To be or not to be a biobased commodity

Wolter Elbersen

Geertruidenberg 13 maart 2018

Biomass vision:

We need to mobilize biomass for current and future demands

→ Develop biomass commodities!

• We need biomass commodities for thermal conversion <u>and</u> for second generation biofuels and chemicals.

Not only wood. Herbaceous biomass is underutilized – Often causing pollution problems – how much can be used for biobased applications?

Top 10 crops in the world		Total field	Total mill				
	Million hectares	Million ton DM crop residue	e per year				
Maize	185	1,038					
Rice, paddy	163	816					
Wheat							
Sugar cane	What part can we mobilize? Can we recycle the nutrients? What part is needed for the soil?						
Oil Palm							
Barley							
Sorghum	·						
Sunflower seed	25	66	8				
Millet	31	43					
Seed cotton	35	35					
Sum:	800	3,459	316				
All crops worldwide:	1,414						

Where should a lignocellulose Biorefinery be located?

Location:	Near the biomass	At a large harbour
Factor		
Cost of biomass	+	-
Biomass security of supply	-	+
Availability of Infrastructure	-	+
Maximum scale	_	+
Availability of personnel / expertise	-	+
Value or residues	-	+
Sum	1+	5+

To be or not to be a Biobased Commodity

	Real commodity	Not a commodity			
density, dry, low volume, low ash, nutrient		Not easy to transport			
		Not fungible			
quality		No broad standards			
		No functioning markets or trade			
	Standardised transport, contracting, standard insurance, etc.	Trust needed between producer and buyer			
Standard conversion systems		One on one relations between producer			
	Functioning markets:	and buyer			
	Trade systems, Financial instruments	Vertical integration			
	(futures, etc.)	Less security of supply lager			
	High tradability	High transaction costs			
	Sustainability	Inefficient			
	Standard certification systems				
		5			

How to get there?

- Develop local biorefinery systems with relatively small economy of scale (30.000 ton per year) to remove nutrients, protein and water and produce a <u>lignocellulosic commodity</u>
- Define only a few biomass commodities that cover
 - All lignocellulosic biomass types (wood, EFB, trunks, grass, straw, bagasse, etc.)
 - All applications: heat, co-firing, biorefinery, etc.
- Set wide standards (if possible) and avoid frivolous demands
- Involve all players in the production chain (biomass producers, machine builders, regulators, insurers, bankers, transport, final users)

Trash vs Bagasse quality

		Bagasse					
	Dry leaves	Green leaves	Tops				
	% of DM weight						
Ton DM per hectare	11.8	1.6	0.3				
Moisture content	13.5	67.7	82.3	50.2 2.2			
Ash	3.9	3.7	4.3				
Fixed carbon	11.6	15.7	16.4	18.0			
Volatile matter	84.5	80.6	79.3	79.9			
C	46.2	45.7	43.9	44.6			
Н	6.2	6.2	6.1	5.8			
N	0.5	1.0	0.8	0.6			
0	43.0	42.8	44.0	44.5 0.1			
S	0.1	0.1	0.1				
<u>Cl</u>	<u>0.1</u>	0.4	0.7	0.02			
P2O5	<u>0.5</u>	2.0	<u>2.5</u>	<u>0.5</u>			
<u>K2O</u>	<u>2.7</u>	<u>13.3</u>	<u>29.5</u>	<u>1.7</u>			
CaO	4.7	3.9	2.6	0.7			
MgO	2.1	2.2	2.5	0.5			
Fe2O3	0.9	0.5	0.2	2.3			
Al2O3	3.5	1.4	0.5	2.3			

Counter current extraction

2 to 3 liter of water to extract 1 kg of biomass

To lower K or Cl by 95% we need more water or more stages

Extraction factor (E)	20	4	2.3	1.8	1.5	1.35	1.30	1.23	1.18	1.10
Nr. of stages or columns needed	1	2	3	4	5	6	7	8	9	10

First estimate of cost for 40.000 ton (DM) per year of biomass will cost 6.5 €/ton, which equals 8 US\$/ton

END

wolter.elbersen@wur.nl

Referenties

- Koen Meesters, Wolter Elbersen, Pascal van der Hoogt, Hristo Hristov. 2018. Biomass pretreatment for bioenergy. Case study report Leaching as a biomass pre-treatment method for herbaceous biomass. Sugar cane trash and palm oil mill residues. Expected to be published in 2018 as an IEA Bioenergy report edited by Jaap Koppejan.
- Wolter Elbersen, Tijs M. Lammens, Eija A. Alakangas, Bert Annevelink, Paulien Harmsen and Berien Elbersen. 2017. Chapter 3. Lignocellulosic Biomass Quality: Matching Characteristics With Biomass Conversion Requirements In Modeling and Optimization of Biomass Supply Chains 1st Edition. Top-Down and Bottom-up Assessment for Agricultural, Forest and Waste Feedstock. Editor: Calliope Panoutsou. ISBN: 9780128123041. Academic Press.
- H.W Elbersen , R. Diaz-Chavez, B. Elbersen. **Biomass export from Colombia. A case study.** Article in Preparation.
- Dam, J., W. Elbersen, R, Ree. 2014. Setting up international biobased commodity trade chains. A guide and 5 examples in Ukraine. A report for the Netherlands Programmes Sustainable Biomass of Netherlands Enterprise Agency.
- Cursus "**De rol van Biomassa in de circulaire economie**" november 2018: Zie www.wur.nl/academy

