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 ABSTRACT  18 

Dietary fiber content and composition affect microbial composition and activity in the 19 

gut, which in turn influence energetic contribution of fermentation products to the metabolic 20 

energy supply in pigs. This may affect feed efficiency (FE) in pigs. The present study 21 

investigated the relationship between the fecal microbial composition and FE in individual 22 

growing-finishing pigs. In addition, the effects of diet composition and sex on the fecal 23 

microbiome were studied. Fecal samples were collected of 154 grower-finisher pigs (three-way 24 

crossbreeds) the day before slaughter. Pigs were either fed a diet based on corn/soybean meal 25 

(CS) or a diet based on wheat/barley/by-products (WB). Fecal microbiome was characterized 26 

by 16S ribosomal DNA sequencing, clustered by operational taxonomic unit (OTU), and 27 

results were subjected to a discriminant approach combined with principal component analysis 28 

to discriminate diets, sexes and FE extreme groups (10 high and 10 low FE pigs for each diet 29 

by sex-combination). Pigs on different diets and males vs. females had a very dist inct fecal 30 

microbiome, needing only two OTU for diet (P = 0.020) and 18 OTU for sex (P = 0.040) to 31 

separate the groups. The two most important OTU for diet, and the most important OTU for 32 

sex, were taxonomically classified as the same bacterium. In pigs fed the CS diet there was no 33 

significant association between FE and fecal microbiota composition based on OTU (P > 0.05), 34 

but in pigs fed the WB diet differences in FE were associated with 17 OTU in males (P = 0.018) 35 

and to 7 OTU in females (P = 0.010), with three OTU in common for both sexes. In conclusion, 36 

our results showed a diet and sex dependent relationship between FE and the fecal microbial 37 

composition at slaughter weight in grower-finisher pigs.  38 

Keywords: feed efficiency, fecal microbiome, diet, sex, pig  39 
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INTRODUCTION 40 

In pork production, feed efficiency (FE) is very important, as feed is the main 41 

component of the cost prize. The gut microbiota can play an important role in FE, as pigs do 42 

not produce digestive enzymes that allow them to digest the fiber fraction in the diet. Instead, 43 

they depend on microbiota residing in the gastrointestinal tract, in particular in the hindgut, to 44 

break down the dietary fiber in fermentation processes. VFA are resulting by-products of the 45 

fermentation activity of the microbiota and they serve, after absorption from the gut, as energy 46 

sources in systemic metabolism (Ingerslev et al., 2014). In pigs, efficiency of energy utilization 47 

is lower when energy comes from fiber instead of starch (Noblet and Le Goff, 2001). Thus, for 48 

improving FE in pigs low fiber, high starch diets have been favored (Zijlstra and Beltranena, 49 

2013). However, dietary fiber has shown to reduce stereotypic behavior and aggression 50 

(Meunier-Salaün et al., 2001) and improve fecal consistency (Mateos et al., 2006; Wellock et 51 

al., 2008). Combined with the increasing competition of feed with human edible products for 52 

amongst others arable land (Van Kernebeek et al., 2016), this has caused the agricultural sector 53 

to move increasingly towards the formulation of diets with higher fiber contents. Therefore, 54 

the importance of intestinal microbiota and their fermentation activity in relation to FE in pigs 55 

is likely to increase. 56 

The aim of this study was to investigate the association between FE and fecal microbial 57 

composition in commercial grower-finisher pigs. In addition, two factors affecting FE were 58 

investigated for their effect on the fecal microbiome: diet composition and sex. 59 

MATERIALS AND METHODS 60 

This study was carried out in strict accordance with the recommendations in the 61 

European Guidelines for accommodation and care of animals. The protocol was approved by 62 

the Animal Care and Use Committee of Schothorst Feed Research, The Netherlands (Protocol 63 
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Number: AVD 246002015120/132). The dataset is available on request from the corresponding 64 

author. 65 

Animals and experimental design 66 

Pigs used in this study originated from a three-way cross (Synthetic boar x (Large White 67 

x Landrace)). Phenotypic data were available for 160 three-breed cross pigs, 81 males and 79 68 

females, coming from 20 litters. All pigs were kept at the experimental facilities of Schothorst 69 

Feed Research B.V. (Lelystad, The Netherlands) under commercial conditions. Up until the 70 

start of the trial the animals were housed per litter and all animals were fed the same diet. The 71 

pigs were put on test at 8 to 9 weeks of age (Day 0), in two groups of 80, and experimental 72 

groups were set 13 weeks apart. Distribution was as follows: ten pigs per pen and eight pens 73 

per compartment; one compartment was used per entrance date. Littermates were split 74 

randomly over the two diets and sexes were housed in separate pens, resulting in two pens per 75 

diet per sex per entrance date. All animals were used for the evaluation of the effects of diet 76 

composition and sex on fecal microbiota composition, except for six animals of which no fecal 77 

sample was obtained. The FE was defined as the ratio of body weight gain to cumulated feed 78 

intake from start of the test until the day of slaughter. For evaluation of the effect of fecal 79 

microbiota composition on FE the 25% pigs with the highest and the 25% with the lowest 80 

individual FE per diet per sex (20 animals per combination) were used. Data of one animal 81 

were excluded, since it had a very low feed intake and body weight gain during the second half 82 

of the test. At the start of the experiment, the pigs had an average BW of 23.0 kg and were kept 83 

in the facilities until they reached a live weight at slaughter of approximately 120 kg. Pigs were 84 

allowed a minimal space of 1 m2 per pig, and the pens were equipped with 60% concrete floor 85 

and 40% slatted floor.  86 



5 
 

Feeding strategy 87 

Two different diets were studied, a diet based on corn/soybean meal (CS) as typically 88 

fed to commercial grower-finisher pigs in The America’s and a diet based on wheat/barley/by-89 

products (WB) as typically fed in Europe (Table 1). For both diets, the pigs were fed ad libitum 90 

according to a three-phase feeding program. The first phase (Tstarter) was from Day 0 to Day 25 91 

on test and pigs were fed a starter diet. The second phase (Tgrower) was from Day 26 to Day 67 92 

on test and pigs were fed a grower diet. The third phase (Tfinisher) was from Day 68 on test until 93 

the pigs reached slaughter weight and they were fed a finisher diet. The diets were custom 94 

made diets based on commonly used commercial diets and were formulated on a fixed ratio of 95 

net energy to digestible lysine (NE:SID lysine). Each of the three phases had a different NE:SID 96 

lysine, being 0.89 J/g at Tstarter, 1.06 J/g at Tgrower and 1.37 J/g at Tfinisher. The increase of NE:SID 97 

lysine in grower and finisher diets was mainly achieved by exchanging soybean meal with 98 

corn, and peas with wheat for the CS and WB diets respectively. The experimental diets were 99 

produced in the feed plant of ABZ Animal Nutrition, Leusden, The Netherlands. 100 

Measurements and sampling 101 

The experimental facilities of Schothorst Feed Research B.V. were equipped with 102 

IVOG feeding stations (INSENTEC, Marknesse, The Netherlands) that register individual feed 103 

intake of group housed animals. All animals had ear tags with unique incremental numbering, 104 

therefore, individual feed intake records were available for all pigs for each day on test. 105 

Animals were weighted at Day 0, Day 56 and at the end of the test. At the end of the feeding 106 

trial (one day before slaughter), individual fecal samples were collected directly at defecation 107 

by hand, with gloves, mixed in the glove and put in small tubes. The samples were immediately 108 

frozen in liquid nitrogen and stored at -80°C. The ADFI was calculated as the cumulated 109 

individual feed intake records throughout the trial divided by the length of the trial. The ADG 110 

was calculated as the difference between BW measurements divided by the duration of the trial.  111 
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Fecal microbiota analysis 112 

Fecal samples were used for ribosomal 16S DNA gene sequencing and analysis. Bead 113 

beating lyzed the microbial cells and the DNA was purified using the ZR-96 Soil Microbe 114 

DNA kit (Zymo Research, Irvine, CA) according to the manufacturer description (Frese et al., 115 

2015). The V3-V4 region was amplified from purified genomic DNA with the primers F343 116 

(CTTTCCCTACACGACGCTCTTCCGATCTTACGGRAGGCAGCAG) and R784 117 

(GGAGTTCAGACGTGTGCTCTTCCGATCTTACCAGGGTATCTAATCCT) using 30 118 

amplification cycles with an annealing temperature of 65 °C (an amplicon of 510 bp, although 119 

length varies depending on the organisms). Full length reads of the V3-V4 region were obtained 120 

using Illumina Miseq 250-bp paired end reads. Single multiplexing was performed using in 121 

house 6 bp index, which were added to R784 during a second PCR with 12 cycles using forward 122 

primer (AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGAC) and 123 

reverse primer (CAAGCAGAAGACGGCATACGAGAT-index-124 

GTGACTGGAGTTCAGACGTGT). The resulting PCR products were purified and loaded 125 

onto the Illumina MiSeq cartridge according to the manufacturer instructions. The quality of 126 

the run was checked internally using PhiX control as recommended by manufacturer, and then 127 

each pair-end sequence was assigned to its sample with the help of the previously integrated 128 

index. Each pair-end sequence was assembled using Flash software (Magoč and Salzberg, 129 

2011) using at least a 10bp-overlap between the forward and reverse sequences, allowing 10% 130 

of mismatch (Lluch et al., 2015). The absence of contamination was checked with a negative 131 

control during the PCR (water as template). The quality of the stitching procedure was 132 

controlled using 4 bacterial samples that are run routinely in the sequencing facility in parallel 133 

to the current samples. 134 
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Statistical analysis 135 

The resulting sequences of the 154 samples were clustered with Usearch (Edgar, 2010) 136 

using the Uparse pipeline (Edgar, 2013) to create operational taxonomic units (OTU). The OTU 137 

table of abundance was analyzed by discriminant analysis using principal components (DAPC) 138 

(Jombart et al., 2010), to test the association of OTU abundance with a number of factors. 139 

Number of dimensions to be included in further analyses was chosen based on stability of the 140 

results, determined by adding increasingly more dimensions. In case the stability test gave a 141 

range of dimensions, a threshold value of 99% of the original variance was used to decide the 142 

number of dimensions. The OTU were sorted based on their contribution to the separation of 143 

tested factors in the discriminant analysis, which echoes the weight of each OTU in separating 144 

the groups. Using this order, increasingly more OTU were added to separate the groups, until 145 

the separation reached significance at P < 0.05. The built-in a-score method of the DAPC was 146 

used to determine the statistical significance of the separation based on a permutation test. 147 

Briefly, 1000 simulations with randomized group labels were performed to evaluate if the 148 

discriminant analysis could separate the samples in any of those random configurations. The 149 

a-score obtained with the true groups was compared to the distribution of the a-scores obtained 150 

with the 1000 simulations to determine if the separation was due to chance (Jombart et al., 151 

2010). The method was repeated to test separation for diet, sex, and FE groups, and to test 152 

association of phylum, class and genera abundance (based on OTU taxonomy) with these 153 

factors. To test whether the results extrapolated to the whole dataset, the OTU relevant for 154 

separating the FE groups were used for partial least squares regression (PLSr)(Mevik and 155 

Wehrens, 2007) on all animals within the groups and not only the FE extreme pigs. The number 156 

of components kept was based on the lowest root-mean-squares error of prediction after leave-157 

one-out cross validation. 158 
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After rarefying the data (McMurdie and Holmes, 2013), Bray-Curtis distances between 159 

diet, sex and FE extreme groups were calculated using a maximum of 200 iterations for diet 160 

and sex and 100 iterations for FE groups and tested with ADONIS for significance (Oksanen 161 

et al., 2017). Shannon Index, Simpson diversity index and chao1 richness estimator were 162 

calculated using the vegan package (Oksanen et al., 2017). Significance of difference in the 163 

diversity estimates between the diets, sexes and FE groups was determined using a generalized 164 

linear model (SAS 9.3; SAS Inst. Inc., Cary, NC) with diet, sex and FE groups as fixed effect. 165 

Significance of difference in ADG, ADFI and FE between the high and low FE groups was 166 

determined using a mixed model (SAS 9.3; SAS Inst. Inc., Cary, NC) with animal as 167 

experimental unit, FE groups and pen as fixed effect, and BW at start of the test as co-variable. 168 

For the least squares means calculations BW at start of the test was fixed at 22 kg. 169 

Taxonomy 170 

To investigate biological functionality of differences between groups, the taxonomy 171 

was determined for each OTU by the SILVA Incremental Aligner (SINA) software (Pruesse et 172 

al., 2012), which aligns the OTU with the rRNA gene databases provided by the SILVA 173 

ribosomal RNA project (Quast et al., 2013). Default SINA settings were used to assign the 174 

taxonomy of each OTU, with the minimum identity with query sequence set at 0.97 and number 175 

of neighbors per query sequence set at ten. Group level information within genera classification 176 

was deleted. In addition, OTU found by DAPC analysis were blasted against the NCBI 16S 177 

ribosomal RNA sequences (Bacteria and Archeae) database using BLASTn (McGinnis and 178 

Madden, 2004) to determine the bacteria with closest sequence similarity. Default 179 

megaBLAST settings were used. 180 
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RESULTS 181 

Within the DAPC analysis it is not possible to account for the pen effect directly. 182 

However, when doing a DAPC analysis for all the piglets across all the pens, the cohoused 183 

piglets did not group together (results not shown). 184 

Differences between diets 185 

Between the two diet, differences in the relative abundance of the 9 major phyla, classes 186 

and genera for both diets were observed (Fig. 1). This was reflected in the Bray-Curtis distances 187 

at phylum and OTU level (Fig. 2), which were significantly different (P < 0.001), but not on 188 

class and genera level. The DAPC analysis gave a clear separation in fecal microbiota 189 

composition between the two diets based on phyla, classes, genera and OTU (Fig. 3) (P < 190 

0.001). The separation was based on 3, 4, 10 and 55 dimensions for phyla, classes, genera and 191 

OTU respectively, which represented at least 99% of the original variance in microbiota 192 

composition. Keeping the two phyla (Bacteroidetes and Proteobacteria), three classes 193 

(Gammaproteobacteria, Spirochaetes, and Bacteroidia), two genera (Ruminococcus and 194 

Blautia) and two OTU (OTU 33 and OTU 16) with the highest contribution to the separation 195 

was sufficient to discriminate pigs on different diets. Blasting the sequence of the two most 196 

contributing OTU to NCBI gave a 95% identity with 99% query coverage with the bacterium 197 

Butyricicoccus pullicaecorum. The second most important OTU resulted in the same 198 

bacterium, with 96% identity and 99% query coverage. This difference between the diets, 199 

however, was not depicted in the measures for diversity. The CS diet had a higher Shannon 200 

index than the WB diet (P = 0.021), but the Simpson Index and the chao1 Index were similar 201 

for both diets. 202 

Differences between sexes 203 

In contrast to the diets, the overview of the relative abundance of the 9 major phyla, 204 

classes and genera (Fig. 1) does not indicate obvious differences between the sexes. This is 205 
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reflected by the results of the Bray-Curtis distances, which were only significant at OTU level 206 

(P = 0.037) (Fig. 2). The DAPC analysis gave somewhat similar results, as it indicated no 207 

separation between the two sexes based on phyla (seven dimensions) and needed 22 out of 45 208 

classes to reach a significant difference between the male and female pigs using 16 dimensions 209 

and 100.0% of the original variance. However, there was a highly significant distinction for 210 

sex based on genera (P = 0.003) and OTU (P = 0.001) (Fig. 3), based on 38 and 60 dimensions 211 

(100.0% and 99.2% of the original variance) respectively. There were 6 genera and 18 OTU 212 

required to reach a significant separation between sexes. For nine out of those 18 OTU it was 213 

possible to reliably assign the genus, for eight it was possible to reliably assign the family, and 214 

for one OTU it was not possible to assign any taxonomy (Table 2). The main class differing 215 

between the sexes was Methanobacteria and the main genera differing was Bifidobacterium. 216 

The most important OTU for sex separation was the same as for diet, which was associated 217 

with Butyricicoccus pullicaecorum. There was no difference in any of the diversity indexes 218 

between the sexes. 219 

Differences between feed efficiency extremes 220 

As there was a strong effect of diet and sex on the fecal, the dataset was split in four 221 

groups to estimate the association between FE and microbiome within diet by sex combination. 222 

There was a 0.062 to 0.078 g/g difference between the FE groups in FE (Table 3) and there 223 

was no pen effect in any of the groups.  224 

There was no difference in diversity index between the high and low FE animals in any 225 

of the diet by sex combinations. In addition, there were only significant Bray-Curtis distances 226 

at OTU level for the pigs fed the WB diet (Fig. 2). Compared to the diet and sex analyses, the 227 

separation between the FE groups using the DAPC analysis was not as clear (Fig. 3). At phylum 228 

level, only the male pigs fed a WB diet could be separated using five dimension (100.0% of 229 

the original variance). Two phyla were necessary for significant separation, Actinobacteria and 230 
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Proteobacteria, which were both highest in the high FE pigs.  Also at class level the male pigs 231 

fed a WB diet could be significantly separated, based on five dimensions explaining 99.7% of 232 

the original variance. Gammaproteobacteria was the first out of the nine contributing classes 233 

used for the separation. In addition, the male pigs fed a CS diet could be significantly separated 234 

(P = 0.008) and there were16 classes used for the separation. At genera level the analysis only 235 

showed significant separation between high and low female pigs fed the CS diet (P = 0.009) 236 

and male pigs fed the WB diet (P = 0.038). Four dimensions were used, explaining 98.7% and 237 

98.3% of the original variance respectively, and keeping only two genera was sufficient for the 238 

separation in the female pigs. These genera were Prevotella and Streptococcus. There were 11 239 

genera needed for the separation in the male pigs with the main genera being Roseburia.  240 

In the pigs fed the CS diet, there was no significant separation for either of the sexes 241 

when using OTU, based on eight dimensions for male animals and three for females, explaining 242 

96.7% and 83.2% of the original variance, respectively. In the pigs fed the WB diet, when five 243 

dimensions were used (82.7% of the original variance), the low FE (P = 0.016), but not the 244 

high FE (P = 0.690), could be identified in the pool of males. In the females fed the WB diet, 245 

the high FE pigs were identified (P=0.016), but not the low FE animals (P = 0.094), based on 246 

five dimensions (87.8% of the original variance).  In total, 17 OTU were necessary to 247 

discriminate the low FE male pigs (P = 0.018) (Table 4) and seven OTU to distinguish the high 248 

FE female pigs (P = 0.010) fed a WB diet (Table 5). Putting these OTU in PLSr resulted in an 249 

R2 of 0.14 (2 components) and 0.11 (3 components) for male and female pigs fed the WB diet 250 

respectively (Fig. 4). Three of the OTU significant for discriminating high and low FE pigs 251 

were common for the male and female pigs. Strikingly, the effects of OTU 4 and 2 had different 252 

directions in male and female pigs, as higher abundance was associated with high FE in males 253 

and low FE in females. 254 
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DISCUSSION 255 

The aim of this study was to investigate the association between FE and the composition 256 

of the fecal microbiome in commercial grower-finisher pigs. In the present experiment the fecal 257 

microbiome was used as an indicator for the microbiome in the gastro-intestinal tract during 258 

the whole grower-finisher period. However, extrapolation of results of the microbial 259 

composition in the feces to other compartments of the gastro-intestinal tract might not be valid. 260 

Microbial composition in the ileum, cecum, and colon differs, with the ileal intestinal 261 

microbiome being most different from that in other compartments (Looft et al., 2014). 262 

Moreover, microbial composition in digesta in the lumen of the gut is different from the mucosa 263 

associated microbiota (Looft et al., 2014). It is also questionable whether the fecal samples, 264 

taken at the end of the grower-finisher period, are representative for the whole grower finisher 265 

period, as the microbial composition in the feces might change with age (Kim et al., 2011). As 266 

the microbial composition at the start and at other time points of the experiment was not 267 

measured, the age at which differences in the microbiome for the tested effects appear are 268 

unknown. Nevertheless, the fecal microbiome seems most similar to both luminal and mucosal 269 

microbiome in the mid-colon (Looft et al., 2014) and is most similar for pigs aged 10 and 13 270 

weeks, and for pigs aged 16, 19 and 22 weeks (Kim et al., 2011). Therefore, when interpreting 271 

our results in terms of relationships between microbial composition and performance of the 272 

pig, it should be considered that the fecal microbiome measured in the present study is likely 273 

most representative for the microbial composition in the colon, in particular during the second 274 

part of the growth trajectory considered. 275 

Diets  276 

From literature it is well known that diet composition affects the microbial composition 277 

in the gastrointestinal tract (Bauer et al., 2006) and the current study confirms these 278 

observations. Worldwide there are two mainstream diets fed to grower-finishers based on the 279 
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availability of main ingredients: a diet based on corn and soybean meal as is common in North 280 

and South America, and a diet based on wheat, barley, and by-products from the agro-food 281 

sector as is common in Europe and parts of China. Both diets are used to grow pigs as fast and 282 

cost-efficient as possible, even though the ingredient composition is rather different. The diets 283 

studied differed mostly in dietary fiber content and composition. The main fiber components 284 

in wheat, barley and corn are arabinoxylans, β-glucans and cellulose, whereas in soybean meal 285 

the fiber mainly contains pectic substances in the form of rhamnogalacturonan (Choct, 1997). 286 

This is reflected in the observed differences in microbiome between the two diets in the current 287 

study, as Butyricicoccus pullicaecorum, comprising the two OTU with highest abundance in 288 

the CS diet, is highly efficient in fermenting starch (Eeckhaut et al., 2008). This most likely 289 

relates to the high starch content in the CS diet. Additionally, the third most important OTU 290 

was found to be Blautia wexlera, and had the highest abundancy in the WB diet. This bacterium 291 

mainly ferments arabinose, glucose, mannose and xylose (Liu et al., 2008), which relates to the 292 

high arabinoxylans content of the WB diet. So the most contributing OTU to discriminate pigs 293 

on the different diets resemble the source of dietary fiber. 294 

Sexes 295 

Our results are in accordance with a recent study of Xiao et al. (2016), which also 296 

showed a difference between male and female finisher pigs in fecal microbial composition. 297 

Both studies found differences in bacteria belonging to the Prevotella and Ruminococcus 298 

genus. Previously, most of the research in pigs investigated changes in intestinal microbiota 299 

related to digestive problems and diarrhea post-weaning in weaners (Konstantinov et al., 2006; 300 

Pajarillo et al., 2014). These studies in weaners did not find a sex effect on the microbiome 301 

(Mach et al., 2015). Sex steroids hormones might partially explain this, as levels of some sex 302 

steroids hormones rapidly increase at onset of puberty (Camous et al., 1985; Zamaratskaia et 303 

al., 2004). In mice, gonadectomy of males and females resulted in a change in microbial 304 
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composition of the feces, but testosterone treatment of the castrated males resulted in a 305 

microbiome similar to that of intact males (Org et al., 2016). Metabolism residues of sex 306 

steroids hormones are excreted through bile into the lumen of the small intestine (Goymann, 307 

2012), resulting in different bile composition between sexes (Org et al., 2016). Mainly the 308 

Firmicutes, Proteobacteria and Actinobacteria can metabolize and degrade steroid hormones 309 

(García-Gómez et al., 2012), which is reflected in the difference in OTU between the sexes in 310 

our study, where 11 out of the 18 OTU belonged to the Firmicutes phyla. Other pathways 311 

through which sex steroid hormones might influence microbiota are the mucosal immune 312 

activation (Sankaran-Walters et al., 2013) and expression of steroid receptors (Menon et al., 313 

2013). The observed limited effect of sex on microbial composition in the feces of weaners and 314 

the substantial effect at slaughter age is likely because sex steroid hormones only start to play 315 

a large role in finisher pigs. 316 

Feed efficiencies 317 

There are several ways via which the intestinal microbiota could influence FE of pigs, 318 

including competition between the host and the microbiota for nutrients in the small intestine 319 

and activation of the immune system through stimulation of the development of the mucus 320 

layer, epithelial cells, and lamina propria (Dibner and Richards, 2005). The latter could 321 

possibly induce changes in nutrient partitioning between utilization for immune system 322 

functioning and for deposition e.g. in muscle protein, but this is likely to be primarily a juvenile 323 

phenomenon (Dibner and Richards, 2005). In addition, quantitative production of VFA by 324 

intestinal microbiota can relate to FE. Approximately 68% of the gross energy in fermentable 325 

carbohydrates can be transformed into VFA (Williams et al., 2001). The VFA composition 326 

depends amongst others on the composition of the substrates, microbial composition and 327 

activity, and absorption of the VFA across the large intestinal wall (Williams et al., 2001). 328 

Butyrate is the preferred energy source for colonocytes, 76% of the mucosal absorbed butyrate 329 
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is metabolized in these cells (Herrmann et al., 2011). Once absorbed across the intestinal wall 330 

the VFA are available as precursor and energy substrate in organs and tissues in the body. 331 

Propionate is a precursor for glucose and is almost fully extracted by the liver (Ingerslev et al., 332 

2014), whereas acetate and butyrate are used for Acetyl-CoA production. Next to being direct 333 

energy substrates, VFA are also involved as regulators in fatty acid, glucose and cholesterol 334 

metabolism (den Besten et al., 2013). Therefore, the microbiota might influence FE by the 335 

amount and composition of VFA produced.  336 

There was a significant relationship between microbiome and FE in pigs fed the WB 337 

diet, but there was no significant relationship in pigs fed the CS diet on OTU level. The fiber 338 

level in the diets might explain this difference. When assuming the VFA production to 339 

contribute to the FE of the pigs, the difference in performance between the high and low FE 340 

pigs due to microbial composition differences is expected to be more pronounced at a higher 341 

content of fermentation substrate in the diet. As the finisher WB diet contained 2.8 times more 342 

crude fiber than the CS diet, there was more substrate available for fermentation in the WB 343 

diet. Consequently, in our study the amount of substrate available might not have been 344 

sufficient to detect a relationship between microbiome and FE in the pigs fed the CS diet, 345 

whereas it was sufficient in the pigs fed the WB diet.    346 

In male pigs fed the WB diet, the most contributing OTU to separate the FE groups was 347 

taxonomically classified as Lactobacillus, the high FE group having a higher abundance of this 348 

OTU. In contradiction to our results, Vigors et al. (2016) only showed a difference in 349 

Lactobacilli spp. in the cecum, and not in the colon, between divergent groups in residual feed 350 

intake in pigs. Nevertheless, the direction of the effect was similar in both studies, with an 351 

increase in Lactobacillus having a positive effect on FE. The species related to this OTU only 352 

produce D- and L-lactate (Roos et al., 2005; Slavica et al., 2015). In contrast, in the female pigs 353 

fed the WB diet, the same OTU was higher in the low FE group, but the difference was smaller 354 
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between the FE groups in the female pigs. In accordance with the results of McCormack et al. 355 

(2017), the Clostridium abundancy in feces was important to distinguish between the high and 356 

low FE pigs. However, this was only the case in the male pigs fed the WB diet, and the two 357 

OTU classified as Clostridium had opposite effects. In addition, the other five genera important 358 

for distinguishing pigs divergent in residual feed intake discovered by McCormack et al. (2017) 359 

were not found in our study. An explanation may lie in the difference between the diets of the 360 

studies. Everything considered, the microbiota associated with FE in grower-finisher pigs 361 

might consist of several crucial species and other species only relevant in certain situations e.g. 362 

when certain diets are fed.  363 

Implications 364 

Results of the present study suggest possibilities to improve FE of grower-finisher pigs 365 

by altering microbial composition in the distal part of the intestinal tract. Modification of diet 366 

composition might be an option to change microbiota composition, e.g. by changing fiber 367 

source or inclusion level, or by including specific additives such as probiotics, prebiotics, 368 

organic and inorganic acids, and essential oils (De Lange et al., 2010). In summary, FE might 369 

be improved by changing the nutrition of pigs partly through resulting changes in microbiota 370 

composition. 371 

CONCLUSION 372 

There is a sex dependent relationship between the fecal microbial composition and FE 373 

in grower-finisher pigs fed a WB diet, having a higher concentration of dietary fiber than a CS 374 

diet. The exact interplay between the fecal microbial composition, composition and 375 

concentration of fiber, and production of VFA by intestinal microbiota remains to be 376 

determined. Furthermore, results on the relationship between microbiota composition in the 377 

digestive tract and FE remain to be confirmed in more and larger scale studies. Results of the 378 

present experiment suggest that there are possibilities to modify the intestinal microbial 379 
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composition by means of nutrition (e.g. by use of specific additives such as pro- and prebiotics) 380 

in order to improve FE of grower-finisher pigs.     381 
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TABLES AND FIGURES 511 

Table 1. Ingredient and calculated nutrient composition of the diets, as-fed basis 512 

  Starter (d 0 to 25)   Grower (d 26 to 67)   Finisher (d 68 to end) 

Item CS WB   CS WB   CS WB 

Ingredient, g/kg         

Corn 647.1 -  698.4 -  755.1 - 

Corn gluten 18.1 -  25.0 50.0  50.0 50.0 

Soybean meal 240.5 100.0  180.5 21.5  98.3 - 

Soybean hull - -  - 14.3  - 50.0 

Soybean oil - 25.0  - 0.3  - - 

Barley - 200.0  - 100.0  - 150.0 

Wheat - 321.9  - 400.0  - 350.0 

Wheat middlings - -  - 50.0  - 125.0 

Rapeseed meal - 63.0  - 80.0  - 100.0 

Sunflower meal - 80.0  - 80.0  - 21.9 

Palmkernel meal - -  - 50.0  - 50.0 

Palm oil 5.0 17.3  5.0 16.0  5.0 5.0 

Peas - 120.0  - 29.4  - - 

Sugarcane molasses 40.0 30.0  50.0 50.0  50.0 50.0 

Animal fat - -  - 27.5  - 29.4 

Monocalcium phosphate 6.7 5.3  2.0 -  0.7 - 

Salt 2.7 2.1  2.4 1.8  1.8 2.1 

Calcium carbonate 11.6 10.9  9.4 8.9  9.9 4.0 

Sodium bicarbonate - 1.1  1.0 1.0  3.4 - 

Phytase 5.0 5.0  5.0 5.0  5.0 1.9 

L-Lysine HCl - 3.8  - 4.3  - - 

DL-Methionine - 1.3  - 0.7  - - 

L-Threonine - 1.7  - 1.6  - - 

Lysine + Thrypophan 7.7 4.3  8.2 3.6  9.1 - 

Lysine HC 3.0 -  2.7 -  2.3 4.0 

Methionine HC 2.8 -  2.5 -  1.5 0.3 

Threonine HC 3.8 -  3.9 -  3.8 2.4 

Valine - 1.4  - -  - - 

Vitamin premix1 0.1 0.1       

Vitamin-trace mineral premix 12 0.1 0.1       

Vitamin-trace mineral premix 23 0.4 0.4  0.4 0.4  0.4 0.4 

Nutrient composition, g/kg4 
        

NE, MJ/kg 9.9 9.9  10.1 9.7  10.3 9.3 

Moisture 127 126  130 126  130 129 

Ash 51 52  42 47  38 42 

Crude protein 182 190  159 166  128 147 

Crude fat 34 58  35 64  36 57 
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Crude fibre 24 45  24 60  25 71 

Starch 437 360  471 335  512 334 

Sugar 44 50  46 58  42 59 

NSP 135 170  130 216  126 246 

Ca 6.9 6.9  5.2 5.5  5.0 3.8 

P 4.8 5.5  3.6 4.7  3.2 4.7 

SID Lys 11.1 11.1  9.5 9.1  7.5 6.8 

SID Met + Cys 6.6 6.6  5.9 5.6  4.6 4.6 

SID Thr 7.1 7.1  6.3 6.0  5.2 4.7 

SID Trp 2.1 2.1   1.8 1.7   1.4 1.3 

1Supplied per kilogram of feed: 2500 IU of vitamin A, 500 IU of vitamin D3, and 5 IU of vitamin E (Mervit  513 

AD3E; PreMervo, Utrecht, the Netherlands). 514 

2Supplied per kilogram of feed: 12 mg of Fe (ferrous sulfate), 10 mg of Mn (manganous oxide), 0.04 mg of Co 515 

cobalt oxide), 0.12 g of Ca, 0.0501 g of P, 0.04 mg of I (potassium iodide), 1000 IU of vitamin A, 100 IU of 516 

vitamin D3, 5 IU of vitamin E, 0.4 mg of vitamin B1, 0.8 mg of vitamin B2, 2 mg of pantothenic acid, 4 mg of 517 

niacine, 0.4 mg of vitamin B6, 0.2 mg of folate, 0.003 mg of vitamin B12, 10 mg of vitamin C, 0.01 mg of biotine, 518 

0.2 mg of vitamin K3, and 40 mg of choline (Mervit Sporavit; PreMervo). 519 

3Supplied per kilogram of premix: 0.4 g of Ca, 15 mg of Cu (copper sulfate)0, 80 mg of Fe (ferrous sulfate), 24 520 

mg of Mn (manganous oxide), 62 mg of Zn (zinc oxide), 0.04 mg of Co (cobalt oxide), 0.4 mg of I (potassium 521 

iodide), 0.2 mg of Se (sodium selenite), 7500 IU of vitamin A, 1500 IU of vitamin D3, 25 IU of vitamin E, 4 mg 522 

of vitamin B2, 6 mg of pantothenate, 30 mg of niacin, 0.02 mg of vitamin B12, and 0.752 mg of vitamin K3 523 

(Mervit START M220; PreMervo, Utrecht, the Netherlands). 524 

4Based on chemical composition, digestibility, and energy values for pigs from the Centraal Veevoeder Bureau 525 

livestock feed table (CVB, 2011).  526 
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Table 2. Abundancy and taxonomy (genus level) of the operational taxonomic units (OTU) in 527 

order of statistical contribution to the separation between sexes  528 

OTU ID 

  Percentage of total sequences 

Classification Boar Gilt 

OTU16 Unclassified Ruminococcaceae1 0.57 0.38 

OTU35 Unclassified Ruminococcaceae1 0.84 0.76 

OTU12472 Clostridium 0.77 0.77 

OTU373 Subdoligranulum 0.16 0.23 

OTU191 Unclassified2 0.05 0.14 

OTU174 Unclassified Bacteroidales1 0.05 0.15 

OTU22 Roseburia 0.26 0.33 

OTU71 Ruminococcus 0.15 0.21 

OTU33 Unclassified Ruminococcaceae1 0.28 0.27 

OTU19 Coprococcus 0.34 0.35 

OTU136 Prevotella 0.06 0.13 

OTU29 Unclassified Succinivibrionaceae1 0.28 0.32 

OTU20 Ruminococcus 0.39 0.42 

OTU8 Turicibacter 0.88 0.91 

OTU38 Unclassified Prevotellaceae1 0.44 0.42 

OTU127 Unclassified Prevotellaceae1 0.20 0.13 

OTU1050 Unclassified Prevotellaceae1 0.42 0.32 

OTU44 Ruminococcus 0.32 0.19 

1Reliable depth of taxonomy is limited to family level (query sequence identical for at least 95%) 529 

2No taxonomic classification available (query sequence identical for at least 95%) 530 

  531 
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Table 3. Least squares means of the high and low feed efficiency (FE) groups during the 532 

experimental period (overall mean BW at start = 22 kg, overall mean BW at end = 121 kg) per 533 

diet by sex combination 534 

  FE groups   P-value 

Item Low High SEM BW start FE group 

CSM1 
     

ADG, g/d 894 1028 24 0.255 0.001 

ADFI, kg/d 2.28 2.19 0.07 0.123 0.357 

FE, g/g 0.39 0.47 0.01 0.057 <0.001 

CSF1 
     

ADG, g/d 909 1045 25 0.004 0.001 

ADFI, kg/d 2.41 2.38 0.06 0.001 0.724 

FE, g/g 0.38 0.44 0.00 0.243 <0.001 

WBM1 
     

ADG, g/d 899 1016 23 0.008 0.001 

ADFI, kg/d 2.27 2.18 0.06 0.003 0.274 

FE, g/g 0.40 0.47 0.00 0.051 <0.001 

WBF1 
     

ADG, g/d 931 992 27 0.499 0.120 

ADFI, kg/d 2.60 2.27 0.06 0.305 0.002 

FE, g/g 0.36 0.44 0.00 0.471 <0.001 

1CSM = male pigs fed a corn/soybean meal diet 535 

2CSF = female pigs fed a corn/soybean meal diet 536 

3WBM = male pigs fed a wheat/barley/by-products diet 537 

4WBF = female pigs fed a  wheat/barley/by-products diet 538 

   539 
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Table 4.  Abundancy and taxonomy (genus level) of the operational taxonomic units (OTU) in 540 

order of statistical contribution to the separation between high and low feed efficient (FE) boars 541 

fed a wheat/barley/by-product diet 542 

OTU ID 

  Percentage of total sequences 

Classification Low FE High FE 

OTU4 Lactobacillus 1.75 4.36 

OTU24 Roseburia 0.23 1.36 

OTU2 Unclassified Peptostreptococcaceae1 4.59 5.10 

OTU12 Unclassified Prevotellaceae1 0.89 1.34 

OTU3 Lactobacillus 1.71 1.60 

OTU244 Prevotella 3.96 2.60 

OTU5 Streptococcus 1.80 2.41 

OTU8955 Roseburia 0.01 0.45 

OTU1050 Unclassified Prevotellaceae1 0.95 0.16 

OTU9 Prevotella 6.43 4.73 

OTU3132 Roseburia 0.03 0.43 

OTU1 Clostridium 8.96 7.28 

OTU22 Roseburia 0.29 0.67 

OTU12472 Clostridium 0.47 0.95 

OTU41 Unclassified Prevotellaceae1 1.82 1.34 

OTU180 Ruminococcus 0.07 0.29 

OTU13 Roseburia 3.27 2.50 

1Reliable depth of taxonomy is limited to family level (query sequence identical for at least 95%)  543 

  544 
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Table 5. Abundancy and taxonomy (genus level) of the operational taxonomic units (OTU) in 545 

order of statistical contribution to the separation between high and low feed efficient (FE) gilts 546 

fed a wheat/barley/by-product diet 547 

OTU ID 

  Percentage of total sequences 

Classification Low FE High FE 

OTU2 Unclassified Peptostreptococcaceae1 5.35 5.27 

OTU10 Prevotella 0.65 2.00 

OTU55 Ruminococcus 0.24 0.82 

OTU13 Roseburia 2.80 1.76 

OTU4 Lactobacillus 4.25 3.14 

OTU49 Prevotella 0.97 0.32 

OTU6 Lactobacillus 4.21 2.45 

1Reliable depth of taxonomy is limited to family level (query sequence identical for at least 95%)  548 

  549 
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Figure 1. Relative abundance of 9 major bacterial phyla, classes and genera in the feces male 550 

(M) and female (F) of pigs fed a corn/soybean meal diet (CS) or a wheat/barley/by-products 551 

diet (WB). Data are mean percentage of total identified sequences. 552 

Figure 2.  Bray-Curtis distances for tested groups based on operational taxonomic units. A) 553 

Diet. Yellow = corn/soybean meal diet, orange = wheat/barley/by-products diet. B) Sex. Blue 554 

= male pigs, pink = female pigs. C-F) Feed efficiency. Green =  high feed efficiency, purple = 555 

low feed efficiency. C) Male pigs fed a corn/soybean meal diet, D) Female pigs fed a 556 

corn/soybean meal diet, E) Male pigs fed a wheat/barley/by-products diet, F) Female pigs fed 557 

a wheat/barley/by-products diet.  558 

Figure 3. Gaussian kernel density estimation of the discriminant function as result of the 559 

discriminant analysis of principle components for tested groups based on operational 560 

taxonomic units. A) Diet. Yellow = corn/soybean meal diet, orange = wheat/barley/by-products 561 

diet. B) Sex. Blue = male pigs, pink = female pigs. C-F) Feed efficiency. Green =  high feed 562 

efficiency, purple = low feed efficiency. C) Male pigs fed a corn/soybean meal diet, D) Female 563 

pigs fed a corn/soybean meal diet, E) Male pigs fed a wheat/barley/by-products diet, F) Female 564 

pigs fed a wheat/barley/by-products diet. 565 

Figure 4. Measured versus predicted feed efficiency by partial least squares regression based 566 

on significant operational taxonomic units found by discriminant analysis of principal 567 

components. A) Male pigs fed a wheat/barley/by-products diet. R2 = 0.14. B) Female pigs fed 568 

a wheat/barley/by-products diet. R2 = 0.11. Green =  pigs in high feed efficiency group, purple 569 

= pigs in low feed efficiency group.  570 
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