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Abstract 
Plant phytochemicals and their synthesis are of increasing interest since these secondary metabolites can 
be used in a wide variety of applications, they can be applied as medicines, dyes, flavorings, cosmetics and 
much more. Therefore, knowledge of the biosynthetic pathways of these compounds and their regulation 
is important for improving yield of certain antibiotics in crops or for improving crop resistance and quality, 
for example. Recent studies found the tendency of genes coding for enzymes involved in secondary 
metabolite biosynthesis pathways to physically cluster on the genome. These so-called biosynthetic gene 
clusters (BGCs) consist of at least three different enzymes executing some consecutive enzymatic reactions 
in a biosynthetic pathway. Since metabolite levels are considered complex quantitative traits, metabolite 
quantitative trait analysis (mQTL) can be used to elucidate genomic regions influencing these traits. In a 
same manner, expression QTL (eQTL) analysis can be used to identify genomic regions that affect 
expression levels. Combining mQTL with eQTL (metabolite and expression quantitative trait loci) and 
biosynthetic gene clusters (BGCs) predicted with PlantiSMASH might give more insights in biochemical 
synthesis and regulation than using any of these sources alone. Annotation of putative BGCs can be done 
by taking into account the mass spectrometry (MS) data of the (known) metabolites and expression levels 
and domains of (known) genes. This leads to the possibility to generate hypotheses of genes encoding 
enzymes that might play a role in the biosynthesis of the secondary metabolite. The latter is important if 
exploitation of a plant for its secondary metabolites, for earlier mentioned applications, is desired since 
many of the biosynthetic genes for secondary metabolites are still unknown. Here, strategies based on 
genomic, location overlap were developed to efficiently integrate mQTL and eQTL with BGCs using a 
recombinant inbred line population of Oryza sativa and a genome-wide association study of Arabidopsis 
thaliana. Genomic overlap was detected between BGCs and xQTLs (either e- or mQTLs), leading to 
interesting links between BGCs and secondary metabolites as their putative products. Several validation 
methods were used to strengthen the evidence for the links. Colocation networking was applied, by 
looking for genomic overlap between mQTL-mQTL and mQTL-eQTL pairs in A. thaliana, leading to 
hypotheses proposing new possible substrates of OMT1 and BGLU6. Therefore, these methods can 
generate hypotheses for linking BGCs to their products in silico, which can be used to design targeted lab 
experiments for validation. 
 

Introduction 
Plants produce a large variety of biochemical compounds, compared to other organisms. These 
biochemical compounds are involved in primary and secondary metabolism. Primary metabolites ensure 
proper growth, reproduction and development, whereas secondary metabolites, or phytochemicals, are 
important for plant defense and also act in attracting other organisms and signaling (Nützmann et al., 
2016).   
Metabolite (and expression) levels are considered complex quantitative traits and genomic regions that 
affect these levels can be elucidated by quantitative trait locus (mQTL; metabolite QTL, eQTL; expression 
QTL) analysis. They are called complex quantitative traits in the sense that the trait is affected by multiple 
genes and can be affected by environmental factors. It can also be, in the case of epistasis, that the effect 
of one gene depends on the expression of other genes, which adds another layer of complexity. xQTL 
(mQTL or eQTL) analysis involves annotating and measuring metabolite/mRNA levels combined with 
genotyping of inbred lines. Recombinant inbred lines (RILs) by single-seed descent (SSD) are often used to 
achieve transgressive segregation of traits by crossing two parents with distinct phenotypes. The RILs are 
generated by selfing individual members of the second generation (F2) until nearly complete homozygous 
individuals are obtained. In a combined analysis, because of the differences between genome composition 
and metabolite/mRNA levels in the RILs, genomic regions can be identified that affect certain 
metabolite/mRNA levels (Carreno-Quintero et al., 2013). Metabolic profiling of plants during mQTL 
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analyses is often done by mass spectrometry (MS) following gas chromatography (GC) or liquid 
chromatography (LC). However, it is important to note that the combination of GC-MS mostly detects 
primary metabolites, whereas LC-MS detects a wide array of secondary metabolites. This has to do with 
the fact that most secondary metabolites are not volatile and therefore cannot be detected with GC (Rowe 
et al., 2008). 
Recent studies found physical clustering of genes in plants involved in sequential enzymatic reactions, as 
is also true for Bacteria in the case of operons, of biosynthetic pathways for secondary metabolite 
synthesis. These clustered genes are called biosynthetic gene clusters (BGCs) whenever they contain genes 
coding for at least three different types of enzymes (Nützmann et al., 2016). Plant BGCs often contain the 
gene encoding the enzyme responsible for the first step in the pathway and two or more other genes for 
enzymes downstream in the pathway, often interspersed with unrelated genes. There are some 
hypotheses about the reason behind clustering of these pathway genes, like: less risk of disruption (and 
thus loss of the pathway) by recombination, less chance of toxic intermediates, higher chance of co-
regulation because of co-localization, and benefits for formation of multi-enzyme complexes (Nützmann 
et al., 2016). Recently tools, like PlantiSMASH (Kautsar et al., 2017) and PlantClusterFinder (Schläpfer et 
al., 2017), have been developed to both discover BGCs related to known clusters in databases and predict 
BGCs de novo.  
Integrating mQTL, eQTL and predicted BGCs might lead to the discovery of novel biosynthetic pathways or 
extend the knowledge about known ones. This knowledge can in turn be used to exploit a plant for its 
secondary metabolites, for e.g. application as drugs or cosmetics. mQTLs make it possible to link BGCs to 
metabolites. If the mQTL is for the content of a secondary metabolite and mapped to a specific (clustered) 
biosynthetic gene of known function or containing known domains, this gene might be causal for the 
variation in secondary metabolite content. This information can then be used to up- or downregulate the 
production of the secondary metabolite in the plant by genomic engineering. eQTLs might illuminate the 
regulation of both BGCs and mQTLs. If the eQTL is for the expression of a biosynthetic gene and mapped 
to the same biosynthetic gene or a location elsewhere in the genome, the mapping locations might be 
causal for the variation in the biosynthetic gene. These mapping locations might be promoter regions, 
transcription factors, enhancers or other regulatory elements influence the biosynthetic gene’s expression 
level. This knowledge can in turn be used to elucidate regulation of biosynthetic pathways. Hence, in silico 
integration of these datatypes seems promising for generating hypotheses of biosynthesis of secondary 
metabolites and its regulation. 
A combination of mQTL and eQTL analyses, and linking these, has already been done by Wentzell et al. in 
2007 in Arabidopsis thaliana RILs, in which they associated polymorphisms influencing expression and 
metabolite levels in two glucosinolate biosynthetic networks (aliphatic and indolic). They found that all 
eQTLs for genes in these specific pathways also affected the accumulation of the corresponding 
metabolites. Furthermore, epistasis was more often detected for metabolites and their broad sense 
heritability (H2, ratio between genetic variance and total variance) was lower in comparison to gene 
expression levels. These results show that metabolic traits are more affected by environmental factors 
than gene expression levels. However, combining mQTLs with eQTLs allowed them to understand the 
regulation of these two biosynthetic pathways better, despite the complexity of epistasis and low H2 for 
metabolites (Wentzell et al., 2007). 
Here, methods were developed to integrate xQTL datasets with BGCs predicted with PlantiSMASH based 
on genomic locational overlap. Datasets of both a RIL population and a Genome-Wide Association Study 
(GWAS) of Oryza sativa and Arabidopsis thaliana respectively were used. Hereafter, the detected overlap 
was validated and further analyzed to explain the overlap using literature, genome annotations, and 
biochemistry knowledge. 
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Methodology 
Realization of the proposed goals requires integrative analyses. The methods consist of preprocessing the 
(xQTL) data, running PlantiSMASH, finding genomic overlap between BGCs and xQTLs, and validation of 
the discovered overlap. Whenever settings are not specified for the used tools, default settings were used. 
The workflow and specific commands can be found below in appendices 1.  and 2. Commands. Most 
graphs were made with ggplot2 (Wickham, 2009) in the R programming language (R Core Team, 2017), 
whereas the rest of the methods have been implemented in the Python programming language (Python 
Software Foundation, https://www.python.org/).  
 

Data xQTL description 
The Oryza sativa eQTL dataset was taken from the study of Wang et al. in 2014. The dataset contains 
13,648 significant eQTLs (5,079 cis-eQTLs and 8,568 trans-eQTLs) with an average size of 1.50 Mb. 
Expression profiling was done with an Affymetrix Rice Genome Array (GPL2025) on flag leaf tissue at 
heading date of rice plants grown under normal agricultural conditions. The results of the expression 
profiling was later used for the coexpression analysis within PlantiSMASH, the data is stored in the NCBI 
GEO database with accession number GSE49020. The O. sativa mQTL dataset was derived from the study 
of Gong et al. in 2013. The dataset contains 2,822 significant mQTLs with an average size of 2.20 Mb. 
Metabolite profiling was done with LC-MS/MS on flag leaf tissue at heading date of rice plants grown under 
normal agricultural conditions. Both studies used the same RIL population consisting of 210 lines from a 
cross between Zhenshan 97 and Minghui 63. Furthermore, the same strategy for QTL mapping was used, 
namely, composite interval mapping with R/qtl (Broman et al., 2003) based on 1,619 recombinant bins. 
The locations of the xQTLs correspond to the MSUv6.1 (Kawahara et al., 2013) version of the rice genome 
(size: 373.2 Mb, gene density: 6.66 Kb/gene, number of genes: 55,986). The eQTL and mQTL densities were 
0.027 and 0.132 Mb/QTL, respectively. 
 
Besides the O. sativa RIL population, data from a GWAS of Arabidopsis thaliana were used as well. The 
eQTL dataset was derived from the study of Kawakatsu et al. in 2016, in which 1,227 different A. thaliana 
accessions were geno- and phenotyped (1,673,530 markers). Expression profiling was done with RNA-seq 
using the Illumina HiSeq 2500 sequencer (Illumina, Inc., San Diego, CA) on leaf tissue from rosettes just 
before bolting under normal conditions. A linear mixed model in the LIMIX Python package (Lippert et al., 
2014) was applied to the genotype and gene expression matrix, resulting in 2,185 significant eQTLs. The 
A. thaliana mQTL dataset was taken from an unpublished GWAS (Kooke et al, unpublished data), in which 
349 different A. thaliana accessions were geno- and phenotyped (214,051 markers). Metabolite profiling 
was done with GC-MS and LC-MS on full rosette leaf tissue under normal conditions. Raw MS spectral data 
were processed with MSClust (Tikunov et al., 2012) and these data were used later for 
validation/annotation. MSClust uses unsupervised fuzzy clustering to extract putative metabolite mass 
spectra (Tikunov et al., 2012). Linear mixed models in EMMAX (Kang et al., 2008) and the GAPIT R package 
(Lipka et al., 2012) were applied to the genotype and metabolite profiling matrix, resulting in 1,897 
significant mQTLs. The locations of both studies’ xQTLs correspond to the TAIR10 version (Swarbreck et 
al., 2008) of the thale cress genome (size: 119.7 Mb, gene density: 4.35 Kb/gene, number of genes: 33,602). 
A total number of 175 A. thaliana accessions overlap between the two GWASs. The eQTL and mQTL 
densities were 0.055 and 0.063 Mb/QTL, respectively.  
 

Data xQTL formatting 
Both the eQTL and mQTL data were stored in tab-separated text files containing the following columns. 
The first column contains locus tag names (OsXXgXXXXX, AtXgXXXXX) in case of eQTLs and metabolite 
names for mQTLs. Whenever the metabolite name is unknown, an artificial ID was made with the mass 

https://www.python.org/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL2025
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE49020
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and retention time. The second column contains the chromosome numbers of the QTLs. The third, fourth 
and fifth columns contain locations of the peak, start (inferior boundary) and end (superior boundary) of 
the QTL (in Mb), respectively. The LOD-scores are stored in the last column. For the A. thaliana GWASs, 
the method of linear mixed models only records the best association between a SNP and 
expression/metabolite levels. The actual causal SNP of the variation in expression/metabolite level can be 
anywhere between the previous and next marker with respect to the associated marker. This was taken 
into account when posing hypotheses of gene/metabolite – BGC associations. The average marker density 
of the entire A. thaliana genome was 1 marker every 565.47 basepairs (for the mQTL study, the marker 
density was higher for the eQTL study, namely 1 marker every 71.19 basepairs). The QTL regions were 
artificially extended, to match the format, by adding and subtracting the average marker density specific 
to the QTL analysis. For the mQTL study, the marker list that was used with exact positions was available. 
An example of the data format can be seen in appendix 3.  Input data format xQTLs.  
 

Running PlantiSMASH and formatting its output 
BGCs were predicted with PlantiSMASH (Kautsar et al., 2017) for both the O. sativa and A. thaliana 
genomes. A separate GFF3 and FASTA file with genome version MSUv6.1 (Kawahara et al., 2013) was used 
as the input for rice BGC prediction. For thale cress, the NCBI GenBank genome file (GBFF) of TAIR10 
(Swarbreck et al., 2008) was used as input, as PlantiSMASH accepts both. The gene expression profiling by 
array of all O. sativa RILs including parents was given as input for PlantiSMASH as it is capable of performing 
a coexpression analysis. For both species, clusterBLAST and knownclusterBLAST were turned on, making 
PlantiSMASH search for similar BGCs in other plants and known BGCs by referring to MiBiG (Medema et 
al., 2015), respectively. The settings for BGC prediction were made less strict by lowering the minimum 
number of unique domains per BGC from two to one, and by increasing the CD-HIT cutoff from 0.5 to 0.6. 
The output files XX_BGC.txt (where XX refers to the chromosomes) in the folder named txt produced 
by PlantiSMASH was used to parse the BGC data for finding genomic overlap. The following elements were 
parsed from these files: clusterID as given by PlantiSMASH, clustertype (saccharide, terpene, polyketide, 
alkaloid, putative etc.), chromosome, start and end of the BGC in bp, and a list of genes belonging to the 
BGC. The coexpression analysis output was used for validation of the genomic overlap, as well as the 
output of the knownclusterBLAST analysis (see the sections Coexpression analysis of genes in BGCs with 
overlapping xQTLs and Confirming known BGC-product pairs below). 
 

Genomic overlap between BGCs and xQTLs 
Three possibilities for genomic overlap between BGCs and xQTLs were taken into account. The first 
possibility is when the peak of an xQTL is within the boundaries of the BGC. The second possibility is when 
the inferior boundary of the xQTL is within the boundaries of the BGC, with a minimum overlap of 30% 
(arbitrary, but led to half the detected overlap for some BGCs in rice without losing too many other BGCs 
with overlap) of the BGC’s size. The last possibility is when the superior boundary of the xQTL is within the 
boundaries of the BGC, with a minimum overlap of 30% of the BGC’s size. Visualization of these rules can 
be seen in appendix 4. Overlap rules. The rule for minimum overlap of 30% of BGC’s size was only applied 
to the rice xQTL data as these xQTLs are much larger than the thale cress ones. The output is a tab-
separated text file containing BGC information (clusterID, clustertype, chromosome, and start and end in 
bp), followed by information on the xQTLs (locus tag/metabolite name, p-value, adjusted p-value, LOD-
score, locus annotation, locus start bp, locus end bp, and locus status) found to be overlapping. The p-
values are derived from permutation tests, which will be explained in the validation section.  The locus 
annotation is parsed from the GFF3 file, as well as the locus start and end position. Locus status indicates 
whether the gene for which the eQTL was found belongs to the BGC, if ‘true’ the status is local, when 
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‘false’ the status is distant. An example of the output format can be seen in appendix 5. Output data 
format xQTLs and BGCs overlap.  
 

Colocation network: genomic overlap between xQTLs independent of BGCs 
Another option is to look for genomic overlap between xQTLs independent of BGCs. This might potentially 
lead to the discovery of BGCs that were not predicted by PlantiSMASH, but can as well give hints to 
regulatory regions. One can look at three possibilities: overlap between mQTLs, eQTLs, and mQTLs and 
eQTLs. Here, overlap was again defined as overlapping genomic regions with the same rules applied as for 
the overlap finding between BGCs and xQTLs. Again, it made sense to apply the minimum overlap rule 
solely to the O. sativa xQTLs. Due to time constraints, we only looked at overlap between mQTLs and 
between mQTLs and eQTLs in A. thaliana. The detected overlapping xQTL pairs were given a(n) (adjusted) 
p-value by using the permutation test procedure described below, only using the Benjamini-Hochberg 
correction. A colocation network was constructed of the outcome with Cytoscape v3.4.3 (Shannon et al., 
2003) where nodes represent xQTLs and the edges represent the overlap between the xQTLs with edge 
weight as the -log10 of the adjusted p-values. An example of the output format can be seen in appendix 6. 
Output data format overlapping mQTLs.  
 

Validation 
Several approaches were used to validate the genomic overlap that was found and assess the feasibility of 
the described method: permutation test, confirming known BGC-product pairs, analysis of MSClust data, 
variant calling, and a coexpression analysis of genes in BGCs. Hereafter, these methods are described in 
more detail in the abovementioned order.  
 

Permutation test 
A permutation or randomization test was applied to test for likelihood of random occurrence of genomic 
overlap between xQTLs and BGCs. The randomization test involved generating independent random xQTL 
and BGC data by shuffling chromosome number and chromosomal location independently, keeping the 
size of the regions the same. The actual chromosomal number and length were used as the input for 
shuffling. Hereafter the random data were used as an input for the function to detect genomic overlap 
between xQTLs and BGCs. This procedure is equal to one permutation. Thousand permutations were 
performed to calculate the likelihood of a detected overlap. This likelihood was calculated by dividing the 
number of times the specific overlap was found by the number of eQTLs or mQTLs (depending on the type 
of overlap). Both Benjamini-Hochberg (Benjamini et al., 1995) and Bonferroni (Bonferroni, 1936) multiple 
testing corrections were applied to the resulting p-values. The adjusted p-value threshold was set to 0.05 
for both correction methods, however, because of the exploratory nature of this study no overlaps were 
discarded but the adjusted p-values of both correction methods were taken into account for validation. 
Furthermore, the Bonferroni correction seemed too conservative as seen by the number of insignificant 
overlaps, even for the A. thaliana QTL data. 
 

Confirming known BGC-product pairs 
For some BGCs in O. sativa and A. thaliana the product is known. These known BGC-product pairs can be 
used as a way of validation of the genomic overlap method that was described here. If the known products 
are detected in the MS analyses and associated with a genomic region, then there will be an mQTL for this 
product in the datasets that were used. If this mQTL overlaps with the BGC that it was already associated 
with, this strengthens the confidence in the method developed here. The following products are already 
associated with BGCs in O. sativa: phytocassane/oryzalide and momilactone. The following products are 
already associated with BGCs in A. thaliana: arabidiol/baruol, tirucalla, marneral and thalianol. A more 
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detailed description of the BGCs with known products is presented in appendix 7. Detailed overview of 
BGCs with known products in O. sativa and A. thaliana. 
 

Analyzing MS(Clust) data 
Raw spectral LC-MS data processed with MSClust (Tikunov et al., 2012) were available for the A. thaliana 
GWAS. As not all metabolites were annotated in the mQTL dataset and appeared as cluster IDs referring 
to the output of MSClust, the latter dataset was used to find the cluster IDs and the masses of the 
measured compounds belonging to that cluster. As a cluster in MSClust can contain multiple fragments, 
first, the parent ion had to be identified. The parent ion mass was then used to search the following plant-
specific MS databases for hypothetical annotation: ReSpect (Sawada et al., 2012) and KNapSacK 
(Nakamura et al., 2013). The exact masses of the metabolites having an overlapping mQTL in the O. sativa 
dataset were also searched again in these databases. The structures of the potential metabolite candidates 
were analyzed as well, looking for specific groups matching genes in the BGC (for example, finding hydroxy 
groups and having dioxygenases in the BGC). PubChem (Kim et al., 2015) was used to search for structural 
information of compounds.  
 

Variant calling 
As Illumina HiSeq 2000 (Illumina, Inc., San Diego, CA) WGS paired reads with multiple insert sizes were 
available for both parents of the recombinant inbred line population of O. sativa and since their xQTLs are 
large, a SNP calling procedure was applied to verify if the genes in the biosynthetic gene clusters are 
actually variable between the parents of the population. Variation in these genes might then be 
responsible for the variation in expression and/or metabolite levels that were found with the xQTLs. The 
following NCBI SRA (Leinonen et al., 2011) datasets were used for the Minghui 63 parent: SRR3234369, 
SRR3234370 and SRR3234371. Whereas the following were used for the Zhenshan 97 parent: SRR3234372, 
SRR3234373 and SRR32374. For both parents paired-end libraries were sequenced with three different 
insert sizes: 300 bp, 5 kb and 10 kb. The total coverage for Minghui 63 before trimming and filtering is 
approximately 185x, whereas for Zhenshan 97 it is 261x. Hereafter, the methodology will be described 
briefly, specific command and settings can be found in appendix 2. Commands. Reads were trimmed and 
filtered with Trimmomatic v0.36 (Bolger et al., 2014), possible adapters were removed as well. Read 
quality was checked before and after trimming with FastQC v0.11.7 (Andrews, 2010). Trimmed reads of 
both parents were mapped (--sensitive) with Bowtie2 v2.2.6 (Langmead et al., 2012) against the 
indexed MSUv6.1 rice genome reference (Kawahara et al., 2013). The resulting SAM files were converted 
to sorted BAM files and indexed with SAMtools v1.7 (Li et al., 2009). SNPs and indels were called with 
SAMtools mpileup and BCFtools call v1.6 (Narasimhan et al., 2016). IGV v2.4.8 (Thorvaldsdóttir et al., 
2013) was used to visualize and search through the called variants, BCFtools stats was used to create 
some statistics of the variant calling. The goal was to look for non-synonymous variants in the domains of 
genes coding for enzymes important for the BGC. Low quality variants (< 50) were not considered. 
 

Coexpression analysis of genes in BGCs with overlapping xQTLs 

The last method of validation that was applied, was a coexpression analysis on the transcription profiling 
array data from the RIL population of O. sativa (GSE49020), consisting of 216 samples (one replicate from 
each RIL, and three replicates from each parent). Predicting BGCs is one thing, however when the genes 
in the BGCs are actually coexpressed, this indicates that the BGC is active and its genes might be co-
regulated where the latter is an important characteristic and/or benefit of BGCs. However, gene 
expression still depends on the conditions that were used in the experiments, some genes are solely 
expressed under very specific (environmental) conditions. The coexpression analysis method based on 
Pearson Correlation (PC) implemented in PlantiSMASH was used with default settings. However, first, the 

https://www.ncbi.nlm.nih.gov/sra/?term=SRR3234369
https://www.ncbi.nlm.nih.gov/sra/?term=SRR3234370
https://www.ncbi.nlm.nih.gov/sra/?term=SRR3234371
https://www.ncbi.nlm.nih.gov/sra/?term=SRR3234372
https://www.ncbi.nlm.nih.gov/sra/?term=SRR3234373
https://www.ncbi.nlm.nih.gov/sra/?term=SRR3234374
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE49020
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Affymetrix probe names in the expression matrix were parsed in to locus tag as previously used 
(LOC_OsXXgXXXXX). Not all probes had a matching locus tag in Ensembl BioMart (Kinsella et al., 2011). The 
output graphs of the PlantiSMASH coexpression analysis were used to interpret results: expression 
heatmaps, coexpression networks (edges are drawn when the PC coefficient reached a certain threshold) 
and hive plots (showing inter-cluster coexpression).  
 

Source code 
All written code can be found on https://github.com/lottewitjes/MSc_thesis. 
 

Results 
Since the method for finding overlap described above was executed for both O. sativa and A. thaliana, but 
not all validation methods, the results section is divided in two subsections, one for each organism/study. 
 

Oryza sativa, recombinant inbred line population 
The overlap between xQTLs and BGCs analysis for O. sativa resulted in finding overlap with an xQTL for 31 
(13 with mQTLs) out of 49 BGCs predicted by PlantiSMASH. Figure 1 shows the number of overlapping 
xQTLs on the x-axis versus the 49 BGCs represented by their cluster type on the y-axis. The color represents 
the different QTL types, whereas the alternating background color represents the different chromosomes, 
starting from one at the origin to twelve at the top. Local eQTLs (red) are eQTLs of genes that belong to 
the BGC. Distant eQTLs (blue) are eQTLs of genes outside the BGC. Metabolite QTLs (mQTLs) are 
represented in green. The black arrow shows the known BGC-products pair of phytocassane, the BGC for 
momilactone was not found in this genome. It can be seen that the number of BGCs and overlapping xQTLs 
are not equally distributed throughout the genome. PlantiSMASH predicted only one BGC on chromosome 
twelve, whereas there were six on chromosome six. The number of overlapping xQTLs that was found for 
the different BGCs varied as well: the terpene cluster on chromosome two had over 50 xQTLs, and for 
some clusters no or little overlap was found. There were more overlapping distant eQTLs than local eQTLs 
and mQTLs. These observations matched with the number of xQTLs in the dataset, graphs of the xQTL 
distributions can be seen in Supplemental figure 6 A and B in appendix 
8. Distribution of xQTLs throughout the genomes of O. sativa and A. thaliana. 
 

https://github.com/lottewitjes/MSc_thesis
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Figure 1 The number of overlapping xQTLs on the x-axis versus the BGCs represented by their cluster type on the y-axis for O. 
sativa. The alternating background color represents the chromosomes, starting with chromosome one at the origin to 
chromosome twelve at the top of the figure. Local eQTLs (red) are eQTLs of genes that belong to the BGC. Distant eQTLs (blue) 
are eQTLs of genes outside the BGC. Metabolite QTLs (mQTL, green) are mQTLs of metabolites. The BGC with a known product 
(phytocassane) is indicated with the black arrow. 

The variant calling analysis between the parents of the RIL population resulted in 3,738,137 SNPs and 
763,542 indels, and the ratio between transitions and transversions  was 2.44. The latter ratio is as 
expected, since transitions occur approximately twice as often as transversions (Collins et al., 1994). The 
PlantiSMASH coexpression analysis resulted in having six BGCs with coexpression networks (Pearson 
correlation coefficient, PCC, threshold 0.5). The fifth BGC of type saccharide had a coexpression network 
containing five genes (with edges ranging from PCC 0.50-0.63), all other networks had only two nodes 
(with edges ranging from PCC 0.52-0.64). A coexpression network was visible whenever a BGC is expressed 
in the gene expression profiling analysis and edges were visible whenever genes within the BGC were 
coexpressed. The Bonferroni correction on the p-values of the permutation test seemed too conservative 
for the exploratory nature of this study, and therefore only the Benjamini-Hochberg corrected p-values 
(BH) will be named together with the LOD-score of the QTL analysis. There were mQTLs for both 
phytocassane A and C, however no overlap was found between these mQTLs and the phytocassane BGC. 
 
When looking closer at the found overlap between BGCs and xQTLs, there are some examples that give 
some confidence to the methods described here. Still, all that will be described hereafter is hypothetical.  
The first example involves the second BGC of type lignan on the first chromosome. This BGC showed 
overlap with two mQTLs whereof one was lehmbachol A (BH: 0.01343, LOD-score: 3.3). Lehmbachol A 
(PubChem ID: 102066461) is a stilbenolignan, which matched the BGC type predicted by PlantiSMASH: 
lignan. Figure 2 shows the 2D structure of lehmbachol A. The BGC contained two dirigent enzymes and 
two dioxygenases. Dirigent enzymes are important for plant secondary metabolism and lack catalytic 

https://pubchem.ncbi.nlm.nih.gov/compound/102066461#section=Top
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activity but are capable of directing the outcome of bimolecular coupling reactions (Pickel et al., 2013). 
One of the dioxygenases (LOC_Os01g25010) had three non-synonymous SNPs (methionine to threonine, 
alanine to glycine, and valine to phenylalanine) in the dioxygenase domain (2OG_FeII_Oxy) of the resulting 
protein and no variants in the other dioxygenase domain (DIOX_N). Since lehmbachol has hydroxy groups, 
these SNPs might be causal for the variation in the lehmbachol A content and therefore this BGC might be 
involved in its biosynthesis. Supplemental figure 7 presents an example of the variant browsing in IGV, 
the variants in LOC_Os01g25010 are shown. The PlantiSMASH coexpression analysis showed no 
coexpression between genes in this BGC. 
 

 
Figure 2 The 2D structure of lehmbachol A. Taken and adjusted from PubChem (Kim et al., 2015). 

The second example involves BGC 42 of type ‘putative’ on the tenth chromosome. This BGC showed 
overlap with ten eQTLs whereof three eQTLs were of genes with dioxygenase domains within the BGC: 
LOC_Os10g40960 (BH: 0.03, 0.03, LOD-score: 20.47, 24.07) and LOC_Os10g40990 (BH: 0, LOD-score: 
63.65). There were four overlapping mQTLs as well, where three masses (611.1607, 655.2133, 801.2237 
Da) were searched in the ReSpect and KNapSacK databases. The 611 Da mass gave a hit with cyanidin 3,5-
diglucoside, the 655 Da mass with malvidin 3,5-diglucoside, and the 801 Da mass with malvidin 3-
(coumaroyl)-5-diglucoside. All three mQTLs corresponding to the named masses had significant BH 
adjusted p-values and LOD-scores ranging from 4.1-5.6. Since the difference between cyanidin (PubChem 
ID: 128861) and malvidin (PubChem ID: 159287) is one methoxy and methyl group, it might be that the six 
dioxygenases present in the BGC are involved in adding an oxygen atom to cyanidin, where after 
methyltransferases (situated elsewhere) finish the conversion. Figure 3A and 3B show the 2D structures 
of cyanidin and malvidin, respectively. This BGC might be involved in the conversion of cyanidin sugars to 
malvidin sugars. LOC_Os10g40990 (UniProt ID: Q336S9_ORYSJ) is a putative flavonol synthase and  had 
one non-synonymous SNP (glutamine to histidine) in the dioxygenase domain (DIOX_N), that might be 
responsible for the cis-eQTL and the mQTLs. There are no known active site residues for this dioxygenase, 
therefore it is unknown if this non-synonymous SNP is at an active site residue. Homology modelling with 
SWISS-MODEL (Biasini et al., 2014), based on a template with 39% protein sequence similarity (PDB ID: 
5O7Y, protein name: thebaine 6-O-demethylase, and active site prediction with COFACTOR (Zhang et al., 
2017) lead to no predicted active residues. The model is presented in figure 4. The PlantiSMASH 
coexpression analysis showed no coexpression between genes in this BGC. 
 

http://pfam.xfam.org/family/pf03171
http://pfam.xfam.org/family/PF14226
https://pubchem.ncbi.nlm.nih.gov/compound/128861#section=Top
https://pubchem.ncbi.nlm.nih.gov/compound/159287#section=Top
http://www.uniprot.org/uniprot/Q336S9
http://pfam.xfam.org/family/PF14226
http://www.rcsb.org/structure/5O7Y
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Figure 3 The 2D structures of A cyanidin and B malvidin. Taken and adjusted from PubChem (Kim et al., 2015). 

 
Figure 4 A 3D structural model of the protein encoded by LOC_Os10g40990 modelled with SWISS-MODEL (Biasini et al., 2014). 

The last example involves BGC 47 of type polyketide on the eleventh chromosome. This BGC showed 
overlap with 10 eQTLs and 14 mQTLs. One of the mQTLs is for isogemichalcone B (BH: 0.00870, LOD-score: 
4.5). Isogemichalcone B (PubChem ID: 42607532) is a compound of type polyketide, which matched the 
BGC type predicted by PlantiSMASH. Figure 5 shows the 2D structure of isogemichalcone B. The BGC 
contained three ketosynthases whereof one had one non-synonymous SNP (glycine to serine) in the 
ketosynthase domain (Chal_sti_synth_N), which might be the causality of the variation in the 
isogemichalcone B content.  
 

https://pubchem.ncbi.nlm.nih.gov/compound/42607532
http://pfam.xfam.org/family/PF00195
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Figure 5 The 2D structure of isogemichalcone B. Taken and adjusted from PubChem (Kim et al., 2015). 

Arabidopsis thaliana, genome-wide association study 
The overlap between xQTLs and BGCs analysis for A. thaliana resulted in finding overlapping xQTLs for 36 
(33 with mQTLs) out of 48 BGCs predicted by PlantiSMASH. Figure 6 shows the number of overlapping 
xQTLs on the x-axis versus the 48 BGCs represented by their cluster type on the y-axis. The color represents 
the different QTLs, whereas the alternating background color represents the different chromosomes, 
starting from one at the origin to five at the top. Local eQTLs (red) are eQTLs of genes that belong to the 
BGC. Distant eQTLs (blue) are eQTLs of genes outside the BGC. Metabolite QTLs (mQTLs) are represented 
in green. The black arrows point towards known BGC-products pairs, all that are known for A. thaliana 
were detected by PlantiSMASH. Here as well it can be seen that the number of BGCs and overlapping xQTLs 
were not evenly distributed throughout the genome. PlantiSMASH predicted fewer BGCs on chromosome 
four in comparison with the others. The number of overlapping xQTLs that was found for the different 
BGCs varied as well, the second saccharide cluster on chromosome two had over 20 xQTLs, and for some 
clusters no or little overlap was found. There were more overlapping mQTLs than local and distant eQTLs. 
Graphs of the xQTL distributions can be seen in Supplemental figure 6 C and D in  
8. Distribution of xQTLs throughout the genomes of O. sativa and A. thaliana. There were no overlapping 
local eQTLs on chromosome three, four and five, however Supplemental figure 6 C shows that there were 
numerous eQTLs associated with these chromosomes.  
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Figure 6 The number of overlapping xQTLs on the x-axis versus the BGCs represented by their cluster type on the y-axis for A. 
thaliana. The alternating background color represents the chromosomes, starting with chromosome one at the origin to 
chromosome five at the top of the figure. Local eQTLs (red) are eQTLs of genes that belong to the BGC. Distant eQTLs (blue) are 
eQTLs of genes outside the BGC. Metabolite QTLs (mQTL, green) are mQTLs of metabolites. The BGCs with known products are 
indicated with black arrows. 

When taking a closer look at the found overlap between BGCs and xQTLs, there are again examples that 
give some confidence to the methods described here, both for RIL-based and GWA studies. Still, all that 
will be described hereafter is hypothetical, however A. thaliana’s genome is better annotated than the 
rice genome and the GWASs had higher resolution. No mQTLs were annotated in the dataset for 
arabidiol/baruol, tirucalla, marneral and thalianol, however they still might be amongst the mQTL with 
unidentified masses.  
The first example involves the thirteenth BGC of type saccharide on the second chromosome. It showed 
overlap with two cis-eQTLs for SCPL12 (serine carboxypeptidase-like 12, however it is a Scl acyltransferase) 
and 10 mQTLs. One of the mQTLs was for kaempferitrin, which showed an association with the marker for 
SCPL11 (serine carboxypeptidase-like 11, however it is a Scl acyltransferase). Kaempferitrin (PubChem ID: 
21159160) is a kaempferol with two sugar groups on the third and seventh carbon atom, as Figure 7 shows. 
The BGC contained a UDP-glycosyltransferase (UniProtKB ID: O81010, ORF name: T20K9.14, gene name: 
UGT79B8) which has the following GO molecular function terms (Ashburner et al., 2000): quercetin 3-O-
glucosyltransferase (GO:0080043) and quercetin 7-O-glucosyltransferase (GO:0080044) activity, both 
inferred from biological aspect of ancestor (IBA). It might be that this glycosyltransferase also acts on 
kaempferol to add sugar groups since kaempferol and quercetin only differ in one hydroxy group. 
Therefore, this BGC might be involved in the production of kaempferitrin.  

https://pubchem.ncbi.nlm.nih.gov/compound/21159160#section=Top
http://www.uniprot.org/uniprot/O81010
http://amigo.geneontology.org/amigo/term/GO:0080043#display-lineage-tab
http://amigo.geneontology.org/amigo/term/GO:0080044#display-lineage-tab


Page 15 of 30 
 

 
Figure 7 The 2D structure of kaempferitrin. Taken and adjusted from PubChem (Kim et al., 2015). 

The second example involves BGC 36 of type saccharide/terpene on the fourth chromosome. The 
knownclusterBLAST analysis of PlantiSMASH indicated that this BGC is the known BGC for arabidiol/baruol 
(83% similarity). The BGC showed overlap with six mQTLs. All mQTLs had unidentified masses, however 
one of the mQTLs associated with a particular MSClust cluster (1_246) contained masses around 420-500 
Da, it might be that this cluster contains arabidiol (PubChem ID: 25245907) and/or baruol (PubChem ID: 
25203718), since the masses of arabidiol and baruol are 444.744 and 426.729 Da, respectively. One of the 
masses in this cluster was 503.1238 Da, this could be arabidiol with acetic acid as an adduct (M + acetic 
acid - H, mass: 503.7579 Da), since the LC-MS analysis was in negative mode.  Figure 8A and 8B show the 
2D structures of arabidiol and baruol. Cluster 1_246 was associated with the marker for the pentacyclic 
triterpene synthase 1 (PEN1), which is known to convert oxidosqualene to arabidiol (Xiang et al., 2006).  
 

 
Figure 8 The 2D structures of A arabidiol and B baruol. Taken and adjusted from PubChem (Kim et al., 2015). 

The last example involves BGC 46 of type putative on the fifth chromosome. It showed overlap with 9 
mQTLs whereof one mQTL (BH: 0, LOD-score: 7.463) was for methoxyglucobrassicin (PubChem ID 
glucobrassicin: 5484743), a glucosinolate. Figure 9 shows the 2D structure of glucobrassicin. 
Methoxyglucobrassicin was found to be associated with the marker for CYP81F2. CYP81F2 codes for a 
indol-3-yl-methylglucosinolate hydroxylase and was previously found to be involved in the biosynthesis of 
glucobrassicin in Brassica oleracae (Sotelo et al., 2016). CYP81F2 was also previously proven to be capable 
of hydroxylating the glucosinolate indole ring in A. thaliana (Pfalz et al., 2011). The BGC also contained the 
gene MJB24.4 (UniProtKB ID: Q9LVD5) coding for a putative thioredoxin superfamily protein, that might 
act on the sulfur atoms in (methoxy)glucobrassicin as well. At last, the BGC also contained several genes 
with methyltransferase domains, however none of them were previously identified as capable of 
transferring methyl groups to glucobrassicins (or other glucosinolates). 

https://pubchem.ncbi.nlm.nih.gov/compound/25245907#section=Top
https://pubchem.ncbi.nlm.nih.gov/compound/25203718
https://pubchem.ncbi.nlm.nih.gov/compound/5484743
http://www.uniprot.org/uniprot/Q9LVD5
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Figure 9 The 2D structure of glucobrassicin. Taken and adjusted from PubChem (Kim et al., 2015). 

Finally, a colocation network analysis was done to look for overlap between mQTLs and between mQTLs 
and eQTLs independent of the predicted BGCs in A. thaliana. This approach might lead to novel BGC 
discovery and links between metabolites and genes. The resulting network is shown in Supplemental 
figure 8, and had 671 nodes and 2734 edges. Some hubs can be seen in the network and two of those, 
involving secondary metabolites, are presented here. Unfortunately, those hubs did not contain links 
between mQTLs and eQTLs.  
Figure 10 presents the first network hub of overlapping mQTLs. This network hub contained some putative 
anthocyanidin sugars: malvidin, cyanidin and delphinidin sugars. It also contained ferulic acid and sinapoyl 
esters, and some flavonoid sugars (kaempferol, luteolin). All mQTLs were associated with the marker for 
OMT1 in the QTL analysis. OMT1 codes for O-methyltransferase 1 that is known to act on caffeic acid, 
hydroxyferulic acid,  sinapoyl esters, and lignins (Zhang et al., 1997) (Goujon et al., 2003), however it also 
acts as a flavonol 3’-O-methyltransferase (Muzac et al., 2000). The associations between the metabolites 
and genes in the A. thaliana dataset thus correspond with literature, and it might be that this OMT1 also 
acts on anthocyanidin sugars. The latter is hypothesized here based on the network hub. In close physical 
proximity (within 20 kb) of OMT1 are some transcription factors, and the genes PTAC15 and PORA. PTAC15 
encodes for a mTERF protein important in development processes (Kleine, T., 2012), whereas PORA 
encodes a light-dependent NADPH oxidoreductase that is involved in chlorophyll synthesis (Kim et al., 
2012). Therefore OMT1 does not seem to be part of a BGC.  
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Figure 10 A network hub containing mQTLs (nodes) for anthocyanidin related compounds, flavonoid sugars, and ferulic acid and 
sinapoyl esters. The edges represent locational overlap between the mQTLs. All mQTLs in this hub are linked to the marker for 
OMT1.  

Figure 11 presents the second network hub of overlapping mQTLs. This network hub contained some 
flavonoid sugars and one glucosinolate. All mQTLs were associated with the marker for BGLU6 in the QTL 
analysis. BGLU6 encodes a flavonol O-glucosyltransferase and was found to be important for the 
production of flavonol 3-O-gentiobioside 7-O-rhamnosides (both kaempferol and quercetin derived) in the 
study of Ishihara et al., from 2016. This network hub contains two kaempferol and one quercetin sugars, 
which is in line with the findings in the study. A hypothesis would be that this BGLU6 is also capable of O-
glycosylation of (2-phenylethyl) glucosinolates. In close physical proximity (within 20 kb) to the BGLU6 
gene are the genes coding for BGLU5 and NAC023. The latter is a transcription factor that plays a role in 
the determination of the position of shoot apical meristems (Ooka et al., 2003), whereas BGLU5 appears 
to be a pseudogene since it lacks certain motifs necessary for its glycosidase activity (Xu et al., 2004). 
Therefore, BGLU6 does not seem to be part of a BGC. 
 

 
Figure 11 A network hub containing mQTLs (nodes) for flavonoid sugars and one glucosinolate. The edges represent locational 
overlap between the mQTLs. All mQTLs in this hub are linked to the marker for BGLU6.  
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All examples described in this section indicate that the method of integrating BGCs with eQTLs and mQTLs 
might work to link BGCs to putative products and regulating genes for both RIL populations and GWASs. 
Furthermore, the method to find overlapping xQTLs independent of predicted BGCs might work as well. 
Still all methods show some limitations and culprits as discussed in the next section. 
 

Discussion 
Since plants produce an ample array of mostly unknown secondary metabolites, natural product discovery 
is of high interest so that metabolites with beneficial characteristics for human can be exploited for 
applications, e.g. drug discovery (Nützmann et al., 2016). The goal of this study was to explore integration 
methods for predicted BGCs by PlantiSMASH and metabolite and expression QTL data for RIL populations 
and GWASs. This integration can lead to hypotheses generation of genes involved in the biosynthesis of 
secondary metabolites. The idea was that, by looking at genomic overlap of the BGC and xQTL regions, 
BGCs could be linked to metabolites and genes that regulate the expression of the BGCs. The Results 
section showed some examples that might indicate the methods developed here work for posing new 
hypotheses, albeit rather speculative. This section will discuss some remarkable discoveries, limitations, 
and future work.   
Differences can be noticed between the overlap BGCs-xQTLs of the O. sativa and A. thaliana datasets, 
Figure 1 and 5. Some of these differences are explained by the number and distribution of the xQTLs in 
the genome (Supplemental figure 6). However, some are more difficult to explain, like the observation 
that there are no overlapping eQTLs on chromosome 4 and 5 of A. thaliana. This observation cannot be 
explained by the lack of eQTLs on these chromosomes, but it might be that the BGCs’s genes on these 
chromosomes are more specialized and only expressed in certain conditions (abiotic or biotic stress) or 
tissues. The A. thaliana QTL analyses were executed under normal conditions, providing enough nutrients 
and without any added stresses. The same is true for the conditions during the O. sativa QTL analyses. This 
is a limitation as well for novel BGC product discovery, since secondary metabolites are mostly produced 
under stress and thus their biosynthesis genes too are mostly expressed under stress. Both studies used 
leaf tissue for gene expression and metabolite profiling.  
In general, more overlap between BGCs and xQTLs was found for O. sativa despite the applied overlap 
cutoff, the larger genome and almost the same number of predicted BGCs in comparison to A. thaliana. 
However, this can be explained by the large number of xQTLs in the dataset and their much larger sizes (in 
the order of Mb) in comparison with the sizes of the A. thaliana xQTLs (in de order of kb). The difference 
in the number of local and distant overlapping eQTLs can as well be explained by the difference in eQTL 
sizes between the two datasets. The eQTL density is two times higher for O. sativa (0.027 versus 0.055 
Mb/QTL), however A. thaliana’s mQTL density is two times higher (0.063 vs 0.132 Mb/QTL). This, and 
difference in the total number of genes in the genomes (55,986 versus 33,602 genes), explain why more 
overlap is found with eQTLs in O. sativa compared to A. thaliana, and more overlap with mQTLs in A. 
thaliana compared to O .sativa. 
The low resolution of the O. sativa xQTL datasets and the lack of an extensive genome annotation (in 
comparison to A. thaliana) caused limitations for the interpretation of the discovered overlap. Causal 
genes for metabolite content and gene expression variation could not be designated with any certainty. 
The variant calling procedure and the coexpression analyses for O. sativa added another source of 
information, making it easier to point out causal genes but still all links that are presented in the Results 
section are hypothetical.  
The variant calling procedure between the parents of the O. sativa RIL population was used to assess if 
important genes in BGCs with overlapping xQTLs were actually variable. Non-synonymous SNPs were 
found in domains of some of these genes, however more work is needed to verify if these SNPs are actually 
causing problems in the (active sites of the) resulting enzymes and therefore can alter metabolite levels 
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and be the causality of the mQTLs. In case of the eQTLs, more research is needed to verify if there are SNPs 
in regulatory regions of the BGC’s genes that might cause the variation in the gene expression levels and 
thus eQTLs. However, there is still the problem of the low resolution of the O. sativa datasets with xQTLs 
spanning several genes, which adds a lot of uncertainty to pointing out causal genes.  
The coexpression analysis of the 216 samples for the O. sativa study did not show a lot of coexpression 
between the genes in the BGCs. This can be explained again by the conditions that were used in the 
experiments. Some genes are only expressed under certain stresses or in certain tissues or a combination 
of both. Furthermore, not all Affymetrix probe names were linked with a locus tag name of format 
OsXXgXXXXX in Ensembl BioMart (Kinsella et al., 2011), this caused a significant loss of gene expression 
data since only expression data of 11,465 genes out of 57,381 probes were kept and there are 55,986 
genes (loci) in version MSUv6.1 of the rice genome (Kawahara et al., 2013). 
The problem of uncertainty was smaller for the A. thaliana datasets since the marker density was much 
higher. There the xQTLs were about 1 kb in size, which is actually the region between marker with best 
association in GWAS ± chromosomal marker density. In theory, it is possibly that the regions are much 
larger since previous and next markers can be significantly associated with the trait as well, again adding 
uncertainty to the selection of causal genes. Due to the GWAS mapping procedure based on the linear 
mixed models LIMIX (Lippert et al., 2014) and EMMAX (Kang et al., 2008) that were used, only the best 
association is reported and therefore the region was extended with the chromosomal marker density in 
this study. Nevertheless, the links between BGCs and xQTLs for A. thaliana can be hypothesized with more 
certainty due to these smaller xQTL regions, but more importantly due to the extensive research that is 
already done in thale cress. However, these smaller xQTL regions caused problems in the colocation 
network analysis. The size of the regions might span one gene, but they won’t span an intergenic region 
between two genes. This causes limitations in the colocation network analysis, in this way it is difficult to 
discover novel BGCs since the xQTL regions are too small. A solution would be to extend the xQTL regions 
by the actual distance to the previous and next marker, maybe even the 2 markers before and after. 
Another problem in the colocation network analysis was that there was little overlap found between 
mQTLs and eQTLs, which also makes it difficult to discover novel BGCs.  An explanation could be that the 
QTL analyses for A. thaliana were performed on two different sets of accessions. It might be that the 
metabolites are present in one set, and the genes are expressed in the other set, causing missing links 
between mQTLs and eQTLs in the network. 
A last limitation, shared by both datasets, is that the (in silico) LC-MS and structural databases for 
secondary metabolites are sparse and therefore the annotations of the detected masses in the O. sativa 
and A. thaliana MS analyses are uncertain or even unknown. A solution might be to use the substructure 
exploration tool MS2LDA (Van der Hooft et al., 2017) for metabolomics data to identify substructures in 
the unknown mass spectra, this might then aid in linking BGCs to their products, if enzymes in the BGCs 
are known to act on certain molecular subgroups and the latter are present in the compound’s mQTL that 
overlapped with the BGC. 
Despite all uncertainties, methods were developed in this study that might successfully integrate BGCs 
with xQTLs in both RIL population-based studies and GWASs in plants. These methods can be used in silico 
to generate hypotheses to design targeted lab experiments for validation. The examples in the Results 
section can be validated by targeted knock-outs of genes or with near isogenic lines  to assess the causality 
of these genes in the variation of gene expression or metabolite levels. Fine-mapping of the xQTL datasets 
could lead to higher resolutions, whereas improvements in mass spectrometry (data analysis) can lead to 
more efficient natural product discovery. Furthermore, the QTL studies can be optimized for integration 
with BGC prediction. Growth conditions can include abiotic (e.g. rhizosphere soil composition, 
temperature, light conditions, humidity) and/or biotic stress (e.g. rhizobiome composition, insect or 
herbivore exposure) depending on the use of the secondary metabolites for which a BGC wants to be 
found. The tissue that is used for the expression and metabolite profiling analyses in these QTL studies is 
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important too, not all secondary metabolites and their biosynthesis genes are produced/expressed in 
every tissue. These improvements together would make the integration methods more efficient. Besides 
the two described methods, the integration method can be extended by looking for genomic overlap of 
trans-eQTLs of genes within BGCs. This can potentially lead to discovery of regulators for the BGCs. 
Another option is to use BGCs predicted with PlantClusterFinder (Schläpfer et al., 2017) as one more data 
source. Furthermore, the integration methods need to be optimized for speed, efficiency and applicability 
in other plants and maybe even Bacteria and fungi by using AntiSMASH (Weber et al., 2015) instead of 
PlantiSMASH together with GWASs.  
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Appendices  

1. Workflow 

 
Supplemental figure 1 General workflow of this study.  

2. Commands 
Running PlantiSMASH on O. sativa 
python run_antismash.py --taxon plants --gff3 oryza_sativa_indica_MSUv6.1.gff3 

--coexpress --coexpress-csv_file GSE49020_matrix.csv --clusterblast --

knownclusterblast --min-domain-number 1 --cdh-cutoff 0.6 --outputfolder 

<some_name> oryza_sativa_indica_MSUv6.1.fa 

 
Running PlantiSMASH on A. thaliana 
python run_antismash.py --taxon plants --clusterblast --knownclusterblast --

min-domain-number 1 --cdh-cutoff 0.6 --outputfolder <some_name> 

arabidopsis_thaliana_TAIR10.gbff 

 

https://doi.org/10.1371/journal.pgen.0030162
https://doi.org/10.1021/ol060973p
http://doi.org/10.1093/nar/gkx366
https://doi.org/10.1016/S0167-4781(97)00096-1
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SNP calling 
Retrieve MH63 data, Illumina HiSeq 2000 paired-end reads with 3 insert sizes 
fastq-dump –I –split-files SRR3234371   (10kb insert-size) 
fastq-dump –I –split-files SRR3234370   (5kb insert size) 
fastq-dump –I –split-files SRR3234369   (300bp insert size) 
 
Retrieve ZS97 data, Illumina HiSeq 2000 paired-end reads with 3 insert sizes 
fastq-dump –I –split-files SRR3234374   (10kb insert-size) 
fastq-dump –I –split-files SRR3234373   (5kb insert size) 
fastq-dump –I –split-files SRR3234372   (300bp insert size) 
 
Build an index for the Oryza sativa reference genome (MSUv6.1) with Bowtie2 
bowtie2-build -f oryza_sativa_indica_MSUv6.1.fa MSUv6.1 

 

Trim reads of MH63 and ZS97 
java -jar trimmomatic-0.36.jar PE -phred33 SRR3234369_1.fastq 

SRR3234369_2.fastq SRR3234369_1_trimmed_paired.fastq 

SRR3234369_1_trimmed_unpaired.fastq SRR3234369_2_trimmed_paired.fastq 

SRR3234369_2_trimmed_unpaired.fastq ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 

LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36 

 

java -jar trimmomatic-0.36.jar PE -phred33 SRR3234370_1.fastq 

SRR3234370_2.fastq SRR3234370_1_trimmed_paired.fastq 

SRR3234370_1_trimmed_unpaired.fastq SRR3234370_2_trimmed_paired.fastq 

SRR3234370_2_trimmed_unpaired.fastq ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 

LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36 

 

java -jar trimmomatic-0.36.jar PE -phred33 SRR3234371_1.fastq 

SRR3234371_2.fastq SRR3234371_1_trimmed_paired.fastq 

SRR3234371_1_trimmed_unpaired.fastq SRR3234371_2_trimmed_paired.fastq 

SRR3234371_2_trimmed_unpaired.fastq ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 

LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36 

 

java -jar trimmomatic-0.36.jar PE -phred33 SRR3234372_1.fastq 

SRR3234372_2.fastq SRR3234372_1_trimmed_paired.fastq 

SRR3234372_1_trimmed_unpaired.fastq SRR3234372_2_trimmed_paired.fastq 

SRR3234372_2_trimmed_unpaired.fastq ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 

LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36 

 

java -jar trimmomatic-0.36.jar PE -phred33 SRR3234373_1.fastq 

SRR3234373_2.fastq SRR3234373_1_trimmed_paired.fastq 

SRR3234373_1_trimmed_unpaired.fastq SRR3234373_2_trimmed_paired.fastq 

SRR3234373_2_trimmed_unpaired.fastq ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 

LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36 

 

java -jar trimmomatic-0.36.jar PE -phred33 SRR3234374_1.fastq 

SRR3234374_2.fastq SRR3234374_1_trimmed_paired.fastq 

SRR3234374_1_trimmed_unpaired.fastq SRR3234374_2_trimmed_paired.fastq 

SRR3234374_2_trimmed_unpaired.fastq ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 

LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36 

 
 
 
 



Page 25 of 30 
 

Map reads of MH63 and ZS97 to the MSUv6.1 reference genome with Bowtie2 
bowtie2 -x MSUv6.1 -1 SRR3234369_1_trimmed_paired.fastq, 

SRR3234370_1_trimmed_paired.fastq, SRR3234371_1_trimmed_paired.fastq -2 

SRR3234369_2_trimmed_paired.fastq, SRR3234370_2_trimmed_paired.fastq, 

SRR3234371_2_trimmed_paired.fastq -S MH63.sam -I 100 -X 10000 --phred33 --

sensitive --threads 8 --met-file MH63_metrics.txt 

 

bowtie2 -x MSUv6.1 -1 SRR3234372_1_trimmed_paired.fastq, 

SRR3234373_1_trimmed_paired.fastq , SRR3234374_1_trimmed_paired.fastq -2 

SRR3234372_2_trimmed_paired.fastq, SRR3234373_2_trimmed_paired.fastq, 

SRR3234374_2_trimmed_paired.fastq -S ZS97.sam -I 100 -X 10000 --phred33 --

sensitive --threads 8 --met-file ZS97_metrics.txt 

 
--sensitive is the same as the following individuals settings:  -D 15 -R 2 -L 22 -i S,1,1.15 
 

Conversion of SAM files to BAM files 
samtools view –bS -@ 8 MH63.sam > MH63.bam 

samtools view –bS -@ 8 ZS97.sam > ZS97.bam 

 
Sorting BAM files 
samtools sort -@ 8 MH63.bam -o MH63_sorted.bam 

samtools sort -@ 8 ZS97.bam -o ZS97_sorted.bam 

 

Indexing BAM files 
samtools index -@ 10 MH63_sorted.bam 

samtools index -@ 10 ZS97_sorted.bam 

 
Variant calling with SAMtools mpileup and BCFtools call 
samtools mpileup -f oryza_sativa_indica_MSUv6.1.fa -g MH63_sorted.bam 

ZS97_sorted.bam -o MH63_ZS97.bcf 

 

bcftools call -m -Ov MH63_ZS97.bcf -o MH63_ZS97.vcf 

bcftools stats MH63_ZS97.vcf 

 

3.  Input data format xQTLs 

 
Supplemental figure 2 Examples of the input data format of xQTLs. The left side of the figure shows eQTLs of O. sativa. The right 
side of the figure shows mQTLs of O. sativa. For each xQTL the following elements are reported: gene or metabolite name, 
chromosome number, peak location in Mb, inferior boundary location in Mb, superior boundary location in Mb, and the LOD-
score. 
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4. Overlap rules 

 
Supplemental figure 3 Overlap rules for detecting of genomic overlap between xQTLs and BGCs, however these rules also apply 
for finding overlap between xQTLs independent of BGCs in which the BGC in this figure is another xQTL. There are three possible 
ways of overlap as shown. The blue areas in the BGCs represent the minimum overlap size that is required. This minimum overlap 
is calculated as a percentage of the total BGC size. 

5. Output data format xQTLs and BGCs overlap 

 
Supplemental figure 4 Example of the output data format of overlap between xQTLs and BGCs. A tab-separated text file as 
presented in this figure is generated for every BGC for which overlap is found. The top of the file contains information about the 
BGC: clusterID, cluster type, chromosome number, BGC start position in bp and BGC end position in bp. The bottom of the file 
contains information about the xQTLs that are overlapping with the BGCs: gene/metabolite name, p-value, adjusted p-value, LOD-
score, locus annotation (eQTL), locus start position in bp (eQTL), locus end position in bp (eQTL) and locus status (eQTL).  
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6. Output data format overlapping mQTLs in A. thaliana 

 
Supplemental figure 5 Example of the output data format of overlapping mQTLs. A tab-separated text file as presented in this 
figure is generated. The headers of the file are: xQTL1, LOD_xQTL1, xQTL2, LOD_xQTL2, pval, adj_pval_BH and -
log10(adj_pval_BH). xQTL1 and xQTL2 are the mQTLs and their LOD-scores in the QTL analysis (LOD_xQTL1, LOD_xQTL2) that 
showed locational overlap. The significance of the overlap was tested with a randomization test, which results in p-values (pval). 
The p-values were correct with Benjamini-Hochberg (adj_pval_BH) and -log10 transformed (-log10(adj_pval_BH).  

7. Detailed overview of BGCs with known products in O. sativa and A. thaliana 
Supplemental table 1 A detailed overview of BGCs with known products in O. sativa and A. thaliana. The biosynthetic class, 
molecular formula, average molecular mass (Da) and PubChem ID are given for the BGC’s products. The chromosomal location 
and the MiBiG accessions are given for the BGCs. 

 Biosynthetic 
class 

Chromosomal 
location (Mb) 

Molecular 
formula 

Average 
molecular 
mass (Da) 

MiBiG 
accession 

PubChem 
ID 

O. sativa 

Phytocassane/oryzalide terpene 2: 22.52-22.76 C20H28O3 316.43452 BGC0000672 10313699 

Momilactone terpene 4: 5.31-5.58 C20H26O3 314.41864 BGC0000671 162644 

A. thaliana 

Arabidiol/baruol terpene 4: 8.73-8.82 NA NA BGC0001313 NA 

Tirucalla terpene 5: 14.19-14.25 C30H50O 426.7174 BGC0001314 12302184 

Marneral terpene 5: 17.02-17.06 C30H50O 426.7174 BGC0000669 25001002 

Thalianol terpene 5: 19.43-19.46 C30H50O 426.7174 BGC0000670 25229600 

https://mibig.secondarymetabolites.org/repository/BGC0000672/index.html#cluster-1
http://pubchem.ncbi.nlm.nih.gov/compound/10313699
https://mibig.secondarymetabolites.org/repository/BGC0000671/index.html#cluster-1
http://pubchem.ncbi.nlm.nih.gov/compound/162644
https://mibig.secondarymetabolites.org/repository/BGC0001313/index.html#cluster-1
https://mibig.secondarymetabolites.org/repository/BGC0001314/index.html#cluster-1
http://pubchem.ncbi.nlm.nih.gov/compound/12302184
https://mibig.secondarymetabolites.org/repository/BGC0000669/index.html#cluster-1
http://pubchem.ncbi.nlm.nih.gov/compound/25001002
https://mibig.secondarymetabolites.org/repository/BGC0000670/index.html#cluster-1
http://pubchem.ncbi.nlm.nih.gov/compound/25229600
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8. Distribution of xQTLs throughout the genomes of O. sativa and A. thaliana 

 
Supplemental figure 6 Distributions of xQTLs for the genomes of O. sativa and A. thaliana. A. Distribution of eQTLs in rice. B. 
Distribution of mQTLs in rice. C. Distribution of eQTLs in thale cress. D. Distribution of mQTLs in thale cress. 
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9. Example of variant browsing with IGV in O. sativa 

 
Supplemental figure 7 An example of variant browsing with IGV in O. sativa. The gene shown is LOC_Os01g25010, which is a 
dioxygenase with three non-synonymous SNPs in the DIOX_N domain as was presented in the Results section. The sorted BAM 
files of both parents are shown as well. The top track presents the variants between the two variants in a VCF file, filtered means 
here that only variants were kept (ALT != “.”). 
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10. Overview colocation network for overlapping mQTLs and eQTLs in A. thaliana 

 
Supplemental figure 8 An overview of the entire colocation network of overlapping mQTLs and eQTLs in A. thaliana. Within the 
large network are some smaller hubs. Outside the large network (bottom of figure) are some smaller networks. Nodes represent 
mQTLs and edges represent genomic overlap. The edge width is determined by the -log10 of the BH adjusted p-values derived 
from the permutation test. The network was created with Cytoscape v3.4.0. (Shannon et al., 2003). 

 
 


