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General introduction 

Humans can be considered holobionts, consisting of cells from the host and an even 

larger number of microorganisms (Postler and Ghosh 2017). The majority of microbes 

are residing in the gut (Sender et al 2016). The human gut microbiota is a complex 

ecosystem consisting of bacteria, archaea, microeukaryotes and viruses (Clemente et 

al 2012). Over 2000 species-level phylotypes (prokaryotes including bacteria and 

archaea) have been detected for the gut microbiota, with each individual estimated to 

host at least 160 species (Qin et al 2010, Ritari et al 2015, Zoetendal et al 2008). The 

gut microbiota may impact the well-being of human and susceptibility for diseases by 

interacting with our metabolic, immune and neurological system (Honda and Littman 

2016, Koh et al 2016, Rogers et al 2016). Furthermore, the gut microbiota contributes 

to a variety of metabolic functions and can be seen as an essential part of our digestive 

system (El Kaoutari et al 2013). Bacterial symbionts allow the human hosts to utilise 

inaccessible nutrients by converting complex substrates to short chain fatty acid (SCFA) 

and vitamins (Fisher et al 2017). Bacterial-derived SCFAs are estimated to contribute 

about 10% of our daily caloric requirement (Bergman 1990). While all SCFAs are vital 

for maintaining gut homeostasis, butyrate is of particular interest because it has been 

attributed to a range of health-promoting functions. Butyrate is the primary energy 

source for colonic epithelial cells and is associated with the enhancement of colonic 

barrier function, increase of satiety, pain relief, anti-inflammatory responses, and 

protection against colorectal cancer (Banasiewicz et al 2013, Bolognini et al 2016, 

Donohoe et al 2011, Furusawa et al 2013, Geirnaert et al 2017, Goncalves and Martel 

2013).  

Considering the physiological benefits of butyrate to human health, this thesis 

investigates the microbial interaction of gut symbionts that support butyrate production 

driven primarily by the host produced glycans in human milk and mucus. Glycans are 

compounds consisting of an array of glycosidically linked monosaccharides 

(monosaccharides and disaccharides are collectively termed sugars) such as human 

milk oligosaccharides (HMOS) and mucins (Varki and Kornfeld 2017). HMOS present 

in mother milk are the major compositional and functional driver of the infant gut 

microbiota (Backhed et al 2015). Mucin glycans covering the intestinal lining create a 

stable niche for bacterial colonisation (Ouwerkerk et al 2013, Tailford et al 2015). We 

hypothesise that the bacterial degradation of host glycans in human milk and mucus 
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could support the growth and butyrate production of butyrogenic bacteria. This 

introductory chapter gives context to the next chapters by reviewing the scientific 

literature on the role of human milk and mucus in shaping the gut microbiota 

composition. An overview is provided of the molecular structures of HMOS and mucins 

with potential associations to microbial strategies for glycan degradation. Furthermore, 

the microbial cross-feeding driven by glycan-degraders and the potential microbe-

microbe interactions leading to butyrate production are discussed.  

The establishment of the gut microbiota 

The gut microbiota is essential to sustain health in humans throughout life (Kundu et 

al 2017, Scholtens et al 2012). The development of the microbiota in early life is of 

particular importance, as this time period could be critical to shape the host metabolic, 

immunological and neurological development with long-lasting effect (Kundu et al 2017, 

Thompson 2012). Recently, microbial signatures have been detected in the foetal 

environment suggesting that the colonisation of the gastrointestinal tract might begin 

even before birth (Aagaard et al 2014, Collado et al 2016, Gronlund et al 2011, Hornef 

and Penders 2017). Regardless of the exposure in utero, the birthing process marks 

an important event for microbial colonisation due to drastic change of the infant’s 

environmental exposure. As such, different modes of delivery lead to compositional 

distinction in the microbiota of vaginal- versus caesarean-born infants (Dominguez-

Bello et al 2010). A desirable transmission of vaginal and gut microbiota from mother 

to infant is observed in vaginally-delivered infants during birth, but not for caesarean-

delivered infants (Dominguez-Bello et al 2016). Shortly after birth, microbes rapidly 

colonise the infant gut, although the composition and diversity only stabilize after 

several years in humans (Backhed et al 2015, Yatsunenko et al 2012).  

Apart from birth mode, the establishment of the gut microbiota is driven by 

factors including gestational age, the mode of feeding, antibiotic use, hospitalization 

time, childcare or day-care, family environment, and exposure to household pets and 

siblings (Azad et al 2013b, Laursen et al 2015, Martin et al 2016, Penders et al 2006, 

Scholtens et al 2012, Thompson et al 2015, Yassour et al 2016). In general, the first 

microbial colonisers are facultative anaerobic bacteria, such as Escherichia coli and 

Streptococcus spp. due to the relatively high oxygen levels in the new-born intestines 
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(Mackie et al 1999). The growth of these species reduces the oxygen levels in the gut 

and gradually creates an environment for the colonisation of obligate anaerobes 

including bifidobacteria, Bacteroides spp. and Clostridium spp. (Dominguez-Bello et al 

2011). During this first days and weeks of life, nutrition is a major driver for the 

development of the gut microbiota (Azad et al 2013a, Liu et al 2016). Distinct faecal 

microbial compositions are found between infants fed with human milk and infant fed 

with formula. The microbiota of breast-fed infants for example is characterised by high 

levels of Actinobacteria (mainly bifidobacteria), and low microbial diversity (Backhed et 

al 2015, Schwartz et al 2012, Tannock et al 2013).  

One of the most prominent differences between human milk and formula milk is 

the presence of glycans in human milk. Human milk glycans include glycoprotein, 

glycolipids, oligosaccharides, and mucins, can serve as microbial substrates (Bode 

2012, Liu and Newburg 2013, Smilowitz et al 2014, Zivkovic et al 2011). Milk glycans 

resist host digestion, as the human genome encodes only for a narrow range of 

digestive enzymes limited to the breakdown of sucrose, lactose and starch (El Kaoutari 

et al 2013). Hence, these complex carbohydrates from human milk reach the infant 

large intestine to selectively promote the growth and colonisation of glycan-degrading 

bacteria. The bacteria able to degrade milk glycans, such as bifidobacteria and 

Bacteroides spp. thus become dominant members of the microbial ecosystem in the 

infant gut (Backhed et al 2015, Marcobal et al 2010). Upon weaning, during which 

complementary food is introduced and (human) milk feeding is gradually decreased, 

the infant gut microbiota undergoes re-structuring in response to the diversification of 

substrates from diet (Backhed et al 2015, Fallani et al 2010, Favier et al 2002, Koenig 

et al 2011, Laursen et al 2017). This is generally marked by a decrease in the relative 

abundance of bifidobacteria and an increase of Lachnospiraceae (also known as 

Clostridium cluster XIVa), Ruminococcaceae (also known as Clostridium cluster IV) 

and Bacteroides spp. (Laursen et al 2017). Around three years of age, a more adult-

like microbiota establishes, which is dominated by species from the Firmicutes and 

Bacteroidetes phyla (Guaraldi and Salvatori 2012, Koenig et al 2011). 
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The sugar code of human milk oligosaccharides (HMOS) and mucins 

Host-secreted glycans such as HMOS and mucins are important drivers for the 

composition and functionality of the gut microbiota (Backhed et al 2015, Tailford et al 

2015). HMOS and mucins show similar molecular characteristics as both are 

composed of comparable monosaccharide building blocks and linkages (Fig. 1). 

HMOS consist of a lactose core, which may be elongated by N-acetylglucosamine 

(GlcNAc), galactose and/or decorated with fucose and/or sialic acid (Fig. 1). HMOS 

are the third most abundant component in human milk after lactose and fat, with the 

concentration ranges from 23 g/L in colostrum to 7 g/L in matured milk (Coppa et al 

1993, Gabrielli et al 2011). Currently, over 200 HMOS structures are detected with only 

50 structures accounting for 99% of the total HMOS abundance in human milk 

(Ninonuevo et al 2006, Smilowitz et al 2014, Wu et al 2010, Wu et al 2011). The 

composition of HMOS is different between individuals and is determined by maternal 

genetic factors (McGuire et al 2017, Thurl et al 2017). The Secretor Status (Se) and 

Lewis (Le) genes, which determine the blood group of humans also determine the 

presence or absence of some fucosylated oligosaccharides in human milk (Bode 2012). 

On average, 30% of women worldwide are non-secretors (Ferrer-Admetlla et al 2009). 

Non-secretor mothers lack a functional 2-fucosyltransferase (FUT2) enzyme to 

synthesize α1,2-fucosylated oligosaccharides. This results in compositional changes 

and also around 40% reduction of total HMOS abundance in human milk (Kunz et al 

2017). The absence of α1,2-fucosylated oligosaccharides in human milk mostly 

reduced the abundance of bifidobacteria in the infant gut (Table 1) and has been 

associated with a higher risk of diarrhoea (Morrow et al 2004, Newburg et al 2004) and 

allergic disease (Sprenger et al 2017). 
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Figure 1. The structure of HMOS and mucins show molecular similarities. The schematic 
representation for (A) HMOS and (B) mucin O-glycans, summarising the sites of action and 
carbohydrate-active enzymes (CAZymes) (Lombard et al 2014) predicted to cleave the 
glycosidic linkages. N-acetylneuraminic acid (Neu5Ac), the predominant sialic acid in 
mammalian cells is depicted. HMOS may also carry α1-2 fucose linked to galactose, α1-3 
fucose linked to glucose, and/or α2-6 Neu5Ac linked to GlcNAc. The depiction for specific 
HMOS structures are available at Thurl et al. (Thurl et al 2017). The hypothetical mucin O-
glycan chain is adapted from Tailford et al. (Tailford et al 2015). Detailed structural 
representation for mucin O-glycans is available at Brockhausen and Stanley (Brockhausen 
and Stanley 2017). Abbreviation: GH, glycosyl hydrolase. 

 

The colonic epithelial cell surface is covered by an inner mucus layer firmly 

adhered to the cells, and a loose layer consisting predominantly of mucin glycoproteins 

(Johansson et al 2011, Johansson et al 2014). Mucin O-glycans are large and complex 

glycoproteins consisting of a protein core that is rich in proline, threonine and serine 

moieties, to which oligosaccharides are attached (Fig. 1). The oligosaccharide chain is 

composed of N-acetylgalactosamine (GalNAc), GlcNAc, galactose, fucose, and sialic 

acid (Brockhausen and Stanley 2017). A gradient of increasing sialic acid and 

decreasing fucose from ileum to distal colon is observed in the adult intestine (Robbe 

et al 2004). However, this region-specific glycosylation is not observed in new-borns 

where the intestinal barrier function and the mucin secretion are not fully developed 

(Martin et al 2010, Robbe-Masselot et al 2009). It is speculated that HMOS mimic the 

structure of mucins as a means to stimulate colonisation of mucolytic gut commensals 
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until the mucus secretion process matures (Marcobal et al 2011). Furthermore, human 

milk contains mucins and antimicrobial proteins, which could prevent the binding of 

pathogenic microorganisms to the mucosal surface (Liu and Newburg 2013). Microbes 

colonising the gut mucosa early in life are particularly critical to prime mucosal immune 

response and tolerance (Wopereis et al 2014). The composition of the gut microbiota 

could also be affected by genetic makeup such as secretor status (Table 1). The 

secretor status determines the expression of blood group antigens on the mucosa 

secretions with reduced α1,2-fucosylated structures present in the mucins of non-

secretors (Ferrer-Admetlla et al 2009, Magalhaes et al 2016). However, no consistent 

microbial group is shown to be affected by personal secretor status (Table 1) and a 

recent twin cohort study did not confirm the association between secretor status and 

the gut microbiota (Davenport et al 2016). Non-secretors are found to be less 

susceptible to acute gastroenteritis caused by Helicobacter pylori, rotaviruses and 

norovirus, which are suggested to target the blood group antigens as receptors 

(Lindesmith et al 2003, Magalhaes et al 2016, Nordgren et al 2014, Nordgren et al 

2016). 

 

Table 1. Host secretor status affects the composition of the gut microbiota. The effect of 
maternal secretor status on the infant/child faecal microbial composition is summarised in the 
upper panel. The effect of personal secretor status is provided in the lower panel. The bacterial 
changes for non-secretors are summarised, ↑ denotes higher abundance, and ↓ denotes lower 
abundance relative to secretors. 

Subject Country Microbial composition for non-secretors  Reference 

Effect of maternal secretor status on infant/child 

Premature infants  

(30 gestational 

weeks) 

United 

States 

↓ Firmicutes 

↑ Proteobacteria 
(Underwood 

et al 2015) 

Infants 

(1 week – 4 

months old) 

United 

States 

↓ Bifidobacterium 

↑ Streptococcus 
(Lewis et al 

2015) 

Infants 

(1 week – 3 

months old) 

Armenia 

and 

Georgia 

↓ Bifidobacterium  
(Lewis et al 

2017) 

Children 

(2 years old) 

Australia ↓ Bifidobacterium (Smith-Brown 

et al 2016) 
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Effect of personal secretor status 

Children 

(13-14 years old) 

Finland and 

India 

↓ Bifidobacteriaceae and 

Verrucomicrobiaceae  

↑ Veillonellaceae and Enterobacteriaceae 

(Kumbhare et 

al 2017) 

Pregnant women Finland ↓ Clostridium coccoides group, Lactobacillus-

Enterococcus group and Actinobacteria 

↑ Proteobacteria 

(Kumar et al 

2015) 

Adults 

(31-61 years old) 

Finland ↓ Bifidobacterium 

 

(Wacklin et al 

2011, Wacklin 

et al 2014) 

Adults  

(29-47 years old) 

Spain ↑ Prevotellaceae and Paraprevotellaceae (Rodriguez-

Diaz et al 

2017) 

Adults 

(28-78 years old) 

United 

States 

↓ Lachnospiraceae 

↑ Bacteroides 

(Gampa et al 

2017) 

    

 

Microbial adaptation strategies for glycan uptake and utilisation 

A large repertoire of microbial carbohydrate-active enzymes (CAZymes) is required to 

fully degrade milk and mucin glycans (Fig. 1). However, many species within the gut 

microbiota are better adapted for the metabolism of diet-derived carbohydrates 

(Turroni et al 2017). Hence, milk and mucin glycans provide a selective nutrient 

advantage for bacteria equipped with glycan-degrading capacity (Flint et al 2012a). 

The glycan-foraging trait is likely acquired by a group of resident bacteria as a result 

of adaptation to the mammalian gut environment (Pereira and Berry 2016). Bacterial 

glycosyl hydrolases (GH) hydrolyse the glycosidic linkages between carbohydrates to 

breakdown glycans into fermentable monosaccharides (Koropatkin et al 2012). 

Several extracellular functional catalysts of either membrane-bound or secreted 

enzymes are required, as only short glycans can be transported into the bacterial cell. 

For Gram positive bacteria the secreted enzymes are exported into the extracellular 

environment, whilst the secreted enzymes for Gram negative bacteria can be located 

either at the periplasm or the extracellular compartment (El Kaoutari et al 2013). In this 

section, the glycan uptake and catabolism of the representative intestinal members 

from five major microbial phyla including Actinobacteria, Firmicutes, Bacteroides, 

Verrucomicrobia, and Proteobacteria is briefly described. The CAZymes that can 
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degrade HMOS and mucins are predicted to scatter among the taxonomic groups but 

concentrated in the genome of specialised microbes (Fig. 2). 

 

Figure 2. Differential glycan-degrading capability among gut microbiota members. 
Carbohydrate-active enzymes (CAZymes) involved in the catabolism of host-secreted glycans 
for representative species of the major bacterial phyla in the human gut. Colour key indicates 
the number of CAZymes predicted in the genome. 

 

Bifidobacteria members from the phylum Actinobacteria often dominate the 

infant gut (Tannock et al 2016). Bifidobacterium species vary in their capability to 

metabolise host-secreted glycans. Infant-associated bifidobacteria including 

Bifidobacterium longum subsp. infantis (Bifidobacterium infantis), Bifidobacterium 

breve, and Bifidobacterium bifidum are adapted to utilise HMOS, but not the adult-

associated species such as Bifidobacterium adolescentis (De Vuyst and Leroy 2011, 

Duranti et al 2016). Bifidobacterium infantis, a dominant member in the infant gut 

microbiota, is particularly effective in utilising HMOS. It employs a unique 43 kb gene 
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cluster that encodes enzymes required for HMOS internalisation including extracellular 

solute binding proteins and ATP-binding cassette (ABC) transporter systems, as well 

as enzymes for HMOS catabolism including fucosidase, sialidase, β-hexosaminidase, 

and β-galactosidase (Sela et al 2008). Moreover, different strategies are deployed by 

infant-associated bifidobacteria in utilising HMOS (Sela and Mills 2010a). Distinct 

modes of uptake and metabolism are demonstrated with the extracellular enzymatic 

digestion by Bifidobacterium bifidum and the internalisation of intact HMOS by 

Bifidobacterium infantis (Garrido et al 2013). This species-specific metabolic 

specialisation could contribute to the collective fitness of bifidobacteria via interspecies 

carbohydrate sharing (Egan et al 2014, Milani et al 2015, Turroni et al 2017). Despite 

the structural similarity between mucins and HMOS (Fig. 1), only some Bifidobacterium 

species, particularly Bifidobacterium bifidum strains can utilise mucins for growth 

(Marcobal et al 2013, Underwood et al 2014). Comparative genomics reveal that 

Bifidobacterium bifidum harbours an extensive range of CAZymes (including two 

distinct groups of carbohydrate-binding modules) required for mucin-degradation 

which are not detected in other members of bifidobacteria (Turroni et al 2011).  

In addition to bifidobacteria, Bacteroides spp. from the Bacteroidetes phylum 

are often observed as dominant members of the infant gut microbiota (Backhed et al 

2015, Lewis and Mills 2017). Bacteroides spp. are known to utilise a broad range of 

complex substrates including mucins and HMOS (Marcobal et al 2013). It harbours 

many paralogous of polysaccharides utilisation loci (PUL), that encode for the starch 

utilisation system (sus) comprised of several membrane-bound proteins and 

lipoproteins involved in substrate binding, degradation, and uptake (Martens et al 2009, 

Reeves et al 1997). One of the most well-studied gut symbionts Bacteroides 

thetaiotaomicron can breakdown most of the glycosidic linkages found in the human 

gut by employing its large repertoire of GHs (Xu et al 2004). The GHs are often 

organised in a modular manner adjacent to SusC-like TonB-dependent transporters, 

SusD-like outer membrane-binding proteins and sensor regulators such as hybrid two-

component systems (HTCS) and extracytoplasmic function (ECF) σ-factors (Ravcheev 

et al 2013, Wexler 2007, Xu et al 2003). The sophisticated environmental sensing 

systems enable Bacteroides thetaiotaomicron to interpret the nutrient availability and 

fine-tune its carbohydrate-utilising capability (Xu et al 2004). The transcriptional 

response of Bacteroides thetaiotaomicron from the gut of suckling mice shows an 
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increase in gene expression levels for enzymes utilising monosaccharides and host 

glycans present in mother’s milk, while a switch towards genes involved in the 

breakdown of plant-derived polysaccharides is observed after weaning (Bjursell et al 

2006).  

Upon weaning, members of Bacteroidetes and Firmicutes phyla outnumber the 

bifidobacteria community (Laursen et al 2017). Two families of Firmicutes i.e. 

Lachnospiraceae and Ruminococcaceae, are present at high numbers in the adult gut 

and have the key metabolic capacity to produce butyrate and propionate (Flint et al 

2012a, Louis and Flint 2017). The degradation of complex carbohydrates by Firmicutes 

involves a modular enzyme system encoded by gene loci resembling the PUL in the 

Gram-negative Bacteroides, namely Gram-positive PUL (Sheridan et al 2016). Gram-

positive PUL encode for an assortment of polysaccharide-degrading enzymes, 

carbohydrate transport systems and transcriptional regulators (Sheridan et al 2016). 

The majority of bacteria from the Firmicutes phylum cannot utilise milk and mucin 

glycans (Lopez-Siles et al 2012, Marcobal et al 2010, Martin et al 2017, Sheridan et al 

2016) except some strains of Ruminococcus gnavus and Ruminococcus torques 

(Crost et al 2013, Hoskins 1993). However, Lachnospiraceae and Ruminococcaceae 

are observed to be enriched at the mucosal environment suggesting metabolic 

interaction with the mucus-degrading species (Nava et al 2011, Van den Abbeele et al 

2013).  

The symbiont Akkermansia muciniphila is the only cultured representative of the 

Verrucomicrobia phylum from the human intestine (de Vos 2017). Akkermansia 

muciniphila has adapted to the gut mucosal environment by using mucins as the sole 

carbon and nitrogen source (Derrien et al 2004). Its relatively small genome (2.6 MB) 

contains high proportion of genes (11%) to encode GHs, proteases and sulfatases 

required for mucins degradation (Belzer and de Vos 2012, van Passel et al 2011). The 

mucin-foraging lifestyle is shown by the growth of this bacterium in defined minimal 

medium supplemented with mucin-derived components i.e. L-threonine and either 

GlcNAc or GalNAc (van der Ark et al 2018). The dependency on mucins as growth 

substrate is also demonstrated in an in vitro gut model (SHIME) with over 4 log 

increase of Akkermansia muciniphila upon mucin addition (Van Herreweghen et al 

2017). Despite the high mucolytic activity of Akkermansia muciniphila, it is not known 

to degrade or utilise HMOS. The genetic signature of Akkermansia muciniphila has 
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been detected in human breast tissue and colostrum (Aakko et al 2017, Urbaniak et al 

2014). This bacterium is speculated to employ the mucin-degrading machinery to 

metabolise HMOS and other human milk components in order to facilitate its passage 

through the gastrointestinal tract for the infant gut colonisation (de Vos 2017, Ottman 

2015). Low levels of Akkermansia muciniphila are detected in 1 month old infant faeces, 

with its relative abundance increases to adult levels after 1 year of age (Collado et al 

2007). The high relative abundance of Akkermansia muciniphila is often associated 

with a healthy state in adults, which might indicate the importance of early colonisation 

with this bacterium. (Derrien et al 2016, Png et al 2010). 

Low levels of Proteobacteria are generally found in the faeces of healthy adults 

and an outgrowth of species from Enterobacteriaceae family is associated with gut 

dysbiosis (Trosvik et al 2015, Winter and Baumler 2014). Besides, Proteobacteria are 

enriched in unstable ecosystems with low microbial diversity, for example the gut of 

new-borns, obese individuals, individuals suffering from intestinal inflammation, and 

those who have undergone antibiotic treatment and gastric bypass surgery (Fei and 

Zhao 2013, Hill et al 2010, Jakobsson et al 2014, Liou et al 2013, Morgan et al 2012, 

Shin et al 2015). Most of the Proteobacteria members are not capable of degrading 

complex milk and mucin glycans but rely on the of mono- and disaccharides for their 

nutrition (Kamada et al 2013). Therefore, in a glycan-rich niche, this bacterial group is 

often dependent on the simple sugars liberated from other microbiota members (Sicard 

et al 2017). Other than serving as a carbon source, the terminal fucose and sialic acid 

at mucin glycans are potential attachment targets for foodborne pathogens that belong 

to the Proteobacteria phylum such as Salmonellae enterica serotype Typhimurium 

(Salmonella Typhimurium) and Helicobacter pylori (Aspholm et al 2006, Chessa et al 

2009). 

The differential glycan utilisation of gut bacteria can be exploited to devise 

strategies to modulate the gut microbiota. As such, gut symbionts can be selectively 

promoted by introducing complex carbohydrate that confer growth advantage, in order 

to suppress the bloom of Proteobacteria via competitive exclusion. Several 

mechanisms of exclusion are proposed including competition among bacteria for 

nutrients and mucosal adhesion sites as well as the modification of chemical 

environment to inhibit the growth of pathogens via production of acids and antimicrobial 

compounds (Collado et al 2010).  
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Glycan-degraders as keystone species 
for microbial network formation 

An environment enriched in milk or mucin 

glycans provides a selective nutrient source 

for the colonisation of glycan-degrading 

microbes. This is particularly apparent in 

the gut of breast-fed infants, and at the 

gastrointestinal lining that is covered with 

mucins. Cooperative behaviour is often 

observed among symbiotic gut bacteria by 

exploiting the complementary glycan-

degrading capabilities of each other (Tuncil 

et al 2017, Turroni et al 2017). The primary 

glycan-degrading bacteria could shape the 

local bacterial community and functionality 

by cross-feeding. In essence, the glycan-

degraders alter the chemical environment 

by converting glycans into simple 

carbohydrates and metabolites to sustain 

the growth and metabolism of bacterial 

community in their vicinity. The metabolic 

products or nutrients (such as co-factors, 

vitamins and amino acids) produced by one 

microbial species could support the growth 

of another microbe, often resulting in indirect benefits for all species involved (Box 1. 

Proposal for a definition of cross-feeding). Furthermore, the reciprocal exchange of 

metabolites among two or more microorganisms could drive biochemical functions that 

neither of them can perform alone (namely syntrophic interaction) (Morris et al 2013). 

On the other hand, antagonistic interactions are also taking place, for example the 

competition for limiting resources or the release of toxic compounds (Foster and Bell 

2012, Fuller and Gibson 1997).  

The catabolism of milk and mucin glycans by the degrader species can result in 

the release of free sugars and/or oligosaccharides into the environment. Subsequently, 

Box 1. Proposal for a definition of cross-
feeding 
 

The metabolic products or nutrients 
produced by one microbial species 
support growth of another microbe, often 
resulting in indirect benefits for all 
species involved. 

 
Nutrient cross-feeding – the production of a 
molecule such as a vitamin or amino acid that 
is used by both the producing organism and 
other microbes in the environment that 
relaxes the metabolic burden on anyone 
microbe in the community (Seth and Taga 
2014). 
 
Cooperative interactions are typically 
unidirectional with no obvious benefit to the 
giver. However, within their natural 
communities, bacteria typically form close 
cooperative loops resulting in indirect benefit 
to all species involved (Freilich et al 2011). 
 
Metabolic products produced from dietary 
prebiotics by one bacterial species may then 
provide substrates to support growth of other 
populations (Belenguer et al 2006). 
 
Intermediate carbohydrate breakdown 
products and certain fermentation products 
serve as carbon and energy sources for 
cross-feeding bacteria (Duncan et al 2004). 
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other microbes in the vicinity could cross-feed on the simpler sugars for their 

metabolism and growth. The host-specific sugars i.e. fucose and sialic acid are shown 

to assist the colonisation of both commensal (Autieri et al 2007, Hooper et al 1999) 

and pathogenic bacteria (Ng et al 2013), and are involved in the regulation of bacterial 

pathogenicity (Pacheco et al 2012). Gut symbionts such as Akkermansia muciniphila 

and Bifidobacterium infantis can metabolise fucose to produce 1,2-propanediol 

(Bunesova et al 2016, Ottman et al 2017a, Reichardt et al 2014). Besides, fucose 

released by Bacteroides thetaiotaomicron from mucins, increases the colonisation of 

enterohemorrhagic Escherichia coli (EHEC) and represses its virulence (Pacheco et 

al 2012). Cross-feeding on sialic acid is observed between gut symbionts in which 

Bifidobacterium breve UCC2003 benefits from sialic acid released by Bifidobacterium 

bifidum PRL2010 from HMOS degradation (Egan et al 2014). On the other hand, free 

sialic acid released by Bacteroides vulgatus induces the outgrowth of Escherichia coli 

during inflammation (Huang et al 2015). Furthermore, an increase level of free sialic 

acid liberated by Bacteroides thetaiotaomicron after antibiotic treatment in mice 

facilitates the expansion of pathogenic Salmonella Typhimurium and Clostridium 

difficile (Ng et al 2013). Hence, the availability of fucose and sialic acid can be 

particularly important to maintain the symbiotic relationship between the gut microbiota 

and human host (Pickard and Chervonsky 2015, Tailford et al 2015). 

The metabolic by-products of glycan degradation from milk and mucins, such 

as acetate, lactate, succinate, and 1,2-propanediol can be utilised by other members 

of the gut microbiota (Fig. 3). Further modification of these fermentation intermediates 

contributes to the SCFA composition in the gut (faecal samples are frequently studied 

as a proxy for the large intestine). Acetate and lactate as well as a small amount of 

propionate and butyrate can be detected in the faeces of infants (Fig. 4) (Pham et al 

2016, Wopereis et al 2017). In adulthood, lactate is often converted to butyrate by the 

lactate-utilising butyrate-producing bacteria (LUB) resulting in a faecal SCFA 

composition ratio of 3:1:1 for acetate, propionate and butyrate respectively (Schwiertz 

et al 2010, Scott et al 2011). The intestinal SCFAs can contribute to the host caloric 

requirement as around 90% is re-absorbed in the large intestine (Backhed et al 2004, 

Wong et al 2006). Butyrate is consumed locally by the colonic epithelium as the 

preferred energy source (Donohoe et al 2011). Whilst, the other absorbed SCFAs 
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travel through the portal vein with propionate mostly metabolised in the liver and 

acetate reaching the systemic circulation (Fig. 3) (Cummings et al 1987).  

 

Figure 3. The major pathways for intestinal SCFA biosynthesis and routes of bacterial 
cross-feeding. The representative species involving in the pathways are listed. Species 
shown in: purple can convert lactate to butyrate, red can convert pyruvate to lactate, green can 
convert succinate to propionate, blue can convert lactate to propionate, orange can convert 
fucose to 1,2-propanediol and pink can convert 1,2-propanediol to propionate. Butyrate can 
also be synthesized from proteins via glutarate, 4-aminobutyrate and lysine pathways (Vital et 
al 2017). Around 90% of the bacterial-derived SCFAs are absorbed in the gut. Butyrate is 
consumed locally by the colonic epithelium as the preferred energy source. Other absorbed 
SCFAs travel through the portal vein with propionate mostly metabolised in the liver and 
acetate reaching the systemic circulation. Figure is modified from Flint et al. and Koh et al. 
(Flint et al 2014, Koh et al 2016). Abbreviations: PEP, phosphoenolpyruvate; but, butyryl-CoA: 
acetate CoA transferase; buk, butyrate kinase. 
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Figure 4. Faecal SCFA composition differs between the gut of infants and adults. The 
faecal SCFAs composition for 3 months old infants and adults is derived from Pham et al. and 
Schwiertz et al. (Pham et al 2016, Schwiertz et al 2010). Others in adult include iso-butyrate, 
iso-valerate, and valerate, which are mainly the products of protein fermentation.  

 

The composition of SCFAs directly affects the ecophysiology of the gut 

environment by influencing the pH, transit time as well as the composition and 

functionality of the microbiota (Flint et al 2014). On top of this, SCFAs are involved in 

the regulation of host immune and metabolic response by acting as major signalling 

molecules for specific receptors in the gut (Koh et al 2016). Luminal SCFAs can 

stimulate G-protein-coupled receptor (GPR, also known as fatty acid receptor [FFAR]) 

triggering different downstream functions depending on cellular type (Tremaroli and 

Backhed 2012). In general, the activation of GPR41 (or FFAR3) and GPR43 (or FFAR2) 

releases peptide YY and glucagon-like peptide-1 (GLP-1), which affect host satiety and 

intestinal gluconeogenesis. Besides, SCFAs signalling through GPR109A exerts anti-

inflammatory and anti-tumorigenic responses (Macia et al 2015). Butyrate and 

propionate to a lesser extent, can also be involved in the epigenetic regulation of host 

gene expression by inhibiting histone deacetylase (HDAC) (Fellows et al 2018). 

Furthermore, SCFAs reaching the systemic circulation, mostly acetate and a small 

amount of propionate, can induce beneficial metabolic effects on organs like lung, 

adipose tissue, brain, and liver (Koh et al 2016).  

The intricate balance of keeping the mutualistic relationship between the gut 

microbiota and the host is important for health (Faust and Raes 2012). On the one 

hand, the intestinal bacteria contribute to host health by providing macro-and micro 

nutrients such as simple carbohydrates e.g. lactose (the core of the HMOS), amino 
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acids, and vitamins; the inhibition of pathogens by competitive exclusion; maintenance 

of gut immune function; maintenance of normal gut motility; and the prevention of 

cancer and cardiovascular disease (Brennan and Garrett 2016, Honda and Littman 

2016, Kamada et al 2013, Quigley 2011, Rowland et al 2018, Tang et al 2017). On the 

other hand, an aberrant gut microbiota is associated with diseases including 

cardiovascular diseases, metabolic syndrome, non-alcoholic fatty liver diseases, 

obesity, type 2 diabetes, and inflammatory bowel diseases (de Vos and de Vos 2012). 

The understanding on how host-secreted glycans such as those from milk and mucus 

affect the microbiota composition and function could aid the development of novel 

therapeutic strategies via nutritional intervention that could support health. For instance, 

current research is investigating the feasibility to deliver the beneficial effects of human 

milk by supplementing infant formula with some structures of HMOS (Elison et al 2016, 

Goehring et al 2016, Marriage et al 2015, Puccio et al 2017).  

 

Microbial networks leading to butyrate production 

Intriguingly, the level of butyrate in the gut increases with age (Fig. 4). This metabolic 

outcome can be partially explained by the composition of the gut microbiota. Butyrate-

producing bacteria are mainly belonging to the Firmicutes phylum, from the families of 

Ruminococcaceae and Lachnospiraceae (Louis and Flint 2017). Butyrogens are 

detected at low levels early in life (de Weerth et al 2013, Jost et al 2012). However, 

their abundancy increases during the first years of life reaching levels comparable to 

that of adults at around 3 years of age (Backhed et al 2015, Yatsunenko et al 2012). 

In healthy adults, the butyrate-producing bacteria comprise 10 to 20% of the total gut 

microbiota of which Faecalibacterium spp. (belonging to Clostridium cluster IV within 

Ruminococcaceae family), and Anaerostipes spp./ Eubacterium spp./ Roseburia spp. 

(belonging to Clostridium cluster XIVa within Lachnospiraceae family) are the prevalent 

genera (Arumugam et al 2011). The gradual increase of the butyrate levels and the 

emergence of the butyrogenic community in the gut could be important for gut 

maturation, as aberrant microbial composition and/or SCFA production is associated 

with colicky symptoms and atopy diseases in infants (Arrieta et al 2015, de Weerth et 

al 2013, Pham et al 2017, Stokholm et al 2018, Wopereis et al 2017).  
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Despite the physiological importance of the butyrogenic community in the gut of 

breast-fed infants and the mucosal layer, most of the butyrate-producing bacteria are 

not able to degrade host-derived glycans (Sheridan et al 2016). Hence, the occurrence 

of the butyrogens could be sustained by the metabolic interdependencies with the 

primary glycan-degrading microbes. In vitro experiments showed that the butyrate-

producing bacteria could metabolise sugars and intermediates such as lactate and 

acetate liberated by the microbial species from the breakdown of complex 

carbohydrates (Belenguer et al 2006, Chassard and Bernalier-Donadille 2006, De 

Vuyst and Leroy 2011, Louis and Flint 2009, Marquet et al 2009). For instance, 

Eubacterium hallii and Anaerostipes caccae were shown to produce butyrate by 

utilising bifidobacteria-derived lactate from dietary component such as starch and 

fructo-oligosaccharides (FOS) degradation (Belenguer et al 2006, De Vuyst and Leroy 

2011, Falony et al 2006). Recent studies indicated that host-secreted glycans i.e. 2’-

fucosyllactose (2’-FL, a HMOS) and mucins could also drive a similar cross-feeding 

interaction between Bifidobacterium spp. and Eubacterium hallii (Schwab et al 2017). 

Other butyrogens i.e. Faecalibacterium prausnitzii, Eubacterium rectale and Roseburia 

spp., on the other hand, are predicted to consume acetate but not lactate for butyrate 

production (Duncan et al 2002a, Duncan et al 2006, Heinken et al 2014, Louis and 

Flint 2009). This thesis sets forth to further unravel the metabolic interdependencies 

between the first-tier glycan-degraders and the second-tier butyrate-producing 

bacteria in the infant gut and at the mucosal niche.  
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Aim and thesis outline 

The co-evolution between gut microbes and the human host has refined the capability 

of some resident bacteria to utilise host (milk and mucin) glycans. These glycan-

foraging microbes could subsequently drive the microbial network via cross-feeding. 

The resulting glycan-enriched subpopulation could exert a disproportionally large 

influence on the host physiology, by influencing the immune, metabolic, and 

neurological development early in life, and by conferring colonisation resistance 

throughout life. Therefore, this thesis focuses on unravelling the interaction of gut 

symbionts in utilising HMOS or mucins, specifically on the cross-feeding between the 

key degrader species and butyrate-producing bacteria. We hypothesise that host-

secreted glycan degradation by the microbiota members could support the growth and 

activity of butyrogens. A reductionist approach using anaerobic culturing in minimal 

environment was used to facilitate the understanding of the complex metabolic 

interactions in the gut ecosystem. It is crucial to understand the molecular link between 

host-secreted glycans and key degrader species as well as the subsequent microbial 

interactions in order to better understand the drivers of gut microbial ecology, which 

can help in the design of effective nutrition strategies targeting the gut microbiota. 

Chapter 2 investigates the trophic interaction between a HMOS-degrader, 

Bifidobacterium infantis (Actinobacteria) and a butyrogenic non-HMOS-degrader, 

Anaerostipes caccae (a member of the Lachnospiraceae from the Firmicutes phylum) 

in human milk carbohydrates. Anaerostipes caccae was not able to metabolise lactose 

and HMOS but the presence of Bifidobacterium infantis supported its growth and 

butyrate production. This points towards the key ecological role of bifidobacteria in 

providing substrates for other important species in the infant gut. The gradual shift of 

the microbiota composition in the ecosystem contributing to the slow induction of 

butyrate could be important for gut maturation. 

Chapter 3 investigates the microbial network formation in the infant gut driven by 

another glycan-degrader, namely Bacteroides thetaiotaomicron. Bacteroides 

thetaiotaomicron could also drive the butyrogenic trophic chain by metabolising lactose 

and HMOS to support the growth of Anaerostipes caccae. This indicates that 

Bacteroides thetaiotaomicron could drive the establishment of the microbial network in 

the infant gut, leading to the sequential establishment of adult-like functional groups 
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such as lactate-utilising and butyrate-producing bacteria. Furthermore, we observed 

stereospecific lactate isomer production in which Bacteroides spp. and Bifidobacterium 

spp. produced predominantly D- and L-lactate, respectively. The distinct lactate isomer 

production by these major glycan-degrading genera might affect the gut microbiota 

compositions by differential cross-feeding interaction with the specific D- and L- 

lactate-utilisers.  

Chapter 4 studies the microbial metabolic network at the mucosal layer. The complex 

mucin glycans presents as a selective substrate to stimulate the dominance of 

Akkermansia muciniphila. The subsequent metabolite exchange promotes the growth 

and butyrate production of the butyrogens including Anaerostipes caccae, 

Eubacterium hallii, and Faecalibacterium prausnitzii. Interestingly, a bidirectional 

cross-feeding was observed between Akkermansia muciniphila and Eubacterium hallii. 

Pseudo-vitamin B12 produced by Eubacterium hallii facilitated propionate production 

by Akkermansia muciniphila via the methylmalonyl-CoA pathway. Propionate could be 

beneficial to the human host by regulating satiety and lipid biosynthesis in the liver, 

indicative of a mutualistic host-microbial interaction driven by mucin glycans. The 

beneficial microbial network at the mucosal layer could confer colonisation resistance 

to the host against pathogens.  

Chapter 5 further investigates the mechanism of trophic interactions between 

Akkermansia muciniphila and Anaerostipes caccae by using a metatranscriptomic 

approach. Metatranscriptomics is employed to understand the transcriptional changes 

of a bacterium in response to environmental stimuli. We observed that Akkermansia 

muciniphila behaves differently when it is grown in monoculture compared to growth in 

co-culture with Anaerostipes caccae. In particularly, Akkermansia muciniphila 

increased the expression of the extracellular mucin-degrading enzymes in the co-

culture. This inferred that Akkermansia muciniphila increased its mucolytic activity to 

support the growth and activity of the mucosal bacteria. 

Chapter 6 provides a general discussion by summarising the insights generated within 

this thesis with regards to the butyrogenic microbial network and putting the knowledge 

into a broader ecological context. The understanding of the molecular mechanisms 

may contribute to the design of novel nutritional approaches to modulate the gut 

microbiota. As such, the concept of next generation gut modulator encompassed of 
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novel probiotic strains (key species including Akkermansia muciniphila, Bacteroides 

spp. and butyrate-producing Clostridium), prebiotics (HMOS in early nutrition), and 

nutrients (iron and vitamin B12) is put forward.   
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Abstract 

The establishment of the gut microbiota immediately after birth is a dynamic process 

that may impact lifelong health. At this important developmental stage in early life, 

human milk oligosaccharides (HMOS) serve as specific substrates to promote the 

growth of gut microbes particularly the group of Actinobacteria (bifidobacteria). This is 

shifted to the colonisation of Firmicutes and Bacteroidetes, which generally dominate 

the human gut throughout adulthood. The well-orchestrated transition is important for 

health as an aberrant microbial composition and/or SCFA production for example are 

associated with colicky symptoms and atopic diseases in infants. Here, we study the 

trophic interactions between a HMOS-degrader, Bifidobacterium infantis and the 

butyrogenic Anaerostipes caccae using carbohydrate substrates that are relevant in 

this early life period i.e. lactose and total human milk carbohydrates. Mono- and co-

cultures of these bacterial species were grown at pH 6.5 in anaerobic bioreactors 

supplemented with lactose or total human milk carbohydrates. Anaerostipes caccae 

was unable to grow on these substrates except when grown in co-culture with 

Bifidobacterium infantis, leading to growth and concomitant butyrate production. Two 

levels of cross-feeding were observed, in which Anaerostipes caccae utilised the 

liberated monosaccharides as well as lactate and acetate produced by Bifidobacterium 

infantis. This microbial cross-feeding points towards the key ecological role of 

bifidobacteria in providing substrates for other important species that will colonise the 

infant gut. The gradual shift of the microbiota composition in the ecosystem 

contributing to the gradual production of butyrate could be important for host-microbial 

cross talk and gut maturation.  
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Bifidobacteria, butyrate, human milk oligosaccharides, lactose, Lachnospiraceae, 
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Introduction 

The succession of microbial species in the infant gut microbiota is a profound process 

in early life (Backhed et al 2015, Koenig et al 2011), which coincides with the important 

development of the immune, metabolic and neurological systems (Arrieta et al 2014, 

Sherman et al 2015, Thompson 2012). At this developmental stage, human milk is 

recognised as the best nourishment for infants (Neville et al 2012). Human milk 

contains a range of microbial active components and among all human milk 

oligosaccharides (HMOS) play an important role in the development of the infant gut 

microbiota (Zivkovic et al 2011). HMOS are complex carbohydrates composed of a 

lactose core, which may be elongated by N-acetylglucosamine (GlcNAc), galactose 

and/or decorated with fucose and/or sialic acid (Smilowitz et al 2014). The composition 

of HMOS in human milk is highly individual driven by maternal genetic factors (Kunz 

et al 2017, McGuire et al 2017) and varies with the phases of lactation. The 

concentration of HMOS ranges from 23 g/L in colostrum to 7 g/L in matured human 

milk (Coppa et al 1993, Gabrielli et al 2011).  

The majority of the HMOS escapes digestion by the host’s enzymes in the upper 

gastrointestinal tract (Engfer et al 2000). HMOS confer important physiological traits 

by acting both as a decoy for the binding of pathogenic bacteria and viruses, and as a 

prebiotic to stimulate the growth and activity of specific microbes in the infant gut (Bode 

2012). These complex carbohydrates exert a selective nutrient pressure to promote 

the HMOS-utilising microbes, especially bifidobacteria belonging to the Actinobacteria 

phylum (Marcobal et al 2010). Bifidobacteria are specifically adapted to utilise HMOS 

by employing an extensive range of glycosyl hydrolases and transporters, which lead 

to their dominance in the infant gut (Sela and Mills 2010b). Upon weaning, the relative 

abundance of bifidobacteria decreases with the increase of Firmicutes and 

Bacteroidetes phyla whilst the gut microbial diversity increases (Laursen et al 2017).  

The early dominance of bifidobacteria could be important for the maturation of 

the overall microbial community. In healthy children, the relative abundance of 

bifidobacteria is positively associated with the butyrate-producing Firmicutes from the 

family of Lachnospiraceae (also known as Clostridium cluster XIVa) and 

Ruminococcaceae (also known as Clostridium cluster IV) (Cheng et al 2015). This 

butyrogenic community often presents at much lower relative abundance in the gut of 
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new-borns (Jost et al 2012). The subdominant butyrogenic species could however 

quickly become more dominant upon weaning as a result of the cessation of breast-

feeding and the introduction of solid food (Backhed et al 2015, Laursen et al 2016). 

The colonisation by the strict anaerobic, butyrate-producing bacteria could be a critical 

step for the gut and immune maturation (Arrieta et al 2015, Wopereis et al 2017). The 

interactions between lactate-producing bacteria (such as bifidobacteria) and lactate-

utilising bacteria (such as Ruminococcaceae and Lachnospiraceae) are suggested to 

be associated with colicky symptoms and atopic disease in infants (Arrieta et al 2015, 

de Weerth et al 2013, Pham et al 2017, Wopereis et al 2017). To date, cross-feeding 

between glycan-degrading bifidobacteria and butyrate-producers using complex 

dietary carbohydrates (including starch, inulin, fructo-oligosaccharides, and 

arabinoxylan oligosaccharides) has been demonstrated in in vitro co-culturing 

experiments (Belenguer et al 2006, De Vuyst and Leroy 2011, Falony et al 2006, Rios-

Covian et al 2015, Riviere et al 2015). However, limited studies have shown the cross-

feeding between these groups of bacteria on host-secreted glycans such as HMOS 

(Schwab et al 2017) and mucins (Bunesova et al 2017). 

In this study, we elucidated the trophic interaction between a HMOS-degrader, 

Bifidobacterium infantis and a butyrogenic non-degrader. To this end the butyrate-

producer Anaerostipes caccae was used as the representative species for the 

Lachnospiraceae family as it is detected in the early life gut microbiota (Backhed et al 

2015, Yatsunenko et al 2012) and is one of the prevalent members of the gut 

microbiota in human adults (Arumugam et al 2011). Bifidobacterium infantis supports 

the development of the microbial ecosystem by metabolising complex carbohydrates 

into monosaccharides and short chain fatty acid (SCFA) including lactate and acetate, 

to support the growth and concomitant butyrate production by Anaerostipes caccae. 

This butyrogenic cross-feeding demonstrates the importance of bifidobacteria in the 

establishment of a healthy microbial ecosystem in early life.  
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Materials and Methods 

16S rRNA gene amplicon libraries screen. 16S rRNA gene amplicon sequencing 

datasets published by Yatsunenko et al. (Yatsunenko et al 2012) were downloaded 

from European Nucleotide Archive (PRJEB3079). The sequencing data of 529 faecal 

samples with known age of the sample donors was analysed using the Quantitative 

Insights Into Microbial Ecology (QIIME) release version 1.9.0 package (Caporaso et al 

2010). Sequences with mismatched primers, a mean sequence quality score <15 (five 

nucleotides window) or ambiguous bases were discarded. In total 1,036,929,139 

sequences were retained with an average of 1,960,168.5 sequences per sample. The 

retained sequences were grouped into Operational Taxonomic Units with the 

USEARCH algorithm (Edgar 2010) set at 97% sequence identity and subsequently, 

the Ribosomal Database Project Classifier (RDP) (Cole et al 2009) was applied to 

assign taxonomy to the representative sequences by alignment to the SILVA ribosomal 

RNA database (release version 1.1.9) (Pruesse et al 2007). 

Bacterial strains and growth conditions. Bacterial pre-cultures were grown in 

anaerobic serum bottles filled with gas phase of N2/CO2 (80/20 ratio) at 1.5 atm. Pre-

cultures were prepared by overnight 37ºC incubation in basal minimal medium (Plugge 

2005) containing 0.5% (w/v) tryptone (Oxoid, Basingstoke, UK), supplemented with 

30mM lactose (Oxoid, Basingstoke, UK) for Bifidobacterium longum subsp. infantis 

ATCC15697; and 30 mM glucose (Sigma-Aldrich, St. Louis, USA) for Anaerostipes 

caccae L1-92 (DSM 14662) (Schwiertz et al 2002). Growth was measured by a 

spectrophotometer at an optical density of 600 nm (OD600) (OD600 DiluPhotometerTM, 

IMPLEN, Germany).  

Carbohydrate substrates. Lactose (Oxoid, Basingstoke, UK) and total human milk 

(HM) carbohydrates were tested as the carbohydrate substrates for bacterial growth. 

For preparation of total HM carbohydrates, a total carbohydrate mineral fraction was 

derived from pooled human milk after protein depletion by ethanol precipitation and 

removal of lipids by centrifugation as described by Stahl et al. (Stahl et al 1994) . 

Deviant from this workflow, no anion exchange chromatography (AEC) was used to 

further separate neutral from acidic oligosaccharides present in the resulting total 

carbohydrate mineral fraction. The total HM carbohydrates contained approximately 

90% of lactose, 10% of both acidic and neutral HMOS as well as traces of 
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monosaccharides, as estimated by gel permeation chromatography (GPC) described 

below (Fig. S1).  

Anaerobic bioreactor. Fermentations were conducted in eight parallel minispinner 

bioreactors (DASGIP, Germany) with 100 ml filling volume at 37°C and a stirring rate 

of 150 rpm. Culturing experiments were performed in autoclaved basal minimal media 

(Plugge 2005) containing 0.5% (w/v) tryptone (Oxoid, Basingstoke, UK), supplemented 

with 0.2 µM filter-sterilized lactose or total HM carbohydrates. Anaerobic condition was 

achieved by overnight purging of anaerobic gas mixture containing 5% CO2, 5% H2, 

and 90% N2. Overnight pre-cultures were inoculated at starting OD600 of 0.05 for each 

bacterial strain. Online signals of pH values and oxygen levels were monitored by the 

DASGIP control software (DASGIP, Germany). Cultures were maintained at pH 6.5 by 

the addition of 2 M NaOH.  

Gel permeation chromatography (GPC). Total HM carbohydrates were analysed 

using GPC. Glycans were separated by the GPC stationary phase and eluted 

according to size and charge. Neutral mono-, di-, and oligosaccharides, and acidic 

oligosaccharides with different degree of polymerisation (DP) could be detected. HM 

carbohydrate solution was prepared by dissolving 0.2 g/ml of total HM carbohydrates 

in ultrapure water (Sartorius Arium Pro) containing 2% (v/v) 2-propanol at 37⁰C. 5 ml 

of 0.2 µM filter-sterilized HM carbohydrate solution was injected for each GPC run. The 

sample loop was cleaned by ultrapure water prior to analysis. Two connected Kronlab 

ECO50 columns (5×110 cm) packed with Toyopearl HW 40 (TOSOH BIOSCIENCE) 

were used. Milli-Q water was maintained at 50°C using heating bath (Lauda, RE 206) 

for columns equilibration. Milli-Q water containing 2% (v/v) of 2-propanol was used as 

the eluent. The flow rate of the eluent was set at 1.65 ml/min. Eluting glycans were 

monitored by refractive index detection (Shodex, RI-101). The resulting 

chromatograms were analysed by using the Chromeleon® software (ThermoScientific 

6.80). 

High-performance liquid chromatography (HPLC). For metabolites analysis, 1 ml 

of bacterial culture was centrifuged and the supernatant was stored at -20°C until 

HPLC analysis. Crotonate was used as the internal standard, and external standards 

tested included lactose, glucose, galactose, N-acetylglucosamine (GlcNAc), N-

acetylgalactosamine (GalNAc), fucose, malate, fumarate, succinate, citrate, formate, 
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acetate, butyrate, isobutyrate, lactate, 1,2-propanediol, and propionate. Substrate 

conversion and product formation were measured with a Spectrasystem HPLC 

(Thermo Scientific, Breda, the Netherlands) equipped with a Hi-Plex-H column (Agilent, 

Amstelveen, the Netherlands) for the separation of carbohydrates and organic acids. 

A Hi-Plex-H column performs separation with diluted sulphuric acid on the basis of ion-

exchange ligand-exchange chromatography. Measurements were conducted at a 

column temperature of 45°C with an eluent flow of 0.8 ml/min flow of 0.01 N sulphuric 

acid. Metabolites were detected by refractive index (Spectrasystem RI 150, Thermo, 

Breda, the Netherlands). 

HMOS extraction. HMOS were recovered from 1 ml aliquots of bacterial cultures. 

Internal standard 1,5-α-L-arabinopentaose (Megazyme) was added, at the volume of 

10 µl per sample to minimize pipetting error, to reach a final concentration of 0.01 

mmol/l. The solution was diluted 1:1 with ultrapure water and centrifuged at 4,000 g for 

15 min at 4°C. The supernatant was filtered through 0.2 μM syringe filter followed by 

subsequent centrifugation with a pre-washed ultra-filter (Amicon Ultra 0.5 Ultracel 

Membrane 3 kDa device, Merck Milipore) at 14,000 g for 1 h at room temperature. 

Finally, the filtrate was vortexed and stored at -20°C until further electrospray ionisation 

liquid chromatography mass spectrometry (ESI-LC-MS) analysis. 

Electrospray ionisation liquid chromatography mass spectrometry (ESI-LC-MS) 
analysis. The identification and relative quantitation of HMOS were determined with 

ESI-LC-MS. This method allowed the study of distinct HMOS structures differed in 

monosaccharide sequence, glycosidic linkage or the molecular conformation. Thereby 

even the HMOS isobaric isomers such as Lacto-N-fucopentaose (LNFP) I, II, III and V 

could be distinguished. Micro ESI-LC-MS analysis was performed on a 1200 series 

HPLC stack (Agilent, Waldbronn, Germany) consisting of solvent tray, degasser, 

binary pump, autosampler and DAD detector coupled to a 3200 Qtrap mass 

spectrometer (ABSciex, USA). After HMOS extraction (see above) 5 µl of HMOS 

extract was injected into the LC-MS system. Oligosaccharides were separated by 

means of a 2.1x30 mm Hypercarb porous graphitized carbon (PGC) column with 

2.1x10 mm PGC pre-column (Thermo Scientific, USA) using water-acetonitrile gradient 

for 18 min protocol. The gradient started with a ratio of 98% (v/v) water and 2% (v/v) 

acetonitrile in 5 mM ammonium acetate at 0 min and ended with a ratio of 20% (v/v) 

water and 80% (v/v) acetonitrile in 5 mM ammonium acetate at 15 min. Re-equilibration 
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was established between 15 and 18 min with 98% (v/v) water and 2% (v/v) acetonitrile 

in 5 mM ammonium acetate. Eluent flow was 400 µl/min and the columns were kept at 

45⁰C. The LC-effluent was infused online into the mass spectrometer and individual 

HMOS structures were analysed qualitatively and quantitatively by multiple reaction 

monitoring (MRM) in negative ion mode. Specific MRM transitions for neutral HMOS 

up to pentaoses and acidic HMOS up to trioses were included. The spray voltage was 

-4500 V, declustering potential was at 44 V, and collision energy was set to 29 eV. 

Each MRM-transition was performed for 50 ms. The instrument was calibrated with 

polypropylene glycol (PPG) according the instructions of the manufacturer. Unit 

resolution setting was used for precursor selection whereas low resolution setting was 

used to monitor fragment ions of the MRM transitions. 

Quantitative real-time PCR (q-PCR). The abundance of Bifidobacterium infantis and 

Anaerostipes caccae in mono- and co-culture were determined by quantitative real-

time PCR. Bacterial cultures were harvested at 16,100 g for 10 min. DNA extractions 

were performed using MasterPure™ Gram Positive DNA Purification Kit. The DNA 

concentrations were determined fluorometrically (Qubit dsDNA HS assay; Invitrogen) 

and adjusted to 1 ng/μl prior to use as the template in qPCR. Primers targeting the 16S 

rRNA gene of Bifidobacterium spp. (F-bifido 5'-CGCGTCYGGTGTGAAAG-3'; R-bifido 

5'-CCCCACATCCAGCATCCA-3'; 244 bp product (Delroisse et al 2008)) and 

Anaerostipes caccae (OFF2555 5'-GCGTAGGTGGCATGGTAAGT-3'; OFF2556 5'-

CTGCACTCCAGCATGACAGT-3'; 83 bp product (Veiga et al 2010)) were used for 

quantification. Standard template DNA was prepared by amplifying genomic DNA of 

each bacterium using primer pairs of 35F (5'-CCTGGCTCAGGATGAACG-3' (Hayashi 

et al 2004)) and 1492R (5'-GGTTACCTTGTTACGACTT-3') for Bifidobacterium infantis; 

and 27F (5'-AGAGTTTGATCCTGGCTCAG-3') and 1492R for Anaerostipes caccae. 

Standard curves were prepared with nine standard concentrations of 100 to 108 gene 

copies/μl. PCRs were performed in triplicate with iQ SYBR Green Supermix (Bio-Rad) 

in a total volume of 10 μl with primers at 500 nM in 384-well plates sealed with optical 

sealing tape. Amplification was performed with an iCycler (Bio-Rad) with the following 

protocol: 95°C for 10 min; 40 cycles of 95°C for 15 s, 55°C for 20 s, and 72°C for 30 s; 

95°C for 1 min and 60°C for 1 min followed by a stepwise temperature increase from 

60 to 95°C (at 0.5°C per 5 s) to obtain the melt curve data. Data was analysed using 

the Bio-Rad CFX Manager 3.0. 
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Fluorescent in situ hybridization (FISH): Bacterial cultures were fixated by adding 

1.5 ml of 4% paraformaldehyde (PFA) to 0.5 ml of cultures followed by storage at -

20°C. Noted that for optimum fixation, at least 2 h to overnight incubation at 4°C is 

recommended. Working stocks were prepared by harvesting bacterial cells by 5 min of 

4°C centrifugation at 8,000 g, followed by re-suspension in ice-cold phosphate buffered 

saline (PBS) and 96% ethanol at a 1:1 (v/v) ratio. 3 μl of the PBS-ethanol working 

stocks were spotted on 18 wells (round, 6 mm diameter) gelatine-coated microscope 

slides. Hybridization was performed using rRNA-targeted oligonucleotide probes 

specific for Bifidobacterium genus (Bif164m 5'-CATCCGGYATTACCACCC -3' [5']Cy3) 

(Dinoto et al 2006). 10 µl of hybridization mixture containing 1 volume of 10 μM probe 

and 9 volumes of hybridization buffer (20 mM Tris–HCl, 0.9 M NaCl, 0.1% SDS, pH 

7.2 – pH 7.4) was applied on each well. The slides were hybridized for at least 3 h in a 

moist chamber at 50°C; followed by 30 min incubation in washing buffer (20 mM Tris–

HCl, 0.9 M NaCl, pH 7.2 – pH 7.4) at 50°C for washing. The slides were rinsed briefly 

with Milli-Q water and air-dried. Slides were stained with 4,6-diamine-2-phenylindole 

dihydrochloride (DAPI) mix containing 200 μl of PBS and 1 μl of DAPI-dye at 100 ng/μl, 

for 5 min in the dark at room temperature followed by Milli-Q rinsing and air-drying. The 

slides were then covered with Citifluor AF1 and a coverslip. The slides were 

enumerated using an Olympus MT ARC/HG epifluorescence microscope. A total of 25 

positions per well were automatically captured in two colour channels (Cy3 and DAPI) 

using a quadruple band filter. Images were analysed using Olympus ScanR Analysis 

software. 

Carbohydrate-active enzymes (CAZymes) prediction. CAZymes were predicted 

with dbCAN version 3.0 (Yin et al 2012), transmembrane domains with TMHMM 

version 2.0c (Krogh et al 2001) and signal peptides with signalP 4.1 (Petersen et al 

2011). 
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Results 

The occurrence of Bifidobacterium infantis and Anaerostipes caccae across the life 

span  

A published dataset (Yatsunenko et al 2012) was mined for the occurrence of 

Bifidobacterium infantis and Anaerostipes caccae in the microbiota across life stages. 

The two infant-associated bacteria demonstrated opposite trajectories in early life. 

Bifidobacterium genus showed high abundance at the first year followed by a sharp 

decline, with a negative correlation between age and relative abundance (Spearman 

ρ = -0.38, p < 0.05) (Fig. 1). On the contrary, Anaerostipes genus (Spearman ρ = 0.56, 

p < 0.05) and Lachnospiraceae family (Spearman ρ = 0.37, p < 0.05) were present at 

low abundance early in life and increased in relative abundance during the aging 

process (Fig. 1). 

 

Model for Bifidobacterium infantis and Anaerostipes caccae co-occurrence  

Bacteria strains were cultured in anaerobic bioreactors controlled at pH 6.5 

supplemented with either lactose or total human milk (HM) carbohydrates. 

Bifidobacterium infantis monoculture reached maximal cell density around 12 h (ODmax 

= 1.40 ± 0.38 in lactose and ODmax = 1.37 ± 0.25 in total HM carbohydrates) (Fig. 2). 

For Anaerostipes caccae monoculture, no growth or substrate breakdown was 

detected in identical media (ODmax = 0.02 ± 0.01 in lactose and ODmax = 0.03 ± 0.02 in 

total HM carbohydrates) (Table S1). The co-culture of Bifidobacterium infantis with 

Anaerostipes caccae grew rapidly reaching maximal optical density at 11 h in lactose 

(ODmax = 3.63 ± 0.61) and at 9 h in total HM carbohydrates (ODmax = 3.54 ± 0.60). The 

community dynamics in the co-cultures was monitored over time by qPCR. An equal 

amount of Bifidobacterium infantis and Anaerostipes caccae (around 106 copy 

number/ml) was inoculated at the start of the fermentation. During the first 7 h, 

Bifidobacterium infantis and Anaerostipes caccae increased 100-fold based on the 

increase of 16S rRNA gene copy number, after which growth slowed down. FISH 

analysis of samples harvested at 11 h showed Bifidobacterium infantis to Anaerostipes 

caccae ratio of 1:6. These results accounted for both conditions either in lactose or 

total HM carbohydrates supplemented cultures. 
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Figure 1. The occurrence of (A) Bifidobacterium and Anaerostipes genus (B) 
Bifidobacteriaceae and Lachnospiraceae family in the gut microbiota across age. The 
plot was generated from a published dataset (Yatsunenko et al 2012) using R package ggplot2 
version 2.2.1. The trend lines represent the smoothed conditional means using local 
polynomial regression fitting (Cleveland et al 1992).  
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Figure 2. Bifidobacterium infantis supported the growth of Anaerostipes caccae in 
human milk carbohydrates. (A) The optical density (OD600) indicating bacterial growth and 
(B) qPCR results showing the microbial composition in the co-cultures over time with lactose 
or with total HM carbohydrates. Error bars represent the standard deviation for biological 
triplicates, except for time point 31 h (n=2) and 48 h (n=1). (C) Fluorescent in situ hybridisation 
(FISH) of co-cultures at 11h (Bifidobacterium infantis in pink and Anaerostipes caccae in 
purple). No growth or substrate utilisation was detected for Anaerostipes caccae monocultures 
in identical media (Table S1). 
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Bifidobacterium infantis supported the growth and metabolism of Anaerostipes caccae 

in lactose and HMOS 

The substrates consumption and SCFA production were monitored over time (Fig. 3). 

A similar profile was observed between the fermentation of lactose and total HM 

carbohydrates, probably because total HM carbohydrates is consisted of 

approximately 10% HMOS and 90% lactose (Fig. S1). On both substrates, the 

monoculture of Bifidobacterium infantis degraded the lactose present into glucose and 

galactose resulting in the accumulation of monomeric sugars in the supernatant (Fig. 

3). Lactose was completely degraded at 9 h. At the same time point, 17.49 ± 1.83 mM 

of glucose and 15.24 ± 2.06 mM of galactose were detected in the media 

supplemented with lactose, whereas 14.77 ± 1.59 mM of glucose and 10.91 ± 1.77 mM 

of galactose were detected in the media supplemented with total HM carbohydrates. 

The monomeric sugars were fully consumed after 31 h. Bifidobacterium infantis 

produced acetate (56.96 ± 4.48 mM in lactose and 50.76 ± 3.23 mM in total HM 

carbohydrates), lactate (22.73 ± 3.02 mM in lactose and 17.69 ± 1.21 mM in total HM 

carbohydrates) and formate (6.56 ± 0.09 mM in lactose and 8.04 ± 0.21 mM in total 

HM carbohydrates) as the major end metabolites. The final acetate to lactate ratio for 

Bifidobacterium infantis in lactose was 2.4:1 and 2.6:1 in total HM carbohydrates. 

The co-culture of Bifidobacterium infantis with Anaerostipes caccae also 

degraded lactose completely within 9 h. However, the co-cultures depleted glucose 

and galactose faster compared to the monocultures of Bifidobacterium infantis. The 

concentration of monomeric sugars peaked around 7 h in media supplemented with 

lactose, with 4.62 ± 1.21 mM glucose and 7.10 ± 0.97 mM galactose. In media 

supplemented with the total HMOS carbohydrates, the maximum concentration for 

glucose (4.20 ± 2.10 mM) and galactose (7.39 ± 4.45 mM) was detected after 5 h. Only 

traces of monomeric sugars were still detectable after 9 h. The major end products of 

fermentation in the co-cultures were butyrate (31.39 ± 2.15 mM in lactose and 25.80 ± 

2.45 mM in total HM carbohydrates), acetate (5.44 ± 0.30 mM in lactose and 9.05 ± 

0.71 mM in total HM carbohydrates) and formate (2.53 ± 0.16 mM in lactose and 4.78 

± 1.16 mM in total HM carbohydrates). In contrast to the Bifidobacterium infantis 

monocultures, no lactate was detected after 11 h in the co-cultures. 
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The low molecular weight HMOS structures in the total HM carbohydrates were 

determined by ESI-LC-MS for 0 h and 24 h cultures in order to understand the specific 

glycan utilisation by these bacteria (Fig. 4). The monoculture of Bifidobacterium infantis 

completely degraded the full range of neutral trioses (including 2’-fucosyllactose [2’-FL] 

and 3-fucosyllactose [3-FL]), tetraoses (including difucosyllactose [DFL], lacto-N-

tetraose [LNT], lacto-N-neotetraose [LNnT]), pentaoses (lacto-N-fucopentaose I [LNFP 

I], lacto-N-fucopentaose II [LNFP II], lacto-N-fucopentaose III [LNFP III], lacto-N-

fucopentaose V [LNFP V]), and acidic trioses (including 3’-sialyllactose [3’-SL] and 6’-

sialyllactose [6’-SL]). No degradation of HMOS was observed in the Anaerostipes 

caccae monoculture. On the other hand, the glycan utilisation pattern in the co-culture 

was identical to the profile of Bifidobacterium infantis monoculture indicative of the 

degrader role of Bifidobacterium infantis in the co-cultures. Specific HMO-derived 

sugars such as GlcNAc and fucose were not detected, likely because these stay below 

the detection limit (0.5 mM) or due to overlap with other HPLC peaks. 
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Figure 3. Bifidobacterium infantis supported butyrate production of Anaerostipes 
caccae. The substrate utilisation and SCFA formation of co-cultures in lactose or total HM 
carbohydrates. Error bars represent the standard deviation for biological triplicates, except for 
time point 31 h (n=2) and 48 h (n=1). 
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Figure 4. Bifidobacterium infantis monoculture and co-culture with Anaerostipes caccae 
utilised the full range of low molecular weight HMOS. Error bars represent the error 
propagation for mean of three (for Anaerostipes caccae) or four (for Bifidobacterium infantis 
and Bifidobacterium infantis + Anaerostipes caccae) biological replicates measured in 
technical triplicates. The HMOS structures and glycosidic linkages are depicted according to 
Varki et al. (Varki et al 2015). Abbreviations: 2’-FL, 2’-fucosyllactose; 3-FL, 3-fucosyllactose; 
DFL, difucosyllactose; LNT, lacto-N-tetraose; LNnT, lacto-N-neotetraose; LNFP I, lacto-N-
fucopentaose I; LNFP II, lacto-N-fucopentaose II; LNFP III, lacto-N-fucopentaose III; LNFP V, 
lacto-N-fucopentaose V; SL, sialyllactose. 
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Microbial cross-feeding results in a shift of SCFA pool  

The cultures were maintained at pH 6.5 with the addition of 2 M NaOH. Bifidobacterium 

infantis monocultures required a higher amount of base addition compared to the co-

culture with Anaerostipes caccae (Fig. 5a). The acidification of the cultures was 

reflected in the composition of SCFAs. The total amount of SCFAs at 31 h were higher 

in the monocultures (86.76 ± 7.78 mM in lactose and 76.75 ± 3.86 mM in total HM 

carbohydrates) in comparison to the co-cultures (39.36 ± 1.68 mM in lactose and 39.88 

± 3.97 mM in total HM carbohydrates). Furthermore, as a result of microbial cross-

feeding in the co-cultures, lactate (pKa = 3.86) produced by Bifidobacterium infantis 

monocultures was converted to butyrate (pKa = 4.82). The pKa value indicates the 

quantitative measurement of the strength of an acid in the solution with lower values 

for stronger acid. As the pKa values are expressed in log scale, the decrease by one 

numerical value in lactate compared to butyrate may result in a 10-fold higher 

concentration of soluble protons. To investigate the dynamic of pH in early life, the data 

from Wopereis et al. (Wopereis et al 2017) was employed. We observed that the faecal 

pH for infants (n=138) increased from pH 5.7 at 4 weeks to pH 6.0 at 6 months of life 

(Fig. 5b). 

 

Figure 5. The acidification of cultures and faecal pH. (A) Base (2M NaOH) added to 
maintain the anaerobic chemostat at pH 6.5. The shaded error bars indicate standard deviation 
for biological triplicates. (B) The faecal pH for infants (n=138). Data adapted from Wopereis et 
al. (Wopereis et al 2017).   
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Discussion 

The infant gut ecosystem is highly dynamic and marked by the succession of bacterial 

species (Backhed et al 2015). At this important window of growth and development, 

breast-feeding generally leads to the efficient colonisation of bifidobacteria in early life 

(Backhed et al 2015). Bifidobacteria could prime the development of gut barrier 

function and immune maturation (Ruiz et al 2017), as well as play an important 

ecological role in the establishment of the gut microbiota. Here, we showed that 

Bifidobacterium infantis could support the metabolism and growth of another important 

species in early life, the butyrate-producing Anaerostipes caccae via cross-feeding. 

This microbial cross-feeding resulted in the shift of the SCFA pool and butyrate 

production. Physiologically, butyrate is associated with the enhancement of colonic 

barrier function and it could regulate host immune and metabolic state by signalling 

through G-protein-coupled receptors (GPR) and by inhibiting histone deacetylase 

(HDAC) (Bolognini et al 2016, Fellows et al 2018, Geirnaert et al 2017, Koh et al 2016). 

Although the mechanistic evidences for butyrate are mostly generated from adult 

studies, a gradual shift in the ecosystem with slow induction of butyrate could be 

important for the maturation of the infant gut.  

The dominance of bifidobacteria is often observed in the infant gut microbiota 

(Tannock et al 2016). Bifidobacteria have evolved to be competitive in utilising human 

milk as substrate by employing a large arsenal of enzymes to metabolise HMOS 

(O'Callaghan and van Sinderen 2016). We showed that Bifidobacterium infantis 

effectively degraded the full range of the low molecular weight HMOS structures 

including neutral trioses, tetraoses, and pentaoses as well as acidic trioses. This is 

consistent with the unique HMOS utilisation capability of Bifidobacterium infantis by 

encoding a 43kb gene cluster that carries the genes for different oligosaccharides 

transport proteins and glycosyl hydrolases (Underwood et al 2014). No signal peptide 

or transmembrane domain was predicted for Bifidobacterium infantis enzymes 

involved in the cleavage of the monitored HMOS structures (Table S2), indicating 

intracellular degradation of these substrates. Furthermore, the distinct “bifid shunt 

pathway” centred around the enzyme fructose-6-phosphate phosphoketolase (F6PPK) 

could also account for the competitiveness of bifidobacteria (O'Callaghan and van 

Sinderen 2016). The fermentation of sugars via F6PPK-dependent bifid shunt pathway 

yields more energy compared to the usual glycolysis or Emden-Meyerhof Parnas (EMP) 
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pathway which could give bifidobacteria an additional advantage compared to other 

gut bacteria (Palframan et al 2003).  

Lactose and HMOS fermentation by bifidobacteria results in acetate and lactate 

as major end products. In addition to bifidobacteria, other primary colonisers like 

Lactobacillus, Streptococcus, Staphylococcus, and Enterococcus spp. also contribute 

to lactate production in the infant gut (Pham et al 2017). In the gut of breast-fed infants, 

the overall digestion and fermentation lead to a relatively high concentration of acetate 

and lactate with slightly acidic pH (Oozeer et al 2013, Pham et al 2016). The pH of the 

luminal content has a significant impact on the microbiota composition (Duncan et al 

2009). Various bacterial groups have been shown to be inhibited by a low pH, such as 

opportunistic pathogens including Salmonella Typhimurium, Staphylococcus aureus, 

Escherichia coli, Enterococcus faecalis, Pseudomonas aeruginosa, and Klebseilla 

pneumoniae (van Limpt et al 2004) as well as Bacteroides spp. (Duncan et al 2009, 

Walker et al 2005). In contrast, a low pH may promote butyrate production and the 

butyrogenic community (Reichardt et al 2017, Walker et al 2005). Given the above, the 

circumstances in the infant gut seems to be in favour of the colonisation of butyrate-

producers. 

In the first months of life, butyrate levels in the faeces are generally low (Oozeer 

et al 2013, Pham et al 2016) and the major adult-type butyrate-producing population 

(Roseburia and Faecalibacterium spp.) remained undetectable up to 30 days postnatal 

(Jost et al 2012). Data mining of a published dataset showed an increase of relative 

abundance for Lachnospiraceae family and Anaerostipes genus in the first year of life 

(Yatsunenko et al 2012). The majority of butyrate-producing bacteria from the 

Lachnospiraceae and Ruminococcaceae are not capable of utilising HMOS (Sheridan 

et al 2016). For Anaerostipes caccae, no growth or metabolism was detected in the 

media containing lactose and HMOS. These subdominant butyrogenic bacteria in the 

infant gut could depend on cross-feeding with species like bifidobacteria. Our results 

indicated that Anaerostipes caccae could utilise the monomeric sugars and end 

products like acetate and lactate derived from Bifidobacterium infantis for metabolic 

activity and growth (Duncan et al 2004). Anaerostipes caccae is known to convert 1 

mol of acetate and 2 mol of lactate to yield 1.5 mol of butyrate (Duncan et al 2004). 

This metabolic interaction could also benefit the microbial community by reducing the 

metabolic burden (Seth and Taga 2014), shown by the formation of a relatively weaker 
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acid pool. The infant faecal pH showed an increasing trend with age (Wopereis et al 

2017). Acetate and lactate as well as a small amount of propionate and butyrate can 

be detected in the faeces of infants (Pham et al 2016, Wopereis et al 2017). Whereas, 

the typical SCFA ratio in adult faeces is around 3:1:1 for acetate, propionate and 

butyrate respectively (Schwiertz et al 2010, Scott et al 2011). The shift of the SCFA 

pool goes hand in hand with the transition of the gut microbiota, likely induced by 

dietary changes. Upon weaning, the diversification of indigestible fibres due to the 

introduction of solid foods results in conditions leading to the decrease of the relative 

numbers of bifidobacteria and the increase of Lachnospiraceae, Ruminococcaceae, 

and Bacteroides spp. (Laursen et al 2017).  

Although the contributing factors to the progression from bifidobacteria 

dominant community to Firmicutes and Bacteroides dominant community are not well 

understood, the well-orchestrated transition is important for health. An aberrant 

microbial composition and/or SCFA production are associated with colicky symptoms 

and atopic diseases in infants (Arrieta et al 2015, de Weerth et al 2013, Pham et al 

2017, Stokholm et al 2018, Wopereis et al 2017). We demonstrated the role of 

Bifidobacterium infantis in driving the butyrogenic trophic chain by metabolising human 

milk carbohydrates. This microbial cross-feeding is indicative of the key ecological role 

of bifidobacteria as substrate provider for subdominant butyrate-producing bacteria. 

The compromised health outcomes as a result of the delayed transition from 

bifidobacteria-dominant to butyrogenic microbial community highlight the importance 

of proper developmental stages in the infant gut.  
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Figure S1. The GPC-RI chromatogram for total human milk (HM) carbohydrates showing a 
composition of approximately 90% of lactose, 10% of both acidic and neutral HMOS as well 
as traces of monosaccharides.  
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Abstract 

The development of the infant gut microbiota is strongly influenced by nutritional and 

environmental factors. Human milk oligosaccharides (HMOS) in breast milk selectively 

promote the growth of glycan-degrading microbes particularly members of the genera 

Bifidobacterium and Bacteroides. As such, these genera are dominant in the early life 

microbiota and they form the basis of the microbial network formation. In this study, we 

investigated the trophic interactions between the HMOS-degrading Bacteroides 

thetaiotaomicron and the butyrate-producing Anaerostipes caccae in the presence of 

human milk carbohydrates. Anaerostipes caccae was not able to utilise lactose and 

HMOS but its signature metabolite, butyrate was detected in the co-culture with 

Bacteroides thetaiotaomicron. Bacteroides thetaiotaomicron displayed glycan 

catabolic capability, and it showed preference in utilising specific HMOS structures. As 

such, Anaerostipes caccae cross-fed on Bacteroides thetaiotaomicron-derived 

monosaccharides, acetate and D-lactate for growth and concomitant butyrate 

production. Furthermore, we investigated the lactate isomer production by Bacteroides 

spp. and Bifidobacterium spp. We observed differential isomer production by these 

major lactate-producing degraders in the infant gut, in which Bacteroides spp. and 

Bifidobacterium spp. produced D- and L-lactate respectively. The distinct lactate 

isomer production by these major glycan-degrading genera might affect the 

composition of the gut microbiota by the sequential cross-feeding interaction with 

specific D- and L- lactate-utilisers. 
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Introduction 

The establishment of the infant gut microbiota is a dynamic process manifested by the 

successive colonisation of functionally distinct microbial groups (Backhed et al 2015, 

Laursen et al 2017). The infant gut microbiota displays high temporal and inter-

individual variation that is influenced by factors including genetic background, the 

mode of the delivery, hospitalisation, use of antibiotics and early life nutrition 

(Scholtens et al 2012). Even though it has not been well-defined what a healthy infant 

gut microbiota is comprised of, it has been associated with desirable criteria such as 

infants delivered at full term via natural birth mode as well as received breast-feeding 

and no administration of antibiotics. Breast-feeding selectively promotes the growth of 

bacteria capable of utilising human milk oligosaccharides (HMOS). The HMOS-

degrading members from the Bifidobacterium and Bacteroides genera are dominant 

taxonomic groups in the gut of healthy infants (Backhed et al 2015).  

Infants delivered by caesarean section are often deprived of Bacteroidetes in 

the first days of life, likely due to the absence of exposure to members of this genus 

which are present in the birth canal (Backhed et al 2015, Martin et al 2016). The 

common Bacteroides spp. found in the infant gut are Bacteroides thetaiotaomicron, 

Bacteroides fragilis and Bacteroides vulgatus (Backhed et al 2015, Martin et al 2016). 

Bacteroides thetaiotaomicron is generally recognised as a symbiont that contributes to 

the postnatal gut development and host physiology (Wexler 2007). Bacteroides 

thetaiotaomicron is able to forage on host-secreted glycans including HMOS and 

mucins (Marcobal et al 2011). It is described that the distinct capability to utilise glycans 

using the archetypal starch utilisation system (Sus), and the ability to sense and 

respond to the environmental cues, lead to the colonisation of Bacteroides 

thetaiotaomicron in human gut (Reeves et al 1997, Xu et al 2003). The relative 

abundance of Bacteroides spp. increases with age, in which a stable adult gut 

microbiota is predominantly comprised of Bacteroidetes and Firmicutes (Laursen et al 

2017).  

The primary HMOS-degraders could drive the establishment of the microbial 

community in the infant gut via cross-feeding. As such, the intermediate breakdown 

products by one bacterial species could serve as the substrate to support growth of 

other microbes in the environment, often resulting in indirect benefits for all species 
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involved (Belenguer et al 2006, Duncan et al 2004, Freilich et al 2011). For instance, 

Bifidobacterium spp. degrade host-produced 2’-fucosyllactose (2’-FL, an abundant 

HMOS) and mucin glycans that in turn supports the growth of butyrate-producing 

bacteria (Bunesova et al 2017, Schwab et al 2017). Furthermore, the in vivo interaction 

between Bacteroides thetaiotaomicron and butyrate-producing bacteria in gnotobiotic 

mice lead to the increase of intestinal butyrate (Mahowald et al 2009, Wrzosek et al 

2013). However, to date, no study has addressed the interaction between Bacteroides 

spp. and butyrogen on early life substrates. We hypothesise that Bacteroides spp. 

could also drive the butyrate metabolic network in the infant gut. 

This study investigates the trophic interaction between the early life colonisers 

Bacteroides thetaiotaomicron and butyrate-producing Anaerostipes caccae from the 

Lachnospiraceae family. Anaerobic bioreactor culturing of the bacteria on human milk 

carbohydrates including lactose and total human milk (HM) carbohydrates were 

conducted. We demonstrated that Bacteroides spp. could support the butyrogenic 

trophic chain using lactose or HMOS. Anaerostipes caccae cross-fed on 

monosaccharides, acetate and D-lactate released by Bacteroides thetaiotaomicron 

from lactose and HMOS metabolism. Moreover, we observed that Bacteroides spp. 

showed differential lactate isomer production in comparison to the early life colonising 

Bifidobacterium spp. that produced L-lactate predominantly. 
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Materials and Methods  

Bacterial strains and growth conditions. Bacterial pre-cultures were prepared by 

overnight growth in anaerobic serum bottles sealed with butyl-rubber stoppers at 37ºC 

with gas phase of N2/CO2 (80/20 ratio) at 1.5atm. Basal medium (Plugge 2005) 

containing 0.5% (w/v) tryptone (Oxoid, Basingstoke, UK) was used for culturing. For 

Bacteroides thetaiotaomicron DSM 2079 (VPI 5428), 30mM of lactose (Oxoid, 

Basingstoke, UK) and 5 mg/L of hemin (Sigma-Aldrich, St. Louis, USA) were 

supplemented; whereas for Anaerostipes caccae DSM 14662 (L1-92) (Schwiertz et al 

2002), 30mM of glucose (Sigma-Aldrich, St. Louis, USA) was supplemented. Growth 

was measured by a spectrophotometer as optical density at 600nm (OD600) (OD600 

DiluPhotometerTM, IMPLEN, Germany).  

Growth substrates. Lactose (Oxoid, Basingstoke, UK) and total human milk (HM) 

carbohydrate fraction were tested as the growth substrates. For preparation of total 

HM carbohydrate fraction, a total carbohydrate mineral fraction was derived from 

pooled human milk after protein depletion by ethanol precipitation and removal of lipids 

by centrifugation as described by Stahl et al. (Stahl et al 1994). Deviant from this 

workflow, no anion exchange chromatography was used to further separate neutral 

from acidic oligosaccharides present in the resulting total carbohydrate mineral fraction. 

The total HM carbohydrate fraction contained approximately 10% HMOS and 90% of 

lactose as estimated by gel permeation chromatography (GPC) (Fig. S1).  

Anaerobic bioreactor. Fermentations were conducted in eight parallel minispinner 

bioreactors (DASGIP, Germany) with 100 ml filling volume at 37°C and a stirring rate 

of 150 rpm. Culturing experiments were performed in autoclaved basal media (Plugge 

2005) containing 0.5% (w/v) tryptone (Oxoid, Basingstoke, UK), supplemented with 8 

g/L of 0.2 µM filter-sterilized lactose or total HM carbohydrate fraction. Experiments 

were performed with 1% (v/v) supplementation of 0.2 µM filter-sterilized 0.5 g/L hemin 

stock solution and the B vitamins stock solution. The B vitamins stock solution contains 

11 g/L CaCl2, 20 mg/L biotin, 200 mg/L nicotinamide, 100 mg/L p-aminobenzoic acid, 

200 mg/L thiamine, 100 mg/L pantothenic acid, 500 mg/L pyridoxamine, 100 mg/L 

cyanocobalamin, and 100 mg/L riboflavin. Anaerobic condition was achieved by 

overnight purging of anaerobic gas mixture that contained 5% CO2, 5% H2, and 90% 

N2. Overnight pre-cultures were inoculated at starting OD600 of 0.05 for each bacterial 
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strain. Online signals of pH values and oxygen levels were monitored by the DASGIP 

Control software (DASGIP, Germany). Cultures were maintained at pH 6.5 by dosing 

2 M sodium hydroxide (NaOH).  

Gel permeation chromatography (GPC). Total HM carbohydrates were analysed 

using GPC. Glycans were separated by the GPC stationary phase and eluted 

according to size and charge. Neutral mono-, di-, and oligosaccharides, and acidic 

oligosaccharides with different degrees of polymerisation (DP) could be detected. HM 

carbohydrate solution was prepared by dissolving 0.2 g/ml of total HM carbohydrates 

in ultrapure water (Sartorius Arium Pro) containing 2% (v/v) 2-propanol at 37⁰C. 5 ml 

of 0.2 µM filter-sterilized HM carbohydrate solution was injected for each GPC run. The 

sample loop was cleaned by ultrapure water prior to analysis. Two connected Kronlab 

ECO50 columns (5×110 cm) packed with Toyopearl HW 40 (TOSOH BIOSCIENCE) 

were used. Milli-Q water was maintained at 50°C using a heating bath (Lauda, RE 206) 

for columns equilibration. Milli-Q water containing 2% (v/v) of 2-propanol was used as 

the eluent. The flow rate of the eluent was set at 1.65 ml/min. Eluting glycans were 

monitored by refractive index detection (Shodex, RI-101). The resulting 

chromatograms were analysed by using the Chromeleon® software (ThermoScientific 

6.80). 

High-performance liquid chromatography (HPLC). For metabolites analysis, 1 ml 

of bacterial culture was centrifuged and the supernatant was stored at -20°C until 

HPLC analysis. Crotonate was used as the internal standard, and the external 

standards tested were lactose, glucose, galactose, N-acetylglucosamine (GlcNAc), 

fucose, malate, fumarate, succinate, citrate, formate, acetate, butyrate, isobutyrate, 

lactate, 1,2-propanediol, and propionate. Substrates conversion and products 

formation were measured with a Spectrasystem HPLC (Thermo Scientific, Breda, the 

Netherlands) equipped with a Hi-Plex-H column (Agilent, Amstelveen, the Netherlands) 

for the separation of organic acids and carbohydrates. A Hi-Plex-H column performs 

separation with diluted sulphuric acid on the basis of ion-exchange ligand-exchange 

chromatography. Measurements were conducted at a column temperature of 45°C 

with an eluent flow of 0.8 ml/min flow of 0.01 N sulphuric acid. Metabolites were 

detected by refractive index (Spectrasystem RI 150, Thermo, Breda, the Netherlands). 
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HMOS extraction. HMOS were recovered from 1 ml aliquots of bacterial cultures. The 

internal standard 1,5-α-L-arabinopentaose (Megazyme) was added, at the volume of 

10 µl per sample to minimize pipetting error, to reach a final concentration of 0.01 

mmol/l. The solution was diluted 1:1 with ultrapure water and centrifuged at 4,000 g for 

15 min at 4°C. The supernatant was filtered through a 0.2 μM syringe filter followed by 

subsequent centrifugation with a pre-washed ultra-filter (Amicon Ultra 0.5 Ultracel 

Membrane 3 kDa device, Merck Milipore) at 14,000 g for 1 h at room temperature. 

Finally, the filtrate was vortexed and stored at -20°C until further electrospray ionisation 

liquid chromatography mass spectrometry (ESI-LC-MS) analysis. 

Electrospray ionisation liquid chromatography mass spectrometry (ESI-LC-MS) 
analysis. The identification and relative quantitation of HMOS were determined with 

ESI-LC-MS. This method allowed the study of distinct HMOS structures differed in 

monosaccharide sequence, glycosidic linkage or the molecular conformation. Thereby 

even the HMOS isobaric isomers such as Lacto-N-fucopentaose (LNFP) I, II, III and V 

could be distinguished. Micro ESI-LC-MS analysis was performed on a 1200 series 

HPLC stack (Agilent, Waldbronn, Germany) consisting of solvent tray, degasser, 

binary pump, autosampler and DAD detector coupled to a 3200 Qtrap mass 

spectrometer (ABSciex, USA). After HMOS extraction (see above) 5 µl of HMOS 

extract was injected into the LC-MS system. Oligosaccharides were separated by 

means of a 2.1x30 mm Hypercarb porous graphitized carbon (PGC) column with 

2.1x10 mm PGC pre-column (Thermo Scientific, USA) using water-acetonitrile gradient 

for 18 min protocol. The gradient started with a ratio of 98% (v/v) water and 2% (v/v) 

acetonitrile in 5 mM ammonium acetate at 0 min and ended with a ratio of 20% (v/v) 

water and 80% (v/v) acetonitrile in 5 mM ammonium acetate at 15 min. Re-equilibration 

was established between 15 and 18 min with 98% (v/v) water and 2% (v/v) acetonitrile 

in 5 mM ammonium acetate. Eluent flow was 400 µl/min and the columns were kept at 

45⁰C. The LC-effluent was infused online into the mass spectrometer and individual 

HMOS structures were analysed qualitatively and quantitatively by multiple reaction 

monitoring (MRM) in negative ion mode. Specific MRM transitions for neutral HMOS 

up to pentaoses and acidic HMOS up to trioses were included. The spray voltage was 

-4500 V, declustering potential was at 44 V, and collision energy was set to 29 eV. 

Each MRM-transition was performed for 50 ms. The instrument was calibrated with 

polypropylene glycol (PPG) according to the instructions of the manufacturer. Unit 
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resolution setting was used for precursor selection whereas low resolution setting was 

used to monitor fragment ions of the MRM transitions. 

Quantitative real-time PCR (q-PCR). The abundances of Bacteroides 

thetaiotaomicron and Anaerostipes caccae in co-culture were determined by 

quantitative real-time PCR. Bacterial cultures were harvested at 16,100 g for 10 min. 

DNA extractions were performed using MasterPure™ Gram Positive DNA Purification 

Kit. The DNA concentrations were determined fluorometrically (Qubit dsDNA HS assay; 

Invitrogen) and adjusted to 1 ng/μl prior to use as the template in qPCR. Primers 

targeting 16S rRNA gene of Bacteroides thetaiotaomicron (g-Bfra-F 5'-

ATAGCCTTTCGAAAGRAAGAT-3'; g-Bfra-R 5'-CCAGTATCAACTGCAATTTTA-3'; 

501 bp product (Matsuki et al 2002)) and Anaerostipes caccae (OFF2555 5'-

GCGTAGGTGGCATGGTAAGT-3'; OFF2556 5'-CTGCACTCCAGCATGACAGT-3'; 

83 bp product (Veiga et al 2010)) were used for quantification. Standard template DNA 

was prepared from the 16S rRNA gene of each bacterium by amplification with primers 

27F (5’-AGAGTTTGATCCTGGCTCAG-3’) and 1492R (5’-

GGTTACCTTGTTACGACTT-3’). Standard curves were prepared with nine standard 

concentrations of 100 to 108 gene copies/μl. PCRs were performed in triplicate with iQ 

SYBR Green Supermix (Bio-Rad) in a total volume of 10 μl with primers at 500 nM in 

384-well plates sealed with optical sealing tape. Amplification was performed with an 

iCycler (Bio-Rad) with the following protocol: one cycle of 95°C for 10 min; 40 cycles 

of 95°C for 15 s, 55°C for 20 s, and 72°C for 30 s each; one cycle of 95°C for 1 min, 

one cycle of 60°C for 1 min, and a stepwise increase of the temperature from 60 to 

95°C (at 0.5°C per 5 s) to obtain melt curve data. Data were analysed using the Bio-

Rad CFX Manager 3.0. 

Anaerobic microtiter plate culturing. Anaerobic microtiter plate culturing was 

performed to test the production of lactate isomers on different growth substrates. 

Bacteria strains used were Bifidobacterium longum subsp. infantis DSM 20088, 

Bifidobacterium breve DSM 20213, Bifidobacterium bifidum DSM 20456, Bacteroides 

fragilis DSM 2151, and Bacteroides vulgatus DSM 1447. Growth substrates tested 

were lactose, glucose, mixture of short-chain galacto-oligosaccharides (Friesland 

Campina, the Netherlands) and long-chain fructo-oligosaccharides (Orafti Beneo, 

Belgium) at 9:1 ratio (GOS/FOS), 2’-fucosyllactose (2’-FL) and 3’-sialyllactose (3’-SL). 

All the procedures were performed under anaerobic condition (Backtron anaerobic 
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chambers), with incubation at 37°C. Basal medium (Plugge 2005) containing 0.5% (w/v) 

tryptone (Oxoid, Basingstoke, UK), supplemented with 8 g/L of growth substrates were 

used as the test media. Overnight pre-cultures, which were grown in basal medium 

(Plugge 2005) containing 0.5% (w/v) tryptone (Oxoid, Basingstoke, UK) and 8 g/L of 

lactose (Oxoid, Basingstoke, UK), were added to 200 µl of test media at a starting 

OD600 of 0.1. Anaerobic fermentation was performed in 96-wells plate using a 

microtiter plate reader (Synergy HTX Multi-Mode Reader) at 37°C for 48 h. OD600 

readings were taken at 30 min interval with 3 s agitation prior to measurement. Gen5TM 

software was used data collection and analysis. The experiment was repeated 2 times 

with technical triplicates. Bacterial cultures at 48 h were pooled for the determination 

of lactate isomers.  

Determination of D- and L-lactate. Lactate isomers were measured enzymatically by 

using D- and L- lactate dehydrogenase according to manufacturer’s instructions 

(Boehringer Mannheim, Darmstadt, Germany).  
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Results 

Bacteroides thetaiotaomicron supported the growth of Anaerostipes caccae in the 

presence of human milk carbohydrates  

Bacteroides thetaiotaomicron in mono- and co-culture with Anaerostipes caccae were 

cultured in anaerobic bioreactor regulated at pH 6.5 to simulate the condition in early 

life gut. Lactose or total human milk (HM) carbohydrates were tested as the 

carbohydrate sources. The monoculture of Bacteroides thetaiotaomicron grew in both 

lactose and total HM with the continuous increase of cell density up to 72 h (ODmax = 

4.07 ± 0.10 in lactose and ODmax = 3.58 ± 4.31 in total HM carbohydrates) (Fig. 1). No 

growth was observed for Anaerostipes caccae (ODmax = 0.04 ± 0.01 in lactose and 

ODmax = 0.05 ± 0.01 in total HM carbohydrates) (Table S1). The co-culture of 

Bacteroides thetaiotaomicron with Anaerostipes caccae resulted maximum cell density 

at 24 h (ODmax = 5.47 ± 0.43 in lactose and ODmax = 4.84 ± 0.26 in total HM 

carbohydrates). The growth was also reflected by the acidification of the cultures (Fig. 

1). qPCR was performed to monitor the growth of each bacterium in the co-culture. 

Around 6 log of cells were inoculated for both Bacteroides thetaiotaomicron and 

Anaerostipes caccae. Both strains decreased 10-fold in abundance at the first 5 h. 

Hereafter, Bacteroides thetaiotaomicron grew exponentially to 1.24 x 109 copy number/ 

ml in lactose and 1.09 x 109 copy number/ ml in total HM carbohydrates at 11 h, after 

which growth slow down (Fig. 1). Anaerostipes caccae showed similar trend with an 

increase of abundance to 8.56 x 106 copy number/ ml in lactose and 1.93 x 107 copy 

number/ ml in total HM carbohydrates at 11 h. In both substrates, Bacteroides 

thetaiotaomicron outnumbered Anaerostipes caccae by 100-fold. 
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Figure 1. Bacteroides thetaiotaomicron supported the growth of Anaerostipes caccae in 
the human milk carbohydrates. The acidification, cell density (OD600nm), and microbial 
composition (qPCR) of Bacteroides thetaiotaomicron monocultures and co-cultures with 
Anaerostipes caccae in (A) lactose and (B) total HM carbohydrates. Fermentation was 
performed in anaerobic bioreactor regulated at pH 6.5. Error bars represent the standard 
deviation for biological triplicates. No growth was observed for Anaerostipes caccae in the 
identical medium cultured in anaerobic tubes (Table S1).  

 

Cross-feeding between Bacteroides thetaiotaomicron and Anaerostipes caccae led to 

butyrate production 

The sugar consumption and short chain fatty acid (SCFA) production were monitored 

over time (Fig. 2). Similar changes in the composition of metabolites were observed 

for the fermentation of lactose and total HM carbohydrates probably because total HM 

carbohydrates are consisted of approximately 90% of lactose (Fig. S1). Bacteroides 

thetaiotaomicron monoculture showed lower substrate catabolism in monoculture as 

compared to co-cultures. Lactose was not completely consumed and still detected after 

72 h (4.24 ± 0.73 mM in lactose and 1.15 ± 0.83 mM in total HM carbohydrates). Low 
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amounts (around 1 mM) of the monosaccharides glucose and galactose were also 

detected in the supernatant throughout the course of fermentation (Fig. 2). 

Furthermore, Bacteroides thetaiotaomicron produced acetate, propionate, succinate, 

and lactate as well as a low amount of malate from lactose and total HM carbohydrate 

fermentation. The co-culture of Bacteroides thetaiotaomicron with Anaerostipes 

caccae showed faster consumption of lactose compared to mono-culture, with 

complete depletion within 24 h. Glucose and galactose (around 3 mM) were only 

detected in the supernatant of co-culture in the first 12 h of fermentation when lactose 

was still detected. The major metabolites in the co-cultures were propionate, succinate, 

acetate, butyrate, and formate. Butyrate, the signature product of Anaerostipes caccae 

was produced at 11.85 ± 0.32 mM in lactose and 12.23 ± 1.80 mM in total HM 

carbohydrates. In contrast to monoculture, several additional changes were observed 

in the metabolite composition of the co-culture, including the absence of lactate, 

decrease of acetate and malate after 24h and the production of formate (5.70 ± 0.64 

mM in lactose and 4.32 ± 0.65 mM in total HM carbohydrates).  

To investigate the glycan degradation capability of the bacteria, HMOS-specific 

sugars and low molecular weight HMOS structures were measured. Both of the 

monitored HMOS-specific sugars i.e. N-acetylglucosamine (GlcNAc) and fucose were 

below detection limit of 0.5 mM throughout the fermentation. The glycoprofiling 

analysis (Fig. 3) at 0 h and 24 h showed no HMOS degradation for both monoculture 

of Bacteroides thetaiotaomicron and Anaerostipes caccae. Interestingly, the majority 

of the HMOS structures were degraded in the co-culture, with complete degradation of 

2’-fucosyllactose (2’-FL), lacto-N-fucopentaose III (LNFP III), lacto-N-fucopentaose V 

(LNFP V), lacto-N-neotetraose (LNnT), and sialyllactose (SL) as well as limited 

degradation of 3-fucosyllactose (3-FL), difucosyllactose (DFL), lacto-N-tetraose (LNT), 

lacto-N-fucopentaose I (LNFP I), and lacto-N-fucopentaose II (LNFP II). 
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Figure 2. Bacteroides thetaiotaomicron supported butyrate production of Anaerostipes 
caccae. The sugar and SCFA profile of Bacteroides thetaiotaomicron monoculture and co-
culture with Anaerostipes caccae in basal medium containing (A) lactose or (B) total HM 
carbohydrates. Error bars represent the standard deviation for biological triplicates. No 
metabolites production was detected for Anaerostipes caccae mono-culture in the identical 
media (Table S1). 
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Figure 3. Utilisation of HMOS structures by Bacteroides thetaiotaomicron and 
Anaerostipes caccae co-culture. No HMOS degradation was detected for the monoculture 
of Bacteroides thetaiotaomicron and Anaerostipes caccae after 24 h of fermentation. The 
HMOS structures and glycosidic linkages are depicted according to Varki et al. (Varki et al 
2015). Error bars represent the error propagation for mean of two biological replicates 
measured in technical triplicates. Abbreviations: 2’-FL, 2’-fucosyllactose; 3-FL, 3-
fucosyllactose; DFL, difucosyllactose; LNT, lacto-N-tetraose; LNnT, lacto-N-neotetraose; 
LNFP I, lacto-N-fucopentaose I; LNFP II, lacto-N-fucopentaose II; LNFP III, lacto-N-
fucopentaose III; LNFP V, lacto-N-fucopentaose V; SL, sialyllactose. 
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Differential D- and L-lactate metabolism by gut commensals 

The lactate isomers in Bacteroides thetaiotaomicron mono- and co-cultures at 24 h 

were quantified using enzymatic assay (Fig. 4a). Interestingly, only D-lactate was 

detected in the Bacteroides thetaiotaomicron monocultures grew in both lactose (1.05 

± 0.10 mM) and total HM carbohydrates (1.09 ± 0.30 mM). For Bacteroides 

thetaiotaomicron in co-culture, a very low amount of D-lactate (0.29 ± 0.27 mM in 

lactose and 0.43 ± 0.30 mM in total HM carbohydrates) and L-lactate (nil detection in 

lactose and 0.25 ± 0.27 mM in total HM carbohydrates) were detected, consistent with 

the HPLC finding of no lactate detection (Fig. 2). We further quantified the lactate 

production of Anaerostipes caccae after growth in glucose. Anaerostipes caccae 

produced predominantly L-lactate (10.87 ± 2.63 mM) but also low amounts of D-lactate 

(0.57 ± 0.12 mM) (Fig. 4a). 

The stereospecific lactate production by Bacteroides thetaiotaomicron roused 

the query if this trait is specific and consistent for the major lactate-producers in the 

infant gut. Hence, further analysis of lactate production was performed by culturing 

common infant gut residents, including Bacteroides spp. (Bacteroides fragilis and 

Bacteroides vulgatus) and Bifidobacterium spp. (Bifidobacterium longum subsp. 

infantis, Bifidobacterium breve, and Bifidobacterium bifidum) (Fig. 4b). Bacterial strains 

were cultured using anaerobic microtiter plate in media supplemented with different 

early life substrates including lactose, mixture of short-chain galacto-oligosaccharides 

and long-chain fructo-oligosaccharides (GOS/FOS), 2’-FL and 3’-SL. Bacteroides 

fragilis and Bacteroides vulgatus grew in all of the tested carbohydrates and produced 

only D-lactate. In contrast, Bifidobacterium spp. produced L-lactate in all of the 

carbohydrate substrates tested.  
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Figure 4. Differential lactate isomers produced by gut commensals. (A) The concentration 
of D- and L-lactate for Bacteroides thetaiotaomicron in mono- or co-culture with Anaerostipes 
caccae at 24 h. The experiments were performed in anaerobic bioreactor with error bars 
represent standard deviation for biological triplicate. Anaerostipes caccae monoculture was 
grown in 30mM glucose harvested at 24 h. (B) The concentration of D- and L-lactate in the 
monoculture of Bifidobacterium spp. and Bacteroides spp. in lactose, GOS/FOS, 2’-FL, or 3’-
SL. The fermentation experiment was performed using anaerobic microtiter plate at biological 
duplicates with technical triplicates. Bacterial cultures at 48 h were pooled for the determination 
of lactate isomers. (*) No growth was observed for Bifidobacterium breve in 2’-FL and 3’-SL as 
well as Bifidobacterium bifidum in 3’-SL. 
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Discussion 

Bacterial cross-feeding on non-digestible dietary components drives the microbial 

network formation in the infant gut. The intricate relationship among key functional 

groups is vital for the maintenance of a healthy state. Dysbiosis of the infant gut 

microbiota could result in short-term consequences such as intestinal discomfort and 

colics (de Weerth et al 2013, Pham et al 2017) as well as atopic and metabolic 

syndrome that compromise life-long health (Arrieta et al 2015, Dogra et al 2015, 

Scheepers et al 2014, Wopereis et al 2017). In this study, we investigated the role of 

human milk carbohydrates i.e. lactose and HMOS in driving a butyrogenic microbial 

interaction.  

The major microbial-derived SCFAs detected in infant faeces are acetate and 

lactate as well as a small amount of propionate and butyrate (Pham et al 2016), in 

contrast to the adult gut with the faecal SCFA composition ratio of 3:1:1 for acetate, 

propionate and butyrate (Schwiertz et al 2010). The distinction in faecal metabolites 

across age could be partially explained by the compositional difference in the gut 

microbiota. The gut of breast-fed infant is primarily colonised by HMOS-utilising 

Bifidobacterium spp. and to a lesser extent Bacteroides spp. (Backhed et al 2015). As 

complementary feeding progresses, the abundance of the butyrate-producing bacteria 

from the family of Lachnospiraceae and Ruminococcaceae gradually increase with age 

(Laursen et al 2017). Metabolic dependency has been observed between 

Bifidobacterium spp. and butyrate-producing bacteria in utilising 2’-FL (Schwab et al 

2017). Here, we demonstrated that Bacteroides spp. could also fuel the butyrogenic 

trophic chain in the presence human milk carbohydrates. Anaerostipes caccae was not 

able to metabolise either lactose or HMOS, but was dependent on the intermediates 

produced by Bacteroides thetaiotaomicron for growth. Anaerostipes caccae could 

scavenge on free monosaccharides i.e. glucose and galactose liberated by 

Bacteroides thetaiotaomicron from carbohydrates catabolism. 

Bacteroides thetaiotaomicron possesses a range of carbohydrate-active 

enzymes (CAZymes) predicted to degrade HMOS including fucosidases, sialidases, 

β-galactosidases, and β-hexosaminidases (Fig. 5). In contrast, Anaerostipes caccae 

has a limited catabolic capability. Bacteroides thetaiotaomicron encodes for Sus 

system consisted of several membrane-bound proteins and lipoproteins involved in 
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substrate binding, degradation, and internalisation into the periplasm (Martens et al 

2014, Reeves et al 1997). The fucosidases and sialidases required to initiate HMOS 

degradation are often organised in a modular manner adjacent to transcriptional 

regulator such as hybrid two-component systems (HTCS) and extracytoplasmic 

function (ECF) σ-factors (Fig. S2). The Sus system thus appeared to be an efficient 

and well-coordinated machinery to sequester HMOS by employing the mucus-

utilisation machinery (Marcobal et al 2011). In the co-culture with Anaerostipes caccae, 

the rapid depletion of lactose was coupled with the degradation of HMOS. However, 

no HMOS degradation was observed in the monoculture of Bacteroides 

thetaiotaomicron at 24 h when lactose was hardly consumed. This could infer slow 

metabolism of Bacteroides thetaiotaomicron monoculture or the bacterium repressed 

the degradation of HMOS in the presence of lactose as alternative substrate. Pudlo et 

al. showed that Bacteroides thetaiotaomicron deprioritizes mucin glycans metabolism 

in the presence of competing complex carbohydrates and monosaccharides (Pudlo et 

al 2015). Hence, glycoprofiling analysis of 48 h cultures will be performed for further 

mechanistic insight. This metabolic plasticity of Bacteroides thetaiotaomicron has also 

been demonstrated by the alteration of CAZymes gene expression to switch its 

metabolism from milk to plant carbohydrates after weaning in mice (Bjursell et al 2006). 

We found that Bacteroides thetaiotaomicron effectively utilised most of the low 

molecular weight HMOS as previously reported (Yu et al 2013), with differential 

preference for specific HMOS structures. The glycan-foraging capability could enhance 

the bacterial fitness and colonisation in the infant gut (Martens et al 2008) and the fine-

structure prioritisation at species level has been accounted for the collective fitness of 

Bacteroides spp. (Tuncil et al 2017). As such, several HMOS structures including 2’-

FL, LNFP I, and LDFT were found to correlate positively with the abundance of 

Bacteroides spp. in breast-fed infants (Wang et al 2015). Intriguingly, Bacteroides 

thetaiotaomicron could reciprocally affect the gut glycosylation by regulating the 

production of fucosylated glycans for its competitive advantage (Hooper et al 1999).  
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Figure 5. Bacteroides thetaiotaomicron degraded lactose and HMOS in the co-culture. 
(A) The schematic representation for HMOS structure and prediction of bacterial glycosyl 
hydrolase (GH) required to cleave the specific linkage. (B) Genome prediction for HMOS-
degrading carbohydrate-active enzymes (CAZymes) for Bacteroides thetaiotaomicron and 
Anaerostipes caccae. (C) The proposed mechanism for HMOS sequestration by Bacteroides 
thetaiotaomicron using polysaccharide utilisation loci (PULs). Abbreviation: HMOS, human 
milk oligosaccharides; OM, outer membrane; PP, periplasm; CM, cytoplasmic membrane; Tr, 
transporter; SusC, SusC-like TonB-dependent transporter; SusD, SusD-like outer membrane-
binding protein. 

 

We revealed that the major milk glycan-degraders i.e. Bifidobacterium spp. and 

Bacteroides spp. contributed differently to the lactate isomer pool in the gut. A 

consistent trait was observed in which Bacteroides spp. produced specifically D-lactate 

whereas Bifidobacterium spp. produced only L-lactate when grown in the human milk 

carbohydrates. Bacterial lactate production from pyruvate involves the catalysis of 

stereospecific lactate dehydrogenase. We found that the genome of Bacteroides 

thetaiotaomicron encodes only for a D-lactate dehydrogenase (BT_1575) leading to 

specific D-lactate production. The lactate-utilising butyrate-producing bacteria (LUB) 

could subsequently convert acetate and lactate into butyrate. Our model organism, 

Anaerostipes caccae was reported to metabolise both D- and L- lactate (Duncan et al 

2004). Despite the phenotypic observation, two L-lactate dehydrogenases 

(ANACAC_01148 and ANACAC_03769) and no D-lactate dehydrogenase or lactate 

racemace was found in the genome of Anaerostipes caccae. The homologous protein 

check against D-lactate dehydrogenase from Lactobacillus helveticus (UniProt 

identifier P30901) showed no match in Anaerostipes caccae genome except the 

general NAD-binding domain. Besides, no domain matching the lactate racemase from 
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Lactobacillus plantarum (UniProt identifier F9USS9) was found in Anaerostipes caccae 

genome. Nevertheless, as D-lactate conversion was required for the accumulation of 

butyrate up to 12mM in the co-cultures, novel gene / genes could be involved. Other 

LUB such as Eubacterium hallii is reported to metabolise both D- and L- lactate 

whereas Roseburia intestinalis, Eubacterium rectale and Faecalibacterium prausnitzii 

can only metabolise the D-form (Duncan et al 2004). Ecologically, the lactate isomer 

pool produced by the degrader community could directly affect the substrate availability 

for LUB. Furthermore, this could potentially incur physiological effect to the host. As 

the tolerance for D-lactate is lower compared to L-lactate due to the lack of D-lactate 

dehydrogenase in human genome, the accumulation of D-lactate is associated with a 

higher susceptibility to acidosis (Uribarri et al 1998). The balance of D- and L- lactate 

was also linked to the risk for D-encephalopathy in patients with short bowel syndrome 

(Mayeur et al 2013). 

The degrader community could drive the establishment of microbial network in 

the infant gut. This forms the basis for the sequential colonisation of adult gut-like 

functional groups including the LUB, followed by hydrogen-utilising community (i.e. 

sulphur-reducing bacteria, reductive acetogens and methanogens). We showed for the 

first time that Bacteroides spp. enabled the formation of butyrogenic trophic chain in 

the presence of human milk carbohydrates. Besides, we highlighted the distinct lactate 

isomer production by Bifidobacterium spp. and Bacteroides spp. suggesting that the 

balance of D- and L- lactate could impact gut bacterial structure via cross-feeding.  
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Figure S1. The GPC-RI chromatogram for total human milk (HM) carbohydrates showing a 
composition of approximately 90% of lactose, 10% of both acidic and neutral HMOS as well 
as traces of monosaccharides. 
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Figure S2. Polysaccharide utilisation loci (PULs) for Bacteroides thetaiotaomicron 
DSM2079 predicted from PULDB (Terrapon et al 2017) with fucosidase (GH29/GH95) and 
sialidase (GH33) activity. Abbreviation: HMOS, human milk oligosaccharides; OM, outer 
membrane; PP, periplasm; CM, cytoplasmic membrane; Tr, transporter; ECF-σ, 
extracytoplasmic function sigma factor; Anti-σ, extracytoplamic function anti sigma factor; CBM, 
carbohydrate-binding module; EPI, epimerase; GH, glycoside hydrolase; HTCS, hybrid two-
component system; PL, polysaccharide lyase; Pept_SC, peptidase + 2-letter MEROPS clan; 
SusC, SusC like TonB-dependent transporter; SusD, SusD-like outer membrane-binding 
protein; Sulf, sulfatase; unk, unknown. 
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Abstract 

Akkermansia muciniphila has evolved to specialize in the degradation and utilisation 

of host mucus, which it may use as the sole source of carbon and nitrogen. Mucus 

degradation and fermentation by Akkermansia muciniphila are known to result in the 

liberation of oligosaccharides and subsequent production of acetate, which becomes 

directly available to microorganisms in the vicinity of the intestinal mucosa. Co-

culturing experiments of Akkermansia muciniphila with non-mucus-degrading butyrate-

producing bacteria Anaerostipes caccae, Eubacterium hallii, and Faecalibacterium 

prausnitzii resulted in syntrophic growth and production of butyrate. In addition, we 

demonstrate that the production of pseudo-vitamin B12 by Eubacterium hallii results in 

production of propionate by Akkermansia muciniphila, which suggests that this 

syntrophy is indeed bidirectional. These data are proof of concept for syntrophic and 

other symbiotic microbe-microbe interactions at the intestinal mucosal interface. The 

observed metabolic interactions between Akkermansia muciniphila and butyrogenic 

bacterial taxa support the existence of colonic vitamin and butyrate production 

pathways that are dependent on host-secreted glycan production and independent of 

dietary carbohydrates. We infer that the intestinal symbiont Akkermansia muciniphila 

can indirectly stimulate intestinal butyrate levels in the vicinity of the intestinal epithelial 

cells with potential health benefits to the host. 

Importance  

The intestinal microbiota is said to be a stable ecosystem where many networks 

between microorganisms are formed. Here we present a proof of principle study of 

microbial interaction at the intestinal mucus layer. We show that indigestible 

oligosaccharide chains within mucus become available for a broad range of intestinal 

microbes after degradation and liberation of sugars by the species Akkermansia 

muciniphila. This leads to the microbial synthesis of vitamin B12, 1,2-propanediol, 

propionate, and butyrate, which are beneficial to the microbial ecosystem and host 

epithelial cells. 

Keywords 

 Akkermansia muciniphila, anaerobes, butyrate, cross-feeding, intestine, microbiome, 

mucus, syntrophy   
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Introduction  

The mammalian intestinal tract harbours complex microbial ecosystems that have 

been forged by millennia of co-evolution between microbes and hosts. It is suggested 

that the evolution of metabolic interdependencies has led to strong deterministic 

processes that shape the composition of the microbiota during development (Ley et al 

2008). The diversity and richness of the gut microbiota within individuals, as well as 

the similarity in composition between individuals, are governed by several selective 

pressures within host habitats, such as diet (Bokulich et al 2016, Zoetendal and de Vos 

2014). Recent extreme interventions have illustrated the importance of dietary 

carbohydrates on the intestinal microbial community succession (David et al 2014, 

O'Keefe et al 2015). While dietary fibres affect substrate availability for the colonic 

microbiota, the mucus lining that covers the epithelial cells forms a consistent factor 

along its internal surface and is proposed to function as an endogenous prebiotic 

(Johansson et al 2008, Ouwehand et al 2005, Pacheco et al 2015, Tailford et al 2015). 

The mucosal layer of the intestine is characterised by specific microbiota communities 

enriched with taxa affiliated with the family Lachnospiraceae (also known as 

Clostridium cluster XIVa) and the phylum Verrucomicrobia (Arrieta et al 2014, Chen et 

al 2014, Hong et al 2011, Jakobsson et al 2015, Koropatkin et al 2012, Ouwerkerk et 

al 2013). 

Akkermansia muciniphila is a mucus-colonising member of the gut microbiota 

that has evolved to specialize in the degradation and utilisation of host mucus, which 

it may use as the sole source of carbon and nitrogen (Belzer and de Vos 2012, Derrien 

et al 2004). Its mucin degradation activity leads to the production of 1,2-propanediol, 

propionate, and acetate (Derrien et al 2004). In addition, its mucus foraging results in 

the availability of sugars liberated from mucus glycans and subsequent acetate 

production can stimulate co-existence of butyrogenic bacteria within the same mucosal 

niche (Belzer and de Vos 2012). Microbe-produced short-chain fatty acids are 

described as major health-promoting compounds (Flint et al 2012b, Smith et al 2013). 

Because of its location close to the host cells, a symbiotic mucobiome could therefore 

be particularly important in fostering health in terms of nutrient exchange, 

communication with the host, regulation of the immune system, and resistance against 

invading pathogens. 
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Dietary intervention studies (Hong et al 2011), in vitro mucosal model studies 

(Van den Abbeele et al 2013), and microbiota comparisons of gut lumen and epithelial 

biopsy specimens (Chen et al 2014) have revealed strong co-occurrence of specific 

mucolytic bacteria (Akkermansia muciniphila, Bacteroides spp., and Ruminococcus 

spp.) and second-line butyrate producers (Anaerostipes caccae, Eubacterium spp., 

Faecalibacterium prausnitzii, and Roseburia intestinalis). This co-occurrence may be 

indicative of shared metabolic networks among the different microbial groups. In vitro 

isotope labelling has identified lactate and acetate as important precursors of butyrate 

production in human faecal samples (Morrison et al 2006). On top of this, kinetic 

modelling showed the likelihood for the dominant butyrate producers, such as 

Anaerostipes coli and Eubacterium hallii, to use short-chain fatty acids for butyrate 

production by utilising lactate and acetate via the butyryl coenzyme A (CoA):acetate 

CoA transferase route, the main metabolic pathway for butyrate synthesis in the human 

colon (Munoz-Tamayo et al 2011).  

In this study, we test the hypothesis that Akkermansia muciniphila can serve as 

the keystone species supporting a syntrophic network in a mucosal environment. 

Therefore, we studied the metabolic interactions between Akkermansia muciniphila 

and representative intestinal butyrate-producing bacteria; Faecalibacterium prausnitzii 

(representative of the family Ruminococcaceae also known as Clostridium cluster IV) 

and Anaerostipes caccae and Eubacterium hallii (representatives of Lachnospiraceae 

also known as Clostridium cluster XIVa). The results indicate the existence of trophic 

chains on mucus between Akkermansia muciniphila and the butyrate-producing 

Faecalibacterium prausnitzii and Anaerostipes caccae, while true bidirectional 

metabolic cross-feeding dependent on vitamin B12 was observed between 

Akkermansia muciniphila and Eubacterium hallii, indicative of a mutualistic symbiosis.  
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Materials & Methods 

Bacterial growth conditions. Akkermansia muciniphila MucT (ATTC BAA-835) was 

grown as described previously (Derrien et al 2004, Duncan et al 2002b). Purified mucin 

was prepared as follows. Ten grams of hog gastric mucins (type III; Sigma-Aldrich) 

was dissolved in 500 ml of 0.1 M sodium chloride (NaCl) (pH 7.8) containing 0.02 M 

phosphate buffer (0.02 M NaH2PO4 and Na2HPO4) (pH 7.8), stirring for 24 h at 4°C. 

After 1 h, the pH was adjusted to pH 7.2 using 1 M sodium hydroxide (NaOH). After 

centrifugation, the supernatant was cooled on ice and precipitated with 60% (v/v) pre-

chilled ethanol. After centrifugation, the pellet was dissolved in 0.1 M NaCl. These last 

two steps were repeated twice. After the last centrifugation step, the pellet was washed 

once with 100% ethanol, dissolved in 100 ml Milli-Q, and dialyzed using Spectra/Por 6 

8,000-Da MWCO (molecular weight cut-off) protein dialysis with four changes. Last, 

the dialyzed mucins were freeze dried and dissolved in Milli-Q at a concentration of 5% 

(w/v). Mucins were added to the medium after autoclaving. The resulting purified 

mucins were tested for the absence of oligosaccharides. Incubations were performed 

in serum bottles sealed with butyl rubber stoppers at 37°C under anaerobic conditions 

provided by a gas phase of 182 kPa (1.5 atm) N2/CO2 (80/20 ratio). Growth was 

measured by a spectrophotometer as the optical density at 600 nm (OD600). 

Faecalibacterium prausnitzii A2-165 was grown anaerobically at 37°C in YCFA 

medium supplemented with 33 mM acetate and 25 mM glucose (Duncan et al 2002b). 

Anaerostipes caccae L1-92 (Schwiertz et al 2002) was grown anaerobically at 37°C in 

either PYG medium (DSMZ) or minimal medium (Plugge 2005) containing 25 mM 

glucose. Eubacterium hallii L2-7 was grown anaerobically at 37°C in YCFA medium 

without the addition of fatty acids (propionate, isovaleric acid, valeric acid, isobutyrate, 

and butyrate). Mucin sugar utilisation was performed in minimal medium with or without 

the addition of 10 mM acetate. In some cases, the experiments were performed with 

mucin-derived single sugars i.e. mannose (Sigma-Aldrich), fucose (Sigma-Aldrich), 

galactose (Biochemika), N-acetylgalactosamine (GalNAc; Sigma-Aldrich), or N-

acetylglucosamine (GlcNAc; Sigma-Aldrich); these were used at a concentration of 25 

mM. Growth was monitored for 24 h, and samples were collected regularly for OD600 

and high-performance liquid chromatography (HPLC) analysis. 
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Co-culture experiments were performed in minimal medium supplemented with 

mucus (Derrien et al 2004), and the medium was buffered to reduce pH changes due 

to fermentation products. Optimal co-culture conditions were established as follows. 

Akkermansia muciniphila was added to media containing mucins, and the media 

containing bacteria were incubated for 8 h to reach measurable concentrations of 

acetate and liberate sugars. Subsequently, 108 cells of Anaerostipes caccae, 

Eubacterium hallii, or Faecalibacterium prausnitzii were added to the Akkermansia 

muciniphila containing cultures. All cells had been washed twice with phosphate-

buffered saline (PBS) before being added to the co-culture to prevent carryover of 

products from the pre-culture. During the co-culture, 0.15% mucins was added to the 

medium every 48 h to maintain sufficient substrate availability for Akkermansia 

muciniphila. All growth experiments were repeated a minimum of three times in 

duplicate.  

High-performance liquid chromatography (HPLC). For fermentation product 

analysis, 1 ml of bacterial culture was centrifuged, and the supernatant was stored at 

-20°C for HPLC analysis. Substrate conversion and product formation were measured 

with a Thermo Scientific Spectrasystem HPLC system equipped with a Varian 

Metacarb 67H column (300 by 6.5 mm) kept at 45°C and with 0.005 mM sulphuric acid 

as the eluent. The eluent had a flow rate of 0.8 ml/min, and metabolites were detected 

by determining the refractive index. Carbon balances were calculated by the amount 

of carbon of the products/amount of carbon of the substrate x 100%, using sugars and 

short-chain fatty acid (SCFA) as measured by HPLC with biological triplicate samples 

and technical duplicate samples. We used theoretical CO2 calculations: 6 mol glucose 

yields 8 mol CO2, and 1 mol lactate yields 1 mol CO2. 

Ultrahigh performance liquid chromatography-mass spectrometry (UHPLC-MS). 
For vitamin B12 analysis, Eubacterium hallii cells (0.2 g) were mixed with 10 ml of 

extraction buffer (8.3 mM NaOH and 20.7 mM acetic acid [pH 4. 5]) containing 100 µl 

of 1% sodium cyanide. The vitamin was extracted in its cyano form by subjecting the 

mixture to a boiling water bath for 30 min. After cooling, the extract was recovered by 

centrifugation (6,900 x g for 10 min; Hermle, Wehingen, Germany) and finally purified 

by immunoaffinity column chromatography (Easy-Extract; R-Biopharma, Glasgow, 

Scotland). The reconstituted extract was analysed for vitamin content using an HSS 

T3 C18 column (2.1 by 100 mm; 1.8 µm) on a Waters Acquity UPLC (ultraperformance 
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liquid chromatography) system (Milford, MA) equipped with a photodiode array 

detector (PDA) (210 to 600 nm) and interfaced to a high-resolution quadrupole time of 

flight mass spectrometer (QTOF; Synapt G2-Si, Waters). The eluent was a gradient 

flow (0.32 ml/min) of water (solvent A) and acetonitrile (solvent B), both acidified with 

0.1% formic acid: 0 to 0.5 min (95 parts solvent A to 5 parts of solvent B [95:5]), 0.5 to 

5 min (60:40), 5 to 6 min (60:40), and 6 to 10 min (95:5). The column was maintained 

at 30°C, and the UV detection was recorded at 361 nm. The MS analysis was done in 

positive ion mode with electrospray ionization, using a scanning range set for m/z of 

50 to 1,500. The parent ions corresponding to the vitamin peak were further 

fragmented (tandem mass spectrometry [MS/MS]) and analysed. 

Fluorescent in situ hybridization (FISH). The following rRNA-targeted 

oligonucleotide probes were used: (i) Cy3-labeled universal EUB338 (5’-

GCTGCCTCCCGTAGGAGT-3’), which is complementary to a conserved region of the 

bacterial 16S rRNA molecule specific to most eubacteria except phyla of 

Plantomycetales and Verrucomicrobia (Derrien et al 2004); and (ii) Cy5-labeled 

EUB338 III (5’-GCTGCCACCCGTAGGTGT-3’), the supplementary probes for 

eubacteria to target Verrucomicrobia (Daims et al 1999).  

Cell fixation, in situ hybridization, DAPI staining, and microscopy. Bacterial 

cultures (0.5 ml) were fixed overnight with 1.5 ml of 4% paraformaldehyde (PFA) at 

4°C. Working stocks were prepared by harvesting bacterial cells by 5 min 

centrifugation at 8,000 x g, followed by resuspension in ice-cold phosphate-buffered 

saline (PBS) and 96% ethanol at a 1:1 (v/v) ratio. Three microliters of the PBS-ethanol 

working stocks were spotted into 18 wells (round wells with a 6-mm diameter) on 

gelatine-coated microscope slides. The slides were hybridized with the DNA probes by 

applying 10 µl of hybridization mixture per well, which contained 1 volume of probe 

mixture (probe concentration of 20 µM) and 9 volumes of hybridization buffer (20 mM 

Tris-HCl, 0.9 M NaCl, 0.1% SDS [pH 7.2]). The slides were hybridized for at least 3 h 

in a moist chamber at 50°C; this was followed by 30 min incubation in washing buffer 

(20 mM Tris-HCl, 0.9 M NaCl [pH 7. 2]) at 50°C for washing. The slides were rinsed 

briefly with Milli-Q and air dried. The slides were stained with a 4,6-diamine-2-

phenylindole dihydrochloride (DAPI) mixture containing 200 µl PBS and 1 µl DAPI dye 

(100 ng/µl) for 5 min in the dark at room temperature, followed by Milli-Q rinsing and 

air drying. The slides were then covered with Citifluor AF1 and a coverslip. The bacteria 

Ch
ap

te
r 4



Chapter 4 

78 
 

on the slides were enumerated using an Olympus MT ARC/HG epifluorescence 

microscope. A total of 25 positions per well were automatically analysed in three-color 

channels (DAPI, Cy3, and Cy5) using a quadruple band filter. 

Quantitative real-time PCR. The abundances of Akkermansia muciniphila and 

butyrate producers in co-culture were determined by quantitative real-time PCR. 

Bacterial cultures were harvested at 16,100 x g for 10 min. DNA extractions were 

performed using MasterPure Gram-positive DNA purification kit. The DNA 

concentrations were determined fluorometrically (Qubit dsDNA HS [double-stranded 

DNA highsensitivity] assay; Invitrogen) and adjusted to 1 ng/µl prior to use as the 

template in quantitative PCR (q-PCR). Primers targeting Akkermansia muciniphila, 

Anaerostipes caccae, and Eubacterium hallii based on specific variable regions of the 

16S rRNA gene (Table 1) were used for quantification. Standard template DNA was 

prepared from the 16S rRNA gene of each bacterium by amplification with primers 27F 

(F stands for forward) and 1492R (R stands for reverse). Standard curves were 

prepared with nine standard concentrations of 100 to 108 gene copies/µl. PCRs were 

performed in triplicate with iQ SYBR green supermix (Bio-Rad) in a total volume of 10 

µl with primers at 500 nM in the wells on 384-well plates with the wells sealed with 

optical sealing tape. Amplification was performed with an iCycler (Bio-Rad) and the 

following protocol: one cycle of 95°C for 10 min; 35 cycles of 95°C for 15 s, 60°C for 

20 s, and 72°C for 30 s each; one cycle of 95°C for 1 min; one cycle of 60°C for 1 min; 

and a stepwise increase of the temperature from 60 to 95°C (at 0.5°C per 5 s) to obtain 

melt curve data. Data were analysed using the Bio-Rad CFX Manager 3.0. 

Statistics. Statistics were performed using t test and corrected for multiple testing 

using false discovery rate (FDR) correction for multiple comparisons. P values of < 

0.05 were considered significant. 
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Table 1. PCR primers used in this study and their amplification products. 

Bacterium Primer Primer Sequence Product 

size (bp) 
Reference 

Akkermansia 

muciniphila 

AM1 5’-CAGCACGTGAAGGTGGGGAC-3’ 327 (Collado et 

al 2007) AM2 5’-CCTTGCGGTTGGCTTCAGAT-3’  

Anaerostipes 

caccae subgroup 

OFF2555 5’-GCGTAGGTGGCATGGTAAGT-3’ 83 (Veiga et al 

2010) OFF2556 5’-CTGCACTCCAGCATGACAGT-3’  

Eubacterium 

hallii L2-7 

EhalF 5’-GCGTAGGTGGCAGTGCAA-3’ 278 (Ramirez-

Farias et al 

2009) 

EhalR 5’-GCACCGRAGCCTATACGG-3’  

Faecalibacterium 

prausnitzii 

FPR2F 5’-GGAGGAAGAAGGTCTTCGG-3’ 248 (Ramirez-

Farias et al 

2009) 

Fprau645R 5’-AATTCCGCCTACCTCTGCACT-3’  
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Results 

Growth and metabolism of intestinal butyrate producers on mucus or mucus-derived 

sugars 

In order to test whether Akkermansia muciniphila can serve as a keystone species in 

an environment where mucus is the main nutrient source, we first tested the ability of 

butyrate-producing mucosal colonisers to grow on mucus and mucus-derived sugars 

in the absence of Akkermansia muciniphila. When incubated in culture media with 

mucus as the sole carbon and nitrogen source, none of the butyrate-producing strains 

tested, Anaerostipes caccae, Eubacterium hallii, and Faecalibacterium prausnitzii, 

were able to grow or produce metabolites (Table S2A).  

The mucin sugars D-galactose, D-mannose, GlcNAc, GalNAc, and L-fucose 

and the non-mucin sugar glucose were subsequently tested as possible carbon 

sources for each butyrate-producing species. Minimal media used for the bacteria 

differed as a result of different minimal requirements for protein and spore elements 

(see Materials and Methods for details on the composition of the media). 

Faecalibacterium prausnitzii is known to be able to grow on GlcNAc and galactose 

(Munoz-Tamayo et al 2011). In addition, we tested the growth of Faecalibacterium 

prausnitzii on mannose and GalNAc, but no growth was observed (Table S2B). 

Anaerostipes caccae was observed to use glucose, D-mannose, D-galactose, and 

GlcNAc for growth, and the main fermentation products were acetate, butyrate, and 

lactate (Fig. 1). The highest Anaerostipes caccae cell numbers and acetate production 

were reached with GlcNAc, possibly due to the fact that fermentation of this amino 

sugar can replace the need for acetate in the medium (Fig. 1). Eubacterium hallii 

showed the same preference for sugars as Anaerostipes caccae did, resulting in 

growth on glucose, D-mannose, D-galactose, and GlcNAc (Fig. 2). The main 

fermentation products of Eubacterium hallii were observed to be acetate, butyrate, and 

formate. Again, GlcNAc resulted in the highest production of acetate and butyrate 

compared to the other sugars, but this was not accompanied with increased cell 

numbers of Eubacterium hallii (Fig. 2). 
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Figure 1. Metabolic activity of Anaerostipes caccae on mucin-derived sugars. 
Anaerostipes caccae was grown on monosaccharide present in the glycan chain of mucins. 
The OD600 values and HPLC profiles are shown for the sugars that resulted in positive growth. 
The sugars that gave positive test results were also used to perform experiments with the 
addition of 10 mM acetate. The graphs show the mean values for the experiments performed 
a minimum of three times in duplicate. Values that are significantly different (P < 0.05) in the 
presence of 10 mM acetate or absence of acetate are indicated by an asterisk.  
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Figure 2. Metabolic activity of Eubacterium hallii on mucin-derived sugars. Eubacterium 
hallii was grown on monosaccharide present in the glycan chain of mucins. The OD600 value 
and HPLC profiles are shown for sugars that resulted in positive growth. The sugars that gave 
positive test results were also used to perform experiments with the addition of 10 mM acetate. 
The graphs show the mean values for the experiments performed a minimum of three times in 
duplicate. 
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Acetate enhances growth of Anaerostipes caccae but not Eubacterium hallii on mucin-

derived sugars  

The average production of 10 mM acetate by Akkermansia muciniphila grown in 

medium containing mucins could serve as the substrate for growth of butyrogens. 

Therefore, we added 10 mM acetate to cultures growing on glucose, D-mannose, D-

galactose, and GlcNAc. In the case of Anaerostipes caccae, this did indeed lead to the 

production of butyrate, acetate, lactate, and formate as measured in a minimal medium. 

Furthermore, these butyrate production levels were significantly higher than the 

observed butyrate production without added acetate (Fig. 1). Weak growth of 

Anaerostipes caccae on L-fucose was observed after the addition of acetate but 

without detected metabolite production. Acetate alone did not support growth (Table 

S2C). The addition of acetate to the growth media of Eubacterium hallii did not result 

in differences in growth or metabolite profile, possibly due to its own production of 

acetate (Fig. 2). The overall fermentation efficiency was determined by calculating the 

carbon balance at each monosaccharide condition. The recovery of carbon atoms 

varied in between 70 and 100%, depending on the biomass produced that explains the 

loss (Tables 2 and 3).  

 

Table 2. Carbon balance of Anaerostipes caccae on mucin-derived sugars with or without 
acetate 

Sugar 
No. of carbons (mM) Carbon 

recovery (%) 
Substrates Products   

Sugar Acetate Lactate Acetate Butyrate Formate CO2 Avg SD 
Glucose 110  60  26  24 101 13 
Glucose + 
10 mM 
acetate 

136 8 8  62 2 82 71 0 

Mannose 121  55  27  27 85 12 
Mannose 
+ 10 mM 
acetate 

140 8 10  73 2 76 78 8 

Galactose 99  38  26  22 88 10 
Galactose 
+ 10 mM 
acetate  

144 11 11  75 2 59 77 12 

GlcNAc 162  7 26 98  27 98 2 
GlcNAc + 
10mM 
acetate 

192  5 31 84 3 34 81 11 
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Table 3. Carbon balance of Eubacterium hallii on mucin-derived sugars with or without acetate 

Sugar 
No. of carbons (mM) Carbon 

recovery (%) 
Substrates Products   

Sugar Acetate Lactate Acetate Butyrate Formate CO2 Avg SD 
Glucose 122   14 55 7 27 87 30 
Glucose + 
10 mM 
acetate 

133   8 56 12 29 79 18 

Mannose 106   19 66 12 24 117 24 
Mannose 
+ 10 mM 
acetate 

115   9 49 12 26 85 21 

Galactose 74 0.1   50 5 16 96 29 
Galactose 
+ 10 mM 
acetate  

106 0.1   64 13 24 93 14 

GlcNAc 147   57 76 11 25 116 40 
GlcNAc + 
10mM 
acetate 

160   44 61 11 27 90 19 

 

 

Mucus-induced trophic chains of Akkermansia muciniphila and butyrate producers 

Anaerostipes caccae, Eubacterium hallii, and Faecalibacterium prausnitzii results in 

butyrate production  

After the monoculture experiments, a series of co-cultures of approximately equal 

amounts of Akkermansia muciniphila and butyrate producers were set up to test 

whether sugars and acetate produced as a result of mucin degradation by 

Akkermansia muciniphila would enable butyrate production of the chosen isolates. 

Remarkably, this co-culturing on mucin-containing media supported growth and 

butyrate production for all three tested species (Fig. 3). Anaerostipes caccae produced 

butyrate in levels comparable to those found in the monoculture conditions that were 

supplemented with acetate. Similarly, Faecalibacterium prausnitzii also produced 

butyrate in co-culture with Akkermansia muciniphila and also produced 5 mM formate 

indicative of acetate consumption. Butyrate levels produced by Eubacterium hallii were 

in the range of what was seen in the monocultures growing on single sugars. The pH 

was monitored in all experiments and stayed around pH 6.5 throughout the 

experiments. Determination by quantitative PCR (q-PCR) and qualitative presence 

(fluorescent in situ hybridization [FISH]) of the butyrate-producing species within the 

co-cultures indicated a difference in abundance of the butyrate producers of several 
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log units compared to the abundance of Akkermansia muciniphila (Fig. 3 and Table 

S1). The abundance of Anaerostipes caccae increased 100-fold over the first 8 days 

of incubation based on the increase in its 16S rRNA gene copy number. Maximum 

butyrate levels were reached after 11 days of incubation. In contrast to the results for 

cultures, no lactate was measured during the cross-feeding experiments with 

Anaerostipes caccae. Both q-PCR and FISH results indicated a ratio of Akkermansia 

muciniphila to Anaerostipes caccae of approximately 100:1. 

In the Faecalibacterium prausnitzii-Akkermansia muciniphila co-cultures, 

Faecalibacterium prausnitzii 16S rRNA gene copy numbers decreased, and a small 

amount of butyrate appeared after 8 days of incubation. FISH staining revealed the 

presence of Faecalibacterium prausnitzii cells within the co-cultures but confirmed its 

slow growth. Finally, within the Eubacterium hallii-Akkermansia muciniphila co-cultures, 

low levels of butyrate started to build up after 8 days. This was associated with an 

increase in 16S rRNA gene copy numbers of Eubacterium hallii on day 8. Q-PCR and 

FISH staining showed an Akkermansia muciniphila-to-Eubacterium hallii ratio of 100:1 

after 8 to 24 days (Fig. 3 and Table S1).  

 

Vitamin B12-dependent syntrophy between Eubacterium hallii and Akkermansia 

muciniphila  

Analyses of the metabolites produced in co-cultures showed that in the 

Akkermansia muciniphila-Eubacterium hallii co-culture, the proportion of succinate to 

propionate had shifted compared to the proportion in monocultures of Akkermansia 

muciniphila (Fig. 3). This was not observed in the other co-cultures. Notably, 1,2-

propanediol, found as a result of fucose degradation by Akkermansia muciniphila in 

monocultures, was not detected in the co-culture with Eubacterium hallii. 
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Figure 3. Akkermansia muciniphila degradation and fermentation of mucus enables 
cross-feeding by the butyrate-producing gut isolates. (A to C) Co-cultures of Akkermansia 
muciniphila with butyrate-producing isolates were performed and measurements of product 
formation and consumption (A), FISH staining (B), and q-PCR (C) were performed. (D) 
Measurement of Akkermansia muciniphila metabolites on mucus-containing media without the 
addition of vitamin B12 or with vitamin B12 from Eubacterium hallii or pseudo-vitamin B12 from 
Eubacterium hallii. The graph shows the mean values for the experiment performed a minimum 
of three times in duplicate. Asterisks indicate a significant difference (P < 0.05) compared to 
the condition without vitamin B12 added. 

  

Conversion of propionate to succinate involves vitamin B12-dependent methylmalonyl- 

CoA mutase 

Detailed mass spectroscopy analysis confirmed that Eubacterium hallii is capable of 

synthesizing a B12 vitamer in monocultures as described previously (Engels et al 

2016). Our analyses show that the structure of this vitamer (Fig. 4) is pseudo-vitamin 

B12, as the lower ligand contained adenine instead of 5,6-dimethyl benzimidazole 
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(DMBI). No effect of DMBI addition was observed on the structure of the produced B12 

vitamer. 

 

Figure 4. UHPLC-UV chromatogram of Eubacterium hallii vitamin B12. (A) Immunoaffinity-
purified cell extract of Eubacterium hallii (in arbitrary units [AU]) is shown on the y axis, and 
time (in minutes) is shown on the x axis. Tr, retention time. (B) LC-MS/MS identified a peak at 
3.16 min. (C) Chemical structure of pseudo-vitamin B12 from Eubacterium hallii. 

 

To test the hypothesis that Akkermansia muciniphila can use the pseudo-

vitamin B12 produced by Eubacterium hallii for the conversion of succinate to 

propionate, the effects of both purified Eubacterium hallii and commercially available 

vitamin B12 on Akkermansia muciniphila growth were tested. Indeed, the addition of 

pseudo-vitamin B12 and vitamin B12 resulted in significant lower succinate levels and 

significant higher propionate production. The addition of either vitamin B12 resulted in 

a profile identical to the profile observed for Akkermansia muciniphila- Eubacterium 
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hallii co-culture (Fig. 3). These observations provide evidence for bidirectional 

metabolic cross-feeding between Akkermansia muciniphila and Eubacterium hallii. 

Akkermansia muciniphila liberates sugars from mucus and produces 1,2-propanediol 

for growth support of Eubacterium hallii. In return, Akkermansia muciniphila is provided 

with a vitamin B12 analogue used as a cofactor for the conversion of succinate to 

propionate via methylmalonyl-CoA synthase (Fig. 5). Apparently both vitamin B12 and 

pseudo-vitamin B12 can be used as a cofactor by Akkermansia muciniphila to activate 

the methylmalonyl-CoA synthase. Hence, the B12 vitamer produced by Eubacterium 

hallii is in the pseudo-vitamin B12 form and can be used by other intestinal 

microorganisms, but it has lower affinity than vitamin B12 for the human intrinsic factor 

(Stupperich and Nexo 1991). 

 

 

Figure 5. Schematic overview of mucus-dependent cross-feeding network. Keystone 
mucolytic bacteria, such as Akkermansia muciniphila, degrade mucin glycans resulting in 
oligosaccharides (mainly galactose, fucose, mannose, and GlcNAc) and SCFAs (acetate, 
propionate, and 1,2-propanediol) that can be used for growth, as well as for propionate, 
butyrate, and vitamin B12 production by cross-feeding partners. Treg GPR, regulatory T cell 
G-protein-coupled protein receptor. 
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Discussion  

In spite of the great interest in metabolic conversions in the human gut, there is limited 

information on actual product sharing mechanisms and trophic dependencies of 

individual members of the intestinal microbiota. One such syntrophic relationship has 

been described for the species Bacteroides thetaiotaomicron and Faecalibacterium 

prausnitzii (Wrzosek et al 2013). Faecalibacterium prausnitzii can metabolise acetate 

produced by Bacteroides thetaiotaomicron to produce butyrate. This butyrate is then 

utilised by host epithelial cells and regulates host immunity via epithelial cell signalling, 

colonic T regulatory cells, and macrophages (Chang et al 2014, Smith et al 2013). In 

addition, a few studies demonstrated the use of lactate and acetate produced by 

Bifidobacterium spp. by colonic butyrate producers (Belenguer et al 2006, Falony et al 

2006, Rios-Covian et al 2015). Specifically, this form of cross-feeding has been 

described for Bifidobacterium adolescentis and Faecalibacterium prausnitzii (Rios-

Covian et al 2015).  

Moreover, co-cultivation of amylolytic bacteria from the human colon, such as 

Eubacterium rectale, Bacteroides thetaiotaomicron, or Bifidobacterium adolescentis, 

with Ruminococcus bromii L2-63 can lead to increased starch utilisation (Ze et al 2012). 

In addition, co-culturing of the non-starch-degrading species Anaerostipes hadrus with 

Ruminococcus bromii has been shown to result in the removal of the reducing sugars 

that accumulate in Ruminococcus bromii monocultures (Ze et al 2013). Similarly, by 

stable isotope probing with 13C-labeled resistant starch has revealed a butyrogenic 

trophic chain between Ruminococcus bromii and Eubacterium rectale in an in vitro 

human colon model (Kovatcheva-Datchary et al 2009, Walker et al 2011). 

Various studies have coupled co-occurrence networks of bacteria to their 

genome content to model possible metabolic cross-feeding (Levy and Borenstein 2013, 

Munoz-Tamayo et al 2011). It should be noted that the studies discussed above all 

focus on cross-feeding that relies on diet-derived colonic sugars. However, mucin-

derived sugars are the main source of energy for a group of microbiota members that 

can directly impact host cross talk at the mucosa (Wrzosek et al 2013). Mucus-

dependent microbial networks at the mucosal layer would yield butyrate and other 

components with health benefits to the host (Wrzosek et al 2013). Our study supports 

the hypothesis that cross-feeding between microbiota members can take place when 
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mucus is the only carbon source to support growth. Such mucosal trophic networks 

could determine host microbial cross talk in immune and metabolic regulation.  

The mucosa-colonising bacterium Akkermansia muciniphila is strongly 

correlated with a lean phenotype and increased barrier function (Everard et al 2013, 

Mack et al 2016, Reunanen et al 2015). The correlation between Akkermansia 

muciniphila and host might depend on an additional microbial player. Indeed, we have 

shown that the mucus-degrading capacity of Akkermansia muciniphila may provide 

substrates to butyrate producers tested. Two distinct types of trophic chains between 

Akkermansia muciniphila and butyrate-producing species were observed in this study. 

In the case of Anaerostipes caccae, liberated sugars from mucus could sustain growth 

but Akkermansia muciniphila-derived acetate increased growth and metabolic 

production of butyrate even further, indicative of metabolic syntrophic interactions. In 

the case of Eubacterium hallii, a specific metabolic and cofactor syntrophic interaction 

was observed; pseudo-vitamin B12 affected the carbon flux within Akkermansia 

muciniphila, resulting in propionate production.  

It is known from human studies that propionate delivered to the colon has 

various beneficial effects, including the regulation of satiety (Chambers et al 2015). 

Remarkably, Eubacterium hallii was able to utilise mucus sugars, in agreement with 

an earlier report (Duncan et al 2004). However, Eubacterium hallii had no clear 

advantage when acetate was present, possibly due to its own production of acetate 

when grown on mucus-derived sugars that already reached levels comparable to that 

of Akkermansia muciniphila monoculture.  

Recently, it was reported that Eubacterium hallii is also able to use 1,2-

propanediol for the production of propionate. Our data show the lack of 1,2-propanediol 

in the Akkermansia muciniphila- Eubacterium hallii co-culture and supports the 

previous suggested syntrophic possibilities between intestinal microbes (Engels et al 

2016). 1,2-propanediol is produced by Akkermansia muciniphila from fucose. As such, 

the presence or absence of fucose in the intestinal mucosa (FUT2 polymorphism) may 

help explain microbial networks at the mucosal layer (Tanaka et al 2009). Furthermore, 

in co-culture experiments with Akkermansia muciniphila and Faecalibacterium 

prausnitzii, low levels of butyrate were measured accompanied by the presence of cells 

and 16S rRNA copies of this butyrate producer as opposed to monocultures of the 
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organism on the same medium (Table S2A). These results further indicate that the 

association of butyrate Clostridium cluster XIVa and IV species could indeed yield the 

production of butyrate as a result of a microbial metabolic network in the mucosal layer, 

which is poor in usable carbon sources.  

The fact that a changed metabolic profile for Akkermansia muciniphila in the 

presence of Eubacterium hallii was found is further evidence supporting a mutualistic 

syntrophic interaction. The availability of pseudo-vitamin B12 in vivo can be of 

importance for the microbial ecosystem as well as the host. Microorganisms are the 

only natural sources of the pseudo-vitamin B12 derivatives, and several intestinal 

microbes have been reported to contribute to the pseudo-vitamin B12 levels in the 

intestine (Krautler 2005). The approximate concentration of the cobalamin analogue 

adenine (as produced by Eubacterium hallii) is 164 ng/g (wet weight) of faeces (Allen 

and Stabler 2008), and this is also in the range of what we found to be needed for 

Akkermansia muciniphila propionate induction (100 ng/ml). It is not clear whether 

pseudo-vitamin B12 can be used by intestinal cells. While the affinity of human intrinsic 

factor for pseudo-vitamin B12 is lower than that for vitamin B12, it is equally bound by 

transcobalamin and haptocorrin human intrinsic factors (Stupperich and Nexo 1991) 

and is not antagonistic to vitamin B12 (Watanabe et al 1999), and it may be transported 

without intrinsic factor (Doets et al 2013). Moreover, it has been shown that pseudo-

vitamin B12 produced by Lactobacillus reuteri, also an abundant mouse intestinal 

bacterium, can alleviate vitamin B12 deficiency in mice (Molina et al 2009, Santos et 

al 2007).  

In summary, the present data indicate that pseudo-vitamin B12 is biologically 

active in Akkermansia muciniphila propionate metabolism that involves methylmalonyl-

CoA mutase (van Passel et al 2011). Hence, the syntrophic partners together produce 

a higher propionate-to-succinate ratio, and this in turn is beneficial for host cell 

metabolism. It also implies that stimulating or diminishing a keystone species, such as 

Akkermansia muciniphila, from the microbiota can have drastic effect on a complete 

microbial network and associated host-microbe homeostasis. In this case, stimulating 

or administrating Akkermansia muciniphila within the intestine might benefit from 

addition of another organism or solely pseudo-vitamin B12 to stimulate the organism’s 

production of propionate and a healthy mucosal environment (Fig. 5).  
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Many gastrointestinal disorders have been associated with mucosal damage 

and lower gut barrier function. The fact that intestinal bacteria may have an impact on 

both these factors, either directly or via specific immune and metabolic stimulation, 

further emphasizes the importance of having the right bacteria at the right place. Loss 

of mucosal integrity and the associated mucobiome could be indicative of disease 

states and its development. Akkermansia muciniphila has been positively associated 

with a lean phenotype and beneficial metabolic gene regulation in human cell types 

(Everard et al 2013, Lukovac et al 2014). Its presence might be essential for a mucosal 

adherent network of beneficial microorganisms that together prompt these effects of 

the host. As a matter of fact, weight loss studies usually report increased abundance 

of Verrucomicrobia (mainly Akkermansia muciniphila) as well as several other 

microbial species (Liou et al 2013, Remely et al 2015, Ward et al 2014). Taken together, 

these results further indicate the possible importance of mucosa-associated microbial 

networks and their metabolic cross-feeding for regulation of host health-related 

parameters and prevention of disease.  
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Supplementary material 

Table S1. The count of mucin-degrading and butyrate-producing bacteria in the co-cultures 
assessed by FISH. 

Co-culture Time 
(day) 

Cy5-labelled 
Mucin degrader 

Cy3-labelled 
Butyrate producer 

Ratio of Mucin 
degrader / 
Butyrate 
producer Avg Stdev Avg Stdev 

A. muciniphila + A. caccae
t=0h inoculation 1 8.73E+07 2.32E+07 4.90E+06 5.92E+06 17.82 

2 8.52E+07 1.37E+07 3.96E+06 1.08E+06 21.49 
4 3.25E+07 3.95E+06 2.33E+07 1.49E+07 1.40 
6 2.40E+07 2.54E+06 1.99E+07 1.97E+07 1.20 

t=8h inoculation 1 1.31E+08 7.20E+06 2.59E+06 1.95E+06 50.57 
2 7.38E+07 2.73E+07 1.20E+07 1.27E+07 6.13 
4 3.04E+07 7.10E+05 1.04E+07 1.09E+07 2.92 
6 1.59E+07 1.11E+06 1.72E+07 1.63E+07 0.92 

t=0h with 
washed 
inoculum 

1 2.52E+08 1.25E+07 6.80E+05 7.46E+05 370.37 
2 2.20E+08 1.48E+08 2.25E+07 2.54E+07 9.79 
4 5.62E+07 3.34E+07 1.38E+07 8.90E+05 4.07 
6 2.68E+07 7.01E+06 3.76E+06 1.60E+06 7.13 

t=8h with 
washed 
inoculum 

1 2.24E+08 2.68E+07 5.46E+06 6.93E+06 40.98 
2 1.92E+08 4.81E+07 6.33E+06 6.26E+06 30.26 
4 3.55E+07 1.83E+07 3.77E+07 4.12E+07 0.94 
6 2.28E+07 - 2.38E+06 - 9.56

A. muciniphila + E. hallii

1 1.79E+07 1.06E+07 8.83E+06 4.31E+06 2.03 
2 5.08E+07 2.22E+07 3.61E+06 2.32E+06 14.10 
4 4.22E+07 2.50E+07 6.46E+06 3.06E+06 6.53 
6 1.91E+07 4.03E+06 5.11E+06 7.79E+05 3.74 

A. muciniphila + F. prausnitzii
1 1.69E+07 1.03E+07 1.60E+07 8.56E+06 1.06 
2 7.48E+07 3.24E+07 8.04E+06 4.22E+06 9.31 
4 2.59E+07 5.63E+06 3.14E+06 8.81E+05 8.26 
6 2.34E+07 1.18E+07 6.84E+06 2.40E+06 3.42 
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Abstract  

Host-secreted glycans are paramount in regulating the symbiotic relationship between 

humans and their gut bacteria. The constant flux of host-secreted mucins at the 

mucosal layer creates a steady niche for bacterial colonisation. Mucin degradation by 

keystone species subsequently shapes the microbial community. This study 

investigated the transcriptional response of mucin-driven trophic interaction between 

the specialised mucin-degrader Akkermansia muciniphila and a butyrogenic gut 

commensal Anaerostipes caccae. Akkermansia muciniphila monocultures and co-

cultures with non-mucolytic Anaerostipes caccae from the Lachnospiraceae family 

were grown anaerobically in minimal media supplemented with mucins. We analysed 

for growth, metabolites (HPLC analysis), microbial composition (quantitative reverse 

transcription PCR), and transcriptional response (RNA-seq). Mucin degradation by 

Akkermansia muciniphila supported the growth of Anaerostipes caccae and 

concomitant butyrate production predominantly via acetyl-CoA pathway. Differential 

expression analysis (DESeq2) showed the presence of Anaerostipes caccae induced 

changes on Akkermansia muciniphila transcriptional response with increased 

expression of mucin degradation genes and reduced expression of ribosomal genes. 

Two putative operons that encode for uncharacterised proteins and an efflux system, 

and several two-component systems were also differentially regulated. This indicated 

Akkermansia muciniphila changed its transcriptional regulation in response to 

Anaerostipes caccae. This study provides insight to understand the mucin-driven 

microbial ecology using metatranscriptomics. Our findings show that the expression of 

mucolytic enzymes by Akkermansia muciniphila increases upon the presence of a 

community member. This could indicate its role as a keystone species that supports 

the microbial community in the mucosal environment by increasing the availability of 

mucin sugars. 

 

 

Keywords 

Butyrate; cross-feeding; keystone species; microbiome; mucin; transcriptional 

regulation; Verrucomicrobia 
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Introduction 

The bacterial assembly at the mucosal layer of the human gastrointestinal tract is 

associated with gut health and disease (Ouwerkerk et al 2013, Tailford et al 2015). 

Although the microbial composition of the healthy mucosa has not been properly 

defined, it has been observed that strong deviations in the mucosal microbiota are 

associated with inflammatory bowel disease (IBD) (Kostic et al 2014) and irritable 

bowel syndrome (IBS) (Lopez-Siles et al 2014). At this mucosal site, host-produced 

mucin glycans and bioactive compounds collectively exert a selective pressure that 

enriches for a sub-population of mucosa-associated bacteria (Koropatkin et al 2012, 

Ouwerkerk et al 2013, Schluter and Foster 2012). Mucins are large and complex 

glycoproteins consisting of a protein core that is rich in proline, threonine and serine 

moieties, to which oligosaccharides are attached (Tailford et al 2015). Mucins can 

function as an indigenous prebiotic in which only specialised members of the intestinal 

microbiota are able to utilise it as the substrate for growth (Marcobal et al 2013, 

Ouwehand et al 2005, Tailford et al 2015).  

The intestinal symbiont, Akkermansia muciniphila is the sole human intestinal 

representative of the phylum Verrucomicrobia (de Vos 2017). Akkermansia muciniphila 

has adapted to mucosal environment in the gut (Derrien et al 2008). The genome of 

Akkermansia muciniphila is equipped with an arsenal of mucin-degrading enzymes 

including proteases, glycosyl hydrolases (GH), and sulfatases (Derrien et al 2016, van 

Passel et al 2011). The mucin-degrading capacity and oxygen tolerance of 

Akkermansia muciniphila render it a key species in the mucosal niche (Ouwerkerk et 

al 2016). This specialised mucin-degrading bacterium is detected at high prevalence 

(over 96%) in healthy Western adults (Collado et al 2007, Derrien et al 2008, Shetty et 

al 2016). The abundance of Akkermansia muciniphila in the gut microbiota is inversely 

correlated with syndromes such as IBDs (both Crohn’s disease and ulcerative colitis) 

(Png et al 2010), appendicitis (Swidsinski et al 2011) and obesity (Everard et al 2013). 

Furthermore, the potential therapeutic role of Akkermansia muciniphila has been 

demonstrated in mice by remedying symptoms of obesity and diabetes (Plovier et al 

2017) as well as alcoholic liver disease (Grander et al 2017). 

In addition to the health-promoting role of Akkermansia muciniphila via immune 

modulation, the extracellular mucin degradation by this bacterium could provide growth 
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benefits to community members via trophic interactions (Belzer and de Vos 2012, 

Belzer et al 2017, Derrien et al 2016). Several in vitro studies have demonstrated the 

butyrogenic effect of complex carbohydrates via cross-feeding between glycan-

degrading bifidobacteria and butyrogenic bacteria (Belenguer et al 2006, De Vuyst and 

Leroy 2011, Falony et al 2006, Rios-Covian et al 2015, Riviere et al 2015, Schwab et 

al 2017). In the mucosal environment, mucolytic bacteria such as Akkermansia 

muciniphila, Bacteroides spp. and Ruminococcus spp. as well as butyrogenic 

members of the family Lachnospiraceae (also known as Clostridium cluster XIVa) and 

Ruminococcaceae (also known as Clostridium cluster IV) are enriched (Nava et al 

2011, Van den Abbeele et al 2013). However, no mucolytic capacities of these 

butyrogenic bacteria are known, which suggested potential metabolic cross-feeding 

between the microbial groups. Butyrate production in the vicinity of epithelial cells is 

suggested to be important in maintaining gut health (Koh et al 2016, Louis and Flint 

2017). 

In a previous study (Belzer et al 2017), we showed that mucin degradation by 

Akkermansia muciniphila yields short chain fatty acid (SCFA) and mucin-derived 

monosaccharides that support the growth and concomitant butyrate production of non-

mucolytic butyrogens. In this paper, we used metatranscriptomics (RNA-seq) to study 

the molecular response of mucin-directed trophic interaction between Akkermansia 

muciniphila and a butyrogenic bacterium from the family Lachnospiraceae 

(Anaerostipes caccae) which possesses metabolic capacity to convert acetate and 

lactate into butyrate (Duncan et al 2004) and shows frequent occurrence at the 

mucosal niche (Nava et al 2011, Van den Abbeele et al 2013). We demonstrated the 

use of metatranscriptomics as an explorative approach to study the expressional 

changes of Akkermansia muciniphila in response to community member. Notably, we 

showed that Akkermansia muciniphila increased its mucolytic activity to sustain the 

community. 
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Materials and Methods 

Bacterial strains and growth conditions. All bacteria were grown in anaerobic serum 

bottles sealed with butyl-rubber stoppers at 37ºC with N2:CO2 (80:20 ratio) in the 

headspace at 1.5 atm. Bacterial pre-cultures were prepared by overnight growth in: 

minimal media supplemented with type III hog gastric mucins (Sigma-Aldrich, St. Louis, 

USA) for Akkermansia muciniphila MucT (ATCC BAA-835) (Derrien et al 2004), and 

peptone yeast glucose (PYG) medium for Anaerostipes caccae L1-92 (DSM 14662) 

(Schwiertz et al 2002). Growth was measured by spectrophotometer as optical density 

at 600 nm (OD600) (OD600 DiluPhotometerTM, IMPLEN, Germany).  

Co-culture experiment. Co-culture experiments were performed in minimal media 

(Plugge 2005) supplemented with purified hog gastric mucins (Miller and Hoskins 

1981). Culture conditions were established as previously described (Belzer et al 2017). 

Akkermansia muciniphila was inoculated at 1x106 cells to mucin media followed by 8 

h of incubation to allow accumulation of metabolites. Subsequently, 1x106 cells of 

Anaerostipes caccae (A.muc-A.cac co-cultures) were added to the Akkermansia 

muciniphila cultures. Cells were washed twice with phosphate-buffered saline (PBS) 

before addition to the co-cultures to prevent carryover of metabolites from the pre-

cultures. Purified mucins (1.25 g/L) were added to the media every 48 h. A schematic 

setup of the experiment is depicted in Fig. 1a. Cultures were sampled at 0, 1, 2, 4, 6, 

8, 11, and 23 days for metabolites analysis. For transcriptomic analysis at day 8, 

bacteria pellets were preserved in Trizol® reagent (Invitrogen, Carlsbad, CA, USA) at 

-20⁰C storage till further RNA purification. 

High-performance liquid chromatography (HPLC). For metabolites analysis, 1 ml 

of bacterial culture was centrifuged and the supernatant was stored at -20°C until 

HPLC analysis. Crotonate was used as the internal standard, and the external 

standards were lactate, formate, acetate, propionate, isobutyrate, butyrate, citrate, 

malate, succinate, fumarate, 1,2-propanediol, methanol, ethanol, 2-propanol, lactose, 

N-acetylgalactosamine (GalNAc), N-acetylgalactosamine (GlcNAc), glucose, and 

galactose. Substrates conversion and products formation were measured with a 

Spectrasystem HPLC (Thermo Scientific, Breda, the Netherlands) equipped with a Hi-

Plex-H column (Agilent, Amstelveen, the Netherlands) for the separation of organic 

acids and carbohydrates. A Hi-Plex-H column performs separation with diluted 
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sulphuric acid on the basis of ion-exchange ligand-exchange chromatography. 

Measurements were conducted at a column temperature of 45°C with an eluent flow 

of 0.8 ml/min flow of 0.01 N sulphuric acid. Metabolites were detected by refractive 

index (Spectrasystem RI 150, Thermo, Breda, the Netherlands). 

RNA purification. Total RNA was isolated by a method combining the Trizol® reagent 

and the RNeasy Mini kit (QIAGEN GmbH, Hilden, Germany) as described previously 

(Chomczynski 1993, Zoetendal et al 2006). Four microliters of p-mercaptoethanol and 

0.4 ml of buffer RLT were added to 1 ml of Trizol® reagent containing the bacterial 

pellet. The mixture was transferred to a tube containing 0.8 g of glass beads (diameter 

0.1 mm), followed by three times of bead beating for 1 min at 5.5 m/s with ice cooling 

steps in between. Subsequently, 0.2 ml of ice-cold chloroform was added. The solution 

was mixed gently followed by centrifugation at 12,000 g for 15 min at 4°C. The RNA 

isolation was continued with the RNA clean-up according to the manufacturer’s 

instructions for the RNeasy Mini kit. Genomic DNA was removed by an on-column 

DNase digestion step during RNA purification (DNase I recombinant, RNase-free, 

Roche Diagnostics GmbH, Mannheim, Germany). Yield and RNA quality was 

assessed using the Experion™ RNA StdSens Analysis Kit in combination with the 

Experion™ System (Bio-Rad Laboratories Inc., Hercules, CA, USA).  

Quantitative reverse transcription PCR (RT-qPCR). cDNA was synthesised using 

the ScriptSeq v2 RNA-Seq library preparation kit (Epicentre, Madison, WI, USA) 

according to the manufacturer’s instructions followed by purification using CleanPCR 

(CleanNA, the Netherlands). The cDNA was analysed by quantitative real-time PCR. 

Primers targeting 16S rRNA gene of Akkermansia muciniphila (AM1 5'-

CAGCACGTGAAGGTGGGGAC-3' and AM2 5'-CCTTGCGGTTGGCTTCAGAT-3') 

(Collado et al 2007), and Anaerostipes caccae (OFF2555 5'-

GCGTAGGTGGCATGGTAAGT-3' and OFF2556 5'-CTGCACTCCAGCATGACAGT -

3') (Veiga et al 2010) were used for quantification. Standard template DNA was 

prepared by 16S rRNA gene amplification of each bacterium with primers 27F (5’-

AGAGTTTGATCCTGGCTCAG-3’) and 1492R (5’-GGTTACCTTGTTACGACTT-3’). 

Standard curves were prepared with nine standard concentrations from 100 to 108 gene 

copies/μl. qPCR was performed in technical triplicate with iQ SYBR Green Supermix 

(Bio-Rad) in a total volume of 10 μl with primers at 500 nM in 384-well plates sealed 

with optical sealing tape. Amplification was performed with an iCycler (Bio-Rad) with 
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the following protocol: one cycle of 95°C for 10 min, 35 cycles of 95°C for 15 s, 60°C 

for 20 s, and 72°C for 30 s each, one cycle of 95°C for 1 min, one cycle of 60°C for 1 

min, and a stepwise increase of the temperature from 60 to 95°C (at 0.5°C per 5 s) to 

obtain melt curve data. Data were analysed using the Bio-Rad CFX Manager 3.0. 

Transcriptome sequencing (RNA-seq). Total RNA samples were further processed 

by Baseclear for RNA-seq (Leiden, the Netherlands). Depletion of ribosomal RNA was 

performed using the Ribo-Zero™ Kit for bacteria (Epicentre, Madison, WI, USA) 

followed by quality monitoring using the Agilent 2100 BioAnalyser system. Library 

construction for whole transcriptome sequencing was done using the TruSeq Stranded 

mRNA Library Prep Kit (Illumina, USA). The barcoded cDNA libraries were analysed 

using BioAnalyser and were subsequently pooled and sequenced. Single read 50 bp 

sequencing was performed on two lanes using the Illumina HiSeq2500 platform. 

Transcriptome analysis. The RNA-seq data was pre-processed for quality control. 

Ribosomal RNA was removed with SortMeRNA v2.0 (Kopylova et al 2012) followed by 

all TruSeq adapters removal with Cutadapt v1.1.a (Martin 2011). Next, quality trimming 

was performed using Sickle v1.33 (Joshi and Fass 2011) with a score of 30 for 

threshold indicating a base calling confidence of 99.9%. Reads trimmed to a length 

<50 bp were removed. Reads were subsequently mapped to the relevant bacterial 

genomes with Bowtie2 v0.6 (Langmead and Salzberg 2012) using default settings. 

HTSeq v0.6.1p1 was used to determine the read count for each protein coding region 

(Anders et al 2015). All these steps were performed within a local Galaxy environment 

(Afgan et al 2016). More detailed information about the data analysis can be found in 

Table S1. Non-mapping reads of the two samples with the lowest mapping rate (both 

of the Akkermansia muciniphila monocultures) were collapsed to unique reads with the 

fastx toolkit version 0.0.14 (http://hannonlab.cshl.edu/fastx_toolkit/). A blast search 

(with standard parameters, except for an e-value of 0.0001) of these unique reads was 

performed against the NCBI NT database (download 22.01.2014), against the human 

microbiome (download 08.05.2014), the NCBI bacterial draft genomes (download 

23.01.2014), and the human genome (download 30.12.2013, release 08.08.2013, 

NCBI Homo sapiens annotation release 105). Taxonomy was estimated with a custom 

version of the LCA algorithm as implemented in MEGAN (Huson et al 2011). Default 

parameters were used with the customization that only hits exceeding a bitscore of 50 

and a length of more than 25 nucleotides were considered. 98% of the non-mapping 
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reads were not classified, with Akkermansia accounting for 1.15% of the classified 

reads (Table S2). Differential gene expression was assessed using DESeq2 (Love et 

al 2015). Raw RNA-seq sequence files can be accessed at the European Nucleotide 

Archive under accession numbers ERR1907419, ERR1907420, ERR1907423, and 

ERR1907424. 

Carbohydrate-active enzymes (CAZymes) prediction. CAZymes were predicted 

with dbCAN version 3.0 (Yin et al 2012), transmembrane domains with TMHMM 

version 2.0c (Krogh et al 2001) and signal peptides with signalP 4.1 (Petersen et al 

2011). 

  

Results 

Metabolite profile of Akkermansia muciniphila monocultures and co-cultures with 

Anaerostipes caccae  

Co-culturing of Akkermansia muciniphila and Anaerostipes caccae was performed 

followed by RT-qPCR, HPLC and metatranscriptomic analysis. The metabolites 

detected in the cultures were comparable with previous findings (Belzer et al 2017). 

Akkermansia muciniphila grown as monoculture produced acetate, succinate and 1,2-

propanediol as the major metabolites from pure mucin degradation (Fig. 1c). On day 8 

the A.muc-A.cac co-cultures yielded around 2 mM butyrate and a low amount of 

propionate was detected (Fig. 1c). The mucin sugars (galactose, GalNAc, and GlcNAc) 

were below the detection limit of 0.5 mM.  
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Figure 1. (a) Schematic overview of the interval-fed batch culture setup. Akkermansia 
muciniphila was inoculated at t=0 followed by Anaerostipes caccae at t=8h to ensure substrate 
availability for butyrogen via extracellular mucin degradation by Akkermansia muciniphila. 
Limited amounts of pure mucins, 0.15% (v/v) were supplemented at two days intervals to 
maintain the abundance of Akkermansia muciniphila and to support the emergence of 
Anaerostipes caccae. A sample for RNA-seq analysis was collected on day 8. (b) The pH and 
(c) metabolite profile of monocultures and co-cultures of the interval-fed batch culture, with 
arrow showing day 8. (d) Quantification of microbial composition on day 8 by RT-qPCR 
targeting 16S rRNA on total RNA. Error bars indicate the standard deviation of biological 
duplicates. 

 

The transcriptomes of Akkermansia muciniphila monocultures and co-cultures with 

Anaerostipes caccae  

Transcriptomic samples were analysed on day 8 of the interval-fed batch cultures, 

when the major metabolites were accumulated (Fig. 1c) and a stable bacterial 

composition was established (Belzer et al 2017). On average 27 million reads were 

generated per sample, which is above the recommended sequence depth of 5-10 

million reads for a single bacterial transcriptome (Haas et al 2012). The detailed 
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information about the data analysis can be found in Table S1. The RT-qPCR targeting 

16S rRNA on total RNA showed Akkermansia muciniphila to Anaerostipes caccae ratio 

of 1:50 (Fig. 1d). On the other hand, the ratio of sequenced transcripts mapped to the 

genome of Akkermansia muciniphila versus Anaerostipes caccae was 1:1 (Table S1). 

 

Differential expression between Akkermansia muciniphila in monocultures and co-

cultures with Anaerostipes caccae  

The genome of Akkermansia muciniphila possesses a total of 2,176 predicted protein-

coding sequences (CDSs) (van Passel et al 2011) of which 2,137 (98%) were found to 

be expressed in this study (Table S3). Differential expression analysis (DESeq2) was 

performed to compare the gene expression of Akkermansia muciniphila in mono- and 

co-culture conditions. The overall transcriptional response differentiated between the 

mono- and co-cultures (Pearson’s correlation = 0.88 ± 0.02) (Fig. 2).  

 

Figure 2. Hierarchical clustering showing the Pearson’s correlation of the transcriptome 
samples as calculated from Akkermansia muciniphila CDS count performed with Python 2.7.12 
and SciPy version 0.17.1 (van der Walt et al 2011). 

 

We used cut-offs of q<0.05 and fold change>2 for significantly regulated genes 

(Schurch et al 2016). A total of 12% Akkermansia muciniphila genes were differentially 
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regulated between mono- and co-cultures, with 148 upregulated genes and 132 

downregulated genes (Table S3). Interestingly, two groups of contiguous genes were 

differentially regulated at high fold change (Fig. 3a). In the co-cultures, the upregulation 

of the annotated response regulator Amuc_1010 was coupled with the upregulation of 

a putative operon containing the genes Amuc_1011, Amuc_1012, Amuc_1013, and 

Amuc_1014 (Fig. 3b). Whereas, the putative operon consisting of Amuc_2041, 

Amuc_2042 and Amuc_2043 was downregulated in the co-cultures (Fig. 3c). 

Furthermore, several putative two-component systems were differentially expressed 

(Table 1). 

Gene ontology analysis (Table 2) showed overall increase expression of 

hydrolase activity, DNA recombination enzymes, and sulphuric ester hydrolase activity 

in the co-cultures whereas ribosome, structural constituent of ribosome and translation 

were downregulated. The list of Akkermansia muciniphila CAZymes is summarised in 

Table S4. The overall expression of glycosyl hydrolases was upregulated in the co-

cultures. Signal peptides and transmembrane domains prediction showed putative 

extracellular activity for glycosyl hydrolases required for the degradation of mucin O-

glycan chains including GH2, GH20, GH29, GH33, GH84, GH89, and GH98.  

 

Table 1. The differential expression of putative two-component systems in Akkermansia 
muciniphila. Negative values indicate upregulation in monocultures and positive values 
indicate upregulation in co-cultures. 

Locus tag q value Fold 

change 
 Function 

Amuc_0311 <0.05 1.96 
 

Signal transduction histidine kinase, nitrogen specific, NtrB 

Amuc_0312 <0.05 2.19 
 

Two-component, sigma54 specific, transcriptional regulator, Fis 

family 

Amuc_0827 <0.05 1.44 
 

Osmo-sensitive K+ channel signal transduction histidine kinase 

Amuc_0828 <0.05 1.74 
 

Two-component transcriptional regulator, winged helix family 

Amuc_1109 <0.05 -1.89 
 

Histidine kinase 

Amuc_1110 0.53 -1.07 
 

Two-component transcriptional regulator, winged helix family 

Amuc_1727 0.63 1.06 
 

Integral membrane sensor signal transduction histidine kinase 

Amuc_1728 0.25 1.13 
 

Two-component transcriptional regulator, winged helix family 

Amuc_1010 <0.05 5.28 
 

Response regulator receiver protein 
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Figure 3. (a) Volcano plots showing p-values correlated to fold changes in gene expression of 
Akkermansia muciniphila observed in monocultures versus co-cultures with Anaerostipes 
caccae. Positive fold changes indicate upregulation in co-cultures, and negative fold changes 
indicate upregulation in monocultures. Locus tags for genes with Log2 fold change >2 (or fold 
change >4) are labelled. (b) Response regulator and putative operon upregulated in the co-
cultures (c) Putative operon upregulated in the monocultures. Fold changes are listed above 
the respective genes.  
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Table 2. Gene ontology (GO) analysis of the differentially regulated Akkermansia muciniphila 
genes (q<0.05) in co-cultures. The list contains GO with total count in genome higher than 10 
and absolute percentage difference higher than average value.  
 

GO term 
Total count in  

A.muc genome 

Percentage  

upregulated 

Percentage  

downregulated 

Overall expression upregulated    

GO:hydrolase activity, hydrolysing O-glycosyl 

compounds 

30 0.60 0.03 

GO:DNA recombination 17 0.53 0.06 

GO:sulphuric ester hydrolase activity 12 0.50 0.17 

Overall expression downregulated    

GO:transporter activity 27 0.22 0.52 

GO:magnesium ion binding 16 0.19 0.44 

GO:tRNA processing 11 0.18 0.55 

GO:cytoplasm 66 0.17 0.48 

GO:pyridoxal phosphate binding 20 0.15 0.45 

GO:RNA binding 37 0.14 0.46 

GO:GTP binding 20 0.10 0.55 

GO:transferase activity 21 0.10 0.43 

GO:tRNA aminoacylation for protein translation 24 0.08 0.71 

GO:cellular amino acid metabolic process 12 0.08 0.50 

GO:aminoacyl-tRNA ligase activity 25 0.08 0.72 

GO:nucleotide binding 40 0.08 0.58 

GO:intracellular 42 0.07 0.79 

GO:NAD binding 15 0.07 0.33 

GO:ribosome 50 0.02 0.88 

GO:structural constituent of ribosome 55 0.02 0.89 

GO:translation 57 0.02 0.88 

    
 

Genes expression in relation to the metabolites production  

We examined the transcripts of the co-cultures to reconcile the metabolite findings. 

The transcripts for Anaerostipes caccae showed median of relative abundance around 

0.005% and maximum value of 2.07%. The list of Anaerostipes caccae genes is 

displayed in Table S5. It is described that Anaerostipes caccae metabolises acetate to 

butyrate by employing the most prevalent butyrate production pathway via acetyl-
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coenzyme A (CoA) (Vital et al 2014). The relative abundances of all transcripts involved 

in the metabolism pathways are summarised in Table 3.  

Table 3. The relative abundance (%) of Anaerostipes caccae transcripts for genes involved in 
butyrate synthesis pathway. 

Enzyme Locus tag Dup1 Dup2 

Interconversion of pyruvate to acetyl-CoA 

Pyruvate dehydrogenase complex ANACAC_01488 <0.00 <0.00 

 ANACAC_01489 <0.00 <0.00 

 ANACAC_01490 <0.00 <0.00 

 ANACAC_01491 <0.00 <0.00 

 ANACAC_01492 <0.00 <0.00 

Formate C-acetyltransferase ANACAC_01621 <0.00 <0.00 

 ANACAC_00664 <0.00 <0.00 

Pyruvate synthase ANACAC_00834 1.83 1.85 

Interconversion of pyruvate to lactate 

L-lactate dehydrogenase ANACAC_01148 0.01 0.01 

 ANACAC_03769 0.02 0.02 

Acetyl-CoA pathway 
   

Acetyl-CoA C-acetyltransferase ANACAC_00256 0.34 0.37 

Acetoacetyl-CoA reductase ANACAC_00254 0.35 0.39 

3-hydroxybutyryl-CoA dehydratase ANACAC_03496 0.01 0.02 

ANACAC_00255 0.21 0.23 

Butyryl-CoA dehydrogenase ANACAC_00252 0.50 0.50 

ANACAC_00253 0.54 0.56 

ANACAC_03492 0.00 0.00 

Phosphate acetyltransferase ANACAC_00344 0.13 0.15 

Acetate kinase ANACAC_00343 0.17 0.18 

Butyryl-CoA: acetate CoA-

transferase 

ANACAC_01149 0.16 0.17 

4-aminobutyrate / succinate pathway 
   

Hydroxybutyrate dehydrogenase ANACAC_00166 <0.00 <0.00 

4-hydroxybutyrate coenzyme A 

transferase 

ANACAC_00165 <0.00 <0.00 

4-hydroxybutanoyl-CoA dehydratase ANACAC_00167 <0.00 <0.00 

ANACAC_02698 <0.00 <0.00 
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Our data indicated that the majority of enzymes involved in the acetyl-CoA 

pathway were expressed at a relative abundance higher than 0.1%, with over 2% of 

total transcripts accounted for butyrate production. In addition, Anaerostipes caccae 

possesses genomic capacity to synthesis butyrate by using 4-aminobutyrate or 

succinate as the precursor. However, the expression of this pathway was low, with the 

relative abundance of transcripts lower than 0.01%, indicating that acetyl-CoA was the 

dominant pathway. 

 

Nutrients interdependency between Akkermansia muciniphila and Anaerostipes 

caccae  

The genomes of Akkermansia muciniphila and Anaerostipes caccae were inspected 

for B vitamins and amino acids auxotrophy to investigate potential nutrient 

interdependency. Akkermansia muciniphila lacked the upstream genes required for 

vitamin B12 biosynthesis including CbiL, CobG, CbiGF, CobF, CbiECA and CobAT. 

Complementarily, Anaerostipes caccae was predicted to possess complete vitamin 

B12 biosynthesis pathway (Table 4). However, no vitamin B12 transporter was found 

in Anaerostipes caccae genome. We found indications for aspartate auxotrophy of 

Anaerostipes caccae (Table S6) however the bacterium was reported to grow in 

minimal defined media supplemented with glucose without additional nitrogen source 

(Belzer et al 2017). Furthermore, Anaerostipes caccae lacked the genes to synthesise 

the cofactor lipoate required for dehydrolipoate dehydrogenase, EC 1.8.1.4. The 

different enzyme complexes containing this enzyme were involved in citrate cycle, 

glycine, serine, and threonine metabolism, and valine, leucine, and isoleucine 

degradation. Nevertheless, Anaerostipes caccae could acquire lipoate via salvage 

pathway and we observed the upregulation of lipoate biosynthesis by Akkermansia 

muciniphila in co-cultures.  
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Table 4. Genomic prediction of B vitamins biosynthesis (presence = 1 and absence = 0) based 
on the combination of essential functional roles by Magnusdottir et al. (Magnusdottir et al 2015). 

 B1 B2 B3 B5 B6 B7 B9 B12 

 Thiamin Riboflavin Niacin Pantothenate Pyridoxin Biotin Folate Cobalamin 

Akkermansia 

muciniphila 

MucT 

1 1 1 1 1 1 1 0 

Anaerostipes 

caccae L1-

92 

1 1 1 1 1 0 1 1 

 

 

Discussion 

In this study, we demonstrated the use of metatranscriptomics as an explorative 

approach to decipher bacterial interaction in the mucosal environment. Two 

representative mucosa-associated species, namely Akkermansia muciniphila and 

Anaerostipes caccae, were used to show the ecological dependency between a mucin-

degrader and a butyrate producer. Importantly, this study revealed changes in the 

expression of genes involved in host-glycan catabolism and trophic interactions 

between the gut commensals. This interplay leads to the formation of butyrate at the 

mucosal layer that is proposed to be beneficial to the host (Koh et al 2016, Louis and 

Flint 2017).  

In the presence of Anaerostipes caccae, Akkermansia muciniphila upregulated 

mucin-degrading genes involved in hydrolase and sulphuric ester hydrolase activity. 

The majority of these mucin-degrading enzymes were predicted to function in the 

extracellular compartment (Ottman et al 2016), which could lead to the degradation of 

oligosaccharide chains consisting of GalNAc, GlcNAc, mannose, galactose, fucose 

and sialic acid (Moran et al 2011). Previous work demonstrated that Anaerostipes 

caccae as well as Eubacterium hallii and Faecalibacterium prausnitzii could utilise the 

mucin-derived sugars including galactose, mannose and GlcNAc for growth (Belzer et 

al 2017, Lopez-Siles et al 2012). The fermentation of these monosaccharides results 

in butyrate production. Since both Akkermansia muciniphila and the butyrate-producer 

rely on the uptake of mucin-derived sugars for growth in our model, a higher 
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extracellular concentration of Akkermansia muciniphila-derived mucolytic enzymes 

could contribute to available substrate in the community. Concurrently, Akkermansia 

muciniphila showed downregulation of ribosomal genes in the co-cultures, which 

implied a lower growth rate of Akkermansia muciniphila. The qPCR results of genomic 

16S rRNA gene ratio from a previous publication on extracted DNA showed a 

Akkermansia muciniphila to Anaerostipes caccae ratio of 100:1 (Belzer et al 2017). In 

this study, the ratio of 16S rRNA in total RNA samples quantified by RT-qPCR showed 

a Akkermansia muciniphila to Anaerostipes caccae ratio of 1:50, whereas, the 

sequenced transcripts ratio was 1:1. The discrepancy could be the result of differential 

expression between ribosomal and messenger RNA. Note that total RNA could contain 

95-99% of ribosomal RNA (Zoetendal et al 2006) and that the number of ribosomes 

per cell correlates with the growth rate (Fegatella et al 1998). In addition, Akkermansia 

muciniphila and Anaerostipes caccae contain 3 and 12 copies of the rRNA operon, 

respectively. Taken together, these results indicate that Akkermansia muciniphila 

dominated in terms of cells number but Anaerostipes caccae showed proportionally 

higher growth rate and transcriptional activity.  

The co-culturing of two representative mucosa-associated bacteria has 

demonstrated the major pathways for intestinal SCFA biosynthesis. The overview of 

this mucin-directed trophic interaction is shown in Fig. 4. Anaerostipes caccae cross-

fed on a part of the mucin sugars liberated by Akkermansia muciniphila for central 

metabolism. In addition, Anaerostipes caccae can incorporate Akkermansia 

muciniphila-derived acetate for butyrate production via butyryl-CoA: acetate CoA-

transferase enzyme (Duncan et al 2004, Louis and Flint 2009, Louis and Flint 2017). 

Moreover, Akkermansia muciniphila could benefit from the corrinoids released by 

Anaerostipes caccae (Degnan et al 2014). Pseudo-vitamin B12 from Eubacterium hallii 

could activate the propionate production by Akkermansia muciniphila via the succinate 

pathway (Belzer et al 2017). A low level of propionate was detected after day 8 in 

A.muc-A.cac co-cultures (Belzer et al 2017). Propionate is likely produced by 

Akkermansia muciniphila because Anaerostipes caccae is not known to produce 

propionate and it does not possess the genes involved in the known propionate 

biosynthesis pathways i.e. the succinate, acrylate, and propanediol pathways (Louis 

and Flint 2017). Nevertheless, Anaerostipes caccae is predicted to synthesise vitamin 

B12 but lacked a vitamin B12 transporter. 
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Figure 4. Schematic representation of mucin-driven trophic interaction between Akkermansia 
muciniphila and Anaerostipes caccae. Akkermansia muciniphila degrades oligosaccharides 
chain of mucins by extracellular glycosyl hydrolases. The structure for O-linked glycan chains 
and CAZymes action sites are adapted from Tailford et al. (Tailford et al 2015). Chain 1 is a 
hypothetical mucin glycan chain, chain 2 is O-GlcNAc often found on other glycoproteins, chain 
3 (Tn antigen) and chain 4 are found in gastro-duodenal mucins. In addition, mannose could 
be released from degradation of N-linked glycan chains. Anaerostipes caccae utilises some of 
the mucin-derived sugars (galactose, mannose and GlcNAc) and acetate released by 
Akkermansia muciniphila for growth and concomitant butyrate production.  
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Upon cell lysis, the release of cellular vitamin B12 by Anaerostipes caccae could 

facilitate methylmalonyl-CoA mutase enzymes (Amuc_1983 and Amuc_1984) of 

Akkermansia muciniphila to produce propionate (Degnan et al 2014). The upregulation 

of cobalamin-dependent methylmalonyl-CoA mutase genes in monocultures indicated 

an attempt by the organism to activate the propionate production pathway in the 

absence of the essential cofactor (Fig. S1), as the conversion of methylmalonyl-CoA 

to propionyl-CoA is thermodynamically favourable (Dimroth and Schink 1998). The 

exergonic decarboxylation of methylmalonyl-CoA could be coupled to sodium ion 

export to extracellular space for the establishment of a proton gradient via a sodium-

proton antiporter to generate ATP (Ottman et al 2017a).  

Interestingly, two putative operons and several two-component systems were 

differentially regulated, indicating the mode of transcriptional regulation by 

Akkermansia muciniphila in response to Anaerostipes caccae. A previous study has 

demonstrated that the presence of one organism is often associated with 

transcriptional changes in the other (Plichta et al 2016). In the co-culture with 

Anaerostipes caccae, Akkermansia muciniphila downregulated a putative operon 

consisting of Amuc_2041 (efflux transporter, RND family, MFP subunit), Amuc_2042 

(transporter, hydrophobe/amphiphile efflux-1 (HAE1) family) and Amuc_2043 (RND 

efflux system, outer membrane lipoprotein, NodT family). The membrane fusion protein 

(MFP) is described as a component of drug resistance, nodulation, and the cell division 

(RND) involved in the transportation of drug molecules (Anes et al 2015). HAE1 is 

involved in toxin production and resistance processes (Anes et al 2015). The outer 

membrane lipoproteins from the NodT are predicted to primarily export small 

molecules rather than proteins. This efflux system was reported to play a role in 

multidrug resistance of Gram-negative bacteria such as Escherichia coli and 

Pseudomonas aeruginosa (Nikaido and Takatsuka 2009). A similar resistance 

mechanism could be employed by the Gram-negative Akkermansia muciniphila, and 

this study suggested the down-tuning of the efflux pump expression in the presence of 

a community member.  

The annotated response regulator Amuc_1010 and the adjacent predicted 

operon consisting of Amuc_1011, Amuc_1012, Amuc_1013, and Amuc_1014, were 

upregulated in the co-cultures. Amuc_1010 is likely not a two-component system as it 

encoded only for the LytTR DNA-binding domain without the CheY-like receiver 
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domain. Above all, Amuc_1010 could be autoregulatory as cis-acting regulatory 

elements were predicted at its upstream region using MEME (Bailey et al 2009) (data 

not shown). Amuc_1011, Amuc_1012, Amuc_1013, and Amuc_1014 were annotated 

as uncharacterised proteins, and Amuc_1011 was predicted as an outer membrane 

protein (Ottman et al 2016). Further research is needed to investigate this interesting 

gene cluster with unidirectional arrangement and a short intercistronic region that could 

likely be co-transcribed. The upregulation of the outer membrane protein could be 

associated with host colonisation, persistence and immunomodulation (Galdiero et al 

2012). A recent study showed that an immune-stimulatory outer membrane protein of 

Akkermansia muciniphila (Amuc_1100) (Ottman et al 2017b) is able to ameliorate the 

metabolic symptoms of obese and diabetic mice (Plovier et al 2017). However, 

Amuc_1100 was not found to be differentially regulated in this study. 

In addition, Akkermansia muciniphila upregulated several two-component 

systems in the co-cultures. Two-component systems consist of a membrane bound 

sensor histidine kinase and a cytoplasmic response regulator, which are often encoded 

by adjacent genes, enable bacteria to response to changing environment by altering 

gene expression (Monedero et al 2017). However, the roles of two-component systems 

in Akkermansia muciniphila grown in the co-cultures were not yet identified. Studies 

showed that they could be involved in the regulation of physiological processes in 

commensal bacteria, such as stress responses, regulation of metabolism, and 

resistance to antimicrobial peptides (Monedero et al 2017). The gastrointestinal 

pathogen, enterohemorrhagic Escherichia coli (EHEC), was reported to encode the 

two-component system FusKR. This system provides a growth advantage and 

modulates the expression of virulence genes upon sensing of fucose liberated by 

Bacteroides thetaiotaomicron during growth in media containing mucins (Pacheco et 

al 2012). The metabolism of mucin-derived fucose by Akkermansia muciniphila yielded 

1,2-propanediol (Ottman et al 2017a). As such, fucose metabolism by Akkermansia 

muciniphila could confer colonisation resistance against the fucose-dependent enteric 

pathogens (Pickard and Chervonsky 2015).  

In conclusion, we demonstrated the use of metatranscriptomics to provide in-

depth mechanistic understanding of bacterial interaction. The trophic interaction 

between mucosal keystone species Akkermansia muciniphila and Anaerostipes 

caccae could result in beneficial butyrate production at close proximity to host 
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epithelium. We revealed the expressional changes of Akkermansia muciniphila in 

response to Anaerostipes caccae and demonstrated the provider role of Akkermansia 

muciniphila by upregulating the mucolytic activity to sustain the community at the 

mucosa niche. 
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Supplementary materials 

Table S1. The general features of RNA-seq data analysis. 

  A.muc  

monoculture 

A.muc-A.cac  

co-culture 

  Dup 1 Dup 2 Dup 1 Dup 2 

Total no. of reads 30812972 27356734 26799549 22755873 

Average quality scores (Phred) 37.72 37.72 38.73 38.72 

rRNA removed (%) 6.4 4.1 3.9 4.4 

Adapters removed (%) 4.3 4.7 5.4 5.4 

No. of reads after Cutadapt  28826013 26236614 25748139 21756579 

Trimmed reads by Sickle (%) 24.90 25.24 13.23 13.63 

No. of reads after Sickle (quality threshold=30; 

length threshold=50)  
21647836 19613896 22342387 18790981 

Total no. of reads mapped to the concatenated 

genome of A.muciniphila & butyrogens  
NA NA 21433553 17850364 

Total no. of reads mapped to the genome of 

A.muciniphila 
17531380 15516414 10135288 8630425 

Total no. of reads mapped to the genome of 

butyrogens 
NA NA 11298279 9219949 

Total no. of reads mapped to the concatenated 

genome of A.muciniphila & butyrogens (%) 
NA NA 95.93 94.99 

Total no. of reads mapped to the genome of 

A.muciniphila (%) 
80.98 79.11 45.36 45.93 

Total no. of reads mapped to the genome of 

butyrogens (%) 
NA NA 50.57 49.07 

Sum of % of reads mapped to the genomes 80.98 79.11 95.93 95.00 

Total no. of reads mapped to the concatenated 

protein coding regions of A.muciniphila & 

butyrogens  

NA NA 10286240 8436520 

Total no. of reads mapped to the protein 

coding regions of A.muciniphila 
8368120 8505786 3991352 3189066 

Total no. of reads mapped to the protein 

coding regions of butyrogens 
NA NA 6294888 5247454 

Total no. of reads mapped to the protein 

coding regions 
8368120 8505786 10286240 8436520 

NA denotes not available 
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Table S2. The blast result for the unique non-mapping reads from both of the Akkermansia 

muciniphila monocultures. (Available on request) 

 

Table S3. Summary of the differentially expressed Akkermansia muciniphila CDS in the co-

cultures with Anaerostipes caccae. 

 
 A.muc-A.cac co-culture 

Total number of CDS 2137 

Number of CDS with q>0.05 1003 

Number of CDS with q<0.05  

Upregulated  

Fold change < 2 416 

2 < Fold change < 4  132 

Fold change > 4 16 

Downregulated  

Fold change < 2 438 

2 < Fold change < 4 119 

Fold change > 4 13 

 

Table S4. Differentially regulated CAZymes of Akkermansia muciniphila in A.muc-A.cac co-

cultures (q<0.05). Signal peptide and transmembrane protein were predicted using SignalP 

and TMHMM respectively. (Available on request) 

 

Table S5. The relative abundance and putative function of transcripts for Anaerostipes caccae. 

(Available on request) 
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Table S6. The genomic prediction of amino acids biosynthesis. 

Amino acids Akkermansia muciniphila MucT Anaerostipes caccae L1-92 

Alanine (Ala) Complete Complete 

Arginine (Arg) Complete Complete 

Asparagine (Asn) Complete Complete 

Aspartic acid (Asp) Complete NA 

Cysteine (Cys) Complete Complete 

Glutamic acid (Glu) Complete Complete 

Glutamine (Gln) Complete Complete 

Glycine (Gly) Complete Complete 

Histidine (His) Complete Complete 

Isoleucine (Ile) Complete Complete 

Leucine (Leu) Complete Complete 

Lysine (Lys) Complete Complete 

Methionine (Met) Complete Complete 

Phenylalanine (Phe) NA NA 

Proline (Pro) Complete Complete 

Serine (Ser) Complete Incomplete 

Threonine (Thr) NA Complete 

Tryptophan (Trp) Complete Complete 

Tyrosine (Tyr) Incomplete Incomplete 

Valine (Val) Complete Complete 

Selenocysteine (Sec) Incomplete Complete 

Pyrrolysine (Pyl) Incomplete Incomplete 

Homocysteine Complete Incomplete 

Homoserine Complete Complete 

Ornithine Complete Complete 

NA denotes not available 
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Figure S1. Akkermansia muciniphila pathway for pyruvate fermentation to propionate 
(succinate pathway). Fold changes for differentially expressed genes (q <0.05) comparing 
Akkermansia muciniphila in monoculture and co-cultures with Anaerostipes caccae are listed 
next to the respective genes. Negative values indicate upregulation in monocultures, positive 
values indicate upregulation in co-cultures and NS indicates non-significant regulation with 
q >0.05. Figure is adapted from MetaCyc (Caspi et al 2014) with curation. 
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General discussion 

 

Contemplating the complexity of the gut microbiota and host-secreted glycans 

The human gut microbiota is essential for health by supporting the metabolic, immune 

and neurological functions of the host (El Kaoutari et al 2013, Honda and Littman 2016, 

Rogers et al 2016). The ecological landscape of the human gut microbiota is highly 

complex, and consists of trillions of microorganisms including bacteria, archaea, 

microeukaryotes and viruses (Sender et al 2016). Bacteria are the most studied 

microorganisms in the human gut. The bacterial diversity is rather limited at the phylum 

level in comparison to other environments, and consists predominantly of Firmicutes, 

Bacteroidetes, Actinobacteria, Proteobacteria, and Verrucomicrobia (Falony et al 

2016). However, high diversity is displayed at the level of operational taxonomic units 

(OTU) that is commonly used to recapitulate microbial phylogeny from sequencing 

data (Ursell et al 2012). Over 2000 species-level phylotypes of which approximately 

1000 cultured isolates have been detected in the human gut (Rajilic-Stojanovic and de 

Vos 2014, Ritari et al 2015, Zoetendal et al 2008). The human gut epithelium in 

essence, separates host cells from the resident microbes and incoming dietary 

components. The gut epithelial lining, covered with host-secreted mucin glycans, is an 

important interaction site between host and commensal as well as pathogenic bacteria 

(Tailford et al 2015). Also, the vertical transfer of glycans and bioactive compounds via 

human milk from mothers to their offsprings is thought to be an important evolutionary 

force of mammalian hosts to select for symbiotic bacteria in the infant gut (Ballard and 

Morrow 2013). Host-secreted glycans are consisted of oligosaccharides synthesised 

in a non-template-driven fashion. Hence, they are often branched and show complex 

regio- and stereo-chemistry resulting in an enormous number of sugar structures in 

human body (Hofmann and Pagel 2017).  

The complexity of the gut microbiota and host-secreted glycans poses an 

interesting challenge to understand the link between both parties. The bacterial glycan-

utilisation can be predicted from genomic data by in silico assignment of the biological 

and biochemical role to proteins (Gabaldon and Huynen 2004). Based on the amino 

acid sequence similarities, the catalytic capability of an ecosystem or a bacterium can 

be predicted from metagenome or genome respectively (Lombard et al 2014). Yet, 



General discussion 

125 
 

despite the vast amount of sequencing data generated in the last decade, our 

understanding of the metabolic functions of the gut microbiota is progressing rather 

slow (El Kaoutari et al 2013). The analysis of microbiome data using genomic-based 

predictions is limited to answer “what could the bacteria do?” instead of “what are the 

bacteria actually doing?”. Therefore, it is critical to generate more physiological and 

biochemical data by culturing (both monoculture and co-culturing with other microbes) 

in order to gain mechanistic insights, which is the main topic of this thesis.  

This thesis focuses on unravelling the interaction of gut symbionts in the 

presence of human milk oligosaccharides (HMOS) or host-derived mucins. More 

specifically, we studied the interactions between two groups of bacteria that are 

predicted to cross-feed i.e. milk and mucin glycan-degraders (including 

Bifidobacterium infantis – Chapter 2, Bacteroides thetaiotaomicron – Chapter 3, and 

Akkermansia muciniphila – Chapter 4 and 5) and butyrate producers (including 

Anaerostipes caccae – Chapter 2 to 5, Eubacterium hallii – Chapter 4, and 

Faecalibacterium prausnitzii – Chapter 4). A reductionist approach using anaerobic 

culturing in minimal environment was applied to investigate the physiology and 

interaction between the aforementioned gut symbionts. The ability of the glycan-

degraders to support the growth and activity of butyrogens is clearly demonstrated. 

Cross-feeding between these two bacterial groups leads to the formation of a microbial 

network with a specific metabolic output that could have a potential health impact. In 

the following paragraphs, the insights generated within this thesis with regards to the 

butyrogenic microbial networks will be summarised and put into a broader ecological 

context. The understanding of the microbe-microbe interactions and the underlying 

molecular mechanisms might contribute to the design of interventions to modulate the 

gut microbiota in order to sustain human health. As such, the concept of next 

generation gut microbiota modulators composed of novel probiotic strains, prebiotics 

and microbiota-targeted nutrients will be discussed.  

 

Host-secreted glycans support butyrogenesis in the gut microbiota 

Microbial activity on the host- and/or diet-derived fermentative substrates leads to the 

formation of metabolites in the gut (Flint et al 2014). The profile of short chain fatty 

acids (SCFAs) is distinct between the infant and adult gut (Fig. 1). One of the most 
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apparent differences between these two niches is the availability of specific microbial 

substrates. The gut of a breast-fed infants is provided with HMOS from human milk, 

whereas the gut of adults is provided through the diet with components from plant and 

animal origin. At the same time, host-secreted mucins present as a stable source of 

endogenous substrate in both infants and adults. The genes of CAZymes to degrade 

milk and mucin glycans are predicted in the genomes of gut microbes but seem to be 

concentrated in the specialised bacteria as illustrated at Figure 2 in Chapter 1. The 

difference in glycan-degrading capabilities among bacteria results in the dominance of 

degrader species in the glycan-rich niches. The milk and mucin glycan-degraders can 

subsequently support the growth of sub-ordinate cross-feeders in the infant gut or the 

mucosal layer.  

 

Figure 1. Host-secreted glycans drive butyrogenic microbial networks in the infant and 
adult gut. The microbial trophic chain for SCFA formation (A) in the infant gut and (B) at the 
mucosal niche of the adult gut. The SCFA composition for 3 months old infant and adult faeces 
is derived from Pham et al. and Schwiertz et al. (Pham et al 2016, Schwiertz et al 2010). Others 
SCFAs in adult faeces include iso-butyrate, iso-valerate, and valerate, which are mainly the 
products of protein fermentation.  
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The role of HMOS in guiding the establishment of microbial networks is well 

recognised and appreciated (Bode 2012, Smilowitz et al 2014). The results described 

in this thesis show that HMOS degradation by Bifidobacterium spp. (Chapter 2) and 

Bacteroides spp. (Chapter 3) supports butyrogenic cross-feeding. From an ecological 

point of view, our results support the hypothesis that, HMOS-degraders in the infant 

gut could enable the sequential colonisation of other functional bacterial groups and 

support the ecosystem towards a more stable and mature situation. The infant gut 

microbiota undergoes drastic changes upon the introduction of solid food and the 

cessation of breast-feeding (Backhed et al 2015, Laursen et al 2016), after which, a 

mature gut composition resembling an adult gut microbiota is gradually established 

(Yatsunenko et al 2012). Results from Chapter 2 suggest that the initial HMOS-

degraders could provide substrates and create the environment for other important 

species that will colonise the infant gut after weaning. Microbial fermentation of non-

digestible carbohydrates in the gut of exclusively breast-fed infants leads to a relatively 

high concentration of acetate and lactate (a relative strong acid with pKa= 3.86) (Pham 

et al 2016, Wopereis et al 2017). Hence, infants have a lower faecal pH than that of 

adults (Henrick et al 2018, Oozeer et al 2013). The pH of the gut lumen has a significant 

impact on the microbiota composition (Duncan et al 2009). Various bacterial groups 

have been shown to be inhibited by a low pH, such as opportunistic pathogens 

including Salmonella Typhimurium, Staphylococcus aureus, Escherichia coli, 

Enterococcus faecalis, Pseudomonas aeruginosa, and Klebsiella pneumoniae (van 

Limpt et al 2004) as well as Bacteroides spp. (Duncan et al 2009, Walker et al 2005). 

In contrast, a low pH may promote butyrate production and the butyrogenic community 

(Reichardt et al 2017, Walker et al 2005). The change of the intestinal microbiota 

composition is reflected by the shift in faecal SCFA ratios, characterised by the relative 

decrease of lactate and increase of butyrate and propionate (Fig. 1). HMOS-degraders 

like Bifidobacterium (Chapter 2), Bacteroides (Chapter 3), Lactobacillus, 

Streptococcus, and Enterococcus spp. produce lactate as a major metabolite 

(Chassard et al 2014, Jost et al 2012). Upon weaning, the relative abundance of 

lactate-producing bacteria decreases in contrast to the increase of butyrate- and 

propionate-producing bacteria (Laursen et al 2017). Firmicutes from the 

Lachnospiraceae, Ruminococcaceae, and Erysipelotrichaceae families are known for 

their butyrate-producing capacity, whereas propionate-producing bacteria mainly 

include Bacteroidetes members from the Bacteroidaceae, Prevotellaceae, and 

Ch
ap

te
r 6



Chapter 6 

128 
 

Rikenellaceae families, and Firmicutes members from the Lachnospiraceae, 

Veillonellaceae, and Acidaminococcaceae families as well as Verrucomicrobia 

(Akkermansia muciniphila as the only cultured representative in human gut) (Louis and 

Flint 2017).  

Physiologically, the conversion of lactate in the gut by microbiota members 

could prevent excessive lactate accumulation, which could potentially lead to 

detrimental health consequences such as acidosis, neurotoxicity, and cardiac 

arrhythmia (Ewaschuk et al 2005, Hove et al 1994). Further metabolic conversion of 

lactate by butyrate-producing bacteria such as Anaerostipes spp. (Chapter 2 and 3), 

Eubacterium hallii, and Eubacterium spp. or sulphate-reducing bacteria (SRB) such as 

Desulfovibrio piger could lead either to the accumulation of hydrogen gas or hydrogen 

sulphide respectively (Chassard and Bernalier-Donadille 2006, Pham et al 2016, 

Robert et al 2001). The balance between these activities is essential for gut health as 

the accumulation of hydrogen can result in discomfort such as bloating and cramping 

(Pham et al 2017), whereas the accumulation of hydrogen sulphide is toxic for epithelial 

cells and can inhibit butyrate oxidation leading to autophagy (Donohoe et al 2011, Kim 

et al 2013). Subsequently, the accumulation of hydrogen gas generated from bacterial 

sugar fermentation as a mechanism to recover NAD+, poses a metabolic burden on 

the microbial community (Gibson et al 1990). Hence, further establishment of hydrogen 

gas-consuming community including SRB, reductive acetogens (such as Blautia 

hydrogenotrophica via Wood-Ljungdahl pathway) and methanogens (archaea such as 

Methanobrevibacter smithii) could increase the overall metabolic efficiency of the gut 

microbiota (Chassard and Bernalier-Donadille 2006, Koropatkin et al 2012). No 

significant methane production has been reported for children below three years of age, 

suggesting that a fully functional adult microbial ecosystem has not been established 

yet at this period of life (Peled et al 1985, Rutili et al 1996). To date, a healthy 

developmental trajectory or stages of the infant gut microbiota remains elusive, despite 

the physiological importance that could impact lifelong health. Longitudinal clinical 

study and attention on individual development could start to fill this gap in our 

knowledge.  

 In adulthood, the gut microbiota is more diverse and stable compared to that of 

infants (Mehta et al 2018, Yatsunenko et al 2012). The gut microbial assemblage could 

fluctuate with the intake of specific dietary components (Turnbaugh et al 2009) and is 
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shown to be strongly affected by extreme dietary changes or the use of antibiotics 

(Modi et al 2014, O'Keefe et al 2015). Despite the environmental variations due to 

dietary habits, the host mucin glycans secreted by the goblet cells at the epithelial lining 

forms a consistent nutrient source for bacterial colonisation. The bacterial community 

at the mucosal surface could incur disproportionate health impact because of the close 

proximity to host cells (Koropatkin et al 2012). On one side, pathogenic bacteria could 

degrade mucins to facilitate them to penetrate the mucosal layer for host invasion or 

thrive on mucus-derived nutrients liberated via microbial-dependent mechanisms 

(Sicard et al 2017). On the other side, Akkermansia muciniphila, an intestinal symbiont 

specialised in degrading mucins, can support the formation of a beneficial microbial 

network leading to the production of important compounds like butyrate, propionate 

and vitamin B12 (Chapter 4). Through its mucolytic activity, Akkermansia muciniphila 

plays a key role as nutrients provider to sustain the community at the mucosal layer 

(Chapter 5). As such, the commensalistic community at the host-microbe interface 

could protect the host against intestinal pathogens via competitive exclusion and 

contribute to the restoration of the microbial ecosystem after perturbations (Kamada et 

al 2013, Reid et al 2011).  

 

The importance of butyrate production by the gut microbiota for host health  

Butyrate is a product of bacterial fermentation that is closely associated with host 

health. It is used as the preferred energy source for colonic epithelial cells (Donohoe 

et al 2011). Physiologically, butyrate is associated with the enhancement of colonic 

barrier function, increase satiety, pain relief, anti-inflammation, and protection against 

colorectal cancer (Banasiewicz et al 2013, Bolognini et al 2016, Donohoe et al 2011, 

Furusawa et al 2013, Geirnaert et al 2017, Goncalves and Martel 2013). Also, it can 

regulate host immune and metabolic states by signalling through G-protein-coupled 

receptors (GPR) and by inhibiting histone deacetylase (HDAC) (Bolognini et al 2016, 

Fellows et al 2018, Koh et al 2016). Most of the mechanistic evidence for the effect of 

butyrate is generated through studies with adults. Therefore, further mechanistic 

experiments are required to understand the physiological relevance of butyrate in the 

infant gut.  
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Early in life, butyrate is normally observed at a low level (Fig. 1), with around 2 

mM of faecal butyrate detected in 3 months old infants, compared to 14 mM in healthy 

adults (Pham et al 2016, Schwiertz et al 2010). Butyrate is important to support gut 

maturation by fostering the development of the gut barrier function (Ploger et al 2012, 

Yan and Ajuwon 2017). Yet, the immature gut epithelium of infants may not be able to 

cope with the high levels of butyrate, which could potentially lead to apoptosis (Hague 

et al 1996, Ryu et al 2016). In principle, the direct infusion of butyrate should be able 

to confer the beneficial effects similar to that induced by the butyrate-producing 

bacteria. The supplementation of butyrate salts is found to exert a wide range of 

beneficial effects to pre- and post-weaning calves and piglets, including the 

improvement of the gut barrier function, immune system, digestibility, and growth rate 

(Kato et al 2011, Kotunia et al 2004). This has been performed in human adults via 

oral administration of butyrate tablets (Roda et al 2007, Vernia et al 2000), butyrate-

producing precursors such as tributyrin (Conley et al 1998, Vanhoutvin et al 2009) or 

rectal enemas (Scheppach et al 1992). However, limited efficacy has been reported 

with direct administration of butyrate as several modes of action such as the effective 

concentration range and the site of action remain elusive. Hence, the pre-, pro- or 

synbiotic approach to stimulate butyrate-producing bacteria could be best to mimic the 

natural way to locally deliver butyrate. 

Furthermore, butyrate could play a role in the immune maturation of infants. An 

aberrant SCFA profile and/or microbial composition are/is shown to be associated with 

colicky symptoms and allergy in infants (Arrieta et al 2015, de Weerth et al 2013, Pham 

et al 2017, Stokholm et al 2018, Wopereis et al 2017). A significant decrease of 

Lachnospira, Veillonella, Faecalibacterium, and Rothia genera, as well as reduced 

levels of faecal acetate at 3 months old have been observed in children at risk of 

asthma (Arrieta et al 2015). Similar findings have been reported in 6 months old 

children diagnosed with eczema, with increased levels of lactate, and decreased levels 

of butyrate and propionate in the faeces. These eco-physiological changes are 

correlated to the lower abundance of lactate-utilising butyrate-producing bacteria (LUB) 

Eubacterium spp. and Anaerostipes spp. from the Lachnospiraceae family (Wopereis 

et al 2017). Butyrate-producing bacteria are suggested to stimulate host immune 

system directly by posing as antigens or indirectly via their metabolites (Ivanov and 

Honda 2012). The lack of certain stimulants during infancy could lead the 
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manifestations of allergy later in life, due to the failure to provide necessary challenge 

to train the immune system during the window of plasticity (the hygiene hypothesis) 

(Azad et al 2013b).  

 

Next generation microbiota modulators 

In light of the importance for health, continuous efforts are being taken to improve the 

physiological state of a person by modulating his/her gut microbiota. Already in the 

early 20th century, Ilya Mechnikov proposed that the consumption of microbe-

containing food improves health by displacing health-threatening bacteria in the large 

intestine (McGuire and McGuire 2015). In this thesis, novel avenues to modulate gut 

ecology are explored. As such, novel probiotics that are not traditionally used such as 

Akkermansia muciniphila, Bacteroides spp. and butyrate-producing Clostridium 

(referring to the butyrate-producing members from the Lachnospiraceae and 

Ruminococcaceae families) are studied. Besides, the potential of supplementing infant 

nutrition with HMOS is highlighted, and an update based on recent (clinical) findings is 

provided. Furthermore, the prospect of administrating microbiota-targeted nutrients 

including iron and vitamin B12 is discussed. 

 

Novel probiotic strains  

This thesis explores the physiology of a few potential probiotic strains. Probiotics are 

defined as live microorganisms that, when administered in adequate amounts, confer 

a health benefit on the host (Hill et al 2014). The conventional probiotics often originate 

from a narrow taxonomic range of bacteria mainly consisting of Bifidobacterium spp. 

and Lactobacillus spp. (O'Toole et al 2017). Bifidobacterium spp. (Chapter 2) are 

commonly administered as probiotic with well demonstrated health benefits, safety, 

and history of use (FAO/WHO 2002). Generally, novel probiotic strains are first tested 

in vitro for resistance to gastric acidity, bile acid and host digestive enzymes, anti-

microbial activity, and safety aspects (including antibiotic resistance, metabolic 

activities i.e. D-lactate production, bile salt deconjugation, toxin production and 

haemolytic activity), followed by in vivo studies to substantiate health effects 

(FAO/WHO 2002, Huys et al 2013). The scope for probiotics has recently been revised 
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to include new commensals and consortia comprising defined strains from human 

samples (Hill et al 2014). Alternatively, the current legislative framework diverts the 

development of these beneficial microbes as live biotherapeutic product (LBP) (Sun et 

al 2016). LBP is defined by the US Food and Drug Administration (FDA) as a biological 

product that contains live organisms, such as bacteria; that are applicable for 

prevention, treatment, or cure of a disease or condition of human beings; and is not a 

vaccine (Hill et al 2014). 

Akkermansia muciniphila is the first and only cultured representative of the 

Verrucomicrobia phylum from human gut (Derrien et al 2004). The mucin-utilisation 

lifestyle of this bacterium allows it to colonise the mucosal niche in the distal ileum, 

ascending colon and rectum (Wang et al 2005). The high relative abundance of 

Akkermansia muciniphila is often associated with a healthy state and negatively 

correlated to acute appendicitis (Swidsinski et al 2011), metabolic syndrome including 

obesity, dyslipidaemia and type 2 diabetes (Derrien et al 2016), irritable bowel 

syndromes including Crohn’s disease and ulcerative colitis (Png et al 2010) and autism 

(Wang et al 2011). The administration of Akkermansia muciniphila can ameliorate 

metabolic symptoms of obesity, diabetes, and alcoholic liver disease in mice (Everard 

et al 2013, Grander et al 2017). The beneficial effect of this bacterium could also be 

conferred by administrating pasteurised bacteria and an immuno-stimulatory outer 

membrane protein (Amuc_1100) in mice (Cani and de Vos 2017, Ottman et al 2017b, 

Plovier et al 2017). The mode of health-promoting mechanisms include the increase 

of mucus thickness and gut barrier function (Everard et al 2013), direct host immune 

stimulation (Ottman et al 2017b), and stimulation of a beneficial mucosal community 

(Chapter 4 and 5) (Belzer et al 2017, Chia et al 2018). Nevertheless, the relative 

abundance of Akkermansia muciniphila has also been associated with negative health 

consequences such as Parkinson’s disease (Heintz-Buschart et al 2018), Alzheimer’s 

disease (Vogt et al 2017), multiple sclerosis (Cekanaviciute et al 2017) and colorectal 

cancer (Wang et al 2017). These health associations are mainly demonstrated in 

mouse models, and often the design of the above-mentioned studies are not as robust 

as those that demonstrate beneficial effect. However, it cannot be excluded that under 

certain conditions, Akkermansia muciniphila could modulate the host response 

differently, as shown by its exacerbation of gut inflammation in the Salmonella 

Typhimurium-infected gnotobiotic mice (Ganesh et al 2013). Given the above, 
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Akkermansia muciniphila appears promising, especially in modulating metabolic 

syndrome, and its application as a probiotic has already passed the safety evaluation 

in the first human trial (Plovier et al 2017).  

Bacteroides spp. are dominant members in the gut microbiota of human adults. 

Some potential health-promoting Bacteroides spp. have been evaluated for probiotic 

functionality and include Bacteroides xylanisolvens DSM23694 (Ulsemer et al 2016), 

Bacteroides ovatus D-6 (Ulsemer et al 2013), Bacteroides ovatus V975 (Hamady et al 

2010, Hamady et al 2011), Bactroides dorei D8 (Gerard et al 2007), Bacteroides fragilis 

ZY-312 (Deng et al 2016), Bacteroides acidifaciens JCM10566 (Yanagibashi et al 

2013). However, the lipopolysaccharides (LPS) of Bacteroides spp. are also described 

to inhibit the innate immune signalling and endotoxin tolerance, leading to immune-

silencing and manifestations of allergy in children in Finland and Estonia (Vatanen et 

al 2016). Chapter 3 points out a potential metabolic concern with the specific D-lactate 

production by Bacteroides spp. Nevertheless, the relative abundance of Bacteroidetes 

family in human gut is highly subjected to environmental fluctuation (Goodrich et al 

2014). For example, caesarean birth leads to the defective colonisation of Bacteroides 

spp. in new-borns due to disruptive vertical transfer via the natural birth route (Azad et 

al 2013a, Backhed et al 2015, Martin et al 2016). Therefore, it could be plausible to 

restore this lost taxon for C-section delivered infants by introducing Bacteroides spp. 

as a probiotic. Bacteroides thetaiotaomicron is generally recognised as a symbiont that 

contributes to the postnatal gut development and host physiology (Wexler 2007). 

Furthermore, Chapter 3 shows that in the presence of human milk carbohydrates, 

Bacteroides thetaiotaomicron could confer a benefit to the host by supporting the 

growth of Anaerostipes caccae, leading to butyrate production. 

Butyrate-producing bacteria from the family of Lachnospiraceae and 

Ruminococcaceae (collectively termed butyrate-producing Clostridium) have also 

been investigated for potential probiotic function. The majority of the bacteria from this 

group are not equipped to degrade complex carbohydrates. This thesis shows close 

metabolic interactions of several butyrate-producing bacteria including Anaerostipes 

caccae (Chapter 2 to 5), Eubacterium hallii (Chapter 4), and Faecalibacterium 

prausnitzii (Chapter 4) with the glycan-degrading species. Faecalibacterium 

prausnitzii is an abundant species found in the gut of healthy adults and has been 

demonstrated to mitigate inflammatory bowel diseases and atopic diseases (Miquel et 
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al 2013, Rossi et al 2016, Sokol et al 2008, Song et al 2016). Whilst, Eubacterium hallii 

is shown to improve insulin sensitivity in obese and diabetic mice as well as detoxify 

dietary carcinogen (Fekry et al 2016, Udayappan et al 2016). Other promising butyrate-

producing Clostridium include Roseburia spp. (Louis et al 2007), Clostridium butyricum 

CBM 588 (Seo et al 2013) and Intestinimonas butyriciproducens AF211 (Bui et al 2015). 

The administration of butyrate-producing bacteria in an in vitro system inoculated with 

the gut microbiota of Crohn’s disease patients is shown to increase the butyrate 

production and enhance barrier function of Caco-2 cells (Geirnaert et al 2017). 

Furthermore, the abundance of butyrate-producing bacteria could also be elevated by 

the supplementation of specific carbohydrates such as inulin, which are shown to 

increase the abundance of Bifidobacterium and Anaerostipes spp. (Vandeputte et al 

2017). Judging from the metabolic interdependencies of butyrogens and the glycan-

degrading bacterial species, a cocktail of probiotic strains instead for a strain could be 

administered to stimulate the beneficial butyrate production. 

 

Novel prebiotics 

A prebiotic is defined as a substrate that is selectively utilised by microorganisms to 

confer a health benefit (Gibson et al 2017). This includes carbohydrates or non-

carbohydrate substrates, which could not be digested by the host but selectively 

promotes the metabolism of health-promoting microorganisms, either the indigenous 

gut residents or probiotic strains. At present, prebiotics are mostly plant- or dairy-

derived. Galactans i.e. galacto-oligosaccharides (GOS) synthesised from lactose, and 

fructans i.e. fructo-oligosaccharides (FOS) and inulin derived from chicory root, have 

a demonstrated long history of use as prebiotics (Oozeer et al 2013, Roberfroid et al 

1998). The linkages in GOS and FOS can be readily degraded by β-galactosidase and 

β-fructanosidase enzymes respectively, which are prevalent in Lactobacillus and 

Bifidobacterium spp. (Fig. 2) (Roberfroid et al 1998). A specific mixture of short chain 

GOS and long chain FOS at 9:1 ratio (scGOS+lcFOS), is widely applied in infant 

nutrition to mimic the molecular size distribution of HMOS (Boehm et al 2003, Boehm 

et al 2005). scGOS+lcFOS is able to lower the faecal pH, enhance the growth of 

bifidobacteria and reduce the load of pathogenic bacteria (Boehm et al 2004, Knol et 

al 2005a, Knol et al 2005b). This specific mixture has been extensively studied and is 
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shown to confer potential health benefits that are similar to those of human milk 

(Oozeer et al 2013). 

Recent technological advances provide the opportunity for better nutrition. The 

supplementation of some HMOS structures to food could close one of the 

compositional gaps between human milk and infant formula. The application of HMOS 

in infant formula faces several challenges. First of all, it is technically challenging to 

obtain large quantities of HMOS for commercial use (Barile and Rastall 2013). The 

current supply of purified HMOS are isolated from bovine milk or synthesised by 

chemical or microbial means (Donovan and Comstock 2016). Secondly, it involves a 

lengthy legislative process towards the application of novel ingredients in infant formula 

(O'Toole et al 2017). At present, researchers are engaged in safety and tolerance 

studies to evaluate the suitability of HMOS as novel additives (Table 1). To date, 2’-

fucosyllactose (2’-FL) and lacto-N-neotetraose (LNnT) are supplemented in some 

infant formulas (Fig. 2). However, not much is known for the use of selected individual 

HMOS structure, on contrary to an assortment of over 100 structurally distinct HMOS 

present in human milk (Milani et al 2017). The application of HMOS in modulating the 

infant gut microbiota is an emerging field that warrants more research on the 

administration of fucosylated oligosaccharides (Milani et al 2017).  
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Figure 2. Prebiotics in infant nutrition. (A) The combination of scGOS and lcFOS at 9:1 ratio 
has been widely supplemented in infant formula whereas HMOS including 2’-FL and LNnT are 
currently evaluated in clinical study. (B) Prediction for bacterial carbohydrate-active enzymes 
(CAZymes) involved in the catabolism of prebiotics for the representative species in the human 
gut. Colour key indicating the number of CAZymes predicted in the genome. Abbreviations: 
DP, degree of polymerization; GH, glycosyl hydrolase. (*) GH 2 and GH 42 are also predicted 
for β-hexosaminidase function. 
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Table 1. The summary of clinical studies that investigated the application of HMOS in infant 
nutrition.  

HMOS structure Key finding Type of study Reference 

2’-FL 
(2.4 g/L of total 

oligosaccharides 

with GOS + 0.2 or 1 

g/L 2’-FL) 

Immune outcome: 2’-FL 

supplementation induced similar 

inflammatory cytokines profile as 

in the breast-fed infants. 

 

Randomised, double-blind 

controlled growth and 

tolerance study on healthy 

infants (5 days to 3 

months old) 

 

(Goehring et 

al 2016) 

 

 

 

2’-FL 
(2.4 g/L of total 

oligosaccharides 

with GOS + 0.2 or 1 

g/L 2’-FL) 
 

Growth and tolerance 
outcome: Comparable growth 

(weight, length, and head 

circumference) and tolerance 

(stool consistency, number of 

stool per day and occurrence of 

vomit) as in breast-fed infants. 

Prospective, randomised, 

controlled, growth and 

tolerance study on healthy 

infants (5 days to 3 

months old) 

 

 

(Marriage et 

al 2015) 

 

 

 

 

2’-FL and LNnT 

(1 g/L of 2’-FL and 

0.5 g/L of LNnT) 
 
 

Growth and tolerance 
outcome: Similar growth and 

tolerance compared to control 

formula without HMOS 

supplementation. HMOS 

supplementation reduced 

parent-reported morbidity 

(particularly bronchitis) and 

medication use including 

antipyretics and antibiotics. 

Parallel, double-blind, 

randomised, growth and 

tolerance study on healthy 

infants (HMOS 

supplementation from 0 to 

6 months old, followed by 

standard follow-up 

formula without HMOS 

from 6 to 12 months) 

(Puccio et al 

2017) 

 

 

 

 

2’-FL and LNnT  
(5, 10, or 20g of 2’-

FL, LNnT, or 2:1 

mix of 2’-FL: LNnT) 
 

 

 

 
 

Tolerance outcome: Daily 

doses up to 20g is well tolerated 

accessed by the gastrointestinal 

symptoms rating scale. 

Microbiology outcome: HMOS 

supplementation increased the 

relative abundance of 

Actinobacteria and 

Bifidobacterium community. No 

significant changes detected in 

the composition of faecal 

SCFAs. 

Parallel, double-blind, 

randomised, placebo-

controlled study on 

healthy adults (2 weeks 

intervention) 

 

 

 

 

 

(Elison et al 

2016) 

 

 

 

 

 

 

 

Abbreviation: GOS, galacto-oligosaccharides; 2’-FL, 2’-fucosyllactose; LNnT, lacto-N-neotetraose. 
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Microbiota-targeted nutrients 

Nutrients such as trace elements and vitamins could also be used to modulate the gut 

microbiota. For example, iron could be a potential modulator, as excess iron in the diet 

could end up in the colon to stimulate the microbial community (Kortman et al 2014). 

Iron is essential for the electron transport in anaerobic bacteria (Cronin et al 2012). 

Several mechanisms are used by bacteria to acquire iron either by the secretion of 

chelating agents i.e. siderophores or via direct membrane protein binding (Raymond 

et al 2015). Members of Enterobacteriaceae family e.g. Salmonella Typhimurium and 

enteropathogenic Escherichia coli (EHEC) are highly competent in sequestering iron 

leading to their competitiveness and pathogenicity in the gut (Kortman et al 2012, 

Zimmermann et al 2010). On the other hand, the gut symbiont, Bacteroides 

thetaiotaomicron (Chapter 3) requires hemin, an iron-containing porphyrin for growth. 

The membrane-bound iron transport systems are found to be present in Bacteroides 

spp., with Bacteroides fragilis expresses the ferrous iron transport system (FeoAB) and 

the iron storage protein ferritin (FtnA) to acquire and store iron (Rocha and Smith 2013). 

Furthermore, Bifidobacterium spp. are also known to secrete siderophores for iron 

acquisition. Bifidobacterium spp. isolated from anaemic children display high-iron 

sequestration property (Vazquez-Gutierrez et al 2015), and are demonstrated to inhibit 

the growth of enteropathogens and the adhesion of the enteropathogens to the 

epithelial cells (Vazquez-Gutierrez et al 2016). Moreover, iron could modulate the child 

gut microbiota, in which decreased butyrate production and lower relative abundance 

of the members of Lachnospiraceae and Bacteroides families are observed in low iron 

conditions (Dostal et al 2013, Dostal et al 2015). Considering the above, the level of 

iron in the gut can be manipulated to prevent the outgrowth of pathogens. For instance, 

the co-supplementation of iron and GOS to anaemic Kenyan infants has been shown 

to increase iron absorption, thereby mitigates the adverse effects of iron on the gut 

microbiota (Paganini et al 2017b). The abundances of Bifidobacterium and 

Lactobacillus spp. are increased and the virulence and toxin genes of pathogens are 

reduced as a result of the co-supplementation (Paganini et al 2017a).  

Also, vitamin B12 is known to modulate the gut microbial ecology (Degnan et al 

2014). The gut microbiota exhibits close cooperation in B-vitamins biosynthesis 

(Magnusdottir et al 2015). Vitamin B12 is an essential co-factor for the synthesis of 

propionate (Takahashi-Iniguez et al 2012) and amino acids including folate, ubiquinone, 
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and methionine (Romine et al 2017). Chapter 4 demonstrates that pseudo-vitamin B12 

synthesised by Eubacterium hallii shifted the metabolism of Akkermansia muciniphila 

towards propionate production. Whilst, an accidental tri-culture of Akkermansia 

muciniphila with Eubacterium hallii and Anaerostipes caccae lead to the discovery of 

pseudo-vitamin B12 transportation in Eubacterium hallii (data not shown). The 

expression data suggests that Eubacterium hallii exported pseudo-vitamin B12 actively 

using an ECF transporter complex CbrTUV via ATP-dependent toppling mechanism 

(Slotboom 2014). Furthermore, bacterial-derived vitamin B12 can be taken up by the 

host (Krautler 2005). Nevertheless, the pseudo-vitamin B12 produced by Eubacterium 

hallii exhibits a lower affinity for the host intrinsic factor involving in vitamin B12 

absorption (Stupperich and Nexo 1991). As such, pseudo-vitamin B12 is likely to be 

more beneficial for the bacterial community than for the host. The supplementation of 

vitamin B12 can be devised to modulate the gut microbiota towards the production of 

host-beneficial compounds such as propionate. 
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Main conclusion and future outlook 

The complex nature of the human gut microbiota and host-produced glycans such as 

HMOS and mucins demands special scrutiny in order to comprehend the intricate host-

microbial interactions. This thesis demonstrates the key functional role of glycan-

degrading symbionts in fostering intestinal butyrate production via cross-feeding. As 

such, this confers ecological importance to the respective niche, as HMOS-degrading 

microbes drive the establishment of a healthy infant gut microbiota, and mucin-

degrading microbes drive a beneficial mucosal community contributing to colonisation 

resistance and the production of host-beneficial compounds. These understandings 

could facilitate a rational design for intervention studies to modulate the gut microbiota 

leading to potential health benefits. To this end, innovative avenues using novel 

probiotic strains, prebiotics and microbiota-targeted nutrients seem promising. The key 

species investigated in this thesis, which include Akkermansia muciniphila, 

Bacteroides spp. and butyrate-producing Clostridium, could serve as novel probiotic 

candidates to restore the aberrant gut microbiota. Besides, the supplementation of 

HMOS in early nutrition could close the nutritional gap between human milk and infant 

formula. Furthermore, microbiota-targeted nutrients including iron and vitamin B12 

could be used to modulate the microbial composition and/or activity community. Future 

research should focus on improving the synergistic effect of different microbiota 

modulators by using a holistic approach, with the combination of probiotics, prebiotics 

and microbiota-targeted nutrients.
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Thesis summary 

 

The co-evolution of the human host and the gut microbiota has led to bacterial adaption 

to forage on host-produced glycans such as human milk oligosaccharides (HMOS) and 

mucins. In early life, the HMOS that are present in mother milk contribute to the 

establishment of a healthy gut microbiota. Furthermore, mucins that cover the intestinal 

lining create a stable niche for bacterial colonization throughout a person’s life. Due to 

the highly complex nature of these host-secreted glycans, bacteria equipped with 

specific glycan-degrading enzymes can exploit them as substrate for growth. 

Subsequently, the glycan-degrading bacteria can drive microbial networks via cross-

feeding. The glycan-foraging microbial population exerts a large influence on the host 

physiology, by influencing the immune, metabolic, and neurological development early 

in life, and by conferring colonisation resistance throughout life. The work described in 

this thesis aims to improve our understanding of the metabolic dependencies between 

the milk- and mucin-degrading microbes (Akkermansia muciniphila, Bifidobacterium 

spp. and Bacteroides spp.) and butyrate-producing bacteria (Anaerostipes caccae, 

Eubacterium hallii, and Faecalibacterium prausnitzii). Bacteria-derived butyrate is the 

preferred energy source for host epithelial cells and is associated with a range of 

beneficial effects including enhancement of colonic barrier function, increased satiety, 

and protection against inflammation, and cancer. In the introductory chapter, the role 

of human milk and mucin glycans in fostering the gut microbial network is discussed. 

As such, the molecular mechanisms of glycan-foraging by key microbial species and 

the potential butyrate-inducing interaction among gut symbionts is presented.  

In Chapter 2 and 3, the role of HMOS as selective substrates for microbial 

growth that drive the establishment of the infant gut microbiota was investigated. At 

this developmental stage, HMOS promote the dominance of bifidobacteria from the 

Actinobacteria phylum. Upon weaning, the gut microbiota shifts towards an adult gut 

microbiota composition that is predominantly comprised of bacteria from the Firmicutes 

and Bacteroidetes phyla. In chapter 2, the interaction between a HMOS-degrader, 

Bifidobacterium infantis (Actinobacteria phylum) and a butyrogenic non-HMOS-

degrader, Anaerostipes caccae (a member of the Lachnospiraceae from the Firmicutes 

phylum) was studied. Anaerostipes caccae in monoculture was not able to metabolise 
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lactose or HMOS but its growth and concomitant butyrate production were detected in 

co-cultures with Bifidobacterium infantis. Anaerostipes caccae was sustained by cross-

feeding on the monosaccharides, lactate and acetate derived from Bifidobacterium 

infantis. Bifidobacterium infantis fully degraded lactose and the complete range of low 

molecular weight HMOS, pointing towards the key ecological role of bifidobacteria in 

providing substrates for other important emerging species in the infant gut. The gradual 

shift of the microbiota composition in the ecosystem contributing to the slow induction 

of butyrate could also be important for gut maturation. 

In chapter 3, the microbial network formation in the infant gut driven by another 

HMOS-degrading species, namely Bacteroides thetaiotaomicron was studied. We 

showed that Bacteroides thetaiotaomicron could drive the butyrogenic trophic chain 

with Anaerostipes caccae. Bacteroides thetaiotaomicron could metabolise lactose and 

HMOS. The bacterium showed different preference for specific HMOS structures when 

grown in co-culture. Subsequently, Anaerostipes caccae cross-fed on Bacteroides 

thetaiotaomicron-derived monosaccharides, lactate and acetate for growth and 

butyrate production. Bacteroides thetaiotaomicron might drive the establishment of the 

microbial network in the infant gut, leading to the sequential establishment of adult-like 

functional groups such as lactate-utilising and butyrate-producing bacteria. 

Furthermore, we observed stereospecific lactate isomer production in which 

Bacteroides spp. and Bifidobacterium spp. produced predominantly D- and L-lactate, 

respectively. The distinct lactate isomer production by these major glycans-degrading 

genera might affect the gut microbiota compositions by differential cross-feeding 

interaction with the lactate-utilisers.  

Chapter 4 and 5 studied the role of mucins in creating a micro-environment that 

leads to the formation of a microbial network at the intestinal mucosal layer. In chapter 

4, we demonstrated that Akkermansia muciniphila, a gut symbiont specialised in mucin 

degradation, could support the growth of the butyrate-producing cross-feeders 

Anaerostipes caccae, Eubacterium hallii, and Faecalibacterium prausnitzii. 

Akkermansia muciniphila metabolised the complex mucin glycans into short chain fatty 

acids including acetate, propionate and 1,2-propanediol as well as the mucin-derived 

sugars. Subsequently, acetate and the liberated sugars could be used by the butyrate-

producers for growth and concomitant butyrate production. Interestingly, a bidirectional 

cross-feeding was observed between Akkermansia muciniphila and Eubacterium hallii. 
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Pseudo-vitamin B12 produced by Eubacterium hallii facilitated propionate production 

by Akkermansia muciniphila via the methylmalonyl-CoA pathway. Propionate could be 

beneficial to the human host by regulating satiety and lipid biosynthesis in the liver, 

indicative of a mutualistic host-microbial interaction driven by mucin glycans.  

In chapter 5, we studied the molecular mechanism of cross-feeding between 

Akkermansia muciniphila and Anaerostipes caccae by metatranscriptomics. We 

observed a differential transcriptional response of Akkermansia muciniphila grown in 

monoculture as compared to a co-culture together with Anaerostipes caccae. In 

particular, the expression of the extracellular mucin-degrading enzymes by 

Akkermansia muciniphila was heightened in co-cultures. As a result, the 

monosaccharides liberated from the breakdown of mucin oligosaccharides chain could 

support the central metabolism of both Akkermansia muciniphila and the butyrate-

producer. This suggested that Akkermansia muciniphila plays a key role in supporting 

the microbial community at the mucosal environment of the intestine by increasing the 

availability of substrates. 

In summary, this thesis demonstrated the key functional role of milk- and mucin-

degrading symbionts in fostering a butyrogenic microbial network via cross-feeding. 

Ecologically, HMOS-degraders are critical to drive the establishment of a healthy infant 

gut microbiota, whilst mucin-degraders are vital to maintain a beneficial mucosal 

community. A better understanding of the complex nature of both the microbial network 

and the host-secreted glycans could aid in the design of nutritional intervention for 

health improvement. To this end, innovative avenues using novel probiotic strains (key 

species including Akkermansia muciniphila, Bacteroides spp. and butyrate-producing 

Clostridium), prebiotics (HMOS in early nutrition) and microbiota-targeted nutrients 

(iron and vitamin B12) deem promising.  
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Nederlandse samenvatting 

 

De co-evolutie van de menselijke gastheer en de darmbacteriën hebben tot gevolg dat 

de bacteriën zich hebben aangepast op het verbruik van door de gastheer 

geproduceerde glycanen zoals humane melk oligosachariden (HMOS) en mucinen. 

Tijdens de babytijd leveren de in de moedermelk aanwezige HMOS een bijdrage aan 

de totstandkoming van een gezonde darm-microbiota. Daarnaast , creëren de mucinen, 

die het slijmvlies van de darm bedekken, een mensenleven lang, een stabiele niche 

voor de kolonisatie van bacteriën. Door de zeer complexe aard van deze door de 

gastheer geproduceerde glycanen kunnen enkel bacteriën die zijn uitgerust met 

specifieke afbraak enzymen, ze benutten als substraat voor de groei. Vervolgens 

kunnen de bacteriën die glycanen afbreken het microbiële netwerk vormgeven via 

cross-feeding. De door glycanen vormgegeven microbiële populatie heeft grote invloed 

op de gesteldheid van de gastheer en is onder andere betrokken bij de ontwikkeling 

van het immuunsysteem, het zenuwstelsel en een gezonde spijsvertering. Tevens 

beschermt de microbiële populatie tegen de kolonisatie van pathogenen. Het werk 

beschreven in dit proefschrift heeft als doel het inzicht te verbeteren in de metabolische 

afhankelijkheid tussen melk- en mucine-afbrekende bacteriën (Akkermansia 

muciniphila, Bifidobacterium spp. en Bacteriodes spp.) en butyraat producerende 

bacteriën (Anaerostipes caccae, Eubacterium hallii en Faecalibacterium prausnitzii). 

Het door bacteriën uitgescheiden butyraat is de geprefereerde energiebron voor de 

epitheelcellen van de gastheer en is betrokken bij een scala aan gunstige invloeden, 

met inbegrip van de verbetering van de fysieke slijmvlies barrière, het opwekken van 

het verzadigingsgevoel en bescherming tegen ontstekingen en kanker. In het 

inleidende hoofdstuk werd de rol van HMOS en mucinen met betrekking tot de 

totstandkoming van het microbiële netwerk in de darmen besproken. In dat licht 

werden voor zogenaamde bacteriële sleutelsoorten de moleculaire 

afbraakmechanismen van glycanen besproken alsook hoe de interactie tussen darm 

symbionten leidt tot butyraat productie. 

In de hoofdstukken 2 en 3 was de rol van HMOS als selectief substraat voor de 

microbiële groei die de totstandkoming stuurt van de kinder darm-microbiotica 

onderzocht. In deze ontwikkelingsfase bevorderen HMOS de dominantie van de 
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Bifidobacteria van het Actinobacteria phylum. Tijdens het spenen evolueert de darm-

microbiota naar een samenstelling zoals die gevonden wordt bij volwassenen en welke 

voornamelijk bestaat uit bacteriën van de Firmicutes en Bacteriodetes phyla. In 

hoofdstuk 2 was de interactie tussen de HMOS-verbruiker Bifidobacterium infantis 

(Actinobacteria phylum) en de butyrogene Anaerostipes caccae (een lid van de 

Lachnospiraceae van het Firmicutes phylum) die geen HMOS kan afbreken 

bestudeerd. Anaerostipes caccae in monocultuur was niet in staat lactose of HMOS te 

metaboliseren, maar zijn groei en gelijktijdige butyraat productie werden waargenomen 

in co-culturen met Bifidobacterium infantis. In de co-cultuur voedde Bifidobacterium 

infantis zich met de monosacchariden, lactaat en acetaat die Anaerostipes caccae 

beschikbaar maakte (cross-feeding). Bifidobacterium infantis brak lactose en het 

complete scala HMOS met een laag moleculair gewicht volledig af, wat wijst op een 

ecologische sleutelrol van bifidobacteria in het voorzien van andere belangrijke 

opkomende soorten met substraten in de darm-microbiota van kinderen. De 

geleidelijke verschuiving van de samenstelling van darm-microbiotica, de gelijktijdig 

toenemende butyraat productie zouden ook belangrijk kunnen zijn voor de maturatie 

van de darmen. 

In hoofdstuk 3 werd ook de formatie van de darm-microbiota in kinderen onder 

sturing van een HMOS-afbrekende bacteriesoort bestudeerd, alleen in dit hoofdstuk 

draaide het om Bacteroides thetaiotaomicron. We toonden aan dat Bacteroides 

thetaiotaomicron butyraat-productie door Anaerostipes caccae kon aansturen en lieten 

zien dat Bacteroides thetaiotaomicron lactose en HMOS kon metaboliseren. Het bleek 

dat in co-cultuur Bacteroides thetaiotaomicron een voorkeur had voor andere HMOS. 

Anaerostipes caccae groeide op monosacchariden, lactaat en acetaat die werden 

geproduceerd door Bacteroides thetaiotaomicron en produceerde zelf butyraat. Het is 

mogelijk dat via cross-feeding Bacteroides thetaiotaomicron de formatie van de darm-

microbiota aanstuurt in kinderen, wat uiteindelijk leidt tot kolonisatie van lactaat-

afbrekende en butyraat-producerende bacteriën die worden gevonden in volwassenen. 

We vonden dat Bacteroides spp. voornamelijk D-lactaat produceerden terwijl 

Bifidobacterium spp. voornamelijk L-lactaat produceerden. De gedifferentieerde 

productie van lactaat isomeren van deze belangrijke glycanen-afbrekende geslachten 

hebben mogelijk invloed op de samenstelling van de darm-microbiota door 

gedifferentieerde cross-feeding interactie met de lactaat-gebruikers. 
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De hoofdstukken 4 en 5 bestudeerden de rol van mucinen in het creëren van 

een micro-niche die leidt tot de formatie van een microbieel netwerk bij het 

darmslijmvlies. In hoofdstuk 4 lieten we zien dat Akkermansia muciniphila (een darm 

symbiont die gespecialiseerd is in de afbraak van mucinen) de groei van de butyraat-

producerende cross-feeders Anaerostipes caccae, Eubacterium hallii, en 

Faecalibacterium prausnitzii kon ondersteunen. Akkermansia muciniphila 

metaboliseert de complexe mucinen in (1) korte keten vetzuren, met inbegrip van 

acetaat, propionaat en propaan-1,2-diol , en (2) van mucinen afgeleide suikers. De 

acetaat en het vrijgekomen suiker kunnen vervolgens worden gebruikt door butyraat-

produceerders voor groei en de daarmee samengaande butyraat productie. Het was 

belangwekkend dat er een bi directionele cross-feeding werd waargenomen tussen 

Akkermansia muciniphila en Eubacterium hallii. De door Eubacterium hallii 

geproduceerde pseudo-vitamine B12 bevorderde de productie van propionaat door 

Akkermansia muciniphila via de methylmalonyl-CoA route. Propionaat zou nuttig 

kunnen zijn voor de menselijke darm-microbiota middels het regelen van het 

verzadigingsgevoel en de vetsynthese in de lever, wijzend op een interactie tussen de 

gastheer en zijn darmbacteriën die wordt aangedreven door mucinen. 

In hoofdstuk 5 bestudeerden we het moleculaire mechanisme van cross-feeding 

tussen Akkermansia muciniphila en Anaerostipes caccae met behulp van 

metatranscriptomics. We vonden dat de transcriptionele reactie van Akkermansia 

muciniphila anders was in monocultuur dan wanneer de bacterie werd gegroeid in co-

cultuur met Anaerostipes caccae. Met name de expressie van de extracellulaire 

mucine-afbrekende enzymen door Akkermansia muciniphila was toegenomen in de 

co-cultuur. Het gevolg was dat de vanuit de mucinen bevrijdde suikers het centrale 

metabolisme konden ondersteunen van zowel Akkermansia muciniphila als de 

butyraat produceerder. Dit suggereert dat Akkermansia muciniphila een sleutelrol 

speelt in het ondersteunen van de microbiële gemeenschap in het milieu van het 

darmslijmvlies door het verhogen van de beschikbaarheid van substraten. 

Samenvattend, het werk besloten in dit proefschrift toont aan dat melk- en 

mucinen-afbrekende symbionten in de darmen het butyrogene netwerk bevorderen via 

cross-feeding. Ecologisch gesproken zijn HMOS-afbrekers cruciaal voor het 

vormgeven van een gezonde darm-microbiotica bij jonge kinderen terwijl mucine-

afbrekers van cruciaal belang zijn voor het behouden van een gezonde mucosale 
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gemeenschap de rest van het leven. Een beter begrip van de complexe aard van zowel 

het microbiële netwerk als de door de gastheer uitgescheiden glycanen, kan een 

bijdrage leveren aan de volksgezondheid, als het opzetten van voedingsinterventies. 

Met het oog daarop worden innovatieve remedies die gebruik maken van probiotica 

(sleutelsoorten, met inbegrip van Akkermansia muciniphila, Bacteroides spp. en 

butyraat-producerende Clostridium), prebiotica (HMOS, bij voeding op jonge leeftijd) 

en op darm- microbiotica gerichte nutriënten (ijzer en vitamine B12) als veelbelovend 

beschouwd. 
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