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Abstract

Plant phytochemicals and their synthesis are of increasing interest sincedbesadary metabolitesan

be used in a wide variety of applicationsey can be applied as medicines, giffiavolings, cosmetics and
much more. Therefore, knowledge of the biosynthetic pathways of these compounds and their regulation
is important for improving yield of certain antibiotics in crops or for improving crogteexce and quality,

for example.Recent studies found the tendency of genes coding for enzymes involved in secondary
metabolite biosynthesis pathways to physically cluster on the genome. Thessled biosynthetic gene
clusters (BGCs) consist of at lgthsee different enzymes executing some consecutive enzymatic reactions
in a biosynthetic pathway. Since metabolite levels are considered complex quantitative traits, metabolite
guantitative trait analysis (mQTL) can be used to elucidate genomic regituencing these traits. In a
same manner, expression QTL (eQTL) analysis can be used to identify genomic regions that affect
expression levelsCombiningmQTLwith eQTL(metabolite and expression quantitative trait lo@hd
biosynthetic gene cluster(B&s)predictedwith PlantiSMASHnight give more insights in biochemical
synthesis and regulation than using any of these sources afkomtation of putative BGCs can be done

by taking into account the mass spectromet¥S) dateof the (known) metaboliteand expression levels

and domains of (knownjgenes This leads to the possibility to generate hypotheses of genes encoding
enzymes that might play a role in the biosynthesis ofsheondarymetabolite. The latter is important if
exploitation of a planfor its secondary metabolites, for earlier mentioned applications, is desirak

many of the biosynthetic genes for secondary metabolites are still unknblere, strategiesased on
genomic locationoverlap were developedto efficiently integraé mQTLand eQTL with BGCs using a
recambinant inbred lingpopulationof Oryza sativaand agenomewide association studgf Arabidopsis
thaliana. Genomic overlap was detected between BGCs and x@hher e or mQTLSs) leading to
interesting links between BGCgrdasecondary metabolites as their putative products. Several validation
methods were used to strengthen the evidence for the links. Colocation networking was applied, by
looking for genomic overlap between mQMIQTL and mQTQTL pairs irA. thaliana leadng to
hypotheses proposing new possible substrates of OMT1 and BQlhdéefore, these methods can
generate hypotheses fdinking BGCs to their produdis silicg whichcan be used to design targeted lab
experiments for validation.

Introduction

Plants produce a large variety of biochemical compoundscompared to other organisms. These
biochemical compoundare involved in primary and secondary metabolism. Primary metabolites ensure
proper growth, reproduction and development, whereas secondary metasliar phytochemicals, are
important for plant defense and also act in attractiather organismsand signalingNutzmann et al.,
2016).

Metabolite (and expression) levels are considered complex quainttéraits and genomic regionhat
affect these évelscan be eludated by quantitative trait locuémQTL; metabolite QTL, eQTL; expression
QTL) analysighey are calledamplex quantitatie traits in thesense that the trait is affected by multiple
genes and can be affected by environmental factlirsan also be, in the case of epistasis, that the effect
of one gene depends on thexpressionof other genes, which adds another layer of complexityTL
(mQTL or eQTlgnalysisinvolvesannotatingand measuring metabolite/mRNA levels combingih
genotyping of inbred lines. Recombinant inbred lines (RILS) by sseglé descent (SSD) are often used to
achieve transgressive segregation of traits by crossing two parents with distinct phenotypes. The RILs are
generated by selfing individual members of erond generation gfuntil nearly complete homozygous
individuals arebtained In a combined analysisebause of the differencdsetween genome composition
and metabolite/mRNA levels in the RILs, genomic regions canidbatified that affect certain
metabolite/mRNA levels GarreneQuintero et al., 2013 Metabolic profiling of plants during mQTL
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analyses is often done by mass spectrometry (N#lpwing gas chromatography (GC) or liquid
chromatography (LC). However, it is important to note that the cioiafion of GEMS mostly detects
primary metabolites, whereas IS detects a wide array of secondary metabolifEsis has to do with

the fact that most secondary metabolites are not volatile and therefore cannot be detected w{fRd3.@€

et al., 2008.

Recent studies foungbhysical clustering of genes in plants involved in sequential enzymatic rea@mns

is also true for Bacteria in the case of operonf,biosynthetic pathwaydor secondary metabolite
synthesisThese clustered genes are called biobgtic gene clusters (BGCs) whenever they contain genes
coding for at least three different types of enzyn{ditzmann et al., 200)6Plant BGCs often contain the
gene encoding the enzyme responsible for the first step in the pathway and two or more ethes tor
enzymes downstream in the pathwawpften interspersed with unrelated gene§here are some
hypotheses about the reason behind clustering of these pathway genes, like: less risk of disruption (and
thus loss of the pathway) by recdination, less chinee of toxic intermediates, higher chance of-co
regulation because of elocalization, andenefitsfor formation of multienzyme complexegNutzmann

et al., 2016. Recently tools, lik®lantiSMASKKautsar et al., 20)7and PlantClusterFindéEchlapferet

al., 2017, have been developed to botliscoveBGCselated toknown clusters in databases and predict
BGCsle novo

Integrating mQTL, eQTL and predicted BGCs might lead to the discovery of novel biosynthetic pathways or
extend the knowledge about kmvn ones. This knowledge can in turn be use@xploit a plant for its
secondary metabolites, far.g. application as drugs or cosmeticg)TLs make it posde to link BGCs to
metabolites. If the mQTL is for the content of a secondary metabolite and eadtjopa specific (clustered)
biosynthetic gene of known function or containing known domains, this gene might be causal for the
variation in secondary metabolite content. This information can then be used-torugownregulate the
production of the seconary metabolite in the plant by genomic engineerie@TLs might illuminate the
regulation of both BGCs and mQTIEshe eQTL is for the expression of a biosynthetic gene and mapped
to the same biosynthetic gene or a location elsewhere in the genome, tiggping locations might be
causal for the variation in the biosynthetic gene. These mapping locations might be promoter regions,
ONI YAONRLIIAZ2Y FFOG2NARZI SYKFEYyOSNAR 2N 20KSNJ NB3IdzE | s
level. This knowledgean in turn be used to elucidate regulation of biosynthetic pathwellgsice in silico
integration of these datatypeseems promising for generating hypotheses of biosynthesis of secondary
metabolites and its regulation.

A combination of mQTL and eQTL lgsas, and linking these, has already been doyé/entzell et al. in
2007in Arabidopsis thaliandILs in which they associated polymorphisms influencxgression and
metabolite levels inwo glucosinolate biosynthetic networks (aliphatic and indolid)ey found that all
eQTls for genes in these specific pathwawdso affected the accumulationf the corresponding
metabolites Furthermore, epistasis was more afteletected for metabolites and their broad sense
heritability (H, ratio between genetic wéance and total variance) was lower in comparisongene
expression levels. These results show that metabolic traits are more affected by environmental factors
than geneexpression levels. Howeverombining mQTd.with eQTls allowed them to understand #n
regulation of these two biosynthetic pathways better, despite the complexity of eqsstnd low Hfor
metabolites(Wentzell et al., 200/

Here, methods were developédd integrate xQTL datasets with BGCs predicted RigntiSMASHased

on genomic loational overlap. Datasets of both a RIL population a@enomeWide Association Study
(GWAS%of Oryza sativaand Arabidopsis thalianaespectivelywere usedHereafter, the @tected overlap

was validted andfurther analyzedto explain the overlap usinfiterature, genome annotations, and
biochemistry knowledge
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Methodology

Realization of th@roposed goalsequires integrative analyses. The methods consist of preprocessing the
(xQTL) data, runninBlantiSMASHfinding genomic overlap between BGCs and@ %) and validation of

the discovered overlap. Whenever settings are not specified for the used tools, default settings were used.
The workflow and specific commands can be foletbw inappendicesl. and 2. CommandsMost
graphs were made with ggplot2\ickham, 2009in the R programming languagéR Core Team, 20),7
whereas the rest of the methods have beiemplemented inthe Pythonprogramming languagéython
SoftwareFoundation https://www.python.org/).

DataxQTLldescription

The OryzasativaeQTL dataset wamken from the study ofWwanget al. in D14. The dataset contains
13,648 significanteQTLs(5,079 ciseQTLs and ,B68 transeQTLs)with an average size af.50 Mb.
Expression profiling was done with an Affymetrix Rice Genome AB&yLA02bon flag leaf tissue at
heading date of rice plants grown usdnormal agricultural conditionsThe results of the expression
profiling was later used fahe coexpression analysis withittantiSMASHhe data is stored in the NCBI
GEO database with accession numB&E49020rheO. sativamQTL dataset was derived from the study

of Gong et al.in 2013 The dataset contains,@2 significantmQTLs with an average size220 Mh
Metabolite profiling was done with LKAS/MSon flag leaf tissuat heading date of rice plants grown under
normal agricultural conditionsBoth studies used the same RIL population consisting of 210 lines from a
cross between Zhenshan 97 and Minghui 63. Furthermore, the same strategy for QTL mapping was used,
namely, omposite interval mappingvith R/qtl (Broman et al., 2003ased on 619 recombinant bins.

The locations of the xQTLs correspond to the MSUw&lvéhara et al., 20} ¥ersion of the rice genome
(size: 373.2 Mb, gene density: 6.66 Kb/gemember ofgenes 55,986. The eQTL1ad mQTL densities were
0.027and0.132 Mb/QTL, respectively

Besides theD. sativaRIL population, data from a GWASAshbidopsis thalianavere used as well. The
eQTL dataset was derived from the studyKefivakatsu et alni201§ in which 1227 differentA. thaliana
accessions we gene and phenotypel (1,673,530 markes). Expression profiling was done with Risi#q

using the lllumina HiSeq 256@quencer(lllumina, Inc., San Diego, Ja# leaf tissue from rosettes just
before bolting under normal condition# linear mixed model ithe LIMIXPython pakage(Lippert et al.,

2014) was applied to the genotype and gene expreassimatrix, resulting in 285 significanteQTLsThe

A. thalianamQTL dataset waskenfrom an unpublishedsWASKooke et glunpublished dath in which
349different A. thalianaaccessions were ger@nd phenotyped (214,051 markersjetabolite profiling

was done with GBS and L&4Son full rosette leaf tissue under normal conditioRaw MS spectral data
were processed with MSClustTikunov et al.,, 2012 and these data were used ater for
validation/annotation MSClust uses unsupervised fuzzy clustering to extract putative metabolite mass
spectra {ikunov et al., 201)2Linear mixed models IBEBMMAX Kang et al., 200&ndthe GAPIR package
(Lipka et al., 2002were applied to thegenotype and metabolite profiling matrix, resulting ir897
significantmQTLst KS f 20l GA2ya 2F 0620GK a&ddzRA S & Gwdtvetkett 02 NN
al., 2009 of the thale cress genongeize: 119.7 Mb, gene density: 4.35 Kb/gemeamber ofgenes: 33,602

A total number of 175A. thalianaaccessions overlap between the two GWAB& eQTL md mQTL
densities werd).055and 0.063Mb/QTL, respectively

DataxQTLformatting

Both the eQTL and mQTL davare stored intab-separatedtext files containing the followingolumns
The first column containkcus tag nams (OSXgXXXXX, XgXXXXXh caseof eQTLs and metabolite
names for mQTLs. Whenever the metabolite name is unknown, an artificial ID waswitlhdee mass

Pageb of 30


https://www.python.org/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL2025
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE49020

and retention time.The second column contains the chromosome nursloéthe QTLs. The third, fodrt
and fifth columns contain locations of the peak, st@nferior boundary)and end(superior boundarydf
the QTL (in Mh)respectively The LOBcores are stored in the last colunfror theA. thalianaGWASSs,
the method of linear mixed models only redgr the best association between a SNPd an
expression/metabolite level§ heactual causal SN# the variation in expression/metabolite level can be
anywhere between the previous and naxiarkerwith respect to the associatesharker. This was taken
into account when posing hypotheses of gene/metabolitBGC associations. The averatgrkerdensity

of the entireA. thalianagenome wasl markerevery565.47 basepairffor the mQTL study, thearker
density was higher for the eQTL studhamely 1 rarker every71.19basepairy The QTlregiors were
artificially extended to match the format, by adding and subtractithge average marker densigpecific

to the QTL analysi§or the mQTL study, the marker list that was used with exact positions was available.
Anexample of the data format can be seerappendix3. Input data format xQTLs

RunningPlantiSMASKENd formatting its output

BGCs were predicted witRlantiSMASHKautsaret al., 2017 for both the O. sativaand A. thaliana
genomesA separate GFF3 and FASilBAwith genome version MSUv6Hawahara et al., 20)3vas used

as the input for rice BGC prediction. For thale cress, the NCBI GenBank genome file (GBFF) of TAIR10
(Swarbreck et al., 200&vas used as inpuasPlantiSMASIdccepts both. The gene expression profiling by
array of allO. sativeRILs including parents was given as inpuPfantiSMASIHs it is capable of performing

a coexpression angdis. For both species, clusterBLAST and knowndBISAST are turned on making
PlantiSMASHearch for similar BGCs in other plants and known BGCs by referring to MiBi&(a et

al., 2019, respectively The settings for BGC prediction were made less strict by lowering the minimum
number of unique domains per@&C from two to ongand by increasing the GHIT cutoff from 0.5 to 0.6.

The output filesXX_BGC.txt (whereXXrefers to the chromosomes) in the folder namiati produced

by PlantiSMASMas used to parse the BGC data for finding genomic ovértapfollowing elementsvere
parsed from these files: clusterID as giverPgntiSMASHclustertype (saccharide, terpene, polyketide,
alkaloid,putative etc.), chromosome, start and endtbé BGC in bp, and a list of genes belonging to the
BGC.The coexpression aheis output was used for validation of the genomic overlapywealt as the
output of the knownclustdBLAST analygjsee the section€oexpressioranalysisof genes in BGCs with
overlapping xQTLand Confirming known BG@roduct pairsbelow).

Genomioverlap between BGCs and xQTLs

Three possibilities for genomic overlap between BGCs and xQTLs were taken into atbeufitst
possibility is when the peak of an xQTL isinithe boundaries of the BGC. The second possibility is when

the inferior boundary of the xQTL is within the boundaries of the BGC, with a minimum overlap of 30%
(arbitrary, butled to half the detected overlap for some BGCs in rice without losing toy motner BGCs
withoverlap2 ¥ G KS . D/ Qa aAl S ¢KS frad LRaaAroAfAle A& ¢
02dzy RENASE 2F GKS . D/ X gAGK | YAYAYdzy 2@0SNI L) 27
be seen irappendix4. Overlap rulesThe rule for minimum overlap of 30%F . D /w@sionhdapplied

to the rice xQTL datas these xQTLs are much larger than the thale cress dimesoutput is a tab
separated text file containing BGGdrmation (clusterID, clustertype, chramaome, and start and end in

bp), followed by information on the xQTLs (locus tag/metabolite hamelpe, adjusted walue, LOD

score, locus annotation, locus start bp, locus end bp, and locus status) found teti@pping. The

values are derived from permutation tests, which will be explained in the validation seclios.locus
annotation is parsed from the GFF3 file, as well as the locus start and end position. Locus status indicates
whether the genefor which the eQTLwas foundbelongs to the BGC, #ue(Xhe status is local, when
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Yalsexhe status is distantAn example of the output format can be seenajppendix5. Output data
format xQTLs and BGCs overlap

Cdocation network: gnomicoverlap between xQTisdependentof BGCs

Another option is to look for genomic overlap between xQTLs independent of BREEmight potentially

lead to the discovery of BGCs that were not predictedPlantiSMASHbut can as welgive hints to
regulatory regions. One can look at three possibilities: overlap between mQTLs, eQTLs, and mQTLs and
eQTLs. Here, overlap was again defined as overlapping genomic regions with the same rules applied as for
the overlap finding between BGCsaxQTLs. Again, it made sense to apply the minimum overlap rule
solely to theO. sativaxQTLsDue to time constraintsywe only looked at overlap between mQTasd

between mQTLs and eQTih4\. thaliana The detected overlapping xQTL pairs were given @ajusted)

p-value by using the permutation test procedure described belonly using the Benjamitiochberg
correction A colocation network was constructed of the outcome wiytoscape v3.4.@&hannon et al.,

2003 where nodes represent xQTLs and tages represent the overlap between the xQTLs withe

weight asthe -logio of the adjusted prvalues An example of the output format can be seerappendix6.

Output data format overlapping mQTLs

Validation

Several approaches were used to validate the genomic overlap that was fmahdssess the feasibility of
the described method: permutation testponfirming known BG@roduct pairsanalysis of MSClust data,
variantcalling, and a coexpression analysis eéfigs in BGCs. Hereafter, these methods are described in
more detail in the abovementioned order.

Permutation test

A permutation or randomization test was applied to test ligelihood of random occurrence of genomic
overlap between xQTLs and BGCs. Bndomization test involved generatimgdependentrandom xQTL
and BGC data by shuffling chromosome number and chromosomal lodatiependently keeping the
size of the regionshe same The actual chromosomal number and length were used as the input for
shuffling.Hereafter the random datavere used as an inpufior the function to detect genomic overlap
between xQTLs and BGCs. This procedure is equal to one permutation. Thousand permutations were
performed to calculate the likelihood of a detected overldpis likelihood was calculated by dividing the
number of times the specific overlap was found by the number of eQTLs or mQTLs (dgpmnthe type

of overlap). Bth BenjaminiHochbergBenjamini et al., 199%and Bonferron{Bonferroni, 193%multiple
testingcorrections were applied to theesultingp-values The adjusted fvalue threshold was set to 0.05
for both correction methodshowever, because of the exploratory nature of this study no overlaps were
discarded but the adjusted-palues of both corection methods were taken into account for validation.
Furthermore, the Bonferroni correction seemed too conservaiseseen by the number of insignificant
overlaps, even for thé. thalianaQTL data

Confirming known BG@oduct pairs

For some BGCs @. sativaandA. thalianathe product is known. These known B@i©duct pairs can be

used as a way of validation of the genomic overlap method that was described here. If the known products
are detected in the MS analyses and associated with a genonidrelyen there will be amQTL for this
product in he datasets that were used.tlis mQTL overlaps with the BGC thiavas already associated

with, this strengthens theconfidence inthe method developed here. The following products are already
assocated with BGCs i®. sativa phytocassane/oryzalide and momilactoriéhe following products are
already associated with BGCsAnthaliana arabidiol/baruol, tirucalla, marneral and thalianél.more
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detailed description of the BGCs with known productgresented inappendix7. Detailed overview of
BGCs with known pradglcts inO. sativaand A. thaliana

Analyzing ME&lus) data

Raw spectral 8IS data processed with MSClustkunov et al., 200)2wereavailable 6r the A. thaliana
GWAS. As not all metabolites were annotated in the mQTL dataset and appeared as cluster IDs referring
to the output of MSClust, the latter dataset was used to find the cluster IDs and the masses of the
measured compounds belonging to thauster. As a cluster in MSClust can contain multiple fragments,
first, the parent ion had to be identified. The parent ion mass was then used to search the following plant
specific MS databases for hypothetical annotation: ReSp8eatvéda et al., 20)2and KNapSacK
(Nakamura et al., 20)3The exact masses of the metabolitesving an overlappingnQTL in thé. sativa
dataset were also searched again in these databdsesstructures of the potential metabolite candidates
were analyzed as well, lookifigr specific groups matching genes in the BGC (for example, finding hydroxy
groups and having dioxygenases in the BB@)ChemKim et al., 201pwas used to search fstructural
information of compounds.

Variantcalling

Aslllumina HiSeq 2004liumina, Inc., San Diego, LWGS paired reads with multiple insert sizes were
available for both parents of the recombinant inbred line populatio@o$ativaand since their xQTLs are
large, a SNP callingqmedure was applied to verify the genes in the loisynthetic gene clusters are
actually variablebetween the parents of the populationvariation in these genes might then be
responsible for the variation in expression and/or metabolite levels that were found with the xXQd_s.
following NCBI SRAginoren et al., 201} datasets were used for the Minghui 63 pareBRR3234369
SRR323437andSRR323437 Whereas the following were used for the Zhenshan 97 paf&fRR3234372
SRR32343and SRR32374For both parents pairednd libraries weresequencedwith three different
insert sizes: 300 bp, 5 kb and 10 Hine total coverage for Minghui 63 before trimming and fikgris
approximately 185x, wheas for Zhenshan 97 it is 26 Bereafter, the methodology will be described
briefly, specific command and settings can be foundpgpendix2. CommandsReads were trimmed and
filtered with Trimmomatic v0.36Blger et al., 201y possible adapters were removed as well. Read
guality was checked before and after trimmingth FastQC v0.11.A(drews, 2010 Trimmed reads of
both parents were mapped sensitive ) with Bowtie2 v2.2.6{argmead et al., 2012against the
indexed MSUV6.1 rice genome referenga(ahara et al., 20)3The resulting SAM files were converted
to sorted BAM fi¢s and indexed with SAMtools vI(I7 et al., 200R SNPs and indels were called with
SAMtoolsmpileup and BCFtoolsall v1.6 Narasimhan et al., 20)dGW2.4.8(Thorvaldsdéttir et al.,
2013 was used to visualize and search throdgé called variants, BCFtodtats was used to create
some statistics of the variant callinhe goal was to look faron-synonymousvariants in the domains of
genes coding for enzymes important for the BG&@v quality variants (< 50) were not considered.

Coexpressioanalysiof genes in BGCs with overlapping xQTLs

The last method of validation that was applied, was a coesgion analysis on the transcription profiling
array data from the RIL population Of sativa(GSE49020 consisting of 216 samples (one replicate from
each RIL, and three remies from each parentPredicting BGCs is one thing, however when the genes

in the BGCs are actually coexpressis indicates that the BGC is active and its genes might be co
regulated where the latter is an important characterisacd/or benefit of E5Cs.However, gene
expression still depends on the conditions that were used in the experiments, some genes are solely
expressed under very specific (environmental) conditidine coexpression analysis methbdsed on
Pearson Correlation (P@plementedin PlantiSMASKas usedvith default settingsHowever, first, the
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Affymetrix probe names in the expression matrix were parsed in to locus tag as previously used
(LOC_OsXXgXXXXX). Not all proags matching locus tag Ensembl BioMart{(insella et al2011). The

output graphs of thePlantiSMASHoexpression analysis were used to interpret results: expression
heatmaps, coexpression networks (edges are drawn when the PC coefficient reached a certain threshold)
and hive plots (showing interluster coexpession).

Source ode
All written code can be found dnttps://github.com/lottewitjes/MSc thesis

Results

Since the method for finding overlap described above was executed foihathtivaandA. thaliang but
not all validation methods, the results section is divided in two subsections, one for each organilym

Oryza sativarecombinant inbred line population

The overlap between xQTLs and BGCs analy<is &ativaresulted infinding ovefapwith an xQTlor 31

(13 with mQTLsyut of 49BGCs predicted bylantiSMASH-igure 1shows the number of overlapping
XQTLs on the-axis versus the 49 BGCs represented by their cluster type orakis yThe color represents
the differentQTL typeswhereas the alternating background color represents the different chromosomes,
starting from one at the origin to twelve at the topocal eQTLs (red) are eQTLs of genes that belong to
the BGC. Distant eQTLs (blue) are eQTLs of genes outside théviB@flite QTLs (MQTLs) are
represented in greernThe black arrow shows the known B@@ducts pair of phytocassane, the BGC for
momilactone was not found in this genoniecan be seen that the number of BGCs and overlapping xQTLs
are not equally distributeditroughout the genomeRlantiSMASIdredicted only one BGC on chromosome
twelve, whereas therevere six on chromosome six. The number of overlapping xQTLsvesfound for

the different BGCs vaideas well:the terpene cluster on chromosome two thaver 50xQTLs, and for
some clusters no or little overlap was fouritherewere more overlapping distant eQTLs than local eQTLs
and mQTLsThese observations mateld with the number of xQTLs in the dataset, graphs of the xQTL
distributions can be seen Bupplematal figure 6A and Bin appendix

8. Distribution of xQTLs throughout the genomes ©f sativaand A. thaliana
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Figurel The number of overlapping xQTLs on thaxis versus the BGCs repented by their cluster type on theaxisfor O.
sativa The alternating background color represents the chroomess, starting with chromosome onat the origin to
chromosome twelveat the top of the figureLocal eQTLs (red) are eQTLs of genes thanbdb the BGC. Distant eQTLs (blue)
are eQTLs of genes outside the BGC. Metabolite QTLs (m@&h) are mQTLs of metabolites. The BGC with a known product
(phytocassane) is indicated with the black arrow.

The variant calling analydietween the parentof the RIL populatiomesulted in3,738137 SNPs and
763542 indels, and the ratio between transitis and transversionswas 2.44.The latter ratio is as
expected, since transitions occur approximately twice as often as transve(§iofigis et al., 199. The
PlantiSMASHoexpression analysis resulted in having six BGCs with coexpression networks (Pearson
correlation coefficient, PCC, threshold 0.5). The fifth BQ¢pefsacchariddad a coexpression network
containing five genes (with edges rangingnfr PCC 0.50.63), all other networks had only two nodes

(with edges ranging from PCC 0&B4) A coexpression network was visible whenever a BGC is expressed
in the gene expression profiling analysis and edges were visible whenever genes within the®GC
coexpressedThe Bonferroni correction on theymlues of the permutation test seemed too conservative

for the exploratory nature of this study, and therefore only the BenjatHiochberg corrected palues

(BH) will be namedtogether with the LOEBscore of the QTL analysi§here were mQTLs for both
phytocassane A and C, however no overlap was found between these mQTLs and the phytocassane BGC.

When looking closer at the found overlap between BGCs and xQTLs, there are some eil@hpies
some confilence tothe methods described heré&till, all that will be described hereafter is hypothetical.
The first example involvethe second BGC of type lignan on the first chromosoiites BGC showed
overlap with two mQTLs whereof one wéhmbachol ABH 001343, LOBcore 3.3). Lehmbachol A
(PubChemD: 10206646) is astilbenolignan, which matchethe BGC type predicted dlantiSMASH
lignan Figure2 shows the 2D structre of lehmbachol AThe BGC containdgvo dirigent enzymes and
two dioxygenasesDirigent enzymes are important for plant secondary metabolism and lack catalytic

PagelOof 30


https://pubchem.ncbi.nlm.nih.gov/compound/102066461#section=Top

activity but are capable of directing the outcome of bimolecular coupling reactPic&d] ¢ al., 2013.
One of the dbxygenases (LOC_0s01g25010) thaee nonsynonymous SNKEmethionine to threonine,
alanine to glycine, and valine to phenylalanimebhe dioxygenase domal@OG_Fell _O)wf the resulting
proteinand no variants in the other dioxygenase domaindX ) Since lehmbachol has hydroxy groups,
these SNPs might be causal for the variation in the lehmbachol A cartdrihereforethis BGC might be
involved in its biosynthesiSupplemental figure7 presents an example of the variant browsing in IGV,
the variants in LOC_0s019g25010 are showime PlantiSMASHcoexpression analysis showed no
coexpression between genes in ti&C.

)
TN

FHgure2 The 2D structure of lehmbachol A. Taken and adjusted from PubGfiene( al., 201p

The second example involves BGC 42 of togativeQon the tenth chromosome. This BGC showed
overlap with ten eQTLs whereofrde eQTLsvere of genes with dioxygenase domains within the BGC:
LOC_0s10g4096®BH: 0.03, 0.03, LGfzore: 20.47, 24.07) and LOC_0Os10g40990 (BH: Osddd®
63.65).There were four overlapping mQTLs as wellere threemasseq611.1607, 655.2133, 801.2237
Da)were searched in the ReSpect and KNapSacK dataddse611 Da mass gave a hit with cyanidin 3,5
diglucoside, the 655 Da mass with malvidin-8iglucoside, and the 801 Da mass with malvidin 3
(coumaroyh5-diglucoside. All three mQTLs corresponding to tieemed masses had significant BH
adjusted pvalues and LOBcores ranging from 4-8.6.Since the difference between cyanidiPubChem
ID:128867) and malvidinPubChem ID:59287 isone methoxyand methyl groupit might be that the six
dioxygenases present in the BGC are involved in adadingxygen atomto cyanidin, where after
methyltransfeases (situated elsewhere) finish the conversiBigure3A and3B show the 2D structures
of cyanidin and malvidin, respectivelyhis BGC might be involvadthe conversion of cyanidin sugars to
malvidin sugarsLOC_0s10g40990niProt ID:Q336S9 ORY)Sd a putative flavonol synthase anidad
one nonsynonymous SNRjlutamine to histidine)in the dioxygenase domai(OX N that might be
responsible for the cieQTL and the mQTLRere are no known active site residues for this dioxygenase
therefore it is unknown if this nesynonymous SNP is at an active site resiéleenology modelling with
SWISS/IODH. (Biasini et al, 2014, based ora template with39% protein sequence similarii?(B ID:
507Y protein name: thebaine 60-demethylaseand active site prediction wit€EOFACTORhang et al.
2017 lead to no predicted active residue3he model is presented ifigure 4 The PlantiSMASH
coexpression analysis showed no coexpression between genes in this BGC.
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Figure3 The 2D structures ok cyanidin andB malvidin.Taken and adjusted from PubCheiing et al., 201p

Figure4 A 3D structural model of the protein encoded by LOC_0s10g40990 modelled with I 8®MIESR Biasini et al.2014).

The last example involveBGC 47 ofype polyketide on tk eleventh chromosome. This BGkbwed
overlap with 10 eQTLs and 14 mQTse of the mQTLs is for isogemichalcone B (BH: 0.00876&5ddDd
4.5). Isogemichalcone B (PubChemd®P807532 is a compound of type polyketide, which matched the
BGC type predicted bylantiSMASHFigure5 shows the 2D structure of isogemichalconeTBe BGC
contained three ketosynthases whereof one had one sgnonymous SNRjlycine to serie) in the
ketosynthase domain Qhal_sti_synth N which might be the causality of the variation in the
isogemichalcone B content.
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Figure5 The 2D structure of isogemichalcoBeTaken and adjusted from PubCheidin( et al., 201p

Arabidopsis thalianayjenomewide association study

The overlap between xQTLs and BGCs analydts thalianaresulted in finding overlgging xQTLfor 36

(33 with mQTLsyut of 48 BGCs predicted IBlantiSMASH-igure6 shows the number of overlapping
XQTLs on the-axis versus the 48 BGCs represented by their cluster type orakis yThe color represents
the different QTLs, whereas the alternating background color represents the different choomes,
starting from one &the origin to fiveat the top.Local eQTLs (red) are eQTLs of genes that belong to the
BGC. Distant eQTLs (blue) are eQTLs of genes outside the BGC. Metabolite QEL.afer§dresented

in green The black arrows point towasdknown BG@roducts pairs, all that are known fdéx. thaliana
were detected byPlantiSMASHHere as well it can be seen that the number of BGCs and overlapping xQTLs
were not evenly distributed throughout the genomelantiSMASIdredictedfewer BGCs on cbmosome

four in comparison with the otherslhe number of overlapping xQTLs thasfound for the different
BGCs varitas well, thesecond saccharidduster on chromosome two libover 20 xQTLs, and for some
clusters no or little overlap was found. Tkavere more overlappingnQTLghanlocaland distant eQTLs
Graphsof the xQTL distributions can be seerSupplemental fjure 6C and On

8. Distribution of xQTLs throughout the genomes$O. sativaand A. thaliana Therewere no overlapping
local eQTLs on chromosome three, four and five, how8ugplemental figure &shows that theravere
numerous eQTLs associated with these chromosomes.
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eQTLs of genes outside the BGC. Metabolite QTLs (mQTL, green) are mQTLs of metdroBe£s with known products are
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Whentaking a closer lookt the found overlap between BGCs and xQTh&re are again examples that
give some confidence to the methods described héreth for RItbased and GWA studieSitill, all that

will be desdbed hereafter is hypothetical, howevey. thalian@2d ISy 2 Y S ndtafed thad théd SNJ | v
rice genomeand the GWASs had higher resolutiosio mQTLs werannotated in the dataset for
arabidiolbaruol, tirucalla, marneral and thalianol, however they still mightabeongst the mQTL with
unidentified masses.

The first example inMeesthe thirteenth BGC of type saccharide on the second chromosome. It showed
overlap with two ciseQTLs for SCPL12 (serine carboxypeptitlesé2, however it is a Scl acyltransferase
and 10 mQTL®ne of the mQTLs was for kaempferitrin, which showedssociation witlthe marker for
SCPL1(serine carboxypeptidaskke 11, however it is a Scl acyltransferas&gempferitrin (PubChem ID:
21159160 is a kaempferol withwo sugar groups on the third and seventh carbon atesfigure7 shows

The BGC contained a UDRcosyltransferasd fniProtKB IDO81010 ORF namef20K9.14gene name:
UGT79BBwhich haghe following GO molecular function termgshburner et al., 2000quercetin 30-
glucosyltransferas€GO:008004B and quercetin 70-glucosyltransferse (GO:008004) activity, both
inferred from biological aspect of ancestor (IBA)might be that this glycosyltransferase also acts on
kaempferol to add sugar groupsince kaempferol andjuercetin only differ in one hydroxy group
Therefore, this BGC might be involved in the production of kaempferitrin.
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Figure7 The 2D structure of kaempferitrifaken and adjusted from PubCheing et al., 201p

The second eample invdves BGC 36 of type saccharide/terpene on the fourth chromosadrhe.
knownclusterBLAST analysidPtdntiSMASHhdicated that this BG(S the known BGC forabidiol/baruol
(83% similaty). The BGGhowed overlap witrsix mQTLs. All mQTLs had unidentified masses, however
one of the mQTLs associated with a particular MSClust cluster (1_246) contained masses areaf@l 420
Da, it might be thathis cluster contains arabidiol (PubChem 25245907 and/or baruol (PubChem ID:
25203718, since the masses of arabidiol and baruol are 444.744 and 426.729 Da, respdotigelfithe
masses in this clustavas 5031238 Da, this could be arabidiol with acetic acid as an addict §cetic
acid- H,mass:503.7579 D3, since the LGS analysis was in hegative modégure8A and 8B showthe

2D structures of arabidioland baruol Cluster 1_246 was associated with the marker for the pentacyclic
triterpene synthase 1 (PEN1), which is known to convert oxidosqualene to aralfidiod et al., 2006
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Figure8 The 2D structurgof A arabidioland B baruol Taken and adjusted from PubCheldin{ et al., 201p

The last example involves BGC 46 of type putative on the fifth chromodoisteowed overlap with 9
mQTLs whereof one mQTL (BH: 0, is©e: 7.463)was for methoxyglucobrassicin (PubChem ID
glucobrassicin:5484743, a glucosinolate Figure 9 shows the 2D structure of glucobrassicin.
Methoxyglucobrassicin was found to be associated whth marker for CYP81F2. CYP8t&@es fora
indol-3-yl-methylglucosinolate hydroxylase and was previously found to be involved in the biosynthesis of
glucobrassicin iBrassica oleracagotelo et al., 201)6CYP81F2 was also previously proven to be capabl
of hydroxylating the glucosinolate indole ringAnthaliana(Pfalz et al., 2001 The BGC also contained the
gene MJB24.4UniProtKB IDQ9LVDYcoding for gputative thioredoxin superfamily proteinthat might

act onthe sulfur atoms imethoxy)glucobrassicin as welit last, the BGC also contained several genes
with methyltransferase domains, however none of them were previously identified as capable of
transferring methyl groups to glucobrassigi(or other glucosinolates).
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Figure9 The2D structure of glucobrassicifiaken and adjusted from PubChelting et al., 201p

Finally, a colocation network analysis was donéotk for overlap between mQTLs ahdtweenmQTLs
and eQTLsndependent of the predicted BGCs An thaliana This approach might lead to novel BGC
discovery and links between metabolites and gendse resulting network is shown Bupplemental
figure 8, and had671 nodes and2734 edges.Some hubs can besen in the network and two of those,
involving secondary metabolites, are presented here. Unfortelya those hubs did not contain links
between mQTLs anelQTLs.

FigurelOpresents the first network hub of overlapping mQTIEs network hub contained saputative
anthocyanidn sugarsmalvidin, cyanidin and delphinidin sugdtsalso contained feruliacidand sinapoyl
esters, and some flavonoid sugars (kaempferol, luteolin). All mQTLs were associated with the marker for
OMT1 in the QTL analysis. OMTbes for Gmethyltransferase that is known to act on caffeic acid,
hydroxyferulic acid, sinapoyl esters, and lignifisag et a] 1997 (Goujon et al., 2003 however it also
FOda | a iomethykrahsdfeyaBel(luzact al., 2000 The associatins between the metabolites
and genes in thé. thalianadataset thus correspond with literature, and it might be that this OMT1 also
acts on anthocyanidiaugars The latter is hypothesized here based on the network lhubklose physical
proximity (within 20 kb)of OMT1 are@me transcription factors, and the genes PTAC15 and PRI 15
encodes for a mTERF protein important in development proces€esn¢ T.,2012), whereas PORA
encodes a lightlependent NADPH oxidoreductatigat is involved in chlorophyll synthesis (Kimet al.,
2012. Therefore OMT1 does not seem to be part of a BGC.
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Figure10 A network hub containing mQTLs (nodes) for anthocyanidin related compounds, flavonoid sugars, and ferulic acid and
sinapoyl estersThe edges represemdcational overlap between the mQTIAlI mQTLs in this hub are linkedttee marker for
OMT1.

Figue 11 presents the second network hub of overlapping mQTlés network hub contained some
flavonoid sugars and one glucosinolate. All mQTLs were associated with the marker for BGLUG6 in the QTL
analysis. BGLU6 encodes a flavofajjlucosyltransferase and ag found to be important for the
production of flavonol 30-gentiobioside 70-rhamnosides (both kaempferol and quercetin derived) in the
study ofishihara et al., from 201@ his network hub contains two kaempferol and one quercetin sugars,
which is in lie with the findings in the studyA hypothesis would be that this BGLUG is also capable of O
glycosylation of (zphenylethyl) glucosinolatesn closephysicalproximity (within 20 kb)to the BGLU6
gene arethe genes coding for BGLUS and NACO2:@ latter is a transcription factdhat plays a role in
the determination of the position of shoot apical meristen@®ka et al.2003), whereasBGLUSppears

to be a pseudogene since it lacksrtain motifs necessary for its glycosidase activity €t al.,2004).
Therefore, BGLU6 does not seenbtpart of a BGC.
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S

Flavonoid glycoside <2
Quercetin-?-0-glucoside-7-0-rhamnoside
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Figurell A network hub containing mQTLs (nodes) for flavonoid sugars and one ghlatsiiThe edges represent locational
overlap between the mQTLs. All mQTLs in this hullimted to the marker foBGLUSG.
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All examples describeih this sectiorindicate that the method of integrating BGCs with eQTLs and mQTLs
might work to link BGCs foutative products and regulating genes for both RIL populations @#dASs.
Furthermore, the method to find overlapping xQTLs independent adflipted B&s might work as well
Stillall methodsshowsomelimitations andculpritsas discussed in the next section.

Discussion

Since plants produce an ample array of nyshknown secondary metabolites, natural product discovery

is of high interest so that metabolites with beneficial characteristics for human can be exploited for
applicatiors, e.g. drug discoveril{itzmann et al., 2006 The goal of this study was to ecuq# integration
methods forpredicted BGCs ylantiSMASIAnd metabolite and expression QTL d&iaRIL populations

and GWASsThis integration can lead to hypotheses generation of genes involved in the biosynthesis of
secondary metabolitesThe idea washat, by looking at genomic overlap of the BGC and xQTL regions,
BGCs could be linked to metabolites and genes that regulate the expression of theTB&R8ssults
section showed some examples that might indicdte methods developed here work for posing new
hypotheses, albeit rather speculative. This section will discuss some remarkable discoveries, limitations,
andfuture work.

Differences can be noticed between the overlap B&QELs of the. sativaand A. thalianadatasets,
Figure 1 and 5Some of these differences are explained by the number and distribution of the xQTLs in
the genome $upplemental figure i However, some are more difficult to explain, like the observation
that there are no overlapping eQ% on chromosome 4 and 5 Af thaliana This observation cannot be
SELXIAYSR o6& GKS 101 2F Sve[a 2y G(GKSaS OKNRY2az2y
chromosomes are more specialized and only expressed in certain conditions (abiotitiostress)or
tissues TheA. thalianaQTL analyses were executed under normal conditions, providing enough nutrients
and without any added stressekhe same is true for theonditions during the. sativaQTL analyse3his

is a limitation as wellor novel BGC product discovesince secondary metabolites are mogilpduced

under stressand thus thér biosynthesis gene®o are mostly expressed under stre&oth sudies used

leaf tissue fogene expression and metabolite profiling.

In general, more overlap between BGCs and xQTLs was foud &ativadespitethe appliedoverlap

cutoff, the larger genomend almost the same number of predicted B@Csomparison toA. thaliana
However, this can be explained the large number of XxQTLs in thatdset and their much larger sizes (in

the order of Mb) in comparison with the sizes of tAethalianaxQTLs (in de order of kbjhe difference

in the number of local and distant overlapping eQTLs can as well be explained by the difference in eQTL
sizes letween the two datasetsThe eQTL density isvo times higher forO. sativa(0.027 versus @55
Mb/QTL) however A.thaliana® mQTL density is two times high@.063 vs 0.132 Mb/QT.L}Jhis, and
difference in the total number of genes in the genon(&S,986 versus 33,602 geneskplain why more
overlap is found with eQTlis O. sativacompared toA. thaliana, and more overlap with mQTLs 4An
thalianacompared toO .sativa

The low resolution of thé®. sativaxQTL datasetand the lack of an extensive genome annotation (in
comparison toA. thaliang caused limitations for the interpretan of the discovered overlap. Causal
genes for metabolite contd and gene expression variation could not be designated with any certainty.
The variant calling procedure and the coexpression analyse® fawativaadded another sorce of
information, making it easietio point out causal genes but still all links tlzae presented in th&kesults
section are hypothetical.

The variant calling procedure between the parents of @esativaRIL population was used to assess if
important genes in BGCs with overlapping xQTLs weltgalhc variable. Nossynonymous SNPs were
found in domains of some of these genhswever more work is needed to verify if these SNPs are actually
causing problems in the (active sites of the) resulting enzymes and therefore can alter metabolite levels
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and be the causality of the mQTLs. In case of the eQTLsS, more research is needed to verify if there are SNPs
Ay NB3IdzA I G§2NB NB3IA2ya 2F GKS . D/ Qa 3ISySa GKIFG YA3
thus eQTLs. However, there is still the lgem of the low resolution of th€®. sativadatasets with xQTLs
spanning several genes, which add®et of uncertaintyto pointing out causal genes.

The coexpression analysis of the 216 samples folthsativastudy did not show a lot of coexpression
between the genes in the BGCs. This can be explained again by the conditions that were used in the
experiments. Some genes are only expressed under certain stresses or in certain tissues or a combination
of both. Furthermore, not all Affymetrix probe namesre linked with a locus tag name of format
OsXXgXXXXX in Ensembl BioMértsella et al., 20)1this caused a significant loss ggneexpression

data since onlyexpression data 011,465 genes out of 5381 probes were kept and there are 55,986
genes lpci) in version MSUV6.1 of the rice genorienyahara et al., 20).3

The problem of uncertaintwassmaller for theA. thalianadatasets since the marker density was much
higher. Thee thexQTLs were about Ibkin size, which is actually the region between mankéh best
association in GWAS + chromosomal marker density. In theory, it is possibly that the regions are much
larger since previous and next markers can be significantly associated with the trait as well, again adding
uncertainty to the selection of emsal genes. Due to the GWAfappingprocedurebased onthe linear

mixed models LIMIX ippert et al, 20149 and EMMAXKang et al.200§ that were used only the best
association is reported and therefore the region was extended with the chromosomal marker density in
this study.Nevertheless, the links between BGCs and xQT s fbalianacan be hypothesized with me
certainty due to these smaller xQTL regions, but more importantly due to the extensive research that is
already done in thale cresslowever, these smaller xQTL regions caused problems in the colocation
network analysisThe size of the regions mighttsy’ 2y S 3ISy S> odzi (KSe 62y Qi 3
between two genes. This causes limitations in the colocation network analysis, in this way it is difficult to
discover novel BGCs since the xQTL regions are too Ansalution would be to extend theQTL regions

by the actual distance to the previous and next marker, maybe even the 2 markers before and after.
Another problem in the colocation network analysis was that there was little overlap found between
mQTLs and eQTLs, whadlkomakes it difficul to discover noveBGCs.An explanation could be that the

QTL analyses fdk. thalianawere performed on two different sets of accessions. It might be that the
metabolites are present in one set, and the genes are expressed in the other set, causing timks
between mQTLs and eQTLs in the network.

A last limitation, shared by both datasets, is that the g$ilicQ LGCMS and structural databases for
secondary metabolites are sparse and therefore the annotations of the detected massesOn shéva

andA. thalianaMS analyses are uncertain or even unknofisolution might be to usé¢he substructure
exploration toolIMS2LDAVan der Hooft et al.2017 for metabolomics data to identify subsictures in

the unknown masspectra, this mighthenaid in linking BGCs to their products, if enzymes in the BGCs
are known to act on certain molecular subgroups and #itet are present in the compour@ mQTL that
overlapped with the BGC.

Despite all uncertainties, methods were developed in this study that might successfully integrate BGCs
with xQTLs in both RIL populatibased studies and GWABgplants These methods can be ubia silico

to generate hypotheses to design targetexb lexperiments for validationlhe examples in th&esults

section can be validated by targeted knamkts of gene®r with near isogenitines to assess theausality

of these genes in the variation of gene expression or metabolite ldvialsmapping of the xQTL datasets

could lead to higher resolutions, whereas improvements in mass spectrometry (data analysis) can lead to
more efficient natural product diswery. Furthermore, the QTL studies can be optimized for integration
with BGC prediction.Growth conditions can include abioti(eg. rhizosphere soil composition
temperature, light conditions, humidity)and/or biotic stress(e.g. rhizabiome composition,insect or
herbivore exposurefiepending on theuse of the secondary metabolites for which a BGC wamtset

found. The tissue that is used for tlexpression and metabolite profiling analyses in th@8e studies is
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important too, not all secondary metabolites and their biosynthesis genes are produced/expressed in
every tissueThese improvements together would make the integration methods more effidéagides

the two described methodsthe integration methodcan be extended by looking for genomic overlap of
transeQTLs of genes within BGCs. This can potentially lealistovery of regulators for the BGCs.
Another option is to use BGCs predicted with PlantClusterFifgignapfer et al., 20)Asone more data
source Furthermore, the integration methods need to be optimized for spedfticiencyand applicability

in other plants and maybe everaBteriaand fungiby using AntiSMASH\VEber et al., 201pinstead of
PlantiSMASIbgether with GWASs
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Appendces
1. Workflow

Arabidopsis gene encoding a putative -33-
interacting protein, caffeic aci@thydroxyferulic acid
o-methyltransferase. Biochimica et Biophysica Acta
Gene Structure and Expression, 1353(3),¢209.
https://doi.org/10.1016/S016#4781(97)00096L

Gather mQTL and

eQTL data
Automate

Run plantiSMASH on
genomes

Validate

Confirm known BGC-
product pairs
Variant calling
Analyze MSClust data

Coexpression analysis

= Find overlapping xQTLs and BGCs

= Find overlapping xQTLs

Resampling test

= Linking (un)}known
metabolites to (putative)
BGCs

Elucidating pathway
regulation

Supplemental figurel General workflow of thistudy.

2. Commands
RunningPlantiSMASHnN O. sativa

python run_antismash.py -- taxon plants -- gff3 oryza_sativa_indica_ MSUv6.1.gff3

-- coexpress -- coexpress -csv_file GSE49020_matrix.csv -- clusterblast --
knownclusterblast -- min - domain - number 1 -- cdh - cutoff 0.6 -- outputfolder
<some_name> oryza_sativa_indica_MSUv6.1.fa

RunningPlantiSMASHbn A. thaliana

python run_antismash.py -- taxon plants -- clusterblast -- knowncluste rblast  --
min - domain - number 1  -- cdh - cutoff 0.6 -- outputfolder <some_name>

arabidopsis_thaliana_TAIR10.gbff
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SNP calling
Retrieve MH63 data, lllumina HiSeq 2000 pairedd reads with 3 insert sizes

fastg -dump il isplit -file sSRR3234371 (10kb insertsize)
fastq -dump il isplit -fil es SRR3234370 (5kb insert size)
fastg -dump 71 Tsplit -files SRR3234369 (300bp insert size)

Retrieve ZS97 data, lllumina HiSeq 2000 paiezl reads with 3 insert sizes

fastg -dump il 7isplit - files SRR3234374 (10kb inserisize)
fa stg -dump il isplit -files SRR3234373 (5kb insert size)
fastqg -dump 11 7Tsplit -files SRR3234372 (300bp insert size)

Build an index for the Oryza sativa reference genome (MSUv6.1) with Bowtie2
bowtie2 - build - foryza_sativa_indica MSUv6.1.fa MSUv6.1

Trim reads of MH63 and ZS97

java - jar trimmomatic - 0.36.jar PE - phred33 SRR3234369_1.fastq
SRR3234369_2.fastq SRR3234369_1 trimmed_paired.fastq
SRR3234369 1 trimmed_unpaired.fastqg SRR3234369 2 trimmed_paired.fastq
SRR3234369 2_trimmed_unpaired.fastq ILLUMINACLIP: TruSeq3 - PE.fa:2:30:10
LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36

java - jar trimmomatic - 0.36.jar PE - phred33 SRR3234370_1.fastq
SRR3234370_2.fastqg SRR3234370_1 trimmed_paired.fastq
SRR3234370_1_trimmed_unpaired.fastq SRR3234370_2_trimmed_paired.fast
SRR3234370_2_trimmed_unpaired.fastq ILLUMINACLIP:TruSeq3 - PE.fa:2:30:10
LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36

java - jar timmomatic - 0.36.jar PE - phred33 SRR3234371_1.fastq
SRR3234371_2.fastqg SRR3234371_1 trimmed_paired.fastq

SRR3234371_1 trim med_unpaired.fastqg SRR3234371_2_trimmed_paired.fastq
SRR3234371_2_trimmed_unpaired.fastq ILLUMINACLIP:TruSeq3 - PE.fa:2:30:10
LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36

java - jar timmomatic - 0.36.jar PE - phred33 SRR3234372_1.fastq
SRR3234372_2.fastq SRR3234372_1_trimmed_paired.fastq

SRR3234372_1 trimmed_unpaired.fastqg SRR3234372_2_trimmed_paired.fastq
SRR3234372_2_trimmed_unpaired.fastq ILLUMINACLIP:TruSeq3 - PE.fa:2:30:10
LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36

java - jar timmomatic - 0.36.jar PE - phred33 SRR3234373_1.fastq
SRR3234373_2.fastqg SRR3234373_1 trimmed_paired.fastq

SRR3234373_1 trimmed_unpaired.fastg SRR3234373_2_trimmed_paired.fastq
SRR3234373_2_trimmed_unpaired.fastq ILLUMINACLIP:TruSeq3 - PE.fa:2:30:10
LEADING:3 TRAILING:3 SLIDINGWI NDOW:4:15 MINLEN:36

java - jar timmomatic - 0.36.jar PE - phred33 SRR3234374 _1.fastq
SRR3234374_2.fastqg SRR3234374_1_trimmed_paired.fastq
SRR3234374_1_trimmed_unpaired.fastq SRR3234374_2_trimmed_paired.fastq
SRR3234374_2_ trimmed_unpaired.fastq ILLUMINACLIP:T ruSeq3 - PE.fa:2:30:10
LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36
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Map reads of MH63 and ZS97 to the MSUv6.1 reference genome with Bowtie2
bowtie2 -xMSUv6.1 -1 SRR3234369 1 trimmed_paired.fastq,

SRR3234370_1_trimmed_paired.fastq, SRR3234371_1_trimmed _paired.fastq -2
SRR3234369_2_trimmed_paired.fastq, SRR3234370_2_trimmed_paired.fastq,
SRR3234371_2_trimmed_paired.fastq -S MH63.sam -1100 -X 10000 -- phred33 --
sensitive -- threads 8 -- met- file MH63_metrics.txt

bowtie2 -xMSUv6.1 -1 SRR3234372_1 trimmed_p aired.fastq,
SRR3234373_1_trimmed_paired.fastq , SRR3234374_1 trimmed_paired.fastq -2
SRR3234372_2 trimmed_paired.fastq, SRR3234373_2_ trimmed_paired.fastq,

SRR3234374_2_ trimmed_paired.fastq -SZS97.sam -1100 -X 10000 -- phred33 --
sensitive -- threads 8 -- me - file ZS97_metrics.txt

-- sensitive  is the same as the following individuals setting® 15 -R2 -L22 -iS,1,1.15

Conversion of SAM files to BAM files
samtools view TbS - @ 8 MH63.sam > MH63.bam
samtools view TbS - @ 8 ZS97.sam > ZS97.bam

Sorting BAM iles
samt ools sort - @ 8 MH63.bam -0 MH63_sorted.bam
samt ools sort -@ 8 ZS97.bam -0 ZS97_ sorted.bam

Indexing BAM files
samtools index - @ 10 MH63_sorted.bam
samtools index - @ 10 ZS97_sorted.bam

Variant calling wih SAMools mpileup and BGBols call
samtoo Is mpileup - f oryza_sativa_indica_MSU v6.1l.fa - g MH63_sorted.bam
ZS97_sorted.bam - 0 MH63_ZS97.bcf

bcftools call -m - Ov MH63_ZS97.bcf -0 MH63_ZS97.vcf
bcftools stats MH63_ZS97.vcf

3. Input data format xQTLs

BGIOSGAG29658 1 ©0.2825 0 0.565 52.26727907 |Choline
BGIOSGADE2596 1 0.461 ©6 ©0.922 12.70386823 Choline
BGIOSGAGO2596 1 ©.2995 © 0.599 23.83486275 [Choline
BGIOSGAGO2586 1 0.2995 © 0.599 16.02618613 |Choline

LOC_0s01g01689 1 0.2995 © 0.599 27.62156402]L-Serine 6
LOC_0s01g01860 1 ©0.2825 © 0.565 105.1423 -Serine 1
BGIOSGAGA2525 1 0.6105 6 1.221 8.661246234 |L-Serine 4 3
LOC_0s01g01760 1 ©0.6105 © 1.221 5.405967275]|L-Proline 1 6
LOC_0s01g01010 1 0.2825 0 0.565 46.96352091N-Hydroxysuccin

wWwhHhon
' o b
SNOWH UV

LOC_0s61g01312 1 0.2995 0 0.599 42.92679436]L-Valine 10
BGIOSGAGO2572 1 0.2995 © ©0.599 11.259097 -Valine 6
BGIOSGAGO2573 1 0. .922 15.7081864 -Threonine
BGIOSGAGO2618 1 0.461 5 44.60994433 |L-Threonine
LOC_0s01g01720 : G 27.78506751 | Benzamidine
BGI0SGA002583 .53 i 13.03836186 [Benzamidin
BGIOSGA002571 .28 ’ 58.38060568 |MO012-L_12
BGIOSGA0O2589 .4 23.89472723 |mO012-L_122. 2
LOC_0s061g01780 : 0 0.922 11.41736864 [MO012-L_122.0269_6.94 29
LOC_0s01g01780 1 ©.2825 © 0.565 32.839435 |L-Leucine 10 5.3 2.6 5.5

Supplemental figure2 Examples of the input data format of xQTLs. The left side of the figure shows eQTLs of O. sativa. The right
side of the figure shows mQTLs of O. sathar. each xQTL the following elements are reported: gene or metabolite name,
chromosome nmber, peak location in Mb, inferior boundary location in Mb, superior boundary location in Mb, and the LOD
score.
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4. Overlap rules

® Peak within BGC

BGC

" Inferior boundary within BGC
o

® Superior boundary within BGC
®

Supplemental figure3 Overlap rules for detecting of genomic overlap between xQTUB&BLCs, however these rules also apply
for finding overlap between xQTLs independent of BGCs in which the BGC in this figure is anothEnet® ke three possible
ways of overlap as shown. The blue areas in the BGCs represent the minimum overlagk s$&zeetjuired. This minimum overlap
is calculated as a percentage of the total BGC size.

5. Output data format xQTLs and BGCs overlap

#clusterID cluster type some BGC end bp
33 lignan;saccharide . 52

e adjusted p-value _LOD-score locus annotation locus start bp locus end bp locus 5 )
8.001 g white-Dbrown complex homoleg protein tive, expressed 7 2 498325 distant
8.001 5 hypothetical protein 33193046 3 asg distant

8.001 0.009338 4.2

Supplemental figure4 Example of the output data format of overlap between xQdahd BGCs. A tadeparated text file as
presented in this figure is generated for every BGC for which overlap is found. The top of the file contains informatidineabou
BGC: clusterID, cluster type, chromosome number, BGC start position in bp and B@Sitnd in bp. The bottom of the file
contains information about the xQTLs that are overlapping with the BGCs: gene/metabolite naatee padjusted galue, LOD
score, locus annotation (eQTL), locus start position in bp (eQTL), locus end posipde@imh) and locus status (eQTL).
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6 Output data format overlappmg mQTrIlﬁ\ thallana

5.293975665 0.0 0.8 inf

842 0.6 8.0 1
[{1- phenu] thyl-2-propynyl)oxy] -C15H1803" 5.143768628 0.0 8.8 inf

CAHTNS" 24 0.0 0.0 inf

0.8 inf
o 1inf

5.819862877 0.0 8.0 inf
3 0.8 8.0 1inf
inf )
).8 0.0 inf

4.3 37962 0.0 0.0 inf

Supplemental flgure5 Example of the output data format of overlapplng mQTLs Astatarated text file as presented in this

figure is generated. The headers of the file are: xQTL1, LOD_xQTL1, xQTL2, LOD_xQTL2, pval, adj_pval_ BH and
log10(adj_pval_BH). xQTL1 and xQTL2 are the mQTLs and theicdr®®in the QTL analysis (LOD_xQTL1, LOD_xQTL2) that
showed locational overlap. €tsignificance of the overlap was tested with a randomization tebktch results in alues (pval).

The pvalues were correct with Benjamikiochberg (adj_pval_BH) arldg10 transformed-{og10(adj_pval_BH).

7. Detailed overview of BGCs with known picid inO. sativeandA. thaliana
Supplemental tablel A detailed overview of BGCs with known product®insativaand A. thaliana. The biosynthetic class,

molecular formula, average molecular mass (Da) and PubChénNIB 3 A @Sy F2NJ G KS . D/ Q& LINRRdzOG ad

and the MiBiG accessions are given for the BGCs.

Biosynthetic | Chromosomal | Molecular | Average | MiBiG PubChem
class location (Mb) | formula molecular | accession ID
mass (Da)

O. sativa
Phytocassane/ordide | terpene 2:22.5222.76 | GoHzs03 316.43452| BGC0O000674 10313699
Momilactone terpene 4:5.315.58 CooHz603 314.41864| BGCO00067] 162644
A. thaliana
Arabidiolbaruol terpene 4:8.738.82 NA NA BGC0001313 NA
Tirucalla terpene 5:14.1914.25 | GoHscO 426.7174 | BGC0001314 12302184
Marneral terpene 5:17.0217.06 | GoHscO 426.7174 | BGC0000669 25001002
Thalianol terpene 5:19.4319.46 | GoHs00 426.7174 | BGC000067( 25229600
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https://mibig.secondarymetabolites.org/repository/BGC0000672/index.html#cluster-1
http://pubchem.ncbi.nlm.nih.gov/compound/10313699
https://mibig.secondarymetabolites.org/repository/BGC0000671/index.html#cluster-1
http://pubchem.ncbi.nlm.nih.gov/compound/162644
https://mibig.secondarymetabolites.org/repository/BGC0001313/index.html#cluster-1
https://mibig.secondarymetabolites.org/repository/BGC0001314/index.html#cluster-1
http://pubchem.ncbi.nlm.nih.gov/compound/12302184
https://mibig.secondarymetabolites.org/repository/BGC0000669/index.html#cluster-1
http://pubchem.ncbi.nlm.nih.gov/compound/25001002
https://mibig.secondarymetabolites.org/repository/BGC0000670/index.html#cluster-1
http://pubchem.ncbi.nlm.nih.gov/compound/25229600

8. Distribution of xQTLs throughout the genome® o$ativaandA. thaliana

0. sativa eQTLs
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Supplemental figure6 Distributions of xQTLs fahe genomes 0. sativaand A. thaliana A. Distribution of eQTLS in ric&.
Distribution of mQTLs in ric€.Distribution of eQTLs in thale cregs Distribution of mQTLs in thale cress.
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9. Example of variant browsing with IG\Qirsativa

[ 16V - Session: fhome/witje010/igv/igv_sessionxml (on fisher) EI@
File Genomes View Tracks Regions Tools GenomeSpace Help

‘Oryza sativa ‘v <chrol ‘v chr01:14,100,786-14,107,299 Go it « » &[0 = 2 | S
-
1 e

6,460 bp
14,101,000 bp 14,102,000 bp 14,103,000 bp 14,104,000 bp 14,105,000 bp 14,106,000 bp 14,107,000 bp
| | | | |

Lo Drlie]

MHB2 Z597 filtered. vef

MH63_sorted.bam Coverage

MHEZ_sorted bam

Z597_sorted bam Coverage

Z597_sorted bam

Gene

7 tracks | J[ehroz14.102,204 I
Supplemertal figure 7 An example of variant browsing with IGV(On sativa The gene shown is LOC_0s01g25010, which is a
dioxygenase with three neaynonymous SNPs in the DIOX_N domain as was presentedReséissection. The sorted BAM
files of both parents are shown as well. The top track presents the variants between the two variants in a VCF filenétiesed
KSNB (KIFG 2ytfeé GIENAEFyda 6SNB 1SLIG o6!'[¢ HI adéod

|[L.538M of 241
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10. Overview colocan network for overlapping mQTasd eQTLm A. thaliana

Supplemental figure8 An overview of the entire colocation network of overlapping mQandgeQTLm A. thaliana Within the
large network are some smalleubs. Outside the large netwogkottom of figure)are some smaller networks. Nodes represent
mQTLs and edges represent genomic overlap. The wiltth is determined by thelog10 of the BH adjustedyalues derived
from the permutation test. The network vgzreated with Cytoscape v3.4.GHannon et al., 2003
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