04 Cm37522_c0g4i1_844_Pn 2.116589e-04 

Cm19355_c2g11i2_218_Sn 1.325424e-04 Cm40144_c0g5i2_2101_Pn 2.170747e-04 

Cm5596_c0g4i1_1338_Sn 1.612022e-04 Cm3047_c0g1i1_75_Sn 2.414043e-04 

Cm55355_c1g4i2_244_Pn 1.698838e-04 Cm9155_c0g5i1_209_Qn 2.685209e-04 

Cm13713_c0g2i1_1456_Sn 1.753210e-04 Cm42234_c0g1i5_430_Sn 2.792401e-04 

Cm50757_c0g1i1_843_Sn 1.910821e-04 Cm21605_c0g2i1_434_Sn 2.793353e-04 

Cm30384_c0g2i1_280_Sn 1.916439e-04 Cm23784_c0g1i1_173_Sn 2.893092e-04 

Total 
stipule 

size 

Marker name P-value Leaf 
width/length 

ratio 

Marker name P-value 

Cm25292_c1g1i1_1467_Sn 2.233742e-06 Cm35770_c0g1i2_1493_Sn 5.056932e-06 

Cm62451_c0g1i1_649_Qn 9.679420e-06 Cm58661_c1g5i4_3563_Sn 1.046911e-05 

Cm23072_c0g4i1_745_Sn 4.001484e-05 Cm15477_c0g1i3_487_Sn 1.384440e-05 

Cm32716_c0g1i1_147_Sn 5.526876e-05 Cm35770_c0g1i2_3114_Sn 1.608983e-05 

Cm26300_c0g1i1_1419_Sn 9.723630e-05 Cm14409_c1g1i1_508_Sn 1.821006e-05 

Cm37674_c0g1i1_855_Pn 9.854494e-05 Cm35770_c0g1i2_2369_Rsn 1.918480e-05 

Cm22452_c0g2i1_505_Qs 1.174850e-04 Cm14409_c1g1i1_1540_Pn 1.930953e-05 

Cm46531_c0g6i2_577_Pn 1.655261e-04 Cm6667_c0g1i1_548_Sn 2.113084e-05 

Cm16543_c1g2i1_922_Sn 1.735090e-04 Cm30957_c0g1i1_997_Sn 2.244890e-05 

Cm38611_c0g1i2_921_Sn 2.155897e-04 Cm35770_c0g1i2_3822_Sn 2.598150e-05 

Cm50921_c0g1i1_1450_Sn 2.628442e-04 Cm58661_c1g2i1_921_Sn 2.688768e-05 

Cm55902_c0g1i1_1737_Sn 3.305492e-04 Cm35770_c0g1i2_1812_Pn 3.191721e-05 

Cm16726_c0g1i1_220_Sn 3.871894e-0 Cm35770_c0g1i2_1686_Qn 4.461112e-05 

Cm17954_c0g1i15_1606_Sn 4.035611e-04 Cm6667_c0g1i1_1511_Rnn 4.603984e-05 

Cm12991_c0g4i1_341_Sn 4.048498e-04 Cm35770_c0g1i2_2187_Sn 4.922717e-05 

Cm16930_c0g1i1_642_Qn 4.307635e-04 Cm25688_c0g1i1_263_Sn 6.852002e-05 

Cm28609_c0g1i1_614_Qn 4.628708e-04 Cm47666_c0g2i1_109_Sn 7.403321e-05 

Cm45927_c0g5i4_285_Sn 4.644224e-04 Cm57675_c2g3i1_124_Sn 8.396041e-05 

Cm44117_c0g1i1_247_Sn 4.669548e-04 Cm54766_c1g2i1_1064_Sn 8.442822e-05 

Cm40779_c0g1i1_414_Sn 4.964817e-04 Cm15098_c0g9i1_675_Sn 8.660405e-05 
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Appendix 3. Potential reference genes for QTL regions of chrysanthemum responsible for 
stem length. 

 

 
 

 

 

 

Gene names Organism 

CYP701A8 KO1 Os06g0569500 LOC_Os06g37300 OSJNBa0062E01.27 Oryza sativa subsp. japonica (Rice) 

GA3OX3 At4g21690 F17L22.150 Arabidopsis thaliana (Mouse-ear cress) 

GA20OX1 20ox1 At2301 GA5 At4g25420 T30C3.90 Arabidopsis thaliana (Mouse-ear cress) 

GA20OX5 At1g44090 F9C16.33 T7O23.20 Arabidopsis thaliana (Mouse-ear cress) 

GA20OX2 20ox At2353 At5g51810 MIO24.5 Arabidopsis thaliana (Mouse-ear cress) 

GA2OX2 At1g30040 T1P2.6 Arabidopsis thaliana (Mouse-ear cress) 

GA2OX2 Pisum sativum (Garden pea) 

GA2OX6 At1g02400 T6A9.9 Arabidopsis thaliana (Mouse-ear cress) 

20ox1 GA20ox-1 Os03g0856700 LOC_Os03g63970 OSJNBa0059G06.22 Oryza sativa subsp. japonica (Rice) 

GA20OX3 20ox3 YAP169 At5g07200 T28J14_140 Arabidopsis thaliana (Mouse-ear cress) 

GA20OX4 At1g60980 T7P1.12 Arabidopsis thaliana (Mouse-ear cress) 

GA2OX4 At1g47990 T2J15.10 Arabidopsis thaliana (Mouse-ear cress) 

GA2OX1 SLN Pisum sativum (Garden pea) 

GA2OX3 At2g34555 T31E10.11 Arabidopsis thaliana (Mouse-ear cress) 

GA2OX7 At1g50960 F8A12.18 Arabidopsis thaliana (Mouse-ear cress) 

GA3OX4 At1g80330 F5I6.8 Arabidopsis thaliana (Mouse-ear cress) 

GA2OX1 At1g78440 F3F9.5 Arabidopsis thaliana (Mouse-ear cress) 

GA2OX1 Phaseolus coccineus (Scarlet runner bean) 
(Phaseolus multiflorus) 

GA3OX1 GA4 At1g15550 T16N11.6 Arabidopsis thaliana (Mouse-ear cress) 

GA2OX8 At4g21200 F7J7.140 Arabidopsis thaliana (Mouse-ear cress) 

GA3OX2 GA4H At1g80340 F5I6.9 Arabidopsis thaliana (Mouse-ear cress) 

LE Pisum sativum (Garden pea) 

KO CYP701A3 GA3 KO1 At5g25900 T1N24.23 Arabidopsis thaliana (Mouse-ear cress) 

CYP714D1 EUI1 Os05g0482400 LOC_Os05g40384 OsJ_18961 
OSJNBa0095J22.13 

Oryza sativa subsp. japonica (Rice) 

CTR1 At5g03730 F17C15_150 Arabidopsis thaliana (Mouse-ear cress) 

CYP701A9 Os06g0568600 LOC_Os06g37224 OSJNBa0062E01.13 Oryza sativa subsp. japonica (Rice) 

CYP701A6 D35 Os06g0570100 LOC_Os06g37364 OSJNBa0062E01.38 Oryza sativa subsp. japonica (Rice) 

CYP701A19 Os06g0569900 LOC_Os06g37330 OSJNBa0062E01.34 Oryza sativa subsp. japonica (Rice) 

WRKY71 OsI_06106 Oryza sativa subsp. indica (Rice) 


