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Multibreed genomic prediction using multitrait GREML and multitask Bayesian variable 1 

selection. By Calus et al. (Page 000).  2 

So far, limited benefits have been observed from combining information on multiple breeds in 3 

genomic evaluations. We investigated a model that accumulates evidence for the presence of 4 

QTL across breeds, while computing SNP effects within breeds. This model was slightly 5 

outperformed by a simple pooling strategy where information on Holsteins and Jerseys was 6 

analyzed without considering the differences between breeds. The most likely explanation is 7 

that, in the case of larger QTL effects, which are the main drivers of genomic prediction across 8 

breeds, the pooling strategy’s assumption that SNP effects are the same across breeds is indeed 9 

appropriate. 10 

  11 
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ABSTRACT 33 

Genomic prediction is applicable to individuals of different breeds. Empirical results to 34 

date, however, show limited benefits in using information on multiple breeds in the context of 35 

genomic prediction. We investigated a multitask Bayesian model, presented previously by 36 

others, implemented in a Bayesian stochastic search variable selection (BSSVS) model. This 37 

model allowed for evidence of QTL to be accumulated across breeds or for both QTL that 38 

segregate across breeds and breed-specific QTL. In both cases, SNP effects were estimated with 39 

information from a single breed. Other models considered were a single-trait and multitrait 40 

genomic residual maximum likelihood (GREML) model, with breeds considered as different 41 

traits, and a single-trait BSSVS model. All single-trait models were applied to each of the two 42 

breeds separately, and to the pooled data of both breeds. The data used included a training data 43 

set of 6,278 Holstein and 722 Jersey bulls, and 374 Jersey validation bulls. All animals had 44 

genotypes for 474,773 SNPs after editing, and phenotypes for milk, fat and protein yields. Using 45 

the same training data, BSSVS consistently outperformed GREML. The multitask BSSVS, 46 

however, did not outperform single-trait BSSVS, which used pooled Holstein and Jersey data 47 

for training. Thus, the rigorous assumption that the traits are the same in both breeds yielded a 48 

slightly better prediction than a model that had to estimate the correlation between the breeds 49 

from the data. Adding the Holstein data significantly increased the accuracy of the single-trait 50 

GREML and BSSVS in predicting the Jerseys for milk and protein, in line with estimated 51 

correlations between the breeds of 0.66 and 0.47 for milk and protein yields, while only the 52 

BSSVS model significantly improved the accuracy for fat yield with an estimated correlation 53 

between breeds of only 0.05. The relatively high genetic correlations for milk and protein 54 

yields, and the superiority of the pooling strategy, is likely the result of the observed admixture 55 

between both breeds in our data. The Bayesian model was able to detect several QTLs in 56 

Holsteins, which likely enabled it to outperform GREML. The inability of the multitask 57 
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Bayesian models to outperform a simple pooling strategy may be explained by the fact that the 58 

pooling strategy assumes equal effects in both breeds; furthermore, this assumption may be 59 

valid for moderate- to large-sized QTLs, which are important for multibreed genomic 60 

prediction. 61 

Keywords: genomic prediction, multibreed, Bayesian variable selection 62 

 63 

INTRODUCTION 64 

One of the benefits of genomic prediction is that it can use information across groups 65 

of individuals, such as different livestock breeds, which are not connected through any recent 66 

pedigree links. Considering the hypothesis that genomic prediction relies on linkage 67 

disequilibrium (LD) between SNPs and QTLs (Meuwissen et al., 2001), the expectation was 68 

that genomic prediction across breeds would be possible if the SNP density was large enough. 69 

This expectation was supported by the supposition that genomic prediction across Holsteins 70 

and Jerseys would be possible if the number of SNPs was greater than 300,000 (De Roos et al., 71 

2008). This, however, was based on simulations that assumed that the QTLs underlying the 72 

traits of interest are the same and have the same effects among different breeds. 73 

Several empirical studies have shown that the accuracy of multibreed, compared to 74 

single-breed, genomic prediction is, at best, slightly higher, but often remains unchanged or is 75 

even slightly lower when breeds are distantly related (Erbe et al., 2012; Karoui et al., 2012; 76 

Olson et al., 2012; Lund et al., 2014; Zhou et al., 2014). In situations where breeds are closely 77 

related, increases in accuracy from multibreed genomic prediction are more easily obtained 78 

(Brøndum et al., 2011), especially if the initial training data of the predicted breed is small 79 

(Hozé et al., 2014). One possible explanation for the limited success of multibreed genomic 80 

prediction is that the genetic basis of traits has evolved, at least to a partially different extent, 81 
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in the breeds involved, while the genomic prediction model is not flexible enough to 82 

accommodate these differences. Differences in genetic backgrounds may be due, for instance, 83 

to only a partial overlap between loci affecting a trait across breeds, to interactions with the 84 

genetic background of the breed, and to differences in allele frequencies and LD patterns of 85 

loci, which do affect any traits in different breeds. 86 

One proposed strategy to accommodate these differences between breeds is to use 87 

multitrait (MT) models, where trait-by-breed combinations are treated as different, but 88 

correlated, traits (Karoui et al., 2012; Olson et al., 2012; Huang et al., 2014; Zhou et al., 2014). 89 

All these studies applied an MT genomic best linear unbiased prediction (GBLUP) type of 90 

model. One important assumption underlying this model is that, across the genome, one single 91 

genetic correlation between breeds is considered, which assumes for each SNP, a priori, the 92 

same covariance structure between effects among different breeds. An alternative model, which 93 

has been proposed recently, is the so-called multitask Bayesian learning model for multibreed 94 

genomic prediction (Chen et al., 2014), which does not consider the same co-variance structure 95 

between breeds across the genome. This is effectively a Bayesian variable selection model, 96 

which uses the data on all breeds to decide whether or not a variable is selected into the model. 97 

In other words, this model accumulates evidence across breeds in order to determine whether 98 

or not a SNP is linked to a QTL. The SNP effects are subsequently estimated separately within 99 

each breed, using only phenotypic information on the breed itself. The implementation, as 100 

presented by Chen et al. (2014), however, does not explicitly accommodate SNPs linked to a 101 

breed-specific QTL. That said, there are indications that modeling both breed-specific and 102 

common QTLs is beneficial for multibreed genomic prediction (van den Berg et al., 2016b). 103 

The objective of this paper, therefore, was to expand the multitask Bayesian learning 104 

model to allow for SNPs linked to a breed-specific QTL to obtain a large effect in one breed 105 

and a small effect in another, as well as to compare this to the originally proposed multitask 106 
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Bayesian learning model and several other models. These other models include single-trait and 107 

multitrait GBLUP-type models, and a single-trait Bayesian variable selection model. In all 108 

single-trait models, either phenotypes of only one of the breeds were used, or phenotypes of 109 

different breeds were pooled and analyzed simultaneously, as if the same trait was involved. 110 

Analyses were performed on a data set including Holsteins, with a moderate size of training set, 111 

and Jerseys, with a small-sized size of training set. Validation was, in all cases, only performed 112 

for the Jersey breed. 113 

 114 

MATERIAL AND METHODS 115 

Data 116 

Phenotypic data. The data used in this study contained 7,994 Holstein and 1,378 Jersey 117 

bulls, which had both genotypes and phenotypes available. The Holstein bulls originated from 118 

Australia (35%), New Zealand (15%), and the Netherlands (50%), while the Jersey bulls 119 

originated from Australia (43%) and New Zealand (57%). The phenotypes were de-regressed 120 

proofs (DRPs) for milk, fat and protein yields, which were derived from international multiple 121 

trait across country evaluation (MACE) estimated breeding values (EBVs), as computed by 122 

Interbull and converted to the Australian scale. Each DRP had a weight computed as effective 123 

daughter equivalents (EDCs), which was derived from the corresponding MACE EBVs. 124 

Average reliabilities of the DRPs for the Holstein training bulls, as computed from the EDCs, 125 

were 0.81, 0.77 and 0.76, respectively, for milk, fat and protein yields. Average reliabilities of 126 

the DRPs for the Jersey training bulls were 0.84 for milk, fat and protein yields. 127 

As the Jersey data set was considerably smaller than the Holstein data set, we only 128 

expected improvement in genomic prediction accuracy by adding information from the other 129 

breed for Jerseys, while validation of the models described in the next section was only 130 
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performed using Jersey validation bulls. The data were split into groups of training and 131 

validation bulls by assigning all bulls born prior to January 2004 to the training data set. This 132 

yielded an initial training data set containing 6,278 Holstein and 1,004 Jersey bulls, and a 133 

validation data set containing 374 Jersey bulls. Analysis of the data revealed that those 374 134 

Jersey bulls had strong relationships with the Jersey training bulls, which likely reduced the 135 

potential impact of adding the Holstein training data to a considerable extent. To reduce the 136 

relationship with the training data set, close relatives of the 374 Jersey validation bulls were 137 

removed from the training data. This included 93 sires, 105 paternal half-sibs (i.e., sons of sires 138 

of validation bulls), 4 maternal half-sibs (i.e., sons of dams of validation bulls), 76 paternal and 139 

53 maternal grandsons of sires of validation bulls, and 4 paternal and 16 maternal grandsons of 140 

dams of validation bulls. Some bulls appeared in more than one of these categories. For 141 

instance, 7 training bulls were both the sire of a validation bull and a paternal half-sib of another 142 

validation bull. Finally, the training data set contained 6,278 Holstein and 722 Jersey bulls. 143 

Genotype data. All bulls were initially genotyped either with one of the two custom 144 

50,000 chips used by CRV BV (all Dutch Holstein bulls), or the Illumina BovineSNP50 chip 145 

(all other bulls). Genotypes from these custom chips were imputed to the Illumina 146 

BovineSNP50, while ~10,000 or 17,000 SNPs were shared with the Illumina BovineSNP50 147 

(Lund et al., 2011). After this imputation step, all bulls had genotypes for 43,990 SNPs. A total 148 

of 1,620 Holstein bulls and cows and 125 Jersey bulls were genotyped with the Illumina 149 

BovineHD array (~777,000 SNPs). This reference population was then used to impute HD 150 

genotypes for all bulls using Beagle version 3.0 (Browning and Browning, 2009). After quality 151 

control, in line with Erbe et al. (2012), and the removal of monomorphic SNPs, 600,640 SNPs 152 

remained. From any pair of SNPs that had an LD (i.e., r2) value of 1, only one SNP was retained. 153 

This reduced the number of SNPs used for the analyses to 474,773. 154 

 155 
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Models 156 

Relationship-based models. The first model used is termed the pedigree based residual 157 

maximum likelihood (PREML) model, since it computes variance components simultaneously 158 

with EBVs based on pedigree information using residual maximum likelihood (REML). As the 159 

PREML model only used phenotypic information on the Jersey training data set, this is only 160 

applied as a single-trait (ST) model. The general PREML model was: 161 

𝐲𝐲 = 𝟏𝟏µ + 𝐙𝐙𝐙𝐙 + 𝐞𝐞 162 

where 𝐲𝐲 is a vector with DRPs, 𝟏𝟏 is a vector of ones, µ is the mean, 𝐙𝐙 is a matrix that links 163 

records to animals, 𝐙𝐙 is a vector with breeding values, and 𝐞𝐞 is a vector with random residuals. 164 

The assumed distributions of 𝐙𝐙 and 𝐞𝐞 were respectively 𝑁𝑁(𝟎𝟎,𝐀𝐀σ𝑢𝑢2) and 𝑁𝑁(𝟎𝟎,𝐃𝐃σ𝑒𝑒2), where A is 165 

the pedigree-based additive genetic relationship matrix, σ𝑢𝑢2  is the genetic variance, 𝐃𝐃 is a 166 

diagonal matrix containing 1/𝐸𝐸𝐸𝐸𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷 on the diagonals, 𝐸𝐸𝐸𝐸𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷 are the EDCs of the DRP, 167 

and σ𝑒𝑒2 is the residual variance. 168 

The second model used is termed GREML, since it is similar to a GBLUP model, but 169 

computes variance components simultaneously with the genomic EBVs (GEBVs) using REML. 170 

This model was applied both as an ST model and as a MT model. The general MT-GREML 171 

model was: 172 

𝐲𝐲𝒌𝒌 = 𝟏𝟏µ𝑘𝑘 + 𝐙𝐙𝒌𝒌𝐠𝐠𝒌𝒌 + 𝐞𝐞𝒌𝒌 173 

where 𝐲𝐲𝒌𝒌 is a vector with DRPs for animals in breed k, k takes values of 1 for Holsteins and 2 174 

for Jerseys in the MT model, 𝟏𝟏 is a vector of ones, µ𝑘𝑘 is the mean effect of breed k (effectively 175 

the breed effect in our analyses), 𝐙𝐙𝒌𝒌 is a matrix that links records to animals, 𝐠𝐠𝒌𝒌 is a vector with 176 

GEBVs, and 𝐞𝐞𝒌𝒌 is a vector with random residuals. The assumed distributions of �
𝐠𝐠𝟏𝟏
𝐠𝐠𝟐𝟐� and �

𝐞𝐞𝟏𝟏
𝐞𝐞𝟐𝟐� 177 

were respectively 𝑁𝑁(𝟎𝟎,𝐆𝐆𝒈𝒈 ⊗ 𝐆𝐆𝐆𝐆𝐆𝐆) and 𝑁𝑁(𝟎𝟎, �
𝐃𝐃𝟏𝟏𝜎𝜎𝑒𝑒1

2 0
0 𝐃𝐃𝟐𝟐𝜎𝜎𝑒𝑒2

2 �), where GRM is the genomic 178 
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relationship matrix, 𝐆𝐆𝒈𝒈 is the genetic covariance matrix, 𝐃𝐃𝟏𝟏 (𝐃𝐃𝟐𝟐) is a diagonal matrix 179 

containing 1/𝐸𝐸𝐸𝐸𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷 on the diagonals for animals in the first (second) breed, 𝐸𝐸𝐸𝐸𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷 are the 180 

EDCs of the DRPs of animals in each of the breeds, and 𝜎𝜎𝑒𝑒1
2  (𝜎𝜎𝑒𝑒2

2 ) is the residual variance for 181 

the first (second) breed. The GRM was computed following the description by Erbe et al., 182 

(2012), which concerns a multibreed development of the first method proposed by VanRaden, 183 

(2008): 184 

𝐆𝐆𝐆𝐆𝐆𝐆c = 𝐖𝐖𝐖𝐖′/M 185 

where 𝐖𝐖 is calculated as 𝐖𝐖 = 𝐗𝐗 − 2𝐩𝐩, 𝐗𝐗 is a matrix containing genotypes coded as 0, 1 and 2, 186 

𝐩𝐩 = 𝛼𝛼𝐩𝐩𝐻𝐻𝐻𝐻𝐻𝐻 + (1 − 𝛼𝛼)𝐩𝐩𝐽𝐽𝐽𝐽𝐷𝐷, M = 2∑ 𝑝𝑝𝑗𝑗(1 − 𝑝𝑝𝑗𝑗)𝑚𝑚
𝑗𝑗=1 , and m is the total number of SNP loci 187 

used. Allele frequencies 𝐩𝐩𝐻𝐻𝐻𝐻𝐻𝐻 and 𝐩𝐩𝐽𝐽𝐽𝐽𝐷𝐷 are averages within Holsteins and Jerseys, and 𝛼𝛼 =188 

𝐹𝐹𝐽𝐽𝐽𝐽𝐽𝐽
𝐹𝐹𝐽𝐽𝐽𝐽𝐽𝐽+𝐹𝐹𝐻𝐻𝐻𝐻𝐻𝐻

, where 𝐹𝐹𝐽𝐽𝐽𝐽𝐷𝐷 and 𝐹𝐹𝐻𝐻𝐻𝐻𝐻𝐻 are computed as defined below. Finally, the GRM was scaled; 189 

this means that the inbreeding is relative to the point before breed divergence, which then is the 190 

base of the GRM. Following Erbe et al. (2012),  191 

𝐆𝐆𝐆𝐆𝐆𝐆 = 𝐆𝐆𝐆𝐆𝐆𝐆c(1 − 𝐹𝐹) + 2𝐹𝐹, 192 

where F is the inbreeding relative to an F1 base: 193 

𝐹𝐹 =
𝐹𝐹𝐽𝐽𝐽𝐽𝐷𝐷𝐹𝐹𝐻𝐻𝐻𝐻𝐻𝐻
𝐹𝐹𝐽𝐽𝐽𝐽𝐷𝐷 + 𝐹𝐹𝐻𝐻𝐻𝐻𝐻𝐻

 194 

𝐹𝐹𝐽𝐽𝐽𝐽𝐷𝐷 = 1 −
∑ 2𝑝𝑝𝐽𝐽𝐽𝐽𝐷𝐷,𝑗𝑗�1 − 𝑝𝑝𝐽𝐽𝐽𝐽𝐷𝐷,𝑗𝑗�𝑚𝑚
𝑗𝑗=1

∑ �𝑝𝑝𝐻𝐻𝐻𝐻𝐻𝐻,𝑗𝑗�1 − 𝑝𝑝𝐽𝐽𝐽𝐽𝐷𝐷,𝑗𝑗� + 𝑝𝑝𝐽𝐽𝐽𝐽𝐷𝐷,𝑗𝑗�1 − 𝑝𝑝𝐻𝐻𝐻𝐻𝐻𝐻,𝑗𝑗��𝑚𝑚
𝑗𝑗=1

, 195 

and 196 

𝐹𝐹𝐻𝐻𝐻𝐻𝐻𝐻 = 1 −
∑ 2𝑝𝑝𝐻𝐻𝐻𝐻𝐻𝐻,𝑗𝑗�1 − 𝑝𝑝𝐻𝐻𝐻𝐻𝐻𝐻,𝑗𝑗�𝑚𝑚
𝑗𝑗=1

∑ �𝑝𝑝𝐻𝐻𝐻𝐻𝐻𝐻,𝑗𝑗�1 − 𝑝𝑝𝐽𝐽𝐽𝐽𝐷𝐷,𝑗𝑗� + 𝑝𝑝𝐽𝐽𝐽𝐽𝐷𝐷,𝑗𝑗�1 − 𝑝𝑝𝐻𝐻𝐻𝐻𝐻𝐻,𝑗𝑗��𝑚𝑚
𝑗𝑗=1

. 197 

Two different applications of the GREML model were used. The first application was 198 

an ST model (ST-GREML), which means that, in the above model description, the (co)variance 199 

matrices reduce to one scalar value. The ST-GREML used data from one breed or used data 200 
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pooled across breeds. When data were pooled across breeds, the assumed genetic correlation 201 

between breeds was 1. The second application of GREML was an MT model (MT-GREML), 202 

which analyzed the data simultaneously for both breeds by considering the trait to be different, 203 

but correlated, between the breeds. In this application, the genetic correlation between the 204 

breeds was explicitly estimated in the model, and this estimate is expected to be unbiased when 205 

using the GRM as outlined above (Wientjes et al., 2017). All PREML and GREML models 206 

were run using ASReml (Gilmour et al., 2014).  207 

In compliance with the Bayesian variable selection model, which is explained in the 208 

next section, a polygenic effect based on pedigree was initially included in the GREML model. 209 

Due to the correlation with the effects modeled using the GRM matrix, this led to severe 210 

convergence issues; therefore, this pedigree-based polygenic effect was omitted from the 211 

GREML models in further analyses. 212 

Bayesian stochastic search variable selection. The third model used is commonly 213 

termed Bayesian Stochastic Search Variable Selection (BSSVS) (Verbyla et al., 2009; Calus, 214 

2014). The general BSSVS model used was: 215 

𝐲𝐲𝒌𝒌 = 𝟏𝟏µ𝑘𝑘 + 𝐙𝐙𝒌𝒌𝐙𝐙𝒌𝒌 + 𝐗𝐗𝒌𝒌𝛂𝛂𝒌𝒌 + 𝐞𝐞𝒌𝒌 216 

where, for breed k (k taking values of 1, or 1 and 2 when both breeds are considered), 𝐙𝐙𝒌𝒌 is a 217 

vector with additive genetic polygenic breeding values, 𝐗𝐗𝒌𝒌 is a matrix with centered and scaled 218 

genotypes, and 𝛂𝛂𝒌𝒌 is a vector of allele substitution effects. The assumed distribution of 𝐙𝐙𝒌𝒌 was 219 

𝑁𝑁(𝟎𝟎,𝐀𝐀𝒌𝒌σ𝑢𝑢𝑘𝑘
2 ) in the ST model, while the distribution of �

𝐙𝐙𝟏𝟏
𝐙𝐙𝟐𝟐� was 𝑁𝑁(𝟎𝟎, �

𝐀𝐀𝟏𝟏σ𝑢𝑢1
2 𝟎𝟎

𝟎𝟎 𝐀𝐀𝟐𝟐σ𝑢𝑢2
2 �) when 220 

both breeds were considered simultaneously, where 𝐀𝐀𝒌𝒌 is the pedigree numerator relationship 221 

matrix for breed k, and σ𝑢𝑢𝑘𝑘
2  is the polygenic variance of breed k. Three different 222 

implementations of the BSSVS model were used. The first was an ST model (ST-BSSVS) using 223 

data from one breed or using data pooled across both breeds. This ST model has also been 224 
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termed a single-task model (Chen et al., 2014). This implementation is described elsewhere in 225 

more detail (Calus, 2014). It assumes that a certain proportion of all loci, denoted as π, have a 226 

zero effect within each of the iterations of the Gibbs sampling scheme. The second application 227 

was a multitask (mt) model (mt-BSSVS), which used one π value across breeds, and thus 228 

accumulated evidence from across breeds to determine whether an SNP was linked to a QTL, 229 

while estimating SNP effects within a breed using only information from the breed itself. This 230 

mt-BSSVS implementation was similar to the mt model described by Chen et al. (2014). The 231 

third application was also an mt-BSSVS model, which allowed for fitting both SNPs linked to 232 

breed-specific QTLs, as well as SNPs linked to QTLs, which were the same across breeds. It 233 

also estimated SNP effects within a breed using only information from the breed itself. Both 234 

mt-BSSVS models are described in more detail below. 235 

Prior densities. The likelihood of the BSSVS model being conditional on all unknowns 236 

is assumed to be normal: 237 

𝑝𝑝�𝑦𝑦𝑖𝑖𝑘𝑘�µ𝑘𝑘, u𝑖𝑖𝑘𝑘,𝛂𝛂𝒌𝒌,𝜎𝜎𝑒𝑒𝑘𝑘
2 � = 𝑁𝑁(𝑦𝑦𝑖𝑖𝑘𝑘 − µ𝑘𝑘 − u𝑖𝑖𝑘𝑘 − 𝐱𝐱𝑖𝑖𝑘𝑘′ 𝛂𝛂𝒌𝒌,𝜎𝜎𝑒𝑒𝑘𝑘

2 ) 238 

where 𝐱𝐱𝑖𝑖𝑘𝑘 denotes the genotypes of animal i of breed k. The prior for µ𝑘𝑘 was a constant. The 239 

residual variance 𝜎𝜎𝑒𝑒𝑘𝑘
2  has a scaled inverse-χ2 prior distribution of 𝑝𝑝�𝜎𝜎𝑒𝑒𝑘𝑘

2 � = χ−2(−2,0), which 240 

yields a flat prior.  241 

The prior for 𝛼𝛼𝑗𝑗𝑘𝑘, the allele substitution effect of locus j in breed k, depends on the variance 𝜎𝜎𝛼𝛼𝑘𝑘
2  242 

and the indicator variable 𝐼𝐼𝑗𝑗𝑘𝑘 : 243 

𝛼𝛼𝑗𝑗𝑘𝑘|𝜋𝜋𝑘𝑘,𝜎𝜎𝛼𝛼2 = �
~𝑁𝑁 �0,

𝜎𝜎𝛼𝛼𝑘𝑘
2

100
�  𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝐼𝐼𝑗𝑗𝑘𝑘 = 0

~𝑁𝑁�0,𝜎𝜎𝛼𝛼𝑘𝑘
2 � 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝐼𝐼𝑗𝑗𝑘𝑘 = 1 

 244 

The prior distribution for the indicator variable 𝐼𝐼𝑗𝑗𝑘𝑘 is: 245 

𝑝𝑝�𝐼𝐼𝑗𝑗𝑘𝑘 � = Bernoulli(1 − 𝜋𝜋𝑘𝑘),  246 

where 𝜋𝜋 is assigned a value of 0.999 and 𝜎𝜎𝛼𝛼𝑘𝑘
2  has a scaled inverse-χ2 prior distribution of: 247 



12 
 

𝑝𝑝�𝜎𝜎𝛼𝛼𝑘𝑘
2 � = χ−2�𝜈𝜈𝛼𝛼𝑘𝑘 , S𝛼𝛼𝑘𝑘

2 �  248 

where 𝜈𝜈𝛼𝛼𝑘𝑘 represents the degrees of freedom, set to 4.2, following (Meuwissen et al., 2001; 249 

Habier et al., 2011), while the scale parameter S𝛼𝛼𝑘𝑘
2  is calculated as S𝛼𝛼𝑘𝑘

2 =
σ�𝛼𝛼𝑘𝑘
2 (𝜈𝜈𝛼𝛼𝑘𝑘−2)

𝜈𝜈𝛼𝛼𝑘𝑘
, where 𝜎𝜎�𝛼𝛼𝑘𝑘

2  250 

is computed in line with (de los Campos et al., 2013): 251 

𝜎𝜎�𝛼𝛼𝑘𝑘
2 = � 100

100+𝜋𝜋𝑘𝑘(1−100)
�
𝜎𝜎𝑎𝑎𝑘𝑘
2

𝑛𝑛
  252 

where 𝑒𝑒 is the number of loci. The value used for 𝜋𝜋 and the ratio of the variance between the 253 

two distributions were the same as those we used in previous studies, where the BSSVS model 254 

was shown to be competitive, compared to other models (Daetwyler et al., 2013; Calus et al., 255 

2014a; Calus et al., 2014b). 256 

Conditional posterior densities. The conditional posterior density of α𝑗𝑗𝑘𝑘 is: 257 

𝑁𝑁�𝛼𝛼�𝑗𝑗𝑘𝑘;  
ω𝑗𝑗𝑘𝑘σ�𝑒𝑒𝑘𝑘

2

𝐱𝐱𝑗𝑗𝑘𝑘′ 𝐃𝐃𝐤𝐤
−𝟏𝟏𝐱𝐱𝑗𝑗𝑘𝑘 + 𝜆𝜆𝑗𝑗𝑘𝑘

� 258 

where 𝛼𝛼�𝑗𝑗𝑘𝑘 is the conditional mean of the allele substitution effect at locus j in breed k, computed 259 

as: 260 

α�𝑗𝑗𝑘𝑘 =
𝐱𝐱𝑗𝑗𝑘𝑘

′ 𝐃𝐃𝐤𝐤
−𝟏𝟏𝐲𝐲𝑗𝑗𝑘𝑘

∗

𝐱𝐱𝑗𝑗𝑘𝑘
′ 𝐃𝐃𝐤𝐤

−𝟏𝟏𝐱𝐱𝑗𝑗𝑘𝑘+λ𝑗𝑗𝑘𝑘
,  261 

where 𝐲𝐲𝑗𝑗𝑘𝑘∗  are conditional phenotypes for SNP j, defined as phenotypes corrected for estimated 262 

effects at all other SNP loci, 𝜆𝜆𝑗𝑗𝑘𝑘 =
ω𝑗𝑗𝑘𝑘σ�𝑒𝑒𝑘𝑘

2

σ�α𝑘𝑘
2  , and 263 

ω𝑗𝑗𝑘𝑘 = 1  if 𝐼𝐼𝑗𝑗𝑘𝑘 = 1 264 

ω𝑗𝑗𝑘𝑘 = 100 if 𝐼𝐼𝑗𝑗𝑘𝑘 = 0 265 

The conditional posterior density of σα𝑘𝑘
2  is a scaled inverse-χ2 distribution: 266 

σα𝑘𝑘
2 |α𝑘𝑘 ~ χ−2(𝜈𝜈α𝑘𝑘 + 𝑒𝑒, Sα𝑘𝑘

2 + 𝛚𝛚𝒌𝒌
′ 𝛂𝛂�𝐤𝐤𝟐𝟐)  267 
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where 𝛂𝛂�𝐤𝐤𝟐𝟐 is a vector with squares of the current estimates of the allele substitution effects of all 268 

loci, that is, weighted by vector 𝛚𝛚𝒌𝒌, which contains values of 1 or 100 for all loci. 269 

Finally, the conditional posterior distribution of the indicator variable Ijk, following the 270 

notation in (Jia and Jannink, 2012), was: 271 

 272 

Pr�𝐼𝐼𝑗𝑗𝑘𝑘 = 1� =
∑ �f(𝑟𝑟𝑗𝑗𝑘𝑘|𝐼𝐼𝑗𝑗𝑘𝑘 = 1)(1 − 𝜋𝜋𝑘𝑘)�𝑘𝑘

∑ �f�𝑟𝑟𝑗𝑗𝑘𝑘�𝐼𝐼𝑗𝑗𝑘𝑘 = 0�𝜋𝜋𝑘𝑘 + f(𝑟𝑟𝑗𝑗𝑘𝑘|𝐼𝐼𝑗𝑗𝑘𝑘 = 1)(1 − 𝜋𝜋𝑘𝑘)�𝑘𝑘
 273 

where 1 − 𝜋𝜋𝑘𝑘 (𝜋𝜋𝑘𝑘) is the prior probability that 𝐼𝐼𝑗𝑗𝑘𝑘 = 1 (𝐼𝐼𝑗𝑗𝑘𝑘 = 0), 𝑟𝑟𝑗𝑗𝑘𝑘 = ∑ �𝐱𝐱𝑗𝑗𝑘𝑘′ 𝐃𝐃−𝟏𝟏𝐲𝐲𝒌𝒌∗ +𝑘𝑘274 

𝐱𝐱𝑗𝑗𝑘𝑘′ 𝐃𝐃−𝟏𝟏𝐱𝐱𝑗𝑗𝑘𝑘α�𝑗𝑗𝑘𝑘�, with 𝐲𝐲𝒌𝒌∗ representing the conditional phenotypes as defined previously, while 275 

𝑓𝑓(𝑟𝑟𝑗𝑗𝑘𝑘|𝐼𝐼𝑗𝑗𝑘𝑘 = δ), with δ as either 0 or 1, is proportional to 1
�𝑣𝑣𝑘𝑘

e
−
𝑟𝑟𝑗𝑗𝑘𝑘
2

2𝑣𝑣𝑘𝑘, with 𝑣𝑣𝑘𝑘 =276 

∑ �𝐱𝐱𝑗𝑗𝑘𝑘′ 𝐃𝐃𝐤𝐤
−𝟏𝟏𝐱𝐱𝑗𝑗𝑘𝑘�

2 σ𝛼𝛼𝑗𝑗𝑘𝑘
2

ω𝑗𝑗𝑘𝑘
+ 𝐱𝐱𝑗𝑗𝑘𝑘′ 𝐃𝐃𝐤𝐤

−𝟏𝟏𝐱𝐱𝑗𝑗𝑘𝑘σ𝑒𝑒𝑘𝑘
2

𝑘𝑘 . It should be noted that 𝑣𝑣𝑘𝑘 depends on 𝐼𝐼𝑗𝑗𝑘𝑘 through its 277 

dependence on ω𝑗𝑗𝑘𝑘, i.e., if 𝐼𝐼𝑗𝑗𝑘𝑘 = 0 (𝐼𝐼𝑗𝑗𝑘𝑘 = 1), then ω𝑗𝑗𝑘𝑘 = 100 (ω𝑗𝑗𝑘𝑘 = 1). 278 

In all of the above, for the model with one π value across breeds, the “k” subscripts 279 

could effectively be removed from the parameters Ijk, ω𝑗𝑗𝑘𝑘, 𝛚𝛚𝒌𝒌, and 𝜋𝜋𝑘𝑘, given that they have the 280 

same values in both breeds. For the model with breed-specific π values, however, these 281 

parameters may be different for different breeds. The only other factor that changes in the above 282 

for this model is that for breed 1: 283 

Pr�𝐼𝐼𝑗𝑗1 = 1� =
f�𝑟𝑟𝑗𝑗𝑘𝑘�𝐼𝐼𝑗𝑗1 = 1�𝜋𝜋11 + f(𝑟𝑟𝑗𝑗𝑘𝑘|𝐼𝐼𝑗𝑗1 = 1)𝜋𝜋10

f�𝑟𝑟𝑗𝑗𝑘𝑘�𝐼𝐼𝑗𝑗1 = 0�𝜋𝜋00 + f�𝑟𝑟𝑗𝑗𝑘𝑘�𝐼𝐼𝑗𝑗1 = 0�𝜋𝜋01 + f(𝑟𝑟𝑗𝑗𝑘𝑘|𝐼𝐼𝑗𝑗1 = 1)𝜋𝜋11 + f(𝑟𝑟𝑗𝑗𝑘𝑘|𝐼𝐼𝑗𝑗1 = 1)𝜋𝜋10
284 

=
f�𝑟𝑟𝑗𝑗𝑘𝑘�𝐼𝐼𝑗𝑗1 = 1�(𝜋𝜋11 + 𝜋𝜋10)

f�𝑟𝑟𝑗𝑗𝑘𝑘�𝐼𝐼𝑗𝑗1 = 0�(𝜋𝜋00 + 𝜋𝜋01) + f(𝑟𝑟𝑗𝑗𝑘𝑘|𝐼𝐼𝑗𝑗1 = 1)(𝜋𝜋11 + 𝜋𝜋10)
 285 

and equivalently for breed 2: 286 

Pr�𝐼𝐼𝑗𝑗2 = 1� =
f�𝑟𝑟𝑗𝑗𝑘𝑘�𝐼𝐼𝑗𝑗2 = 1�(𝜋𝜋11 + 𝜋𝜋01)

f�𝑟𝑟𝑗𝑗𝑘𝑘�𝐼𝐼𝑗𝑗2 = 0�(𝜋𝜋00 + 𝜋𝜋10) + f(𝑟𝑟𝑗𝑗𝑘𝑘|𝐼𝐼𝑗𝑗2 = 1)(𝜋𝜋11 + 𝜋𝜋01)
 287 
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 288 

where 𝜋𝜋11 is the prior probability that SNP j is linked to a QTL in both breeds, and 𝜋𝜋10 (𝜋𝜋01) 289 

is the prior probability that SNP j is linked to a QTL in breed 1 (2) but not in breed 2 (1), while 290 

𝜋𝜋00 is the prior probability that SNP j is not linked to a QTL in both breeds. Here, we assumed 291 

that 𝜋𝜋11 = 𝜋𝜋10 = 𝜋𝜋01 = 0.0005, such that the total prior probability per breed was still 0.001, 292 

assuming that, for an SNP that is linked to a QTL in one breed, it is equally likely to be linked 293 

to a QTL in another breed or not. Given that all prior probabilities need to sum up to 1, 𝜋𝜋00 =294 

0.9985. 295 

The log-likelihood of 𝐼𝐼𝑗𝑗𝑘𝑘 = δ is proportional to: 296 

f�𝑟𝑟𝑗𝑗𝑘𝑘�𝐼𝐼𝑗𝑗𝑘𝑘 = δ�(𝑝𝑝𝑟𝑟) = 297 

�

⎝

⎜
⎛
−

1
2

log�1 + 𝐱𝐱𝑗𝑗𝑘𝑘′ 𝐃𝐃−𝟏𝟏𝐱𝐱𝑗𝑗𝑘𝑘
σ�α𝑗𝑗𝑘𝑘
2

ω𝑗𝑗𝑘𝑘σ�𝑒𝑒𝑘𝑘2
� +

1
2

�𝐱𝐱𝑗𝑗𝑘𝑘′ 𝐃𝐃−𝟏𝟏𝐲𝐲𝒌𝒌∗�
2

∑ σ�𝑒𝑒𝑘𝑘2 �
ω𝑗𝑗𝑘𝑘σ�𝑒𝑒𝑘𝑘2
σ�α𝑗𝑗𝑘𝑘2 + 𝐱𝐱𝑗𝑗𝑘𝑘′ 𝐃𝐃−𝟏𝟏𝐱𝐱𝑗𝑗𝑘𝑘�𝑘𝑘

+ log (𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑟𝑟)

⎠

⎟
⎞

𝑘𝑘
 298 

where ω𝑗𝑗𝑘𝑘 = 100 and 𝑝𝑝𝑟𝑟 = 𝜋𝜋𝑘𝑘 for δ = 0, and ω𝑗𝑗𝑘𝑘 = 1 and 𝑝𝑝𝑟𝑟 = 1 − 𝜋𝜋𝑘𝑘 for δ = 1. It should 299 

be noted that the terms 𝐱𝐱𝑗𝑗𝑘𝑘′ 𝐃𝐃−𝟏𝟏𝐱𝐱𝑗𝑗𝑘𝑘 can be computed once and stored, while the term 𝐱𝐱𝑗𝑗𝑘𝑘′ 𝐃𝐃−𝟏𝟏𝐲𝐲𝒌𝒌∗ 300 

is equal to the right-hand side of the reduced model for estimating 𝛼𝛼�𝑗𝑗𝑘𝑘. Computation of the log-301 

likelihoods is therefore efficient, which means that the implementation of this model using 302 

right-hand-side updating (Calus, 2014) is relatively straightforward. Full details on the 303 

derivation of the log-likelihood are given in the Appendix. Finally, the conditional posterior 304 

density of σ𝑒𝑒𝑘𝑘
2  is a scaled inverse-χ2 distribution: 305 

σ𝑒𝑒𝑘𝑘
2 |𝐞𝐞𝐤𝐤 ~ χ−2(𝑚𝑚− 2, 𝐞𝐞𝐤𝐤′𝐞𝐞𝐤𝐤)  306 

where 𝑚𝑚 is the number of animals with records, and 𝐞𝐞𝐤𝐤 is a vector with the current residuals. 307 

The BSSVS models were implemented in a Gibbs sampler, using right-hand-side 308 

updating (Calus, 2014). For all applications of the BSSVS model, a Gibbs chain of 100,000 309 

iterations was used, discarding the first 20,000 as burn-in. Hereafter, mt-BSSVS-1π refers to 310 
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the mt model using a single π value, which considers that an SNP is linked to a QTL in both 311 

breeds or not, and mt-BSSVS-2π refers to the mt model using a breed-specific π value, which 312 

considers that an SNP was: 1) linked to a QTL in both breeds, 2) linked to a QTL in only one 313 

of the breeds, or 3) not linked to a QTL in both breeds. 314 

Model comparison. Accuracy and bias of the predictions were computed for the 315 

validation bulls. Accuracy was simply computed as the correlation between the observed DRP 316 

and the (G)EBV of the validation bulls. The significance of the differences in this correlation 317 

was assessed using the Hotel-Williams test (Steiger, 1980). Bias was assessed by the coefficient 318 

of the regression of the observed DRPs in the EBVs of the validation bulls.  319 

To assess the underlying differences of the applied BSSVS models (for instance, to 320 

assess whether using the Holstein data helped to increase the evidence that certain loci are 321 

important for the prediction in Jerseys), posterior probabilities of the same locus obtained with 322 

different models were compared. Posterior probabilities were computed as the posterior mean 323 

of the QTL indicator 𝐼𝐼𝑗𝑗𝑘𝑘. In addition, to visualize the evidence for QTLs being present across 324 

the genome, Manhattan plots of the Bayes factors of each of the loci for each of the BSSVS 325 

models were created as well. Bayes factors were computed as: 326 

𝐵𝐵𝐹𝐹 =  
𝑃𝑃𝑟𝑟(𝐻𝐻1|𝑦𝑦)

1 − 𝑃𝑃𝑟𝑟(𝐻𝐻1|𝑦𝑦) ÷
𝑃𝑃𝑟𝑟(𝐻𝐻1)

1 − 𝑃𝑃𝑟𝑟(𝐻𝐻1) 327 

where H1 is the hypothesis that the variant has a large effect, Pr(H1|y) is the posterior probability 328 

of the hypothesis, and Pr(H1) is the prior probability of the hypothesis. (1 - Pr(H1|y)) and (1 - 329 

Pr(H1)) represent the posterior and prior probability for the alternative hypothesis, respectively. 330 

A high Bayes factor indicates that a variant has a strong association with the trait.  331 

 332 

RESULTS 333 

Accuracy and Bias of Genomic Prediction 334 
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Genomic relationships between Holstein and Jersey were expected to be symmetric 335 

around zero. The estimates revealed that some relationships between Holstein and Jersey 336 

individuals were higher than expected, showing some admixture in the population (Figure 1). 337 

Estimated genetic correlations between Holsteins and Jerseys were 0.66 for milk, 0.05 for fat 338 

and 0.47 for protein yields (Table 1). The standard errors indicated that all genetic correlations 339 

were significantly smaller than unity, and the genetic correlations for milk and protein were 340 

significantly higher than 0.  341 

The accuracies regarding all genomic prediction scenarios are presented in Table 2. 342 

Genomic prediction accuracies from all scenarios that included Jersey animals in the training 343 

data were higher than those obtained with the standard pedigree-based model, which only used 344 

Jersey training data. When only Holstein animals were used as training data, genomic prediction 345 

accuracies were always lower than those based on the pedigree-based model, which only used 346 

Jersey training data, although the difference was relatively small for milk and protein yields, 347 

especially when the ST-BSSVS model was used. Pooling Holstein and Jersey training data 348 

significantly improved the accuracy of the predictions of the ST-GREML model for milk and 349 

protein yields, but not for fat yield. The MT-GREML model only achieved a significantly 350 

higher accuracy for milk yield, compared to the ST-GREML model, when using only Jersey 351 

data. Using combined Jersey and Holstein training data, the MT-GREML model produced 352 

somewhat lower accuracies than the ST-GREML model with pooled data. 353 

Pooling Holstein and Jersey training data significantly improved the accuracy of the 354 

predictions of the ST-BSSVS model for all three traits. The mt-BSSVS models achieved a 355 

significantly higher accuracy for milk and fat yields, compared to the ST-BSSVS model using 356 

only Jersey data. Using pooled Jersey and Holstein training data, both mt-BSSVS models 357 

persistently achieved somewhat lower accuracies than the ST-BSSVS model with pooled data. 358 

Accuracies of the mt-BSSVS-1π and mt-BSSVS-2π were very similar. 359 
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In almost all cases the BSSVS models yielded higher accuracies than the GREML 360 

models when applied to the same data. Differences were most pronounced and most often 361 

significant for the ST models using only Holstein or Holstein and Jersey animals in the training 362 

data. For the scenario where only Jersey animals were included in the training, the BSSVS 363 

model only produced a significant increase in prediction accuracy, compared to GREML, for 364 

fat yield. 365 

Bias in the GEBV scale was assessed by the coefficient of the regression of observed 366 

DRPs on the GEBV (Table 3), where a value of 1 is expected if the GEBVs are unbiased. The 367 

largest deviation from 1, i.e., a regression coefficient of 0.50, was observed for fat yield using 368 

ST-GREML, when the training only included Holstein data. When using only Jersey data, the 369 

BSSVS model produced less biased predictions than the GREML model. When using both 370 

Holstein and Jersey training data, ST-GREML gave less biased predictions than ST-BSSVS, 371 

while both mt-BSSVS models gave less biased predictions than MT-GREML. 372 

 373 

Visualization of QTL Detection in the Bayesian Models  374 

For each of the five applications of the BSSVS model, Manhattan plots of the Bayes 375 

factors were made for the three traits (Figures 2-4). When using only Jersey data, a few QTL 376 

peaks were observed for milk yield, but no peaks were detected for fat and protein yield (Figures 377 

2-4). It should be noted that the scenarios that only used Holstein or pooled data in the ST-378 

BSSVS model or used Holstein and Jersey data in mt-BSSVS-1π effectively represent QTLs 379 

found in Holsteins. Whenever the Holstein data were used, for each trait, several clear QTL 380 

peaks were observed, regardless of which BSSVS model was used or whether the Jersey data 381 

were also used or not. In most cases, the peaks observed for the analyses including the Holstein 382 

data were the same across models and training data composition. There were, however, a few 383 

exceptions. For instance, on BTA 1, an SNP at 49,950,467 bp with a relatively large Bayes 384 
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factor for milk yield was observed when using only Jersey data or when using one of the mt-385 

BSSVS models, while this SNP did not appear in the other two analyses. Since the other two 386 

analyses were mostly driven by Holstein data, this suggests that this particular SNP has an 387 

association in Jerseys, but not in Holsteins. In contrast, there were also a few peaks that were 388 

clearer when the ST-BSSVS, with the pooled Jersey and Holstein data, was used, compared to 389 

using either of the mt-BSSVS models. This was, for instance, the case for a peak at the 390 

beginning of BTA 3 for fat yield, and at the end of BTA 3 for protein yield, as well as for an 391 

SNP at 28,842,616 bp on BTA 10 for protein yield. 392 

To enable a more precise comparison of (trends of) differences in associations at the 393 

individual locus level across different models, the underlying posterior probabilities for the 394 

same locus obtained with different BSSVS models were plotted against each other 395 

(Supplemental Figures S1-S10; http://dx.doi.org/10.3168/jds.20XX-XXXXX). These results 396 

confirm that, when using Jersey data alone, there was limited evidence for clearly segregating 397 

QTLs, i.e., few posterior probabilities noticeably larger than 0 were observed (Supplemental 398 

Figures S1-S4; http://dx.doi.org/10.3168/jds.20XX-XXXXX). All analyses including Holstein 399 

data forced the Holstein QTLs in the model, i.e. posterior probabilities were similar, on the one 400 

hand, for the ST-BSSVS model using only Holstein data, compared either to the ST-BSSVS 401 

model using both Holstein and Jersey data or to the mt-BSSVS-1π model using both Holstein 402 

and Jersey data (Supplemental Figures S5 and S6, respectively; 403 

http://dx.doi.org/10.3168/jds.20XX-XXXXX). While the same tendency was observed for the 404 

mt-BSSVS-2π model, in this case, the posterior probabilities for Jerseys were generally smaller 405 

than those obtained with the ST-BSSVS model and Holstein data (Supplemental Figure S7; 406 

http://dx.doi.org/10.3168/jds.20XX-XXXXX). Finally, the posterior probabilities of mt-407 

BSSVS-1π were similar to those of ST-BSSVS using pooled Holstein and Jersey data, while 408 
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they tended to be smaller for mt-BSSVS-2π (Supplemental Figures S8 and S9 versus S10; 409 

http://dx.doi.org/10.3168/jds.20XX-XXXXX). 410 

 411 

DISCUSSION 412 

One of the objectives of our study was to compare the predictive ability of different 413 

genomic prediction models for a breed with a small training set size (i.e. Jerseys) when 414 

supplemented with another breed with a moderate training set size (i.e. Holsteins). Estimated 415 

genetic correlations between Holsteins and Jerseys were 0.05 for fat yield and 0.66 and 0.47 for 416 

milk and protein yields, respectively, suggesting that milk and protein yields have, at least 417 

partially, the same genetic background across Holstein and Jersey cattle. Apart from the low 418 

correlation for fat yield, these results are in line with an estimated genetic correlation of 0.79 419 

for milk yields between Montbéliardes and Holsteins (Karoui et al., 2012), and estimated 420 

genetic correlations of 0.46, 0.58 and 0.37 for milk, fat and protein yields between Nordic Reds 421 

and Holsteins (Zhou et al., 2014), where some admixture between the breeds exists. Genomic 422 

relationships between the Holsteins and Jerseys (Figure 1) showed admixture between these 423 

breeds in our data, in line with the notion that the Holstein population in Australia is the result 424 

of upgrading from Jerseys (Pryce et al., 2011). Thus, the Holsteins could still carry some Jersey 425 

chromosome segments, which is the likely explanation for the observed superiority of the 426 

pooling strategy over the mt-BSSVS models, and the higher estimates of the genetic 427 

correlations compared to those obtained by van den Berg et al. (2016b) between Holsteins and 428 

Jerseys, using a model component based on 50,000 SNPs. Our correlations, however, were 429 

similar or somewhat lower than those obtained, based on a QTL component that included 430 

sequence variants significantly associated in multibreed genome-wide association studies (van 431 
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den Berg et al., 2016b). These authors also found the lowest correlation for fat, compared to 432 

milk and protein, yields. 433 

The observation that milk and protein had considerably higher genetic correlations than 434 

fat is in line with the result that milk and protein yields showed larger gains, compared to fat, 435 

when using the pooled training data, instead of only the Jersey training data. This is also in line 436 

with the result that using only Holstein training data in the ST-GREML model produced 437 

considerably higher accuracies for milk and protein (0.20-0.24), compared to fat (0.10). Finally, 438 

using ST-BSSVS and only Holstein data for training yielded considerable accuracies of 0.17-439 

0.31, in line with the observation of admixture between Holsteins and Jerseys in our data. 440 

 441 

Comparison of Models 442 

The main objective of our study was to compare the predictive ability of the mt-BSSVS 443 

models with ST-GREML, ST-BSSVS and MT-GREML models. Simply pooling the data of 444 

multiple breeds into an ST genomic prediction model, may be appropriate when breeds are 445 

closely related; in which case, it is expected that the genetic correlation between breeds is high. 446 

When genetic correlations between breeds become smaller, it is expected that an MT or mt 447 

model may be more appropriate, for example, when a QTL with a large effect in one breed only 448 

has a small effect in the other breed. That is, MT and mt models are more flexible than ST 449 

models when translating effects across breeds, as these models have varying degrees of 450 

opportunities to model breed-specific effects. The mt-BSSVS models are similar to an approach 451 

where QTL mapping results obtained from one breed are used as prior information in genomic 452 

prediction for a second breed (Brøndum et al., 2012) or when information from another breed 453 

is used to select or give higher weights to SNPs (Hoze et al., 2014; Khansefid et al., 2014; van 454 

den Berg et al., 2016b). It has been shown that a strategy of “partial pooling”, allowing for the 455 

estimation of breed- or (sub)population-specific SNP effects, which are “shrunk” towards 456 
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effects across all breeds or (sub)populations, makes optimal use of information on training sets 457 

involving different populations (Technow and Totir, 2015). In reality, between two breeds, 458 

there may be some QTLs with (large) common effects, while there may be others with breed-459 

specific effects. Our results show that ST-GREML and ST-BSSVS using the pooled training 460 

data consistently outperformed MT-GREML and the mt-BSSVS models, respectively. This 461 

finding is unexpected, given that the estimated genetic correlations between the breeds are 462 

considerably lower than 1. Several reasons may explain this. Firstly, estimating twice as many 463 

effects in the MT and mt models may counteract their benefit of being better able to 464 

accommodate the lower-than-unity genetic correlation. Secondly, the MT-GREML model has 465 

to retrieve information through the genomic relationships across the breeds, which in general 466 

are very week. In contrast, the mt-BSSVS models used information from Holsteins to indicate 467 

QTLs, but then used only information from Jerseys to estimate the SNP effects, instead of 468 

pooling the data to increase power to estimate SNP-effects as the ST models did, while this may 469 

have been the crucial benefit given our small Jersey training data. Thirdly, the traits analyzed 470 

were all associated with a few QTLs of moderate to large effects in Holsteins. For those QTLs 471 

with relatively large effects, the actual effects are likely to be similar in magnitude across 472 

breeds, as is, for instance, shown regarding the effect of the DGAT1 gene (Spelman et al., 2002; 473 

Thaller et al., 2003; Maurice-Van Eijndhoven et al., 2015). In other words, for this specific 474 

group of QTLs, the genetic correlation between breeds is expected to be close to unity. This is, 475 

if the same QTL segregate in both breeds. It has been observed that not all the well-known 476 

QTLs in Holsteins also segregate in Jerseys (Kemper et al., 2015b), so the genetic correlations 477 

for QTLs with relatively large effects will be lower than unity. For QTLs with much smaller 478 

effects, it can be expected that their effects are less consistent across breeds, simply because 479 

their effects are less disruptive, meaning that their genetic correlation across breeds is likely to 480 

be much smaller. As genomic prediction across breeds largely relies on QTLs of moderate to 481 
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large effects (van den Berg et al., 2016b), it can be expected that it is much more important to 482 

closely fit the properties of moderate to large QTLs across breeds than it is to fit the properties 483 

of small QTLs across breeds. 484 

Our results indicate that the BSSVS model consistently outperformed the GREML 485 

model, when Holstein or pooled data were used for training. In addition, the BSSVS model, in 486 

almost all cases, yielded significantly higher accuracies when using the pooled training data, 487 

while this phenomenon was not so profound for the GREML model. These results are in line 488 

with the observations that (Bayesian) variable selection models are better able to pick up QTLs 489 

(van den Berg et al., 2015), and that selection of SNPs close to the causative mutations yields 490 

more persistent genomic predictions across breeds (van den Berg et al., 2015; van den Berg et 491 

al., 2016a), suggesting that the BSSVS model was able to take advantage of the BovineHD SNP 492 

data with relatively high SNP density. The similar accuracies of the ST-BSSVS and ST-493 

GREML models when only Jersey data were used, is like due to the inability of the ST-BSSVS 494 

model to find QTLs in the Jersey data. Only for fat yield did ST-BSSVS outperform GREML 495 

because the former yielded posterior probabilities of ~0.02 for several SNPs near the DGAT1 496 

gene, while the genome-wide average was only 0.001. 497 

The limited benefit of pooling the training data for fat yield, and the low estimate of the 498 

genetic correlation for fat yield, may be partly due to differences in estimated effects for 499 

Holstein and Jersey in the detected QTL regions on BTA 5; associated to the MGST1 gene in 500 

Holsteins (Wang et al., 2012; Raven et al., 2014; Kemper et al., 2015a; Maurice-Van 501 

Eijndhoven et al., 2015; Littlejohn et al., 2016), and on BTA 14; associated to the DGAT1 gene 502 

which has a strong effect on fat yield (Grisart et al., 2002; Boichard et al., 2003; Schennink et 503 

al., 2007). Possible explanations for the differences in estimated effects between Holstein and 504 

Jerseys for these regions, are that the SNPs on BTA 5 and 14 with the largest signal in Holstein 505 

had very low MAF in Jersey. In addition, the local LD patterns in the DGAT1 region in the 506 
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Jerseys were different than in the Holsteins (for more details, see Supplemental Material; 507 

http://dx.doi. org/10.3168/jds.20XX-XXXXX). 508 

The use of QTL information across breeds relies on the LD consistency between SNPs 509 

and QTLs across breeds (De Roos et al., 2009; Wientjes et al., 2015). The prior specification 510 

of the mt-BSSVS-2π model assumed that, for an SNP linked to a QTL in one breed, it is equally 511 

likely to be linked to a QTL in another breed. Another approach would be to use the value of 512 

any known genetic correlations between breeds to inform this prior specification. It may also 513 

be expected that, while certain genes affect the same trait in different breeds, the causal 514 

mutations are not necessarily the same. A well-known example of this phenomenon is double-515 

muscling, which, in different breeds, is caused by different mutations in the myostatin gene 516 

(McPherron and Lee, 1997; Grobet et al., 1998). A further extension of the mt-BSSVS models, 517 

could therefore be to consider the evidence of QTLs across a sliding window (Wientjes, 2016), 518 

or across all variants within each annotated gene, similar to a gene-based genome-wide 519 

association study approach (Liu et al., 2010), rather than only on a per variant basis. 520 

 521 

Implications 522 

In the Jersey training data used, we deliberately removed close relatives (i.e., sires, sibs, 523 

and grandsons of sires and dams) from the validation animals, to create some distance between 524 

training and validation animals. In reality, one would use all available information of the 525 

predicted breed, and especially information of close relatives of selection candidates, as this is 526 

the most powerful information. In this study, we aimed to resemble an ongoing genomic 527 

selection program that takes full advantage of shortening the generation intervals of the 528 

different selection paths (García-Ruiz et al., 2016). In those programs, it is reasonable to assume 529 

that there are at least two generations between the training animals and the selection candidates.  530 
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The situation considered in our study, where one breed has a limited training data size, 531 

is relevant for numerically small breeds. In our study, using the pooled Holstein and Jersey 532 

training data in the ST-BSSVS model gave the largest increase in accuracy. We focused here 533 

on production traits with moderate heritability and at least some known QTL with relatively 534 

large effects. An important unanswered question is whether the same result is expected for more 535 

polygenic traits with a low heritability, and possibly a lower genetic correlation between breeds. 536 

We hypothesize that for such traits the assumption made when using pooled training data in an 537 

ST model, i.e. the genetic correlation between breeds is 1, may be violated too much, and that, 538 

in such situations, the mt-BSSVS models may better fit the characteristics of the data. 539 

 540 

CONCLUSIONS 541 

In this study, we investigated the use of an mt Bayesian model, which accumulates 542 

evidence across breeds to indicate whether SNPs are linked to a QTL and thus should receive 543 

a large effect, while the SNP effects are estimated within breeds. We further developed this 544 

model, such that it is able to model breed-specific probabilities for SNPs in order to have a large 545 

effect on the trait under study. Both mt Bayesian models, however, were slightly outperformed 546 

by a simple pooling strategy, where data on Holsteins and Jerseys were combined in an ST 547 

Bayesian model to predict Jerseys. This result may be partly due to the fact that we considered 548 

the moderately heritable traits of milk, fat and protein yields, which are affected by some 549 

moderate to large QTLs. Milk and protein had moderately estimated genetic correlations (0.66 550 

and 0.47) between Holsteins and Jerseys, in line with the observed increases in accuracy when 551 

adding Holsteins to predict Jerseys with both the ST-GREML (0.06 vs. 0.04) and the ST-552 

BSSVS model (0.10 vs. 0.05). The relatively high genetic correlations for milk and protein 553 

yields, and the superiority of the pooling strategy in terms of prediction accuracy, is likely the 554 

result of the observed admixture between both breeds in our data. Fat yield had an estimated 555 
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genetic correlation of only 0.05, in line with the observed more limited increases in accuracy 556 

with both the ST-GREML (0.01) and the ST-BSSVS model (0.04). The comparison between 557 

the Bayesian model and the GREML model shows there is some scope for multibreed genomic 558 

prediction, especially if the model used is able to pinpoint underlying QTLs. 559 
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 571 

APPENDIX 572 

The log-likelihood of 𝐼𝐼𝑗𝑗𝑘𝑘 = δ is computed across breeds k as: 573 

f�𝑟𝑟𝑗𝑗𝑘𝑘�𝐼𝐼𝑗𝑗𝑘𝑘 = δ�(𝑝𝑝𝑟𝑟) = � �−
1
2

log��𝐕𝐕𝒚𝒚𝒌𝒌∗ �� −
1
2
𝑦𝑦𝑘𝑘∗𝐕𝐕𝒚𝒚𝒌𝒌∗

−𝟏𝟏𝑦𝑦𝑘𝑘∗ + log (𝑝𝑝𝑟𝑟𝒊𝒊𝒊𝒊𝒊𝒊)�
𝑘𝑘

 574 

where, for breed k: 575 

𝐕𝐕𝒚𝒚𝒌𝒌∗ = 𝐃𝐃σ�𝑒𝑒𝑘𝑘
2 + 𝐱𝐱𝑗𝑗𝑘𝑘𝐱𝐱𝑗𝑗𝑘𝑘′

σ�α𝑗𝑗𝑘𝑘
2

ω𝑗𝑗𝑘𝑘
 576 

Considering that: 577 
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𝐕𝐕𝒚𝒚𝒌𝒌∗ = 𝐃𝐃σ�𝑒𝑒𝑘𝑘
2 + 𝐱𝐱𝑗𝑗𝑘𝑘𝐱𝐱𝑗𝑗𝑘𝑘′

σ�α𝑗𝑗𝑘𝑘
2

ω𝑗𝑗𝑘𝑘
= �𝐃𝐃

ω𝑗𝑗𝑘𝑘σ�𝑒𝑒𝑘𝑘
2

σ�α𝑗𝑗𝑘𝑘2 + 𝐱𝐱𝑗𝑗𝑘𝑘𝐱𝐱𝑗𝑗𝑘𝑘′ �
ω𝑗𝑗𝑘𝑘
σ�α𝑗𝑗𝑘𝑘2  578 

�𝐕𝐕𝒚𝒚𝒌𝒌∗ � can be obtained using the matrix determinant lemma: 579 

�𝐕𝐕𝒚𝒚𝒌𝒌∗ � = ��𝐃𝐃
ω𝑗𝑗𝑘𝑘σ�𝑒𝑒𝑘𝑘

2

σ�α𝑗𝑗𝑘𝑘2 + 𝐱𝐱𝑗𝑗𝑘𝑘𝐱𝐱𝑗𝑗𝑘𝑘′ �
ω𝑗𝑗𝑘𝑘
σ�α𝑗𝑗𝑘𝑘2 � = ��𝐃𝐃

ω𝑗𝑗𝑘𝑘σ�𝑒𝑒𝑘𝑘
2

σ�α𝑗𝑗𝑘𝑘2 + 𝐱𝐱𝑗𝑗𝑘𝑘𝐱𝐱𝑗𝑗𝑘𝑘′ �� �
ω𝑗𝑗𝑘𝑘
σ�α𝑗𝑗𝑘𝑘2 �580 

= �1 + 𝐱𝐱𝑗𝑗𝑘𝑘′ 𝐃𝐃−𝟏𝟏
σ�α𝑗𝑗𝑘𝑘
2

ω𝑗𝑗𝑘𝑘σ�𝑒𝑒𝑘𝑘2
𝐱𝐱𝑗𝑗𝑘𝑘� �

ω𝑗𝑗𝑘𝑘
σ�α𝑗𝑗𝑘𝑘2 � 581 

𝐕𝐕𝒚𝒚𝒌𝒌∗
−𝟏𝟏 can be computed using Woodbury’s matrix identity: 582 

𝐕𝐕𝒚𝒚𝒌𝒌∗
−𝟏𝟏 = �𝐃𝐃σ�𝑒𝑒𝑘𝑘

2 + 𝐱𝐱𝑗𝑗𝑘𝑘𝐱𝐱𝑗𝑗𝑘𝑘′
σ�α𝑗𝑗𝑘𝑘
2

ω𝑗𝑗𝑘𝑘
�
−𝟏𝟏

583 

= 𝐃𝐃−𝟏𝟏σ�𝑒𝑒𝑘𝑘
−2 − 𝐃𝐃−𝟏𝟏σ�𝑒𝑒𝑘𝑘

−2𝐱𝐱𝑗𝑗𝑘𝑘 �
ω𝑗𝑗𝑘𝑘
σ�α𝑗𝑗𝑘𝑘2 + 𝐱𝐱𝑗𝑗𝑘𝑘′ 𝐃𝐃−𝟏𝟏σ�𝑒𝑒𝑘𝑘

−2𝐱𝐱𝑗𝑗𝑘𝑘�
−𝟏𝟏

𝐱𝐱𝑗𝑗𝑘𝑘′ 𝐃𝐃−𝟏𝟏σ�𝑒𝑒𝑘𝑘
−2584 

= 𝐃𝐃−𝟏𝟏σ�𝑒𝑒𝑘𝑘
−2 − 𝐃𝐃−𝟏𝟏𝐱𝐱𝑗𝑗𝑘𝑘𝐱𝐱𝑗𝑗𝑘𝑘′ 𝐃𝐃−𝟏𝟏σ�𝑒𝑒𝑘𝑘

−2 �
ω𝑗𝑗𝑘𝑘σ�𝑒𝑒𝑘𝑘

2

σ�α𝑗𝑗𝑘𝑘2 + 𝐱𝐱𝑗𝑗𝑘𝑘′ 𝐃𝐃−𝟏𝟏𝐱𝐱𝑗𝑗𝑘𝑘�
−𝟏𝟏

 585 

Thus: 586 

𝑦𝑦𝑘𝑘∗
′𝐕𝐕𝒚𝒚𝒌𝒌∗

−𝟏𝟏𝑦𝑦𝑘𝑘∗ = 𝑦𝑦𝑘𝑘∗
′𝐃𝐃−𝟏𝟏σ�𝑒𝑒𝑘𝑘

−2 − 𝑦𝑦𝑘𝑘∗
′𝐃𝐃−𝟏𝟏𝐱𝐱𝑗𝑗𝑘𝑘𝐱𝐱𝑗𝑗𝑘𝑘′ 𝐃𝐃−𝟏𝟏𝑦𝑦𝑘𝑘∗σ�𝑒𝑒𝑘𝑘

−2 �
ω𝑗𝑗𝑘𝑘σ�𝑒𝑒𝑘𝑘

2

σ�α𝑗𝑗𝑘𝑘2 + 𝐱𝐱𝑗𝑗𝑘𝑘′ 𝐃𝐃−𝟏𝟏𝐱𝐱𝑗𝑗𝑘𝑘�
−𝟏𝟏

587 

= 𝑦𝑦𝑘𝑘∗
′𝐃𝐃−𝟏𝟏σ�𝑒𝑒𝑘𝑘

−2 −
�𝐱𝐱𝑗𝑗𝑘𝑘′ 𝐃𝐃−𝟏𝟏𝐲𝐲𝒌𝒌∗�

𝟐𝟐

σ�𝑒𝑒𝑘𝑘2 �
ω𝑗𝑗𝑘𝑘σ�𝑒𝑒𝑘𝑘2
σ�α𝑗𝑗𝑘𝑘2 + 𝐱𝐱𝑗𝑗𝑘𝑘′ 𝐃𝐃−𝟏𝟏𝐱𝐱𝑗𝑗𝑘𝑘�

 588 

As such, after dropping terms that are equivalent for 𝐼𝐼𝑗𝑗𝑘𝑘 = 0 and 𝐼𝐼𝑗𝑗𝑘𝑘 = 1 (i.e., 𝑦𝑦𝑘𝑘∗
′𝐃𝐃−𝟏𝟏σ�𝑒𝑒𝑘𝑘

−2), the 589 

log-likelihood becomes: 590 

f�𝑟𝑟𝑗𝑗𝑘𝑘�𝐼𝐼𝑗𝑗𝑘𝑘 = δ�(𝑝𝑝𝑟𝑟) = 591 

�

⎝

⎜
⎛
−

1
2

log�1 + 𝐱𝐱𝑗𝑗𝑘𝑘′ 𝐃𝐃−𝟏𝟏𝐱𝐱𝑗𝑗𝑘𝑘
σ�α𝑗𝑗𝑘𝑘
2

ω𝑗𝑗𝑘𝑘σ�𝑒𝑒𝑘𝑘2
� +

1
2

�𝐱𝐱𝑗𝑗𝑘𝑘′ 𝐃𝐃−𝟏𝟏𝐲𝐲𝒌𝒌∗�
2

∑ σ�𝑒𝑒𝑘𝑘2 �
ω𝑗𝑗𝑘𝑘σ�𝑒𝑒𝑘𝑘2
σ�α𝑗𝑗𝑘𝑘2 + 𝐱𝐱𝑗𝑗𝑘𝑘′ 𝐃𝐃−𝟏𝟏𝐱𝐱𝑗𝑗𝑘𝑘�𝑘𝑘

+ log (𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑟𝑟)

⎠

⎟
⎞

𝑘𝑘
 592 
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 737 

Table 1. Estimated genetic correlations between milk production traits in Jerseys and Holsteins 738 

using GREML. 739 

Trait Genetic correlation (SE) 



34 
 

Milk 0.661 (0.143) 

Fat 0.050 (0.158) 

Protein 0.470 (0.157) 

 740 

  741 
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Table 2. GEBV accuracies estimated with either single-trait implementations of PREML (a 742 

pedigree-based model using REML), GREML (a genomic relationship-based model using 743 

REML) or BSSVS (Bayesian Stochastic Search Variable Selection). For GREML, a multi-trait 744 

model (MT-GREML) is also used, while, for BSSVS, two mt Bayesian learning models (mt-745 

BSSVS) are used, which either have one π value for both breeds (mt-BSSVS-1π) or a different 746 

π value separately for each breed (mt-BSSVS-2π). Models were trained on data from Jerseys 747 

(J), Holsteins (H) or both (H/J). 748 

Model Milk Fat Protein 

ST-PREML (J) 0.326 0.582 0.317 

ST-GREML (H) 0.204*** 0.100*** 0.237*** 

ST-GREML (J) 0.461- 0.609- 0.484- 

ST-GREML (H/J) 0.525** 0.614ns 0.524* 

MT-GREML (H/J) 0.493** 0.609ns 0.496† 

ST-BSSVS (H) 0.311**;*** 0.173***;* 0.265***;† 

ST-BSSVS (J) 0.465-;ns 0.628-;*** 0.490-;ns 

ST-BSSVS (H/J) 0.561***;** 0.665**;*** 0.538**;† 

mt-BSSVS-1π (H/J) 0.498***;ns 0.637*;*** 0.500ns;ns 

mt-BSSVS-2π (H/J) 0.493**;ns 0.636†;*** 0.494ns;ns 

The first superscript denotes, within-trait and -model (GREML or BSSVS), whether the 749 

accuracy is significantly lower (for animals using only H data) or higher (for models using J 750 

and H data), compared to the standard (single-trait) model, which uses only J data; – indicates 751 

the standard model, ns indicates P-values ≥ 0.10, † indicates P-values < 0.10, * indicates P-752 

values < 0.05, ** indicates P-values < 0.01, and *** indicates P-values < 0.001. 753 

The second superscript for the BSSVS models denotes whether their accuracy is significantly 754 

larger than the accuracy of their GREML counterpart, i.e., ST-BSSVS (H) vs. ST-GREML (H), 755 
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ST-BSSVS (J) vs. ST-GREML (J), ST-BSSVS (H/J) vs. ST-GREML (H/J), mt-BSSVS (H/J) 756 

vs. MT-GREML (H/J); ns indicates P-values ≥ 0.10, † indicates P-values < 0.10, * indicates P-757 

values < 0.05, ** indicates P-values < 0.01, *** indicates P-values < 0.001. 758 

  759 
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Table 3. Coefficients of the regression of de-regressed EBVs on (G)EBVs estimated with either 760 

single-trait (ST) implementations of PREML (a pedigree-based model using REML), GREML 761 

(a genomic relationship-based model using REML) or BSSVS (Bayesian Stochastic Search 762 

Variable Selection). For GREML, a multi-trait model (MT-GREML) is also used, while, for 763 

BSSVS, two multi-task Bayesian learning models (mt-BSSVS) are used, which either have one 764 

π value for both breeds (mt-BSSVS-1π) or a different π value separately for each breed (mt-765 

BSSVS-2π). Models were trained on data from Jerseys (J), Holsteins (H) or both (H/J). 766 

Model Milk Fat Protein 

ST PREML (J) 0.801 1.097 0.924 

ST-GREML (H) 0.806 0.504 1.034 

ST-GREML (J) 0.804 0.928 0.903 

ST-GREML (H/J) 0.963 0.979 0.998 

MT-GREML (H/J) 0.832 0.927 0.899 

ST-BSSVS (H) 0.989 0.844 1.151 

ST-BSSVS (J) 0.882 1.009 1.020 

ST-BSSVS (H/J) 1.027 1.124 1.066 

mt-BSSVS-1π (H/J) 0.895 0.991 0.944 

mt-BSSVS-2π (H/J) 0.888 0.988 0.932 

 767 

  768 
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Figure 1. Distribution of genomic relationships between Holstein and Jersey animals. 769 

Figure 2. Manhattan plot of the Bayes factors for milk yield obtained from five different 770 

analyses, including ST-BSSVS, using only Jersey (J), only Holstein (H), or H and J data, and 771 

multi-task BSSVS (mt) using H and J data, and either using the same π value (mt-BSSVS-1π) 772 

or different π values (mt-BSSVS-2π). For the last model, the Bayes factors for Jerseys are 773 

presented. 774 

 775 

Figure 3. Manhattan plot of the Bayes factors for fat yield obtained from five different analyses, 776 

including single-trait BSSVS (ST-BSSVS) using only Jersey (J), only Holstein (H), or H and J 777 

data, and multi-task BSSVS (mt) using H and J data, and either using the same π value (mt-778 

BSSVS-1π) or different π values (mt-BSSVS-2π). For the last model, the Bayes factors for 779 

Jerseys are presented. 780 

 781 

Figure 4. Manhattan plot of the Bayes factors for protein yield obtained from five different 782 

analyses, including single-trait BSSVS (ST-BSSVS) using only Jersey (J), only Holstein (H), 783 

or H and J data, and multi-task BSSVS (mt) using H and J data, and either using the same π 784 

value (mt-BSSVS-1π) or different π values (mt-BSSVS-2π). For the last model, the Bayes 785 

factors for Jerseys are presented. 786 
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