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ABSTRACT 23 

The objective of the present study was to compare the prediction potential of milk Fourier-24 

transform infrared spectroscopy (FTIR) for methane (CH4) emissions of dairy cows with that 25 

of gas chromatography (GC)-based milk fatty acid (MFA). Data from 9 experiments with 26 

lactating Holstein-Friesian cows with a total of 30 dietary treatments and 218 observations were 27 

used. Methane emissions were measured for 3 consecutive days in climate respiration chambers 28 

and expressed as production (g/d), yield (g/kg dry matter intake; DMI), and intensity (g/kg fat- 29 

and protein-corrected milk; FPCM). Dry matter intake was 16.3 ± 2.18 kg/d, FPCM yield was 30 

25.9 ± 5.06 kg/d, CH4 production was 366 ± 53.9 g/d, CH4 yield was 22.5 ± 2.10 g/kg DMI, 31 

and CH4 intensity was 14.4 ± 2.58 g/kg FPCM (mean ± SD). Milk was sampled during the same 32 

days and analyzed by GC and by FTIR. Multivariate GC-determined MFA-based and FTIR-33 

based CH4 prediction models were developed and, subsequently, the final CH4 prediction 34 

models were evaluated with root mean square error of prediction (RMSEP) and concordance 35 

correlation coefficient (CCC) analysis. Further, we performed a random 10-fold cross 36 

validation to calculate the models performance parameters (e.g., the coefficient of 37 

determination of cross validation; R2CV). The final GC-determined MFA-based CH4 38 

prediction models estimate CH4 production, yield, and intensity with a RMSEP of 35.7 g/d, 1.6 39 

g/kg DMI, and 1.6 g/kg FPCM, and with a CCC of 0.72, 0.59, and 0.77, respectively. The final 40 

FTIR-based CH4 prediction models estimate CH4 production, yield, and intensity with a 41 

RMSEP of 43.2 g/d, 1.9 g/kg DMI, and 1.7 g/kg FPCM, and with a CCC of 0.52, 0.40, and 42 

0.72, respectively. The GC-determined MFA-based prediction models described a greater part 43 

of the observed variation in CH4 emission than FTIR-based models. The cross validation results 44 

indicate that all CH4 prediction models (both GC-determined MFA-based and FTIR-based) are 45 

robust, as the difference between R2 and R2CV ranged from 0.01 to 0.07. These results indicate 46 

that GC-determined MFA have a greater potential than FTIR spectra to estimate CH4 47 
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production, yield, and intensity. Both techniques hold potential, but may not yet be ready to 48 

predict CH4 emission of dairy cows in practice. Additional CH4 measurements are therefore 49 

needed to improve the accuracy and robustness of both GC-determined MFA and FTIR spectra 50 

for CH4 prediction. 51 

Keywords: dairy cow, enteric methane production, milk fatty acid concentration, milk 52 

Fourier-transform infrared spectroscopy. 53 

 54 

INTRODUCTION 55 

Enteric methane (CH4) is produced in the gastrointestinal tract of livestock, mainly 56 

ruminants, and comprises ~40% of global CH4 emissions (Gerber et al., 2013). Enteric CH4 is 57 

one of the main targets of mitigation strategies in the dairy cattle sector (Knapp et al., 2014). 58 

Quantification of CH4 emission is thus important. Several in vivo CH4 measurement techniques 59 

have been developed, but are not suitable for precise and accurate large scale measurements 60 

(Hammond et al., 2016). Cost-effective, efficient, robust, and fast CH4 measurement techniques 61 

applicable on a large scale to estimate CH4 emission of individual dairy cows are required. 62 

Therefore, identifying proxies (i.e., indicators or indirect traits related to CH4 emission), might 63 

serve as a good alternative (Negussie et al., 2017).  64 

Milk fatty acid (MFA) profiles have been suggested as proxy to estimate CH4 emission 65 

in dairy cattle, and many studies have evaluated this proposed relationship between MFA 66 

concentrations and CH4 emission (e.g., Chilliard et al., 2009; Mohammed et al., 2011; Rico et 67 

al., 2016). However, the gas chromatography (GC) procedure required to obtain the MFA 68 

profiles is time consuming, labor intensive, and requires expensive instruments and trained 69 

personnel (Capuano et al., 2014), and is, therefore, unsuitable for large scale measurements. 70 

Fourier-transform infrared spectroscopy (FTIR), on the other hand, is a rapid, cost-effective, 71 

and high-throughput technique. Currently, major milk components such as fat, protein, lactose, 72 
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and urea are routinely measured with FTIR by milk recording organizations. Diverse milk 73 

phenotypes can be estimated by FTIR, as illustrated by De Marchi et al. (2014), including MFA 74 

composition (e.g., Rutten et al., 2009; Soyeurt et al., 2011), milk protein composition (Bonfatti 75 

et al., 2011), technological properties of milk (DeMarchi et al., 2009), and cow health and 76 

energy status (Van Knegsel et al., 2010; McParland et al., 2011).  77 

Dehareng et al. (2012) and Vanlierde et al. (2015) used FTIR to predict CH4 emission of 78 

dairy cattle. The reported prediction accuracy of the models developed for CH4 emission was 79 

high in both studies, with an cross validated coefficient of determination ranging from 0.68 to 80 

0.79. However, the CH4 predictions of Dehareng et al. (2012) at different stages of lactation 81 

were not biologically meaningful, whereas Vanlierde et al. (2015) demonstrated that a lactation 82 

stage dependent CH4 prediction model was more robust and biologically more meaningful. The 83 

CH4 prediction potential of FTIR spectra seems moderate (reviewed by Van Gastelen and 84 

Dijkstra, 2016), which is based on experiments only using the SF6-tracer technique to measure 85 

CH4 emission. More recently, Shetty et al. (2017) demonstrated low prediction accuracy 86 

(coefficient of determination for validation being 0.13)  for CH4 emission (in L/d) when models 87 

were obtained using FTIR spectra and CH4 emission measured by the sniffer method in 88 

automated milking stations. To date, no research has assessed the CH4 prediction potential of 89 

milk FTIR spectra for CH4 data obtained in climate respiration chambers and for all 3 units of 90 

CH4 emission, viz. CH4 production (in g/d), CH4 yield (in g/kg dry matter intake; DMI), and 91 

CH4 intensity (in g/kg fat- and protein-corrected milk; FPCM). The objective of the present 92 

study was to compare the prediction potential for CH4 production, yield, and intensity of milk 93 

FTIR spectra with that of the GC-determined MFA profile, using CH4 data obtained in climate 94 

respiration chambers.  95 

 96 

MATERIAL AND METHODS 97 
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Data collection 98 

Data from 9 studies, designed as randomized block experiments, from Wageningen 99 

University & Research (Wageningen, The Netherlands) were used (Table 1). The experiments 100 

were conducted in accordance with Dutch law and approved by the Animal Care and Use 101 

Committee of Wageningen University & Research. The 9 studies represented 30 dietary 102 

treatments and 218 individual observations from lactating Holstein-Friesian cows. The dataset 103 

included multiple observations from a small number of dairy cows (218 individual observations 104 

from 189 unique dairy cows). We consider these particular observations as unique and not as 105 

repeated measurements, because of the large differences in conditions between the observations 106 

of the same dairy cows (i.e., different experiment, different dietary treatment, different parity, 107 

and different lactation stage). The experimental setup was similar for all experiments. After an 108 

adaptation period of 12 d, cows were housed individually in open circuit, indirect climate 109 

respiration chambers (described by Van Gastelen et al., 2015) for a 5 d period to determine CH4 110 

emission (expressed as production, yield, and intensity). Diets were fed twice daily and intake 111 

was restricted to 95% of the voluntarily DMI of the cow consuming the least within a block.  112 

Cows were milked twice daily and water was freely available during the entire 113 

experiment. While housed in the climate respiration chambers, milk yield was recorded and 114 

representative milk samples (i.e., 5 g/kg of milk production from each cow) were collected at 115 

each milking according to Van Gastelen et al. (2015). These milk samples were pooled per 116 

period and cow and subsequently analyzed for MFA composition (g/100 g FA) using GC as 117 

described by Van Gastelen et al. (2015). The pooled milk samples were also analyzed in the 118 

laboratory of Qlip B.V. (Zutphen, the Netherlands) to determine the content of fat, protein, and 119 

lactose according to regular test-day procedures using MilkoScan FT 6000 equipment with 120 

diamond cuvettes (Foss Analytical A/S, Hillerød, Denmark) using the manufacturer supplied 121 

basic calibration models in conformity with ISO 9622 (International Organization for 122 
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Standardization, 2013). The applied reference methods were ISO 1211 (International 123 

Organization for Standardization, 2010) for fat, ISO 8968-1 (International Organization for 124 

Standardization, 2014) for total protein, and an HPLC method based on ISO 22662 125 

(International Organization for Standardization, 2007) for lactose. The FTIR absorption spectra 126 

consisted of 1060 infrared frequencies (wavenumbers) representing infrared light absorption 127 

through the milk samples ranging from 925 to 5008 cm−1. 128 

 129 

Statistical analyses 130 

Model development GC-determined MFA. Multivariate models were developed using a 131 

stepwise procedure (PROC GLMSELECT of SAS; SAS Institute Inc., Cary, NC, USA, version 132 

9.2) with CH4 emission (i.e., production, yield, and intensity) as the independent variable and 133 

stepwise selection of only GC-determined MFA (g/100 g total fatty acids). The significance 134 

level for a GC-determined MFA to enter or stay in the model was 0.01 and 0.05, respectively. 135 

The final models were selected based on the minimum Akaike’s information criterion statistic. 136 

The selected models were evaluated in PROC REG in terms of multicollinearity (variation 137 

inflation factor > 10), but no multicollinearity was observed.  138 

Model development FTIR. Prediction models for CH4 production, yield, and intensity 139 

were developed only on pre-processed data of selected wavenumbers as linear regression 140 

models using Partial Least Squares (PLS) calculated with the SIMPLS algorithm of the PLS 141 

toolbox (Eigenvector Research Inc., Manson, WA, USA). In the PLS method, spectroscopic 142 

data were reduced to a set of orthogonal, uncorrelated components (viz. latent variables; LV). 143 

Selected wavenumbers (n = 218) were in the ranges 964 - 1581 cm-1, 1715 – 1773 cm-1, and 144 

2814 - 2968 cm-1. These wavenumbers were selected because these contain valuable 145 

information on milk composition and are thus most relevant for milk analysis (Capuano et al., 146 

2014). Additionally, parts of the infrared spectrum that are disturbed by high water absorption 147 
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were omitted, because these can interfere with the quantification of other major milk 148 

components (Capuano et al., 2014). The selected wavenumbers were pre-processed by applying 149 

the Savitzky-Golay (Savitzky and Golay,1964), first derivative with polynomial order 2 and 150 

window width 7, and subsequently mean centered.  151 

Model evaluation. All CH4 prediction models, GC-determined MFA-based and FTIR-152 

based, were evaluated using 2 methods. Firstly, the mean square error of prediction (MSEP), 153 

calculated as 154 

𝑀𝑆𝐸𝑃 = ∑(𝑂𝑖 − 𝑃𝑖)
2/𝑛

𝑛

𝑖=1

, 155 

where 𝑛 is the total number of observations, 𝑂𝑖 is the observed value and 𝑃𝑖 is the predicted 156 

value. The square root of the MSEP (RMSEP) gives an estimate of the overall error of 157 

prediction and is expressed as percentage of the observed mean or expressed in g/d, g/kg DMI, 158 

and g/kg FPCM for CH4 production, yield, and intensity, respectively. Secondly, concordance 159 

correlation coefficient analysis (CCC; Lin, 1989) was performed, where CCC is calculated as 160 

CCC = 𝑟 ×  𝐶𝑏 , 161 

where 𝑟 is the correlation coefficient providing a measure of precision, and 𝐶b is a bias 162 

correction factor providing a measure of accuracy. The 𝐶b variable is calculated as 163 

𝐶b =  
2

[𝑣 + 1 / 𝑣 +  𝜇2]
, 164 

where 165 

𝑣 =  
𝑆𝑜

𝑆𝑝
, 166 

𝜇 =  
�̅�  −  �̅�

(𝑆𝑜 × 𝑆𝑝)0.5
, 167 

where 𝑣 provides a measure of scale shift, while 𝜇 provides a measure of location shift, 𝑆𝑜 and 168 

𝑆𝑝 are the observed and predicted standard deviations, and �̅� and �̅� are the observed and 169 
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predicted means. A CCC of 0.20 or lower indicates poor predictive ability, between 0.21 and 170 

0.40 indicates fair predictive ability, between 0.41 and 0.60 indicates moderate predictive 171 

ability, between 0.61 and 0.80 indicates substantial predictive ability, and between 0.81 and 172 

1.00 indicates accurate predictive ability (Altman, 1997). Furthermore, the predictive power of 173 

the calibration was evaluated through the ratio of performance to deviation (RPD) statistic, 174 

which is the ratio of the standard deviation of the original data to the standard error of cross 175 

validation (Dehareng et al., 2012). The RPD values are preferably as high as possible; RPD 176 

values between 5 and 10 are adequate for quality control, process control, and potentially 177 

suitable for application (Williams et al., 2014). Additionally, PROC CORR in SAS was used 178 

to determine the Pearson correlation between the MFA predicted CH4 emissions and the FTIR 179 

predicted CH4 emissions.  180 

Cross validation MFA and FTIR. In order to calculate the models performance parameters 181 

(i.e., root mean square error of cross validation (RMSECV) and the coefficient of determination 182 

of cross validation (R2CV)), we performed a random cross validation with 10 splits and 10 183 

iterations as recommended by Rodriguez et al. (2010) for all MFA and FTIR-based CH4 184 

prediction models. For each iteration, a model was developed as described above using 9 splits 185 

of the dataset, and the selected model was subsequently evaluated as described above on the 186 

remaining part of the dataset (i.e., 1 split). With this approach, all observations were used for 187 

both calibration and validation, and each observation was used for validation exactly once. The 188 

cross validation performance values represent the average of the 10-fold cross validation.  189 

This random 10-fold cross validation was also used for selection of the number of LV for 190 

the FTIR-based CH4 prediction models. The selected number of LV for the final models was 191 

based on the suggestion by PLS toolbox and visual assessment of the graphs of the root means 192 

square error of calculation (RMSEC) and RMSECV against the number of LV. The number of 193 
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LV before the RMSECV starts increasing or the RMSECV starts deviating considerably from 194 

the RMSEC was the number selected.  195 

 196 

RESULTS 197 

The descriptive statistics of animal performance, dietary characteristics, CH4 emission, 198 

and GC-determined MFA concentrations are presented in Table 2. The GC-determined MFA-199 

based CH4 production, yield, and intensity prediction models are shown in Table 3. In the final 200 

models, considering the odd- and branched-chain fatty acids (OBCFA), CH4 production was 201 

positively associated with C15:0 (P = 0.002), CH4 yield was positively associated with iso 202 

C15:0 and C17:0 (P < 0.003), but negatively associated with anteiso C15:0 (P < 0.001), and 203 

CH4 intensity was positively associated with both iso C15:0 and iso C17:0 (P < 0.001). The 204 

relation between CH4 emissions and the C18:1, C18:2, C18:3 isomers was generally negative 205 

(P < 0.010), with the exception of the positive association between CH4 production and C18:2n-206 

6 (P = 0.005). Additionally, CH4 production was negatively associated with C24:0 (P = 0.007) 207 

and positively associated with C20:4n-3 (P = 0.002), and CH4 intensity was positively 208 

associated with C22:5n-3 (P < 0.001). The FTIR-based CH4 prediction models are based on the 209 

regression between the wavenumbers and CH4 production, yield, or intensity, as illustrated in 210 

Figure 1. Certain wavenumbers were not related with CH4 emissions (i.e., regression vector 211 

close to 0), whereas other wavenumbers were clearly positively or negatively related with CH4 212 

emissions. Both the strength and the direction (positive or negative) of the correlations as well 213 

as the correlated wavenumbers differed between the different units of CH4 emission (i.e., 214 

production, yield, and intensity; Figure 1).  215 

The evaluation results (i.e., R2, RMSEP, and CCC analysis) of the GC-determined MFA-216 

based and FTIR-based CH4 prediction models are shown in Table 4. The observed versus 217 

predicted CH4 production, yield, and intensity plots of the GC-determined MFA-based and 218 
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FTIR-based CH4 prediction models are shown in Figures 2A and 3A, respectively. The residual 219 

(i.e., observed minus predicted) versus predicted CH4 production, yield, and intensity plots of 220 

the GC-determined MFA-based and FTIR-based CH4 prediction models are shown in Figures 221 

2B and 3B, respectively. The R2, RMSEP (%), and CCC of the GC-determined MFA-based 222 

CH4 prediction models ranged from 0.40 to 0.62, from 7.1% to 10.9%, and from 0.59 to 0.77, 223 

respectively (Table 4). The R2, RMSEP (%), and CCC of the FTIR-based CH4 prediction 224 

models ranged from 0.25 to 0.56, from 8.2% to 11.8%, and from 0.40 to 0.72, respectively. 225 

Based on the CCC, for both GC-determined MFA and FTIR, the prediction model for CH4 yield 226 

had the lowest prediction potential (moderate predicting ability for both MFA and FTIR based 227 

models) and the prediction model for CH4 intensity had the highest prediction potential 228 

(substantial predicting ability for both MFA and FTIR based models, respectively). The MFA 229 

and FTIR based prediction models for CH4 production had substantial and moderate predicting 230 

ability, respectively. The variation in predicted CH4 emission was smaller than that in the 231 

observed CH4 emission, in particular for CH4 yield, as indicated by the variable 𝑣 (scale shift; 232 

the relative difference in standard deviation between predicted and observed values). The scale 233 

shift was greater for FTIR-based prediction models (𝑣 ranged from 1.33 to 2.00) than for GC-234 

determined MFA-based prediction models (𝑣 ranged from 1.26 to 1.55).  235 

The RPD statistic, that relates the standard error of prediction to the standard deviation of 236 

the original reference data, was smaller than 1.58 for the GC-determined MFA-based CH4 237 

prediction models and smaller than 1.39 for the FTIR-based CH4 prediction models (Table 4), 238 

suggesting unsatisfactory prediction ability. The Pearson correlations between GC-determined 239 

MFA predicted and FTIR predicted CH4 production, CH4 yield, and CH4 intensity were 0.62 240 

(P < 0.001), 0.51 (P < 0.001), and 0.69 (P < 0.001), respectively (Figure 4). 241 

The results of the internal cross validation of all GC-determined MFA-based and FTIR-242 

based CH4 prediction models are also shown in Table 4. The average number of GC-determined 243 
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MFA included in the GC-determined MFA internal cross validation models varied between 4 244 

and 5, and the average number of LV in the FTIR internal cross validation models varied 245 

between 4 and 6. The R2CV and the RMSECV of the GC-determined MFA-based CH4 246 

prediction models ranged from 0.38 to 0.63 and from 8.1% to 11.6%, respectively. The R2CV 247 

and the RMSECV of the FTIR-based CH4 prediction models ranged from 0.19 to 0.49 and from 248 

8.6% to 12.8%, respectively.  249 

 250 

DISCUSSION 251 

This is the first study evaluating and comparing the CH4 prediction potential of GC-252 

determined MFA and milk FTIR spectra for CH4 data obtained in climate respiration chambers. 253 

Data were obtained from dairy cattle experiments where type of forage, forage quality, and 254 

forage to concentrate ratio were varied, without use of CH4 mitigating additives. Our results 255 

indicate that the GC-determined MFA-based prediction models had a higher prediction 256 

potential than the FTIR-based models and described a larger amount of the observed variation 257 

in CH4 emission. 258 

 259 

GC-determined MFA-based CH4 prediction models 260 

All CH4 prediction models were based on OBCFA and long chain fatty acids (> 16 261 

carbons). No short- and medium-straight, even-chain fatty acids (≤ 16 carbons) were included 262 

in any of the GC-determined MFA-based CH4 prediction models, despite the fact that these are 263 

synthesized de novo in the mammary gland from acetate and β-hydroxybutyrate produced in 264 

the rumen, which are both reported to be positively associated with CH4 emission (Ellis et al., 265 

2008). As reviewed by Van Gastelen and Dijkstra et al. (2016), these short- and medium-266 

straight, even-chain fatty acids were usually not included in the GC-determined MFA-based 267 

CH4 prediction equations (n = 6) previously developed, except for C4:0 and C16:0 that were 268 
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included in 1 equation each. The association between CH4 emissions and both iso and anteiso 269 

OBCFA in the current study is in agreement with iso OBCFA being more abundant in fibrolytic 270 

bacteria and anteiso OBCFA being more abundant in amylolytic bacteria (Vlaeminck et al., 271 

2006). Both C15:0 and C17:0 were found to be positively associated with CH4 emissions, which 272 

is in disagreement with Vlaeminck et al. (2006) and Rico et al. (2016), but in agreement with 273 

Chilliard et al. (2009), Dijkstra et al. (2011) and Van Lingen et al. (2014). The negative relations 274 

between C18:1, C18:2, and C18:3 isomers in milk and CH4 emission are in agreement with 275 

several other studies (e.g., Van Lingen et al., 2014 and Rico et al., 2016). The associations 276 

between CH4 emissions and long-chain fatty acids have been reported before (i.e., Chilliard et 277 

al., 2009; Rico et al., 2016; Van Gastelen et al., 2017a), suggesting that these GC-determined 278 

MFA are important in terms of CH4 prediction.  279 

In general, the prediction potential of the GC-determined MFA-based CH4 prediction 280 

models appears to be moderate to substantial, with the CCC ranging from 0.40 to 0.77.  The 281 

observed R2 values ranged from 0.40 to 0.62 and are lower than the ones reported by Dijkstra 282 

et al. (2011) for CH4 yield, and by Chilliard et al. (2009), Mohammed et al. (2011), and Rico et 283 

al. (2016) for CH4 production, but of similar magnitude as Van Lingen et al. (2014) and Van 284 

Gastelen et al. (2017a). The recent research, including the present study, on the relationship 285 

between GC-determined MFA and CH4 emission gives inconsistent results. Where some 286 

studies found a clear and strong relation between GC-determined MFA and CH4 emission (e.g., 287 

Chilliard et al., 2009, Dijkstra et al., 2011), other studies concluded that GC-determined MFA 288 

alone might not be suitable to develop universal CH4 prediction models (e.g., Mohammed et 289 

al., 2011), and more recently, Castro-Montoya et al. (2017) concluded that GC-determined 290 

MFA are not reliable predictors for specific amounts of CH4 emitted by a cow based on the 291 

coefficient of determination of validation ranging from 0.18 to 0.41. Even the studies that do 292 

find a clear relation between GC-determined MFA and CH4 emissions, do not describe similar 293 
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prediction models using the same GC-determined MFA. The discrepancies between these 294 

studies have been reviewed by Van Gastelen and Dijkstra (2016). There are many factors that 295 

can influence GC-determined MFA concentrations and therefore the relation between GC-296 

determined MFA and CH4 emissions (Gengler et al., 2016), such as dietary composition (e.g., 297 

Mohammed et al., 2011 and Dijkstra et al., 2016) and lactation stage (Vanrobays et al., 2016). 298 

Moreover, it should be noted that previous analyses were often based on data of cattle fed lipid 299 

supplements or feed additives, whereas in the present study dietary contrasts included variation 300 

in forage to concentrate ratio, type of forage, and forage quality only. 301 

The difference between R2 and R2CV for the GC-determined MFA-based CH4 prediction 302 

models was small (0.07 for CH4 production, 0.02 for CH4 yield, and 0.01 for CH4 intensity; 303 

Table 4). These small differences indicate that all GC-determined MFA-based CH4 prediction 304 

models are robust in terms of CH4 prediction. The GC-determined MFA-based CH4 prediction 305 

models were also assessed for robustness in terms of composition of the prediction models. All 306 

4 GC-determined MFA that were part of the overall prediction model for CH4 intensity (Table 307 

3) were also selected in the prediction models developed in the 10-fold cross validation (results 308 

not shown). Three of the 4 GC-determined MFA were included in all 10 models (i.e., iso C15:0, 309 

iso C17:0, and C18:1 trans-15 + C18:1 cis-11), which shows the robustness of the GC-310 

determined MFA-based prediction model for CH4 intensity in terms of composition. In 311 

comparison, all 6 GC-determined MFA of the MFA-based prediction model for CH4 yield were 312 

selected in the 10-fold cross validation. Although only 1 GC-determined MFA of the GC-313 

determined MFA-based model (i.e., C18:3n-3) was included in all 10 models of the cross 314 

validation, the other 5 GC-determined MFA were included in 6 to 8 of the 10 models. However, 315 

of the 8 GC-determined MFA in MFA-based prediction model for CH4 production, only 5 were 316 

also selected in the 10-fold cross validation of which 1 GC-determined MFA (i.e., C18:3n-3) 317 

was included in all 10 models. Moreover, 3 of the GC-determined MFA in the GC-determined 318 
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MFA-based CH4 production prediction model were not selected in any of the 10 models of the 319 

cross validation (i.e., C18:1 trans-10, C18:2n-6, and C20:4n-3). This illustrates that the GC-320 

determined MFA-based prediction model for CH4 production in particular is less robust in 321 

comparison to the GC-determined MFA-based prediction model for CH4 intensity and CH4 322 

yield.   323 

 324 

FTIR-based CH4 prediction models 325 

In general, the prediction potential of the FTIR-based CH4 prediction models appears to 326 

be moderate to substantial, with the CCC ranging from 0.40 to 0.72 and the R2 ranging from 327 

0.25 to 0.56. From the regression vector (Figure 1) it appears that bands around 975 cm-1, 1,075 328 

– 1,150 cm-1, 1,450 cm-1, 1,500 – 1,575 cm-1, 1,750 cm-1, and 2,850 – 3,000 cm-1 are important 329 

for the prediction of CH4 emissions. The latter region, and the bands around 1,175 cm-1 and 330 

1,750 cm-1 are commonly used to quantify milk fat content (Safar et al., 1994; Dupuy et al., 331 

1996; Yang and Irudayaraj, 2000). Protein is expected to have absorption peaks around 332 

wavenumbers 1,500 to 1,700 cm-1 (Osborn and Fearn, 1986; McQueen et al., 1995; Dufour et 333 

al., 1998), with the bands around 1,500 – 1,575 cm-1 coinciding with the amide II band (Etzion 334 

et al., 2004). Additionally, the infrared region between 1,000 – 1,100 cm-1 provides information 335 

on sugar molecules (Hashimoto and Kameoka, 2008). This suggests that the bands of the FTIR 336 

spectra which are important to determine the milk composition, such as fat and protein content, 337 

are also important for the prediction of CH4 emission. However, as illustrated by Negussie et 338 

al. (2017), milk fat and milk protein content have low CH4 prediction potential. This is also 339 

observed in the present study, in which milk protein and milk fat contents were relatively 340 

weakly associated with CH4 emissions measured in the climate respiration chambers, except 341 

for CH4 intensity for which the calculation includes milk fat and protein contents. Methane 342 

yield was correlated with fat content (r = 0.17, P = 0.010) and tended to be related to protein 343 
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content (r = 0.12, P = 0.066), whereas no significant correlations were observed for CH4 344 

production. However, as expected from the similarity in FTIR spectra bands, FTIR predicted 345 

CH4 emissions were more strongly related to milk protein content (r = 0.11, P = 0.096 for CH4 346 

production; r = 0.32, P < 0.001 for CH4 yield; r = 0.64, P < 0.001 for CH4 intensity) and to milk 347 

fat content (r = -0.11, P = 0.094 for CH4 production; r = 0.37, P < 0.001 for CH4 yield; r = 0.13, 348 

P = 0.053 for CH4 intensity).  349 

The differences between R2 and R2CV for the milk FTIR-based CH4 prediction models 350 

were 0.06 for CH4 production, 0.06 for CH4 yield, and 0.07 for CH4 intensity (Table 4). For 351 

CH4 yield and intensity, these differences between R2 and R2CV of FTIR-based models are 352 

somewhat larger than for GC-determined MFA-based models, indicating that GC-determined 353 

MFA-based models are slightly more robust. The number of studies on FTIR-based CH4 354 

prediction models is limited. Dehareng et al. (2012) reported FTIR-based prediction models for 355 

both CH4 production and CH4 intensity (g/kg milk) using the SF6-tracer technique, involving 356 

11 lactating dairy cows and 3 dietary treatments. The prediction potentials of the FTIR-based 357 

prediction models reported by Dehareng et al. (2012) were higher than the ones reported in the 358 

present study, with the R2 ranging from 0.77 to 0.93 and the R2CV ranging from 0.68 to 0.79. 359 

Additionally, Vanlierde et al. (2015) developed both lactation stage independent (i.e., including 360 

only FTIR spectra) and lactation stage dependent (i.e., including FTIR spectra and days in milk) 361 

CH4 prediction models using the SF6-tracer technique involving 142 lactating dairy cows fed a 362 

wide range of diets. Vanlierde et al. (2015) reported, for the lactation stage independent CH4 363 

prediction model (i.e., comparable to present study), a strong correlation (R2 = 0.77) between 364 

observed and predicted CH4 production, which is also higher than that in the present study. 365 

However, the previous studies developed FTIR-based CH4 prediction models using multiple 366 

measurements of the same cows in a shorter time frame than in our study. Consequently, cows 367 

were in a rather same lactation stage and parity and received the same dietary treatment. The 368 
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study of Dehareng et al. (2012) involved 11 dairy cows, whereas the prediction models were 369 

developed using 77 observations (i.e., 7.00 observations per individual), and the study of 370 

Vanlierde et al. (2015) involved 142 dairy cows, while the prediction models were developed 371 

using 446 observations (i.e., 3.14 observations per individual). This could have positively 372 

influenced the performance parameters of their CH4 prediction models, as repeated measures 373 

are generally more closely related than independent observations. Contrary, the present study 374 

involved multiple distinct measurements of a limited number of cows (i.e., out of 189 individual 375 

dairy cows, 29 cows had 2 observations; 1.15 observations per individual). These observations 376 

on the same individual are considered as separate  measurements because they were obtained 377 

at a different parity and lactation stage as well as a different dietary treatment. Furthermore, the 378 

large range of CH4 emissions measured using the SF6-tracer technique might have contributed 379 

to the high prediction potentials found in both studies. In Dehareng et al. (2012) CH4 production 380 

ranged from 218 to 653 g/d and CH4 intensity ranged from 10.2 to 47.1 g/kg milk, and in 381 

Vanlierde et al. (2015) CH4 production ranged from approximately 180 to 950 g/d, which are 382 

not within the range of CH4 measurements reported in literature (Appuhamy et al., 2016).  383 

More recently, Shetty et al. (2017) concluded that it is not feasible to predict CH4 emission 384 

based on FTIR spectra alone, because of the low prediction accuracies found when models were 385 

obtained using FTIR spectra and because of the marginal added value of FTIR spectra in 386 

combination with traits such as milk yield and lactation stage. Hence, there is a considerable 387 

discrepancy between the results obtained in the present study and the three aforementioned 388 

studies. This discrepancy might be the results of different CH4 emission measurement 389 

techniques (i.e., climate respiration chambers, SF6-tracer technique, and the sniffer technique), 390 

the size as well as the structure of the population [i.e., ranging from 11 dairy cows in Dehareng 391 

et al. (2012) to 490 dairy cows in Shetty et al. (2017)], the prediction and validation methods 392 
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(i.e., internal cross validation and external validation), and the duration of measurement and the 393 

time between CH4 measurements and milk FTIR sampling (Shetty et al., 2017).  394 

 395 

Comparison of GC-determined MFA-based and FTIR-based CH4 prediction models 396 

For all CH4 emission units, but particularly for CH4 production and CH4 yield, GC-397 

determined MFA-based prediction models had a higher prediction potential than the FTIR-398 

based models. This is evident by the lower RMSEP values and higher R2 and CCC values. The 399 

higher CCC values are caused by the higher accuracy (Cb) and, in particular, higher precision 400 

(r) of the GC-determined MFA-based CH4 prediction models (Table 4). The relatively larger 401 

differences between the GC-determined MFA-based and FTIR-based prediction models for 402 

CH4 production and CH4 yield might be explained by GC-determined MFA being more closely 403 

linked to the ruminal CH4 production pathways than FTIR spectra. It is known that GC-404 

determined MFA are related to CH4 production because of the common biochemical pathway 405 

between CH4 and fatty acids in the rumen (Chilliard et al., 2009; Ellis et al., 2008). As discussed 406 

above, the FTIR spectra represent the absorbed light by vibrations at several wavelengths of 407 

many milk components, including GC-determined MFA, urea, citrate, free fatty acids, and fat, 408 

protein, and lactose content. The latter 3 solid major milk components have a low CH4 409 

prediction potential (Negussie et al., 2017) and do not seem to be directly linked with ruminal 410 

CH4 pathways. The relatively small difference between the GC-determined MFA-based and 411 

FTIR based prediction models for CH4 intensity might be explained by the fact that CH4 412 

intensity takes milk yield into account, which is directly associated with enteric CH4 production 413 

by cows and reflected by both the FTIR spectral data and the GC-determined MFA profile, due 414 

to dilution effects (Dehareng et al., 2012). This is also illustrated by the somewhat stronger 415 

correlation between GC-determined MFA predicted CH4 intensity and FTIR predicted CH4 416 
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intensity (r = 0.69), compared with the correlation between both methods for CH4 production 417 

(r = 0.62) and CH4 yield (r = 0.51).  418 

All CH4 prediction models, both GC-determined MFA-based and FTIR-based, had a scale 419 

shift which was different from 1 (𝑣 > 1.26). This indicates that there is a change in standard 420 

deviation between predicted and observed CH4 values for all CH4 prediction models, which is 421 

also visualized in Figures 2 and 3 for GC-determined MFA-based and FTIR-based models, 422 

respectively. The variation in predicted CH4 values was clearly smaller than that in observed 423 

CH4 values for all CH4 prediction models. However, the scale shift was greater for all the FTIR-424 

based CH4 prediction models (𝑣 ranges from 1.33 to 2.00) than for the GC-determined MFA-425 

based CH4 prediction models (𝑣 ranges from 1.26 to 1.55), which indicates that GC-determined 426 

MFA-based CH4 prediction models have the ability to describe more of the observed variation 427 

in CH4 emissions compared with FTIR-based prediction models.   428 

The RPD values from the present study are lower than the RPD values reported by 429 

Dehareng et al. (2012). The low RPD values from the present study (i.e., < 1.58 for the GC-430 

determined MFA based CH4 prediction models and < 1.39 for the FTIR-based CH4 prediction 431 

models), suggest that the prediction ability of these models can be regarded as poor (Williams 432 

et al., 2014). According to Williams and Sobering (1993) a RPD value of 2.5 and above would 433 

suggest that the model is satisfactory for screening. A narrow range in the variability of the 434 

observations is known to negatively affect predictability of methods of interest (Manley, 2014). 435 

Indeed, the coefficient of variation (SD relative to mean) is highest for CH4 intensity (17.9%) 436 

and the models for CH4 intensity had relatively the best RPD. The lowest coefficient of variation 437 

is for CH4 yield (9.3%) and the models for CH4 yield had the smallest RPD values. Moreover, 438 

although the respiration chamber method is generally considered to be the golden standard for 439 

CH4 measurements (Hammond et al., 2016), its reproducibility as compared with many 440 

chemical analyses for which the RPD statistic was originally developed, is much lower, hence 441 



 

19 
 

reducing prediction accuracy of the prediction methods. The RPD values would suggest that 442 

the CH4 prediction models presented in the current study, both GC-determined MFA-based and 443 

FTIR-based, would not be able to classify dairy cows from populations with low variation in 444 

CH4 emission into low and high CH4 producers. More variation in the dairy population under 445 

evaluation, such as greater variation in animal genetics, in dietary composition, and in 446 

production management, could potentially improve the ability of the models to predict CH4 447 

emission (Dehareng et al., 2012).  448 

It is important to note though, that the present study did not take lactation stage into 449 

account. Although lactation stage is a poor CH4 proxy when considered alone (Negussie et al., 450 

2017), Vanlierde et al. (2015) demonstrated that lactation stage in combination with FTIR 451 

improved the CH4 prediction model. Vanlierde et al. (2015) developed both lactation stage-452 

independent and lactation stage-dependent CH4 prediction models. The average CH4 production 453 

(g/d) predicted by both models was similar (416 ± 63 g/d). However, in contrast to the lactation 454 

stage-independent prediction model, the lactation stage-dependent prediction model showed 455 

biologically meaningful behavior throughout lactation: an increase in CH4 production (g/d) 456 

after calving up to approximately 100 DIM, followed by a gradual decline towards the end of 457 

lactation (Vanlierde et al., 2015). This effect of lactation stage could also be important for the 458 

MFA-based CH4 prediction models, because Vanrobays et al. (2016) clearly demonstrated that 459 

the correlations between GC-determined MFA and CH4 production in dairy cows vary 460 

according to lactation stage. We therefore acknowledge that the CH4 prediction models of the 461 

present study may be improved in terms of predictive power and robustness, when combining 462 

GC-determined MFA or FTIR with lactation stage. We were, however, not able to confirm this, 463 

because differences in lactation stage were confounded by differences in dietary composition 464 

in the dataset used in the present study. Additionally, it should be noted that this study was 465 

based on 9 experiments with forage-based diets only (forage varied between 700 and 850 g/kg 466 
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DM). Furthermore, the milk production of the cows did not exceed 36.8 kg/d, and all cows were 467 

restricted in their feed intake to avoid confounding effects of DMI on CH4 production. Hence, 468 

the area of validity of the CH4 prediction models that have been established in this study, is 469 

limited to these conditions. 470 

 471 

Application of CH4 prediction models in practice 472 

In the present study, we show that GC-determined MFA have a higher prediction potential 473 

for CH4 emissions than FTIR spectra. However, the gas chromatography procedure required to 474 

obtain the GC-determined MFA profile is unsuitable for routine milk recording, whereas the 475 

prediction of CH4 emission using FTIR has the potential for practical high throughput 476 

application.  477 

Although the RPD results suggest that the GC-determined MFA-based and FTIR-based 478 

CH4 prediction models currently have limited applicability, the CCC results demonstrated that 479 

the models had at least moderate predictive ability. Potential practical applications for these 480 

models include: (1) as a farm management tool, (2) to evaluate CH4 mitigation strategies, and 481 

(3) as a tool to breed for dairy cows with lower CH4 emissions (Cottle et al., 2011). When a 482 

dietary strategy is applied in practice, the proxy for CH4 emission should be able to evaluate 483 

whether CH4 emission is affected by the new dietary strategy. Therefore, within each study that 484 

had at least 2 dietary treatments, we evaluated whether the GC-determined MFA-based and 485 

FTIR-based CH4 prediction models were able to estimate the same difference in CH4 emission 486 

as measured in the climate respiration chambers, by comparing CH4 emission at 2 extreme diets 487 

(i.e., furthest apart from one another in terms of dietary composition). The results of this 488 

evaluation are shown in Table 5. In general, all CH4 prediction models predicted a difference 489 

in CH4 emission similar to the climate respiration chambers in terms of trend (i.e., increase or 490 

decrease). There were only a few exceptions, viz. two for the GC-determined MFA-based and 491 
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five for the FTIR-based CH4 prediction models. Furthermore, the differences in CH4 emission 492 

between the two diets as estimated by the GC-determined MFA-based CH4 prediction models 493 

were generally more in line with the observed differences as measured in the climate respiration 494 

chambers, than that of the FTIR-based CH4 prediction models compared with the difference 495 

measured in climate respiration chambers. This suggests that the FTIR-based CH4 prediction 496 

models might have less accuracy relative to the GC-determined MFA-based CH4 prediction 497 

models, both based on a single FTIR or a single GC measurement to determine the MFA profile 498 

of a 4-day combined milk sample, to evaluate the effect of forage level and quality on CH4 499 

emission of dairy cattle. 500 

Breeding for reduced CH4 emission can be achieved with, for example, improved 501 

productivity, increased longevity, or shorter calving interval (Bell et al., 2011), but also by 502 

breeding for actual lower enteric CH4 production (Wall et al., 2010). Several studies have 503 

shown that CH4 emissions of dairy cows have a genetic component, with heritability ranging 504 

from 0.20 to 0.30 (e.g., De Haas et al., 2011 for predicted CH4 emission based on feed intake; 505 

Lassen and Løvendahl, 2016 for CH4 emission measured with a portable air-sampler), 506 

indicating that breeding for dairy cows with lower CH4 emission may be possible. Recently, 507 

Vanlierde et al. (2016) reported that FTIR can distinguish cows with low or high daily CH4 508 

emissions. Direct breeding for lower enteric CH4 production requires CH4 production 509 

measurements of a large number of individual dairy cows to determine the genetic component 510 

of the CH4 phenotype as well as to determine the genetic correlations of CH4 emissions with 511 

other traits. Although the feasibility needs to be assessed in actual commercial environments 512 

before implementation, the FTIR technique has the potential to assist in breeding for reduced 513 

CH4 emission as it can be used routinely to estimate CH4 on commercial dairy farms. 514 

 515 

 516 
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CONCLUSIONS 517 

This study is the first to assess and compare the CH4 emission prediction potential of both 518 

GC-determined MFA profiles and FTIR spectra based on CH4 emission data obtained in climate 519 

respiration chambers and for three different units of CH4 emission, viz. CH4 production, yield, 520 

and intensity. For both GC-determined MFA and FTIR, the prediction model for CH4 yield had 521 

the lowest prediction potential and the prediction model for CH4 intensity had the highest 522 

prediction potential. For all CH4 emission units, but particularly for CH4 production and yield, 523 

GC-determined MFA-based prediction models had a higher prediction potential than the FTIR-524 

based models, and GC-determined MFA-based prediction models described a greater part of 525 

the observed variation in CH4 emission than FTIR-based models. Results indicate that the 526 

current GC-determined MFA-based and FTIR-based CH4 prediction models have potential, but  527 

have limited current applicability. Additional CH4 measurements are needed to improve 528 

prediction models in terms of accuracy and robustness of both GC-determined MFA and FTIR 529 

spectra for CH4 prediction.  530 
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Table 1. Data sources and characteristics of included studies 

 
Study Reference n1 No. of treatments Diet composition / treatments2 

1 Warner et al. (2015) 25 4 15% concentrate, 85% grass herbage. Grass herbage was cut after 3 vs. 5 weeks of regrowth, 

after receiving low (20 kg of N/ha) vs. high (90 kg of N/ha) fertilization rate after initial cut. 
    

    

2 Van Gastelen et al. (2015) 30 4 20% concentrate, 80% roughage. Roughage consisted of 100:0 vs. 67:33 vs. 33:67 vs. 0:100  

grass silage:corn silage. 
    

3 Warner et al. (2016) 42 6 20% concentrate, 80% grass silage. Grass silage received low (65 kg N/ha) vs. high (150 kg 

N/ha) fertilization rate preceding growth period 28 d vs. 41 d vs. 62 d of regrowth. 
    

    

4 Klop et al. (2016) 6 1 30 % concentrate, 21 % grass silage, 49% corn silage. Control diet, with concentrate 

containing urea as nonprotein N source. 
    

5 Warner et al. (2017) 55 8 20% concentrate, 10% corn silage, 70% grass silage. Grass silage was cut at four growth 

stages (leafy vs. boot vs. early heading vs. late heading) and fed at two intake levels (15.5 

kg/d vs. 16.6 kg/d DMI3). 

    

    

6 Hatew et al. (2016) 25 4 20% concentrate, 5% wheat straw, 75% corn silage. Whole-plant corn was harvested at very 

early (25% DM) vs. early (28% DM) vs. medium (32% DM) vs. late (40% DM) stage of 

maturity. 

    

    

7 Klop et al. (2017) 7 1 30% concentrate, 30% grass silage, 40% corn silage (control diet).  

8 Van Lingen et al. (2017) 4 1 30% concentrate, 30% grass silage, 40% corn silage (control diet). 
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9 Van Gastelen et al. (2017b) 24 1 30% concentrate, 30% grass silage, 40% corn silage (control diet). Cows with DGAT1 KK 

vs. DGAT1 AA genotype.          

1 The total number of observations, which equals the number of dairy cows, used for the present study. 

2 Proportion (%) on DM basis. 

   
3 Dry matter intake (kg/d). 
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Table 2. Descriptive statistics of animal performance, dietary characteristics, methane emission, and the milk 

fatty acid profile determined with gas chromatography  (N = 218) 

Variable Mean Median SD Minimum Maximum 

Animal performance 

Body weight 617 617 59.7 462 817 

Parity 2.7 3.0 1.38 1.0 7.0 

Days in milk 179 185 85.2 59 567 

Milk yield (kg/d) 24.3 23.9 5.42 11.3 36.8 

FPCM1 (kg/d) 25.9 25.3 5.06 12.3 39.9 

Milk fat content (g/100 g milk) 4.67 4.67 0.659 2.94 6.70 

Milk crude protein content  

(g/100 g milk) 

3.37 3.30 0.406 2.62 5.00 

Milk anhydrous lactose content  

(g/100 g milk) 

4.57 4.59 0.221 3.80 5.03 

DMI2 (kg/d) 16.3 16.1 2.18 10.8 24.5 

Dietary characteristics (in g/kg DM, unless stated otherwise) 

Dry matter (g/kg) 502 502 101.5 306 797 

Ash 77 79 13.5 53 103 

Crude protein 176 172 40.1 82 251 

NDF   380 372 49.9 242 501 

ADF  221 218 25.7 183 291 

ADL  14 14 4.2 6 26 

Crude fat 31 33 6.7 21 46 

Starch 118 79 85.5 5 326 

Sugar 89 70 59.0 21 265 

GE (MJ/kg DM) 18.6 18.6 0.41 17.6 19.3 

NDF to starch ratio (g/g) 8.2 4.8 15.76 1.0 86.2 

Methane emission 

Production (g/d) 366 365 53.9 234 535 

Yield (g/kg DMI) 22.5 22.6 2.10 17.2 28.0 
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Intensity (g/kg FPCM) 14.4 14.4 2.58 8.5 24.8 

Milk fatty acids (g/100 g fatty acids) determined with gas chromatography 

C4:0 3.5 3.5 0.35 1.8 4.4 

C6:0 2.1 2.2 0.21 1.5 2.6 

C8:0 1.1 1.1 0.17 0.6 1.6 

C10:0 2.5 2.4 0.53 1.1 4.1 

C12:0 2.8 2.8 0.69 1.3 4.9 

C14:0 10.4 10.5 1.39 6.7 14.1 

iso C14:0  0.08 0.08 0.017 0.04 0.13 

C14:1 cis-9 0.99 0.97 0.238 0.47 1.95 

C15:0 0.97 0.97 0.168 0.53 1.56 

iso C15:0  0.23 0.23 0.041 0.13 0.37 

anteiso C15:0  0.40 0.40 0.068 0.24 0.62 

C16:0 31.7 31.7 3.35 24.6 42.3 

iso C16:0  0.18 0.18 0.035 0.12 0.34 

C16:1 trans-9 0.21 0.21 0.037 0.13 0.35 

C16:1 cis-9 1.9 1.8 0.38 1.0 3.0 

C17:0 0.65 0.64 0.099 0.44 0.96 

iso C17:0  0.40 0.39 0.060 0.25 0.63 

anteiso C17:0  0.42 0.41 0.056 0.32 0.61 

C17:1 cis-9 0.31 0.30 0.087 0.15 0.69 

C18:0 9.6 9.7 1.61 5.0 15.2 

C18:1 cis-93 21.0 20.7 3.83 12.3 30.5 

C18:1 cis-12 0.18 0.15 0.075 0.07 0.47 

C18:1 cis-13 0.13 0.13 0.037 0.05 0.27 

C18:1 trans-6 0.20 0.19 0.051 0.06 0.42 

C18:1 trans-9 0.15 0.14 0.026 0.08 0.25 

C18:1 trans-10 0.19 0.16 0.091 0.00 0.65 

C18:1 trans-11 0.89 0.88 0.221 0.17 2.18 

C18:1 trans-15 + C18:1 cis-11 0.77 0.75 0.171 0.33 1.23 
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C18:2 cis-9, trans-11 0.42 0.40 0.116 0.20 1.29 

C18:2n-6 1.5 1.5 0.24 0.9 2.4 

C18:3n-3 0.47 0.48 0.154 0.14 0.98 

C18:3n-6 0.07 0.07 0.014 0.04 0.13 

C20:0 0.13 0.13 0.019 0.08 0.19 

C20:1 cis-11 0.06 0.06 0.022 0.00 0.12 

C20:2n-6 0.04 0.04 0.007 0.02 0.07 

C20:3n-6 0.07 0.07 0.019 0.03 0.13 

C20:4n-3 0.03 0.03 0.026 0.00 0.13 

C20:4n-6 0.11 0.11 0.024 0.05 0.18 

C20:5n-3 0.06 0.06 0.013 0.03 0.09 

C22:0 0.06 0.06 0.014 0.00 0.11 

C22:5n-3 0.08 0.08 0.019 0.04 0.14 

C24:0 0.04 0.04 0.013 0.00 0.08 

1 Fat- and protein-corrected milk (kg/d) = [0.337 + 0.116 × fat (g/100 g milk) + 0.06 × protein (g/100 g milk)] 

× milk yield (kg/d) (CVB, 2012). 

2 Dry matter intake (kg/d). 

     
3 C18:1 cis-9 represents the sum of C18:1 cis-9 and C18:1 trans-12, as these 2 FA could not be separated in the 

analysis. The portion of C18:1 trans-12 is considered to be negligible, as this FA is always present in small 

amounts. 
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Table 3. The prediction model developed for methane production (g/d), yield (g/kg DMI1), and intensity (g/kg 

FPCM2) based on milk fatty acids determined with gas chromatography 

Methane emission Milk fatty acids Estimate SE P-value 

Methane production (g/d) Intercept 507.9 28.66 < 0.001 

 

C15:0 62.9 17.22 0.002 

 

C17:1 cis-9 -240.6 32.29 0.007 

 

C18:1 trans-10 -202.8 47.75 0.010 

 

C18:1 trans-11 -59.3 12.70 < 0.001 

 

C18:2n-6 48.1 14.08 0.005 

 

C18:3n-3 -187.1 24.40 < 0.001 

 

C20:4n-3 326.4 104.30 0.002 

 

C24:0 -816.8 230.89 0.007 

Methane yield (g/kg DMI) Intercept 22.9 1.27 < 0.001 

 

iso C15:0 20.9 4.17 0.003 

 

anteiso C15:0 -9.6 2.34 < 0.001 

 

C17:0 7.6 1.26 < 0.001 

 

C18:1 trans-11 -2.4 0.52 < 0.001 

 

C18:1 trans-15 + C18:1 cis-11 -2.7 0.84 < 0.001 

 

C18:3n-3 -4.4 0.81 < 0.001 

Methane intensity(g/kg FPCM) Intercept 8.0 1.13 < 0.001 

 

iso C15:0 24.8 3.66 < 0.001 

 

iso C17:0 10.3 2.30 < 0.001 

 

C18:1 trans-15 + C18:1 cis-11 -6.6 0.95 < 0.001 

  C22:5n-3 22.7 6.61 < 0.001 

1 Dry matter intake (kg/d) 

    
2 Fat- and protein-corrected milk (kg/d) = [0.337 + 0.116 × fat (g/100 g milk) + 0.06 × protein (g/100 g milk)] 

× milk yield (kg/d) (CVB, 2012). 
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Table 4. The coefficient of determination (R2) and concordance correlation coefficient (CCC) analysis of the prediction equations and the 10-fold cross validation results 

  Overall   10-fold cross validation 

Methane emission 

Adjusted 

R2 RMSEP(5) 

RMSEP 

%(6) CCC(7) r(8) Cb
(9) v(10) µ(11) RPD(12) 

Number of LV or 

MFA(13) R2CV RMSECV % 

Methane production (g/d) 

            
GC-determined MFA(1) 0.54 35.7 9.8 0.72 0.75 0.96 1.34 0 1.27 4 0.47 11.6 

FTIR(2) 0.36 43.2 11.8 0.52 0.60 0.88 1.68 0 1.19 4 0.30 12.4 

Methane yield (g/kg DMI(3)) 

            
GC-determined MFA 0.40 1.6 7.1 0.59 0.64 0.91 1.55 0 1.15 5 0.38 8.1 

FTIR 0.25 1.9 8.2 0.40 0.50 0.80 2.00 0 1.09 5 0.19 8.6 

Methane intensity (g/kg 

FPCM(4)) 

            
GC-determined MFA 0.62 1.6 10.9 0.77 0.79 0.97 1.26 0 1.58 5 0.63 11.4 

FTIR 0.56 1.7 11.8 0.72 0.75 0.96 1.33 0 1.39 6 0.49 12.8 

(1) Milk fatty acids in g/100 g fatty acids determined with gas chromatography. 

(2) Fourier-transform infrared spectra. 

           
(3) Dry matter intake (kg/d) 

            
(4) Fat- and protein-corrected milk (kg/d) = [0.337 + 0.116 × fat (g/100 g milk) + 0.06 × protein (g/100 g milk)] × milk yield (kg/d) (CVB, 

2012). 
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(5) Root mean squared error of prediction expressed in g/d, g/kg DMI, and g/kg FPCM for methane production, yield, and intensity, respectively. 

(6) Root mean squared error of prediction expressed as a percentage of the observed mean. 

(7) Concordance correlation coefficient, where CCC = r × Cb. 

(8) Pearson correlation coefficient; a measure of precision. 

(9) Bias correction factor; a measure of accuracy. 

(10) Scale shift; change in standard deviation between predicted and observed methane emission. 

(11) Location shift; if positive under prediction, if negative over prediction. 

(12) Ratio of performance to deviation. 

           
(13) Number of latent variables included in the Fourier-transform infrared based models or the number of milk fatty acids included in the milk fatty acid based models. 
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Table 5. Differences in methane emissions between 2 extreme dietary treatments within each study, measured in climate respiration chambers and estimated with the MFA-

based and FTIR-based prediction models 

     Difference estimated  

Study Reference Difference between treatments Methane emission 

Difference measured in 

CRC1 

MFA2 FTIR3 

1 Warner et al. 

(2015) 

Grass herbage 5 weeks of regrowth receiving high 

fertilization compared with grass herbage 3 weeks of 

regrowth receiving low fertilization 

Production (g/d) +31 +36 +8 

Yield (g/kg DMI) +2.0 +1.9 +0.4 

Intensity (g/kg FPCM) +1.3 +1.3 +1.0 

2 Van Gastelen et 

al. (2015) 

Roughage consisting of 100% corn silage compared with 

roughage consisting of 100% grass silage 

Production (g/d) -12 -13 -15 

Yield (g/kg DMI) -2.6 -2.9 -0.9 

Intensity (g/kg FPCM) -1.3 -3.3 -0.8 

3 Warner et al. 

(2016) 

Grass silage 62 d of regrowth and high fertilization rate 

compared with grass silage 28 d of regrowth and low 

fertilization rate 

Production (g/d) -39 -4 +8 

Yield (g/kg DMI) +1.6 +1.5 0.0 

Intensity (g/kg FPCM) +4.6 +2.6 +1.6 

5 Warner et al. 

(2017) 

Late heading stage grass silage at low DMI compared with 

leafy stage grass silage at high DMI 

Production (g/d) +24 +32 -1 

Yield (g/kg DMI) +5.0 +2.8 +1.5 

Intensity (g/kg FPCM) +4.0 +3.1 +2.6 

6 Hatew et al. 

(2016) 

Late harvested whole-plant corn silage compared with early 

harvested whole-plant corn silage 

Production (g/d) -29 +13 -0.4 

Yield (g/kg DMI) -1.6 0.0 +0.3 
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Intensity (g/kg FPCM) -0.9 -1.1 +0.4 

1 Climate respiration chambers. 

2 Milk fatty acids in g/100 g fatty acids determined with gas chromatography. 

3 Fourier-transform infrared spectra. 
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 716 

 717 

Figure 1. The regression vectors of the PLS models for methane production (g/d), yield (g/kg dry matter intake), and intensity (g/kg fat- and 718 

protein-corrected milk) plotted against wavenumbers (cm-1). 719 

  720 
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 721 

Figure 2. (A) Observed and predicted, and (B) residual (i.e., observed – predicted) (1) methane production (g/d), (2) methane yield (g/kg dry matter 722 

intake), and (3) methane intensity (g/kg fat- and protein-corrected milk) from the regression analyses based on milk fatty acid profiles (g/100 g 723 

fatty acids) determined with gas chromatography. The slope of residuals regressed on predicted values did not differ significantly from zero. The 724 

different symbols identify the 9 individual experiments described in Table 1. 725 
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 726 

Figure 3. (A) Observed and predicted, and (B) residual (i.e., observed – predicted) (1) methane production (g/d), (2) methane yield (g/kg dry matter 727 

intake), and (3) methane intensity (g/kg fat- and protein-corrected milk) from the PLS regression analyses based on Fourier-transform infrared 728 

wavenumbers (cm-1). The slope of residuals regressed on predicted values did not differ significantly from zero. The different symbols identify the 729 

9 individual experiments described in Table 1.  730 

731 
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 732 

Figure 4. The relationship between methane production (g/d), yield (g/kg dry matter intake), and intensity (g/kg fat- and protein-corrected milk) 733 

predicted with milk fatty acid profiles determined with gas chromatography and predicted with milk Fourier-transform infrared spectra. The 734 

different symbols identify the 9 individual experiments described in Table 1. 735 


