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Highlights: 10 

- The rationale to link crop modelling with genetics and biochemistry (the MGB 11 

framework) is presented; 12 

- Examples showing the synergy among the three disciplines are highlighted; 13 

- Experiences of practising this MGB framework so far are summarised; 14 

- The MGB framework best serves as a first step towards “Crop Systems Biology”. 15 

 16 

Abstract 17 

Genetics, biochemistry, and crop modelling are independently evolving disciplines; however, 18 

they complement each other in addressing some of the important challenges that crop science 19 

faces. One of these challenges is to improve our understanding of crop genotype-to-phenotype 20 

relationships in order to assist the development of high-yielding and resource-use efficient 21 

genotypes that can adapt to particular (future) target environments. Crop models are 22 

successful in predicting the impact of environmental changes on crop productivity. However, 23 

when critically tested against real experimental data, crop models have been shown to be less 24 

successful in predicting the impact of genotypic variation and genotype-by-environment 25 
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interactions exhibited in genetic populations. In order to better model gene-trait-crop 1 

performance relationships in support of breeding and genetic engineering programmes, crop 2 

models need to be improved in terms of both model parameters and model structure. We 3 

argue that integration of quantitative genetics and photosynthesis biochemistry with 4 

modelling is a first step towards a new generation of improved crop models. With genetic 5 

information and biochemical understanding incorporated, crop modelling also generates new 6 

insights and concepts that can in turn be used to improve genetic analysis and biochemical 7 

modelling of complex traits. This modelling-genetics-biochemistry framework (the MGB 8 

triangle framework) stresses the synergy among the three disciplines, and may best serve as a 9 

step to achieve the ultimate goal of the more broadly framed “Crop Systems Biology” 10 

approach to improve efficiency of both classical breeding and genetic engineering 11 

programmes. 12 

Keywords: complex phenotype, crop improvement, G×E, interdisciplinary approach, systems 13 

modelling. 14 

 15 

Introduction 16 

Since the first plant models, mainly on canopy photosynthesis, were created (de Wit 1959, 17 

1965; Duncan et al. 1967), crop modelling has experienced a phase of rapid development 18 

during the period from 1970-1990. Thereafter, progress has been steady, reflected in growing 19 

number of models as well as in developing model interfaces to promote model applications. 20 

Nowadays, crop models have widely been used in optimising crop management and in 21 

predicting the impact of environmental changes on crop productivity. Given the plethora of 22 

models, the is a growing interest to compare models and to examine the potential of using an 23 

ensemble of multiple models, for example, for better assessment of responses of major crops 24 

to climate change variables (e.g. Li et al. 2015). 25 
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 Another domain of model application is model-based plant breeding (Loomis et al. 1979). 1 

These models predict a complex crop trait by quantifying nonlinear responses of its 2 

component physiological processes to environmental variables, thereby dissecting the 3 

complex trait into its component traits. The component traits correspond to model-input 4 

parameters, and reflect effects of genetic origin. The other category of model inputs are soil 5 

variables, crop management options and daily weather data. The models, therefore, enable the 6 

formula in genetics: phenotype = f(genotype, environment) to be manifested, where f 7 

represents an overall model structure (including both algorithms and the connections between 8 

them) allowing for the interactions of component processes related to ontogeny-dependent 9 

phenological, morphological, and physiological characteristics. 10 

 The most illustrated application of using models in breeding is to propose crop ideotypes 11 

(e.g., Penning de Vries 1991; Aggarwal et al. 1997; Dingkuhn et al. 2015). However, most 12 

ideotyping studies do not consider their underlying genetic basis of model-input parameters 13 

(Stam 1998; Picheny et al. 2017) and, therefore, it remains a question whether the suggested 14 

ideotypes could be realised through actual breeding. Also, when critically tested against real 15 

experimental data, crop models have been shown to be less successful in predicting the 16 

impact of genotypic variation and genotype-by-environment interactions (G×E) on yield in 17 

breeding or genetic populations such as recombinant inbred line (RIL) populations (Yin et al. 18 

2000). In order to better model genotype-to-phenotype relationships in support of breeding 19 

programmes, crop models need to be improved in terms of both model parameters and model 20 

structure (Parent & Tardieu 2014). 21 

 To improve model parameters, on the general premise that model parameters are under 22 

genetic control, the parameters can be subjected to genetic analysis such as QTL (quantitative 23 

trait locus) mapping (Yin et al. 2000) or directly correlated with the allelic information of 24 

candidate genes (White & Hoogenboom 1996; White et al. 2008; Boote et al. 2016). Ideally, 25 
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the individual parameters are under simple and separate genetic control, and one set of 1 

distinct parameters can describe the phenotype of a genotype (Tardieu 2003). Achieving this 2 

may take several iterations between model parameterization and genetic analysis. Such 3 

iterations may yield new parameters or new sets of parameters. 4 

 Improved model parameters are often accompanied by improvements in model algorithms, 5 

and so, the iterative process between parameter estimation and genetic analysis also involves 6 

changes in model structure. Moreover, in recent years, genetic engineering or synthetic 7 

biology approaches to modify the genetic composition of crop genotypes have increasingly 8 

been put on the research agenda as a complementary approach to conventional breeding in 9 

order to improve crops at a faster pace (Long et al. 2015). To accurately assess the impact of 10 

genetic modification on the molecular and biochemical processes that underlie the phenotype, 11 

it is required to incorporate the understandings of relevant molecular biology and 12 

biochemistry into a crop model framework. As complex crop phenotypes are the consequence 13 

of multiple biological component processes that interact, the process of incorporating 14 

molecular and biochemical knowledge may facilitate an improvement of model structures to 15 

better deal with the subtle differences among genotypes within breeding populations.  16 

 Integrating crop modelling and genetics in order to quantify gene-trait-crop performance 17 

relationships in support of plant breeding has previously been discussed (e.g., Yin et al. 2004; 18 

Hammer et al. 2005). Here, we present a framework involving crop modelling, genetics as 19 

well as biochemistry, called the MGB-triangle framework (Fig. 1), within which information 20 

flows and mutual benefits among the disciplines are emphasised. The rationale for, and 21 

present examples of, integration of crop modelling, genetics, and biochemical photosynthesis 22 

modelling will be outlined. 23 

 24 

Role of genetics in crop modelling 25 
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Agronomic traits related to crop yield and resource use efficiency are complex in nature. Plant 1 

breeders, commonly relying on their own wit and experience plus some principles of 2 

quantitative genetics, identify subtle differences among genotypes exhibited in a genetic 3 

population in order to perform selection in moving the population mean towards the target 4 

phenotypes. Crop modellers perform simulation exercises to come up with suggestions (e.g., 5 

ideotypes) that they recommend breeders to use (Aggarwal et al. 1997). However, except for 6 

very few cases (e.g., Sinclair et al. 2016), direct experimental confirmation and objective 7 

comparisons of modelled suggestions with those already used in breeding programmes are 8 

rare. There are great concerns about this model-based approach from a geneticist’s point of 9 

view (Stam 1998). Apart from the practical problem that the majority of input parameters in 10 

most crop models are difficult to accurately phenotype (Parent & Tardieu 2014), a more 11 

fundamental issue is that the genetic basis of the model-input parameters is largely unknown. 12 

In designing an ideotype by modelling, model parameter values are largely defined based on 13 

the range of observed (phenotypic) variation rather than on their genetic variation. According 14 

to quantitative genetics, even the genetic components of a trait are multi-fold (additive effects, 15 

dominance, non-additive effects or epistasis), and the expression of these components 16 

depends on environmental conditions (G×E) and probably also on developmental stages. If 17 

the genetics of the traits have not yet been revealed and one is still relying on phenotypic 18 

information for assessing the genetic component, only the additive effects can be fixed by 19 

inbred breeding. A modelling approach often ignores the possible existence of constraints 20 

arising simply from the fact that little genetic variation exists in the genetic material available 21 

for and amenable to selection. Moreover, it is assumed in ideotype modelling that multiple 22 

modelled traits can be combined at will in a single genotype. This ignores the potential 23 

correlations between the traits, arisen either from a tight linkage between loci or from a single 24 

locus that affects multiple traits (pleiotropy). To effectively assist the development of efficient 25 
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breeding strategies, crop modelling should incorporate the genetic basis of model parameters 1 

determining crop productivity (Stam 1998). 2 

 White and Hoogenboom (1996) presented a model for bean (Phaseolus vulgaris L.), in 3 

which the genetic control of model parameters was considered. They applied linear regression 4 

to estimate values of more than 20 model-input traits from allelic information on seven 5 

candidate genes in the cultivars studied. A similar approach has been used by Messina et al. 6 

(2006) for soybean (Glycine max (L.) Merr.), by White et al. (2008), Brown et al. (2013) and 7 

Zheng et al. (2013) for wheat (Triticum aestivum L.), and by Boote et al. (2016) for common 8 

bean. Such an approach, however, assumes that all the traits were controlled by pleiotropic 9 

effects of the few candidate genes, ignoring the effects of possible additional trait-specific 10 

genes. Advances in quantitative genetics, by mapping trait-specific QTL using bi-parental 11 

mapping populations, can help to gain insight in the genetic basis of crop traits. Since the first 12 

modelling study incorporating QTL genetics using a RIL population (Yin et al. 2000), this 13 

QTL-based modelling is now becoming widely practised for a large number of traits across 14 

various species (see review of Yin et al. (2016) and references therein). 15 

 Genetic mapping approaches now go beyond bi-parental populations with broadening 16 

genetic background, for example, by creating the multi-parent advanced generation inter-cross 17 

lines using multiple genetically diverse genotypes (Huang et al. 2011). In addition, there is a 18 

growing number of studies pursuing GWAS (genome-wide association study) based on a 19 

high-density molecular marker set in a broad range of genotypes (e.g., McCouch et al. 2016; 20 

Kadam et al. 2017). This will provide unprecedented opportunities, not only to improve 21 

breeding efficiency via genomic selection based on genome-wide markers (Spindel et al. 22 

2015) or even via direct genome editing (Bortesi & Fischer 2015), but also to practise QTL- 23 

or gene-based crop modelling (Dingkuhn et al. 2017a,b). However, most of the existing 24 

modelling studies, either for bi-parental populations or for GWAS panels were implemented 25 
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for relatively simple crop traits (e.g., Quilot et al. 2005; Bogard et al. 2014; Uptmoor et al. 1 

2017). Using a bi-parental introgression line (IL) population produced through repeated 2 

backcrossing with the recurrent parent, Gu et al. (2014b) reported on QTL-based modelling of 3 

crop biomass and grain yield in rice (Oryza sativa L.) under drought and well-watered 4 

conditions, using an upgraded crop model GECROS, which was first described by Yin & van 5 

Laar (2005) and designed for modelling G×E interactions. While modelling yield differences 6 

among individuals of a genetic population was still a challenge (as first shown by Yin et al. 7 

2000), QTL were identified for each of seven input parameters of GECROS. The majority of 8 

these input parameters were very similar to the type of traits breeders usually score, like plant 9 

height, grain weight, time to flowering and time to maturity. The model-based dissection 10 

approach detected more markers/QTL than the analysis using only yield per se (Fig. 2). Every 11 

input-parameter correlation was mirrored by the co-localisation of QTL. Model-based 12 

sensitivity analysis ranked all markers for their importance in determining yield differences 13 

among the IL, and the marker ranking varied between drought and well-watered conditions. 14 

Simulation showed that virtual ideotypes based on markers identified by modelling had 19-15 

36% more yield than the virtual ideotypes based on markers for yield per se. This suggests 16 

that crop modelling can be enhanced by using information for genetic basis of the model-17 

input parameters, thereby yielding a powerful tool for marker design and ideotyping for 18 

improved crop yields under contrasting conditions.  19 

 20 

Role of crop modelling in genetics 21 

Many crop traits are intrinsically complex as a result from polygenic control, epistasis 22 

(interactions between genes), G×E, and age-dependent expression of genes and gene effects. 23 

Existing QTL analysis methods do not seem to have the power required to deal with these 24 

complexities. Support from other disciplines should be explored for improved QTL analysis. 25 
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Following are the areas where crop modelling can enhance genetics in analysing these 1 

complex traits.  2 

 3 

Dissection of a complex trait into simpler components 4 

For a complex crop trait, potentially numerous genes contribute to its genetic variation. 5 

However, the number of QTL for a trait detected with existing QTL-detection approaches is 6 

limited, because in mapping populations of moderate size many QTL effects are below the 7 

threshold of significance that filters for false positives. Instead of looking for QTL for a 8 

complex trait itself, determining QTL for its underlying simpler component traits might help 9 

to detect more of the relevant genetic factors. As just stated, Gu et al. (2014b) showed that the 10 

model-based dissection approach detected more markers/QTL than the analysis using only 11 

yield per se (Fig. 2). Similar results have been reported in many other studies (e.g., Prudent et 12 

al. 2011; Rebolledo et al. 2015). 13 

 14 

Analysis of the genetic basis for trait correlation 15 

Difficulties to manipulate crop traits also arise from the correlation between traits. Often it is 16 

difficult with existing genetic approaches to elucidate whether the correlation between the 17 

traits is due to the tight linkage of genes or to pleiotropy. However, some pleiotropic traits can 18 

be immediately inferred from physiological models. Crop models commonly relate to Amax 19 

(light saturated leaf photosynthesis) as a function of specific leaf nitrogen (amount of nitrogen 20 

in the leaf per unit leaf area), of which specific leaf area (SLA; area per unit of leaf dry 21 

matter) is a component; so, any correlation of these traits could be due to pleiotropy and 22 

increasing Amax could be at the cost of leaf expansion (Boote & Tollenaar 1994). Using crop 23 

modelling, Hammer et al. (2016) demonstrated the pleiotropic effect of stay-green and 24 

dwarfing in sorghum (Sorghum bicolor L.). Taller genotypes required more nitrogen for 25 
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structural stem tissue, leaving less available for leaves, which was more rapidly diminished by 1 

translocation to grain during grain-filling. Hence, the “stay-green” trait was expressed in the 2 

shorter genotypes as a result of genetic differences in plant height. In other cases, the trait 3 

correlations may be caused by the linkage of genes. For example, given the correlation 4 

between the two different traits early vigour and drought tolerance, Luquet et al. (2016) used 5 

a crop model to explore the theoretical margins for improving both early vigour and drought 6 

tolerance and suggested ideotypes without much trade-off between vigour and tolerance. 7 

 8 

Assisting to analyse age-dependent traits  9 

Many quantitative crop traits (e.g., plant height, SLA, tiller number, mass weight) have a 10 

dynamic behaviour, and their value at the end of growth is the consequence of the actions and 11 

interactions of many genes expressed during the entire ontogeny. Statistical approaches have 12 

been developed to detect QTL for such a dynamic process (e.g. Ma et al. 2002), assuming that 13 

growth follows a general sigmoidal curve. However, not each dynamic trait follows a 14 

sigmoidal trend. Most QTL studies on time-related traits do not rely on a model; instead, 15 

phenotypic data measured at sequential times are directly analysed either individually or 16 

jointly. One tricky aspect for these analyses is the difference in physiological stage among 17 

individuals of a mapping population at the particular time that phenotyping is performed. For 18 

instance, when flowering time varies within a population, a particular phenotyping day may 19 

correspond to vegetative stage for one individual while others may already be in the 20 

reproductive stage. It would be preferred to measure at the same physiological stage for all 21 

individuals. This is practically impossible if phenotyping needs to be done at stages that are 22 

not marked as clearly by morphological changes as spike initiation or flowering. Use of a crop 23 

development model to synchronize the measured data for the same phenological stage is a 24 

highly useful alternative for such analyses. This was shown in the study of Yin et al. (1999) 25 
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for SLA of barley (Hordeum vulgare L.). When the SLA of each measurement time was 1 

directly subjected to QTL analysis, a major dwarfing mutation, the denso gene segregating in 2 

their mapping population (mapped on chromosome 3) was found to affect SLA strongly at all 3 

six measurement times. When the SLA of the different RIL was re-scaled for differences in 4 

phenological stage at the time of measurement using a development model, the effect of the 5 

denso gene was no longer significant during the pre-flowering stages. The effect of the denso 6 

gene on the SLA in the vegetative stage was therefore the result of its direct pleiotropic effect 7 

on the pre-flowering duration, which was confirmed by the detection of a flowering time QTL 8 

at the same genetic location. Other minor QTL detected also differed between the two 9 

approaches. This analysis underlines the importance of applying crop modelling in QTL 10 

analysis of this type of time-dependent traits. 11 

 12 

Modelling of genotype-by-environment interactions 13 

In the classical G×E models in quantitative genetics, the mean phenotype value of genotypes 14 

in each environment is used as a measure of environmental quality. Similar consideration has 15 

been made to detect QTL×E using multiple environment data. However, this limits the 16 

capability of predicting phenotypes across other independent environments, since these early 17 

statistical genetic models lack explicit physical measures of the environment (such as 18 

temperature) as input. 19 

 To use the information of physical environments, statistical linear models have been 20 

proposed that allow G×E and QTL×E to be modelled directly as a function of environmental 21 

variables (van Eeuwijk et al. 2001). The success of this approach relies on whether the correct 22 

physical environmental factors are included and whether used values of these environmental 23 

factors match the relevant growth periods. Obviously, the correct choice of physical 24 

environmental factors and their values requires in-depth knowledge of crop physiology for the 25 



11 
 

traits under study. Even when the choice is made correctly, the power of the factorial 1 

regression can be limited because the phenotype of complex crop traits, as stated earlier, is 2 

achieved through interactive and ontogenetic responses of multiple underlying processes to 3 

multiple environmental variables having temporal dynamics and spatial profiles. 4 

 Mangin et al. (2017) showed that crop models can help to develop “stress indicators” that 5 

explain yield variation across multiple environments, thereby assisting the identification of 6 

relevant QTL for yield in response to environmental stresses. However, a more direct use of 7 

crop models is to let G×E be predicted in any new environment. The concept for this 8 

physiological G×E model approach has been illustrated for a number of simple traits in many 9 

species, under diverse environmental scenarios. For example, Reymond et al. (2003) used a 10 

simple model for maize (Zea mays L.) leaf elongation rate, expressed as mm (°C.d)-1 based on 11 

meristem temperature, which was established as a linear function of both meristem-air water 12 

vapour pressure deficit and soil water potential. A QTL analysis was performed on both the 13 

intercept and slopes of this linear model, assuming both additive and epistatic QTL actions. 14 

Most QTL were specific for one parameter only. Each parameter was then computed from the 15 

sum of its QTL effects, resulting in QTL-based model parameters. The predictions of leaf 16 

elongation rates using original parameter values were comparable with those using QTL-17 

based parameter values. For 11 RILs and the two parental lines that were not included for 18 

QTL analysis, the QTL-based model accounted for 74% of phenotypic variability of leaf 19 

elongation rates. In the context of genomic selection, Onogi et al. (2016) even showed that 20 

compared with a pure statistical “genomic prediction” model, the approach that integrates 21 

genomic prediction with an ecophysiological model gave more accurate predictions across 22 

multiple environments. 23 

 24 

Modelling of epistasis 25 
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The value of crop models lies also in manifesting epistatic effects of component trait QTL on 1 

yield, as epistasis is often found in phenotypes that are the result of nonlinear interactions 2 

among multiple component processes integrated over ontogenetic stages. Through model 3 

simulation, Chapman et al. (2003) showed that complex epistatic effects for yield were 4 

generated even though individual genes had been defined as simple additive effects on 5 

component model-input traits. Whether this reflects true epistasis needs to be confirmed in a 6 

more specific study, but the simulation does indicate the potential of using crop models to 7 

predict epistasis on a physiological basis. 8 

 Recently, Technow et al. (2015) reported on the power of using crop modelling in 9 

enhancing whole-genome prediction in plant breeding. Purely statistical methods have been 10 

shown to deliver good predictions in the most common settings, such as prediction of across-11 

environment performance for traits with additive gene effects. However, prediction of traits 12 

with non-additive (epistatic) effects continues to be challenging. Crop models can potentially 13 

explain certain types of non-additive gene effects, in addition to the impact of G×E, on the 14 

expressed phenotype. Combined with approximate Bayesian computation, which allows the 15 

incorporation of crop models directly into the estimation of whole genome marker effects, 16 

Technow et al. (2015) provided a proof of concept study and demonstrated that this novel 17 

approach can be considerably more accurate than the statistical method in predicting 18 

performance in environments for traits determined by non-additive gene effects. This provides 19 

additional evidence that incorporating crop models into whole-genome prediction is a very 20 

promising approach to improving prediction accuracy for some of the most challenging 21 

scenarios in plant breeding and genetics. However, other approaches can potentially take this 22 

a step further: direct resolution of epistatic effects of individual genes was shown to be 23 

possible via modelling of the phenotype, such as Arabidopsis flowering time, based on 24 

inclusion of molecular regulatory networks (e.g., Welch et al. 2003; Chew et al. 2014). 25 
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 1 

Role of biochemistry in crop modelling 2 

To effectively address some recalcitrant genetic questions such as the effects of epistasis and 3 

G×E for complex traits at the crop level, crop models have to be biologically robust. Our 4 

experience over the last >15 years in QTL-based crop modelling suggests that crop models 5 

built upon traditional agronomic and crop physiological concepts can hardly resolve such 6 

subtle differences among genotypes (Yin et al. 2000). There is a common awareness that 7 

current models need to implement more mechanistic algorithms (Boote et al. 2013; Hammer 8 

et al. 2010), given that crop modelling as a discipline increasingly faces questions that can be 9 

solved only in combination with fundamental plant (molecular) biology. 10 

 However, opinions differ with regard to the extent of model details that should be brought 11 

to crop models. Some tend to stress the need to bring together pieces of biological details to 12 

form crop or ecosystem models (e.g. Zhu et al. 2016), following the bottom-up approach for 13 

systems biology models that was earlier advocated (Minorsky 2003). Others emphasised a 14 

top-down approach, in which a meta-mechanism is designed to exhibit reliable predictive skill 15 

at the crop level while also introducing sufficient rigour for complex phenotypic responses to 16 

become emergent properties of model dynamics (Hammer et al. 2004; 2016). Chew et al. 17 

(2017) proposed an intermediate approach on the basis that both crop science and systems 18 

biology have some elements of the other and that they have an overlapping goal in assisting 19 

crop improvement. In our view, crop model development itself is an evolving process. On the 20 

one hand, we need to make sure that the model is capable of predicting the crop-level traits 21 

reliably; on the other hand, models could be improved one step at a time, with the 22 

advancement of our understanding of individual processes and how these interact. To that 23 

end, use of well-established knowledge in biochemistry is a first step towards crop model 24 

improvement. This may not necessarily involve the modelling of biochemical processes per 25 
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se; it is more important to incorporate the essential results of biochemical analysis or the end 1 

equations of biochemical modelling into crop models. 2 

 The idea to use biochemistry in this way for crop modelling is not entirely new. The 3 

outcome of the exhaustive work of Penning de Vries et al. (1974) on the costs of biochemical 4 

pathways for biosynthesis has long been used as growth respiration coefficients in crop 5 

models in which canopy photosynthesis and crop respiration are explicitly modelled. So, it is 6 

a bit surprising that the other basic process, photosynthesis, is still modelled in the form of 7 

empirical light response curves in most of these crop models. Other crop models bypass both 8 

photosynthesis and respiration, and use the coarse-grained concept of radiation use efficiency 9 

(RUE), for simulation of biomass production from intercepted light. However, short-term 10 

RUEs are hard to measure accurately, and often an overall RUE is determined as the linear 11 

slope of plotting biomass versus cumulative light interception in time. This approach ignores 12 

the expected subtle variations of RUE with development stage and radiation intensity. 13 

 A biochemical model of C3 photosynthesis was well-described and derived for its details 14 

(Farquhar, von Caemmerer & Berry 1980, the FvCB model hereafter). Because its end 15 

equations are few and simple, the model has been widely used, from analysing leaf 16 

biochemistry to predicting the impact of global change on ecosystem functioning. Crop 17 

modellers sometimes argue that the FvCB model has a large number of input parameters to 18 

estimate, and estimating these parameters for various species is challenging and time 19 

consuming. However, many of these parameters can in most cases be assumed to be 20 

conserved among crop species. Yin & Struik (2017a) recently summarised representative 21 

parameter values of the FvCB model for C3 species and its equivalent model for C4 species 22 

coupled with intra-leaf CO2 diffusion models.  23 

 The advantages of the FvCB-type models, compared with empirical light response curve 24 

models, are multi-fold. First, the FvCB model can correctly predict the interaction of multiple 25 
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environmental variables (like ambient CO2 concentration and temperature) with (sub-) 1 

photosynthetic parameters (Yin & Struik 2010), which is the basis for correctly modelling the 2 

impact of the interaction of these variables on more general parameters like RUE. Secondly, 3 

various model versions exist, and therefore this type of model is flexible, depending on the 4 

modelling objectives of users. For example, the simplest version is not to consider the details 5 

for CO2 diffusion into the carboxylation sites of Rubisco (e.g. van Oijen et al. 2004) and this 6 

was successfully used in the context of developing a simple framework to analyse constraints 7 

to potential solar energy conversion efficiency in annual crops (Yin & Struik 2015). Thirdly, 8 

once the FvCB-type biochemical models are incorporated, application of crop models can be 9 

broadened to assess the impact of altered biochemical targets via genetic engineering, which 10 

is probably the only way to supercharge crop yields to a level of 50% or higher that can 11 

hardly be achieved by conventional breeding (Mitchell & Sheehy 2006; Long et al. 2015).  12 

 Using the new version of the GECROS crop model in which the FvCB model and its C4 13 

equivalent coupled with intra-leaf CO2 diffusion models are included, we recently conducted 14 

a comprehensive analysis of the potential of genetic engineering towards improved leaf 15 

photosynthesis for increasing C3-crop productivity (Yin & Struik 2017a). Of the nine 16 

engineering routes of enhancing photosynthesis, comprised of exploiting mesophyll 17 

conductance, Rubisco specificity, C4 mechanisms, and cyanobacterial CO2-concentrating 18 

mechanisms (CCM), only the complete mechanism that combines improved CCM, improved 19 

photosynthetic capacity and improved quantum efficiency, brings an advantage of ≥50% 20 

under any environmental conditions (Table 1). The need for the combination of routes and 21 

making a combination that works in concert means that supercharging crop productivity via 22 

engineering may be a long shot. Additional analysis showed that manipulating photosynthesis 23 

may result in unwanted secondary effects on other traits at the crop level, e.g., inducing faster 24 

senescence if nutrient uptake is not increased (Yin & Struik 2017a). These results have 25 



16 
 

important implications for crop models in playing a translational role from photosynthesis 1 

biology to crop science. On the one hand, there is a need for simple yet robust biochemical 2 

model algorithms that are amenable for linking up with crop models. On the other hand, there 3 

should be an overarching framework that enables a reliable operation of modules to generate 4 

emergent properties of whole-crop dynamics. The previous predictions by photosynthesis 5 

physiologists did not use a crop model as such an overarching framework, and may have been 6 

overestimating the beneficial effect of the routes to engineer for high photosynthesis on crop 7 

productivity (see Discussion of Yin & Struik 2017a). 8 

 9 

Role of crop modelling in biochemistry 10 

The simulation study of Yin & Struik (2017a) has already indirectly shown the value of crop 11 

modelling for correctly assessing the potential impact of altered photosynthetic biochemical 12 

parameters or pathways on crop yield. There are more examples for the impact of crop 13 

modelling approaches on addressing questions in biochemistry. One of the crop modelling 14 

approaches over the decades is to develop generic models that could be applied to various 15 

species or environments (e.g. Spitters et al. 1989; Wang et al. 2002; Yin & van Laar 2005). 16 

Inspired by the generic modelling philosophy, Yin et al. (2004) extended the FvCB model 17 

with the generalised algorithms describing electron transport limited photosynthetic rates. 18 

 The original FvCB model assumes that 100% of electrons transported along the whole 19 

chain (the linear electron transport (LET)) are used in support of CO2 fixation and 20 

photorespiration, thereby ignoring possible alternative electron transport routes. The model 21 

has two forms of equations for electron transport limited rate of CO2 assimilation depending 22 

on whether it is NADPH or ATP supply that causes electron transport to limit CO2 23 

assimilation. These two forms were used, randomly by large, in many applications without 24 

knowing the underlying assumption of the model forms. Yin et al. (2004) developed 25 
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analytical algorithms to account for cyclic electron transport around Photosystem I (CET) and 1 

pseudocyclic electron transport (PET), the two alternative routes of electron transport that 2 

may act in concert with LET to permit flexibility in the ratio of NADPH and ATP synthesis to 3 

meet the variable demands of carbon assimilation and photorespiration. These two widely 4 

used forms of the original FvCB model represent the most and least efficient electron 5 

transport stoichiometry, respectively, among the forms covered by the extended model. In 6 

addition, this generalized model accounts for the difference in electron transport efficiency 7 

between two photosystems and integrates other basic elements of steady-state photosynthesis.  8 

 The model reveals that even within the electron transport-limited range the relationship 9 

between quantum yields of CO2 assimilation and Photosystem II photochemical efficiency is 10 

linear only if the latter varies in proportion with Photosystem I photochemical efficiency. 11 

More importantly, the generalised model can be used to assess any occurrence of alternative 12 

electron transport and to answer ‘what-if’ questions with respect to uncertain or unmeasured 13 

parameters, based on combined gas exchange and biophysical measurements (e.g., 14 

chlorophyll fluorescence). As long as current biophysical measurements are accurate, the 15 

analysis using the generalised model (Yin et al. 2006) supports the possible in vivo occurrence 16 

of CET and basal PET even under limiting irradiance (about 10% of the total electron flux for 17 

each). Sensitivity analysis, which is a common exercise in crop modelling, showed that CET, 18 

rather than PET, is a major ‘brake’ for LET to accommodate the balance between quantum 19 

efficiencies of electron transport and of CO2 assimilation (Fig. 3). These results, while still 20 

subject to testing because of the measurement uncertainties with current equipment, are 21 

important because unlike LET, CET is cyclic in nature and therefore, cannot be directly 22 

detected experimentally. The generalised model therefore is a tool to indirectly infer the 23 

stoichiometries, bioenergetics and regulation of photosynthesis under different environmental 24 

conditions, based on easily implemented measurements.  25 



18 
 

  The generalised model was found later to be applicable to C4 photosynthesis, with only 1 

two additional parameters required (Yin & Struik 2012). An analysis using the model showed 2 

that compared with C3 photosynthesis, the most striking stoichiometry in the malic enzyme C4 3 

species (e.g., C4 crops like sorghum and maize) is its higher fraction for CET, required for the 4 

operation of CCM in C4 photosynthesis. Due to the higher CET, C4 leaves might have a lower 5 

energy loss via dissipation as heat compared with C3 leaves (Yin & Struik 2015). This 6 

contributes to the more linear light response in C4 than in C3 photosynthesis, which has a 7 

strong implication on canopy photosynthesis. Because of this difference in the curvature of 8 

the light response, the canopy-to-leaf photosynthesis ratio, the benefit from the optimum leaf-9 

nitrogen profile in the canopy and the productivity gain from improvement in canopy 10 

architecture were shown to be higher in C3 than in C4 species (Yin & Struik 2015). 11 

 These new insights at both leaf and canopy level all come from the generalised modelling 12 

of electron transport limited photosynthesis, and are impossible to obtain with the original 13 

FvCB model. A similar gain in insight was shown for mesophyll conductance in leaves (Yin 14 

& Struik 2017b). We expect that in future there will be more examples of new biochemical 15 

understanding obtained by using crop modelling concepts. 16 

 17 

Genetic mapping of biochemical parameters and making the MGB framework work  18 

As stated earlier, many biochemical parameters are most likely conserved among plant 19 

species and even more among genotypes within a crop species. However, there is evidence 20 

that some biochemical parameters of the FvCB model, Vcmax (Rubisco carboxylation capacity) 21 

and Jmax (light saturated capacity of LET), vary among cultivars in wheat (Driever et al. 2014) 22 

and soybean (Koester et al. 2016). Similarly, there has been a report of variation in mesophyll 23 

conductance (gm) among genotypes in wheat (Jahan et al. 2014; Barbour et al. 2016) and in 24 

rice (Adachi et al. 2013). Questions arising then are whether it is possible to genetically map 25 
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these biochemical parameters, and, if so, whether biochemical models could be explored to 1 

assist genetic design for improved photosynthesis and related traits. 2 

 A practical problem is that these biochemical parameters cannot be estimated from any 3 

high-throughput phenotyping, but only from intensive measurements on CO2- and light-4 

response curves of leaf photosynthesis and electron transport efficiency; so these parameters 5 

cannot be phenotyped for a large number of genotypes. To that end, it is preferable to use a 6 

population of ILs that differ in a relatively few number of loci, despite some drawbacks of 7 

ILs. Gu et al. (2012b) reported a study using rice IL genotypes, in which combined gas 8 

exchange and chlorophyll fluorescence data were collected for entire CO2- and light-response 9 

curves of leaf photosynthesis (A), with which biochemical and physiological parameters of a 10 

combined conductance-FvCB biochemical photosynthesis model were estimated. Because 11 

measuring entire response curves is time consuming, 13 lines (including the two parents) were 12 

carefully selected as representatives of the population, based on the QTL for Amax earlier 13 

reported by Gu et al. (2012a). The curves were assessed at two stages (flowering and grain 14 

filling) for plants grown under moderate drought and well-watered conditions (Gu et al. 15 

2012b). Using these curves, photosynthesis was then quantitatively dissected into six different 16 

component traits: stomatal conductance (gs), mesophyll conductance (gm), biochemical 17 

capacity parameters (Vcmax, Jmax), electron-converting efficiency under limiting light (κ2LL), 18 

and shape factor (θ) for the hyperbolic minimum of light limited and saturated electron 19 

transport. Note that “component traits” are a relative term as some of these traits can be 20 

further dissected if more measurements are available. Although the effects of development 21 

stage and water supply on photosynthesis were predominant, significant genetic variation in 22 

the six parameters was found. Genomic regions linked to the variation of these biochemical 23 

parameters were identified. Genetic variation in Amax and TE (transpiration efficiency) was 24 

mainly caused by variation in gs and gm, which suggests more efforts should be focused on gs 25 
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and gm in rice breeding programmes for improving photosynthesis and TE. Gu et al. (2012b) 1 

thus showed that relationships between these photosynthetic parameters and leaf nitrogen or 2 

dry matter per unit area, which were previously found across environmental treatments, were 3 

also valid for variation across genotypes.  4 

 Gu et al. (2012b) next used the biochemical model to evaluate the potential of utilizing the 5 

genetic variation in the six parameters, and to explore the genetic design of ideotypes for 6 

improved leaf-level photosynthesis (A) and transpiration efficiency (TE), by combining 7 

alleles positively influencing different components of photosynthesis. Model calculations 8 

showed that these ideotypes can potentially improve photosynthesis and TE significantly, 9 

compared with the best genotype of the 13 lines investigated. It was also shown that if the 10 

correlation between gm and gs was not due to pleiotropy but due to a genetic linkage that 11 

could be broken, both photosynthesis and TE could be improved simultaneously, despite the 12 

common negative correlation between A and TE.  13 

 Next, Gu et al. (2014a) examined the extent to which natural genetic variation in 14 

biochemical parameters can contribute to increasing rice productivity. Using the crop model 15 

GECROS, they analysed the impact of genetic variation in A on crop biomass production, 16 

based on the QTL for various biochemical photosynthetic components within their rice IL 17 

population. Such an analysis best showcased the MGB framework (Fig. 1) as a whole. The 18 

genetic variation in A of 25%, created by 20-50% variation in biochemical parameters, can be 19 

scaled up almost equally to crop level, resulting in a potential increase in biomass of 28-29% 20 

across different locations and years (Table 2). Using the simulation results, multiple 21 

regression analysis showed that the genetic variation in κ2LL contributed most to the variation 22 

in total biomass, followed by gs and gm. This was probably because the genetic variation in A 23 

of this rice population resulted not only from Rubisco-limited photosynthesis but also from 24 

electron transport-limited photosynthesis; as a result, photosynthetic rates could be improved 25 
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more from increasing both light-saturated and light-limited leaves in the canopy. This study 1 

demonstrates the potential of improving rice productivity by mining the natural variation in 2 

existing germplasm, especially the variation in parameters determining light-limited 3 

photosynthesis. The genetic variation of these parameters still needs more experimentation to 4 

investigate as photosynthesis under light limitation is generally conservative. Nevertheless, 5 

this result echoes the analysis of Yin & Struik (2017a) of the simulated impact of genetic 6 

engineering routes on the importance of improving quantum efficiency in addition to the 7 

usually emphasised CCM and photosynthetic capacity. 8 

 9 

Concluding remarks 10 

Productivity of major crops has to increase at a greater pace in the coming decades than 11 

before, in order to ensure food and energy security for a growing and increasingly demanding 12 

population while guarding against the negative impact of increasing threats under global 13 

climate change (Fischer et al. 2014). Crop model based simulation studies can provide useful 14 

information for breeders to better design their breeding strategies and to improve their 15 

selection efficiency. For that, crop models should be robust, being able of handling the subtle 16 

gene-trait-crop performance relationships. In this paper we propose a MGB triangle 17 

framework to improve both model structure and parameters. The experience so far in 18 

practising this framework reveals that: 19 

- Crop models may be structured to allow that model parameters can be easily estimated 20 

from the type of traits breeders usually score, and future model design should recognise 21 

the potential boost that high-throughput phenotyping techniques can give for estimating 22 

model parameters. 23 
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- Such parameters are amenable to QTL analysis, allowing the genetic effects to be 1 

incorporated into crop models to overcome the limitations of model-based ideotyping 2 

exercises that ignore the genetic basis of these parameters. 3 

- Bringing biochemistry to crop models not only creates opportunities to upgrade model 4 

structure but also allows identifying genetic engineering targets and optimising 5 

engineering routes for improved crops. 6 

- While bringing in biochemical modules, they should function within an overarching 7 

model framework or meta-mechanism in the crop model that enables a reliable 8 

operation of these modules to generate emergent properties of whole-crop dynamics; in 9 

silico biochemical modules, when acted alone, can over-estimate the beneficial effect of 10 

engineering routes on increasing crop productivity. 11 

- Genetic engineering of a single biochemical route likely alters one photosynthetic 12 

parameter, whereas natural variation of photosynthesis can arise from multiple 13 

parameters, e.g., either from Amax or from light use efficiency. Combined exploitation of 14 

both Amax and light use efficiency parameters with CCM is more effective than 15 

exploring a single route for improving crop yields.  16 

- Principles or philosophy of crop modelling can enhance genetic analysis and elucidation 17 

of biochemical mechanisms.  18 

The above experiences suggest that the interdisciplinary MGB framework generates new 19 

insights into the control of complex crop traits that can otherwise be hard to obtain if M, G, 20 

and B are practised independently. Previously, “Crop Systems Biology” was proposed to 21 

integrate applied crop science and a broader range of fundamental plant biology (genetics, 22 

biochemistry, genomics, and molecular biology) for achieving the cross-fertilisation among 23 

relevant disciplines (Yin & Struik 2007; 2008; 2010; 2016), and this has been identified as 24 

one of the three cornerstone scope domains of the European Society of Agronomy 25 
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(http://www.european-agronomy.org/scope.html). The MGB triangle approach outlined here 1 

may serve as a first step for achieving the ultimate goal of “Crop Systems Biology” to better 2 

assist crop improvement, given the already shown mutual benefits between crop modelling 3 

and genetics and biochemistry.4 
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Table 1 The percentage of increase (%) of the 31-year average aboveground biomass by nine photosynthesis-enhancing routes, relative to 
that for the default C3-photosynthesis route, in rice crop simulated by the GECROS model for the present climate and the 2050 climate, either 
under potential or water-stress environments, in three representative sites (tropics: Los Baños in Philippines; subtropics: Nanjing in China; 
temperate: Shizukuishi in Japan). Based on Yin & Struik (2017a) 

Site Los Baños Nanjing Shizukuishi 
Production 
level 

Potential  Water limited Potential  Water limited Potential  Water limited 

Climate§ Present 2050 Present 2050 Present 2050 Present 2050 Present 2050 Present 2050 

Route† 

1  4.3 2.5 4.8 3.1 4.2 2.6 4.5 4.1 4.3 2.7 4.5 4.1 
2 8.8 8.0 7.5 6.8 9.3 8.5 11.7 9.7 9.2 8.1 11.0 9.2 
3 12.9 9.9 13.6 12.5 14.0 10.8 16.8 13.8 13.5 10.2 15.5 14.0 
4 10.4 4.1 12.4 6.4 8.0 3.9 11.8 6.2 14.8 8.3 19.2 10.4 
5 7.6 -0.8 26.6 13.6 5.0 -2.4 24.5 11.6 7.0 -0.7 26.6 14.9 
6 38.0 23.1 51.2 33.8 33.0 21.9 50.5 34.1 39.8 25.4 54.5 36.0 
7 5.4 1.6 9.1 5.2 4.5 0.8 10.6 6.0 5.5 2.1 11.3 7.7 
8 17.9 10.5 39.7 28.7 18.1 10.7 39.9 27.9 19.1 11.3 38.7 28.1 
9 70.1 57.5 78.5 61.2 63.2 51.3 74.8 57.9 60.8 49.0 73.8 57.4 

§ Present climate: based on weather data of 1980-2010 (the baseline), with the atmospheric [CO2] of 400 µmol mol-1; 2050 climate: air 
temperature 2°C higher than the baseline weather, with the atmospheric [CO2] of 550 µmol mol-1. 

† Route numbers are defined as: 1 – improved mesophyll conductance; 2 – improved Rubisco specificity; 3 – combined routes 1 and 2; 4 – C4 
biochemistry engineered; 5 – C4 anatomy for CO2 concentrating mechanism (CCM) engineered; 6 – combined routes 4 and 5 (i.e. the 
complete C4 mechanism); 7 – cyanobacterial bicarbonate transporters engineered; 8 – a more elaborate cyanobacterial CCM (based on 
‘carboxysome’) added; 9 – a complete cyanobacterial mechanism engineered that combines the low ATP cost of cyanobacterial CCM and 
the high photosynthetic capacity per unit leaf nitrogen. 
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Table 2. The minimum, maximum, and population mean of the traits: biochemical FvCB-model 
parameters, leaf photosynthesis, canopy photosynthesis, and crop biomass yield simulated by using the 
GECROS model. Based on Gu et al. (2014a) 

 
Trait Min Max Mean Variation (%) a 

Biochemical 
level 

κ
2LL 

(mol mol-1)
 

0.27 0.37 0.32 29.8 

J
max

(µmol m-2s-1) 136.5 167.1 147.5 20.7 

θ 0.72 0.92 0.79 24.5 

V
cmax

(µmol m-2s-1) 109.6 152.7 124.8 34.6 

δ
m  

b 0.73 0.91 0.88 20.3 

δ
s  

b 0.81 1.36 1.11 49.5 

Leaf level 
(µmol m-2s-1) 

A
100 

c 2.9 4.1 3.6 31.4 

A
2000

 c 19.3 25.0 22.4 25.6 

Canopy level  
(g CO2 m

-2 d-1) 
Ac,LAI=1

 d 25.5 33.2 28.9 26.4 

Ac,LAI=5
 d 78.7 101.7 89.2 25.8 

Crop level  
(g m-2) 

BY
BJ 

e 2092 2775 2436 28.0 

BY
LB

 e 2049 2748 2409 29.0 

a Variation (%) is defined as ((max – min)/mean) × 100;  
b δm and δs are intra-leaf CO2 diffusion model parameters proportional to mesophyll conductance (gm) 
and stomatal conductance (gs), respectively; 
c A100 and A2000 are leaf photosynthesis rates when incoming irradiance is 100 and 2000 µmol m-2 s-1, 
respectively; 
d Ac,LAI=1 and Ac,LAI=5 are daily canopy photosynthesis rates under high-light conditions when LAI is 1 
and 5 m2 m-2, respectively; 
e BYBJ and BYLB are biomass yield simulated for growing season in Beijing, China (temperate climate) 
and Los Baños, Philippines (tropical climate), respectively. 
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Figure 1 The MGB triangle framework linking crop modelling (M), quantitative genetics (G), and 
biochemistry (B). Single-headed arrows indicate roles of one discipline for another and the double 
headed arrow indicates the mutual role of the two disciplines involved. Specific aspects of these roles 
and their rationales, as indicated in numbers in the framework, include: (1) using approaches in 
genetics to elucidate genetic basis of model-input parameters, (2) using models to assist genetic 
analyses of complex traits and trait correlations, (3) introducing biochemical modules to make crop 
models more biologically rigorous, (4) employing crop modelling philosophy to extend biochemical 
models for enhanced biological insights, and (5) genetic mapping of biochemical parameters and 
possible use of biochemical or molecular regulatory network to unravel genetic epistasis. Details are 
discussed in the text.   
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Figure 2 Genome positions of QTL for yield per se (red) under either well-watered or drought 
conditions and of QTL for input parameters of the GECROS crop model (SW, seed dry weight; nSO, 
seed (storage organ) N concentration; Hmax, maximum plant height; mV, minimum days for vegetative 
growth phase; mR, minimum days for reproductive growth phase; Sla, specific leaf area for newly 
appearing leaves; Nmax, total crop N uptake), mapped on 12 chromosomes using a rice introgression 
line (IL) population. Based on Supplementary material of Gu et al. (2014b). 
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Figure 3 Analysis of sensitivity for 
the fraction of cyclic electron transport 
(fcyc) and fraction of basal 
pseudocyclic electron flow (fpseudo(b)), 
estimated using the generalised FvCB 
model, in response to some uncertain 
factors: (a) the fraction of non-
photosynthetic quantum absorption in 
the leaves, and (b) the ratio of the true 
photosystem II efficiency under 
limiting light (Φ2(LL)) to the apparent 
maximum photosystem II efficiency 
(Fv/Fm) measured by chlorophyll 
fluorescence – here the ratio used to 
quantify the extent, to which Fv/Fm 
represents Φ2(LL). Reproduced from 
Yin et al. (2006). The sensitivity of the 
estimated fcyc was always higher than 
that of fpseudo(b) to a change in these 
uncertainties, suggesting that the 
estimate of cyclic electron transport 
(CET) will be more prone to 
uncertainties in the inputs than the 
estimate of pseudocyclic electron 
transport (PET). This also suggests 
that that if CET and PET run in 
concert, CET probably acts as a more 
active brake for LET to avoid or 
minimise any mismatch between 
measured quantum efficiency for CO2 
assimilation (ΦCO2) and Φ2(LL), even 
under the limiting light condition. 
Nowadays, the importance of CET in 
regulation of photosynthesis, even in 
C3 species, is increasingly becoming 
recognized (e.g., Shikanai 2014). 

  


