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Abstract 

The Tema Harbour in Ghana has been in operation for nearly six decades and is subject to 

large influxes of sediments and sediment pollution due to the intense human activities in the 

harbour area. This thesis assessed sediment pollution in the Tema Harbour by using the 

standard 10-day Corophium volutator and 28-day Hediste diversicolor whole-sediment 

toxicity bioassays as well as chemical contaminant (DDTs, HCHs, PAHs and metal - Cd, Pb, 

Cr, Ni, Cu, Zn and As) data. The bioassay results showed significant C. volutator and H. 

diversicolor mortalities, indicating that the Tema Harbour sediments are polluted and toxic. 

Biota-sediment accumulation factors further revealed a high potential for bioaccumulation of 

the sediment-associated metals, which can have adverse implications for the food chain. Thus, 

the Tema Harbour sediments are unsuitable for disposal at sea without remediation.  

 

The thesis further investigated sediment accumulation rates (SARs) in the Tema Harbour by 

the combined analyses of sediment trap and sediment core data. The sediment cores exhibited 

variable bulk density profiles, indicating highly dynamic and non-steady sedimentation 

conditions. 
7
Be-derived gross-estimates of very recent sediment accumulation rates using the 

constant flux-constant sedimentation (CF-CS) model were in the range of 2.5-9.0 g.cm
-2

.y
-1

. 

These values were much lower than the estimated average settling fluxes from the sediment 

trap data (15.2-53.8 g.cm
-2

.y
-1

), indicating sediment resuspension plays an important role in 

the sedimentation process. Conventional 
210

Pb sediment dating models did not allow any 

estimation of SARs in the Tema Harbour. The 
210

Pb-based TERESA model, on the other 

hand, proved to be a good tool for quantifying sediment accumulation rates in the Tema 

Harbour with time-averaged values in the range of 1.4-3.0 g.cm
-2

.y
-1

 and sediment accretion 

rates of 1.7-3 cm.y
-1

.  

 

In conclusion, this study has shown that the Tema Harbour has been severely affected by 

anthropogenic activities, resulting in pollution of the sediments, especially those from the 

Fishing Harbour and the Canoe Basin. Moreover, the sediment accretion rates in the harbour 

may pose moderate problems for sustainable use of the harbour. There is, therefore, a need to 

improve sediment and environmental management in the Tema Harbour and regulate the 

disposal of the dredged material originating from this tropical coastal harbour.   
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1.1. Background of this study 

Coastal harbours are among marine environments highly vulnerable to chemical pollution as 

they tend to receive and accumulate pollutants from maritime activities and other human 

activities within their catchments, including urbanisation, industrialisation and agriculture 

(Petrosillo et al., 2009; Smith et al., 2009; Lepland et al., 2010; Mestres et al., 2010; Schipper 

et al., 2010; Nyarko et al., 2014; Romero et al., 2014). Coastal harbours are also prone to 

siltation as a result of the influxes of sediment-laden seawater (Senten, 1989; Leys and 

Mulligan, 2011) with subsequent deposition and accumulation of the sediments within the 

harbour basin under favourable hydrodynamic conditions (Smith et al., 2009; Lepland et al., 

2010; Luo et al., 2010; Mestres et al., 2010; Schipper et al., 2010). Chemical pollution and 

high sediment accumulation rates (SARs) in harbours are major environmental issues as they 

pose a threat to harbour sustainability and result in adverse human health, ecological and 

socio-economic impacts (Syvitski et al., 2005; Van Rijn 2005; Casado-Martinez et al., 2006; 

Birch and Hutson, 2009; Lepland et al., 2010; Mestres et al., 2010; Schipper et al., 2010; 

Green and Coco, 2014).  

 

The management of sediment pollution and accumulation in harbours commonly involves 

dredging (Burton, 2002) with subsequent disposal in other aquatic or terrestrial ecosystems 

(Caille et al., 2003; Witt et al., 2004; Bolam et al., 2006; Schipper et al., 2010). Dredging has 

both economic and ecological implications as it is usually costly (Qu and Kelderman, 2001; 

Barneveld and Hugtenburg, 2008; Schipper et al., 2010) and moreover, the pollutants in the 

disposed materials are capable of exerting detrimental effects on the receiving ecosystems 

(Hong et al., 1995; Burton, 2002; Caille et al., 2003; Stronkhorst and van Hattum, 2003; 

Casado-Martinez et al., 2006; Birch and Hutson, 2009; Choueri et al 2009; Schipper et al., 

2010). Thus, dredged material disposal is now recognized as a major environmental issue. 

Sediment pollutants of notable concern include metals and persistent organic pollutants 

(POPs), exemplified by polycyclic aromatic hydrocarbons (PAHs) and organochlorine 

pesticides (OCPs), due to their toxicity, environmental persistence and potential for 

bioaccumulation and transfer along food chains (Chau, 2005; Casado-Martinez et al., 2006; 

Schipper et al., 2010; Nyarko et al., 2011; Kelderman,  2012; Iqbal et al., 2013; Romano et al., 

2013). Thus, information on sediment contamination and accumulation rates in harbours is 

relevant for their management, e.g., for predicting the time to dredge.   
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The coastal Tema Harbour in Ghana (Fig. 1.1) was constructed in 1960 and has been in 

operation since 1962 when it was commissioned. Industrialisation of the harbour area also 

started in the early 1960s and has seen much growth over the years.  

 

 
Fig. 1.1 Aerial view of the Tema Harbour (Google Earth) 

 

Major industrial activities in the harbour zone include oil refining, ore smelting, and 

manufacture of paints and cement. The harbour has fourteen berths including a dedicated oil 

berth, where oil is discharged by oil tankers, and a shipyard with two dry docks for servicing 

of ships. A wide range of ships call at the harbour including oil tankers, general cargo, 

container ships and bulk carriers, which transport e.g. fertilizer, ores, petroleum products and 

chemicals. Container traffic at the harbour increased by about 400%, i.e., from 150,000 

Twenty-Foot Equivalent Units (TEUs) to 750,000 TEUs between the year 2000 and 2011 

(http://ghanaports.gov.gh/GPHA). During this period, there were two major oil spills in the 

http://ghanaports.gov.gh/GPHA


General Introduction 

4 
 

Tema Harbour and a fire outbreak at the Tema shipyard, which destroyed oil pipeline 

installations at the harbour. Maintenance dredging is conducted in the harbour periodically 

with subsequent disposal in the adjacent sea. In order to increase the handling capacity of the 

Tema Harbour to about 1,000,000 TEUs, the Ghana Ports and Harbours Authority (GPHA) 

proposed to undertake expansion works at the Tema Harbour. It is expected that this project, 

when completed, will boost industrial activities and thus, the Tema Harbour may be highly 

impacted through important loads of pollutants and sediments. In order to understand and 

minimise the anthropogenic impacts, a comprehensive assessment of chemical pollution and 

sedimentation in the Tema Harbour is crucial.  

 

Prior to this thesis, no comprehensive assessment of chemical pollution and sedimentation 

was conducted in the Tema Harbour. Baseline studies in the Tema Harbour have focused on 

total metal (http://open_jicareport.jica.go.jp/pdf/11681632_03.pdf; Nyarko et al., 2014) and 

total PAH (Gorleku et al., 2014) contamination in surface sediments. However, harbour 

sediments are often contaminated by a wide range of chemical pollutants (Casado-Martinez et 

al., 2006; Long et al., 2006; Birch and Hutson, 2009; Schipper et al., 2010). The aim of this 

thesis was, therefore, to investigate chemical pollution and sedimentation conditions in the 

Tema Harbour. The thesis objectives were to: 

(1) Assess chemical contamination in sediments from the Tema Harbour and its 

ecotoxicological implication  

(2) Evaluate the biological effects of chemical contamination in the Tema Harbour sediments 

(3) Quantify settling fluxes of sediments and associated contaminants as well as recent 

sediment accumulation rates in the Tema Harbour. 

 

1.2. Research approach 

With an integral view of the research problem, a rigorous multidisciplinary and integrated 

approach was adopted to assess the chemical pollution and sedimentation in the Tema Harbour 

as shown in Fig. 1.2. To assess chemical pollution in the Tema Harbour sediments, chemical 

analysis and a screening-level risk assessment were first conducted on the Tema Harbour 

sediments to identify contaminants of potential concern by using Sediment Quality Guidelines 

(SQGs) and the Environmental Risk from Ionising Contaminants Assessment and 

Management (ERICA) tool. This screening-level risk assessment was reinforced by whole-

http://open_jicareport.jica.go.jp/pdf/11681632_03.pdf


General Introduction 

5 
 

sediment bioassays to evaluate the hazard potential of the Tema Harbour sediments and to 

assess the potential ecological impact of metal contamination in the harbour sediments.  

 

To assess sedimentation conditions in the Tema Harbour, sediment core analysis was combined 

with the analysis of particulate matter accumulated in sediment traps at different periods. This 

allowed for an understanding of Suspended Particulate Matter (SPM) dynamics and the 

processes affecting the distribution and dynamics of sediment-associated contaminants in the 

Tema Harbour. The robust quantitative 
210

Pb-based TERESA (Time Estimates from Random 

Entries of Sediments and Activities) model was combined with the measurement of short-lived 

radioisotopes (
234

Th and 
7
Be) in sediment cores to depict a reliable scenario for sedimentation 

in the Tema Harbour. This allowed for the quantification of recent SARs in the disturbed Tema 

Harbour where (1) conventional 
210

Pb-based dating methods fail, (2) the use of sediment traps 

and 
234

Th and 
7
Be profiles in sediment cores show serious constraints, and (3) SARs fall 

beyond the capabilities of GIS-bathymetry. 

 

1.3. Structure of this thesis 

Before pursuing the thesis objectives, a review of pertinent literature was conducted and is 

presented in Chapter 2. The objectives of this thesis were pursued in Chapters 3-8. Chapters 3-5 

dealt with objective 1: Chapter 3 focused on radionuclide contamination, Chapter 4 on organic 

pollutant (PAH, DDT and HCH) contamination, while Chapter 5 assessed the potential mobility 

of sediment-bound metals in surface sediments of the Tema Harbour and the ecological risk 

implications. The screening-level risk assessment was reinforced by whole-sediment bioassays 

to evaluate the hazard/toxic potential of the harbour sediments and assess the potential 

ecological impact of metal contamination in the sediments, and is presented in Chapter 6. 

Objective 3 is dealt with under chapters 7 and 8. Chapter 7 investigated SPM dynamics and 

recent sediment accumulation rates in the Tema Harbour, while Chapter 8 investigated settling 

fluxes of fine sedimentary metals and their ecotoxicological implications in the Tema 

Harbour. A synthesis of Chapters 3-8 is then presented in Chapter 9.  
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Fig. 1.2 Schematic presentation of the thesis approach to investigate chemical 

pollution of sediments and sedimentation rates in the Tema Harbour 
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2.1. Chemical pollution in coastal marine environments 

The United Nations (UN) Group of Experts on the Scientific Aspects of Marine 

Environmental Protection (GESAMP) defined marine pollution as: "The introduction by man, 

directly or indirectly, of substances or energy into the marine environment (including 

estuaries) resulting in such deleterious effects as harm to living resources, hazards to human 

health, hindrance to marine activities, including fishing, impairment of quality for use of sea 

water and reduction of amenities."  Thus, chemical pollution in coastal marine environments 

pertains to the anthropogenic release of chemical substances into coastal marine 

environments, which results in adverse human health, ecological and socio-economic effects. 

 

Chemical pollution in coastal marine environments is closely linked to ocean- and land-based 

human activities (Williams, 1996; Islam and Tanaka, 2004; Petrosillo et al., 2009). Land-

based activities include industrial and agricultural production, urban and coastal 

infrastructural development, tourism and mining (Simpson et al., 1996; Clark, 2001; Simboura 

and Zenetos, 2002; Islam and Tanaka, 2004; Petrosillo et al., 2009; Smith et al., 2009; Mestres 

et al., 2010; Lepland et al., 2010). Chemical pollutants from land-based activities enter coastal 

marine environments by various means, including river and groundwater influx, surface run-

offs, atmospheric transport and deposition, direct discharges of industrial effluents and 

municipal outfall (Clark, 2001; Islam and Tanaka, 2004; Ruiz-Fernandez et al., 2009). Ocean-

based activities such as offshore crude oil extraction, fishing, mariculture, maritime transport 

and dumping result in direct discharge of pollutants into the marine environment (Simpson et 

al., 1996; Williams, 1996; Simboura and Zenetos, 2002; Islam and Tanaka, 2004; Petrosillo et 

al., 2009; Simth et al., 2009; Mestres et al., 2010; Lepland et al., 2010).  

 

With over 50% of the world‘s population inhabiting coastal areas (Gupta et al., 2005; 

Petrosillo et al., 2009), land-based activities are by far the major contributor (nearly 80%) to 

chemical pollution in the marine environment, with ocean-based activities (mainly maritime 

transport and dumping at sea) contributing about 20% (Williams, 1996). Estuaries (Meybeck 

and Vörösmarty, 2005; Birch et al., 2015; Alvarez-Vazquez et al., 2017) and coastal harbours 

(Simpson et al., 1996; Birch and Hutson, 2009; Lin et al., 2009; Smith et al., 2009; Lepland et 

al., 2010; Mestres et al., 2010; Schipper et al., 2010) are particularly vulnerable to chemical 

pollution as they are often associated with intense human activities. 
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Although environmental pollution can be traced back to the beginning of the history of human 

civilization (Islam and Tanaka, 2004; Magi and Di Carro, 2016), chemical pollution of the 

marine environment began to receive global attention during the mid-20
th

 century (Magi and 

Di Carro, 2016), mainly as a result of global industrialisation, which resulted in an 

unprecedented release of chemical substances into the environment (Gaillardet et al., 2003; 

Wang et al., 2010). It is now known that many coastal marine environments are polluted 

(Islam and Tanaka, 2004; Wang et al., 2014; Vikas and Dwarakish, 2015).  

 

2.2. Types and effects of chemical pollutants in coastal marine environments 

A variety of chemical pollutants including metals, organic chemicals and radionuclides is 

often present in coastal marine environments from varied sources (Casado-Martinez et al., 

2006; Long et al., 2006; Birch and Hutson, 2009; Schipper et al., 2010). In terms of human 

health and ecological significance, however, priority pollutants include (1) metals/metalloids 

such as Cd, Hg, Ni, Pb, Cr, Cu, Zn, Sn and As, (2) radionuclides such as 
210

Po, 
210

Pb, 
226

Ra, 

238
U, 

232
Th, 

228
Ra, 

228
Th, 

40
K and 

137
Cs, and (3) persistent organic pollutants (POPs) such as 

polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organochlorine 

pesticides (OCPs), and biocides such as the organotin compound tributyltin (TBT) (Williams, 

1996; Volesky, 2001; Islam and Tanaka, 2004; Casado-Martinez et al., 2006; Birch and 

Hutson, 2009; Schipper et al., 2010; Magi and Di Carro, 2016). 

  

TBT is notorious for imposex, a condition where females of certain species of whelk and 

gastropod develop male organs (Clark, 2001; Schipper et al., 2008), resulting in a decline in 

whelk and gastropod population (Ten Hallers-Tjabbes et al., 1994; Champ and Seligman, 

1996; Mensink et al., 1996a, b; Schipper et al., 2008). These chemical pollutants are persistent 

and bioaccumulative with the potential to be transferred along the food chain (Chau, 2005; 

Nyarko et al., 2011a; Kelderman, 2012; Iqbal et al., 2013; Romano et al., 2013). They are also 

toxic and may exert a broad range of effects, including cancer, mutation, hormonal disruption, 

reproductive anomalies, death of organisms and loss of biodiversity, alteration/destruction of 

ecological habitats, declines in productivity, restrictions on seafood consumption, human 

diseases, hindrance to coastal activities, poverty, and costly remediation (Williams, 1996; 

Islam and Tanaka, 2004; Stoschek and Zimmermann, 2006; Lepland et al., 2010).  
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In recent decades, a wide range of organic compounds referred to as chemicals of emerging 

concern (COEC) have been recognized as potentially hazardous to human and aquatic life 

(Stronkhorst and van Hattum, 2003; Schipper et al., 2010; Geissen et al., 2015; Magi and Di 

Carro, 2016). Some COEC are halogenated organic compounds and are thus potentially 

persistent and bioaccumulative. They include brominated flame retardants (BFRs) such as 

polybrominated diphenyl ethers (PBDEs); perfluorinated chemicals (PFCs) such as 

perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA); polychlorinated 

dibenzodioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and polychlorinated 

naphthalenes (PCNs). Most of the halogenated COEC have been designated as priority 

pollutants by the European Union.  

 

2.3.  Sources of chemical pollutants in coastal marine environments 

Sediment-associated pollutants in coastal marine environments may emanate from different 

sources. Metals may be present in sediments as a result of their natural occurrence in rocks 

and the Earth‘s crust (Clark, 2001). Anthropogenic inputs originate from e.g. combustion of 

fossil fuels, mining and smelting operations, industrial and manufacturing processes, and 

waste disposal (Zhou et al., 2008; Iqbal et al., 2013; Alvarez-Vazquez et al., 2017). They have 

exceeded natural or background levels in many areas (Rae, 1997; Clark, 2001; Chatterjee et 

al., 2007; Iqbal et al., 2013; Wang et al., 2014). Radionuclides may also be present in 

sediments as a result of their natural occurrence in rocks, the Earth‘s crust and the atmosphere 

as well as from anthropogenic sources. Major anthropogenic sources include the global 

nuclear tests conducted between the mid-1940s and the 1980s, nuclear accidents, nuclear fuel 

reprocessing and discharges from nuclear industries (Clifton et al., 1995; Livingston and 

Povinec, 2000). Anthropogenic activities such as agriculture, mining, and oil and gas 

development may also lead to enhancement in the environmental levels of radionuclides 

referred to as Technologically Enhanced Naturally-Occurring Radioactive Materials 

(TENORM) (UNSCEAR, 2000; Al-Trabulsy et al., 2011; Nyarko et al., 2011b).  

 

Like metals and radionuclides, the sources of PAHs in the marine environment may be natural 

(e.g. natural forest fires and diagenetic processes) or anthropogenic such as waste incineration, 

coal processing, crude oil refining, combustion of fossil fuels and spillage of crude oil (Mai et 

al., 2003; Yim et al., 2007; Giuliani et al., 2008). Unlike metals, PAHs and radionuclides, 

OCPs have no known natural origin; they are synthetic and have been released into the 
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environment through their use for pest control in agriculture and public health programmes 

(Rajendran et al., 2005; Ntow and Botwe, 2011; Thomas et al., 2012; Ahmed et al., 2015). 

The source of TBT in the marine environment is the use of TBT-based paints for coating of 

marine crafts and docks in harbours to control biofouling (Williams, 1996; Berto et al., 2007; 

Schipper et al., 2008; Nyarko et al., 2011a; Castro et al., 2012). Thus, commercial ports, 

dockyards and marinas are potential ‗hot-spots‘ of TBT pollution. COEC have diverse sources 

such as pharmaceuticals, disinfection by-products, pesticides, industrial chemicals and wood 

preservatives (Sauvé and Desrosiers, 2014; Geissen et al., 2015). 

                                                                                                     

2.4.  Fate of chemical pollutants in coastal marine environments 

Most chemical pollutants including radionuclides (Pfitzner et al., 2004; Yeager et al., 2005; 

Santschi et al., 2006; Mabit et al., 2008), metals (Santschi et al., 2001; Kelderman and Osman, 

2007; Ruiz-Fernandez et al 2009; Lepland et al., 2010), OCPs and PAHs (Wang et al., 2001; 

Luo et al., 2004; Yang et al., 2005; Hu et al., 2009; Lin et al., 2009) that enter coastal marine 

environments are extremely particle-reactive. This usually results in a larger component of the 

pollutants partitioning to particulates (Gómez-Gutiérrez et al., 2007; Santschi et al., 2001), 

particularly the fine silt and clay particles, compared to the overlying water (Power and 

Chapman, 1992; Nyarko et al., 2011a). Thus, sediments participate in the fate of chemical 

pollutants in aquatic systems (Mulligan et al., 2001; Ruiz-Fernandez et al 2009; Prato et al., 

2011; Jiang et al., 2013), acting as an important source of exposure of chemical pollutants to 

benthic organisms via direct contact or ingestion (Bat and Raffaelli, 1998; Mulligan et al., 

2001; Burton, 2002; DelValls et al., 2004; Burgess et al., 2007; Gómez-Gutiérrez et al., 2007; 

Birch and Hutson, 2009). Metals (Rainbow, 2007; Schipper et al., 2010;  Carvalho et al., 

2012; Gaion et al., 2014), POPs (Burton, 2002; Islam and Tanaka, 2004; Birch and Hutson, 

2009) and radionuclides (Hassona et al., 2008; Sirelkhatim et al., 2008) can subsequently 

accumulate in the tissues of benthic invertebrates and other organisms in the marine food web. 

Metals are non-degradable; radionuclides degrade through radioactive decay, whereas organic 

pollutants slowly degrade via weathering and biochemical conversion to other compounds 

(James, 2002; Rani et al., 2017). For example, the radioactive decay of 
226

Ra and the 

degradation of DDT are shown in Figs. 2.1 and 2.2, respectively. 
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Fig. 2.1 Radioactive decay of 226Ra to 210Po through several intermediate 

radionuclides 

 

 

 

Fig. 2.2 Degradation of DDT to DDE, DDD and other metabolites (Quensen III et al., 

1998).  

 

The fate of metals (Kelderman and Osman, 2007; Di Palma and Mecozzi, 2007; Hamzeh et 

al., 2014), radionuclides (Sirelkhatim et al., 2008; Sugandhi et al., 2014) and organic 

pollutants (Lin et al., 2009) is influenced by environmental factors such as the pH and redox 

state. Other factors include microbiological processes (Ryding, 1985) and the presence of 

Fe/Mn oxides and hydroxides or organic matter (Horowitz and Elrick, 1987; Wang et al., 

2001; Islam and Tanaka, 2004; Dung et al., 2013; Hamzeh et al., 2014). Sediment organic 

matter (OM) may derive from marine phytoplankton (autochthonous sources) or terrestrial 

higher plants (allochthonous sources), which may be distinguished by their total organic 

carbon (TOC)/total nitrogen (TN) ratios. Generally, OM of autochthonous sources is 

characterised by a TOC/TN ratio ≤ 6-8:1, while that of allochthonous sources is characterised 
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by a TOC/TN ratio ≥ 20:1 (Burdige, 2007; Tesi et al., 2007; Guerra et al., 2010; Mahapatra et 

al., 2011). Thus, the TOC/TN ratios allow an assessment of the predominant source of OM in 

marine sediments.  

 

2.5.  Assessment of chemical pollution in coastal marine environments 

In addition to their high affinity for chemical pollutants, sediments show lower variation in 

pollutant concentrations than their overlying water (Beiras et al., 2003). Therefore, sediments 

are considered as a better indicator of chemical pollution than the water phase (Sundberg et 

al., 2005; Denton et al., 2006; Giuliani et al., 2011; Moukhchan et al., 2013) and have become 

a major tool for the assessment of chemical pollution in aquatic environments (Díaz-de Alba 

et al., 2011; Kalwa et al., 2013).  

 

In the GESAMP context of marine pollution, the assessment of chemical pollution in 

sediments should involve the 4 steps as shown in Fig. 2.3. These steps are described in detail 

in the text below.  

 

 

 

 

 

 

 

Fig. 2.3 Schematic presentation of the assessment of chemical pollution in sediments 

 

2.5.1. Inventory of chemical pollutants in sediments 

Accurate measurement of chemical pollutants is necessary in pollution assessment since it can 

provide information on the potentially toxic chemicals in the sediments and help identify 

appropriate remediation techniques. Considering that a variety of chemical pollutants may be 

present in marine sediments (Casado-Martinez et al., 2006; Long et al., 2006; Birch and 

Inventory of chemical pollutants in sediment 

Human health and ecotoxicological risk 

characterisation 

Pollutant source apportionment 

Hazard and impact assessment 
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Hutson, 2009; Schipper et al., 2010), it is impractical to analyse the whole range of chemical 

pollutants in sediments. Moreover, the analysis of COEC in sediments is currently a challenge 

since they are typically present in very low concentrations and the development of sampling 

protocols and analytical techniques is at its infancy (Geissen et al., 2015).  On the contrary, 

sampling protocols, standard analytical techniques and standard reference materials (SRMs) 

or certified reference materials (CRMs) that allow accurate measurements are well-developed 

for most of the classical chemical pollutants including radionuclides, OCPs, PAHs and metals. 

These pollutants are of wide interest due to their potential toxicity and adverse biological 

effects such as cancer, mutations and reproductive anomalies (Willett et al., 1998; Wang et al., 

2001; Little, 2003; Islam and Tanaka, 2004; King et al., 2004; De Luca et al., 2004; Casado-

Martinez et al., 2006; Schmid and Schrader, 2007; Hassona et al., 2008; Sirelkhatim et al., 

2008; Birch and Hutson, 2009; Schipper et al., 2010; Ravanat et al., 2014). 

 

Radionuclides of interest include 
238

U, 
210

Pb, 
226

Ra, 
232

Th, 
228

Ra, 
228

Th, 
40

K and 
137

Cs 

(Hassona et al., 2008; Sirelkhatim et al., 2008; Ulanovsky et al., 2008), while banned OCPs of 

greatest interest include DDT (dichlorodiphenyltrichloroethane) and HCH 

(hexachlorocyclohexane) (Walker et al. 1999; Yang et al., 2005; Hu et al., 2009; Lin et al., 

2009; Singh and Lal 2009). DDT and HCH (see Fig. 2.4) are targeted for global elimination 

and consequently banned in many countries under the Stockholm Convention on persistent 

organic pollutants (Ntow and Botwe, 2011), which seeks to protect human health and the 

environment from the harmful effects of these pollutants. However, concerns about these 

banned OCPs remain due to their environmental persistence, weak enforcement of their ban, 

the disposal of stockpiles and the permitted use of DDT in some malaria endemic developing 

countries (Ntow and Botwe, 2011; Ahmed et al., 2015). 

 

 

 

 

 

                       (a) DDT                                             (b) HCH 

Fig. 2.4 Chemical structures of (a) DDT and (b) HCH  
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Metals of greatest concern include Pb, Cu, Zn, As, Cr, Ni, Cd, Sn and Hg (Volesky, 2001; 

Casado-Martinez et al., 2006; Schipper et al., 2010). PAHs are a mixture of several congeners, 

which may be classified as low molecular weight PAHs (containing two or three fused 

benzene rings) and high molecular weight PAHs (containing four to six fused benzene rings)  

(Yunker et al., 2000; Yunker et al., 2002; Neff et al., 2005). 16 PAHs (see Fig. 2.5) have been 

designated as priority pollutants by the United States Environmental Protection Agency 

(USEPA) and are, therefore, the main target in terms of environmental monitoring of PAHs 

(Nisbet and LaGoy, 1992; Wang et al 2001; De Luca et al., 2004; King et al., 2004). 

 

2.5.2. Pollutant source apportionment in sediments 

For sediment-associated chemical pollutants that may emanate from natural and 

anthropogenic sources, it is the anthropogenic component that is related to pollution 

(Chapman, 2007). Thus, Chapman and Anderson (2005) provide a distinction between 

―pollution‖ and ―contamination‖, the former occurring when the presence of a pollutant in the 

environment results in harmful biological effects, while the latter refers to the presence of a 

pollutant that is either not normally found in the environment or above the natural background 

concentration. Delineating the anthropogenic sources from the natural sources is, therefore, of 

interest in chemical pollution assessment (Aloupi and Angelidis, 2001; Chapman, 2007; 

Chatterjee et al., 2007; Dung et al., 2013). Radionuclides of natural (e.g. 
238

U, 
210

Pb, 
226

Ra, 

232
Th, 

228
Ra, 

228
Th, 

40
K and 

7
Be) and artificial (e.g. 

90
Sr, 

137
Cs, 

239
Pu, 

240
Pu and 

241
Am) sources 

are well known. However, natural radionuclide enrichment in sediments may occur as a result 

of anthropogenic activities (UNSCEAR, 2000; Al-Trabulsy et al., 2011; Nyarko et al., 2011b) 

and this can be assessed by comparing measured concentrations in sediments with background 

concentrations.  

 

2.5.2.1. DDT and HCH 

DDT is of anthropogenic origin (Ntow and Botwe, 2011) and it undergoes degradation mainly 

to dichlorodiphenyldichloroethylene (DDE) and dichlorodiphenyldichlororethane (DDD) (see 

Fig. 2.2), which are all persistent with similar physical and chemical characteristics (WHO, 

1989). DDT was commercially produced as technical DDT with a characteristic composition, 

which can provide insight into the timing of their use. This is relevant for assessing the 

effectiveness of the ban/regulation of the pesticides (Botwe et al., 2012). Technical DDT has a  
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Fig. 2.5 Chemical structures of the USEPA 16 priority PAHs 
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composition of 77% p,p'-DDT, 4.0% p,p'-DDE and 0.3% p,p'-DDD. Due to the low 

proportions of DDE and DDD in technical DDT, the DDT/DDD and DDT/(DDE + DDD) 

ratios < 1.0 are generally indicative of past use of DDT, whereas ratios > 1.0 point to current 

use (Lin et al., 2009; Botwe et al., 2012). HCH may be present in the environment as isomers 

namely -HCH, -HCH, -HCH and -HCH (Fig. 2.6), which are all persistent with similar 

physical and chemical characteristics (Willett et al., 1998; Walker et al., 1999; Singh and Lal, 

2009) and can undergo interconversions (Walker et al., 1999; Yang et al., 2005; Hu et al., 

2009).  

 

 

Fig. 2.6 Chemical structures of -HCH, -HCH, -HCH and -HCH isomers 

(Srivastava and Shivanandappa, 2010)  

 

HCH was commercially produced as technical HCH and lindane. The major composition of 

technical HCH are α-HCH (60-70%) > γ-HCH (10-15%) > β-HCH (5-12%) > δ-HCH (6-10 

%) (Willett et al. 1998; Walker et al., 1999; Singh and Lal, 2009). Interestingly, the 

insecticidal potency of technical HCH is mainly associated with -HCH despite the higher 

proportion of the α-HCH isomer (Willett et al., 1998; Walker et al., 1999; Singh and Lal, 

2009). This knowledge provided an impetus for further refinement of technical HCH to the 

commercial production of high-purity γ-HCH referred to as lindane, which contains over 99% 

of the γ-HCH isomer with only trace amounts of the other isomers (Walker et al., 1999; Singh 

and Lal, 2009). The distinct HCH isomeric compositions of technical HCH and lindane 

provide a basis for delineation of these two HCH sources: technical HCH has α-HCH/γ-HCH 

ratios ranging between 3 and 7 whereas those of lindane are close to 1.0 or < 1.0 (Willett et 

al., 1998).  
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2.5.2.2. PAHs 

PAH sources related to oil spills are described as petrogenic, while sources related to the 

incomplete combustion of organic matter and fossil fuel are described as pyrogenic (Wang et 

al., 2001; Yunker et al., 2002;  Yan et al., 2006; Yim et al., 2007; Abrajano et al., 2007). 

Petrogenic sources are enriched in low molecular weight PAHs (LPAHs) but depleted in high 

molecular weight PAHs (HPAHs), whereas the converse holds for pyrogenic sources (Yunker 

et al., 2000; Yunker et al., 2002; Neff et al., 2005). The difference in the compositions of 

PAHs originating from petrogenic and pyrogenic sources provides a basis for the 

characterisation of these PAH sources in sediments: a ΣLPAH/ΣHPAH ratio > 1.0 indicates 

petrogenic sources, while a ratio < 1.0 indicates pyrogenic sources (Rocher et al., 2004).  

 

Various PAH isomeric ratios such as Anthracene/(Anthracene + Phenanthrene), 

Fluoranthene/(Fluoranthene + Pyrene) and Benzo[a]Anthracene/(Benzo[a]Anthracene + 

Chrysene)  (Yunker et al., 2002; Abrajano et al., 2003; Rocher et al., 2004; Nyarko et al., 

2011c; Guerra, 2012) have also been used as diagnostic tools for PAH source apportionment. 

An Anthracene/(Anthracene + Phenanthrene) ratio < 0.10 points to a petrogenic source, while 

a ratio > 0.10 signifies a pyrogenic source. A Fluoranthene/(Fluoranthene + Pyrene) ratio < 

0.50 is indicative of a petrogenic source, while a ratio > 0.50 indicates a pyrogenic source. A 

Benzo[a]Anthracene/(Benzo[a]Anthracene + Chrysene) ratio < 0.20 characterises a petrogenic 

source, a ratio of 0.20-0.35 indicates mixed petrogenic and pyrogenic sources, while a ratio > 

0.35 points to a pyrogenic source (Yunker et al., 2000; Yunker et al., 2002).  

 

2.5.2.3. Metals 

Quantitative geochemical approaches such as the metal enrichment factor (EF) proposed by 

Sinex and Helz (1981) and the geo-accumulation index (Igeo) proposed by Muller (1969) are 

widely used to apportion the sources of metals in sediments. These geochemical indices 

compare measured concentrations of metals in sediment samples with their corresponding 

concentrations in pre-impacted samples to (1) evaluate metal enrichment and contamination 

status and (2) identify the predominant source of metals in sediments as natural or 

anthropogenic. Where metal concentrations in pre-impacted sediment samples are not 

available, metal enrichment and contamination are assessed by using metal concentrations in 

deep layers of sediment cores (Birch and Olmos, 2008; Abrahim and Parker, 2008; Yilgor et 

al., 2012), average crustal metal concentrations (Sinex and Helz, 1981; Addo et al., 2012; 
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Mahu et al., 2015) or average shale metal concentrations (Chatterjee et al., 2007; Addo et al. 

2011, El-Sorogy et al., 2016). Metals with EFs close to 1.0 are not enriched in the sediments, 

are predominantly of natural origin and their associated sediments are considered 

―uncontaminated‖. On the other hand, metals with high EFs are considered enriched in the 

sediments, mainly of anthropogenic origin and their associated sediments are considered 

―contaminated‖.  

 

Since metal distribution in sediments can be influenced by variations in mineralogical 

composition, grain size, organic matter and carbonate content of the sediments (Horowitz and 

Elrick, 1987; Aloupi and Angelidis, 2001; Dung et al., 2013),  normalisation is required when 

deriving EFs in order to offset any anomaly in sediment metal distribution and allow a 

comparison of EFs for different sediments to be made (Sinex and Helz, 1981; Aloupi and 

Angelidis, 2001; Chatterjee et al., 2007; Addo et al., 2012; Yilgor et al., 2012; Dung et al., 

2013; Iqbal et al., 2013; Jiang et al., 2013; Mahu et al., 2015). Although metal normalisation 

to the silt and clay fraction  or analysis of sediments of similar grain sizes can offset the grain 

size effect (Horowitz, 1985;Aloupi and Angelidis, 2001; Dung et al., 2013), normalisation to a 

conservative metal such as Al (Aloupi and Angelidis, 2001; Chatterjee et al., 2007; Mahu et 

al., 2015) or Fe (Sinex and Helz, 1981; Addo et al., 2012; Yilgor et al., 2012) can offset both 

the grain size and mineralogical effects (Aloupi and Angelidis, 2001; Dung et al., 2013) and 

is, therefore, incorporated in the derivation of the EF according to Eq. 1:  

 

EF = [M/N]Sample/[M/N]Crust    (1) 

 

where [M/N]Sample is the metal/Fe or metal/Al ratio in the sediment sample and [M/N]Crust is 

the same in the pre-impacted sediment.  

 

Based on the EF value, the degree of metal enrichment is defined as follows: deficient (EF ≤ 

1), minor enrichment (1 < EF ≤ 3), moderate enrichment (3 < EF ≤ 5), moderately severe 

enrichment (5 < EF ≤ 10), severe enrichment (10 < EF ≤ 25), very severe enrichment (25 < EF 

≤ 50), and extremely severe enrichment (EF > 50). 

 

The Igeo is derived according to Eq. (2): 

 

Igeo = Log2 [Cn/(1.5 x Bn)]    (2) 



Literature Review 

24 
 

where Cn is the metal concentration in the sediment sample and Bn is the corresponding pre-

impacted metal concentration.  

 

Using the Igeo does not require a compensation for the mineralogical effect (Dung et al., 2013). 

Instead, a value of 1.5 is introduced as a background matrix correction due to lithogenic 

effects (Muller, 1969; Addo et al. 2011; Iqbal et al. 2013; Mahu et al. 2015). Based on the Igeo 

values, metal contamination in sediments is characterised as follows: uncontaminated (Igeo < 

0), uncontaminated to moderately contaminated (0 ≤ Igeo < 1), moderately contaminated (1 ≤ 

Igeo < 2), moderately to highly contaminated (2 ≤ Igeo < 3), heavily contaminated (3 ≤ Igeo < 4), 

highly to very highly contaminated (4 ≤ Igeo < 5), and very heavily contaminated (Igeo ≥ 5).  

 

2.5.3. Human health and ecotoxicological risk characterisation 

Assessment of the risk posed by contaminated sediments, i.e. the likelihood of sediment-

bound contaminants to cause adverse biological effects to human and non-human biota (Birch 

and Hutson, 2009), is critical for the handling and management of contaminated sediments 

(Burton, 2002; Birch and Hutson, 2009). The risk characterisation may differ for different 

pollutants although in some cases, similar approaches are applicable. For radionuclides, risk 

characterisation approaches include the use of radiological hazard indices and the ERICA 

(Environmental Risk from Ionising Contaminants Assessment and Management) model. The 

characterisation of the potential ecotoxicological risk posed by individual metals, OCP and 

PAH pollutants in sediments commonly involves the use of biological effect-based numerical 

sediment quality guidelines. The risk assessment code is also used to characterise the potential 

risk of metals entering the food, while the total toxicity equivalence approach can be used to 

evaluate the integrated risk posed by a mixture of PAH congeners in a sediment sample.  

 

2.5.3.1. Radiological hazard indices and the ERICA model 

Five radiological hazard indices (RHI), namely (1) total absorbed dose rate in air (D), (2) 

radium equivalent activity (Raeq), (3) external hazard index (Hex), (4) annual gonadal dose 

equivalent (AGDE), and (5) annual effective dose equivalent (AEDE) are commonly used to 

assess the risk posed by radionuclide contamination to human health.  

 

The D, measured in nanogray per hour (nGy.h
-1

), expresses the rate of human exposure to 

gamma radiation in air at 1m above the ground due to the activities of 
226

Ra, 
232

Th and 
40

K in 
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the sediment samples. It is calculated by applying dose conversion factors or dose coefficients 

for the specific activities of 
226

Ra, 
232

Th and 
40

K, respectively, according to Eq. 3 (El 

Mamoney and Khater, 2004): 

  

D (nGy.h
-1

) = 0.462ARa + 0.604ATh + 0.0417AK   (3) 

 

where ARa, ATh and AK are the specific activities (Bq.kg
-1

 dry wt.) of 
226

Ra, 
232

Th and 
40

K, 

respectively, in the sediment samples. The applied dose conversion factors for 
226

Ra, 
232

Th 

and 
40

K are 0.462, 0.604 and 0.0417, respectively, representing their dose rates in air per unit 

specific activity (nGy.h
-1

/Bq.kg
-1

) in the sediment samples.  

 

The Raeq is a weighted sum of the specific activities of 
226

Ra, 
232

Th and 
40

K in the sediment 

sample that allows comparison of the specific activities of different samples to be made with 

respect to their 
226

Ra, 
232

Th and 
40

K specific activities (El Mamoney and Khater, 2004), 

assuming that 370 Bq.kg
-1

 of 
226

Ra, 259 Bq.kg
-1

 of 
232

Th and 4810 Bq.kg
-1

 of 
40

K produce the 

same gamma-radiation dose rates (Kurnaz et al., 2007). It is calculated based on Eq. 4 (El 

Mamoney and Khater, 2004; Xinwei et al., 2006; Kurnaz et al., 2007): 

 

Raeq (Bq.kg
-1

) = ARa + 1.43ATh + 0.077AK    (4) 

 

where ARa, ATh and AK are the specific activities (Bq.kg
-1

 dry wt.) of 
226

Ra, 
232

Th and 
40

K, 

respectively, in the sediment samples.  

 

The Hex is a measure of the indoor radiation dose rate associated with external gamma 

radiation exposure from natural radionuclides in building materials, and is important when 

considering the suitability of sediment for building material. It is calculated based on Eqn. 5 

with the assumption of infinitely thick walls without windows or doors (Xinwei et al., 2006). 

 

Hex = (ARa/370) + (ATh/259) + (AK/4810)     (5) 

 

where ARa, ATh and AK are the specific activities (Bq.kg
-1

) of 
226

Ra, 
232

Th and 
40

K, 

respectively, in the sediment samples. To limit the radiation exposure to the permissible dose 

equivalent limit of 1.5 mSv.y
-1

, which is considered safe for humans, the value of Hex must not 

exceed 1 (Xinwei et al., 2006; Kurnaz et al., 2007).  
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Owing to their relatively higher sensitivity to ionising radiation compared to other organs of 

the body, the gonads are considered to be at a high risk of radiation exposure and are therefore 

of great interest in radiological assessments (UNSCEAR, 2000; Xinwei et al., 2006; Kurnaz et 

al., 2007). The AGDE, measured in microsievert per year (µSv.y
-1

), estimates the potential 

radiation dose that the gonads may receive from 
226

Ra, 
232

Th and 
40

K. The sievert (Sv) is 

another unit of radiation dose from the radiological protection point of view. Unlike the Gray, 

it accounts for the relative biological effectiveness of different types of radiation (e.g. gamma 

rays, alpha and beta particles), which are known to produce dissimilar magnitudes of 

biological effects (Schmid and Schrader, 2007). The AGDE is calculated according to Eq. 6 

(Xinwei et al., 2006; Kurnaz et al., 2007): 

 

AGDE (µSv.y
-1

) = 3.09ARa + 4.18ATh + 0.314AK   (6) 

 

where ARa, ATh and AK are the specific activities (Bq.kg
-1

) of 
226

Ra, 
232

Th and 
40

K, 

respectively, in the sediment samples. The constants 3.09, 4.18 and 0.314 are conversion 

factors expressed as µSv.y
-1

/Bq.kg
-1

. 

 

The D can be converted to AEDE to assess the dose rate to an individual from outdoor gamma 

radiation over a period of one year, taking into consideration an outdoor occupancy factor of 

0.2 and an effective dose conversion factor of 0.7 Sv/Gy. It is calculated from Eq. 7 (Kurnaz 

et al., 2007): 

 

AEDE (µSv/y) = D (nGy/h) x 8760 (h/y) x 0.2 x 0.7 (Sv/Gy) x 10
-3

  (7) 

 

For human health protection, the recommended values of D, Raeq, Hex, AGDE and AEDE are 

55 nGy.h
-1

, 370 Bq.kg
-1

, 1, 300 µSv.y
-1

 and 70 µSv/y, respectively (Xinwei et al., 2006; 

Kurnaz et al., 2007).  

 

For assessment of the potential radioecological risks, the use of reliable models of wide 

applicability is necessary (Ulanovsky et al., 2008). One such model is the ERICA, developed 

by the European Commission (Larsson, 2008). The ERICA model provides an integrated 

approach to the assessment and management of environmental risks from ionising radiation 

(Beresford et al., 2007). A detailed description of the ERICA model can be found in literature 

(Beresford et al., 2007; Brown et al., 2008; Larsson, 2008). The ERICA model can be used to 
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provide an overview of the potential radioactivity levels in biota and the dose rates they are 

likely to receive based on the measured specific activities in the sediments.  

 

2.5.3.2. The Sediment Quality Guideline approach 

Various sediment quality guidelines (SQGs) have been developed around the world (Burton, 

2002) for the characterisation of the potential ecotoxicological risk posed by metal, OCP and 

PAH contamination in sediments. SQGs serve as national and international guidelines for the 

disposal of dredged materials (Mamindy-Pajany et al., 2010). Among the widely used SQGs 

are the effects-range low (ERL) and the effects-range median (ERM) values (Long et al., 

1995; Long et al., 1998; Long et al., 2006). These SQGs were empirically derived by 

matching concentrations of chemical contaminants in sediments against biological effect data 

(Long et al., 1995; Long et al., 1998). Long et al. (1998) reported a 10% incidence of adverse 

biological effects in sediment-dwelling organisms when contaminant concentrations were 

below the ERL, but > 75% incidence of adverse biological effects when contaminant 

concentrations exceeded the ERM. Thus, the ERL and the ERM define the likelihood of a 

chemical concentration in the sediment to cause adverse biological effect with good predictive 

ability (Long et al., 1998).   

 

The ERL and ERM define three concentrations ranges and their associated risks are 

interpreted as follows: contaminant concentration at or below the ERL indicates low risk, 

contaminant concentration above the ERL but below the ERM indicates moderate risk, while 

contaminant concentration above the ERM indicates high risk (Birch and Hutson, 2009). The 

use of SQGs can help identify contaminants of potential concern and areas of priority (Burton, 

2002; Long et al., 2006; Birch and Hutson, 2009). Table 2.1 presents the ERL and ERM 

values for some priority metals, OCPs and PAHs.  

 

It has been recognised that several chemical contaminants are often present in sediments 

(Casado-Martinez et al., 2006; Long et al., 2006), particularly harbour sediments (Birch and 

Olmos, 2008; ; Birch and Hutson, 2009; Schipper et al., 2010), the combined toxicity of 

which may potentially differ from those of the individual pollutants (Burton, 2002; Long et 

al., 2006; Birch and Olmos, 2008). To predict the ecotoxicological risks from the combined 

toxicity of the different pollutants present in a sediment sample, the mean ERM quotient 

(mERMQ) is used (Long et al., 2006; Birch and Hutson, 2009). The mERMQs are derived by 
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normalising the concentrations of the individual contaminants to their respective ERMs, then 

summing all the quotients and finding their average. 

 

Table 2.1 ERL and ERM values (mg.kg-1 dw) for some priority PAHs, metals and 

OCPs 

*
Long et al. (1995); Burton (2002) 

 

 

Assumptions underlying the ERMQ approach are that (1) the different pollutants contribute 

additively to the overall toxicity, rather than antagonistically or synergistically, and (2) 

samples with the same mERMQ pose similar ecotoxicological risks (Long et al., 2006; Birch 

and Hutson, 2009). Based on this approach, the potential ecotoxicological risk is characterised 

as follows: minimal if mERMQ < 0.1, low if 0.1 ≤ mERMQ < 0.5,  moderate if 0.5 ≤ 

mERMQ < 1.5, and high if mERMQ ≥ 1.5 (Birch and Hutson, 2009).  

 

2.5.3.3. The total toxicity equivalence approach 

PAHs are often present in sediments as complex mixtures of several congeners with wide-

ranging toxic and carcinogenic potentials (Nisbet and LaGoy, 1992; Neff et al., 2005; Escher 

et al., 2008). In terms of toxicology, benzo[a]pyrene is the most extensively studied among 

the PAH congeners and considered to be highly toxic and carcinogenic (Nisbet and LaGoy, 

Contaminant ERL
*
 ERM

*
 Contaminant ERL

*
 ERM

*
 

PAHs (µg.kg
-1

)   Metals (mg.kg
-1

 dw)   

Acenaphthene 16 500 Cd 1.2 9.6 

Acenaphthylene 44 640 Hg 0.15 0.71 

Anthracene 85.3 1100 Ni 20.9 51.6 

Fluorene 19 540 Pb 46.7 218 

Naphthalene 160 2100 Cr 81 370 

Phenanthrene 240 1500 Cu 34 270 

Chrysene 384 2800 Zn 150 410 

Fluoranthene 600 5100 As 8.2 70 

Pyrene 665 2600    

Benz[a]anthracene   261 1600 OCPs (µg.kg
-1

)   

Benzo[a]pyrene 430 1600 Total DDT 1.58 46.1 

Dibenz[a,h]anthracene 63.4 260 p,p-DDE 2.2 27 
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1992; Escher et al., 2008). A toxic equivalency factor (TEF) of a PAH congener expresses its 

toxicity relative to that of benzo[a]pyrene, which serves as the surrogate PAH and is assigned 

a TEF value of 1.0 (Nisbet and LaGoy, 1992). The TEF values for the PAH16 according to 

Nisbet and LaGoy (1992) are presented in Table 2.2. 

 

Table 2.2 The USEPA 16 priority PAH congeners and their assigned TEF values  

 

 

 

 

 

 

 

 

 

 

*
Nisbet and LaGoy (1992) 

 

For a quantitative evaluation of the integrated risk posed by a mixture of PAHs in a sediment 

sample, the total toxicity equivalence (TEQ) is computed from the concentrations and TEFs of 

the individual PAH congeners according to Eq. 8 (Escher et al., 2008; Nyarko et al., 2011c):  

 

TEQ (mg.kg
-1
) = Σ(Cn x TEFn)     (8) 

 

where Cn and TEFn are, respectively, the concentration (mg.kg
-1

) and TEF of an individual 

PAH in the sediment sample.  

 

The underlying assumptions of the TEQ approach are that the PAH congeners in the mixture 

(1) exhibit the same mode of action and (2) contribute additively to the overall toxicity 

(Escher et al., 2008). Based on the TEQ approach, sediment contamination is classified as 

follows (Yang et al., 2014): uncontaminated (with potential no risk) if TEQ < 0.1 mg.kg
-1

; 

slightly contaminated (with potential medium risk) if 0.1 < TEQ < 1 mg.kg
-1

; and significantly 

contaminated (with potential high risk) if TEQ ≥ 1.0 mg.kg
-1

.  

PAH congener TEF
*
 PAH congener TEF

*
 

Acenaphthylene 0.001 Anthracene  0.01 

Fluorene 0.001 Benzo[ghi]perylene   0.01 

Naphthalene 0.001 Benz[a]anthracene   0.1 

Phenanthrene 0.001 Benzo[b]fluoranthene 0.1 

Fluoranthene 0.001 Benzo[k]fluoranthene 0.1 

Pyrene 0.001 Indeno[1,2,3-cd]pyrene 0.1 

Acenaphthene 0.001 Benzo[a]pyrene 1.0 

Chrysene  0.01 Dibenz[a,h]anthracene 5.0 
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2.5.3.4. Using the risk assessment code 

Metals exist in different binding forms with different binding strengths, i.e. water-soluble and 

exchangeable (bound to carbonates), reducible (bound to iron and manganese oxides) and 

oxidisable (bound to sulphides or organic matter) forms (Díaz-de Alba et al., 2011; Kalwa et 

al., 2013; Kelderman and Osman, 2007). These metal binding forms are associated with 

different mobility, bioavailability and thus ecotoxicological potential (Calmano et al., 1993; 

Jain, 2004; van Hullebusch et al., 2005; Dung et al., 2013; Kalwa et al., 2013; Pini et al., 

2015). Metals in the water-soluble and exchangeable form are the most weakly bound and, 

therefore, pose the greatest risk of entering the food chain (Calmano et al., 1993; DelValls et 

al., 2004; Jain, 2004; Kelderman and Osman, 2007; Dung et al., 2013; Iqbal et al., 2013; 

Kalwa et al., 2013). The risk assessment code (RAC) has been developed to estimate the 

potential risk of a sediment-bound metal entering the food chain based on the metal 

fractionation in sediments (Jain, 2004; Zhu et al., 2012; Jiang et al., 2013). The RAC of a 

given sediment-bound metal is expressed as the percentage of its concentration in the water-

soluble and exchangeable form according to Eq. 9: 

 

RAC = [MWSE]/[MT] x 100%      (9) 

 

where [MWSE] is the concentration of a given sediment-bound metal in the water-soluble and 

exchangeable form and [MT] is its total concentration. 

 

Based on the value of the RAC, risk may be defined as follows (Jain, 2004; Zhu et al., 2012): 

<1 % indicates no risk, 1-10 % indicates low risk, 11-30 % indicates medium risk, 31-50% 

indicates high risk, and >50 % indicates very high risk.  

 

A widely used analytical technique for metal fractionation in sediments is the 3-step 

sequential extraction scheme developed by the European Standards, Measurements and 

Testing Programme, formerly known as the Community Bureau of Reference (BCR) 

(Quevauviller et al., 1994; Quevauviller et al., 1997; Rauret et al., 1999; Ptistišek et al., 2001; 

Pueyo et al., 2001; Davidson et al., 2006). A major advantage of the 3-step BCR sequential 

extraction method over other analytical techniques such as the 5-step sequential extraction 

method by Tessier et al. (1979) or its modified versions (e.g. Kelderman and Osman, 2007) is 

that it has been standardised by inter-laboratory comparison and the use of certified reference 
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materials (Quevauviller et al., 1994; Quevauviller et al., 1997; Rauret et al., 1999). Thus, the 

BCR method can ensure greater quality assurance and control. 

 

2.5.3.5. Limitations of the RHI, SQG, TEQ and RAC approaches 

The RHI, SQG, TEQ and RAC approaches constitute a screening-level ecotoxicological risk 

assessment, intended to predict the adverse biological effects of measured contaminants. 

Screening-level ecotoxicological risk assessment provides a first line of evidence of (1) the 

potential of measured contaminants to cause adverse biological effects, (2) contaminants of 

potential concern, and (3) priority areas of concern (Long et al., 1998; Burton, 2002; Long et 

al., 2006; Mamindy-Pajany et al., 2010), but is inadequate for a comprehensive assessment of 

sediment pollution (Mamindy-Pajany et al., 2010). The RHI, SQG, TEQ and RAC approaches 

may over or under estimate the potential hazard and impact of sediment-bound contaminants, 

since they do not consider:  

(1) Contaminant uptake and regulation (Rainbow, 2007; Rainbow and Luoma, 2011). The 

RAC, for example, may not give a true reflection of metal bioavailability, which is 

difficult to measure (DelValls et al., 2004) due to the potential for metal regulation by 

organisms following uptake (Marsden and Rainbow, 2004; Rainbow, 2007; Rainbow and 

Luoma, 2011). 

(2) Synergistic or antagonistic effects of multiple contaminants on their overall toxicity 

(Ciarelli et al., 1998; Burton, 2002; Simboura and Zenetos, 2002; Eggen et al., 2004; 

Long et al., 2006). 

(3) Chronic effects that may result from exposure to low contaminant concentration over a 

long time and multiple effects that may be induced by a single contaminant (Eggen et al., 

2004). 

(4) Sediment contaminants that have not been characterised for their toxicity (Schipper et al., 

2010).  

(5) The entire spectrum of potentially toxic contaminants that is present in the sediment as it 

is difficult to measure (Escher et al., 2008) since their measurement is not practical, and 

SQGs have not yet been developed for all potential pollutants in sediments including the 

COEC (Long et al., 1995; Burton, 2002; Long et al., 2006; Schipper et al., 2010). 
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2.5.4. Hazard/Toxicity and impact assessment  

Hazard/toxicity and impact assessment is intended to evaluate biological responses to 

chemical toxicity in sediments. Whole-sediment toxicity bioassays, which involve exposure of 

relevant organisms to contaminated sediments under controlled conditions and measurement 

of biological responses/endpoints (Ciarelli et al., 1998; Forrester et al., 2003; DelValls et al., 

2004), are an important tool in hazard and impact assessment of contaminated sediments 

(DelValls et al., 2004; Annicchiarico et al., 2007; Casado-Martinez et al., 2007; Escher et al., 

2008; Morales-Caselles et al., 2009; Ré et al., 2009; Schipper et al., 2010; Prato et al., 2015). 

The major advantage of whole-sediment toxicity bioassays over the RHI, SQG, TEQ and 

RAC approaches is that they integrate the toxic effects of all contaminants present in a 

sediment sample (Forrester et al., 2003; Escher et al., 2008) and provide a further line of 

evidence of the potential ecotoxicological effects of contaminated sediments (Long et al., 

2006; Morales-Caselles et al., 2008; Schipper et al., 2008; Morales-Caselles et al., 2009). 

Thus, whole-sediment toxicity bioassays are now required in many developed countries such 

as Spain, Belgium, Germany (DelValls et al., 2004; Casado-Martinez et al., 2007), the 

Netherlands (Casado-Martinez et al., 2006), Australia (Rose et al., 2006; van Dam et al., 

2008) and Italy (Prato et al., 2011) for adequate assessment of dredged sediments to support 

the licensing of their subsequent disposal. 

 

For a successful whole-sediment toxicity bioassay, there is a need to identify suitable test 

organisms with measureable biological responses/endpoints that can discriminate between 

different levels of chemical toxicity in sediments (Ciarelli et al., 1998). These endpoints 

include acute effects such as mortality, sub-lethal and/or chronic effects such as growth and 

reproduction or bioaccumulation (Forrester et al., 2003; DelValls et al., 2004; Annicchiarico 

et al., 2007; Morales-Caselles et al., 2008; Schipper et al., 2008). The bioaccumulation 

assessment is intended to give an indication of the bioavailability of sediment-associated 

chemical contaminants and their potential for transfer along the food chain (DelValls et al., 

2004). The criteria for the selection of test organisms include their importance and abundance 

in the ecosystem under investigation (Connon et al., 2012). For estuarine and marine whole-

sediment toxicity bioassays, algae, molluscs, sea urchins, amphipods and polychaetes have 

been widely used as test organisms. Commercial acute sediment toxicity bioassay kits such as 

Microtox
®
, which is based on the natural bioluminescence inhibition of the marine bacteria V. 
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fischeri, are also used (Morales-Caselles et al., 2007; Libralato et al 2008; Morales-Caselles et 

al., 2009). Table 2.3 presents examples of sediment bioassay tests in use around the world. 

 

Table 2.3 Test organisms used in sediment bioassay tests around the world 

Sediment bioassay test 

organisms 

 References 

Bacteria (Microtox
®
)  Beg and Ali, 2008; Libralato et al., 2008; Morales-

Caselles et al., 2007, 2009; Ghirardini et al., 2009; Baran 

and Tarnawski, 2013  

Amphipod  Casado-Martinez et al., 2007; Scarlett et al., 2007; van 

den Heuvel-Greve et al., 2007; Morales-Caselles et al., 

2007; Mayor et al., 2008; Ré et al., 2009; de-la-Ossa-

Carretero et al., 2012; Hanna et al., 2013. 

Algae   Oehlmann, 2002; Mariño-Balsa et al., 2003; Chen et al., 

2009 

Sea urchin  Stronkhorst et al., 1999; Schipper et al., 2008; Pagano et 

al., 2017a, b. 

Molluscs   Oehlmann, 2002; Mariño-Balsa et al., 2003 

Polychaetes  Thain and Bifield, 2002; Casado-Martínez et al., 2006; 

Moreira et al., 2006; Mayor et al., 2008; Kalman et al., 

2012 

 

 

Among the various test organisms, the amphipod Corophium volutator (Stronkhorst et al., 

2003; Casado-Martinez et al., 2007; Scarlett et al., 2007; van den Heuvel-Greve et al., 2007; 

Morales-Caselles et al., 2007; Mayor et al., 2008) and the polychaete Hediste diversicolor 

(Casado-Martínez et al., 2006; Moreira et al., 2006; Mayor et al., 2008) have gained 

popularity. The popularity of C. volutator (Fig. 2.7a) is mainly due to the following reasons 

(Ciarelli et al., 1998; Roddie and Thain, 2002; Scaps, 2002; Bat, 2005): (1) it is available in 

the field throughout the year, (2) it is easy to collect and maintain under laboratory conditions, 

(3) it shows tolerance to a wide range of salinities, sediment grain sizes and organic carbon 

contents, and (4) a standard protocol has been developed using C. volutator (Roddie and 

Thain 2002; Schipper et al., 2006). H. diversicolor (Fig. 2.7b) is also preferred as a test 

organism mainly due to the following attributes (Scaps, 2002; Philippe et al., 2008): (1) it 
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commonly occurs in intertidal areas, (2) it is able to survive in hypoxic and contaminated 

environments, (3) it is tolerant to wide fluctuations in salinity and temperature, and (4) a 

standard protocol has been developed using H. diversicolor (Hannewijk et al., 2004). 

Furthermore, both C. volutator and H. diversicolor have wide geographic distributions and 

can be found in polar, temperate and tropical marine regions (Bat, 2005; Moreira et al., 2006; 

Uwadiae, 2010; Carvalho et al., 2012). However, whole-sediment toxicity bioassays with 

tropical species are not yet well developed (Adams and Stauber, 2008). 

 

   

Fig. 2.7 (A) Corophium volutator (http://www.aquatonics.com/Corophium.jpg); (B) 

Hediste diversicolor (https://www.flickr.com/photos/gwylan/2170368562/) used as test 

organisms in Chapter 6. 

 

By using whole-sediment toxicity bioassays, the potential hazard and impacts are evaluated by 

comparing measured biological responses with corresponding responses  using 

uncontaminated (control/reference) sediments under similar conditions (Stronkhorst et al., 

2003; DelValls et al., 2004; Mamindy-Pajany et al 2010) and applying established guidelines 

(Thain and Bifield, 2002; Roddie and Thain, 2002; Casado-Martinez et al., 2007; ICES, 

2008). Whole-sediment toxicity bioassays can help identify contaminated areas (Ciarelli et al., 

1998), but they cannot provide information on the contaminants responsible for sediment 

toxicity (Escher et al., 2008). This can be achieved by integrating whole-sediment toxicity 

bioassays with chemical analysis (Annicchiarico et al., 2007; Casado-Martinez et al., 2007; 

Morales-Caselles et al., 2007, 2008; Escher et al., 2008; Mamindy-Pajany et al., 2010; Prato et 

al., 2011). This integrated approach is required to better characterise the hazard, risk and 

A B 
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impact of contaminated sediments (Morales-Caselles et al., 2008; Schipper et al., 2008; 

Mamindy-Pajany et al., 2010) and are incorporated into regulatory programmes in many 

developed countries (Ciarelli et al., 1998). Moreover, the use of a battery of whole-sediment 

bioassays (DelValls et al., 2004; Morales-Caselles et al., 2009) with different test species 

having potentially different sensitivities to chemical toxicity is recommended for the purpose 

of managing dredged materials (Annicchiarico et al., 2007; Casado-Martinez et al., 2007; 

Escher et al., 2008; Ré et al., 2009; Schipper et al., 2010; Prato et al., 2011; Prato et al., 2015). 

 

2.6.  Sedimentation in harbours 

2.6.1. Sediment fluxes in harbours 

Sediments play an important role in the ecological functioning of aquatic ecosystems, 

providing food for filter-feeding invertebrates (Schipper et al., 2008; Jiang et al., 2013) and 

spawning areas for many organisms (Prato et al., 2011). However, high influx of sediments 

can cause ecological problems such as smothering of benthic eggs and larvae, reduced light 

availability, and release of associated pollutants into the water column (Green and Coco, 

2014). Sediment influx into coastal harbours is driven by natural factors such as tides, waves 

(Leys and Mulligan, 2011), riverine sediment discharge (Akrasi, 2011) coupled to 

anthropogenic factors such as sand winning (Kusimi and Dika, 2012). 

 

The concentrations and fluxes of sediments in the water column can also influence the 

dynamics and transport of particle-reactive pollutants in aquatic ecosystems (James, 2002; 

Syvitski, et al., 2005; Lepland et al., 2010; Luo et al., 2010; George et al., 2012; Souza and 

Lane, 2013). Thus, sedimentation provides a means of pollutant transport to and subsequent 

accumulation in bottom sediments. In depositional environments, the continuous deposition of 

sediments without an interruption in the sedimentary sequence can serve as an archive of 

environmental changes (Kannan et al., 2005; Giuliani et al., 2008; Giuliani et al., 2015) and 

dating of sediment cores can provide a historical record of SARs and pollution events 

(Giuliani et al., 2008; Tang et al., 2008; Díaz-Asencio et al., 2009; Smith et al., 2009; Lepland 

et al., 2010; Bellucci et al., 2012). 

 

Coastal harbours tend to have low-energy hydrodynamics and restricted water movement due 

to their breakwaters (Mestres et al., 2010). This facilitates the deposition and subsequent 

accumulation of sediments within the harbour basins (Lepland et al., 2010; Luo et al., 2010). 
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Sediment accumulation within harbour basins is a major issue as it results in siltation and 

poses navigational problems (Syvitski, et al., 2005; Van Rijn, 2005; Green and Coco, 2014). 

Many harbours around the world have been affected by siltation, resulting in costly dredging 

of several million tonnes of sediments to maintain appropriate water depths for safe 

navigation and/or removal of contaminated sediments (Qu and Kelderman, 2001; Barneveld 

and Hugtenburg, 2008; Schipper et al., 2010). The assessment of settling fluxes (SFs) and 

SARs can provide complementary information for understanding sedimentation processes in 

harbours (Liu et al 2014), which is necessary for harbour management (Buesseler et al., 2007; 

Leys and Mulligan, 2011). 

 

2.6.2. Quantification of SFs 

Sediment traps in the form of close-ended cylindrical tubes are important tools for the 

collection and assessment of settling particulate matter (and its associated pollutants) falling 

vertically through the water column to the bottom sediments (Hakanson, 2006; Buesseler et 

al., 2007; de Vicente et al., 2010; Kelderman et al., 2012; Santos-Echeandía et al., 2012; Liu 

et al., 2014; Szmytkiewicz and Zalewska, 2014; Helali et al., 2016). The quantity of 

particulate matter collected by the traps depends on the deployment period and the efficiency 

of trap collection (Hakanson, 2006). Sediment traps are deployed typically over a period of 

two weeks to allow sufficient particulate matter to be collected for analysis, while ensuring 

minimal organic matter decomposition (Hakanson and Jansson, 1983; Buesseler et al., 2007; 

Kelderman et al., 2012). Trap efficiency can be optimised through appropriate trap design.  

Sediment traps with aspect ratios (i.e. height/diameter) greater than 5 minimise current-

induced resuspension within the traps and enhance the efficiency of traps to collect and 

accumulate settling particulate matter (Bloesch and Burns, 1980; Kelderman et al., 2012; de 

Vicente et al., 2010). The sediment trap-derived SF is expressed as the mass of dry material 

deposited per unit area per unit time, i.e. mg.m
-2

.d
-1

 or g.m
-2

.y
-1

. A schematic presentation of 

sediment trap deployment in Chapters 7 and 8 is shown in Fig. 2.8. 
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Fig. 2.8 Schematic presentation of sediment trap deployment used as samplers for 

settling particulate matter in Chapters 7 and 8 

 

2.6.3. Quantification of SARs 

In harbours, reservoirs, estuaries and coastal areas, bathymetric data such as tidal levels, water 

depth and positioning acquired at different periods can be used to quantify SARs with the 

application of a series of corrections (Khaba and Griffiths, 2017; Brucker et al., 2007). For 

shallow waters with less than 20 m water depth such as harbours, bathymetric data can be best 

obtained by using Phase Differencing Bathymetric Sonar (PDBS) systems owing to their 

associated total vertical uncertainty of 0.26 m for a 10 m water depth (Brisson et al., 2014).  

This uncertainty is acceptable for water depth control purposes, but it is too coarse for 

estimating SARs. Therefore, PDBS systems are usually suitable for mapping SARs in areas 
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where accretion rates are high, exceeding 0.3 m.y
-1

 (Brucker et al., 2007) with time lapses of 

the order of decades (Ortt et al., 2000). This method provides mean SAR in the time lapse and 

cannot provide information on processes affecting the depth distribution of chemical 

pollutants. In this regard, particle-reactive radionuclides such as 
210

Pb have found useful 

applications in the study of sedimentary processes and quantification of SARs (Erten, 1997; 

Caroll and Lerche, 2003; Giffin and Corbett, 2003; Corbett et al., 2009). Non-radioactive 

dating methods based on e.g. fossil markers and pollen can provide important stratigraphic 

time-markers, but in contrast to the radiometric dating methods, these are of limited 

applicability and cannot determine absolute chronologies of sediments (Carroll and Lerche, 

2003; Abril, 2015). 

 

2.6.3.1. 210Pb as a tool for the quantification of SARs 

The 
210

Pb radioisotope, based on its short half-life of 22.3 years, is particularly suitable for 

chronological assessment and quantification of recent sedimentation rates on time-scales 

spanning the past 100-150 years (Lu, 2007; Appleby, 2008; Díaz-Asencio et al., 2009). Alpha 

spectrometry and low background gamma spectrometry are the most common methods of 

analysing the specific activity of 
210

Pb in sediments (Sikorski and Bluszcz, 2008; de 

Vleeschouwer et al., 2010; Mabit et al., 2014) with comparable results (Zaborska et al., 2007; 

Sikorski and Bluszcz, 2008).  

 

The 
210

Pb radioisotope is a member of the 
238

U-decay series and may be produced from the 

decay of 
222

Rn in the atmosphere referred to as unsupported/excess 
210

Pb or
 210

Pbexc (Erten, 

1997; Alonso-Hernandez et al., 2006; Lu, 2007). The in situ radioactive decay of 
226

Ra in the 

water column also produces 
210

Pb referred to as supported 
210

Pb or 
210

Pbsupp (Oldfield and 

Appleby, 1984; Lu, 2007; Appleby, 2008; Nehyba et al., 2011; Abril and Brunskill, 2014). 

The 
210

Pbsupp is assumed to be in secular equilibrium with 
226

Ra and other members of the 

decay chain preceding it, while the 
210

Pbexc represents that part of the measured total 
210

Pb 

specific activity in sediment that exceeds the specific activity in secular equilibrium with 

226
Ra (Pfitzner et al., 2004; Hollins et al., 2011). The fluxes of 

210
Pb in sediments are linked to 

wet and dry atmospheric deposition (Erten, 1997; Appleby, 2008; Pfitzner et al., 2004; Mabit 

et al., 2014) as well as surface run-off and erosion from the catchment (Mabit et al., 2008; 

Ruiz-Fernández et al., 2009). The sources and pathways of 
210

Pb inputs in aquatic systems are 

shown in Fig. 2.9. 
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Fig. 2.9 Sources and pathways of 210Pb inputs in aquatic systems  

(http://www.ozcoasts.gov.au/glossary/images/pb210_diagram.jpg) 

 

In aquatic systems, 
210

Pbexc is scavenged by particulate matter, particularly the silt-clay 

fraction of sediments (Pfitzner et al., 2004), and subsequently accumulates in bottom 

sediments (Erten, 1997). The optimal material for 
210

Pb dating is undisturbed sediments 

(Santschi et al., 2001; Bellucci et al., 2012). For 
210

Pb dating of sediment cores, it is assumed 

that the 
210

Pbsupp is at equal specific activity with its parent 
226

Ra nuclide and is constant down 

the sediment core profile, while the 
210

Pbexc decays because it is not supported by 
226

Ra via 

222
Rn (Erten, 1997). The 

210
Pbexc specific activity in the sediment core is obtained as the 

difference between the measured total 
210

Pb specific activity and the 
210

Pb specific activity in 

equilibrium with 
226

Ra (Erten, 1997), which usually occurs in the deep layers (Appleby and 

Oldfield, 1978). 
210

Pbexc decays in accordance with the radioactive decay law (Lu, 2007; 

Appleby, 2008) and can be described by Eq. (10):  

 

A = A0e
-λt

       (10) 

 

where A0 is the initial specific activity of 
210

Pbexc, A
 
is the specific activity of 

210
Pbexc after 

time t, and λ is the decay constant of 
210

Pb (0.03114 y
-1

). 

 

http://www.ozcoasts.gov.au/glossary/images/pb210_diagram.jpg
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An undisturbed sedimentary sequence is thus characterised by an exponential decrease in 

210
Pbexc activity down the sediment core (see Fig. 2.10); the vertical 

210
Pbexc profile being a 

function of the sediment accumulation rate (Alonso-Hernandez et al., 2006; Appleby, 2008). 

  

 

Fig. 2.10 210Pbexc activity profile in an undisturbed sediment core (Mackenzie et al., 

2011) 

 

2.6.3.2. 210Pb-based sediment dating models  

Three widely used 
210

Pb sediment dating models are the Constant Flux Constant 

Sedimentation (CF-CS), Constant Rate of Supply (CRS) and Constant Initial Concentration 

(CIC) models (McDonald and Urban, 2007; Appleby, 2008). The CIC and CRS models 

(Appleby and Oldfield, 1978; Robbins, 1978) are, however, considered as the two standard 

approaches (Appleby, 2004; Appleby, 2008; Nehyba et al., 2011). These 
210

Pb sediment 

dating models convert the 
210

Pbexc specific activities in sediment layers into numerical ages to 

obtain an age-depth profile of sediment chronologies (Gunten et al., 2009). 

 

2.6.3.2.1. The Constant Flux Constant Sedimentation (CF-CS) model 

The CFCS model is a common particular case of CIC and CRS models. The CF-CS model 

applies under the following assumptions: (1) a constant flux of 
210

Pbexc from the atmosphere 

and a constant dry-mass sedimentation rate (Appleby and Oldfield, 1983; Díaz-Asencio et al., 

2009) and (2) no post-depositional sediment mixing with every sediment layer having the 
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same initial 
210

Pbexc specific activity (Appleby and Oldfield, 1983). Under these situations, the 

210
Pbexc

 
specific activity varies exponentially in accumulated sediments (Appleby and 

Oldfield, 1983; Appleby, 2004; McDonald and Urban, 2007; Nehyba et al., 2011). Due to 

potential effects of sediment compaction, the 
210

Pbexc
 
specific activity is related to the mass-

depth (g.cm
-2

) instead of the linear-depth of the sediment core (Erten, 1997; Lu, 2007). Thus, 

under the CF-CS model, the expected specific activity at a given mass-depth, m, is given by 

Eq. 11 (Erten 1997; McDonald and Urban, 2007): 

 

Ax = A0 e
-λm/w

       (11) 

 

where Ax (Bq.kg
-1

) is the 
210

Pbexc specific activity at mass-depth x; A0 (Bq.kg
-1

) is the initial 

210
Pbexc specific activity at x = 0; m is the cumulative dry-mass (g.cm

-2
), λ is the decay 

constant for 
210

Pb ( 0.03114) and w  is the mass sedimentation rate (g.cm
-2

.y
-1

). 

 

A logarithmic plot of the 
210

Pbexc specific activity versus mass depth will generate a linear 

profile with slope = - λ/w, from which the mass sedimentation rate, w, can be calculated (e.g. 

see Fig. 2.11).  

 

 

Fig. 2.11 A logarithmic plot of the 210Pbexc specific activity versus mass depth (Díaz-

Asencio et al. 2009) 
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2.6.3.2.2. The Constant Initial Concentration (CIC) model  

The main assumption of the CIC model (Robbins, 1978; Appleby and Oldfield, 1978) is that 

the initial 
210

Pbexc specific activity (A0) at the sediment-water interface remains constant over 

time with a constant sedimentation (Appleby, 2008; Nehyba et al., 2011), but allows co-

variation of both 
210

Pbexc flux and sedimentation (Appleby, 2008). If these assumptions apply, 

A0 will decline exponentially with age so that the 
210

Pbexc specific activity in a sediment layer 

of age t (At) is given by Eq. 12:  

 

At = A0 e
-λt

       (12) 

 

where A0 is the 
210

Pbexc specific activity (Bq.kg
-1

) at time zero, which in the absence of surface 

mixing represents the concentration at the sediment-water interface; At is the 
210

Pbexc specific 

activity (Bq.kg
-1

) after time t and λ is the radioactive decay constant for 
210

Pb (0.03114 y
-1

).  

 

Eq. 12 can be rewritten as Eq. 13 and used to calculate the age (t) of a sediment layer at a 

depth x (Appleby and Oldfield, 1978):  

 

t = 1/λ ln[A0/Ax]       (13) 

 

If it is assumed that the sedimentation rate (S) is constant within the sediment layer x, then the 

period over which the sediment has accumulated is t = x/S. Substituting t = x/S into Eq. 13 and 

re-arranging Eq. 13 gives Eq. 14: 

 

(1/x) ln [Ax/A0] = - λ/S      (14) 

 

A linear regression profile of ln(Ax) versus depth (x) is expected to produce a slope = - λ/S, 

from which S can be computed  according to Eq. 15: 

 

S = - λ / slope       (15) 

 

Application of the CIC model seems difficult within an industrial harbour such as the Tema 

Harbour, considering the changing industrial activities and harbour configuration, which 

could lead to varying proportions of sediment constituents and then to varying initial 

concentrations of unsupported 
210

Pb. 
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2.6.3.2.3. The Constant Rate of Supply (CRS) Model 

The CRS model (Appleby and Oldfield, 1978; Robbins, 1978) assumes: (1) a constant rate of 

210
Pbexc supply to the sediments despite variations in the dry-mass sedimentation rate and (2) 

no post-depositional mixing (McDonald and Urban, 2007). Thus, the CRS model allows 

changes in sedimentation rates while estimating sediment ages (Appleby, 2008; Nehyba et al., 

2011; de Souza et al., 2012). Sediment ages are derived from the fraction of the depth-

integrated 
210

Pbexc present above the core depth considered. Thus, any deviation from an 

exponential decrease with depth of 
210

Pbexc is interpreted by the CRS model to reflect a 

variation of the sedimentation rate (Appleby, 2004; MacKenzie et al., 2011; Nehyba et al., 

2011). Important considerations for use of the CRS model are (1) an inverse relationship 

between the initial concentration and the sedimentation rate, (2) a non-monotonic decrease in 

210
Pb activity and (3) the 

210
Pb dating horizon (i.e. the depth where the 

210
Pbexc specific 

activity is diminished and 
210

Pbsupp specific activity becomes constant) is reached (Appleby, 

2008). Using the CRS model, the age (t)  of sediments at a depth x can be estimated from Eq. 

16 (Appleby and Oldfield, 1978; Erten, 1997; MacKenzie et al., 2011; de Souza et al., 2012): 

 

t = (1/λ) ln[A∞/Ax]       (16) 

 

where A∞ is the integrated 
210

Pbexc (
210

Pbexc inventory) of the entire sediment column and Ax is 

the integrated 
210

Pbexc below a depth x of the sediment core. 

 

The dry mass sedimentation rate (w, with a unit of g.cm
-2

.y
-1

) can be obtained for each two 

adjacent layers from Eq. 17 (Appleby and Oldfield, 1978): 

 

w = λAx/C       (17) 

 

where C is the 
210

Pbexc specific activity at the depth x. 

 

If a steady state supply of 
210

Pbexc to the sediment is assumed, then the inventory of 
210

Pbexc 

can be estimated using Eq. 18:  

 

 I0 = Σ(Ai ρi hi)       (18) 
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where I0 is the 
210

Pbexc inventory in the sediment (Bq.cm
-2

); Ai is the 
210

Pbexc specific activity 

for sediment layer i (Bq.g
-1

), ρ
i is the bulk density of sediment layer i (g.cm

-3
) and hi is the 

thickness of sediment layer i (cm).  

 

The flux of 
210

Pbexc to the sediment (F) can be estimated from Eq. 19: 

 

F = λ I0        (19) 

 

2.6.3.3. The Time Estimates from Random Entries of Sediments and Activities 

(TERESA) model  

It has been shown that the assumption of an ideal deposition, i.e. the deposition of new 

radioactive inputs above the previously existing material at the sediment-water interface 

(SWI), of the conventional 
210

Pb dating models is unrealistic, particularly in sediment cores 

with very high porosities (Abril and Gharbi, 2012). Thus, using statistical analysis of a 

database of laminated sediment cores, Abril and Brunskill (2014) reconstructed historical 

records of initial 
210

Pbexc specific activity, 
210

Pbexc flux onto the SWI and SARs, which 

revealed wide temporal fluctuations. Their results also showed a linear relationship between 

the 
210

Pbexc fluxes and SAR. However, no statistically significant correlation was found 

between the initial 
210

Pbexc specific activity and SAR, which conflicts with the assumption of 

most 
210

Pb-based radiometric dating models. This paved the way for the development of the 

TERESA model (Abril, 2016).  

 

The TERESA model is based on the findings that (1) the flux of 
210

Pbexc to the SWI varies 

with time and (2) the flux of 
210

Pbexc is governed by the flux of matter instead of direct 

atmospheric 
210

Pbexc deposition, resulting in a statistically significant correlation between the 

flux of 
210

Pbexc and the flux of matter/sediment accumulation rates (Abril and Brunskill, 

2014). Other important assumptions in the application of the TERESA model are that (1) 

210
Pbexc is a particle-bound tracer, which is continually deposited onto the SWI, (2) no post-

depositional redistribution occurs and (3) the sedimentary sequence is continuous with none 

of its layers missing.  

 

The TERESA model works with continuous probability distributions for initial 
210

Pbexc 

specific activities (A0) and SAR and, therefore, assumes there are neither flood layers nor 
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other instantaneous inputs to the sediment column (Abril, 2016). Thus, a sediment core cut 

into N slices (labelled i = 1, 2, … N) is assumed to have resulted from the accumulated mass 

flow onto the SWI over the time interval ∆Ti with an average mass flow (SAR) value of wi 

(Abril, 2016). If w is the magnitude of the arithmetic mean of all the wi for the N slices, then 

the values of wi are almost normally distributed around w  with a standard deviation σw (Abril 

and Brunskill, 2014). This results in a linear correlation between the 
210

Pbexc fluxes and SAR. 

Thus, each sediment slice can be characterised by a pair of values (A0,i, wi), the sequence of 

which produces the 
210

Pbexc vertical profile, the chronology and the particular SAR history 

(Abril, 2016). 

 

It is worthy to note that for the TERESA model, the mass depth m (with physical dimensions 

M.L
-2

) is a more appropriate magnitude than the linear depth (with physical dimension L) due 

to (1) compaction during the sediment accretion and (2) core shortening during the coring 

operation and later handling (Abril, 2016). Moreover, each sediment slice of mass thickness 

∆mi should be provided with its respective uncertainty, derived from the experimentally 

averaged specific 
210

Pbexc specific activities Ai(m) (Abril, 2016). 

  

Abril (2016) has validated the TERESA model using synthetic and real data from laminated 

sediment cores from the Santa Barbara Basin (Koide et al., 1973) and the Sihailongwan Lake, 

China (Schettler et al., 2006a, 2006b), for which independent chronology has been 

established. Prior to this thesis, the potential of the TERESA model for dating recent 

sediments from environments where the conventional 
210

Pb-based dating models face 

constraints such as coastal harbours had not been explored. 

 

2.6.3.4. Validation of 210Pb dating models 

For any of the 
210

Pb dating models, a validation of the 
210

Pb-based sediment chronology by 

other time markers is necessary (Smith, 2001; Abril, 2004; Appleby, 2004) and errors 

associated with the estimated sediment ages and sedimentation rates should be quantified. The 

short-lived
 137

Cs isotope (T1/2 = 30.1 y) has been commonly used to validate
 210

Pb dates of 

sediment cores (Erten 1997; Smith, 2001; Appleby, 2002; Pfitzner et al., 2004; Alonso-

Hernandez et al., 2006; McDonald and Urban, 2007; Díaz-Asencio et al., 2009; Smith et al., 

2009; Lepland et al., 2010; Giuliani et al., 2011), which can be measured directly by gamma 

spectrometry (Bellucci et al., 2012; Díaz-Asencio et al., 2009; Lepland et al., 2010; Smith et 

al., 2009).  The main sources of global 
137

Cs contamination are nuclear weapon tests carried 
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out in the Northern and Southern hemispheres in the 1950s and 1960s and the accident at the 

Chernobyl nuclear power plant in Ukraine on April 26, 1986. Thus, the highest 
137

Cs peaks in 

sediments correspond to these periods (Abril and Garcia-Le6n, 1994; Erten, 1997; Di 

Leonardo et al., 2007; Erten, 2011) and serve as a validating tool in 
210

Pb dating of sediments 

(Smith, 2001; Gunten et al., 2009).  

  

2.6.3.5. Challenges of quantifying sediment SARs using the 210Pb dating models  

Contrary to the assumption of uniform sedimentation, non-uniform deposition of sediments 

may occur in reality and present a challenge to accurate dating of sediment cores using the 

common 
210

Pb models. Episodic delivery of sediments and associated tracers into sedimentary 

systems through events such as flooding and turbidity currents may result in a significantly 

higher than normal rate of
 210

Pb supply (Appleby, 1997), a situation that can place a restriction 

on 
210

Pb dating of sediment cores (Appleby, 2008) since the underlying assumptions of 

constant concentration and flux for the CIC and CRS models are conflicted and lead to errors 

in the sediment chronology (Appleby, 1997; Marques Jr. et al., 2006). In situations where 

there have been significant variations in the sedimentation, both the CIC and CRS models are 

inapplicable for deriving chronologies (Appleby, 2008). In such situations, the CRS model 

may only be applicable if the sediment core is analysed in a piecewise fashion using 
137

Cs and 

241
Am chronostratigraphic dates as reference levels to derive accurate chronology for different 

sections of the core (Appleby, 2008).  

 

Low activities of 
137

Cs in sediments may compromise the reliability of the 
210

Pb-derived 

sediment chronologies (Arnaud et al., 2006; Lepland et al., 2010). Moreover, in more complex 

depositional settings, the lack of a significant yearly deposition maximum of 
137

Cs (Pfitzner et 

al., 2004) or the lack of distinct 
137

Cs peaks (Abril and Garcia-Le6n, 1994) can result in a 

restricted use of 
137

Cs in deriving sediment chronology and sedimentation rates. Therefore, the 

use of several independent sediment dating methods instead of only one method is 

recommended, since it can offset the limitations encountered when using only one dating 

method (Abril, 2004). In situations where different models (e.g. the CIC and CRS models) 

yield different results or neither of the results of the models is consistent with the 
137

Cs results, 

the use of more robust models  is recommended to aid the interpretation of the dating results 

(Smith, 2001; Appleby, 2004). 
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The assumption of no post-depositional mixing of sediments may also not be met in the real 

environment due to physical, chemical and biological (bioturbation) processes (Abril et al., 

1992; Appleby, 1997; Schmidt et al., 2007b), which can potentially alter the original 

distribution of tracers in the sediments (Santschi et al., 2001) and cause difficulties in 

establishing accurate sediment chronology. The presence or absence of post-depositional 

sediment mixing can be assessed by examining the profiles of short-lived and particle-reactive 

radionuclides such as 
234

Th (half-life = 24.1 d) and 
7
Be (half-life = 53.3 d) in sediment cores 

(Erten, 1997; Schmidt et al., 2007a, b). 
234

Th is produced from the decay of the soluble and 

long-lived parent
 238

U (half-life = 4.5 x 10
9
 y), while 

7
Be is a cosmogenic radionuclide 

produced from the interaction of cosmic rays with oxygen and nitrogen in the stratosphere and 

the troposphere (Erten, 1997; Pfitzner et al., 2004; Mabit et al., 2014). 
7
Be enters aquatic 

systems via direct wet and dry deposition or indirectly via transport of surface soil from the 

catchment through run-off (Pfitzner et al., 2004; Mabit et al., 2014). Due to their short half-

lives, 
234

Th and 
7
Be can provide reliable information on sediment mixing occurring within a 

few months (Schmidt et al., 2007a). Subsurface occurrence of 
234

Th and 
7
Be in areas of low 

sedimentation rates may indicate post-depositional sediment mixing (Schmidt et al., 2007b). 

 

The supply of 
210

Pbexc and 
137

Cs into bottom sediments is controlled by many complex 

processes (Abril et al., 1992; Abril and Garcia-Le6n, 1994; Appleby, 2008) that affect 

redistribution of sediment-bound tracers in confounding ways (Abril et al., 1992; Appleby, 

2008; Mabit et al., 2014). For example, atmospheric 
210

Pb and 
137

Cs may first deposit onto 

soils and subsequently transported into aquatic systems (Abril and Garcia-Le6n, 1994; Mabit 

et al., 2014), in which case the flux of matter into the aquatic system will exert a greater 

control on the 
210

Pbexc flux onto the bottom sediments than direct atmospheric 
210

Pbexc 

deposition (Abril and Brunskill, 2014). Since the fluxes of matter is affected by storm runoff, 

floods and tidal events (Palinkas et al., 2005; Díaz-Asencio et al., 2009), which may be site- 

and time-specific, the application of a particular model at different sites would require a case 

by case assessment of sediment cores (Appleby and Oldfield, 1983; Abril and Brunskill, 

2014). Moreover, the assumption of no post-depositional mobility of sediment-bound tracers 

under the application of
 210

Pb dating models may also not hold in reality due to potential 

diffusion and advection of the tracers within the sediment pore water (Appleby and Garcia-

Le6n, 1997) under the influence of the sediment porosity (Abril and Gharbi, 2012). An 

indication of post-depositional migration of sediment-bound radiotracers from surface layers 
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into deeper layers through the sediment pores is the occurrence of maximum
 
concentrations of 

radiotracers in subsurface layers rather than at the SWI (Abril and Gharbi, 2012).  

 

2.7.  Conclusions  

Chemical pollution and sedimentation in the marine environment are major problems as they 

threaten human and ecological well-being and thus, their assessments have been the focus of 

many studies. Coastal harbours associated with industrial and urban centres are susceptible to 

chemical pollution and sedimentation. Chemical pollutants primarily bind to sediments upon 

entry into aquatic environments due to their particle-reactive nature, making sediments an 

important tool for chemical pollution assessment. Approaches such as radiological hazard 

indices and the ERICA model (for radionuclides), the enrichment factor, geo-accumulation 

index and the risk assessment code (for metals), biological effect-based numerical sediment 

quality guidelines (for e.g. metals, OCPs and PAHs) and the total toxicity equivalence can be 

used to provide a first line of evidence of chemical contamination in sediments. The inclusion 

of a battery of toxicity bioassays is now recommended as a further line of evidence to 

adequately characterise chemical pollution in sediments.    

 

Quantifying sedimentation rates commonly involve the use of 
210

Pb dating models such as the 

Constant Flux Constant Sedimentation, the Constant Initial Concentration and the Constant 

Rate of Supply models. In disturbed sedimentary systems such as coastal harbours where the 

delivery of sediments and 
210

Pb may be controlled by complex processes, there is a potential 

limitation of the applicability of the 
210

Pb dating models for the quantification of 

sedimentation rates. It is evident from the literature that integrated approaches are required to 

overcome such limitations to allow the quantification of sedimentation rates in non-ideal 

sedimentary environments. This requires more rigorous sampling and analytical schemes, the 

application of robust models, independent validation of the 
210

Pb-derived chronology with 

other time markers such as 
137

Cs and the use of multi-tracers with different half-lives, e.g. 
7
Be 

and 
234

Th, whose short half-lives can provide useful information on sedimentary processes 

over the very recent past (3-8 months).  
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Abstract  

Studies on environmental radioactivity in tropical Africa are scarce. Therefore, a baseline 

study of natural (
238

U, 
210

Pb, 
226

Ra, 
232

Th, 
228

Ra, 
228

Th, 
40

K) and anthropogenic (
137

Cs) 

radionuclides was carried out on Tema Harbour (Greater Accra, Ghana) surface sediments and 

on their radiological significance. Grab surface sediment samples were collected from 21 

stations within the Tema Harbour and their specific activities measured by gamma 

spectrometry. The mean sediments specific activities (Bq.kg
-1

 dw) were 34 for 
238

U, 210 for 

210
Pb, 14 for 

226
Ra, 30 for 

232
Th, 29 for 

228
Ra, 31 for 

228
Th, 320 for 

40
K, and 1.5 for 

137
Cs. 

Large 
238

U/
226

Ra disequilibria were observed in the harbour sediments and a complex 

dynamics of several mixed sources of sediments within the Tema Harbour can be inferred 

from the spatial variations in the specific activities. The estimated total absorbed dose rate in 

air (D), radium equivalent activity (Raeq), external hazard index (Hex), annual gonadal dose 

equivalent (AGDE) and annual effective dose equivalent (AEDE) indicated no significant 

radiological risks from the sediment radioactivity concentrations. Application of the 

Environmental Risk from Ionising Contaminants Assessment and Management tool (ERICA) 

confirmed that the potential dose rates to biota from the sediment radioactivity concentrations 

are unlikely to pose appreciable ecological risks. The radioactivity levels are compared with 

levels reported in sediments from other coastal areas of the world. 

 

3.1. Introduction 

Radionuclides constitute an important source of ionising radiation exposure to human and 

non-human populations (Kam & Bozkurt, 2007; UNSCEAR, 2000), which can cause harmful 

biological effects such as DNA damage and cancer (Little, 2003; Ravanat et al., 2014; Schmid 

& Schrader, 2007). Radionuclides such as 
238

U, 
210

Pb, 
226

Ra, 
232

Th, 
228

Ra, 
228

Th and 
40

K are 

widely distributed in the environment as a result of their natural occurrence in the Earth‘s 

crust or the atmosphere. The human population worldwide receives an average annual 

radiation dose of 2.4 mSv.y
-1

, about 80% of which comes from naturally-occurring 

radionuclides, the remaining part is largely due to artificial sources of which fallout 

radionuclides account for only 0.4% (UNSCEAR, 2000). Fallout radionuclides such as 
90

Sr, 

137
Cs and 

239+240
Pu are derived mainly from global nuclear tests conducted between the mid 

1940s and the 1980s, as well as from nuclear accidents (Livingston & Povinec, 2000). In 

addition to their potential ionising effects, radionuclides may be toxic and can undergo 

bioconcentration and bioaccumulation (Hassona et al., 2008; Sirelkhatim et al., 2008) and 
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adversely impact human and ecosystem health. Assessment of radioactivity in the 

environment is useful for the protection of human health and the environment from the 

harmful effects of ionising radiation, and is therefore of great interest (Ulanovsky et al., 

2008). Most naturally-occurring and fallout radionuclides can be detected and measured at 

extremely low concentrations; this makes them excellent tracers for many environmental 

processes as well as unique dating tools. Thus, they have found a wide range of applications 

in environmental studies such as isotope hydrogeology (Divine & McDonnel, 2005), water 

masses circulation (Broecker, 1982), sediment dating and sedimentation (Hernandez, 2016; 

Mahu et al., 2016; Mabit et al., 2014). 

 

Although the West African coastal environment lacks the presence of nuclear industries, it 

may be impacted by contaminated areas as a result of ocean and atmospheric dispersal and 

redistribution. Furthermore, anthropogenic activities in the West African coastal environment 

such as shipping, offshore oil and gas exploration and production, mining, industrialisation, 

urbanisation, and agricultural production can potentially add to measured levels of 

radionuclides in the environment (Al-Trabulsy et al., 2011; El Mamoney & Khater, 2004; 

Nyarko et al., 2011). In the coastal environment, harbours may be particularly susceptible to 

anthropogenic influences and their sediments can act as sinks for radionuclides (Sugandhi et 

al., 2014). Harbours have hence been areas of interest when investigating radionuclide 

contamination in the coastal environment (Akram et al., 2006; Kumar et al., 2013; 

Papaefthymiou et al., 2007; Sam et al., 1998; Sugandhi et al., 2014). Sediment contamination 

by radionuclides of the 
238

U and 
232

Th decay-series and 
40

K is of particular interest from 

radiological point of view, as they can form the basis of radiological assessments for the 

human population. The Environmental Risk from Ionising Contaminants Assessment and 

Management tool (ERICA) developed by the European Commission provides an integrated 

approach to the assessment and management of environmental risks from ionising radiation 

(Beresford et al., 2007) and can be applied to assess the potential ecological impact of 

radionuclide-contaminated environments.  

 

Currently, there is not much information on radioactivity levels in the coastal marine 

environment of the West African region, including Ghana. In Ghana, the few radioactivity 

studies in the coastal environment have focused on beach sediments (Amekudzie et al., 2011; 

Nyarko et al., 2011), estuarine sediments (Mahu et al., 2016) and produce water from offshore 

oil fields (Kpeglo et al., 2016). Due to rapid growth of urbanisation and industrialisation in 
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Tema, increasing maritime traffic and infrastructural expansion works at the Tema Port likely 

intensify chemical contamination in the harbour. Monitoring of such developing coastal areas 

is, therefore, essential to ensure that these socio-econonic and develomental activities do not 

adversely affect human health and the proper functioning of coastal aquatic ecosystems. The 

objective of this study was to assess the specific activities of natural (
238

U, 
210

Pb, 
226

Ra, 
232

Th, 

228
Ra, 

228
Th and 

40
K) and anthropogenic (

137
Cs) radionuclides in surface sediments from the 

Tema Harbour in Ghana and their radiological and radioecological significance.  

 

3.2. Materials and Methods 

3.2.1. Description of the study area 

The Tema Harbour, situated in the Gulf of Guinea along the Ghana coast at Tema (Fig. 3.1), is 

semi-enclosed with a water area of 1.7 km
2
 within a wider harbour zone of 3.9 km

2
. It consists 

of the Main Harbour, the Fishing Harbour comprising the Inner Fishing Harbour, the Outer 

Fishing Harbour, and the Canoe Basin. Water depths range from 7.0-11.5 m for the Main 

Harbour, 7.5-8.5 m for the Fishing Harbour and 3.0-5.0 m for the Canoe Basin. The Main 

Harbour has 14 berths, a total of 4,580 m breakwater, a shipyard and dry dock for ship repairs, 

and a 240 m wide access channel. The harbour does not receive riverine inflows, but does 

receive wastewater from the Tema Township. The Fishing Harbour serves as a landing site for 

fishing vessels, where repairs and re-fuelling of marine crafts are also carried out. A 2010 

feasibility study report by Halcrow Engineers (unpublished) on the Tema Harbour revealed 

that it is underlain mainly by gneiss rocks composed of feldspar, quartz and micaceous 

minerals. The Tema Harbour is located in an industrial environment and thus, it is subject to 

industrial activities.  

 

3.2.2. Sediment sampling  

Grab surface sediment samples were collected in November 2013 from 21 stations within the 

Tema Harbour (Fig. 3.1), excluding rocky areas and berths where ships had docked (e.g. the 

area between S7 and S14). Fourteen (14) of the sampling stations were located in the Main 

Harbour (S1-S14), three (3) stations in the Canoe Basin (S15-S17), and two (2) stations each 

in the Inner Fishing Harbour (S18 and S19) and the Outer Fishing Harbour (S20 and S21). 

Geographical coordinates of the sampling stations were recorded using a Garmin Global 

Positioning System (GPS). At each station, the redox potential (Eh) was measured in situ near 
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the sediment-water interface using a Hanna multi-parameter probe (HI 9829, Hanna 

Instruments, USA). 

 

 

Fig 3.1 Map of Tema Harbour (Greater Accra, Ghana) showing sediment sampling 

locations  

 

Sediment samples were collected using a 3.5 L Ekman bottom grab sampler. The sampling 

locations were approximately 200 m apart, covering a wide area and range of water depths to 

provide representative data on the radionuclide distribution in the harbour. To minimise 

potential loss of fine particles via leakage of water from the grab, it was ensured that only 
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grabs that arrived firmly closed on the deck were sampled for analysis. In addition, only grabs 

that were not filled with sediment to the lid were used to assure minimal disturbance of the 

surface sediments.  

 

About 100 g wet weight portions of surface sediments were taken with a clean plastic spoon 

into polyamide Rilsan® bags and securely closed. With extremely low potential for diffusion 

of materials across their surfaces (http://tub-ex.com/products/rilsan/), Rilsan® bags are 

suitable for collection and storage of sediment samples and they have been used in 

environmental monitoring programmes (Serigstad et al., 2010). To minimise contamination 

from the grab, sediments in direct contact with the grab were not used and the sampling spoon 

was washed with deionised water after each sampling. All sediment samples were kept on ice 

and transported to the Chemistry Laboratory at the Ghana Atomic Energy Commission 

(Greater Accra, Ghana) for further analyses.  

 

3.2.3. Sample analyses  

For the analyses of radionuclides, wet sediment samples were oven-dried at 50°C till constant 

weight. Radiometric analyses of sediment samples were conducted at the ENEA S. Teresa 

laboratory (Italian National Agency for New Technologies, Energy and Sustainable Economic 

Development, La Spezia, Italy). The sediment samples were ground and placed in 5 g plastic 

vials of standard geometry, closed and sealed air-tight, and then stored for at least 22 days to 

ensure secular equilibrium between the parent nuclides and their short-lived daughter 

nuclides. The sealed samples were then counted for 2-3 days, and activities measured for 

210
Pb at 46.5 keV, 

214
Pb at 352 keV, 

212
Pb at 239 keV, 

208
Tl at 583 KeV, 

228
Ac at 338 and 

911.0 keV, 
234

Th at 63.3 and 92.5 keV, 
40

K at 1460 keV and 
137

Cs at 662 keV. The measured 

activities were decay-corrected with respect to the date of sediment sampling (Sirelkhatim et 

al., 2008) and associated errors were determined from l-sigma counting statistics (Nyarko et 

al., 2011). The activity of 
228

Th was obtained from the activity of its daughter 
212

Pb 

radionuclide and 
226

Ra and 
228

Ra from the activities of 
214

Pb and 
228

Ac, respectively. The 

average activity of 
228

Ac and 
212

Pb was used as a proxy for 
232

Th activity. Since no 

unsupported 
234

Th (
234

Thexc) was observed, the supported 
234

Th activity was used as a proxy 

for 
238

U activity. 

 

http://tub-ex.com/products/rilsan/
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Samples were analysed using a Gamma spectrometer coupled to an ORTEC low background 

intrinsic germanium coaxial detector (17.6% absolute efficiency, 1.8 keV nominal resolution 

at 662 keV 
137

Cs gamma emission). Prior to the sample radioactivity analyses, the Gamma ray 

detectors were calibrated for measurement of 
40

K using the IAEA-385 Certified Reference 

Material (CRM), while calibrations for 
238

U series radionuclides were performed using the 

CANMET (Canada Centre for Mineral and Energy Technology) Reference Standard (DL1a), 

being a U-Th ore in which 
210

Pb and 
226

Ra exist in secular equilibrium. Calibrations for 
232

Th 

series radionuclides were also performed using the IAEA Reference Standard (RGTh-1) 

prepared by CANMET, while calibration for 
137

Cs was performed using the Eckert & Ziegler 

Analytics Reference Standard (QCYA48). Quality of all results was routinely checked by 

analysing IAEA-300 and IAEA-315 Reference Materials as well as detector blanks (empty 

sample containers) processed in a similar way as the actual samples. Correction of measured 

activities for self-adsorption effects was done based on measurements of the attenuation of a 

known 
210

Pb Gamma source by the samples.  

 

3.2.4. Radiological risk assessment 

Dredged radioactive-contaminated harbour sediments may be disposed of on land or used for 

other purposes such as building, which can potentially result in human exposure to ionising 

radiations and cause radiological effects. For human protection and appropriate handling of 

radioactive-contaminated sediments, it is essential to characterise the associated potential 

radiological risks. Five radiological hazard indices were estimated following established 

formulae to characterise the potential radiation dose to humans resulting from exposure to 

sediment radioactivity, viz. (1) total absorbed dose rate in air (D), (2) radium equivalent 

activity (Raeq), (3) external hazard index (Hex), (4) annual gonadal dose equivalent (AGDE), 

and (5) annual effective dose equivalent (AEDE).  

 

The D expresses the rate of exposure to gamma radiation in air at 1m above the ground due to 

the activities of 
226

Ra, 
232

Th and 
40

K in the sediment samples. Raeq is a weighted sum of the 

specific activity of 
226

Ra, 
232

Th and 
40

K in a sediment sample, which allows comparison with 

their individual 
226

Ra, 
232

Th and 
40

K specific activities (Sugandhi et al., 2014). Hex is a 

measure of the indoor radiation dose rate associated with external gamma radiation exposure 

from natural radionuclides in building materials and it is important when considering the 

suitability of sediments as building materials (Xinwei et al., 2006). For human health safety, 
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the value of Hex must not exceed 1.0 (Kurnaz et al., 2007; Xinwei et al., 2006). Owing to their 

relatively higher sensitivity to ionising radiation compared to other organs of the body, the 

gonads are considered to be at a high risk of radiation exposure and are therefore of great 

interest in radiological assessment (Kurnaz et al., 2007). The AGDE estimates the potential 

radiation dose that the gonads may receive from 
226

Ra, 
232

Th and 
40

K. It is also usual to 

convert D to AEDE to assess the dose rate to an individual from outdoor gamma radiation 

over a period of one year.  

 

The D and Raeq were calculated using Eq. 1 and 2, respectively, following (El Mamoney & 

Khater, 2004): 

 

D (nGy.h
-1

) = 0.462ARa + 0.604ATh + 0.0417AK    (1) 

Raeq (Bq.kg
-1

) = ARa + 1.43ATh + 0.077AK     (2) 

 

Hex was calculated using Eq. 3 following (Xinwei et al., 2006): 

 

Hex = (ARa/370) + (ATh/259) + (AK/4810)      (3) 

 

AGDE and AEDE were calculated using Eq. 4 and 5, respectively, following (Kurnaz et al., 

2007). 

 

AGDE (µSv.y
-1

) = 3.09ARa + 4.18ATh + 0.314AK    (4) 

AEDE (µSv.y
-1

) = D (nGy.h
-1

) x 8760 h x 0.2 x 0.7 Sv.Gy.y
-1

 x 10
-3

  (5) 

 

3.2.5. Radioecological risk assessment  

Radioactivity contamination in sediments may put aquatic organisms at risk of ionising 

radiation effects. Therefore, the ERICA tool (version 1.2) was applied to assess the potential 

dose rates to organisms in the harbour. A detailed description of the ERICA tool can be found 

in literature (Beresford et al., 2007; Brown et al., 2008; Larsson, 2008). The tool is based on 

data gathered from extensive radioecological and dosimetric studies and uses generalised 

ecosystem representations, also referred to as reference organisms (Beresford et al., 2007). In 

this context, a reference organism is defined as 'a series of entities that provide a basis for the 
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estimation of radiation dose rate to a range of organisms which are typical, or representative, 

of a contaminated environment' (Beresford et al., 2007).  

 

In this study, the ERICA tool was used to estimate radioactivities in ten (10) reference 

organisms captured in the ERICA database, viz. phytoplankton, zooplankton, macroalgae, 

pelagic/benthic fishes, mammals, crustaceans, mollusc-bivalves, sea anemones, and 

polychaete worms. In estimating the radioactivities in the selected reference organisms, the 

highest measured specific activities in the sediments (Bq.kg
-1

 dry wt.) were used as input data 

to represent "worst case scenarios". Default concentration ratios for the reference organisms in 

ERICA were then applied. Since, by default, 
40

K was not included in the ERICA database, 

this isotope was also not considered here.  

 

Furthermore, a Tier 2 ERICA assessment was conducted to estimate the total dose rates to 

biota, applying a default uncertainty factor of 3.0 in the ERICA tool to ensure there will be 

less than 5% probability of modelled dose rates exceeding the screening dose rate. Since the 

magnitude of biological effects varies with different types of ionising radiation (Schmid & 

Schrader, 2007), default ERICA weighting factors of 10.0 for alpha, 1.0 for beta/gamma, and 

3.0 for low beta radiation were applied to give appropriate weights to the dose rates. As dose 

rate to biota is a function of the duration of exposure, a default ERICA occupancy factor of 

1.0 (i.e., fraction of time that the organism spends at a specified location in its habitat) was 

assigned to each reference organism, assuming they spend 100% of the time at their specified 

locations (i.e. in the water column, on the sediment surface or inside the sediment).  

 

3.3. Results and discussion 

3.3.1. Radioactivity levels in the Tema Harbour sediments 

The specific activities of 
238

U,
 210

Pb, 
226

Ra, 
228

Ra, 
228

Th, 
232

Th, 
40

K and 
137

Cs in the surface 

sediment samples are shown in Table 3.1. The specific activities of 
40

K were relatively higher 

than those of the other radionuclides, ranging from 250 to 570 Bq.kg
-1

 with a mean of 320 

Bq.kg
-1

. Doyi et al. (2013) reported higher levels of 
40

K and 
232

Th for rocks and ore from 

mines in the Upper East Region of Ghana in the ranges of 950-2800 and 81-880 Bq.kg
-1

, 

respectively, with a higher mean 
238

U level of 66 (± 8) Bq.kg
-1

. The levels of 
210

Pb (except at 

station S16) were markedly higher than those of 
238

U, 
226

Ra, 
232

Th, 
228

Ra and 
228

Th.  Their 

mean value, 210 (± 10) Bq.kg
-1

 (~200 Bq.kg
-1

 for unsupported 
210

Pb) is to some extent higher, 
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but comparable to the values of unsupported 
210

Pb found by Mahu et al. (2016) in the upper 

layers of sediment cores sampled in the Amisa (103 Bq.kg
-1

), Sakumo II (157 Bq.kg
-1

)  and 

Volta (123 Bq.kg
-1

) estuaries in Ghana, respectively. 

 

In coastal marine sediments, an excess of 
228

Th above that supported by the parents 
232

Th or 

228
Ra has often been reported, and used for radiometric dating (Koide et al., 1973). In the 

Tema Harbour sediments, the specific activities of 
232

Th,
 228

Ra and 
228

Th were comparable 

within the involved uncertainties. Specific activities of 
137

Cs in the sediments were markedly 

low, varying from <0.3 to 2.3 Bq.kg
-1

 with a mean of 1.5 Bq.kg
-1

. These values are 

comparable to those reported by Mahu et al. (2016) for the surface layers of estuarine 

sediments from Ghana (in the range 0-7 Bq.kg
-1

). The low 
137

Cs levels suggest low 

atmospheric fallout in the study area, coupled with natural decay following its deposition 

(Livingston & Povinec, 2000; Pfitzner et al., 2004) or remobilisation from sediment into 

seawater (Sugandhi et al., 2014). Thus, Junge et al. (2013) have reported 
137

Cs concentrations 

in the range 0.5-6.5 Bq.kg
-1

 in farmland soils from Nigeria.  

 

The levels of 
210

Pb (20 ± 5 Bq.kg
-1

) and 
137

Cs (< 0.3 Bq.kg
-1

) in the shallow station of the 

Canoe Basin (S16) were very low compared to the levels found at the remaining stations. 

Several mechanisms are involved in the distribution of radionuclides in the harbour such as 

hydrodynamics, waves, tides, and vessel movements and dredging. The Canoe Basin is prone 

to receive sediments from mixed sources including sand bars bordering one of its sides. In 

May 2013, maintenance dredging was carried out in the Canoe Basin to ensure safer 

navigation and increase berthing capacity for the operation of canoes. Dredging can 

potentially remove contaminated sediments while influx of sand may cause dilution, and may 

partly account for the low radioactivity levels of 
210

Pb and 
137

Cs at S16. In the Main Harbour, 

the 
210

Pb levels at stations S7 (130 ± 10 Bq.kg
-1

), S11 (110 ± 10 Bq.kg
-1

) and S13 (130 ± 10 

Bq.kg
-1

) were relatively lower than those at the other stations. This may partly be due to a 

dilution effect of the discharges of industrial wastewater and sand channelled into the harbour 

at S7, which can also affect neighbouring areas such as stations S13 and S11. On the contrary, 

Table 3.1 shows that these same three stations (S7, S11 and S13) recorded relatively higher 

levels of 
40

K, possibly due to organic enrichment in sediments as a result of the waste water 

discharges.  
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The ratios of 
238

U/
226

Ra, 
238

U/
210

Pb and 
210

Pb/
226

Ra were in the ranges of 1.4-3.5, 0.1-0.4 and 

1.3-22.4, respectively. The departures of these ratios from 1.0 indicate disequilibria, a general 

characteristic of marine surface sediments previously observed by others (Chen & Huh, 1999; 

Koide et al., 1973), which may be caused by anthropogenic influences (Al-Trabulsy et al., 

2011; El Mamoney & Khater, 2004; Nyarko et al., 2011; UNSCEAR, 2000). 

 

Table 3.1 Radioactivity concentrations (Bq.kg-1 dry wt.) in Tema Harbour surface 

sediments and water depth and Eh at the sampling stations  

 
 

 238
U series radionuclides 

 
232

Th series 

radionuclides 
 40

K 
137

Cs 

SS 
WD 

(m) 

Eh 

(mV) 
 238

U 
210

Pb 
226

Ra 
 232

Th
*
 

228
Ra 

228
Th  

  

S1 10 -96  30 ± 6 230 ± 10 12 ± 2  21 ± 3 18 ± 2 24 ± 1  250 ± 10 1.6 ± 0.4 

S2 7 -128  39 ± 5 200 ± 10 11 ± 1  25 ± 3 24 ± 2 26 ± 1  260 ± 10 1.7 ± 0.5 

S3 8.5 -100  43 ± 5 250 ± 10 13 ± 1  26 ± 4 26 ± 3 25 ± 1  270 ± 10 2.0 ± 0.5 

S4 8 -70  40 ± 4 260 ± 10 18 ± 2  32 ± 4 30 ± 3 33 ± 1  350 ± 10 1.1 ± 0.5 

S5 8 -65  28 ± 5 250 ± 10 14 ± 2  21 ± 3 19 ± 2 22 ± 1  250 ± 10 1.1 ± 0.5 

S6 8 -94  28 ± 4 250 ± 10 17 ± 2  70 ± 4 67 ± 3 72 ± 1  330 ± 10 1.3 ± 0.5 

S7 8 -90  28 ± 4 130 ± 10 13 ± 1  37 ± 3 34 ± 2 40 ± 1  460 ± 20 0.9 ± 0.5 

S8 9 -80  28 ± 4 210 ± 10 13 ± 1  19 ± 3 18 ± 2 20 ± 1  270 ± 10 1.2 ± 0.4 

S9 8.5 -80  35 ± 4 290 ± 10 16 ± 2  27 ± 3 24 ± 2 29 ± 1  290 ± 10 2.3 ± 0.5 

S10 9.5 -78  32 ± 4 230 ± 10 15 ± 1  26 ± 3 24 ± 2 28 ± 1  350 ± 10 1.1 ± 0.4 

S11 8.5 70  21 ± 4 110 ± 10 10 ± 1  38 ± 3 36 ± 2 39 ± 1  570 ± 20 0.5 ± 0.3 

S13 9 50  47 ± 7 130 ± 10 14 ± 1  44 ± 4 44 ± 3 43 ± 1  390 ± 20 2.2 ± 0.5 

S14 7.5 70  36 ± 3 240 ± 10 17 ± 1  29 ± 3 27 ± 2 31 ± 1  330 ± 10 1.1 ± 0.4 

S15 10 95  42 ± 4 280 ± 10 16 ± 1  28 ± 3 25 ± 2 31 ± 1  330 ± 10 1.4 ± 0.4 

S16 3 400  24 ± 4 20 ± 5 16 ± 1  37 ± 3 36 ± 2 38 ± 1  330 ± 10 < 0.3 

S17 4 -210  26 ± 5 230 ± 10 13 ± 2  34 ± 3 35 ± 2 32 ± 1  310 ± 10 1.9 ± 0.5 

S18 5 -140  32 ± 4 230 ± 10 13 ± 2  25 ± 3 21 ± 2 28 ± 1  310 ± 10 1.5 ± 0.4 

S19 8 -115  42 ± 5 310 ± 20 14 ± 1  23 ± 3 22 ± 2 23 ± 1  270 ± 10 1.9 ± 0.4 

S20 8 -110  35 ± 6 240 ± 10 11 ± 2  24 ± 4 23 ± 3 25 ± 1  300 ± 10 1.6 ± 0.5 

S21 8 -100  27 ± 4 170 ± 10 20 ± 1  26 ± 3 24 ± 2 27 ± 1  300 ± 10 1.4 ± 0.4 

S22 8 -90  41 ± 5 170 ± 10 18 ± 1  28 ± 3 27 ± 2 29 ± 1  300 ± 10 1.5 ± 0.5 

Mean  - -  34 ± 5 210 ± 10 14 ± 1  30 ± 3 29 ± 2 31 ± 1  320 ± 10 1.5 ± 0.5 

SS = sampling station; Errors are 1 standard deviation from counting statistics; 
*232

Th 

activities are estimated from grand-daughters activities 
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The origin of the excess in 
210

Pb found in sediments is well known, and it is the basis of the 

210
Pb-based radiometric method for dating recent sediments (Mabit et al, 2014). On the 

contrary, the observed disequilibria between 
238

U (derived from 
234

Th activity, see Section 

3.2.3) and 
226

Ra may be ascribed to differences in geochemical behaviour of the radionuclides 

(Koide et al., 1973). 
226

Ra and 
238

U are known for their different sorption and mobility 

characteristics; 
226

Ra and 
238

U are less particle-reactive than Th isotopes with greater tendency 

to diffuse from sediments into the surrounding seawater (Chen & Huh, 1999; Sirelkhatim et 

al., 2008; Sugandhi et al., 2014). The higher levels of 
238

U relative to 
226

Ra in the sediments 

may be due to diffusion and loss of Ra from sediment owing to its higher solubility in 

seawater or higher leachability of
 226

Ra from the harbour sediments than 
238

U-
234

Th. At the 

time of sampling, the bottom water was anoxic, having Eh values in the range of -50 to -400 

mV (Table 3.1), which may enhance immobilisation and precipitation of
 238

U in the sediments
 

(El Mamoney & Khater, 2004). Mohamed et al. (2010) reported 
228

Ra/
226

Ra activity ratios in 

the range 1.2-2.9 with 
238

U/
226

Ra activity ratios in the range 1.1-5.6 for southern South China 

Sea surface sediments, which compare well with the ranges 1.4-3.9  and 1.6-3.5 found in this 

work for 
228

Ra/
226

Ra and 
238

U/
226

Ra activity ratios, respectively (Table 3.1).  

 

The mean specific activity levels in the Tema Harbour sediments and levels reported for 

other areas are shown in Table 3.2. With the exception of Labadi that recorded higher levels 

of 
226

Ra and 
232

Th, the mean specific activity levels in the Tema Harbour sediments were 

generally higher than those reported in sediments from other areas, i.e. Chorkor, James Town, 

Nungua, Kokrobite, Teshie and Weija of the Greater Accra coast of Ghana (Amekudzie et al., 

2011). Nyarko et al. (2011) also reported lower specific activities of 
210

Pb in beach sand 

samples along the Ghana coast ranging from 1.6 up to 4.5 Bq.kg
-1

 and 
137

Cs concentrations 

below the detection limit of 0.4 Bq.kg
-1

. The mean specific activity levels in the Tema 

Harbour sediments were also higher than the levels reported for the Mediterranean coast of 

Egypt (Higgy, 2000), but were comparable to levels reported for the Saudi coast of the Gulf of 

Aqaba, except for their higher 
40

K (Al-Trabulsy et al., 2011); the Red Sea coast of Egypt (El 

Mamoney & Khater, 2004), Port Sudan and Sawakin Harbour of Sudan (Sam et al., 1998), 

Patras Harbour, Greece (Papaefthymiou et al., 2007), Mumbai Harbour, India (Sugandhi et al., 

2014), and the Karachi Harbour, Pakistan (Sugandhi et al., 2014). The mean specific activity 

levels of 
238

U, 
232

Th, 
40

K and 
137

Cs in the Tema Harbour sediments were, however, much 

lower than those found in polluted sediments from the Caspian Sea coast of Iran (Abdi et al., 

2009). Mohamed et al. (2010) found comparatively higher levels of 
226

Ra, 
228

Ra,
 238

U and  



 

 

 Table 3.2 Specific activity levels in Tema Harbour surface sediments and levels reported in sediments from other areas of the world 

 

  
 

238
U series radionuclides 

(Bq.kg
-1

) 
 

232
Th series radionuclides 

(Bq.kg
-1

) 
 

40
K 

(Bq.kg
-1

) 
 

137
Cs 

(Bq.kg
-1

) 
 Reference 

Sampling Station  
238

U 
210

Pb 
226

Ra  
232

Th 
228

Ra 
228

Th  
 

 
 

  

Ghana coast  
   

 
   

 
 

 
 

  

Chorkor  - - 1.42  1.49 - -  21.31  -  Amekudzie et al. (2011)  

James Town  - - 0.82  1.04 - -  14.67  -                " 

Labadi  - - 140.8  732.6 - -  43.97  -                " 

Nungua  - - 4.05  8.64 - -  41.17  -                " 

Kokrobite  - - 3.74  6.63 - -  17.76  -                " 

Teshie  - - 2.85  9.66 - -  61.01  -                " 

Weija  - - 0.62  0.17 - -  8.6  -                " 

Tema Habour  34 210 14  30 29 31  325  1.5  This study 

 
 

   
 

   
 

 
 

 
  

Other areas  
   

 
   

 
 

 
 

  

Port Sudan, Sudan  - - 11.05  - 10.35 -  311  7.02  Sam et al. (1998) 

Sawakin Harbour, Sudan  - - 12.61  - 6.18 -  192  4.51                " 

Patras Harbour, Greece  - - 22.6  24.5 - -  497  3.1  
Papaefthymiou et al. 

(2007)  

Mumbai Harbour, India  - - 10.6  
 

12.7 
 

 436  21.6  Sugandhi et al. (2014)  

Karachi Harbour, Pakistan  
  

23.9  - 23.5 -  527  < 1.3  Akram et al. (2006)  

Saudi coast, Gulf of Aqaba  16.9 - 11  22 19 -  641  3.5  Al-Trabulsy et al. (2011)  

Red Sea coast, Egypt  25.5 26 24.6  - - -  427.5  -  
El Mamoney and Khater 

(2004)  

Mediterranean  coast, Egypt  8.8  - 5  2.1 - -  46  
 

 Higgy (2000)  

Caspian Sea coast, Iran  177 - -  117 - -  1085  131  Abdi et al. (2009)  

Malaysia coast, South China 

Sea 
 45.9 

 
27.7  73.3 66.2 -  -  -  Mohamed et al. (2010) 

World average  35
a
 25

b
 25

b,c,d,e
  25

c,e
 - -  373

d,e
  -  

a
SureshGandhi et al. 

(2014); 
b
Nyarko et al. 

(2011); 
c
Qureshi et al. 

(2014); 
d
Kurnaz et al. 

(2007); 
e
Sugandhi et al. 

(2014) 
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232
Th for surface sediments from the Malaysia coast of the southern South China Sea. 

Generally, the mean specific activity levels in the Tema Harbour sediments were comparable 

to the reported worldwide averages (Nyarko et al., 2011; Papaefthymiou et al., 2007; Qureshi 

et al., 2014; SureshGandhi et al., 2014), except for 
210

Pb which was almost an order of 

magnitude higher than its grandparent 
226

Ra, due to the presence of unsupported 
210

Pb.  

 
3.3.2. Radiological significance of Tema Harbour sediment specific activity levels 

The calculated hazard indices for the Tema Harbour sediments and hazard indices reported for 

sediments from other areas of the world are presented in Table 3.3. The ranges (means) of D, 

Raeq, Hex, AGDE, and AEDE for the Tema Harbour sediments were 29-64 nGy.h
-1

 (39 nGy.h
-

1
), 61-142 Bq.kg

-1
 (82.7 Bq.kg

-1
), 0.2-0.4 (0.2), 203-447 µSv.y

-1
 (273 µSv.y

-1
), and 35-78 

µSv.y
-1

 (47 µSv.y
-1

), respectively. These mean D, Raeq, Hex, AGDE, and AEDE values were 

below the recommended values, although there were a few areas where the measured Raeq 

(i.e. S4, S6, S7, S11, S13 and S16), ADGE (i.e. S6, S7, S11, S13 and S16) and AEDE (i.e. S6) 

exceeded the recommended values. Thus, the radioactivity levels in the harbour sediments are 

generally of little radiological concern for human health.  

 

Compared to this study, Amekudzie et al. (2011) reported higher mean D (77 nGy.h
-1

) and Hex 

(0.5), but lower mean Raeq (9 Bq.kg
-1

) values for sediments from Chorkor, James Town, 

Nungua, Kokrobite, Teshie and Weija along the Greater Accra coast of Ghana (Table 3.3). 

Comparable mean values of D (42 nGy.h
-1

) and Raeq (101 Bq.kg
-1

) were reported for the Red 

Sea coast of Egypt by El Mamoney & Khater (2004), while a lower mean D value of 5.5 

nGy.h
-1

 was reported for the Mediterranean coast of Egypt by Higgy (2000). Higher mean 

values of D (63 nGy.h
-1

), Raeq (176 Bq.kg
-1

) and Hex (0.5) were reported for sediments from 

the Caspian Sea coast by Abdi et al. (2009), while a lower mean Hex value of 0.1 was reported 

for the Saudi coast of the Gulf of Aqaba by Al-Trabulsy et al. (2011).  
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Table 3.3 Calculated D, Raeq, Hex, AGDE and AEDE for Tema Harbour surface 

     sediments and sediments from other parts of the world as well as 

     recommended values  

 
D 

(nGy.h
-1

) 

Raeq 

(Bq.kg
-1

) 
Hex 

AGDE 

(µSv.y
-1

) 

AEDE 

(µSv.y
-1

) 
Reference 

Tema Harbour  
   

 This study 

S1 29 61 0.2 203 35  

S2 31 67 0.2 220 38  

S3 33 70 0.2 232 40  

S4 42 90 0.2 297 51  

S5 29 63 0.2 208 36  

S6 64 142 0.4 447 78  

S7 48 101 0.3 339 58  

S8 29 61 0.2 204 35  

S9 36 76 0.2 251 44  

S10 37 79 0.2 265 46  

S11 51 108 0.3 367 63  

S13 49 106 0.3 348 60  

S14 39 84 0.2 277 48  

S15 38 82 0.2 270 47  

S16 44 94 0.3 308 53  

S17 39 85 0.2 278 48  

S18 34 72 0.2 240 41  

S19 31 67 0.2 222 38  

S20 32 68 0.2 229 39  

S21 37 80 0.2 263 46  

S22 38 81 0.2 267 46  

Mean 39 83 0.2 273 47  

  
   

  

Mean values for 

other areas 
 

   
  

Caspian Sea coast, 

Iran 
63 176 0.5 - - Abdi et al. (2009) 

Red Sea coast, 

Egypt 
42 101 - - - 

El Mamoney and 

Khater (2004) 

Saudi coast, Gulf 

of Aqaba 
- - 0.1 - - 

Al-Trabulsy et al. 

(2011) 

Mediterranean  

coast, Egypt 
5.5 - - - - Higgy (2000) 

Ghana coast 77 9 0.5 - 0.1 
Amekudzie et al. 

(2011) 

Recommended  

value 
55

a,b
 89

a
 1.0

c
 300

c
 70

c
  

D (total absorbed dose rate in air); Raeq (radium equivalent activity); Hex (external hazard 

index); AGDE (annual gonadal dose equivalent); AEDE (annual effective dose equivalent); 

a
Kurnaz et al. (2007); 

b
Abdi et al. (2009); 

c
Xinwei et al. (2006); - : not reported  
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3.3.3. Radioecological significance of Tema Harbour sediment radioactivity 

Table 3.4 presents the estimated specific activity levels in the selected reference organisms. 

Generally, biota exhibited potentially higher accumulation levels of 
210

Pb (1.18-570 Bq.kg
-1

) 

relative to the other radionuclides (0-0.05 for 
137

Cs; 0.82-14.4 for Ra; 0.01- 6.60 for Th, and 

0.06-17.5 Bq.kg
-1

for 
238

U), possibly reflecting the relatively higher levels of 
210

Pb in the 

sediments. Thus, sediments may be an important source of 
210

Pb exposure to biota. The levels 

of 
210

Pb were markedly high in phytoplankton, exceeding the levels in the sediments.  This is 

an indication of a high potential for 
210

Pb bioaccumulation by phytoplankton as has been 

reported by Hassona et al. (2008). Overall, phytoplankton exhibited the highest potential for 

radionuclide exposure from sediment, suggesting that it could be a good bioindicator for 

monitoring of radionuclide contamination in the Tema Harbour. 

 

Apart from the 
210

Pb levels in phytoplankton, the specific levels in all the reference organisms 

were generally low compared to the levels in the sediments. This indicates that the 

radionuclides associate mainly with the sediments, despite their potential for bioaccumulation 

(Hassona et al., 2008; Sirelkhatim et al., 2008). This supports the view that sediments are the 

major sinks for radionuclides in aquatic ecosystems (Sugandhi et al., 2014). The very low 

specific activity levels of Th and 
137

Cs in biota suggest that sediments may not be a major 

exposure pathway of these radionuclides to biota in the harbour. 

  

The ERICA-derived dose rates to biota are presented in Table 3.5. It shows that 

phytoplankton could potentially receive higher dose rates from sediment radioactivity than the 

other reference organisms, which corresponds to its higher bioaccumulation potential for 

radionuclides (Table 3.4). The total dose rate to phytoplankton slightly exceeded the typical 

maximum value in the ERICA database (see Table 3.5). Whereas the total dose rate to pelagic 

fishes was similar to the typical minimum, that of crustaceans slightly exceeded the typical 

minimum value, but fell below the typical average value. In the case of zooplankton, 

macroalgae, benthic fishes, mammal, mollusc-bivalves and polychaete worms, the total dose 

rates fell below their ERICA typical minimum values (Table 3.5). The total dose rates to all 

the reference organisms fell below the screening dose rate of 400 µGy.h
-1

, proposed by the 

International Atomic Energy Agency (IAEA) and the United Nations Scientific Committee on 

the Effects of Atomic Radiation (UNSCEAR) as the dose rate below which harmful effects 

are unlikely to occur in organisms. 



 

 

Table 3.4 Highest specific activities in Tema Harbour sediments (Bq.kg-1 d.w) and ERICA-derived specific activities in reference 

organisms (Bq.kg-1 f.w)  

Reference organisms  

 

Sediment 

Phyto-

plankton 

Zoo- 

plankton 

Macro- 

algae 

Pelagic/Benthic 

fishes Mammals Crustaceans 

Mollusc-

bivalves 

Sea  

anemones 

Polychaete 

worms 

137
Cs 2.3 0 0.03 0.02 0.02 0.05 0.01 0.01 0.05 0.04 

*
Ra 67 14.4 1.02 1.13 1.76 2.06 1.08 0.82 1.76 1.76 

210
Pb 314 570 20 1.18 38.9 22.4 24.8 7.43 38.9 47.2 

*
Th 72 6.60 0.06 0.04 0.01 0.02 0.35 0.02 0.02 0.02 

238
U 47 3.85 0.07 1.47 0.16 0.16 0.06 0.57 17.5 17.5 

*
Ra is for both 

226
Ra and 

228
Ra;

 *
Th for both 

232
Th and 

228
Th 

 



Radioactivity Concentrations and their Radiological Significance in Sediments of the 
Tema Harbour (Greater Accra, Ghana) 

 

 

Table 3.5 ERICA-derived total dose rates to reference organisms and typical 

maximum, minimum, and average values (uGy.h-1) in the ERICA database 

Reference  

Organism  

Total dose 

rate 

Typical average 

dose rate 

Typical minimum 

dose rate 

Typical maximum 

dose rate 

Phytoplankton 2.11 0.38 0.13 2.00 

Zooplankton 0.06 0.94 0.25 5.20 

Pelagic fish 0.09 0.42 0.08 3.70 

Mammal 0.10 1 0.23 5.80 

Macroalgae 0.13 0.87 0.52 1.40 

Benthic fish 0.12 0.58 0.24 1.20 

Crustacean 0.16 0.59 0.12 1.90 

Mollusc-bivalve 0.09 2 0.98 5.60 

Sea anemones 0.54 4.20 1.90 8.80 

Polychaete worm 0.58 1.6 0.94 2.5 

 

 

It is worthy to note that the ERICA tool was used in this study as a screening tool to provide 

estimates of the radioactivity levels in biota and associated total dose rates rather than their 

accurate prediction. Furthermore, the estimated total dose rates to biota may be 

underestimated since they were based on the specific activities of only 
238

U,
 210

Pb, 
226

Ra, 

228
Ra, 

228
Th, 

232
Th and 

137
Cs. Measurement of radioactivity levels of 

238
U,

 210
Pb, 

226
Ra, 

228
Ra, 

228
Th, 

232
Th and 

137
Cs in different environmental matrices such as sediments, water and biota 

from the harbour will be important to validate the predictive ability of the ERICA modelling 

tool for the Tema Harbour ecosystem and is, therefore, recommended for future studies. 

 

3.4. Conclusions 

The radioactivity levels of 
238

U,
 210

Pb, 
226

Ra, 
232

Th, 
228

Ra, 
228

Th, 
40

K and 
137

Cs in surface 

sediment from the Tema Harbour in Ghana have been assessed for the first time. The specific 

activities of 
40

K and 
210

Pb were relatively higher than the levels of the other radionuclides in 

the Tema Harbour sediments. Large disequilibria between 
238

U and 
226

Ra were found, 

attributable to the dynamics of the sediments in the harbour. Apart from 
210

Pb, the specific 

activities of the natural radionuclides in the Tema Harbour sediments were comparable to 
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worldwide average values. Evaluation of total absorbed dose rate in air (D), radium equivalent 

activity (Raeq), external hazard index (Hex), annual gonadal dose equivalent (AGDE) and 

annual effective dose equivalent (AEDE) indicate that the potential dose rates to human from 

the sediment radioactivity levels may not present significant risks to human health. Moreover, 

the potential dose rates to biota derived from the ERICA assessment indicate low ecological 

risks associated with the radioactivity levels in the harbour sediments. This study provides 

baseline information on radioactivity levels in the Tema Harbour sediments for comparison to 

future monitoring studies. 
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Abstract 

This study assessed DDTs, HCHs and PAHs contamination in sediments from the Tema 

Harbour (Ghana) and the associated ecotoxicological risks. The results showed widespread 

DDTs, HCHs and PAHs contamination in the harbour sediments with mean concentrations 

ranging from 6.0-12.8, 2.8-12.7 and 2,750-5,130 µg.kg
-1

 d.w, respectively. The silt-clay and 

total organic carbon contents of the sediments poorly correlated with the pollutant 

concentrations. DDTs and HCHs contamination relate to past use of DDT and lindane, which 

under the anoxic harbour conditions resulted in disproportionately higher concentrations of 

p,p'-DDD and γ-HCH in the sediments. No conclusion could be drawn on the sources of 

PAHs as either petrogenic or pyrogenic. The pollutant concentrations in the harbour 

sediments, particularly γ-HCH, may pose high ecotoxicological risks. In comparison to a 

previous study, this study indicates there has been a considerable reduction in PAH 

contamination in the Tema Harbour since the last major oil spill in 2007.  

 

4.1. Introduction 

Chemical pollution of coastal marine ecosystems is a major global issue due to the adverse 

human health, as well as their ecological and socioeconomic implications, such as degradation 

of marine habitats, death of organisms and decline in biodiversity, contamination of food 

sources and deprivation of livelihoods (Islam and Tanaka, 2004; Mestres et al., 2010). 

Moreover, severely polluted ecosystems may be impossible or very costly to clean-up and 

restore. Many coastal marine ecosystems have been polluted (Islam and Tanaka, 2004), and 

many are under threat due the increasing coastal populations and developmental activities 

(Birch and Hutson, 2009). Chemical pollution of coastal marine ecosystems is often linked to 

intense human activities in the coastal zone, such as industrial production, shipping, crude oil 

extraction, agriculture and sewage disposal (Islam and Tanaka, 2004; Birch and Hutson, 2009; 

Smith et al., 2009; Mestres et al., 2010). Priority pollutants include 

dichlorodiphenyltrichloroethane (DDT), hexachlorocyclohexane (HCH) and polycyclic 

aromatic hydrocarbons (PAHs) due to the environmental persistence of these organic 

pollutants, their long-range atmospheric transport, bioaccumulation along the food chain, as 

well as their associated adverse biological effects such as toxicity, endocrine disruption, 

cancer, mutations and reproductive anomalies (Willett et al., 1998; Wang et al., 2001; Islam 

and Tanaka, 2004; King et al., 2004; De Luca et al., 2004; Nyarko et al., 2011).  
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DDT and HCH are synthetic organochlorine compounds (OCs) previously used widely in 

public health programmes and as agricultural pesticides. Although the use of DDT and HCH 

is currently banned or restricted in many parts of the world, their inherent environmental 

characteristics, illegal use and poor management of stockpiles of DDT and HCH result in their 

occurrence in the environment (Singh and Lal, 2009; Ntow and Botwe, 2011). Furthermore, 

DDT is still permitted for use in malaria control in malaria endemic tropical developing 

countries (Ntow and Botwe, 2011). Thus, continuous monitoring and assessment of these 

persistent organochlorine pollutants in the environment remain relevant.  

 

The occurrence of PAHs in the environment typically relates to the release of crude oil and 

refined petroleum products (referred to as petrogenic sources) or combustion of organic 

matter and fossil fuel (referred to as pyrogenic sources) (Wang et al., 2001; Yunker et al., 

2002; De Luca et al., 2004; Neff et al., 2005; Nyarko et al., 2011). PAHs which contain two or 

three fused benzene rings are classified as low molecular weight PAHs (LPAHs), while those 

having four to six fused benzene rings are classified as high molecular weight PAHs 

(HPAHs). Although PAHs commonly occur as a mixture of several hundreds of related 

compounds in the environment (Neff et al., 2005), the sixteen PAH compounds (PAH16) 

designated as priority PAHs by the United States Environmental Protection Agency (USEPA) 

have become prime targets in many PAH contamination and bioremediation studies (Wang et 

al 2001; De Luca et al., 2004; King et al., 2004). 

  

As the ultimate repository of chemical pollutants released into aquatic ecosystems (Burton, 

2002; Birch and Hutson, 2009; Hu et al., 2009; Lin et al., 2009; Smith et al., 2009), sediments 

usually attain high levels of chemical pollutants and pose hazards to benthic organisms as well 

as other organisms in the aquatic food chain (Hong et al., 1995). Thus, there have been 

growing efforts to remediate contaminated sediments, commonly by dredging (Burton, 2002). 

Coastal marine harbours, particularly those associated with industrial and urban centres, are of 

major concern as such harbours serve as receptacles for a variety of pollutants released from 

industrial, urban, shipping, fishing and other anthropogenic activities (Simpson et al., 1996; 

Mestres et al., 2010; Lin et al., 2009; Smith et al., 2009). Furthermore, the low-energy 

hydrodynamics in harbours (Mestres et al., 2010) enhance the accumulation of sediment-

associated pollutants. Thus, Lin et al. (2009) and Simpson et al. (1996) reported high levels of 

DDT and PAH, respectively, in harbour sediments. Dredging with subsequent disposal of 

contaminated harbour sediments also pose a threat to the receiving ecosystem as contaminated 
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sediments are potential sources of pollutants to biota (Hong et al., 1995; Burton, 2002). 

Investigation of sediment contamination and associated ecological risks is, therefore, a 

priority for environmental regulators (Burton, 2002; Birch and Hutson, 2009). Prior to 

undertaking remedial actions, screening-level ecotoxicological risk assessments on sediments 

are conducted to identify: (i) pollutants of potential ecotoxicological concern, (ii) priority 

areas, and (iii) the potential to cause adverse ecological effects (Burton, 2002; Long et al., 

2006; Birch and Hutson, 2009).  

 

The coastal marine Tema Harbour, located along the Gulf of Guinea at Tema in Ghana, is an 

international harbour with considerable shipping and fishing activity. The construction of the 

Tema Harbour in 1960 coincided with the commencement of industrialisation in Ghana, 

specifically in Tema, which has since been the major industrial city of Ghana. Major 

industrial activities in Tema include alumina smelting, crude oil refining, paint, steel and 

cement production. Thus, the Tema Harbour has been subjected to industrial, shipping, fishing 

and other anthropogenic activities for nearly six decades. Notable incidents at the Tema 

Harbour during the past decade include two major oil spills with subsequent clean-up and a 

fire explosion at the shipyard, which destroyed oil pipeline installations of the Tema Oil 

Refinery (TOR) at the harbour (Ghana New Agency, 29 March 2005). The fire and oil spill 

incidents at the Tema Harbour, shipping and fishing activities, as well as discharges from the 

surrounding industries might have caused release of PAHs and other pollutants into the 

harbour. Thus, assessment of sediment contamination and associated ecotoxicological risk is 

indispensable, as follow-up of a preliminary study conducted in 2008 suggesting sediment 

PAH pollution in Tema Harbour (Gorleku et al., 2014). The aim of the present study was to 

assess the levels, spatial distributions and sources of DDTs, HCHs and PAH16 in surface 

sediments from the Tema Harbour. In addition, the ecotoxicological risks were evaluated 

using biological effect-based numerical sediment quality guidelines and total toxicity 

equivalence approaches. 

 

4.2.  Materials and methods 

4.2.1. Sediment sampling 

Surface sediment samples were collected with a stainless steel Ekman grab (3.5 L) from 21 

locations in the Tema Harbour in January 2014. The monitoring stations were spread over the 

different compartments of the Tema Harbour: fourteen in the Main Harbour excluding rocky 
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areas, two each in the Inner Fishing Harbour and the Outer Fishing Harbour; and three in the 

Canoe Basin (S15-S17) (Fig. 3.1). At each station, three grab samples were collected and the 

surficial sediments scooped with a stainless steel spoon from the upper 0-2 cm layer, which is 

considered representative of recently deposited sediments (Phillips, 2007). Each composite 

sediment sample was mixed and then split into two: one for analysis of grain size and the 

other for analyses of organic contaminants (DDTs, HCHs and PAHs), total organic carbon 

(TOC) and total nitrogen (TN). The sediment samples were finally taken into Rilsan® bags, 

stored in an ice-cooled box on the field and later transported to the Department of Marine and 

Fisheries Sciences laboratory of the University of Ghana, about 60 km away. In the 

laboratory, the sediment samples were stored in a freezer at -20 
o
C till analysis within 4 

weeks.  The redox potential (Eh) of the bottom water at each monitoring station was measured 

in situ by using a Hanna multi-parameter probe (HI 9829, Hanna Instruments, USA), taking 

measurements after the Eh values had stabilised (typically within 2 min).  

 

4.2.2. Sediment analyses 

The silt-clay (<63 µm) and sand (63-2000 µm) fractions in the sediment samples were 

determined on wet samples by the wet sieving method following Wang et al. (2001). Analyses 

of DDTs, HCHs, PAHs, TOC and TN were performed on freeze-dried and homogenised bulk 

sediment samples. TOC and TN contents were determined following the Walkley-Black wet 

oxidation (Schumacher, 2002) and the Kjeldahl (Sáez-Plaza et al., 2013) method, respectively, 

after decarbonisation with excess 1 M HCl. Analysis of DDTs, HCHs and PAHs was by 

Soxhlet-extraction following Wang et al. (2001) and Fung et al. (2005), with some 

modifications. Briefly, about 10 g of dry homogenised sediment samples were spiked with 

100 µl of 1 µg/mL standard solutions of acenaphthylene-d8, acenaphthene-d10, fluorene-d10 (as 

internal standards for PAH) and PCB-204 and PCB-230 (as internal standards for DDTs and 

HCHs) before Soxhlet-extraction with 150 mL of dichloromethane/acetone (1:1 v/v) mixture 

for 16 h. Prior to the extraction, the sediment samples were mixed with 5 g of anhydrous 

granular sodium sulphate previously heated at 400 
o
C for 4 h and 2 g of activated copper 

powder to remove sulphur. Using a rotary evaporator, the extracts were then slowly 

evaporated to near dryness and the residue re-dissolved in 2 mL n-hexane for clean-up.  

 

Clean-up of the extracts was carried out using glass chromatographic columns (20 x 1.0 cm) 

packed with 8 g of Davisil Grade 923 silica gel from Sigma Aldrich, pre-heated at 130 
o
C for 
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16 h. The chromatographic columns were first conditioned by eluting successively with 15 

mL of dichloromethane and 20 mL of n-hexane, before the extracts were applied to the 

columns and eluted successively with 15 mL of n-hexane and 20 mL of n-

hexane/dichloromethane (80:20) mixture. The eluates were collected, concentrated to near 

dryness by a pure stream of N2 gas and finally reconstituted in 1 mL n-hexane for analysis of 

DDTs, HCHs and PAH16. The PAH16 were analysed by using a Perkin Elmer AutoSystem gas 

chromatograph with flame ionisation detector (GC-FID, Agilent 6890 Series GC System), 

while DDTs and HCHs were analysed by using the same GC with a 
63

Ni electron capture 

detector (GC-ECD). Identities of PAHs, DDTs and HCHs were confirmed using a GC with 

mass selective detector (GC-MSD).  

 

4.2.3. Quality assurance and control 

All sediment samples were analysed in triplicates. Chemicals, solvents and reagents used in 

the extraction were of HPLC grade. All containers used were either new or thoroughly 

cleaned. Prior to sample analysis, the GC instrument was calibrated with mixed standards for 

DDTs and HCHs (EPA608-Pest.Mix 1, Sigma-Aldrich), and PAH16 (16 Priority EPA PAHs, 

Campro Scientific GmbH, Germany). Routine analyses of procedural blanks, reagent blanks, 

spiked blanks, sample replicates and samples of a Standard Reference Material for sediments 

(SRM 1944) from the National Institute of Standards and Technology (NIST) were conducted 

to assess contamination and recovery of analytes. The target organic contaminants were not 

detected in both procedural and reagent blanks. Recoveries ranged between 81 and 98% for 

PAHs and between 78 and 94% for DDTs and HCHs, with relative standard deviations (RSD) 

below 5 % (see Table 4.1). Reported PAH, DDT and HCH concentrations were not corrected 

for recoveries.  

 

4.2.4. Data treatment 

Two-tailed Pearson's product-moment correlations were conducted to determine associations 

between the measured sediment parameters using the Statistical Package for Social Sciences 

(SPSS version 16.0) software. Descriptive statistics (mean and standard deviations) were 

performed in Windows Excel (2007) at the 95 % confidence interval. One-way analysis of 

variance (ANOVA) with multiple comparisons (Holm-Sidak and Kruskal-Wallis) tests were 

performed to assess significant differences in the spatial distribution of measured sediment  
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Table 4.1 Measured (n =3) and certified concentrations of target OC and PAH 

compounds in standard reference material (SRM 1944)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RSD = relative standard deviation 

*Provided as reference concentration instead of certified concentration 

 

 

 

Compound  
Measured 

value  

Certified  

value 

Recovery 

(%) 

RSD  

(%) 

OCs (µg.kg
-1

 d.w)  
    

p,p'-DDT  109 ± 4 119 ± 11 92 3.3 

p,p'-DDE  81 ± 4 86 ± 12* 94 4.8 

p,p'-DDD  84 ± 2 108 ± 16* 78 2.0 

α-HCH  1.9 ± 0.1 2.0 ± 0.3* 94 4.3 

PAHs (mg.kg
-1

 d.w)  
    

Naphthalene  1.34 ± 0.04 1.65 ± 0.31 81 3.0 

Phenanthrene  5.11 ± 0.06 5.27 ± 0.22 97 1.1 

Anthracene  1.58 ± 0.04 1.77 ± 0.33 89 2.3 

Fluoranthene  8.72 ± 0.10 8.92 ± 0.32 98 1.1 

Pyrene  9.44 ± 0.11 9.70 ± 0.42 97 1.2 

Benz[a]anthracene  4.51 ± 0.07 4.72 ± 0.11 96 1.6 

Chrysene  4.53 ± 0.10 4.86 ± 0.10 93 2.1 

Benzo[b]fluoranthene  3.60 ± 0.04 3.87 ± 0.42 93 1.1 

Benzo[k]fluoranthene  2.17 ± 0.04 2.30 ± 0.20 94 1.7 

Benzo[a]pyrene  4.10 ± 0.05 4.30 ± 0.13 95 1.3 

Benzo[ghi]perylene  2.68 ± 0.03 2.84 ± 0.10 94 1.1 

Indeno[1,2,3-

cd]pyrene 
 2.58 ± 0.04 2.78 ± 0.10 93 1.6 

Dibenz[a,h]anthracene  0.39 ± 0.01 0.424 ± 0.069 92 2.6 

Fluorene  0.80 ± 0.02 0.85 ± 0.03* 94 1.9 

Acenaphthene  0.52 ± 0.03 0.57 ± 0.03* 92 4.8 
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parameters using SigmaPlot software (version 11.0). The distributions of ΣDDTs, ΣHCHs, 

ΣPAHs and mERMQ in the harbour were mapped using ArcGIS software (version 10.2.2). 

 

4.3. Results 

4.3.1. Sediment physicochemical characteristics 

The measured physicochemical characteristics of the Tema Harbour sediments are presented 

in Table 4.2. The bottom water in the harbour was anoxic with Eh values ranging from -50 to -

420 mV. The grain size composition of the harbour sediments revealed a predominance of the 

sandy (63-2000 µm) fraction with the mean silt-clay (<63 µm) fraction varying between 21 

and 39 %. Sediments from the north-eastern corner (stations S1-S4, S13 and S14) and central 

parts of the Main Harbour had relatively higher silt-clay contents. The TOC content of the 

sediments ranged from 2.2 to 7.2 %, showing a significant variation (p = 0.027, ANOVA) in 

spatial distribution but without any clear trend. Stations with relatively high TOC content 

include S2, S7, S12, the Canoe Basin (S15-S17) and the Inner Fishing Harbour (S18 and S19). 

There was, however, no significant correlation (r = -0.004, p > 0.05) between the TOC and 

silt-clay contents. The mean sediment TN content varied from 0.8 to 1.4 % among the 

monitoring stations, but no significant variation (p = 0.782, ANOVA) was observed in the 

distribution of TN across the monitoring stations. There was also a poor correlation (r = -0.18, 

p > 0.05) between the silt-clay and TN contents. The mean TOC contents were 2-9 times 

higher than the mean TN contents, with a poor correlation (r = -0.144, p > 0.05) between the 

TOC and TN contents.  

 

4.3.2. Levels and distribution of DDTs and HCHs in the Tema Harbour sediments 

A widespread occurrence of DDTs (p,p'-DDT, p,p'-DDE and p,p'-DDD) and HCHs (α-HCH, 

β-HCH, γ-HCH and δ-HCH) was observed in the harbour sediments. The mean concentration 

ranges of p,p'-DDT, p,p'-DDE and p,p'-DDD were 1.6-3.5, 0.8-2.0 and 2.8-7.5 µg.kg
-1

 d.w, 

respectively (Table 4.2). Overall, the mean concentrations of ΣDDTs (i.e., p,p'-DDT +  p,p'-

DDE + p,p'-DDD) ranged from 6.0 to 12.8 µg.kg
-1

 d.w, with significant differences in the 

spatial distribution (one way ANOVA, p < 0.001): the north-easternmost part of the harbour 

being most contaminated (Fig. 4.1a). The ΣDDTs concentrations highly correlated with the 

concentrations of p,p'-DDT (r = 0.77, p < 0.01)  and p,p'-DDD (r = 0.96, p < 0.01), and to a 

lesser extent, with p,p'-DDE (r = 0.49, p < 0.05). A significant correlation was observed 

between the p,p'-DDT and p,p'-DDD concentrations (r = 0.62, p < 0.01), but both p,p'-DDT (r 
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= 0.24, p > 0.05) and p,p'-DDD (r = 0.33, p > 0.05) exhibited poor correlations with p,p'-

DDE. Both ΣDDTs (r = 0.58, p < 0.01) and p,p'-DDD (r = 0.54, p < 0.05) exhibited 

significant correlations with the silt-clay contents, but poor correlations with both TOC and 

TN contents in the sediments. Moreover, the concentrations of p,p'-DDT and p,p'-DDE 

exhibited poor correlations with the silt-clay, TOC and TN contents in the sediments. 

 

Like DDTs, HCHs were ubiquitous in the harbour sediments. The mean concentration ranges 

of α-HCH, β-HCH, γ-HCH and δ-HCH were 0.6-2.6, 0.4-5.2, 1.1-5.8 and 0.2-1.8 µg.kg
-1

 d.w, 

respectively (Table 4.2). One way ANOVA revealed significant differences (p < 0.001) in the 

distribution of γ-HCH across the monitoring stations: relatively higher levels were found in 

the Inner Fishing Harbour, stations S15 (in the Canoe Basin) and S4 and S14 (in the Main 

Harbour). Overall, the mean concentrations of ΣHCHs (i.e., α-HCH + β-HCH + γ-HCH + δ-

HCH) varied from 2.8 to 13.6 µg.kg
-1

 d.w. The spatial distribution pattern shows the north-

eastern part of the harbour being most contaminated (Fig. 4.1b). Good correlations were found 

between the concentrations of ΣHCHs and α-HCH (r = 0.53, p < 0.05), β-HCH (r = 0.88, p < 

0.01), γ-HCH (r = 0.86, p < 0.01) and δ-HCH (r = 0.60, p < 0.01). Among the HCH isomers, 

significant correlations were observed between α-HCH and γ-HCH (r = 0.43, p < 0.05), β-

HCH and γ-HCH (r = 0.61, p < 0.01), and β-HCH and δ-HCH (r = 0.69, p < 0.01), while poor 

correlations were observed between α-HCH and β-HCH (r = 0.23, p > 0.05), α-HCH and δ-

HCH (r = 0.09, p > 0.05), and γ-HCH and δ-HCH (r = 0.31, p > 0.05). No significant 

correlations were observed between the HCHs and concentrations of DDTs, the silt-clay 

content or the TOC and TN content. 

 

4.3.3. Levels and distribution of PAHs in the Tema Harbour sediments 

The USEPA 16 priority PAHs (PAH16) namely naphthalene (Nap), acenaphthylene (Acy), 

acenaphthene (Ace), fluorene (Flu), phenanthrene (Phe), anthracene (Ant), fluoranthene (Fla), 

pyrene (Pyr), benzo[a]anthracene (BaA), chrysene (Chr), benzo[b]fluoranthene (BbF), 

benzo[k]fluoranthene (BkF); benzo[a]pyrene (BaP), benzo[g,h,i]perylene (BghiP), 

indeno[1,2,3-cd]pyrene (IP) and dibenz[a,h]anthracene (DahA) were frequently detected in 

the harbour sediment samples and their mean concentrations are presented in Table 4.3. 

Generally, phenanthrene recorded the highest mean levels (510-750 µg.kg
-1

 d.w; mean = 610 

µg.kg
-1

 d.w), followed by acenaphthylene (410-660 µg.kg
-1

 d.w; mean = 500 µg.kg
-1

 d.w) and 

pyrene (330-750 µg.kg
-1

 d.w; mean = 456 µg.kg
-1

 d.w). Concentrations of summed PAHs 
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(ΣPAH16) ranged from 2750-5130 µg.kg
-1

 d.w with a mean of 3700 µg.kg
-1

 d.w, with 

significant variations in the distribution of PAH16 across the monitoring stations (Kruskal-

Wallis one way ANOVA on ranks, p < 0.001). The PAH distribution pattern shows that 

sediments in the Main Harbour are less contaminated by ΣPAH16 compared to those of the 

Fishing Harbour (see Fig. 4.1c).  

 

4.4. Discussion 

4.4.1. Physicochemical characteristics of the Tema Harbour sediments   

Sediment attributes such as silt-clay and organic carbon contents influence organic pollutant 

uptake by sediments (Wang et al., 2001; Ahrens and Depree, 2004; De Luca et al., 2004; King 

et al., 2004; Wang et al., 2006; Lin et al., 2009). Furthermore, the redox conditions of 

sediments play a role in the biodegradation of organic matter (Caille et al., 2003) and thereby, 

the accumulation of organic matter in sediments. The results of the grain-size analysis showed 

that the Tema Harbour sediments were predominantly sandy, with the silt-clay fraction 

constituting 21-39 % (Table 4.2). This predominance of sand may be due to its large inputs by 

ocean water currents and movements of ships (Kelderman, 2012).  

 

The TOC/TN ratios in the sediments, which ranged from 2.4 to 9.0 (Table 4.2), indicate a 

predominance of autochthonous organic matter in the harbour sediments, as organic matter of 

marine (autochthonous) sources is characterised by TOC/TN ratios ≤ 8.0 (Burdige, 2007; Tesi 

et al., 2007). This predominance of autochthonous organic matter may be linked to the fact 

that the harbour hardly receives direct riverine inflows, which could have introduced large 

quantities of terrestrial (allochthonous) organic matter into the harbour. There was lack of a 

good correlation between the silt-clay fractions and TOC content, possibly due to localised 

anthropogenic inputs of organic matter into the harbour, which will vary across the 

monitoring stations. Organic loading coupled with poor water circulation may have 

contributed to the prevailing anoxic condition in the harbour. Such anoxic conditions have the 

potential to retard the microbial decomposition of organic matter, as anaerobic biodegradation 

rates of organic matter (methane production or sulphate reduction) in marine sediments are 

usually slower than aerobic biodegradation (Caille et al., 2003). The anoxic condition at the 

inner station in the Canoe Basin (S15) is of concern as the Eh value was below the minimum 

established value of -300 mV for natural sediments (Ye et al., 2013).  
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4.4.2. Effect of silt-clay and TOC content on the DDTs, HCHs and PAHs distribution 

This baseline study shows that DDTs (p,p'-DDT, p,p'-DDE and p,p'-DDD), HCHs (α-HCH, β-

HCH, γ-HCH and δ-HCH) and the USEPA 16 priority PAHs (PAH16) were ubiquitous in the 

Tema Harbour sediments. Different distribution patterns of ΣDDTs, ΣHCHs and ΣPAHs in 

sediments were observed across the monitoring sites: the most north-eastern part of the 

harbour is relatively more contaminated by ΣDDTs (Fig. 4.1a), ΣHCHs (Fig. 4.1b) and 

ΣPAHs (Fig. 4.1c). The strong affinity of fine grain sediments and organic carbon for organic 

pollutants (Hu et al., 2009; Lin et al., 2009) has often resulted in significant correlations 

(Maruya et al., 1996; Wang et al 2001; Yang et al., 2005) and consequently, the need to 

normalise organic pollutant concentrations using the TOC content is required for comparison 

(Birch and Hutson, 2009; Lin et al., 2009). In this study, only ΣDDTs, p,p'-DDD and 

naphthalene (Nap) exhibited moderate, but significant, correlations with the silt-clay contents 

of the sediments, while only benzo[k]fluoranthene (BkF) exhibited a moderate, but 

significant, correlation with TOC.  

 

These poor correlations may be due to various reasons. According to Ahrens et al. (2004), the 

presumption that organic pollutants and/or TOC preferentially partition to the fine sediment 

fractions is not always holding and therefore, should not be generalised for all sediments. 

PAH, for example, has been shown to preferentially partition to the coarse grains of sediments 

(Wang et al., 2001). Moreover, in the Tema Harbour, different anthropogenic activities are 

carried out at different areas, which may largely influence the spatial distributions of the 

pollutants. Thus, stations S1 and S2 are close to the dry docks with vessel painting and 

sandblasting activities; station S4 (Oil Berth) is close to the point of discharge of crude oil and 

refined petroleum products; stations S10 and S11 are points of container operation in the 

harbour; fuel storage and fuelling of industrial fishing vessels is carried out in the Outer 

Fishing Harbour (S20 and S21); while the Canoe Basin (S15-S17) is dedicated to artisanal 

fishing operations. As mentioned earlier, localised anthropogenic inputs of organic matter into 

the harbour will have contributed to the observed poor correlations between sediment 

pollutants and TOC and/or silt-clay contents. For example, effluent discharges from nearby 

food canneries into the Main Harbour near the Shekete area (stations S7 and S12) could be 

important localised sources of organic matter in the Main Harbour. The Canoe Basin (S15-

S17) and the Inner Fishing Harbour (S18 and S19) are also exposed to high loadings of 

organic waste from the operations of the fisher folk.  



   

 

 

Table 4.2 Physicochemical parameters and mean DDTs and HCHs concentrations (µg.kg-1 d.w) in Tema Harbour sediments and SQGs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a
Sediment Quality Guidelines (SQGs): ERL and ERM (µg.kg

-1
) from Long et al. (2006); ERL = effective range low; ERM = effective range median. 

Monitoring 

station 

Water 

depth 

(m) 

Eh 

(mV) 

Silt-

clay 

(%) 

TOC 

(%) 

TN 

(%) 
TOC/TN 

p,p'-

DDT 

p,p'-

DDE 

p,p'-

DDD 
ΣDDTs 

α-

HCH 
β-HCH γ-HCH δ-HCH ΣHCHs 

S1 9.5 -100 37.2 3.8  1.0 3.8 2.5 1.5 4.3 8.3 1.0 0.5  1.4 0.7 3.6 

S2 7 -120 31.4 7.2 0.8  9.0 2.6 1.9 5.8 10.3 0.6 0.6 1.1 0.5 2.8 

S3 9 -100 33.6 4.8  0.8 6.0 3.2 1.3 5.3 9.7 2.1 0.9 2.9 0.4 6.1  

S4 8 -80 38.5 3.9 0.8 4.9 2.8 2.0 3.1 7.9  2.3 1.6 5.5 0.4 9.8  

S5 8 -70 34.7 2.7  0.9 3.0 2.5 1.2  3.3 7.0 2.1 1.6 3.3  0.2 7.1  

S6 8 -90 34.6 3.8 1.0 3.8 2.3 0.9 2.8  6.0 0.9  0.6  1.7  0.3  3.4  

S7 8 -90 28.2 5.4  0.8 6.8 3.2 1.3 4.2 8.7 1.2 1.4 4.1 0.2  6.7  

S8 8.5 -90 25.1 2.2  0.8 2.2 1.6 1.2 3.7 6.4  2.0  1.5 3.1 1.5 8.2  

S9 9 -70 29.8 4.7 0.8 5.9 2.9 1.4 4.5 8.7  1.2  0.5  4.4 0.2 6.2  

S10 10 -80 27.3 2.9  1.2 2.4 3.2 1.6  5.1 9.9 1.2 0.4 3.5  0.5  5.6  

S11 9 -80 24.5 2.9  1.1 2.6 3.0 0.8  4.2 8.1 0.6 0.7 2.0  0.5 3.7 

S12 9 -50 30.6 5.5 1.0 5.5 3.3 1.5  5.4  10.1 0.7  1.0 2.1 0.2  3.9 

S13 8 -80 32.6 4.8 1.0 4.8 2.4 1.1 4.4 8.0  0.8  1.5 4.4 1.4  8.0 

S14 10 -90 23.7 3.8 0.8 4.8 2.1 1.4 5.5 8.0  1.8 1.6 5.3 1.4 10.2 

S15 3.5 -360 25.6 5.8 1.4 4.1 3.5 1.9 7.5 12.8 1.3 1.5 5.1 0.4 8.2 

S16 4 -240 24.8 4.5 0.8 5.6 3.4 1.6  6.8 11.8 1.4  1.6 3.1 0.5 6.7 

S17 5 -160 22.2 6.6 0.9 7.3 3.2  1.5  5.7 10.4  1.5  0.5 3.8  0.6 6.5  

S18 8 120 28.8 6.7  1.0  6.7 2.7 1.2  4.9 8.8  1.1  5.2 5.8 1.4 13.6  

S19 8 110 25.2 5.3  0.8  6.6 2.5  1.9  3.8 8.2  1.5  4.6 5.0 1.8 12.7 

S20 8 -110 24.6 3.9  0.9 4.3 2.3 1.6  3.5 7.4  1.9  3.5 4.1 1.7 11.2 

S21 8 -100 21.4 2.9 1.0 2.9 2.4  1.4 3.3 7.2  2.6 2.9 4.4  1.5  11.5 

Mean - - 28.8 4.4  0.9  - 2.7 1.4 4.6 8.8 1.4 1.6  3.6 0.8  7.4 
a
ERL 

      
1 2.2 2 1.58 - - 0.32 - - 

a
ERM 

      
7 27 20 46.1 - - 1 - - 



   

 

Table 4.3 Mean concentrations (µg.kg
-1

 d.w, n = 3) of USEPA 16 priority PAHs (PAH16) in Tema Harbour surface sediments, SQGs and TEFs 

 
Low Molecular Weight PAHs (LPAHs)  High Molecular Weight PAHs (HPAHs)    

Sample 

station 
Nap Acy Ace Fle Phe Ant  Fla Pyr BaA Chr BbF BkF BaP BghiP IP DahA   ΣLPAH16  

S1 270 420 270 150 530 26   310  340  60  270  130 64 160 50 35 13   3010 

S2 380  410 240 170 550 28  230 350 100 360  150 53 100 14 38 19   3200  

S3 350  420  260  160 570 35  350 350 100 430 100 84 140 50  36  27   3470 

S4 390 590  350 350 750 37  440 650 170 520 160 64 160 120 150 26   4900 

S5 330 490  240 150 550 26  240 350  100 320 140 52 160 17 50  24   3200 

S6 360 410  230 150 530 33  320 340  70 300 130  69 160 16 19 33   3170 

S7 260 410 150 140 530 29  230 340 60 220  120 61 150 14 15 18    2750 

S8 250 420 250 160 530 30  210 330  100 310 170 46 140  40 27 30   3040 

S9 340 450  260 170 550 27  230 340  70 270  140 56 110  40 50 21   3100 

S10 290 440 230 140 590 33   240 400  100 300  130 44 130  20 12 43   3100 

S11 260 480 240 140 540 28   230 350  100 280  160 82 150  32  32 29   3120 

S12 260 470  250 150 560 30   230 350  100 290  150 55  110 13  40 22   3100 

S13 250 500  150 140 510 24  230 340  60 240 110 43 150 26  28 23   2830 

S14 350 470 250 150 560 24  330  350  90  370 130 43 140  28  15  42   3340 

S15 490 660  380 190 750 46  440 750 170  580  130  43 170  200 130 28    5130 

S16 440 630  330 350 740 38  430 730 150  550  110 51 140  120 130 34    4980 

S17 460 620 340 340 730 41  420 700 160  530  120  40  160  190 120  20    5000 

S18 360 500  250 140 560 30   330 340 80 380  110  67 150  22 22  34    3370 

S19 370 580 290  360 750 32   430 660 160 510  130 53 150 130 140 21    4750 

S20 360 550 270 360 730 40   430 600 160  500 150 49 170 110  130 29    4610 

S21 330 600 170 340 750 32   440 620 160 470 130 40  150 120 140 18    4490 

Mean 340 500 260 210 610  32  320 460 110  380 130 55  150 65 64 26   3700 

ERL 160 44 16 19 240 85.3  600 665 261 384 - - 430 - - 63.4   4022 

ERM 2100 640 500 540 1500 
110

0 
 5100 2600 1600 2800 - - 1600 - - 260   44792 

TEF 
0.00

1 
0.001 0.001 0.001 

0.00

1 
0.01  0.001 0.001 0.1 0.01 0.1 0.1 1 0.01 0.1 5 (1*)   - 

                    ERL and ERM values (µg.kg
-1

) are from Burton (2002); TEF = toxic equivalency factor (Nisbet and LaGoy, 1992) 

                    * USEPA value (https://fortress.wa.gov/ecy/clarc/FocusSheets/tef.pdf) 

https://fortress.wa.gov/ecy/clarc/FocusSheets/tef.pdf
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mERMQ (µg/kg)

0.5 – 0.7

0.7 – 0.9

0.9 – 1.1

1.1 – 1.3

1.3 – 1.4

1.4 – 1.6

1.6 – 1.7

1.7 – 1.8

1.8 – 1.9

1.9 – 2

ΣPAHs (µg/kg)

2750 – 2920

2920 – 3120

3120 – 3340

3340 – 3590

3590 – 3870

3870 – 4180

4180 – 4470

4470 – 4710

4710 – 4930

4930 – 5130

ΣDDTs (µg/kg)

6 – 6.5

6.5 – 7

7 – 7.6

7.6 – 8.1

8.1 – 8.8

8.8 – 9.5

9.5 – 10

10 – 11

11 – 12

12 – 13

ΣHCHs (µg/kg)

2.8 – 3.9

3.9 – 5.1

5.1 – 6.3

6.3 – 7.7

7.7 – 9.2

9.2 – 11

11 – 12

12 – 14

TEQ (mg/kg)

0.15 – 0.15

0.15 – 0.16

0.16 – 0.17

0.17 – 0.18

0.18 – 0.19

0.19 – 0.20

0.20 – 0.20

0.20 – 0.21

0.21 – 0.22

0.22 – 0.23

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.1 Distribution patterns of (a) ΣDDTs, (b) ΣHCHs, (c) ΣPAHs, (d) mERMQ and 

(e) TEQ in Tema Harbour sediments 

a 

c 

c 
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e 
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4.4.3. Sources of DDTs and HCHs in the Tema Harbour sediments 

Both DDT and HCH are pesticides of anthropogenic origin: DDT is commercially produced 

as technical DDT and HCH as technical HCH and lindane. Although the Tema Harbour does 

not receive direct riverine inflows, it may be impacted by inland and coastal agricultural 

activities via alongshore water and sediment transport, as well as by atmospheric deposition 

and surface runoff (Botwe et al., 2012). As the Tema Harbour serves as the main sea port for 

imports, it is also possible that accidental pesticides spills may have occurred in the past, and 

have contributed to DDT and HCH contamination in the harbour sediments. Isolated cases of 

DDT use by Ghanaian fisher folks have also been reported 

(http://www.graphic.com.gh/news/general-news/danger-watch-the-fish-you-buy.html). There 

is, however, no information on how widespread this practice has been or on the quantities of 

DDT used. DDT is a key constituent in antifouling paints widely used in boat maintenance. 

This has earlier been identified as a major source of DDT contamination in fishing harbours 

(Lin et al., 2009) and coastal marine sediments (Hu et al., 2009; Yu et al., 2011). However, 

the use of these DDT-based antifouling paints on fishing vessels in Ghana has not been 

reported.  

 

DDT and lindane are included in the list of persistent organic pollutants (POPs) targeted for 

global elimination under the Stockholm Convention, which Ghana has ratified and both 

pollutants were officially banned from use in Ghana in 1985 and 2002, respectively (Ntow 

and Botwe 2011). Prior to their ban in Ghana, they were largely used as pesticides in 

agriculture, e.g. lindane predominantly in cocoa plantations. Since their ban, residues of DDT 

and lindane have been measured in water, sediment, crops and biota in Ghana (Ntow and 

Botwe 2011), owing to their persistence, illegal use and existence of stockpiles (Singh and Lal 

2009; Ntow and Botwe 2011). For example, in 2008, about 71,000 kg of banned pesticides 

were detected at a facility belonging to the Ghana Cocoa Board (Daily Graphic newspaper, 8 

April 2008).  

 

DDT and its degradation products DDE and DDD are all persistent in the environment with 

similar physical and chemical characteristics (WHO, 1989). Due to the low proportions of 

DDE and DDD in technical DDT, DDT/DDD and DDT/(DDE + DDD) ratios < 1.0 are 

generally indicative of past use of DDT, whereas ratios > 1.0 indicate current use (Li et al., 

2014). The DDT/DDD and DDT/(DDE + DDD) ratios in all analysed Tema Harbour 

http://www.graphic.com.gh/news/general-news/danger-watch-the-fish-you-buy.html
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sediments were < 1.0 (Table 4.4), indicating that DDT contamination in the harbour is likely 

the result of DDT use in the distant past. A significant positive correlation (p < 0.01) was 

observed between p,p'-DDT and p,p'-DDD, which suggests some contribution of these 

components from influx of weathered sediment-bound DDT. Among the DDTs, 

disproportionately higher levels of p,p'-DDD (39-61 % of the measured ΣDDTs 

concentrations) were found in sediments at the monitoring stations (see Table 4.4), indicating 

substantial transformation of p,p'-DDT to p,p'-DDD in the harbour sediments. The higher 

levels of p,p'-DDD relative to those of p,p'-DDE can be attributed to the discriminatory 

degradation of p,p'-DDT to p,p'-DDD in anoxic sediments (Lin et al., 2009).  

 

The α-HCH/γ-HCH ratio in sediments allows delineation of the sources of HCH as technical 

HCH (predominantly constituted by α-HCH) or lindane (>99 % γ-HCH). Technical HCH has 

α-HCH/γ-HCH ratios ranging between 3 and 7, whereas those of lindane are < 1.0 or close to 

1.0 (Willett et al., 1998). The α-HCH/γ-HCH ratios in sediments from all the monitoring 

stations were < 1.0 (Table 4.4), pointing to the use of lindane as the major source of HCH 

contamination in the harbour. The γ-HCH isomer accounted for 37-71 % of the ΣHCHs 

concentrations in the sediments. In anaerobic sediments, as in those investigated, the 

conversion of γ-HCH to other HCH isomers can be an extremely slow process (Walker et al., 

1999), which could have resulted in the predominance of γ-HCH in the anaerobic harbour 

sediments. 

  

4.4.4. Sources of PAHs in the harbour sediments 

Most of the PAHs exhibited significant correlations, possibly because they derive from 

common sources. Various anthropogenic activities within the harbour (e.g. crude oil spills 

during bunkering and fuelling of vessels, fuel leakages, ballast and bilge water discharges 

from ships, ship painting at the dry-dock, and vehicular emissions) as well as  discharges and 

emissions from various industrial activities that characterise the city of Tema (e.g. oil refinery, 

aluminium smelting, cement production, pain manufacturing, and fish processing) may have 

contributed to the PAH contamination in the sediments (Yunker et al., 2000;  Yunker et al., 

2002; Neff et al., 2005). Discharges of oil into the harbour from the aforementioned sources 

may occur on a daily basis. Moreover, as mentioned, there have been two major incidents of 

oil spill in the Tema Harbour, in 2005 and 2007. A study conducted shortly after these 

incidents in 2008 reported mean ΣPAHs concentrations in the range of 28,600-190,000 µg.kg
-
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1
 w.w (Gorleku et al. 2014). Although differences in concentration units do not allow for 

comparison, we infer that the mean ΣPAHs concentrations in this study (2,750-5,130 µg.kg
-1

 

d.w) conducted in 2014 are much lower than the levels reported by Gorleku et al. (2014). 

Thus, this study indicates that there has been a considerable reduction in PAH contamination 

in the Tema Harbour during the period 2008-2014.  

 

To characterise the dominant sources of PAH contamination in the Tema Harbour sediments, 

ΣLPAH/ΣHPAH and three PAH isomeric ratios viz. anthracene/[anthracene + phenanthrene], 

fluoranthene/[fluoranthene + pyrene] and benzo(a)anthracene/[benzo(a)anthracene + 

chrysene] were evaluated (Table 4.4). Pyrogenic sources are mainly related to the combustion 

of organic matter and show enrichment in the high-molecular weight PAH (HPAH) 

components, whereas petrogenic sources relate to spillages of petroleum/crude oil and refined 

petroleum products and exhibit enrichment in the low-molecular weight PAH (LPAH) 

components (Yunker et al., 2000; Yunker et al., 2002; Neff et al., 2005). The ΣLPAH/ΣHPAH 

ratios in the sediments at the monitoring stations were close to 1.0, suggesting similar 

contributions of PAHs from both petrogenic and pyrogenic sources. The 

anthracene/[anthracene + phenanthrene] and fluoranthene/[fluoranthene + pyrene] ratios 

indicate PAH contamination in the harbour derived mainly from petrogenic sources, whereas 

the benzo(a)anthracene/[benzo(a)anthracene + chrysene] ratios suggest rather mixed 

petrogenic and pyrogenic sources. Thus, the use of different PAHs source diagnostic ratios 

has not yielded overall consistent results for the Tema Harbour sediments investigated.   



 

 

  Table 4.4 Source diagnostic DDT, HCH and PAH ratios in Tema Harbour sediments   

Monitoring 

station 

DDT/ 

DDE 

DDT/ 

DDD 

DDE/ 

DDD 

DDT/ 

(DDE+DDD) 

ΣLPAHs/ 

ΣHPAHs 

Ant/ 

(Ant + Phe) 

Fla/ 

(Fla + Pyr) 

BaA/ 

(BaA + Chr) 

α-HCH/ 

γ-HCH 

β-HCH/ 

γ-HCH 

δ-HCH/ 

γ-HCH 
 

S1 1.6 0.6 0.4 0.4 1.2 0.05 0.5 0.18 0.7 0.4 0.5  

S2 1.3 0.4 0.3 0.3 1.3 0.05 0.4 0.22 0.6 0.6 0.5  

S3 2.5 0.6 0.2 0.5 1.1 0.06 0.5 0.19 0.8 0.3 0.1  

S4 1.5 0.9 0.6 0.6 1.0 0.05 0.4 0.25 0.4 0.3 0.1  

S5 2.1 0.8 0.4 0.6 1.2 0.05 0.4 0.24 0.6 0.5 0.1  

S6 2.5 0.8 0.3 0.6 1.2 0.06 0.5 0.19 0.6 0.3 0.1  

S7 2.4 0.8 0.3 0.6 1.2 0.05 0.4 0.21 0.3 0.3 0.05  

S8 1.4 0.4 0.3 0.3 1.2 0.05 0.4 0.24 0.6 0.5 0.5  

S9 2.1 0.6 0.3 0.5 1.4 0.05 0.4 0.21 0.3 0.1 0.5  

S10 2.1 0.6 0.3 0.5 1.2 0.05 0.4 0.25 0.3 0.1 0.05  

S11 3.6 0.7 0.2 0.6 1.2 0.05 0.4 0.26 0.2 0.4 0.1  

S12 2.2 0.6 0.3 0.5 1.3 0.05 0.4 0.26 0.3 0.5 0.3  

S13 2.2 0.6 0.3 0.4 1.3 0.04 0.4 0.20 0.2 0.3 0.1  

S14 1.5 0.4 0.3 0.3 1.2 0.04 0.5 0.20 0.3 0.3 0.3  

S15 1.9 0.5 0.3 0.4 1.0 0.06 0.4 0.23 0.3 0.3 0.3  

S16 2.1 0.5 0.2 0.4 1.0 0.05 0.4 0.21 0.5 0.5 0.2  

S17 2.2 0.6 0.3 0.5 1.0 0.05 0.4 0.23 0.4 0.1 0.2  

S18 2.3 0.6 0.2 0.5 1.2 0.05 0.5 0.17 0.2 0.9 0.2  

S19 1.3 0.7 0.5 0.4 1.0 0.04 0.4 0.24 0.3 0.9 0.4  

S20 1.4 0.6 0.5 0.4 1.0 0.05 0.4 0.24 0.5 0.8 0.4  

S21 1.7 0.7 0.4 0.5 1.0 0.04 0.4 0.25 0.6 0.7 0.3  
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4.4.5. Ecotoxicological risk characterisation 

Two approaches were used to characterise the ecotoxicological risks posed by the pollutant 

levels in the harbour sediments, viz. the ones based on numerical sediment quality guidelines 

(SQGs) and the total toxicity equivalence (TEQ). In the former, the effect range low (ERL) 

and effect range median (ERM) were employed to characterise the potential ecotoxicological 

risk posed by individual pollutants in the sediments (Burton, 2002; Long et al., 2006). Both 

ERL and ERM have an appreciable level of predictability of sediment toxicity (Long et al., 

1998), viz. low risk for pollutant concentrations at or below ERL, moderate risk for 

concentrations above ERL but below ERM, and high risk for concentrations above ERM 

(Birch   Hutson, 2009). At all the monitoring stations, the γ-HCH concentrations exceeded 

the ERM by over an order of magnitude (see Table 4.2), indicating that γ-HCH can potentially 

pose a high ecotoxicological risk and should, therefore, be of primary concern. Compared to 

this, levels of p,p'-DDE were below the ERL value (low ecotoxicological risk),  while the 

levels of p,p'-DDT and p,p'-DDD were between their respective ERL and ERM values 

(moderate risks) (Table 4.2). The levels of naphthalene, acetylnaphthylene, acenaphthene, 

fluorene and phenanthrene were between their ERL and ERM values (Table 4.3) (moderate 

risks), whereas the levels of the remaining PAH16 congeners were below their ERL values 

(low risks). Since there are no ERLs and ERMs for α-HCH, β-HCH, δ-HCH, 

benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[g,h,i]perylene and indeno[1,2,3-

cd]pyrene, the potential ecotoxicological risk posed by these pollutants cannot be 

characterised using this approach. 

 

Considering that different pollutants in sediments may potentially act in concert to cause 

toxicity different from that of the individual pollutants (Burton, 2002; Long et al., 2006), the 

mean ERM quotient (mERMQ) approach (Long et al., 2006; Birch & Hutson, 2009) was 

further adopted to characterise the integrated ecotoxicological risks due to the combined effect 

of PAHs, DDTs and γ-HCH mixtures in the Tema Harbour sediments investigated. The 

mERMQs were evaluated for each sediment sample by normalising the levels of ΣPAHs, 

ΣDDTs and γ-HCH to their respective ERM values, then summing the quotients and dividing 

by 3 (Long et al., 2006; Birch and Hutson, 2009). The assumptions here are that (1) PAHs, 

DDTs and γ-HCH contribute additively to the overall toxicity, rather than antagonistically or 

synergistically, and (2) samples with the same mERMQ pose similar ecotoxicological risks 

(Long et al., 2006; Birch and Hutson, 2009). Further adopting the risk classification by Birch 
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and Hutson (2009), i.e. minimal risk if mERMQ < 0.1, low risk if 0.1 ≤ mERMQ < 0.5, 

moderate risk if 0.5 ≤ mERMQ < 1.5, and high risk if mERMQ ≥ 1.5. The results showed that 

the Tema Harbour sediments can potentially pose moderate to high ecotoxicological risks as 

sediments from 52% of the monitoring stations had mERMQ values exceeding 1.5, while 

those from the remaining stations had mERMQ values in the 0.5-1.5 range (Table 4.5). The 

spatial pattern of mERMQ (Fig. 4.1d) shows that large areas of the Fishing Harbour and the 

Main Harbour are relatively higher risk areas which deserve further management attention.  

 

To provide an integral characterisation for PAH contamination of the harbour sediments, the 

total toxicity equivalence (TEQ) approach was used. TEQs at the different stations were 

calculated according to Eq. 1 (Nisbet and LaGoy, 1992):  

 

TEQ (mg.kg
-1
) = Σ(Cn x TEFn)     (1) 

 

where Cn and TEFn are, respectively, the concentration (mg.kg
-1

) and toxic equivalency factor 

(TEF) of an individual PAH congener in the sediment sample. TEFs of the PAH congeners 

express their toxicity relative to that of benzo(a)pyrene (Nisbet and LaGoy, 1992) and are 

presented in Table 4.3.  Sediments can then be classified as uncontaminated for TEQ < 0.1 

mg.kg
-1

, slightly contaminated for 0.1 < TEQ < 1 mg.kg
-1

, and significantly contaminated for 

TEQ ≥ 1.0 mg.kg
-1

 (Yang et al., 2014). Table 4.5 shows that the TEQs associated with Tema 

Harbour sediments ranged from 0.2-0.4 mg.kg
-1

 (mean value 0.3 mg.kg
-1

). All TEQ values 

were within the 0.1-1.0 mg.kg
-1

 range, indicating that the harbour sediments are moderately 

contaminated by the PAH mixtures (Yang et al., 2014).  

 

The TEQ approach by the USA Environmental Protection Agency (USEPA) for the 

assessment of soil contamination by PAH mixtures under Method B of Model Toxics Control 

Act (MTCA) Cleanup Regulation (https://fortress.wa.gov/ecy/clarc/FocusSheets/tef.pdf) was 

further adopted. This approach is similar to the one by Nisbet and LaGoy (1992), see Eq. 1, 

except that a TEF value of 1.0, instead of 5.0, is assigned to dibenz[a,h]anthracene (Table 

4.3). Following the USEPA approach, sediments with TEQ values ≥ 0.137 mg.kg
-1

 are 

considered potentially toxic and harmful to environmental health, and therefore require clean-

up. The results show that the TEQ values for all the harbour sediments exceeded 0.137 mg.kg
-

1
, ranging from 0.164-0.255 mg.kg

-1
 (Table 4.5). This indicates that PAH contamination in the 

harbour sediments can potentially pose unacceptable risks to ecosystem health. Sediments in  

https://fortress.wa.gov/ecy/clarc/FocusSheets/tef.pdf
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Table 4.5 Calculated total toxicity equivalence (TEQ) and mean ERM quotient  

      (mERMQ) values for Tema Harbour sediments 

 
Monitoring 

station 
 

a
TEQ 

(mg.kg
-1

) 

b
TEQ 

(mg.kg
-1

) 
mERMQ 

 S1  0.3 0.164 0.6 

 S2  0.2 0.172 0.5 

 S3  0.3 0.176 1.1 

 S4  0.4 0.195 1.9 

 S5  0.3 0.199 1.2 

 S6  0.4 0.203 0.6 

 S7  0.3 0.205 1.5 

 S8  0.3 0.206 1.1 

 S9  0.3 0.210 1.6 

 S10  0.4 0.217 1.3 

 S11  0.3 0.219 0.7 

 S12  0.3 0.221 0.8 

 S13  0.3 0.222 1.5 

 S14  0.4 0.224 1.9 

 S15  0.4 0.225 1.8 

 S16  0.4 0.228 1.2 

 S17  0.3 0.231 1.4 

 S18  0.4 0.238 2.0 

 S19  0.3 0.248 1.8 

 S20  0.4 0.255 1.5 

 S21  0.3 0.255 1.6 

 Mean  0.3 0.215 1.3 

 Threshold   0.1 0.137 0.1 

a
Nisbet and LaGoy (1992) method 

b
USEPA method (https://fortress.wa.gov/ecy/clarc/FocusSheets/tef.pdf) 

 

  

a c 

d 

a 

 

https://fortress.wa.gov/ecy/clarc/FocusSheets/tef.pdf
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the Main Harbour may be associated with relatively lower risks compared to the other parts of 

the Tema Harbour (Fig. 4.1e). 

 

It should be noted that the ecotoxicological risk assessment was at a screening-level and only 

established the likelihood of DDTs, HCHs and PAH16 contamination in the harbour sediments 

to cause undesirable biological effects. Information on the hazard associated with harbour 

sediments from e.g. whole sediment bioassays, which integrate the effects of other pollutants 

such as heavy metals, are required to inform decisions about the handling of the harbour 

sediments. This baseline study nevertheless clearly shows there is a need to step up pollution 

control, prevention and management efforts by the Tema Harbour and responsible 

government authorities.  

 

4.5. Conclusion 

In conclusion, DDTs (p,p'-DDT, p,p'-DDE and p,p'-DDD), HCHs (-HCH, -HCH, -HCH 

and -HCH) and the USEPA 16 priority PAHs (PAH16) are ubiquitous in the Tema Harbour 

sediments. The harbour sediments were predominantly sandy, with no significant correlations 

between the silt-clay/TOC contents and the concentrations of most of the pollutants 

investigated, probably due to the temporal and spatial variable contaminant loadings as well 

as redistribution by water currents. DDT in the Tema Harbour sediments has undergone 

considerable weathering to p,p'-DDD and thus, DDT contamination in sediments is 

attributable to the impact of past use of DDT. The concentrations of -HCH in Tema Harbour 

sediments were higher than those of -HCH, -HCH and -HCH, suggesting that HCH 

contamination relates to past use of lindane. The PAH16 concentrations in the sediments may 

pose appreciable ecotoxicological risks. γ-HCH was identified as a contaminant of potential 

concern. This baseline study has shown that there is a need to regulate discharges of PAHs 

into the harbour, considering their high potential toxicity. 
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Abstract 

This study investigated the distribution and fractionation of metals (Mn, Ni, Pb, Cr, Cu, Zn, 

As, Cd, Hg and Sn) in surface sediments of Tema Harbour (Greater Accra, Ghana) as well as 

its ecological implications. Significant differences in sediment concentrations of Mn, Ni, Cr, 

Cu, Zn, As and Sn were observed across the Tema Harbour. Geochemical indices indicate that 

Cd, Hg, Pb, Cu, Zn, As and Sn in the Tema Harbour sediments derived mainly from 

anthropogenic sources, while Mn, Ni and Cr were mainly of lithogenic origin. Metal 

fractionation revealed a predominance of Al, Mn, Ni, Pb, Cr, Cu, As and Sn in the residual 

phase. In contrast, Cd and Hg were mainly present in the exchangeable phase, while Zn was 

mainly associated with the reducible phase. Based on the metal fractionation in the Tema 

Harbour sediments, the potential risks of metal bioavailability were high for Cd and Hg, low-

medium for Mn, Ni, Zn, As and Sn, and  low for Pb, Cr, and Cu. A screening-level 

ecotoxicological assessment revealed high potential toxicity of Hg and moderate potential 

toxicities of Pb, Cu, Zn, As and Cd in the Tema Harbour sediments. The potential influence of 

the buffer intensity, silt-clay, total organic carbon and carbonate content on the metal 

distribution in the Tema Harbour sediments were also inferred from their correlations. 

Comparison with previous studies did not reveal a progressive increase in metal 

contamination at the Tema Harbour since the year 2000. 

 

5.1. Introduction 

Harbour sediments are often contaminated with a wide range of pollutants including metals 

(Casado-Martinez et al. 2006; Palma and Mecozzi 2007), which derive from anthropogenic 

activities associated with harbours such as shipping, fishing as well as industrial and urban 

wastewater discharges (Lepland et al. 2010; Schipper et al. 2010; Nyarko et al. 2014; Botwe 

et al. 2017a). Polluted sediments are potential secondary sources of chemical pollutants to 

benthic organisms living in contact with sediments and ultimately to other organisms within 

the food chain (Burton 2002; Kelderman and Osman 2007; Nyarko et al. 2011; Botwe et al. 

2017a). Metals such as Ni, Pb, Cr, Cu, Zn, As, Cd and Hg are hazardous to marine organisms 

(Casado-Martinez et al. 2006; Schipper et al. 2010) and their contamination in the 

environment has adverse human health, socioeconomic and food security implications (Birch 

and Hutson 2009; Lepland et al. 2010; Botwe et al. 2017a). Contaminated harbour sediments 

may adversely impact other coastal marine and terrestrial ecosystems via the disposal of 
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dredged materials (Caille et al. 2003; Schipper et al. 2010; Ho et al. 2012a; Botwe et al. 

2017a).  

 

Considering the threat contaminated sediments may pose to aquatic and terrestrial ecosystems, 

remediation of contaminated sediments is a priority for environmental management in 

harbours (Pozza et al. 2004). Remediation of harbour sediments requires a prior screening of 

the sediments for their potential ecotoxicity and environmental risks in order to obtain 

information on (1) pollutants of prime concern, (2) the potential to cause adverse biological 

effects in benthic organisms and (3) identify the most impacted areas that deserve priority 

attention (Burton 2002; Long et al. 2006; Birch and Hutson 2009; Botwe et al. 2017a). A 

screening-level ecotoxicological assessment of sediments involves comparisons of measured 

pollutant concentrations in the sediment with established biological effect-based sediment 

quality guidelines (SQGs) (Long et al. 1995; Burton 2002; Botwe et al. 2017a). Two SQGs 

which have been widely used around the world for ecotoxicological screening of sediments 

are the effects-range low (ERL) and effects-range median (ERM) SQGs (Long et al. 1995; 

Burton 2002; Botwe et al. 2017a).  

 

Sediment-bound metals may associate with different geochemical phases present in 

sediments, e.g. carbonate, Fe-Mn oxides and hydroxides, organic matter and sulphides. The 

phase association (fractionation) of metals in sediments determines their binding strength and 

consequently, their potential mobility and bioavailability (Calmano et al. 1993; Pueyo et al. 

2001; Kelderman and Osman 2007; Ho et al. 2012b; Hamzeh et al. 2014). Investigation of the 

metal distribution over different geochemical phases (metal fractionation) in sediments is, 

therefore, relevant when screening the sediments for their potential environmental risks. A 

standardised procedure widely used for metal fractionation in sediments is the Community 

Bureau of Reference (BCR) three-step sequential extraction technique, which yields four 

metal fractions, namely the acid-soluble (exchangeable and bound to carbonate), reducible 

(bound to Fe-Mn oxides and hydroxides), oxidisable (bound to organic matter and sulphides) 

and residual (bound within the crystal lattice of minerals) fractions (Quevauviller et al. 1997; 

Pueyo et al. 2001; Ho et al. 2012a). Since metal fractionation and potential mobility in 

sediments are influenced by environmental factors such as pH, buffer intensity and redox 

potential (Calmano et al. 1993; Kelderman and Osman 2007; Palma and Mecozzi 2007; Ho et 

al. 2012a; Hamzeh et al. 2014), these factors should be considered in characterising the 

potential environmental risk of metal-contaminated sediments. 
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The coastal marine Tema Harbour in Greater Accra (Ghana) was constructed in 1960 and 

commissioned in 1962 to facilitate international trade and boost industrial development in 

Ghana. Thus, the Tema Harbour was sited at the seacoast of the industrial city of Tema, 

Greater Accra in Ghana and its commissioning marked the beginning of Ghana's industrial 

era. With over 180 industries in Tema, as well as shipping and fishing activities at the Tema 

Harbour, the Tema Harbour is susceptible to metal pollution (Lepland et al. 2010; Schipper et 

al. 2010; Nyarko et al. 2014). Previous studies in 2000 

(http://open_jicareport.jica.go.jp/pdf/11681632_03.pdf) and 2011 (Nyarko et al. 2014) 

characterised metal contamination levels in the Tema Harbour. However, the above studies 

focused on total metal concentrations without examining metal fractionation in the Tema 

Harbour sediments. Moreover, the Tema Harbour sediments have not been characterised for 

their buffer intensity against acidification, which determines metal leachability and associated 

environmental risk (Calmano et al. 1993; Jain 2004; Iqbal et al. 2013; Ho et al. 2012a). The 

objective of this study was, therefore, to investigate the distribution and fractionation of 

metals (Mn, Ni, Pb, Cr, Cu, Zn, As, Cd, Hg and Sn) in surface sediments from the Tema 

Harbour as well as its ecological implications.  

 

5.2. Materials and methods 

5.2.1. Sediment sampling and sample analyses 

Surface sediment samples were collected in November 2014 with a stainless steel Ekman grab 

(3.5 L) from 21 stations across the different compartments of the Tema Harbour, which were 

previously monitored for organic (Botwe et al. 2017a) and radioactivity (Botwe et al. 2017b) 

contamination. Thus, sediment samples were collected from fourteen stations in the Main 

Harbour, two stations each in the Inner Fishing Harbour and the Outer Fishing Harbour, and 

three stations in the Canoe Basin (see Fig. 3.1). The Main Harbour is where ships call at the 

Tema Harbour, and has a total of 14 berths. The Inner Fishing Harbour and the Outer Fishing 

Harbour provide handling facilities for semi-industrial and industrial fishing vessels, while the 

Canoe Basin serves as an artisanal canoe fishing landing site. Adopting the sampling strategy 

by Botwe et al. (2017a), three grab samples were collected at each station. Only grabs that 

arrived on the deck firmly closed without water leakage and were not filled with sediment to 

the lid were sampled to ensure that the fine particles were not lost and the surface layer was 

intact (Aloupi and Angelidis 2001; Botwe et al. 2017b).  

 

http://open_jicareport.jica.go.jp/pdf/11681632_03.pdf
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From each grab, two sub-samples each of about 200 g wet weight were taken with acid-

washed plastic spoons from the upper 0-2 cm layer, which is representative of recently 

deposited sediments (Phillips 2007; Botwe et al. 2017a), into acid-washed FoodSaver® zipper 

bags. One subsample was for the analyses of metals, total organic carbon (TOC), carbonate, 

pH (and subsequently buffer intensity) and the other for grain size analysis. Samples for metal 

analysis were vacuum-sealed to minimise oxidation. To avoid contamination, sediments in 

direct contact with the grab were not sampled (Botwe et al. 2017b). Redox potential was 

measured in situ near the sediment-water interface using a Hanna multiparameter probe (HI 

9829) following Botwe et al. (2017b). All sediment samples were kept on ice and transported 

to the University of Ghana laboratory for further analysis.  

 

In the laboratory, the silt-clay (<63 µm) and sand (63-2000 µm) fractions in the sediment 

samples were determined on wet samples by the wet sieving method following the method by 

Wang et al. (2001). Sediment samples for metal, total organic carbon (TOC), carbonate and 

pH analyses were freeze-dried and then homogenised using a Fritsch Pulveriser. Total metal 

concentrations and metal fractionation were determined on about 0.2 g portions of freeze-

dried homogenised sediment samples by adopting the harmonised Community Bureau of 

Reference (BCR) 3-step sequential extraction and aqua regia extraction techniques, 

respectively, following Pueyo et al. (2001). Metal concentrations were assayed using an 

Atomic Absorption Spectrometer (Varian AA 240FS). The detection limits for the measured 

metals were: 0.10 for Al, Hg and As; 0.20 for Cd; 0.50 for Mn, Ni, Pb, Cr, Zn, Cd, and Sn; 

and 1.0 for Cu. The TOC content was determined on 1 g of dry homogenised sediment sample 

using the Walkley-Black wet oxidation method after decarbonisation of the sediment with 

excess HCl (Schumacher 2002; Botwe et al. 2017a). The carbonate content was analysed by 

treating sediment samples with excess HCl (1 M), followed by titration with 0.5 M NaOH 

(Kelderman and Osman 2007). The sediment pH was determined on 10 g portions of 

homogenised sediment samples after the addition of 25 mL deionised water following Palma 

and Mecozzi (2007).  

 

To characterise stability of the Tema Harbour sediment against small changes in pH, the 

buffer intensities of the sediments were evaluated following the procedure described by 

Calmano (1988). Briefly, 5 g portions of sediment were suspended in 50 mL deionised water 

(10% sediment suspensions) in acid-washed 50 mL polypropylene tubes and shaken on an 

end-to-end shaker for 1 h, after which the pH of the supernatant solutions (pHo) were 
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measured. This procedure was repeated using 50 mL of 0.1 M HCl and the corresponding pH 

(pHx) measured. The buffer intensity (δpH) was determined using Eq. (1) (Calmano 1988): 

 

δpH = pHo - pHx      (1) 

 

The buffer intensities of the sediments were characterised as follows: δpH < 2 (strongly 

buffered), δpH = 2-4 (intermediate), and δpH > 4 (poorly buffered) (Calmano 1988). 

 

For quality assurance and control, chemicals, solvents and reagents used in the extraction 

were of trace metal analysis grade. All containers used were either new or thoroughly cleaned 

by washing with detergent, soaking in 10% HNO3 solution overnight and rinsing with 

deionised water. A sediment certified reference material (BCR-701) and blanks were analysed 

with the sediment samples. Sediment samples were analysed in triplicates. Metal recoveries 

ranged from 69.2-109% for the investigated metals, with relative standard deviations (RSD) in 

the range of 2.2-12.5 %. The reported metal concentrations were corrected for recoveries, 

using their respective mean recoveries from the certified reference materials. 

 

5.2.2. Metal enrichment and contamination level 

Metal enrichment factors (EFs) were derived for the measured metals to characterise their 

enrichment in the Tema Harbour sediments based on Eq. (2) (Dung et al. 2013; Mahu et al. 

2015): 

 

EF = [M/Al]Sample/[M/Al]Crust    (2) 

 

where (M/Al)Sample is the metal-aluminium ratio for the Tema Harbour sediment sample and 

(M/Al)Crust is the metal-aluminium ratio for the continental crust. EF ≤ 1 indicates no 

enrichment, 1 < EF ≤ 3: minor enrichment, 3 < EF ≤ 5: moderate enrichment, 5 < EF ≤ 10: 

moderately severe enrichment, 10 < EF ≤ 25: severe enrichment, 25 < EF ≤ 50: very severe 

enrichment, and EF > 50: extremely severe enrichment (Dung et al. 2013).  

 

Geo-accumulation indices (Igeo) were evaluated to assess the extent of metal contamination in 

the Tema Harbour sediments using Eq. (3) (Dung et al. 2013; Mahu et al. 2015): 

 

Igeo = Log2 (Ms/1.5Mb)    (3) 
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where Ms is the metal concentration in the Tema Harbour sediment, Mb is its average crustal 

concentration and 1.5 is introduced as a background matrix correction due to lithogenic 

effects (Addo et al. 2011; Iqbal et al. 2013; Mahu et al. 2015). Igeo < 0: unpolluted; 0 ≤ Igeo < 

1: unpolluted to moderately polluted; 1 ≤ Igeo < 2: moderately polluted; 2 ≤ Igeo 3: moderately 

to highly polluted; 3 ≤ Igeo < 4: heavily polluted; 4 ≤ Igeo < 5: highly to very highly polluted; 

Igeo ≥ 5: very heavily polluted (Dung et al. 2013). 

 

In the evaluation of the EFs and Igeo, the average crustal concentrations of the metals (Taylor 

1964) were used as proxies for the background concentration (Table 5.1), since pre-impacted 

or deep-core metal concentration data are not available for the Tema Harbour. 

 

5.2.3. Data treatment 

Pearson's product-moment correlations were performed to determine linear relationships 

between the measured sediment parameters using the Statistical Package for Social Sciences 

(SPSS 16.0) software. Descriptive statistics (means, standard deviations and coefficients of 

variation) were performed in Microsoft Excel 2007 for Windows at the 95% confidence 

interval. The spatial distribution patterns of metal concentrations in the Tema Harbour 

sediments were mapped in ArcGIS 10.2.2. One-way analysis of variance (ANOVA) with 

multiple comparison (Holm-Sidak and Kruskal-Wallis) tests was performed in SigmaPlot 11.0 

to determine spatial differences in sediment metal concentrations in the Tema Harbour.   

 

5.3. Results 

5.3.1. Physicochemical characteristics of the Tema Harbour sediments 

The sediment physicochemical parameters and in situ redox potential (Eh) at the sediment-

water interface in the Tema Harbour are shown in Table 5.1. The Tema Harbour sediments 

were composed mainly of the silt-clay (<63 µm) fraction with a mean composition of 70 (± 

4)%. The sediment TOC and carbonate contents were in the ranges of 1.1-6.0% and 8.8-

10.6%, respectively. The Tema Harbour sediments were slightly alkaline (pH range of 7.3-

8.3) with buffer intensities in the range of 1.0-2.7, while the bottom water was anoxic with Eh 

values ranging from -70 to -350 mV. Sediments from the Canoe Basin were mostly anoxic. 

The silt-clay content, Eh and buffer intensity varied significantly across the Tema Harbour 

compartments. On the contrary, the pH, TOC and carbonate contents did not vary 
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significantly across the Tema Harbour compartments. Table 5.2 shows that the silt-clay 

content correlated significantly with the Mn (r = 0.52, p < 0.05), Ni (r = 0.52, p < 0.05), Cr (r 

= 0.58, p < 0.01), Cu (r = 0.60, p < 0.01), Zn (r = 0.75, p < 0.01), As (r = 0.64, p < 0.01) and 

Sn (r = 0.50, p < 0.05) concentrations in the Tema Harbour sediments. The TOC content 

correlated with the Mn (r = 0.48, p < 0.05), Ni (r = 0.46, p < 0.05) and Cu (r = 0.49, p < 0.05) 

concentrations. The carbonate content correlated with the Hg concentration (r = 0.47, p < 

0.05). The buffer intensity correlated with the Cr (r = 0.85, p < 0.01), Zn (r = 0.71, p < 0.01), 

As (r = 0.83, p < 0.01) and Sn (r = 0.65, p < 0.01) concentrations as well as with the silt-clay 

content (r = 0.55, p < 0.01). Sediment pH did not correlate significantly with the metal 

concentrations in the Tema Harbour sediments. 

 

5.3.2. Metal concentrations and distribution patterns in sediments of Tema Harbour  

The total metal concentrations in the Tema Harbour sediments are presented in Table 5.1. 

Overall, the mean sediment metal concentrations were: Al (17930 ± 780 mg.kg
-1

 dw), Mn 

(210 ± 7 mg.kg
-1

 dw), Ni (23 ± 1 mg.kg
-1

 dw), Cr (72 ± 3 mg.kg
-1

 dw), Pb (88 ± 13 mg.kg
-1

 

dw), Cu (102 ± 16 mg.kg
-1

 dw), Zn (260 ± 40 mg.kg
-1

 dw), As (14.2 ± 0.6 mg.kg
-1

 dw), Cd 

(8.1 ± 0.6 mg.kg
-1

 dw), Hg (1.5 ± 0.3 mg.kg
-1

 dw) and Sn (8.2 ± 1.7 mg.kg
-1

 dw). Significant 

positive correlations were observed among most of the sediment metal concentrations (Table 

5.2). The Mn and Ni concentrations showed a perfect correlation (r = 1.00, p < 0.01) and both 

correlated significantly with all the other metals, except Pb, Hg and Sn. Cd exhibited 

significant correlations with all the metals except Cr. Pb exhibited a significant correlation 

with only Al (r = 0.60, p < 0.01), whereas Hg did not exhibit any significant correlation with 

all the other metals investigated.  

 

The spatial distribution patterns of the metals are shown in Fig. 5.1. Sediment Al 

concentrations were relatively higher in the Inner Fishing Harbour and the Main Harbour 

entrance stations. Mn concentrations were relatively higher in the Fishing Harbour, Canoe 

Basin, and the entrance and mid-section of the Main Harbour. Relatively higher Ni 

concentrations occurred in the north-eastern corner of the Main Harbour. Sediments from the 

Fishing Harbour and the Canoe Basin contained relatively higher Cr concentrations. Sediment 

concentrations of As were relatively higher in the Inner Fishing Harbour and the Canoe Basin. 

Relatively higher sediment Cd concentrations occurred in the Inner Fishing Harbour. 

Sediments from the Canoe Basin and the Fishing Harbour contained relatively higher concent- 



 

 

           

Table 5.1 Sediment metal concentrations and physicochemical parameters measured in the Tema Harbour, Ghana, their average crustal 

                           concentrations and metal concentrations in Tema Harbour sediments from previous studies in 2000 and 2010-2011.  

 
 

Metal concentration (mg.kg
-1

 dry weight) 
 

Physicochemical parameters 

Harbou

r area 

Sampling  

station 
Al Mn Ni Pb Cr Cu Zn As Cd Hg Sn 

 
 

Silt-clay 

(%) 

TOC 

(%) 

CaCO3 

(%) 
pH 

Buffer 

intensity 

Eh 

(mV) 

MH 1 17980 194 21.0 30.5 69.2 81.1 205 14.9 7.5 2.6 23.9 
 

 67 4.5 9.5 8.0 1.9 -110 

 2 14170 165 21.3 49.3 57.8 77.2 160 10.0 5.1 2.1 28.8 
 

 67 5.4 9.4 8.0 1.4 -130 

 3 14100 160 21.1 45.3 56.6 75.1 155 9.6 7.5 1.4 10.6 
 

 67 4.7 9.7 7.7 1.6 -100 

 4 27500 270 26.2 36.3 73.9 79.4 185 15.0 8.7 1.9 12.7 
 

 68 5.8 9.0 7.6 1.0 -90 

 5 19280 210 22.8 38.1 66.3 43.3 124 14.5 8.1 0.4 0.8 
 

 39 6.0 9.0 8.0 1.0 -90 

 6 17640 195 21.6 40.0 63.0 44.8 128 14.2 17.7 0.4 0.6 
 

 70 2.4 10.6 8.0 1.3 -90 

 7 14170 183 21.4 57.6 58.9 42.5 164 10.0 4.3 0.4 0.7 
 

 53 1.1 9.8 7.6 1.3 -80 

 8 17890 177 24.7 33.1 63.3 34.2 77 14.0 8.0 0.3 0.5 
 

 57 2.2 9.7 7.3 1.4 -90 

 9 19070 187 23.2 56.8 60.9 46.5 110 9.8 9.2 0.6 0.7 
 

 84 5.4 9.5 8.0 1.3 -80 

 10 16730 198 20.0 68.4 58.8 44.5 89 14.9 6.0 0.3 0.7 
 

 62 2.2 9.3 8.1 1.3 -70 

 11 16220 198 21.9 63.3 70.2 30.9 137 14.1 5.4 0.4 0.6 
 

 52 4.7 9.5 7.8 1.3 -80 

 12 18100 187 26.1 57.8 55.8 36.2 123 12.6 7.7 0.8 0.9 
 

 71 4.1 9.2 7.6 1.3 -90 

 13 20260 223 35.9 79.9 77.6 78.7 208 15.6 5.8 0.9 14.7 
 

 66 5.8 9.6 7.8 1.4 -90 

 14 16840 250 27.6 73.5 71.6 66.3 170 15.3 9.4 0.7 11.3 
 

 80 4.5 9.2 8.3 1.3 -90 

CB 15 15810 240 18.7 230 71.3 196 576 17.0 6.9 0.8 7.8 
 

 85 4.7 9.4 8.2 2.7 -350 

 16 15420 230 20.9 206 77.3 180 561 14.0 8.2 4.3 6.8 
 

 80 4.2 8.8 7.6 2.1 -260 

 17 13870 210 20.1 216 65.6 168 532 15.8 5.9 4.5 9.0 
 

 82 4.0 9.4 7.5 2.7 -240 

IFH 18 19050 270 22.6 130 110 264 518 21.3 9.2 1.6 12.9 
 

 89 5.8 9.0 7.8 1.8 -130 

 19 26710 260 30.4 122 106 220 500 18.7 12.7 2.2 14.0 
 

 87 5.4 9.8 7.6 1.7 -140 

OFH 20 18780 250 21.9 107 89.4 170 395 15.1 8.7 2.6 7.9 
 

 92 5.3 9.4 7.9 2.3 -150 

 21 16970 220 19.9 97.6 95.4 163 240 13.7 7.1 2.2 6.4 
 

 93 5.5 9.2 7.8 1.7 -160 

 Mean 17930 210 23 88 72 102 260 14.2 8.1 1.5 8.2 
 

 70 4.5 9.4 - 1.6 - 

 *ACC 82300 950 75 12.5 100 55 70 1.8 0.2 0.08 2 
 

 
       a 

Year 2000 - - - 51.5 209 - - 9.2 0.2 4.4 - 
 

 
      

 
b
 Year 

2010-2011 
- 41.7 34.2 - nd 25.8 28.5 1.5 13.4 - - 

 
 

      

    MH = Main Harbour; CB = Canoe Basin; IFH = Inner Fishing Harbour; OFH = Outer Fishing Harbour; *ACC = average crustal concentration (Taylor 1964) 

     a
 JICA (http://open_jicareport.jica.go.jp/pdf/11681632_03.pdf); 

b
 Nyarko et al. (2014); nd = not detected; '-' = not applicable or not measured. 

http://open_jicareport.jica.go.jp/pdf/11681632_03.pdf


 

 

Table 5.2 Correlation matrix of measured metals and physicochemical characteristics of surface sediments from Tema Harbour,  

      Ghana (2-tailed; n = 21) 

 
Al Mn Ni Pb Cr Cu Zn As Cd Hg Sn 

Silt- 

clay 
TOC Carbonate pH 

Mn 0.61** 
              

Ni 0.61** 1.00** 
             

Pb 0.60** 0.30 0.30 
            

Cr -0.20 0.44* 0.44* -0.22 
           

Cu 0.48* 0.78** 0.78** 0.23 0.36 
          

Zn 0.16 0.67** 0.67** 0.09 0.76** 0.81** 
         

As 0.04 0.61** 0.61** -0.12 0.91** 0.61** 0.92** 
        

Cd 0.44* 079** 0.79** 0.23 0.45* 0.74** 0.69** 0.61** 
       

Hg 0.42 0.27 027 0.15 -0.10 0.26 0.12 0.06 0.28 
      

Sn -0.05 0.27 0.27 -0.19 0.58** 0.32 0.61** 0.67** 0.18 -0.08 
     

Silt-clay 0.12 0.52* 0.52* -0.03 0.58** 0.60** 0.75** 0.64** 0.36 0.27 0.50* 
    

TOC 0.42 0.48* 0.46* 0.29 0.12 0.49* 0.40 0.27 0.27 -0.01 0.27 0.34 
   

Carbonate -0.07 -0.40 -0.40 0.07 -0.29 -0.23 -0.29 -0.27 -0.20 0.47* -0.34 -0.13 -0.48 
  

pH -0.16 0.10 0.10 -0.17 -0.05 -0.08 -0.08 -0.10 -0.04 0.11 -0.31 0.10 0.20 -0.02 
 

BI -0.31 0.25 0.25 -0.37 0.85** 0.29 0.71** 0.83** 0.35 -0.11 0.65** 0.60** 0.07 -0.09 -0.03 

*Correlation is significant at the 0.05 level. 

** Correlation is significant at the 0.01 level. 

BI = Buffer intensity 
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rations of Pb, Cu, Zn and Hg, while sediments from the north-eastern corner of the Main 

Harbour contained higher concentrations of Sn. Analysis of variance (ANOVA) revealed that 

the Mn, Ni, Cr, Cu, Zn, As and Sn concentrations differed significantly (p < 0.05) among the 

Main Harbour, the Inner Fishing Harbour, the Outer Fishing Harbour and the Canoe Basin. 

 

5.3.3. Metal fractionation, enrichment and pollution in Tema Harbour sediments 

The distribution of metals over the acid-soluble, reducible, oxidisable and residual phases of 

sediments from the Tema Harbour are shown in Fig. 5.2. At all the sampling stations, Cd  

occurred predominantly in the acid-soluble phase (70-85%), and was divided nearly equally 

among the reducible (5-10%), oxidisable (5-12%) and residual (5-10%) phases. Hg also 

occurred mainly in the acid-soluble phase (52-67) with relatively higher fractions in the 

residual phase (15-42%) than in the reducible (0-15%) and oxidisable (0-14%) phases. At all 

the sampling stations, Al (73-83%), Mn (70-80%), Ni (62-72%), Pb (50-65%), Cr (60-76%), 

Cu (57-72%), As (52-63%) and Sn (50-100%) were mainly present in the residual phase. For 

most of these metals, the fractions in the acid-soluble phase were low, i.e. Al (4-8%), Mn (8-

17%), Ni (8-15%), Pb (5-10%), Cr (3-7%), Cu (3-7%) and As (8-15%). In the case of Sn, no 

appreciable fraction was present in the acid-soluble phase at stations S5-S12 in the Main 

Harbour, although their fraction was appreciable (17-28%) at the remaining sampling stations. 

For Zn, both the reducible (38-45%) and residual (35-42%) phases were the most important at 

all the sampling stations, while the oxidisable phase was the least important. Appreciable 

fractions of Zn (12-18%) were also present in the acid-soluble phase. 

 

Table 5.3 shows the enrichment factors (EFs) of the investigated metals in the Tema Harbour 

sediments. The results show relatively higher enrichment of Cd over the other metals. The Cd 

concentrations in the Tema Harbour surface sediments exceeded the average crustal 

concentration by over an order of magnitude. The concentrations of Cd, Hg, Pb and As in the 

Tema Harbour sediments were 12-41, 2-33, 1-10 and 2-5 times their average crustal 

concentrations, respectively. The concentrations of Cu and Zn in the Tema Harbour sediments 

were elevated above their average crustal concentrations only in the Canoe Basin and the 

Fishing Harbour, while the sediment Sn concentrations exceeded the average crustal 

concentration only at stations S1-S4, S13 and S14 in the north-eastern corner of the Main 

Harbour, the Canoe Basin and the Fishing Harbour. The concentrations of Mn, Ni and Cr in 

the Tema Harbour sediments were about an order of magnitude lower than their average  
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Fig. 5.1 Spatial distribution patterns of (a) Pb, (b) Cu, (c) Zn, (d) Hg, (e) Sn, (f) Al, (g) 

Mn, (h) Ni, (i) Cr, (j) As and (k) Cd in surface sediments of Tema Harbour 
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crustal concentrations.  

 

The potential elevation of metal concentrations in the Tema Harbour sediments was 

confirmed by the geo-accumulation indices (Table 5.3). The geo-accumulation indices 

categorised all the Tema Harbour sediments as heavily polluted with respect to Cd, but 

unpolluted with respect to the Mn, Ni and Cr concentrations. Sediments of the Canoe Basin 

(stations S15-S17) were categorised, based on the geo-accumulation index, as polluted with 

respect to the Pb and Zn concentrations, those of the Fishing Harbours (stations S18-S21) as 

polluted with respect to the Hg and Cu concentrations, and those of stations S1-S4 in the 

north-eastern corner of the Main Harbour as polluted with respect to the Hg concentrations.  

 

5.4. Discussion 

5.4.1. Distribution and potential sources of metals in Tema Harbour surface 

sediments  

This study showed high enrichment of Cd, Hg and As in the Tema Harbour surface sediments 

(EFs > 10), which indicates that Cd, Hg and As contamination in the Tema Harbour sediments 

is mainly of anthropogenic origin (Chatterjee et al. 2007; Addo et al. 2011; Mahu et al. 2015). 

Similarly, the high Pb enrichment in all the sediment samples (except for station S4) suggests 

significant anthropogenic inputs of Pb in the Tema Harbour sediments. The EFs of Cu, Zn and 

Sn also point to anthropogenic contributions of these metals in various parts of the Tema 

Harbour (Table 5.3). The low enrichment of Mn, Ni and Cr in the sediment samples (EFs < 

10) indicate that the sources of these metals in the Tema Harbour sediments were mainly from 

natural or lithogenic sources, such as weathering and chemical leaching of the bedrock. The 

metal enrichment in the Tema Harbour sediments is supported by the geo-accumulation 

indices (Igeo) (Table 5.3), which indicate that the Tema Harbour sediments are potentially 

contaminated with respect to their Pb, Cu, Zn, As, Cd, Hg and Sn concentrations, while they 

are potentially uncontaminated with respect to the Mn, Ni and Cr concentrations. 

 

Potential anthropogenic sources of Pb, Cu, Zn, As, Cd, Hg and Sn contamination in the Tema 

Harbour sediments are varied and may relate to bunkering, fueling, discharge of bilge, and 

scraping and painting of vessels as well as vehicular traffic, industrial and urban effluent 

discharges (Lepland et al. 2010; Mestres et al. 2010; Schipper et al. 2010; Nyarko et al. 2014). 

The use of antifouling paints on ships and fishing vessels, for example, is an important source  



 

 

Table 5.3 Enrichment factors and geo-accumulation indices of measured metals in surface sediments from Tema Harbour, Ghana  

  Enrichment Factors (EFs) 
 

Geo-accumulation indices (Igeo) 

Sampling 

station 
 Mn Ni Pb Cr Cu Zn As Cd Hg Sn 

 
Mn Ni Pb Cr Cu Zn As Cd Hg Sn 

S1  0.9 1.3 11.2 3.2 6.7 13.4 37.9 172 149 54.7 
 

-2.9 -2.4 0.7 -1.1 0.0 1.0 2.5 4.6 4.4 3.0 

S2  1.0 1.6 22.9 3.4 8.2 13.3 32.3 148 153 83.6 
 

-3.1 -2.4 1.4 -1.4 -0.1 0.6 1.9 4.1 4.1 3.3 

S3  1.0 1.6 21.2 3.3 8.0 12.9 31.1 219 102 30.9 
 

-3.2 -2.4 1.3 -1.4 -0.1 0.6 1.8 4.6 3.5 1.8 

S4  0.9 1.0 8.7 2.2 4.3 7.9 24.9 130 71.1 19.0 
 

-2.4 -2.1 1.0 -1.0 -0.1 0.8 2.5 4.9 4.0 2.1 

S5  0.9 1.3 13.0 2.8 3.4 7.6 34.4 173 21.3 1.7 
 

-2.8 -2.3 1.0 -1.2 -0.9 0.2 2.4 4.8 1.7 -1.9 

S6  1.0 1.3 14.9 2.9 3.8 8.5 36.8 413 23.3 1.4 
 

-2.9 -2.4 1.1 -1.3 -0.9 0.3 2.4 5.9 1.7 -2.3 

S7  1.1 1.7 26.8 3.4 4.5 13.6 32.3 125 29.0 2.0 
 

-3.0 -2.4 1.6 -1.3 -1.0 0.6 1.9 3.8 1.7 -2.1 

S8  0.9 1.5 12.2 2.9 2.9 5.1 35.8 184 17.3 1.2 
 

-3.0 -2.2 0.8 -1.2 -1.3 -0.4 2.4 4.7 1.3 -2.6 

S9  0.8 1.3 19.6 2.6 3.6 6.8 23.5 199 32.4 1.5 
 

-2.9 -2.3 1.6 -1.3 -0.8 0.1 1.9 4.9 2.3 -2.1 

S10  1.0 1.3 26.9 2.9 4.0 6.2 40.7 148 18.4 1.7 
 

-2.8 -2.5 1.9 -1.4 -0.9 -0.2 2.5 4.3 1.3 -2.1 

S11  1.1 1.5 25.7 3.6 2.9 9.9 39.7 137 25.4 1.5 
 

-2.8 -2.4 1.8 -1.1 -1.4 0.4 2.4 4.2 1.7 -2.3 

S12  0.9 1.6 21.0 2.5 3.0 8.0 31.8 175 45.5 2.0 
 

-2.9 -2.1 1.6 -1.4 -1.2 0.2 2.2 4.7 2.7 -1.7 

S13  1.0 1.9 26.0 3.2 5.8 12.1 35.2 118 45.7 29.9 
 

-2.7 -1.6 2.1 -1.0 -0.1 1.0 2.5 4.3 2.9 2.3 

S14  1.3 1.8 28.7 3.5 5.9 11.9 41.5 230 42.8 27.6 
 

-2.5 -2.0 2.0 -1.1 -0.3 0.7 2.5 5.0 2.5 1.9 

S15  1.3 1.3 95.8 3.7 18.6 42.8 49.2 180 52.1 20.3 
 

-2.6 -2.6 3.6 -1.1 1.2 2.5 2.7 4.5 2.7 1.4 

S16  1.3 1.5 88.0 4.1 17.5 42.8 41.5 219 287 18.1 
 

-2.6 -2.4 3.5 -1.0 1.1 2.4 2.4 4.8 5.2 1.2 

S17  1.3 1.6 103 3.9 18.1 45.1 52.1 175 334 26.7 
 

-2.8 -2.5 3.5 -1.2 1.0 2.3 2.5 4.3 5.2 1.6 

S18  0.2 1.3 44.9 4.8 20.7 32.0 51.1 199 86.4 27.9 
 

-2.4 -2.3 2.8 -0.4 1.7 2.3 3.0 4.9 3.7 2.1 

S19  0.8 1.2 30.1 3.3 12.3 22.0 32.0 196 84.7 21.6 
 

-2.5 -1.9 2.7 -0.5 1.4 2.3 2.8 5.4 4.2 2.2 

S20  1.2 1.3 37.5 3.9 13.5 24.7 36.8 191 142 17.3 
 

-2.5 -2.4 2.5 -0.7 1.0 1.9 2.5 4.9 4.4 1.4 

S21  1.1 1.3 37.9 4.6 14.4 16.6 36.9 172 133 15.5 
 

-2.7 -2.5 2.4 -0.7 1.0 1.2 2.3 4.6 4.2 1.1 

Main Harbour (stations S1-S14); Canoe Basin (stations S15-S17); Inner Fishing Harbour (stations S18 and S19); Outer Fishing Harbour (stations 

20 and 21). For the interpretations of the EF Igeo values, see Section 5.2.2.  
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of Cu and Sn in harbour sediments (Castro et al. 2012; Nyarko et al. 2011). There were 

significant correlations among the metals (Table 5.2), which can be attributed to common 

sources (Nyarko et al. 2014; Qu and Kelderman 2001) or similar distribution patterns (Aloupi 

and Angelidis 2001) of the metals in the Tema Harbour sediments. 

 

Different proximities of sampling stations to local contamination sources in the Tema Harbour 

may account for the differences in the sediment metal concentrations across the harbour. For 

example, the Tema Harbour has two dry docks located close to stations S1 and S2, where 

activities such as sandblasting, high pressure water cleaning, scraping and painting are carried 

out. Moreover, station S4 is close to the Oil Berth, where oil tankers berth and carry out 

bunkering activities. Thus, the proximity of the north-eastern stations to the dry docks and the 

Oil Berth in the Main Harbour may have resulted in the relatively higher Cu, Hg and Sn 

concentrations present in the sediments from this area. Higher concentrations of Pb, Cu, Zn 

and Hg occurred in the Canoe Basin and the Fishing Harbour, which could be due to oil spills 

during refuelling of fishing vessels in these areas.  

 

Moreover, the Main Harbour is frequently dredged, whereas the Fishing Harbour and Canoe 

Basin are not. Dredging in the Main Harbour may potentially remove contaminated surficial 

sediments and result in reduced metal levels, whereas the accumulation of sediments in the 

Canoe Basin and the Fishing Harbour may result in elevated concentrations of associated 

metals. The resuspension and redistribution of bottom sediment due to e.g. tidal currents, 

dredging and ship movements (Lepland et al. 2010) may also contribute to the spatial 

variations in the sediment metal concentrations in the Tema Harbour. 

 

Since bulk sediments were analysed in this study, a correlation analysis was performed to 

examine the associations between the metal concentrations and sediment characteristics. 

Significant correlations were observed between the silt-clay content and the Cu, Zn, Sn, Mn, 

Ni, Cr and As concentrations in the Tema Harbour sediments (Table 5.2), which can be 

attributed to the high affinity of metals for the fine fractions of sediments owing to their large 

surface areas (Aloupi and Angelidis 2001; Kelderman and Osman 2007; Lepland et al. 2010; 

Nyarko et al. 2011). The distribution patterns of Cu, Zn, Sn, Mn, Ni, Cr and As in the Tema 

Harbour sediments (Fig. 5.1) may, therefore, be influenced by the differences in their silt-clay 

content. As a geochemical substrate for metals (Aloupi and Angelidis 2001), TOC may also 
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play a role in the metal distribution, which may explain its correlations with Mn, Ni and Cu 

(Table 5.2).  

 

Carbonate generally has a low capacity to adsorb and retain metals and is, therefore, 

considered as a diluent of metal concentrations in sediments (Horowitz 1985; Aloupi and 

Angelidis 2001). Thus,  Aloupi and Angelidis (2001) found an inverse relationship between 

the metal and carbonate concentration of the Mytilene Harbour sediments. The Tema Harbour 

sediments had a nearly uniform carbonate content (Table 5.1), exhibiting generally poor 

correlations with the metal concentrations in the harbour sediments (Table 5.2). Al is known 

to distribute nearly equally between the fine and coarse fractions of a sediment (Aloupi and 

Angelidis 2001), which may explain the observed poor correlation between the Al 

concentration and the silt-caly fraction of the habour sediments (Table 5.2).  

 

The mean metal concentrations from this study were compared with previous studies in 2000 

by JICA (Japan International Co-operation Agency) and 2010-2011 by Nyarko et al. (2014) 

(Table 5.1). Table 5.1 shows that the current mean Pb, As and Cd concentrations are higher 

than the levels in 2000, whereas the current concentrations of Cr and Hg are lower than the 

2000 levels. Moreover, the current mean levels of Mn, Cr, Cu, Zn and As are higher than the 

levels in 2010-2011. The mean reported concentrations of Ni and Cd in 2010-2011 were, 

however, higher than the current levels. These comparisons did not reveal a progressive 

increase in metal contamination of Tema Harbour sediments since the year 2000.  

 

5.4.2. Metal fractionation in the Tema Harbour sediments   

The negative Eh values of the bottom water (Table 5.1) indicate anoxic bottom conditions in 

the Tema Harbour (Matijević et al. 2007), which has also been observed in previous studies 

(Botwe et al. 2017a; Botwe et al. 2017b). Metal fractionation in the Tema Harbour sediments 

(Fig. 5.2) showed that most of the metals (Al, Mn, Ni, Pb, Cr, Cu, As and Sn) were 

predominantly present in the residual phase, where they are incorporated into the crystal 

lattice (Calmano et al. 1993; Kelderman and Osman 2007). Among the non-residual fractions, 

the oxidisable phase was most important for Pb, Cr, Cu and As. This indicates that 

complexation with organic matter and precipitation with sulphides were the main mechanisms 

for the immobilisation of Pb, Cr, Cu and As into the Tema Harbour sediments, which is the 

case for most metals under anoxic conditions (Caille et al. 2003; Ho et al. 2012a).  
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Mn and Sn were mainly present in the acid-soluble phase, while Al and Ni were distributed 

nearly equally between the non-residual phases. The fractionation of Zn showed that the 

reducible phase was most important. This suggests that co-precipitation with oxides or 

hydroxides of Fe and Mn was a main mechanism for Zn immobilisation into the Tema 

Harbour sediments. Cd (70-85%) and Hg (52-67%) were predominantly associated with the 

acid-soluble phase. In this phase, Hg may associate with carbonates, which may partly explain 

the observed correlation between Hg and carbonate (Table 5.2).  

 

5.4.3. Ecological implications of metal contamination in Tema Harbour sediments 

5.4.3.1. Ecotoxicological implications 

Metal contamination in sediments may cause toxicity in sediment-dwelling organisms (Long 

et al. 1995; Long et al. 2006). The effects-range low (ERL) and effects-range median (ERM) 

sediment quality guidelines (Long et al. 1995) were used to characterise the potential toxicity 

of the Tema Harbour sediments due to their metal (Ni, Pb, Cr, Cu, Zn, As, Cd and Hg) 

contamination. Metal concentrations below the ERL, at or above the ERL but below the ERM, 

and at or above the ERM are associated with, respectively, rare, occasional, and frequent 

occurrence of toxic effects (Long et al. 1995). For each metal, two quotients namely the 

effects-range low qoutient (ERLQ) and effects-range median quotient (ERMQ) were derived 

by dividing the measured metal concentration by its corresponding ERL and ERM 

concentrations, respectively (Long et al. 2006). Within this approach, an ERLQ < 1 indicates 

toxic effects will rarely occur; an ERLQ ≥ 1 but ERMQ < 1 indicates toxic effects will occur 

occasionally; whereas an ERMQ ≥ 1 indicates toxic effects will occur frequently.  

 

The ERLQ and ERMQ values (Table 5.4) indicate that Hg concentrations at most (67%)  of 

the sampling stations may potentially cause frequent occurrence of toxic effects. Thus, Hg is  

of potential concern in the Tema Harbour, particularly in the north-eastern corner of the Main 

Harbour, the Canoe Basin and the Fishing Harbour. Frequent occurrence of toxic effects is 

also expected as a result of the sediment Zn concentrations in the Canoe Basin and the Fishing 

Harbour. There are also isolated areas in the Tema Harbour where the concentrations of Pb 

and Cd in the sediments may be associated with frequent occurrence of toxic effects. At most 

of the stations, however, there is a potential for occasional occurrence of toxic effects as a  

 



 

 

Table 5.4 Calculated effects-range low quotients (ERLQ), effects-range median quotients (ERMQs) and mean ERM quotients 

(mERMQs) for measured metals in surface sediments from Tema Harbour, Ghana. The ERL and ERM values for the measured 

metals are also presented. 

        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

MH = Main Harbour; CB = Canoe Basin; IFH = Inner Fishing Harbour; OFH = Outer Fishing Harbour 

 
 

 ERLQ 
 

ERMQ 
  

Harbour 

area 

Sampling 

station 
 Ni Pb Cr Cu Zn As Cd Hg 

 
Ni Pb Cr Cu Zn As Cd Hg 

 
mERMQ 

MH S1  1.0 0.7 0.9 2.4 1.4 1.8 6.3 17.3 
 

0.4 0.1 0.2 0.3 0.5 0.2 0.8 3.7 
 

0.8 

 S2  1.0 1.1 0.7 2.3 1.1 1.2 4.3 14.0 
 

0.4 0.2 0.2 0.3 0.4 0.1 0.5 3.0 
 

0.6 

 S3  1.0 1.0 0.7 2.2 1.0 1.2 6.3 9.3 
 

0.4 0.2 0.2 0.3 0.4 0.1 0.8 2.0 
 

0.5 

 S4  1.3 0.8 0.9 2.3 1.2 1.8 7.3 12.7 
 

0.5 0.2 0.2 0.3 0.5 0.2 0.9 2.7 
 

0.7 

 S5  1.1 0.8 0.8 1.3 0.8 1.8 6.8 2.7 
 

0.4 0.2 0.2 0.2 0.3 0.2 0.8 0.6 
 

0.4 

 S6  1.0 0.9 0.8 1.3 0.9 1.7 14.8 2.7 
 

0.4 0.2 0.2 0.2 0.3 0.2 1.8 0.6 
 

0.5 

 S7  1.0 1.2 0.7 1.3 1.1 1.2 3.6 2.7 
 

0.4 0.3 0.2 0.2 0.4 0.1 0.4 0.6 
 

0.3 

 S8  1.2 0.7 0.8 1.0 0.5 1.7 6.7 2.0 
 

0.5 0.2 0.2 0.1 0.2 0.2 0.8 0.4 
 

0.3 

 S9  1.1 1.2 0.8 1.4 0.7 1.2 7.7 4.0 
 

0.4 0.3 0.2 0.2 0.3 0.1 1.0 0.8 
 

0.4 

 S10  1.0 1.5 0.7 1.3 0.6 1.8 5.0 2.0 
 

0.4 0.3 0.2 0.2 0.2 0.2 0.6 0.4 
 

0.3 

 S11  1.0 1.4 0.9 0.9 0.9 1.7 4.5 2.7 
 

0.4 0.3 0.2 0.1 0.3 0.2 0.6 0.6 
 

0.3 

 S12  1.2 1.2 0.7 1.1 0.8 1.5 6.4 5.3 
 

0.5 0.3 0.2 0.1 0.3 0.2 0.8 1.1 
 

0.4 

 S13  1.7 1.7 1.0 2.3 1.4 1.9 4.8 6.0 
 

0.7 0.4 0.2 0.3 0.5 0.2 0.6 1.3 
 

0.5 

 S14  1.3 1.6 0.9 2.0 1.1 1.9 7.8 4.7 
 

0.5 0.3 0.2 0.2 0.4 0.2 1.0 1.0 
 

0.5 

CB S15  0.9 4.9 0.9 5.8 3.8 2.1 5.8 5.3 
 

0.4 1.1 0.2 0.7 1.4 0.2 0.7 1.1 
 

0.7 

 S16  1.0 4.4 1.0 5.3 3.7 1.7 6.8 28.7 
 

0.4 0.9 0.2 0.7 1.4 0.2 0.9 6.1 
 

1.3 

 S17  1.0 4.6 0.8 4.9 3.5 1.9 4.9 30.0 
 

0.4 1.0 0.2 0.6 1.3 0.2 0.6 6.3 
 

1.3 

IFH S18  1.1 2.8 1.4 7.8 3.5 2.6 7.7 10.7 
 

0.4 0.6 0.3 1.0 1.3 0.3 1.0 2.3 
 

0.9 

 S19  1.5 2.6 1.3 6.5 3.3 2.3 10.6 14.7 
 

0.6 0.6 0.3 0.8 1.2 0.3 1.3 3.1 
 

1.0 

OFH S20  1.0 2.3 1.1 5.0 2.6 1.8 7.3 17.3 
 

0.4 0.5 0.2 0.6 1.0 0.2 0.9 3.7 
 

0.9 

 S21  1.0 2.1 1.2 4.8 1.6 1.7 5.9 14.7 
 

0.4 0.4 0.3 0.6 0.6 0.2 0.7 3.1 
 

0.8 

 ERL  20.9 46.7 81 34 150 8.2 1.2 0.15 
 

- - - - - - - - 
 

- 

 ERM  51.6 218 370 270 410 70 9.6 0.71 
 

- - - - - - - - 
 

- 
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result of Ni, Pb, Cu, As and Cd concentrations in the sediments, while the Cr concentrations 

are not likely to cause toxic effects based on the ERLQ and ERMQ values (Table 5.4).  

 

To characterise the overall potential sediment toxicity due to a mixture of metals, mean ERM 

quotients (mERMQs) were calculated by averaging the different metal ERMQs with the toxic 

effects (Long et al. 2006; Birch and Hutson 2009). The overall potential toxicity is classified 

as minimal if the mERMQ < 0.1, low if 0.1 ≤  mERMQ < 0.5, moderate if 0.5 ≤ mERMQ < 

1.5 and high if mERMQ > 1.5 (Birch and Hutson 2009). The mERMQ values of the Tema 

Harbour sediments (Table 5.4) indicate that metal concentrations of the sediments from the 

north-eastern stations in the Main Harbour, the Canoe Basin and the Fishing Harbour may 

cause moderate toxicity to benthic organisms, while sediments from the remaining areas may 

be associated with low toxicity. 

 

5.4.3.2. Ecological risk implications  

Metal fractionation in sediments significantly determines their potential mobility and 

availability for uptake by benthic organisms (Calmano et al. 1993; Jain 2004; Pini et al. 

2015). Metals associated with the acid-soluble phase have the greatest mobility and 

bioavailability potential and pose the greatest ecological risk, whereas those in the residual 

phase have the least mobility and bioavaility potential and pose the least ecological risk 

(Calmano et al. 1993; Jain 2004; Kelderman and Osman 2007; Iqbal et al. 2013; Ho et al. 

2012a). A risk assessment code (RAC) has therefore been developed based on the fraction 

(%) of metal associated with the acid-soluble phase to characterise the potential risk of 

sediment-associated metals entering the food chain as follows (Jain 2004): acid-soluble 

fraction <1 % indicates no risk, 1-10 % indicates low risk, 11-30 % indicates medium risk, 

31-50% indicates high risk, and >50 % indicates very high risk.  

 

The phase distributions of the investigated metals in the Tema Harbour sediments (Fig. 5.2) 

show large fractions of Cd (70-85%) and Hg (52-67) in the acid-soluble phase, indicating that 

Cd and Hg contamination in the Tema Harbour sediments may pose very high ecological 

risks. Sn may pose medium risk at stations 1-4 in the Main Harbour, the Canoe Basin (stations 

15-17) and the Fishing Harbour (stations 18-21), where the acid-soluble fraction ranged 

between 17 and 28%, but poses no risk at the remaining stations. The fractions of Mn (8-

17%), Ni (8-15%), Zn (12-18%)  and As (8-15%) in the acid-soluble phase indicate these 
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Fig. 5.2 Distribution of metals over the acid-soluble, reducible, oxidisable and 

residual phases of Tema Harbour sediments: (a) Al, (b) Mn, (c) Ni, (d) Pb, (e) Cr, (f) 

Cu, (g) Zn, (h) As, (i) Cd, (j) Hg, and (k) Sn 

  Legend: 
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metals pose low-medium risks, while those of Pb (5-10%), Cr (3-7%) and Cu (3-7%) present 

low risk. The non-residual or labile (i.e. acid-soluble + reducible + oxidisable) fractions, 

however, constitute a pool of potentially bioavailable metals due to their potential to undergo 

changes under varying environmental conditions such as pH, Eh and resuspension of bottom 

sediments (Calmano et al. 1993; Kelderman and Osman 2007; De Jonge et al. 2012; Dung et 

al. 2013; Hamzeh et al. 2014; Pini et al. 2015). The considerable fractions of Mn (20-30%), 

Ni (28-38%), Pb (35-50%), Cr (24-40%), Cu (28-43%), As (37-48%) and Sn (0-50%) present 

in the labile phase, therefore, have implications for their potential ecological risks. 

 

5.4.4. Chemical stability of Tema Harbour sediments  

The pH range of the Tema Harbour sediments (7.3-8.3; Table 5.1) indicates that all the 

investigated sediments were slightly alkaline. The buffer intensities of the Tema Harbour 

sediments ranged from intermediate to strong (Table 5.1). Thus, in general, the Tema Harbour 

sediments are potentially stable against small changes in pH, with the potential to lower the 

risk of metal remobilisation and exposure due to acidification. A reduction in pH 

(acidifcation) can substantially increase the risk of metal exposure to organisms via 

remobilisation of sediment-associated metals (Calmano 1988; Calmano et al. 1993; 

Kelderman and Osman 2007; Ho et al. 2012a). The potential ecological risk of metal 

remobilisation due to acidification may be more pronounced in weakly buffered sediments, 

since they have a low capacity to resist slight changes in pH. 

 

The carbonate content is a major determinant of the buffer intensity of sediments: sediments 

with carbonate contents >10% are well buffered against acidification over a wide range 

(Calmano 1988). The carbonate contents of the Tema Harbour sediments were close to 10 

(Table 5.1) and exhibited no significant correlation with the buffer intensity (Table 5.2). The 

observed significant correlations between buffer intensity and Cr, Zn, As and Sn 

concentrations in the Tema Harbour sediments indicate that increasing buffer intensity 

enhances the immobilisation and accumulation of these metals in the harbour sediments. The 

significant correlation between buffer intensity and silt-clay content (Table 5.2) suggests that 

the silt-clay content has a positive influence on the buffer intensity of the Tema Harbour 

sediments, possibly due to the effect of alumino silicates, which are another major 

determinant of the sediment buffer intensity (Calmano 1988).  
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5.5. Conclusions 

The metal (Al, Mn, Ni, Pb, Cr, Cu, Zn, As, Cd, Hg and Sn) distribution, fractionation and 

their ecological implications of surface sediments from the Tema Harbour (Greater Accra, 

Ghana) have been investigated. Sediment concentrations of Mn, Ni, Cr, Cu, Zn, As and Sn 

differed significantly across the Tema Harbour. Cd, Hg, Pb, Cu, Zn, As and Sn were enriched 

in the Tema Harbour sediments and may have been derived mainly from anthropogenic 

sources. As the Tema Harbour is located in an industrial area, potential anthropogenic sources 

of metals in the harbour include industrial effluent discharges as well as vehicular emissions. 

Moreover, metal contamination in the Tema Harbour may originate from shipping and fishing 

activities such as the use of antifouling paints on ships and fishing vessels, oil spills, 

discharge of bilge, and scraping and painting of vessels. On the other hand, Mn, Ni and Cr 

were not enriched in the Team Harbour sediments and may, therefore, be of lithogenic origin. 

Al, Mn, Ni, Pb, Cr, Cu, As and Sn were present mainly in the residual phase, Cd and Hg 

associated mainly with the exchangeable phase, while the reducible phase was most important 

for Zn. Based on the metal fractionation in the sediments, Cd and Hg may pose high potential 

risks of entering the food chain; Mn, Ni, Zn, As and Sn may pose low-medium potential risks 

of entering the food chain, while Pb, Cr, and Cu pose low potential risks of entering the food 

chain. A screenining-level ecotoxicological evaluation of the sediment metal concentrations 

with reference to biological effect-based sediment quality guidelines indicated that Hg may be 

associated with high toxicity and should, therefore, be of potential concern. Pb, Cu, Zn, As 

and Cd concentrations may also induce appreciable toxicity.  
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Abstract 

The potential ecological hazard, risk and impact of tropical marine sediments from the Tema 

Harbour (Greater Accra, Ghana) was investigated by integrating Corophium volutator and 

Hediste diversicolor whole-sediment toxicity bioassays with data on the metals (Cd, Pb, Cr, 

Ni, Cu, Zn and As) concentrations of the sediments. The whole-sediment toxicity bioassay 

results showed that sediments of the Tema Harbour are potentially hazardous to marine 

benthic invertebrates. C. volutator exhibited a higher vulnerability to the sediment toxicity 

than H. diversicolor, although the latter showed higher biota-sediment accumulation factors 

for the investigated metals. Statistically significant correlations were observed between C. 

volutator mortality and sediment Cd concentration (r = 0.84, p < 0.05; n = 6) and between H. 

diversicolor mortality and sediment Cu concentration (r = 0.94, p < 0.05; n = 5). Comparison 

of metal concentrations with international action levels for contaminated sediment disposal 

indicates that the Tema Harbour sediments contain potentially hazardous concentrations of Cu 

and Zn. This study shows that sediments from the Tema Harbour are not suitable for disposal 

at sea without remediation. There is, therefore, a need to improve environmental management 

and regulate the disposal of dredged material originating from the Tema Harbour.  

 

6.1. Introduction 

Contaminated sediments can be a source of hazardous contaminants to aquatic organisms, 

particularly benthic species (Burgess et al., 2007; Birch & Hutson, 2009). These benthic 

organisms play important roles in the functioning of aquatic ecosystems, such as 

biogeochemical cycling (Durou et al., 2007) and as a source of food for other species in the 

aquatic food chain (Burton Jr, 2002; Birch & Hutson, 2009; Carvalho et al., 2012; Gaion et 

al., 2014). The impact of contaminated sediments on benthic organisms can thus have serious 

consequences for the entire food chain (Burton Jr, 2002; Gaion et al., 2014) and the proper 

functioning of aquatic ecosystems. Consequently, sediment contamination is a major issue 

and information on the associated potential adverse ecological impact is of great interest to 

environmental regulators (Birch & Hutson, 2009; Schipper et al., 2010). Several biological 

effect-based sediment quality guidelines (SQGs) have been developed as predictive tools for 

assessing the potential of contaminated sediments to cause adverse biological effects (Burton 

Jr, 2002; Long et al., 2006; Schipper et al., 2013).  
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The abilities of SQGs to predict adverse biological effects associated with contaminated 

sediments are, however, limited since SQGs do not account for: (1) contaminant 

bioavailability (Schipper et al., 2010); (2) synergistic or antagonistic effects of contaminant 

mixtures present in sediments under natural conditions (Ciarelli et al., 1998; Forrester et al., 

2003; Eisentraeger et al., 2004; Schipper et al., 2010); (3) multiple effects that may be 

exhibited by a single contaminant (Eggen et al., 2004); (4) chronic effects that may result 

from long-term exposure to low concentrations of contaminants in sediments (Eggen et al., 

2004) and (5) contaminants present in sediments without being measured or identified as toxic 

or hazardous substances (Eisentraeger et al., 2004; Burgess et al., 2007). Consequently, 

whole-sediment toxicity bioassays have been recommended for the ecotoxicological 

characterisation of contaminated sediments to overcome the limitations of the SQG approach 

(Annicchiarico et al., 2007; Ré et al., 2009; Schipper et al., 2010). Whole-sediment toxicity 

bioassays involve the exposure of pollution-sensitive benthic invertebrates to contaminated 

sediments under laboratory conditions (Forrester et al., 2003). Integrating whole-sediment 

bioassays with the SQG approach can provide valuable insight into contaminants potentially 

contributing to sediment toxicity. 

 

Marine benthic invertebrates such as C. volutator (Stronkhorst et al., 2003; Scarlett et al., 

2007; van den Heuvel-Greve et al., 2007; Mayor et al., 2008) and H. diversicolor (Moreira et 

al., 2006; Mayor et al., 2008) are often employed as bio-indicators of pollution in marine and 

estuarine whole-sediment toxicity bioassays. Preference for C. volutator is due to its ease of 

collection and maintenance under laboratory conditions, availability in the field throughout 

the year, and tolerance to a wide range of salinities, sediment grain sizes and organic carbon 

contents (Ciarelli et al., 1998; Roddie & Thain, 2002; Scaps, 2002; Bat, 2005). H. diversicolor 

commonly occurs in intertidal areas, is able to survive in hypoxic and contaminated 

environments and exhibits tolerance to wide fluctuations in salinity and temperature (Scaps, 

2002; Philippe et al., 2008). Both C. volutator and H. diversicolor have wide geographic 

distributions across polar, temperate and tropical marine regions (Bat, 2005; Moreira et al., 

2006; Uwadiae, 2010; Carvalho et al., 2012). However, standard whole-sediment toxicity 

bioassay protocols have been developed mainly with temperate C. volutator (Roddie & Thain 

2002; Schipper et al., 2006) and H. diversicolor (Hannewijk et al., 2004) with mortality as 

toxic response (endpoint), whereas whole-sediment toxicity bioassays with tropical species 

are not well developed (Adams and Stauber, 2008). Therefore, studies on the use of C. 
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volutator and H. diversicolor bioassays to assess the toxicity of sediments from tropical 

marine environments are scarce.  

 

With over 50% of the world‘s population living in coastal zones (Petrosillo et al., 2009), the 

coastal marine environment is characterised by intense anthropogenic activities such as waste 

disposal, crude oil extraction and oil spills, shipping, fishing, agriculture and industrialisation 

(Petrosillo et al., 2009; Lepland et al., 2010; Schipper et al., 2010). This is also the case for 

the tropical marine Tema Harbour in Greater Accra (Ghana). Anthropogenic activities are a 

source of a wide range of hazardous substances, which adversely impact organisms inhabiting 

the coastal marine environment (Petrosillo et al., 2009; Lepland et al., 2010; Schipper et al., 

2010): previous studies have shown that sediments of the Tema Harbour are contaminated by 

polycyclic aromatic hydrocarbons and organochlorine pesticide residues (Botwe et al., 2017) 

and metals (Nyarko et al., 2014; Botwe et al., unpublished results). Since Tema Harbour 

sediments are dredged periodically with subsequent disposal/storage under seawater, 

assessment of sediment quality is required to guide sediment management decisions at Tema 

Harbour and minimise adverse ecological impact. Therefore, the objectives of this study were 

to investigate: (1) the overall potential toxicity (hazard) of Tema Harbour sediments, (2) the 

potential risk (toxicity and bioavailability) of metal contamination in the sediments and (3) the 

potential impact (bioaccumulation) of metal contamination in the Tema Harbour sediments on 

benthic invertebrates by integrating whole-sediment toxicity bioassays with metal 

contamination data.   

 

6.2. Materials and methods 

6.2.1. Study area  

The Tema Harbour in Greater Accra (Ghana) is a semi-enclosed coastal marine harbour with 

a water area of approximately 2 km
2
, which forms part of the Gulf of Guinea (Fig. 6.1). The 

salinity of the Tema Harbour water ranges from 30 to 35 ‰. The Tema Harbour is 

compartmentalised into a Main Harbour, an Inner Fishing Harbour, an Outer Fishing Harbour 

and a Canoe Basin, which are bound to experience different anthropogenic impacts. The Main 

Harbour, the Inner Fishing Harbour and the Canoe Basin have been in operation since 1962, 

while the Outer Fishing Harbour was constructed in 1965. Various ships including oil tankers, 

bulk carriers, general cargo ships and containerships call at the Main Harbour. The Fishing 

Harbour provides handling facilities for semi-industrial and industrial fishing vessels such as 
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Fig. 6.1 Map of Tema Harbour showing the sampling stations of grab sediments (1-

30). Grab sediments were composited into five samples for analysis as follows: 

sediment sample MH1 = grabs 1-6; MH2 = grabs 7-12; OFH = grabs 13-18; IFH = 

grabs 19-24 and CB = grabs 25-30. 

 

trawlers, tuna vessels, and deep-sea carriers, while the Canoe Basin is a dedicated artisanal 

canoe fishing landing site. To ensure safe navigation, the Main Harbour is subject to dredging 

since 1998, whereas the Canoe Basin was dredged in May 2013. No dredging has yet been 

conducted in the Fishing Harbour. Located within an industrial setting, the Tema Harbour is 

subject to contamination not only from maritime operations (e.g. bunkering and refuelling, 
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maintenance and repairs of vessels), but also from industrial activities (e.g. wastewater 

discharges into the harbour).  

 

6.2.2. Sediment sampling  

Grab sediment samples were collected from thirty stations (1-30) within the Tema Harbour 

(Fig. 6.1) in January 2016 using a stainless steel 3.5 L Ekman grab. The grab samples were 

composited to obtain five samples for analysis. In the Main Harbour, grabs 1-6 were 

composited to form sample MH1, while grabs 7-12 formed sample MH2. All grabs from the 

Outer Fishing Harbour (13-18) were composited into sample OFH, grabs from the Inner 

Fishing Harbour (19-24) formed sample IFH, while grabs from the Canoe Basin (25-30) 

formed sample CB (Fig. 6.1). All composite samples were mixed thoroughly with a plastic 

shovel in acid-washed plastic bowls before taking about 3.5 L portions into 3.78 L 

FoodSaver® zipper bags.  All the samples were sealed air-tight using a hand-held vacuum 

pump and kept on ice in an ice-cool box in the field and during transportation to the Marine 

and Fisheries Department laboratory at the University of Ghana (Accra, Ghana), where they 

were stored overnight in a refrigerator at 4 
o
C. The samples were kept chilled in an ice-cool 

box and transported by air to the Systemic Physiological and Ecotoxicological Research 

laboratory (SPHERE) at the University of Antwerp (Belgium). The samples were kept there in 

a cold room at 4 
o
C until the bioassay experiments were conducted within 2 weeks of sample 

collection (Roddie & Thain, 2002).   

 

6.2.3. Sampling of test organisms  

The test organisms, C. volutator and H. diversicolor, were collected from the Eastern Scheldt 

located in the south-western part of the Netherlands, which is used as a non-contaminated 

control site for conducting whole-sediment bioassays (Kater et al., 2006; van den Heuvel-

Greve et al., 2007). The field collection of C. volutator followed standard guidelines used 

around the world (Roddie & Thain, 2002). C. volutator were collected at low tide, when the 

shore was exposed, by carefully removing the upper 5 cm layer of sediments with a small 

stainless steel shovel into 10 L plastic buckets. The sediments were subsequently sieved over 

a 0.5 mm mesh with seawater from the same area (salinity of 30-31 ‰) into a separate 10 L 

plastic bucket while the C. volutator retained on the sieve were carefully transferred into 

another 10 L plastic bucket containing seawater. The sieved sediment (about 2 kg) was mixed 

thoroughly and kept as control sediment for the C. volutator bioassay.  
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H. diversicolor was carefully collected by hand along the banks of the Eastern Scheldt 

estuary, together with some of their associated sediments, and placed in a 10 L plastic bucket. 

The sediment was then covered by a layer of about 20 cm estuarine water. About 3 kg of 

sediment was also collected from the same area and sieved over a 0.5 mm mesh with some 

estuarine water from the same area into a 10 L plastic bucket to serve as control sediment for 

the H. diversicolor bioassay.  

 

During sampling, care was taken to ensure that the C. volutator and H. diversicolor were not 

damaged. The collected samples were transported to the SPHERE laboratory, where the C. 

volutator and H. diversicolor aquaria were kept under continuous aeration at 15 °C in a 

climate-controlled room for 7 d for organisms to acclimatise prior to the whole-sediment 

bioassays. The water salinity in the aquaria was monitored with a conductivity meter (HACH, 

USA) during the acclimatisation period and kept at 30 ‰ by the addition of deionised water.  

 

6.2.4. Laboratory bioassay experiments 

The standard acute 10-day C. volutator whole-sediment bioassay as described by Roddie & 

Thain (2002) and Schipper et al. (2006) was adopted. The C. volutator used were of similar 

sizes (typically 4-5 mm long). The bioassays were conducted on sediments from the Tema 

Harbour and the reference site (control) in acid-washed 1.5 L wide-mouth glass bottles. Each 

set-up contained 200 mL homogenised sediment sample (about 3 cm thick), 600 mL well-

aerated artificial seawater (about 12 cm depth of overlying seawater) of 30 ‰ salinity and 20 

active individuals of C. volutator. Five (5) replicates were prepared for the control and the 

Tema Harbour sediment bioassays, except for the MH1 (n = 4) and OFH (n = 3) bioassays, 

due to loss of sample during transport.  

 

The standard chronic 28-day H. diversicolor whole-sediment bioassay as described by 

Hannewijk et al. (2004) was adopted. H. diversicolor of similar mass (typically 0.2-0.3 g fresh 

weight) were used. The bioassays were conducted on sediments from the Tema Harbour and 

the reference site (control) in acid-washed 0.5 L wide-mouth glass bottles. Each set-up 

contained 100 mL homogenised sediment samples (about 3 cm thick), 120 mL artificially 

prepared seawater (about 6 cm depth of overlying seawater) and one active H. diversicolor. 

Fifteen (15) replicates were prepared for the control bioassay, while the number of bioassay 

replicates prepared per type of Tema Harbour sediment varied from 10 to 13, due to limited 
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quantity of sediment sample. No CB sediment sample was available to conduct the H. 

diversicolor bioassay. 

  

Prior to the introduction of C. volutator and H. diversicolor, the overlying seawater in each 

bottle was aerated continuously for 48 h to ensure adequate supply of oxygen, while avoiding 

sediment resuspension. Moreover, care was taken to ensure that the organisms were not 

damaged while being introduced into the bottles. All bioassays were conducted at a 

temperature of 15 (± 1) 
o
C and under a light regime of 16 h light and 8 h darkness. Periodic 

measurements of pH, salinity and dissolved oxygen (DO) levels of the overlying seawater 

were conducted from the start till the end of the exposure period using a pH meter, 

conductivity meter and DO meter (HACH, USA), respectively, and adjustments to the initial 

salinity were made when necessary. H. diversicolor were fed 3 times per week with 30 mg of 

ground fish food (TetraMin® XL Flakes) (Hannewijk et al., 2004), while their overlying 

seawater was renewed weekly to minimise the potential build-up of ammonia and hydrogen 

sulphide (Ferretti et al., 2000). At the end of their exposure periods, C. volutator were gently 

sieved over a 0.5 mm mesh, while H. diversicolor were gently removed with a pair of forceps. 

The organisms were then rinsed with artificial seawater to remove adhering particles and the 

numbers of living organisms were counted to determine mortalities.  

 

6.2.5. Analyses of metal, sediment grain size and TOC contents  

Upon completion of the bioassays, the organisms and sediment samples were freeze-dried 

prior to analyses of their metal contents. Metal analysis in C. volutator and H. diversicolor 

was based on whole-body tissues. H. diversicolor were analysed individually for metals. In 

the case of C. volutator, five composite samples were obtained from each replicate by pooling 

four individuals together and subsequently analysing their metal content. The freeze-dried C. 

volutator and H. diversicolor samples, together with 0.2 g portions of a mussel-based standard 

reference material (SRM 2976) from the National Institute of Standards and Technology 

(NIST, Luxembourg, Belgium) and procedural blanks were subjected to microwave-assisted 

digestion using 2 mL HNO3 (for H. diversicolor) or 0.5 mL HNO3 (for C. volutator).  

 

About 0.2 g portions of freeze-dried homogenised sediment samples, a sediment certified 

reference material (BCR-701) and procedural blanks were analysed for total metal 

concentrations and metal fractionation by adopting the harmonised Community Bureau of 
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Reference (BCR) 3-step sequential extraction and aqua regia extraction techniques, 

respectively, following Pueyo et al. (2001). The metal concentrations were measured using 

ICP-MS (Varian, Australia). The dry sediments were also analysed for their grain-size 

distribution by the Malvern laser diffraction method (Blott et al., 2004), while total organic 

carbon (TOC) was analysed by the Walkey-Black wet oxidation method following Botwe et 

al. (2017). The mean metal recoveries in the standard BCR-701 samples ranged between 77 

and 116 % with relative standard deviation (RSD) of 1.3-11.8 %, while the mean metal 

recoveries in the NIST SRM 2976 varied between 86 and 102% with RSD of 0.6-5.3 %, 

depending on the metal measured. Metal concentrations in the biota and sediment samples 

were corrected for recovery, using their respective mean recoveries in the certified reference 

materials. 

 

6.2.6. Data analysis 

One-way analysis of variance (ANOVA) and Holm-Sidak multiple comparison tests or 

Kruskal-Wallis one-way ANOVA on ranks (where normality test failed) were used to test for 

significant differences in C. volutator and H. diversicolor mortalities as well as metal 

concentrations in sediments across sites by using the statistical software SigmaPlot (version 

11.0). Using the same software, normality and equal variance tests were performed with the 

Shapiro-Wilk and Levene's mean tests, respectively. Two-tailed Pearson correlations (using 

SPSS, version 16.0) among metal bioaccumulation factor, metal concentration in sediment, 

mortality and TOC content in sediment were determined separately for C. volutator (n = 6) 

and H. diversicolor (n = 5).  

 

Regression plots  were made to determine linear associations between measured parameters of 

interest using MS Excel 2007. To characterise the potential ecological impact of metal 

contamination in Tema Harbour sediments, biota-sediment accumulation factors (BSAFs) 

were estimated by dividing the metal concentrations in whole-body tissues of C. volutator and 

H. diversicolor by the corresponding concentrations in the sediment (Aydin-Onen et al., 

2015). A BSAF >1.0 is indicative that metal bioaccumulation has occurred, and the greater the 

BSAF, the greater the bioaccumulation efficiency (Aydin-Onen et al., 2015). When necessary, 

raw metal concentrations were normalised to the <63 µm fraction of sediments as follows 

(Horowitz, 1985): 
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     [     ]                    ( ) 

 

where [Metal]n is the normalised metal concentration and [metal]r is the raw metal 

concentration.  

 

6.3. Results 

6.3.1. C. volutator and H. diversicolor mortalities in the whole-sediment bioassays 

The mean C. volutator mortalities in the MH1, MH2, OFH, IFH, CB and control bioassays 

were 29, 38, 77, 99, 98 and 7 %, respectively (Fig. 6.2). One-way ANOVA (p < 0.001; n = 6) 

followed by the Holm-Sidak multiple comparison test (p < 0.05; n = 6) showed that the 

mortalities of C. volutator in the Tema Harbour sediment bioassays were significantly higher 

than those of the control bioassays with the following mortality trend across the Tema 

Harbour sediments: MH1 < MH2 < OFH < IFH ≈ CB. The H. diversicolor mortalities in the 

MH1, MH2, OFH and IFH bioassays were 46, 15, 10 and 92 %, respectively, while the 

control mortality was 7 % (Fig. 6.3). As in the case of C. volutator, the highest H. diversicolor 

mortality was associated with the IFH sediments. However, Fig. 6.3 shows that the trend in H. 

diversicolor mortality across the Tema Harbour sediments was OFH < MH2 < MH1 < IFH, 

which contrasted with the trend in C. volutator mortality (Fig. 6.2): the MH2 and OFH 

sediments caused low H. diversicolor mortalities (10-15 %) but high C. volutator mortalities 

(38-77 %). 

 

6.3.2. Physicochemical conditions of water and sediments from the Tema Harbour 

and control bioassays 

The physicochemical conditions of water and sediments from the Tema Harbour and control 

bioassays are summarised in Table 6.1. The salinity, pH and dissolved oxygen (DO) levels of 

the overlying water during the bioassay experiments varied between 28-34 ‰, 7.7-8.5 and 

7.4-8.7 mgL
-1

, respectively. There were marked differences in the grain size distributions of 

the Tema Harbour and control sediments: whereas sand (63-500 µm fraction) dominated the 

control sediment (62-90 %), a predominance (63-88 %) of silt  (4-63 µm fraction) was present 

in the Tema Harbour sediments. However, the control sediments had a relatively higher TOC 

content (5.2-5.9 %) than the Tema Harbour sediments (2.9-4.2 %). Neither sediment grain   
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Fig. 6.2 Mean C. volutator mortalities in 10-day bioassay tests with whole-sediments 

from different areas within Tema Harbour, Ghana (MH1, MH2, OFH, IFH and CB) 

and the Eastern Scheldt, The Netherlands (control), indicating the number of 

replicates (n) and the standard error of the mean (error bars). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.3 H. diversicolor mortalities in 28-day bioassay tests with whole-sediments 

from different areas within Tema Harbour, Ghana (MH1, MH2, OFH and IFH) and the 

Eastern Scheldt estuary, The Netherlands (control), indicating the number of 

replicates (n). 
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size nor TOC content correlated significantly with both C. volutator mortality and H. 

diversicolor mortality. 

 

Table 6.1 Physicochemical conditions of water and sediments in bioassays of bottom 

sediments from Tema Harbour, Ghana and Eastern Scheldt, The Netherlands 

(reference controls) 

a 
sediments from Tema Harbour; 

b 
reference sediment from C. volutator site; 

c 
reference 

sediment from H. diversicolor site 

 

6.3.3. Total metal concentrations and metal fractionation in the analysed sediments 

The mean total metal concentrations in the Tema Harbour sediments (mg.kg
-1

 dw) ranged 

from 0.07 - 1.16 for Cd, 24.9-102 for Pb, 50.1-80.3 for Cr, 17.4-27.7 for Ni, 33.4-210 for Cu, 

98-730 for Zn, and 7.9-14.2 for As (Table 6.2). One-way ANOVA (p < 0.001) followed by 

the Holm-Sidak multiple comparison test revealed significant differences (p < 0.05; n = 6) in 

the total concentrations of Pb and Zn (i.e., CB > IFH > OFH > MH1 > MH2), Cr (i.e., IFH > 

OFH > MH1 > CB > MH2) and Ni (i.e., OFH > IFH > MH1 > CB > MH2) across the Tema 

Harbour sediments. Kruskal-Wallis one-way ANOVA on ranks also revealed significant 

differences in the sediment concentrations of Cd (p < 0.003), Cu (p < 0.004) and As (p < 

0.004) across the Tema Harbour bottom. The CB sediments had the highest Cd concentration, 

whereas the IFH sediments had the highest Cu and As concentrations. The mean 

concentrations for each metal for the Tema Harbour sediments were greater than the means 

for the Eastern Scheldt (control) sediments, except for Cd. A statistically significant 

correlation was observed between sediment Cd concentration and C. volutator mortality (r = 

 
 

Physicochemical conditions of 

water from bioassays 
 

Sediment grain size 

distribution (%) 
  

Sediment 

sample 
 

Salinity 

(‰) 
pH 

DO 

(mg/L) 
 

<4  

µm 

4-63  

µm 

63-500  

µm 
 

TOC 

(%) 

a
MH1  30-32 8.0-8.4 7.9-8.4  10 79 11  3.2 

a
MH2  30-32 7.8-8.3 8.2-8.5  8 63 29  2.9  

a
OFH  30-33 7.7-8.4 7.9-8.1  12 85 3  3.6 

a
IFH  30-32 7.8-8.5 7.4-7.8  12 88 0  4.2 

a
CB  30-32 8.1-8.5 8.0-8.5  10 86 4  3.6 

b
RC  30-34 8.2-8.5 8.1-8.5  2 8 90  5.2  

c
RH  28-31 8.0-8.4 7.9-8.7  4 34 62  5.9 
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0.84, p < 0.05; n = 6), with a high coefficient of determination (r
2
 = 0.85) (Fig. 6.4a). In the 

case of H. diversicolor, a statistically significant correlation was observed between mortality 

and sediment Cu concentration (r = 0.94, p < 0.05; n = 5), with a high coefficient of 

determination (r
2
 = 0.89) (Fig. 6.4b).  

 

Table 6.2 Mean (n = 3) concentrations of selected metals in sediments from Tema 

     Harbour, Ghana and Eastern Scheldt, The Netherlands reference sites, 

     and sediment quality guidelines (mg.kg-1 dw).  

a 
same definition as in Table 6.1; 

b 
Sediment quality guidelines (DelValls et al., 2004); ERL 

represents a metal concentration associated with rare occurrence of harmful biological effects, 

the ERL-ERM interval represents a range of metal concentrations likely to cause harmful 

biological effects occasionally, while the ERM represents a metal concentration likely to 

cause harmful biological effects frequently (Long et al., 1995).  

 

The fractionation of metals among exchangeable, reducible, oxidisable, and residual phases in 

the Tema Harbour sediments is shown in Table 6.3.  Zn was present in appreciable amounts in 

all four fractions. The sediments contained considerable fractions of exchangeable metals only 

for Cd (15.7-46.8 %) and Zn (8.6-32.6 %). Cd (96.1-99.7 %), Pb (86.3-95 %), Cu (54.1-90.5 

%) and Zn (72.2-96.5 %) were mainly present in the labile (i.e., the exchangeable, reducible 

and oxidisable) fractions rather than in the residual fraction. In contrast, Cr, Ni and As were 

predominantly present in the residual fraction, except for the IFH and CB sediments. 

  

Sediment 

sample 
 Cd Pb Cr Ni Cu Zn As 

a
MH1  0.12 ± 0.00 39.7 ± 1.4 63.6 ± 1.6 24.2 ± 0.5 100 ± 0.4 190 ± 7 7.9 ± 0.2 

a
MH2  0.07 ± 0.00 24.9 ± 0.9  50.1 ± 0.8 17.4 ± 0.5 33.4 ± 0.5 98.0 ± 1.4 8.5 ± 0.2 

a
OFH  0.19 ± 0.00  50.6 ± 0.6 78.0 ± 0.2 27.7 ± 1.2 78.0 ± 2.1 244 ± 3 13.0 ± 0.2 

a
IFH  0.43 ± 0.03  84.3 ± 0.9 80.3 ± 0.3 26.0 ± 1.0 210 ± 7 415 ± 4 14.2 ± 0.5 

a
CB  1.16 ± 0.05  102 ± 2  61.2 ± 0.9 23.3 ± 0.5 195 ± 1 730 ± 5 12.6 ± 0.3 

a
RC  0.04 ± 0.01 4.6 ± 0.2 15.1 ± 0.5 3.0 ± 0.1 3.0 ± 0.2 14.7 ± 0.4 3.6 ± 0.1 

a
RH  0.21 ± 0.02 11.1 ± 0.7 20.4 ± 0.8 6.5 ± 0.6 6.5 ± 0.6 47.8 ± 4.4 5.7 ± 0.5 

b
ERL  1.2 46.7 81 20.9 34 150 8.2 

b
ERM  9.6 218 370 51.6 270 410 70 
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Fig. 6.4 Scatter plots of (a) C. volutator mortality versus Cd concentration in whole 

sediment (correlation coefficient, r = 0.84, p < 0.05; n = 6) and (b) H. diversicolor 

mortality versus Cu concentration in whole sediment (correlation coefficient, r = 0.94, 

p < 0.05; n = 5). 

 

6.3.4. Metal bioaccumulation in C. volutator and H. diversicolor  

Table 6.4 presents the mean concentrations of metals in whole-body tissues of C. volutator 

and H. diversicolor as well as their corresponding biota-sediment accumulation factors 

(BSAFs). The mean tissue Cd, Pb, Cr, Ni, Cu, Zn and As concentrations of C. volutator 

exposed to the Tema Harbour sediments were, respectively, 1-5, 4-17, 1-5, 2-5, 2-12, 2-7 and 

1-5 times those of the controls. Similarly, the mean tissue Cd, Pb, Cr, Ni, Cu, Zn and As 

concentrations of H. diversicolor exposed to the Tema Harbour sediments were, respectively, 

0-13, 4-10, 1-6, 1-3, 3-5, 3-4 and 2-4 times those of the controls. Generally, the metal BSAFs 

for H. diversicolor were markedly higher than those of C. volutator (except in some cases of 

Cd). In the tissues of C. volutator, Zn and Cu were found in the highest concentrations relative 

to the other metals, while Zn was found in the highest concentrations in H. diversicolor. 

However, for both C. volutator and H. diversicolor, the BSAFs of As were relatively higher 

than those of the other metals investigated. For all the metals investigated, no statistically 

significant correlations (p > 0.05) were observed between the sediment and tissue 

concentrations in C. volutator and H. diversicolor. 

 

 

 



Integrated Hazard, Risk and Impact Assessment of Tropical Marine Sediments from 
Tema Harbour (Ghana) 

165 
 

 

Table 6.3 Metal fractionation over the different phases in sediments from Tema 

     Harbour, Ghana 

  

Fraction of metals (%) associated with the different sediment phases 

Sediment 

sample 

Sediment 

phase  Cd Pb Cr Ni Cu Zn As 

MH1 Exchangeable 46.8 2.8 0.3 4.0 1.5 20.8 2.8 

 

Reducible 30.7 79.6 18.7 8.6 42.8 48.4 20.6 

 

Oxidisable 19.6 6.3 21.3 16.1 30.0 11.4 9.9 

 

Residual 2.9 11.2 59.7 71.3 25.7 19.4 66.6 

 

Labile 97.1 88.8 40.3 28.7 74.3 80.6 33.4 

MH2 Exchangeable 23.3 1.5 0.2 0.0 0.4 8.6 5.4 

 

Reducible 39.3 74.2 15.7 8.7 29.9 49.2 18.7 

 

Oxidisable 33.5 10.6 27.5 17.6 23.8 14.4 8.9 

 

Residual 3.9 13.7 56.6 73.7 45.9 27.8 66.9 

 

Labile 96.1 86.3 43.4 26.3 54.1 72.2 33.1 

OFH Exchangeable 36.0 1.2 0.2 4.3 1.0 21.7 1.6 

 

Reducible 46.8 78.8 20.7 12.3 41.4 53.4 25.5 

 

Oxidisable 14.7 7.5 24.4 18.9 32.7 10.8 13.8 

 

Residual 2.6 12.5 54.7 64.6 24.9 14.1 59.1 

 

Labile 97.4 87.5 45.3 35.4 75.1 85.9 40.9 

IFH Exchangeable 32.0 0.8 0.2 3.9 0.9 27.6 1.5 

 

Reducible 53.5 74.0 19.3 10.1 39.5 50.4 29.7 

 

Oxidisable 13.9 17.0 37.7 28.1 48.5 15.2 24.8 

 

Residual 0.6 8.2 42.9 57.8 11.2 6.8 43.9 

 

Labile 99.4 91.8 57.1 42.2 88.8 93.2 56.1 

CB Exchangeable 15.7 0.2 0.4 7.1 0.4 32.6 8.0 

 

Reducible 70.5 76.2 25.5 11.2 41.0 51.7 39.2 

 

Oxidisable 13.4 18.6 28.3 26.5 49.0 12.2 24.9 

 

Residual 0.3 5.0 45.8 55.2 9.5 3.5 28.0 

 

Labile 99.7 95.0 54.2 44.8 90.5 96.5 72.0 

Risk assessment code (RAC) based on the percentage of sediment-associated metal in the 

exchangeable phase is as follows (Jain, 2004): no risk (<1 %), low risk (1-10 %), medium risk 

(11-30 %), high risk (31-50) and very high risk (>50 %). Labile fraction = sum of the 

fractions in the exchangeable, reducible and oxidisable phases. 



 

 

Table 6.4 Metal concentrations (mean ± SE, mg.kg-1 dw) in whole-body tissues of C. volutator and H. diversicolor exposed to 

sediments from Tema Harbour, Ghana and estimated metal biota-sediment accumulation factors (BSAFs) 

a 
sediments from Tema Harbour; 

b 
reference sediment from C. volutator site; 

c 
reference sediment from H. diversicolor site; ND = not detected 

 

  
 Mean metal concentrations (BSAFs) 

 

Sediment 

sample 
 Cd Pb Cr Ni Cu Zn As 

C. volutator 
a
MH1  0.08 ± 0.01 (0.7) 2.1 ± 0.02 (0.05) 2.0 ± 0.3 (0.03) 1.5 ± 0.1 (0.06) 51 ± 3 (0.5) 52 ± 5 (0.3) 19 ± 1 (2.4) 

 

a
MH2  0.13 ± 0.01 (1.9) 4.7 ± 1.7 (0.2) 3.0 ± 0.5 (0.06) 1.6 ± 0.1 (0.1) 60 ± 3 (1.8) 57 ± 3 (0.6) 22 ± 2 (2.6) 

 

a
OFH  0.22 ± 0.01 (1.2) 9.8 ± 1.2 (0.2) 6.7 ± 0.9 (0.1) 3.7 ± 0.4 (0.1) 240 130 (3.1) 160 ± 30 (0.7) 45 ± 1 (3.5) 

 

a
IFH  0.05 ± 0.02 (0.12) 6.4 ± 1.2 (0.1) 3.8 ± 0.1 (0.05) 1.8 ± 0.1 (0.07) 50 ± 14 (0.2) 55 ± 9 (0.1) 12 ± 6 (0.9) 

 

a
CB  0.11 ± 0.03 (0.1) 8.6 ± 1.6 (0.1) 4.0 ± 0.7 (0.07) 2.1 ± 0.3 (0.1) 66 ± 11 (0.3) 80 ± 12 (0.1) 18 ± 2 (1.4) 

 

b
RC  0.05 ± 0.01 (1.3) 0.6 ± 0.1 (0.1) 1.4 ± 0.2 (0.1) 0.7 ± 0.1 (0.2) 20 ± 1 (6.7) 23 ± 2 (1.6) 10 ± 1 (2.8) 

H. diversicolor 
a
MH1  0.61 ± 0.50 (5) 110 ± 30 (3) 110 ± 48 (2) 100 ± 30 (4) 620 ± 130 (6) 7900 ± 1000 (42) 910 ± 70 (115) 

 

a
MH2  0.04 ± 0.03 (0.6) 180 ± 60 (75) 110 ± 60 (2) 80 ± 28 (4.6) 960 ± 240 (29) 9100 ± 1400 (93) 1140 ± 160 (134) 

 

a
OFH  2.6 ± 1.8 (14) 240 ± 130 (5) 90 ± 70 (1.2) 110 ± 50 (4) 1040 ± 270 (13) 10900 ± 1200 (45) 1440 ± 200 (110) 

 

a
IFH  ND 260 ± 150 (3) 24 ± 12 (0.3) 47 ± 16 (2) 1090 ± 330 (5) 10400 ± 2100 (25) 730 ± 230 (51) 

 

c
RH  0.20 ± 0.12 (1) 24 ± 6 (2) 18 ± 7 (1) 37 ± 8 (6) 200 ± 20 (31) 2800 ± 400 (58) 390 ± 50 (68) 
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6.4. Discussion 

6.4.1. Hazard potential of Tema Harbour sediments 

This study showed that the mean C. volutator mortalities in the Tema Harbour sediment 

bioassays exceeded the mean control mortality by >20% (Fig. 6.2), indicating that all the 

Tema Harbour sediments were toxic or hazardous to C. volutator (EPA, 1998). According to 

the International Council for the Exploration of the Sea based on C. volutator whole-sediment 

bioassays (ICES, 2008), sediment toxicity is classified as "elevated" or "high concern" if the 

C. volutator mortality exceeds that of the control by >30% and >60%, respectively. Thus, the 

MH2 sediments had elevated toxicity, whereas the toxicities of the OFH, IFH and CB 

sediments were of high concern. During the exposure period, no burrowing activity was 

observed in the IFH and CB sediments as most of the C. volutator avoided these sediments 

and kept swimming in the water column. This behaviour, which was not observed in the 

control and the remaining sediments, is an indication that C. volutator avoided the highly 

toxic sediments (Bat & Raffaelli, 1998; Bat, 2005).  

 

Higher mortalities of H. diversicolor were observed in the MH1 (46%) and IFH (92%) 

sediment bioassays than in the control (7%), indicating that the MH1 and IFH sediments were 

also hazardous to H. diversicolor. However, the mortalities of H. diversicolor in the MH2 

(15%) and the OFH (10%) were within the acceptable mortality of 10-15% (Thain & Bifield, 

2002; ICES, 2008). As in the case of C. volutator, no burrowing activity of H. diversicolor 

was observed in the IFH sediments, possibly due to the high toxicity of the sediment (Bat & 

Raffaelli, 1998).  

 

C. volutator and H. diversicolor exhibited strikingly different vulnerabilities towards the 

toxicities of the MH2 and OFH sediments, which underscores the importance of using a 

battery of species in whole-sediment toxicity bioassays (Bat & Raffaelli, 1998; DelValls et al., 

2004; Eisentraeger et al., 2004; Annicchiarico et al., 2007; Schipper et al., 2010). Figs. 6.2 

and 6.3 show that the MH2 and OFH sediments caused higher mortalities of C. volutator (38 

and 77 %, respectively) than H. diversicolor (15 and 10 %, respectively). This observation 

supports previous findings that amphipods such as C. volutator are more sensitive to sediment 

toxicity than polychaetes such as H. diversicolor (Long et al., 2006). Moreover, sediments are 

often contaminated by a range of toxicants (Burton Jr, 2002; Forrester et al., 2003; Long et al., 

2006), which may potentially impose different toxic responses on C. volutator and H. 
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diversicolor. For example, Bat & Raffaelli (1998) have shown that C. volutator and the 

marine polychaete Arenicola sp. have different sensitivities to Cu, Cd and Zn. They observed 

that lethal concentrations (LC50) of Cu, Cd and Zn differed for C. volutator (37, 14 and 32 

mg.kg
-1

 dw, respectively) and Arenicola sp. (20, 35 and 50 mg.kg
-1

 dw, respectively). This 

indicates that C. volutator is more sensitive to Cd and Zn, but less sensitive to Cu, than 

Arenicola sp..  

 

The lower sensitivity of C. volutator to Cu compared to H. diversicolor has also been 

observed by Mayor et al. (2008), who reported LC50 values of 193 and 75 mg.kg
-1

 ww, 

respectively. The levels of Cd in the Tema Harbour sediments were much lower than the LC50 

value of Cd for C. volutator,reported by Mayor et al. (2008). The levels of Cu (except for the 

MH2 sediments) and Zn in the Tema Harbour sediments exceeded their corresponding LC50 

values reported for C. volutator (Bat & Raffaelli, 1998). This suggests that Cu and Zn may 

play a significant role in the toxicity of the Tema Harbour sediments. Bat & Raffaelli (1998) 

also observed that the mortality of C. volutator increased with increasing sediment Cu, Cd and 

Zn concentrations. In this study, statistically significant correlations were observed between 

C. volutator mortality and sediment Cd concentration and between H. diversicolor mortality 

and sediment Cu concentration. Scatter plots show that the former correlation is logarithmic 

with a high regression coefficient (R
2
) of 0.85, whereas the latter correlation is linear with a 

high R
2
 of 0.88 (Figs. 6.4a & 6b). The variation in sediment Cd and Cu concentrations could 

explain the variation in C. volutator and H. diversicolor mortalities, respectively. In the Main 

Harbour, for example, the Cu level in the MH1 sediment was higher than that of the MH2 

sediment, the former resulting in a correspondingly higher H.diversicolor mortality. Although 

the level of Cu in the MH2 sediment was lower than that of the OFH sediment, the latter 

resulted in a lower H. diversicolor mortality. Clearly, other factors apart from the measured 

metals may play a role in the sediment toxicity to H. diversicolor.  A potential source of the 

Cu contamination in the harbour sediments is the use of Cu-based antifouling paints on 

marine crafts to mitigate biofouling (Mukherjee et al., 2009).  

 

Despite their markedly different vulnerabilities to the toxicities of the MH2 and OFH 

sediments, both C. volutator and H. diversicolor clearly distinguished the IFH sediments as 

being highly toxic or hazardous. The high toxicity of the CB sediments indicated by the 

associated high C. volutator mortality (98 %) could not be confirmed by using H. 

diversicolor, due to limited sediment quantity. The high toxicities of sediments from the IFH, 
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OFH and the CB are a clear indication that these areas are the most polluted within the Tema 

Harbour, which may be due to intense anthropogenic activities. The IFH and the OFH sustain 

a productive fishing industry through the provision of handling facilities for semi-industrial 

and industrial fishing vessels as well as a storage facility for petroleum products, while the CB 

is a dedicated artisanal canoe landing site. Daily, an average of 125 vessels operate from the 

IFH and the OFH, while the CB is normally overcrowded.  

 

Fishing-related activities such as refuelling, painting of vessels and canoes, discharges of 

industrial wastewater and dumping of solid and liquid wastes by the fisherfolk are potential 

sources of chemical contamination in the Tema Harbour. Petroleum contamination was visible 

in the sediments from the IFH and the CB, possibly as a result of oil spills during refuelling of 

fishing vessels and fuel leakage in these sampling areas. Since their construction in 1962, the 

IFH and the OFH have not been dredged and there is a potential for pollutant accumulation in 

these areas over the years. The CB was dredged in May 2013 and hence, the high 

contamination of its sediments is an indication of high anthropogenic influences in this area. 

Although the Main Harbour is also subject to pollution from industrial wastewater discharges, 

ship traffic, oil spills during bunkering as well as dry dock activities such as scraping and 

painting of vessels (Mestres et al., 2010), recent maintenance dredging in March-April 2014 

might have removed polluted sediments resulting in lower toxicities.  

 

The control mortalities of both C. volutator and H. diversicolor in the whole-sediment toxicity 

bioassays (7%) were acceptably low, compared to the maximum acceptable mortality of 10-

15% (Roddie & Thain, 2002; Casado-Martinez et al., 2007; Thain & Bifield, 2002; ICES, 

2008). Moreover, the salinity, pH, dissolved oxygen and temperature of the overlying water 

during the bioassay experiments were all within acceptable ranges (Roddie & Thain, 2002; 

Thain & Bifield, 2002; Hannewijk et al., 2004; Schipper et al., 2006).  

 

6.4.2. Potential ecological risks of metal contamination in Tema Harbour sediments 

The potential ecological risks posed by metal (Cd, Pb, Cr, Ni, Cu, Zn and As) contamination 

in the Tema Harbour sediments were characterised by applying a pair of sediment quality 

guidelines, namely the effects-range low (ERL) and effects-range median (ERM). The ERL 

represents a pollutant concentration with a high probability to rarely cause harmful biological 

effects, the ERL-ERM interval represents a range of pollutant concentrations with a high 
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probability to cause harmful biological effects occasionally, while the ERM represents a 

pollutant concentration with a high probability to cause harmful biological effects frequently 

(Long et al., 1995; Burton Jr, 2002; Long et al., 2006; DelValls et al., 2004; Birch & Hutson, 

2009). Based on the ERL and ERM values (Table 6.2), two risk quotients, the ERL quotient 

(ERLQ) and the ERM quotient (ERMQ), were derived for each measured metal according to 

Eq. (2) and (3), respectively: 

 

     
                         (          )

                     (          )
                      ( ) 

 

     
                         (          )

                     (          )
                           ( ) 

 

When the ERLQ exceeded 1.0, the corresponding ERMQ was derived instead in order to 

define three levels of potential risk associated with the measured metal concentration as 

follows: low risk for ERLQ ≤ 1.0, moderate risk for ERMQ < 1.0, and high risk for ERMQ ≥ 

1.0.  

 

The results showed that for all the Tema Harbour sediments analysed, at least one of the 

investigated metals may pose a moderate or high risk of harmful biological effects (Table 

6.5). In particular, the levels of Zn in sediments from the IFH and the CB pose high potential 

ecotoxicological risks and are, therefore, of potential concern. This further supports the 

suggestion that Zn may play a significant role in the toxicity of the Tema Harbour sediments, 

and identifies the IFH and the CB as priority areas for management and remediation attention 

in the Tema Harbour. The levels of Ni and Cu (except for the MH2 sediment, where they may 

pose low potential risks), as well as As (except for the MH1 sediment, where the potential risk 

is low) pose moderate potential ecotoxicological risks. The levels of Cd and Cr present low 

potential ecotoxicological risks. The levels of Pb in sediments from the IFH, OFH and the CB 

were associated with moderate potential ecotoxicological risks, while those of the MH1 and 

the MH2 sediments were associated with low potential ecotoxicological risks. 
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Table 6.5 Derived risk quotients to assess risks posed by metal levels in sediments 

  from Tema Harbour, Ghana (see Section 6.4.2 for derivation) 

 
 Risk quotients 

Sediment 

sample 
 Cd Pb Cr Ni Cu Zn As 

MH1  0.10 0.85 0.79 0.47 0.37 0.47 0.97 

MH2  0.06 0.53 0.62 0.83 0.98 0.65 0.12 

OFH  0.15 0.23 0.96 0.54 0.29 0.60 0.19 

IFH  0.35 0.39 0.99 0.50 0.73 1.01* 0.20 

CB  0.97 0.47 0.76 0.45 0.72 1.79 0.18 

Unbold = effects-range low quotients (ERLQs): Bold = effects-range median quotients 

(ERMQs).  

   

Metals fractionate over different phases in sediment: the exchangeable (carbonate-bound), 

reducible (iron/manganese oxide-bound), oxidisable (organic/sulphide-bound) and 

residual/refractory (silicate/mineral-bound) phases. Metals in the exchangeable phase are the 

most weakly bound and represent the potentially bioavailable fraction (Jain 2004; Igari et al., 

2012; Iqbal et al., 2013). Based on the percentage of metal in the exchangeable phase, also 

known as the risk assessment code (RAC), the potential risks were characterised as follows 

(Jain, 2004): no risk (<1 %), low risk (1-10 %), medium risk (11-30 %), high risk (31-50) and 

very high risk (>50 %). Thus, the measured metal concentrations in the Tema Harbour 

sediments pose the following potential ecological risks: medium-high risk for Cd; low to high 

risk for Zn; low risk for As; no to low risk for Pb, Ni and Cu; and no risk for Cr (Table 6.3).  

 

The relatively higher exchangeable fractions of Cd (15.7-46.8 %) and Zn (8.6-32.6 %) (Table 

6.3) indicate that Cd and Zn had the highest potential of entering the food chain (Jain, 2004; 

Igari et al., 2012; Iqbal et al., 2013). The predominance of Cd, Pb, Cu and Zn in the labile 

phase, rather than the residual phase, suggests that these metals are derived predominantly 

from anthropogenic sources (Jain, 2004). Ni was predominantly in the residual phase, 

suggesting that it is mainly of natural origin. With regards to Cr and As, a predominance of 

the labile phase was observed in sediments from the IFH and the CB, suggesting greater 

anthropogenic influences in these areas of the Tema Harbour.  
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6.4.3. Potential ecological impact of sediment-associated metal in Tema Harbour  

Benthic organisms can accumulate sediment-associated contaminants e.g. through direct 

ingestion of sediments (Burton Jr, 2002) and impact other organisms and humans via food 

chain transfer of the accumulated metals (Marsden & Rainbow, 2004). Table 6.4 shows that in 

most cases, the metal BSAFs for H. diversicolor exceeded 1.0, indicating a significant 

bioaccumulation of the investigated metals by H. diversicolor (Aydin-Onen et al., 2015). The 

metal BSAFs for H. diversicolor were higher than those for C. volutator, which may be 

attributed to the longer exposure periods for H. diversicolor (28 d) than C. volutator (10 d) 

and potential variability in metal bioaccumulation by different species (Marsden & Rainbow, 

2004) due to e.g. potential differences in the ability to store or eliminate the metals (Adams et 

al., 2011). For both C. volutator and H. diversicolor, the BSAFs of As were higher than those 

of the other investigated metals, suggesting that among the investigated metals, As was either 

most efficiently taken up or least regulated by both C. volutator and H. diversicolor.  

 

In most cases, C. volutator and H. diversicolor exposed to the Tema Harbour sediments had 

higher tissue concentrations of metals than the controls. Thus, the Tema Harbour sediments 

can be a significant source of metal bioaccumulation for benthic organisms with potential 

adverse impact on the aquatic food chain. Although the degree of contamination in harbours 

may be evident from the contamination patterns in the sediments and from biomarkers (de 

Boer et al., 2001; Schipper et al., 2009), this is not always evident (Schipper et al., 2009). 

Contrary to findings of other studies (Bat & Raffaelli, 1998), no statistically significant 

correlations were found between metal bioaccumulation (or metal bioavailability) and the 

corresponding metal concentrations in sediment or TOC content in this study. Moreover, no 

statistically significant correlations were found between metal bioaccumulation and mortality 

for both C. volutator and H. diversicolor. This lack of correlation is possibly due to the 

potential of the organisms to regulate metal uptake (Adams et al., 2011). Burrowing behaviour 

appeared to influence metal bioaccumulation as the non-burrowing organisms (those exposed 

to the IFH and CB bioassays) tend to have lower metal bioaccumulation factors. This is 

expected as burrowing results in increased exposure of organisms to contaminants in 

sediments (Bat, 2005).  
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6.4.4. Dredged material management implications for Tema Harbour 

The practice of harbour dredging with subsequent disposal at sea poses a potential hazard to 

biota in the receiving site as dredged materials are often found to contain hazardous 

concentrations of chemical contaminants (Marsden & Rainbow, 2004; Schipper et al., 2010). 

To guide the management and disposal of dredged materials, countries such as the 

Netherlands and Spain have developed sediment quality guidelines or action levels, which 

represent potentially hazardous concentrations of chemical pollutants (DelValls et al., 2004; 

Casado-Martinez et al., 2006; Kelderman, 2012; Schipper et al., 2013).  

 

Currently, no regulatory standards have been established for dredged materials in Ghana, 

despite routine maintenance dredging with subsequent disposal or storage at sea. Thus, in 

addition to the bioassay tests, the Spanish action levels (action levels 1 and 2) for dredged 

materials (DelValls et al., 2004; Casado-Martinez et al., 2006) were compared to the data for 

this study. These Spanish action levels are based on the probability of their associated 

chemical concentrations to cause adverse effects in marine biota (Casado-Martinez et al., 

2006) and are presented in Table 6.6. Based on these action levels, dredged materials may be 

classified into three categories, which can then influence decisions about their management 

and disposal. Category I dredged materials have pollutant concentrations below action level 1 

(AL1) and their disposal at sea is allowed, whereas category II dredged materials have 

pollutant concentrations between AL1 and action level 2 (AL2) and thus, would require 

further assessments to determine their suitability for disposal at sea. Category III dredged 

materials have pollutant concentrations above AL2 and, therefore, would require isolation or 

disposal in a confined area (DelValls et al., 2004). Since the AL1 and AL2 are based on the 

<63 µm fraction of sediments (DelValls et al., 2004), it was necessary to normalise the raw 

metal concentrations in the Tema Harbour sediments to the <63 µm fraction as described in 

section 6.2.6. 

 

Table 6.6 shows that the levels of Cd, Pb, Cr, Ni, Cu, Zn and As in sediments from the MH2 

and OFH areas were below their corresponding AL1 values. Thus, in relation to the 

investigated metals, dredged materials from the MH2 and OFH areas may fall under category 

I, which can be disposed at sea. The levels of Cu in sediments from the MH1 and IFH were 

between the AL1 and AL2 values, which are potentially hazardous. Similarly, the levels of 

Cd, Cu and Zn in sediments from the CB were between their corresponding AL1 and AL2 
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values and are, therefore, potentially hazardous and thus, the disposal of these sediments at 

sea is inappropriate.  

 

Table 6.6 Comparison of metal concentrations in Tema Harbour (Ghana) sediments  

      (normalised to the <63 µm fraction) with Spanish sediment quality action 

      levels (AL1 and AL2) 

 
Cd Pb Cr Ni Cu Zn As 

a
MH1 0.1 45 72 27 112 216 9 

a
MH2 0.1 35 71 25 47 138 12 

a
OFH 0.2 52 80 29 81 252 13 

a
IFH 0.4 85 81 26 197 416 14 

a
CB 1.2 106 64 24 204 768 13 

b
AL1 1 120 200 100 100 500 80 

b
AL2 5 600 1000 400 400 3000 200 

a
 Tema Harbour sediments; 

b
 action levels (DelValls et al., 2004); unbold = [metal] < AL1 and 

indicates permissible metal levels for sediment disposal at sea; bold = AL1 < [metal] < AL2 

and indicates sediments would require further assessment prior to sediment disposal at sea. 

 

6.5. Conclusion 

The standard 10-day C. volutator and 28-day H. diversicolor whole-sediment bioassays were 

combined with metal (Cd, Pb, Cr, Ni, Cu, Zn and As) concentrations to investigate the 

potential ecological hazard, risk and impact of contaminated sediments from the Tema 

Harbour. C. volutator was found more vulnerable than H. diversicolor to the toxicity effects 

the Tema Harbour sediments and underscores the importance of using different of species in 

whole-sediment toxicity bioassays. The concentrations of Cu and Zn may play a role in the 

mortalities of C. volutator and H. diversicolor. A logarithmic correlation was observed 

between sediment Cd concentration and C. volutator mortality, while a linear correlation was 

observed between sediment Cu concentration and H. diversicolor mortality. Risk assessment 

based on sediment quality guidelines indicated that the metal contamination in the Tema 

Harbour sediments poses moderate to high potential ecological risks. The results indicate a 

need to improve environmental management and regulate the disposal of dredged materials at 

the Tema Harbour. 
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Abstract 

Settling fluxes and sediment accumulation rates in coastal Tema Harbour (Ghana) were 

investigated by the combined analyses of results in sediment traps and sediment cores. 

Sediment traps were deployed at 5 stations within the Tema Harbour at 2 sampling depths and 

were retrieved every two weeks till the end of 12 weeks to estimate the Settling Fluxes (SFs). 

Four sediment cores from the harbour were analysed for their radioactivity (
7
Be, 

234
Th, 

210
Pb, 

212
Pb, 

226
Ra, 

40
K and 

137
Cs) profiles to quantify Sediment Accumulation Rates (SARs). The 

sediment cores exhibited variable bulk density profiles, indicating highly dynamic and non-

steady sedimentation conditions. 
7
Be-derived gross-estimates of very recent SARs using the 

constant flux-constant sedimentation (CF-CS) model were in the range of 2.5-9.0 g.cm
-2

.y
-1

. 

These values were much lower than the estimated average SFs (15.2-53.8 g.cm
-2

.y
-1

), 

indicating sediment resuspension plays an important role. On a decadal time scale, 

conventional 
210

Pb sediment dating models did not allow any estimation of SARs in the Tema 

Harbour. Thus, the 
210

Pb-based TERESA model was applied to depict a reliable scenario for 

sedimentation with time-averaged SARs in the range of 1.4-3.0 g.cm
-2

.y
-1

 and fluxes of matter 

contributed by the marine inflow and local sources. Sediment accretion rates of 1.7-3 cm.y
-1

 

were also inferred, which may pose a moderate problem of sustainability for the Tema 

Harbour. This study reveals how the geochemical behaviour of different radionuclides with 

Gamma spectrometry in the marine environment can be used to obtain reliable information on 

the complex dynamics of Suspended Particulate Matter (SPM), even in a very disturbed and 

anthropic environment as a coastal harbour area where (1) conventional 
210

Pb-based dating 

methods fail and (2) the use of sediment traps and 
234

Th and 
7
Be profiles in sediment cores 

show serious constraints. 

 

7.1. Introduction  

Coastal marine harbours support national economies through shipping, fishing and tourism 

and are, therefore, considered important assets for coastal nations (Van Rijn, 2005). Coastal 

marine harbours are prone to large influxes of sediments as a result of waves and tidal 

currents (Leys and Mulligan, 2011), as well as erosion downdrift of the harbour breakwater. 

In semi-enclosed coastal harbours, the restricted water movement may enhance the settling of 

sediments and result in their accumulation within the harbour basin (Lepland et al., 2010; 

Botwe et al., 2017a). Sediment accumulation in harbours poses navigation and ecological 

challenges (Syvitski et al., 2005; Van Rijn 2005; Green and Coco, 2014), requiring dredging 
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at high costs (Qu and Kelderman, 2001; Barneveld and Hugtenburg, 2008; Schipper et al., 

2010). Human activities around harbours often result in the accumulation of a variety of 

hazardous pollutants in sediments (Botwe et al. 2017a, 2017b), which poses serious concerns 

about the handling and fate of the dredged materials. Sedimentation in harbours is thus a 

major issue and its quantification is essential for harbour management (Buesseler et al., 2007; 

Leys and Mulligan, 2011). 

 

Information on sediment accumulation rates (SARs) in harbours, reservoirs, estuaries and 

coastal areas can be obtained from the comparison of bathymetric data acquired at different 

periods (Khaba and Griffiths, 2017, Brucker et al., 2007). This GIS-bathymetric approach 

involves measurements of tidal levels, water depth, positioning and the application of a series 

of corrections. For shallow waters with less than 20 m water depth such as harbours, 

bathymetric data can be best obtained by using Phase Differencing Bathymetric Sonar 

(PDBS) systems with an associated total vertical uncertainty of 0.26 m for a 10 m water depth 

(Brisson et al., 2014). Although this uncertainty is acceptable for water depth control 

purposes, it is too coarse for estimating SARs. Thus, GIS-bathymetry has been mainly used 

for mapping SAR in areas where accretion rates are high (>0.3 m.y
-1

) (Brucker et al., 2007) or 

when the study involves time lapses of the order of decades (Ortt et al., 2000). It is worth 

noting that the method provides mean SAR in the time lapse and it cannot identify processes 

affecting the depth distribution of hazardous pollutants. Other methods based on horizon 

markers, anchored tiles, rulers, sediment traps, optical backscatter sensors and short-lived 

radionuclides (
234

Th and 
7
Be) are available for measuring sediment accumulation over short-

time scales (Thomas and Ridd, 2014). 

 

In depositional environments, where continuous accumulation of sediments has taken place 

over a long period of time without any interruption in the sedimentary sequence or mixing, the 

210
Pb sediment dating technique has proven useful for quantifying SARs on time scales 

spanning 100-150 years (Appleby and Oldfield, 1978; Robbins, 1978; Appleby and Oldfield, 

1983; Caroll and Lerche, 2003; Alonso-Hernandez et al., 2006; Díaz-Asencio et al., 2011; 

Bellucci et al., 2012). Sedimentation in coastal marine harbours is, however, a dynamic 

process for which relatively large spatial and temporal variations can be expected (Leys and 

Mulligan, 2011). For example, sediment resuspension due to wave action, tidal oscillations, 

movement of vessels and dredging (Lepland et al., 2010; Leys and Mulligan, 2011; Green and 

Coco, 2014) may co-occur with sediment deposition in coastal marine harbours. Thus, 
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complete recovery of radionuclide inventories could also be difficult in areas with relatively 

high SARs (of the order of 1 g.cm
-2

.y
-1

) due to the limited length of sediment core samplers. 

Quantifying sedimentation rates in such disturbed environments, therefore, requires integrated 

approaches (Bellucci et al., 2012), the application of robust numerical models and an accurate 

study of the harbour and the operations within the harbour itself (Tanner et al., 2000; Tang et 

al., 2008; Smith et al., 2009; Lepland et al., 2010).  

 

As far as we know, there are no previous studies on harbours located in tropical Africa, where 

in addition to the aforementioned challenges and the scarcity of background studies, it is 

difficult to measure artificial radionuclides such as
 137

Cs above the method detection limit due 

to its low fallout rate. 
210

Pb-based chronologies require independent chronostratigraphic 

markers for validation (Smith, 2001; Caroll and Lerche, 2003; Abril, 2004) and 
137

Cs is the 

most widely used complement for the 
210

Pb dating method. 

 

Profiles of short-lived and particle-reactive radionuclides such as 
234

Th (half-life = 24 d) and 

7
Be (half-life = 53 d) in sediment cores can be used to estimate recent sedimentation rates 

over short-time scales of days to months (Giffin and Corbett, 2003). 
234

Th is produced from 

the decay of 
238

U (half-life = 4.5 x 10
9
 y), while 

7
Be is a cosmogenic radionuclide produced 

from the interaction of cosmic rays with oxygen and nitrogen in the stratosphere and the 

troposphere (Sharma et al., 1987; Erten, 1997; Pfitzner et al., 2004; Palinkas et al., 2005). In 

marine environments, 
238

U is found in the water column in excess with respect to 
226

Ra due to 

its higher solubility (IAEA, 2004; Botwe et al., 2007b). When 
238

U decays to 
234

Th, this high 

particle-reactive isotope is taken up by Suspended Particulate Matter (SPM) and surface 

sediments, where it can be found in excess with respect to the background levels, referred to 

as excess 
234

Th (
234

Thexc). 
7
Be and 

234
Thexc profiles, when combined with 

210
Pb and 

137
Cs 

profiles in sediment cores, are useful for understanding sediment dynamics in aquatic systems 

(Sharma et al., 1987; Erten, 1997; Fuller et al., 1999; Giffin and Corbett, 2003; Palinkas et al., 

2005; Yeager et al., 2005; Schmidt et al., 2007a; Schmidt et al., 2007b). In addition to 

radionuclide profiles in sediment cores, sediment traps are important tools for investigating 

short-term fluxes and dynamics of sediments in aquatic systems (Kelderman, 2012; 

Kelderman et al., 2012; de Vicente et al., 2010).  

 

The objective of this study was to investigate settling fluxes and sedimentation rates in the 

coastal marine Tema Harbour (Ghana) by the combined analyses of accumulated dry mass in 
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sediment traps and radionuclide (
7
Be, 

234
Th, 

210
Pb, 

212
Pb, 

226
Ra, 

40
K and 

137
Cs) profiles in 

sediment cores, with the help of numerical sediment dating models. In particular, excess 
210

Pb 

(
210

Pbexc) data were analysed with the TERESA (Time Estimates from Random Entries of 

Sediments and Activities) model (Abril, 2016), which is based on a widely observed statistical 

correlation between 
210

Pbexc fluxes and SARs (Abril and Brunskill, 2014). The TERESA 

model has been validated against synthetic cores and real data from varved sediments, for 

which an independent chronology was available. The basic assumptions of the TERESA 

model were satisfied by the sedimentary conditions in the disturbed Tema Harbour, which 

provided a unique opportunity to test the performance of this new dating tool under conditions 

where the assumptions of most of the 
210

Pb-based models fail. Thus, this study may be of 

interest to the broad scientific community concerned with the investigation of sedimentation 

conditions and pollution records in harbours and other dynamic systems where SAR values 

fall beyond the capabilities of the differencing GIS-bathymetry and conventional 
210

Pb-based 

dating methods, and the use of sediment traps and 
234

Th and 
7
Be profiles show serious 

constraints. 

 

7.2. Materials and methods 

7.2.1. Study area  

The Tema Harbour is about 70 km west from the outlet of the Volta River in Ghana and there 

are several minor riverine systems along the Ghanaian shoreline that deliver important loads 

of suspended particulate matter to the coastal region (Akrasi, 2011). However, there is no 

direct riverine inflow in the Tema Harbour (Botwe et al., 2017b). The Tema Harbour layout 

and its operations have been described previously (Botwe et al., 2017a; Botwe et al., 2017b; 

Botwe et al., 2017c). Briefly, the Tema Harbour is a semi-enclosed coastal harbour situated in 

the Gulf of Guinea at Tema (Greater Accra, Ghana) with a water area of 1.7 km
2
 (Fig. 7.1). It 

has been in operation since 1962 and is partitioned into a Main Harbour, a Fishing Harbour 

(Inner and Outer) and a Canoe Basin. The Main Harbour is concerned with shipping 

operations and has water depths ranging from 7.5 to 11.4 m (mean 8.5 m), a 240 m wide 

entrance and a breakwater of 4850 m length (Botwe et al., 2017b). The Fishing Harbour and 

the Canoe Basin are dedicated to the operations of semi-industrial, industrial and artisanal 

fishing vessels (Botwe et al., 2017c).  
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Fig. 7.1 Map of Tema Harbour (Ghana) showing sediment core and sediment trap 

sampling stations and the approximate area dredged in 2014. 

 

The average water temperature is around 23 ºC with water salinity ranging from 30-35‰ 

(Botwe et al., 2017c). Tides in the study area are semi-diurnal with a tidal range of about 1.6 

m. In the immediate coastal sea area, tidal currents range from less than 0.1 to 0.5 m.s
-1

 and 

wave heights range from 1 to 2 m (http://open_jicareport.jica.go.jp/pdf/11681632_03.pdf). A 

portion of the Main Harbour (shown in Fig. 7.1) was dredged in March-April 2014, while the 

Canoe Basin was dredged in May 2013 (Botwe et al., 2017c). It is also worth noting that in 

2013, the construction of a new wharf was started near the eastern margin of the dredged area, 

with the emplacement of the supporting concrete pillars. The over-water structure was 

completed during 2014.    
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7.2.2. Sediment sampling 

Four sediment cores were sampled with an Uwitech® gravity corer (length = 60 cm; internal 

diameter = 8.5 cm) from stations A, B, C and D in the Tema Harbour (Fig. 7.1) in April 2015. 

Water depths at the sediment core stations A, B, C and D were 8.5, 8, 10 and 9 m, 

respectively. During the sediment core sampling period, the turbidity of seawater 

was measured in Nephelometric Turbidity Unit (NTU) at the surface, mid depth and the 

bottom at each core sampling station using a turbidity probe (HI 9829, Hanna Instruments, 

USA).  

  

Besides, vertical arrays of 2 cylindrical polyvinyl chloride (PVC) sediment traps, positioned 

0.6 m apart in an alternating fashion, were deployed at 5 stations (I, II, III, IV and V) along a 

transect in a less busy area of the Tema Harbour (Fig. 7.1) over a period of 12 weeks (23 May 

- 15 August, 2015) to collect settling particles at two water depths of approximately 1.8 m 

(top trap) and 0.6 m (bottom trap) from the seabed. The aspect ratio of each sediment trap was 

6.0 (i.e. height = 60 cm; diameter = 10 cm) to minimise current-induced resuspension and loss 

of material from the trap (Bloesch & Burns, 1980; Kelderman et al., 2012; de Vicente et al., 

2010). The sediment traps were retrieved every two weeks (Kelderman, 2012; Kelderman et 

al., 2012; de Vicente et al., 2010) till the end of the 12-week period. Upon their retrieval, the 

sediment cores and trap samples were placed upright in racks and transported to the 

Department of Marine and Fisheries Sciences laboratory at the University of Ghana for further 

processing and analysis. Rainfall data over the study period was obtained from the Ghana 

Meteorological Services.  

 

In the laboratory, the sediment cores were allowed to stand overnight, after which the 

overlying water was carefully siphoned off. Each sediment core was sectioned at 1 cm 

intervals over the top 2 cm layer and subsequently at 2 cm intervals. During core extrusion 

and sectioning, lower sections may become contaminated as they move past smears from 

upper sections left on the walls of the corer. Thus, the outer 1 cm rim of each sediment slice 

was trimmed off (Bellucci et al., 2012). The content of each sediment trap was wet-sieved 

successively over 2000 and 63 µm stainless steel mesh sieves to determine the distribution of 

the <63 µm (silt-clay) and 63-2000 µm (sand) fractions of the trapped sediment. The wet 

weights of the sediment core samples, the core layers, as well as the <2000 µm fraction of 

sediment trap samples were measured and then oven-dried at 50°C till constant weight to 
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obtain their dry weights (Botwe et al., 2017b). Direct gamma spectrometric analyses of 
7
Be 

(478 keV), 
234

Th (63.3 keV), 
210

Pb (
210

Pbtot, 46.5 keV),
 212

Pb (239 keV), 
214

Pb (352 keV), 
214

Bi 

(609 keV), 
137

Cs (662 keV) and 
40

K (1460 keV) were performed at ENEA Marine 

Environment Research Centre (S. Teresa, Italy). Prior to the gamma analyses, the sediment 

core samples were homogenised by grinding and stored air-tight for at least 22 days in plastic 

vials of standard geometries (5, 10 and 20 g) following Botwe et al. (2017b) to ensure secular 

equilibrium between the parent nuclides and their short-lived daughter nuclides. The 

measured activities were decay-corrected to the sediment sampling date.  

 

7.2.3. Data treatment 

Sediment trap-derived settling fluxes (SF, with units of g.cm
-2

.y
-1

) were estimated from Eq. 1:  

 

    
 

     
                      ( ) 

 

where M is the dry accumulated mass of trapped material (g), A is the cross-sectional area of 

the sediment trap (cm
2
) and D is the duration of trap deployment (y). 

 

The water content of the sediment samples was obtained from the difference between the wet 

and dry weights and expressed as a percentage of the sediment wet weight. The 
226

Ra 

activities were indirectly obtained from the average 
214

Pb and 
214

Bi activities (Botwe et al., 

2017b). For each sediment layer, the 
210

Pbexc specific activity was obtained by subtracting the 

226
Ra (supported 

210
Pb) specific activity from the total 

210
Pb (

210
Pbtot) specific activity (Corbett 

et al., 2009). Excess 
234

Th (
234

Thexc) specific activity was estimated from the total 
234

Th 

specific activity by subtracting the background level (the averaged value of concentrations 

measured downcore, except the topmost layers). Core D required a more complex procedure, 

since the values measured downcore were not constant. The supported 
234

Th fraction near the 

surface was estimated by assuming a constant 
238

U/
226

Ra ratio along the whole core. Bulk 

densities were evaluated from the determination of the dry weight of the mass contained in a 

well controlled bulk volume of the sediment, and the mass depths at the centre and at the 

bottom of each sediment slice determined following Baskaran et al. (2014).  

 

Subsurface sediments may undergo compaction and introduce errors in the determination of 

sediment depth and age relationships and hence, the estimation of linear sedimentation rates 
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(Abril, 2003; Lu, 2007). Therefore, the activity profiles of 
7
Be, 

234
Thexc and 

210
Pbexc

 
were 

related to the mass-depth (mass of sediment per unit area, g.cm
-2

) instead of the linear-depth 

of the sediment (Erten, 1997; Lu, 2007). Inventories of 
7
Be were determined for each core by 

integrating their downcore activities (Giffin and Corbett, 2003; Mullenbach et al., 2004; 

Palinkas et al., 2005). The simplest SAR modelling approach, defined by the assumptions of 

constant flux and constant sedimentation rate (CF-CS) without any post-depositional 

redistribution (Appleby and Oldfield, 1983; Erten, 1997), was applied to the sediment cores to 

derive very recent (3-8 months) SARs based on the measured 
7
Be activity profiles.  

 

The TERESA model was applied for the analysis of 
210

Pbexc versus mass depth profiles.  The 

model fundamentals and its validation against synthetic cores and real data from varved 

sediments have been described by Abril (2016). In summary, the model stands on the 

following set of assumptions: (i) 
210

Pbexc behaves as a particle-associated tracer and new 

inputs are ideally deposited over the previously existing material; (ii) there is no post-

depositional redistribution; (iii) there is continuity of the sequence (i.e., there is not any 

missing layer by erosion); and (iv) 
210

Pbexc fluxes are governed by ‗horizontal inputs‘ and 

thus, there is a statistical correlation between 
210

Pbexc fluxes and SAR (Abril and Brunskill, 

2014). Therefore, for a sediment core which has been sectioned into N slices of mass 

thickness Δmi (i = 1, 2, ... N), each slice has an associated age interval ΔTi, a mean SAR value (wi), 

and an associated initial specific activity (A0,i) corresponding to the activity when that 

sediment slice was at the sediment-water-interface (SWI).  

 

The TERESA model operates with SAR and initial radionuclide activity distributions, for 

respectively, wi and A0,i, which closely follow normal distributions around their arithmetic 

mean values, w and Ᾱ0, with standard deviations σw and σA, respectively. Sw and SA are, 

respectively, their normalised values (standard deviation over mean values). Provided a first 

estimation of w , Ᾱ0, σw and σA, the model generates independent random distributions for wi 

and A0,i; and then an intelligent algorithm solves their best arrangement downcore to fit the 

experimental 
210

Pbexc versus the mass depth profile, generating then solutions for the 

chronological line and for the histories of SAR and sediment fluxes (Abril, 2016). As the 

result depends on the first estimation of w , Ᾱ0, σw and σA, the model applies a mapping 

technique by iterating the whole process for each parameter varying over a wide range. The 

error function, Q
2
, measures the overall quality of the fit for each individual run of the model 

(Abril, 2016):  
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where Ai and σi are, respectively, the measured value and the analytical error of the 

radionuclide specific activity at the slice with index i, Ath,i being the corresponding value 

estimated by the model, χ is a measure of the mean distance between the theoretical and 

experimental profiles in terms of the size of the associated uncertainties, and f is  the number 

of degrees of freedom.   

 

Parametric maps of the χ-function serve to find out the best solution and to support error 

estimates (Abril, 2016). The typical fundamentals can be applied for error estimates in the 

four entry parameters (namely w , σw, Ᾱ0, σA) through the curvature of the parametric lines in 

the Q
2
 function around the position of the absolute minimum (Bevington and  Robinson, 

2003).  The associated uncertainty in the age at the bottom of each layer, Tj, can then be 

estimated through the general propagation law: 
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Optionally, the model's answers can be better constrained through the use of time markers, 

when available. As the model-algorithm requires a continuous profile, data from the non-

measured sediment slices have been estimated by linear interpolation with ascribed double 

error-bars to minimise their relative weight in the fit. To avoid the generation of negative 

values or influencing points when exploring large values of Sw and SA, lower threshold limits 

of 0.1 Ᾱ0 and 0.2 w have been imposed in all the calculations.  

 

7.3. Results and discussion 

7.3.1. Estimates of settling fluxes of particulate matter in the Tema Harbour  

Table 7.1 shows the estimated average settling fluxes (SFs) of particulate matter over two 

sampling depths (top and bottom traps) in the Tema Harbour based on the accumulated dry 

mass in the sediment traps retrieved every two weeks till the end of the 12-week sampling 

period. The average SF values over the two sampling depths ranged from 15 (± 3) to 54 (± 18) 
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g.cm
-2

.y
-1

, being higher at stations III and IV. About 93% of these SFs (range 84%-96%) 

correspond to the fraction of particle sizes larger than 63 μm (Table 7.1). As the typical 

settling velocities for fine sand and larger particle sizes are over 10 m.h
-1

 (Eisma, 1993; Ji, 

2008), they will be quickly removed from the water column. 

 

Table 7.1 Estimated settling fluxes (SFs) of particulate matter (mean ± standard 

error) at five sampling stations in the Tema Harbour (Ghana) based on biweekly 

accumulated dry mass in sediment traps deployed at two water depths (top and 

bottom traps) over a period of 12 weeks. The weight fraction (%) of the trapped 

sediment samples with Ф<63 µm are also presented.  See sampling stations in Fig. 

7.1. 

Sampling 

station 
 

Sediment trap 

deployment 

SF  

(g.cm
-2

.y
-1

) 

Fraction with 

Ф< 63 μm (%) 

I 
 Top trap

1
 18 ± 11 8.1 

 Bottom trap
2
 21 ± 7 7.6 

II 
 Top trap

2
 25 ± 5 9.4 

 Bottom trap
2
 15 ± 3 8.7 

III 
 Top trap

2
 46 ± 16 3.8 

 Bottom trap
2
 42 ± 12 3.9 

IV 
 Top trap

2
 54 ± 18 4.5 

 Bottom trap
2
 23 ± 8 16.1 

V 
 Top trap

2
 30 ± 13 6.3 

 Bottom trap
2
 28 ± 9 5.2 

1 
n = 3; 

2
 n = 6 

 

From the maximum tidal range of 1.6 m 

(http://www.tides4fishing.com/af/ghana/tema#_tide_table) and the geometry of the Main 

Harbour entrance (i.e. 240 m width and 8.5 m mean water depth), it is possible to estimate a 

maximum cross-sectional averaged water current of about 6 cm.s
-1

 at the Main Harbour 

entrance, and a bottom shear stress slightly over 0.07 Pa by applying standard hydrodynamic 

principles (Periáñez and Abril, 2014; Abril and Periáñez, 2016). This estimated shear stress, 

which is associated with maximum tidal currents at the Tema Harbour, is over the threshold 

value (0.06 Pa) for resuspending clays and fine silts (Eisma, 1993; Ji, 2008). But in the inner 

area of the Main Harbour, the tidal currents are lower and resuspension of sediments is not 

http://www.tides4fishing.com/af/ghana/tema#_tide_table
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expected to occur because of the tidal forcing. Nevertheless, ship traffic and particularly the 

manoeuvres of big cargos and drilling ships can cause remobilisation of large amounts of 

sediments, as it can be seen from available aerial photographs (e.g. 10/08/2015; Google 

Earth). Thus, coexistence of sediment deposition and resuspension is expected to occur. 

Consequently, the obtained SFs may overestimate the SAR values since the material settled 

within the sediment traps is not allowed to undergo resuspension, which could occur in real 

sediments. Thus, the estimated time-averaged SFs from the top and bottom sediment traps at 

each station represent only a proxy and an upper bound of the expected annually-averaged 

values at their locations. 

 

Concerning temporal variations, some relative maxima were found at different periods for 

each station (not shown). The SF values from the top sediment traps were usually comparable 

or higher than those from the bottom traps, although some exceptions were found at stations I 

and V. The observed maxima found at different periods for each station did not correspond to 

a single event of entry of a high mass inflow into the Main Harbour. Moreover, maxima of 

SFs at the two sampling depths at each sampling station are often registered at different times. 

This fact points out the importance of local disturbances, which have a highly irregular 

character both in time and space, and are most likely linked to the manoeuvring of cargo 

ships. Moreover, from the location of the sampling points, it is expected that station I, at a 

corner of the Main Harbour, should experience less perturbations and thus capturing lower 

masses of SF, as indeed found in Table 7.1. This reveals a complex dynamics of rising clouds 

of suspended particulate matter (SPM) and settling in the Tema Harbour, interfered by 

horizontal transport, most likely the one forced by the tidal dynamics.  

 

The mean (± standard deviation) turbidity values of the surface, mid depth and bottom 

seawater at the sediment core sampling stations were as follows: core station A = 3.9 (± 0.8) 

Nephelometric Turbidity Unit (NTU); B = 3 (± 0.6) NTU; C = 3.7 (± 0.7) and D = 4.7 (± 1.1). 

Although a station-specific ppm (mg.L
-1

) versus NTU calibration curve was not constructed, 

from a typical slope of 3.4 ppm/NTU, the turbidity measurements lead to an estimation of the 

SPM concentration, C, of around 10 parts per million (ppm). Assuming that this value is 

representative of the mean environmental conditions at the Tema Harbour and using the SF 

values in Table 7.1 (i.e. CvSF s ), the mean values for the settling velocities, vs, were 

estimated to be in the range of (0.5-1.7)10
-3

 m.s
-1

, again corresponding to silt and fine sand 
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fractions. These considerations could also provide a gross estimate of the order of magnitude 

of the expected mean sedimentation rates in the Tema Harbour. From the known tidal range 

and mean water depth, one could estimate that in each tidal cycle, the Tema Harbour 

exchanges about 10% of its water volume. If the above SPM concentration of 10 ppm is 

representative of the marine inflow and the Tema Harbour acts as a huge sediment trap, the 

expected mean SAR value would be about 6 g.cm
-2

.y
-1

.  Large local variability is expected 

around this value due to localised discharge of solids, ship traffic and varying sedimentation 

yields.  

 

 It is worth noting that the SF values from Table 7.1 captured the prevailing environmental 

conditions in the SW area of the Tema Harbour during the 12-week deployment period. They 

represent an upper bound for the sediment mass accumulation rates (SARs) at their respective 

sampling stations. Rainfall in the sampling area during the sampling period and the preceding 

month ranged from 0 to 142.3 mm with a mean of 6.1 mm (not shown). There were no 

episodic incidents of heavy rainfall, storm runoff or floods during the study period, which 

could have induced sediment transport into the Tema Harbour and affect the sedimentary 

regime (Palinkas et al., 2005; Díaz-Asencio et al., 2011). 

 

7.3.2. Radionuclide and bulk density profiles in sediment cores from Tema Harbour 

The mass depth and 
7
Be, 

234
Th, 

210
Pb, 

226
Ra, 

212
Pb and 

137
Cs specific activity profiles of cores 

A, B, C and D from the Tema Harbour are shown in Table 7.2, while Fig. 7.2 shows the bulk 

density versus depth profiles for the cores. Table 7.2 shows that cores A, B and C had similar 

radionuclide trends, with almost constant downcore
 210

Pbtot specific activity (around 200-300 

Bq.kg
-1

), while core D showed large differences in the radionuclide activity profiles with 

lower activities at intermediate depths (from approximately 15 to 25 cm). For all the cores, the 

210
Pbexc and 

137
Cs specific activity profiles did not reach a zero value in the deeper layers. 

Moreover, no clearly decreasing 
210

Pbexc profiles were observed in all four sediment cores. 

 

Fig. 7.2 shows that bulk density in cores A and B exhibit similar and typical quasi-steady 

compaction profiles broken by some intermediate relative peaks. Core C showed a trend of 

increasing bulk density downcore with anomalous low values at the top 0-2 cm layer. Core D   
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Table 7.2 Profiles of mass depth and radioactivity (7Be, 234Th, 210Pbtot, 
226Ra, 212Pb,  

        40K and 137Cs) concentrations in sediment cores from Tema Harbour 

     (Ghana). See sampling stations in Fig. 7.1. 

 
  

Specific activities (Bq kg
-1

) 

Core 

ID 

Core 

depth  

(cm) 

*Cumulative 

mass depth  

 (g.cm
2
) 

7
Be 

234
Th

 210
Pbtot

 226
Ra

 212
Pb 

40
K

 137
Cs

 

A 0-1 0.65 50 ± 9 135 ± 34 296 ± 13 15 ± 2 40 ± 1 317 ± 18 < 0.6 

 1-2 1.27 29 ± 7 94 ± 32 302 ± 10 12 ± 2 41 ± 1 304 ± 17 < 0.6 

 2-4 2.39 20 ± 6 28 ± 6 279 ± 10 13 ± 2 36 ± 1 288 ± 15 1.9 ± 0.5  

 4-6 4.28 6 ± 3 32 ± 4 319 ± 10 15 ± 1 42 ± 1 313 ± 13 2.1 ± 0.4 

 6-8 5.45 5 ± 3 36 ± 4 286 ± 9 14 ± 1 44 ± 1 333 ± 14 1.4 ± 0.4 

 8-10 6.62 < 6 35 ± 4 251 ± 7 16 ± 1 47 ± 1 336 ± 14 2.0 ± 0.3 

 10-12 7.69 < 6 31 ± 4 314 ± 9 15 ± 1 28 ± 1 294 ± 11 1.0 ± 0.3 

 12-14 9.13 < 6 35 ± 3 309 ± 10 15 ± 1 26 ± 1 309 ± 10 1.6 ± 0.3 

 16-18 12.67 < 6 30 ± 4 300 ± 9 15 ± 1 25 ± 1 271 ± 12 1.7 ± 0.4 

 24-26 17.30 < 6 39 ± 3 330 ± 9 17 ± 1 25 ± 1 292 ± 10 1.4 ± 0.2 

 32-34 22.13 < 6 33 ± 3 282 ± 7 15 ± 1 25 ± 1 294 ± 9 1.5 ± 0.3 

B 0-1 0.55 61 ± 14 206 ± 30 285 ± 20 11 ± 2 46 ± 3 360 ± 31 <1 

 1-2 1.34 17 ± 9 84 ± 46 233 ± 17 13 ± 2 45 ± 2 329 ± 27 2.6 ± 1.0 

 2-4 2.71 <9 32 ± 6 245 ± 14 14 ± 1 43 ± 1 323 ± 17 2.1 ± 0.6 

 4-6 3.91 <9 43 ± 6 298 ± 15 14 ± 1 29 ± 1 291 ± 15 1.8 ± 0.5 

 6-8 5.1 <9 34 ± 9 298 ± 18 16 ± 2 29 ± 1 295 ± 21 1.8 ± 0.7 

 8-10 7.3 <9 35 ± 6 284 ± 14 14 ± 1 26 ± 1 285 ± 12 2.0 ± 0.4 

 12-14 10.0 <9 40 ± 6 298 ± 15 14 ± 1 27 ± 1 326 ± 15 1.7 ± 0.4 

 16-18 12.2 <9 40 ± 6 222 ± 12 13 ± 1 28 ± 1 320 ± 17 0.9 ± 0.4 

 22-24 16.6 <9 34 ± 5 175 ± 10 14 ± 1 37 ± 1 324 ± 13 1.8 ± 0.3 

 28-30 20.8 <9 29 ± 5 165 ± 10 15 ± 1 37 ± 1 340 ± 14 2.2 ± 0.5 

C 0-1 0.26 55 ± 10 196 ± 19 258 ± 17 10 ± 2 48 ± 2 325 ± 28 2.1 ± 0.9 

 1-2 0.65 54 ± 12 278 ± 25 276 ± 17 13 ± 2 49 ± 2 375 ± 28 <1 

 2-4 2.06 25 ± 5 95 ± 16 242 ± 14 13 ± 1 42 ± 1 314 ± 11 1.2 ± 0.4 

 4-6 3.39 <12 36 ± 3 289 ± 16 14 ± 1 43 ± 1 341 ± 11 1.1 ± 0.3 

 6-8 4.74 <12 32 ± 4 302 ± 18 14 ± 1 45 ± 1 341 ± 12 1.0 ± 0.4 

 8-10 6.31 <12 30 ± 3 182 ± 12 15 ± 1 60 ± 1 396 ± 13 1.3 ± 0.4 

 12-14 9.92 <12 34 ± 5 177 ± 13 15 ± 1 59 ± 1 373 ± 15 1.1 ± 0.5 

 14-16 11.89 <12 31 ± 5 187 ± 14 15 ± 1 53 ± 1 406 ± 17 1.9 ± 0.5 

 16-18 14.14 <12 28 ± 4 155 ± 10 15 ± 1 51 ± 1 453 ± 13 <1 

 18-20 16.10 <12 37 ± 4 190 ± 12 17 ± 1 62 ± 1 413 ± 15 1.0 ± 0.3 

 32-34 30.95 <12 37 ± 3 203 ± 12 13 ± 1 34 ± 1 404 ± 12 1.3 ± 0.3 

 40-42 41.10 <12 37 ± 4 219 ± 13 14 ± 1 35 ± 1 402 ± 12 1.7 ± 0.5 

 46-48 48.8 <12 31 ± 5 207 ± 10 16 ± 1 32 ± 1 421 ± 15 1.5 ± 0.3 
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Table 7.2 Continued 

 
  

Specific activities (Bq.kg
-1

) 

Core 

ID 

Core 

depth 

(cm) 

*Cumulative 

mass depth  

 (g.cm
2
) 

7
Be 

234
Th

 210
Pbtot

 226
Ra

 212
Pb 

40
K

 137
Cs

 

D 0-1 0.38 126 ± 31 219 ± 37 276 ± 16 17 ± 3 39 ± 1 333 ± 19 2.4 ± 0.8 

 1-2 0.94 48 ± 7 276 ± 38 284 ± 13 15 ± 2 40 ± 1 340 ± 19 <1.2 

 2-4 2.12 34 ± 9 234 ± 40 269 ± 13 11 ± 2 37 ± 1 321 ± 18 <1.2 

 4-6 3.27 19 ± 5 107 ± 15 242 ± 10 12 ± 2 35 ± 1 299 ± 14 <1.2 

 6-8 4.82 <6 47 ± 14 217 ± 13 9 ± 2 28 ± 1 302 ± 18 <1.2 

 8-10 6.41 <6 25 ± 3 200 ± 8 11 ± 2 25 ± 1 270 ± 13 1.3 ± 0.4 

 12-14 10.87 <6 16 ± 3 82 ± 6 7 ± 1 
16 ± 

0.5 
266 ± 11 <0.6 

 16-18 17.22 <6 7 ± 2 18 ± 4 5 ± 1 
11 ± 

0.3 
275 ± 9 <0.6 

 20-22 24.33 <6 9 ± 3 41 ± 6 4 ± 1 
14 ± 

0.4 
318 ± 13 0.6 ± 0.3 

 26-28 33.85 <6 17 ± 2 79 ± 5 9 ± 1 
21 ± 

0.4 
280 ± 10 0.8 ± 0.2 

 36-38 48.10 <6 13 ± 2 86 ± 6 7 ± 1 
17 ± 

0.4 
299 ± 11 <0.6 

 38-40 49.73 <6 24 ± 4 182 ± 7 12 ± 1 
28 ± 

0.6 
337 ± 12 1.0 ± 0.3 

Errors are 1 standard deviation from counting statistics; Minimum Detectable Activity are 

indicated as < MDA (Bq.kg
-1

); *At the central point of each sediment slice 
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Fig. 7.2 Bulk density (ρ) versus depth profiles for sediment cores A, B, C and D 

sampled from Tema Harbour (Ghana) 

 

showed a distinct structure, with higher values of bulk density below the 15 cm depth. Thus, 

the data on bulk density suggest highly dynamic and non-steady sedimentary conditions at the 

study site (Abril, 2003). It is worth noting that high values of bulk density are typically 

associated with the presence of coarser grain-sizes, which have lower specific activities of 

surface-bound radionuclides. 

 

7.3.3. Inventories and fluxes of 7Be and 7Be-derived sediment accumulation rates  

The measurement of 
7
Be specific activities in the top layer of a sediment core is usually 

considered as a quality test for the complete surface recovery of the core, which is necessary 

for dating (Erten et al., 1985; Erten, 1997). In the Tema Harbour, it was possible to measure 

7
Be in several sediment slices downcore (Table 7.2).  This provided an opportunity to 

determine the very recent SAR values over the past 6-8 months under some simplifying 

assumptions. The 
7
Be inventories (see Table 7.3) ranged from 470 (± 110) to 1360 (± 170) 

Bq.m
-2

, core D being richer in 
7
Be than the other cores. The 

7
Be inventories in the Tema 

Harbour sediments were higher, but comparable to the values reported by Olsen et al. (1985) 

for coastal sediments from Virginia and Tennessee (370-740 Bq.m
-2

). The 
7
Be inventories in 

the Tema Harbour sediments were also comparable to, but lower than the values reported for 
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(1) sediments of the Neuse and Pamlico River Estuaries (33-97 Bq.m
-2

) by Giffin and Corbett 

(2003), (2) sediments of the Eel Canyon, northern California (5,780-12,000 Bq.m
-2

) by 

Mullenbach et al. (2004), and (3) sediments from Po River delta, Adriatic Sea (190-5,420 

Bq.m
-2

) by Palinkas et al. (2005). The fluxes of 
7
Be onto the SWI, assumed to be constant, 

were estimated from the product of the 
7
Be inventories and the radioactive decay constant. 

They varied from 2200 (± 500) to 6500 (± 800) Bq.m
-2

.y
-1

 (Table 7.3). The spatial variability 

in 
7
Be values in the Tema Harbour may be due to the fact that uptake of atmospheric 

7
Be by 

SPM mediates its fluxes onto the SWI. A large spatial variability in 
7
Be inventories is a 

common feature of coastal sediments, which has been previously reported in the scientific 

literature (Rose and Kuehl, 2010; Kolker et al., 2012). 

 

Table 7.3  7Be inventories and fluxes onto the sediment-water interface (SWI) and 

      7Be-derived sediment accumulation rate (SAR) values in sediment cores  

      From Tema Harbour (Ghana). 

Core  

7
Be inventory 

(Bq.m
-2

) 

7
Be flux onto SWI 

(Bq.m
-2

.y
-1

)  

7
Be-derived SAR* 

(g.cm
-2

.y
-1

) 

A 900 ± 120 4300 ± 600 
 

9.0 ± 1.3 

B 470 ± 110 2200 ± 500 
 

2.5 ± nd 

C 710 ± 90 3400 ± 400 
 

7.1 ± 1.8 

D 1360 ± 170 6500 ± 800 
 

7.1 ± 2.0 

*From a CF-CS model; nd: not determined 

 

Fig. 7.3 shows that 
7
Be versus mass depth profiles in sediment cores A and D followed an 

exponential decay at a confidence level of over 90%, while for cores B and C the number of 

data points is not statistically significant. Table 7.3 reports the 
7
Be-derived SAR values, 

assuming the applicability of the CF-CS model. The SAR values were in the range of 2.5-9.0 

g.cm
-2

.y
-1

, and were much lower than the sediment trap-derived SFs (Table 7.1). This 

observation points out the important role of sediment resuspension in the sedimentation 

process at the Tema Harbour, as expected from the aerial photographs (see Section 7.3.1).  

Nevertheless, these values have to be taken as a first estimate of the order of magnitude of 

SARs in Tema Harbour. The reported uncertainties in Table 7.3 come from a numerical fitting 

which does not account for the uncertainties in the radionuclide specific activities. But "the 

model errors" arising from a partial accomplishment of the involved assumptions may be 

more relevant. Thus, the 
7
Be versus mass-depth profiles could be mediated by mixing, 



Settling Fluxes and Sediment Accumulation Rates by the Combined Use of Sediment 
Traps and Sediment Cores in Tema Harbour (Ghana) 

198 
 

diffusion or non-ideal depth deposition of fluxes, which would result in somewhat lower SAR 

values than the above estimates. Particularly, the assumption of a constant flux is problematic 

for 
7
Be due to its short half-life (Taylor et al., 2013).  

 

It has been shown for different geographical latitudes that the atmospheric deposition of 
7
Be is 

well correlated with rainfall (Pham et al., 2013).  Rainfall in southern Ghana is higher during 

the rainy season (April-June and September-October) and minimum during the dry season 

(November-March and July-August). Unusually high rainfall values of about 100 mm were 

recorded for both February and March 2015, while only 30-40 mm was recorded in January 

2015 (https://jbaidoowilliams.com/2015/10/20/el-nino-2015-rainfall-fears/). Although a  

 

 

Fig. 7.3 7Be versus mass depth profiles of sediment cores A, B, C and D sampled 

from Tema Harbour (Ghana). Error bars represent 1-σ counting uncertainties. 

 

system time-averaged integration of fluxes has been described (Robbins, 2000), the 

assumption of constant fluxes of 
7
Be may be an oversimplification. On the other hand, the 

short penetration depth of 
7
Be in the core makes its profile more sensitive to surficial 

processes such as the non-ideal deposition described by Abril and Gharbi (2012).  

 

The 
234

Th activity versus mass depth profiles (Table 7.2) showed a near-constant background 

level along the cores at the 2-3 cm upper sediment slices. This is consistent with the high SAR 

values estimated from the 
7
Be data.   
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7.3.4. Analysis of 210Pbexc fluxes onto the SWI and mixing  

From Table 7.2, the surficial specific activities of 
210

Pbexc (~300 Bq.kg
-1

) were over one order 

of magnitude higher than those reported by Nyarko et al. (2016) for sediment cores from the 

Pra and Volta estuaries in Ghana. The difference can be explained in terms of the 

granulometry of the sediments, with a large component of the inputs linked to the small grain-

size SPM supplied by the tidal inflow. For the theoretical basis of the relationship among 

radionuclide specific activities and particle size, see Abril and Fraga (1996) and Abril (1998). 

The analysed cores were too short to allow any reliable estimation of the total 
210

Pbexc 

inventories required for the application of the constant rate of supply (CRS) model. The low 

values and large uncertainties in the 
137

Cs data did not allow any proper identification of 

chronostratigraphic horizons. Moreover, cores A, C and D did not follow any clear monotonic 

exponential trend of decrease (Fig. 7.4) and thus, the application of the CF-CS model for 

deriving SAR values was not reliable. 

 

The SAR values derived from 
7
Be data, along with the 

210
Pbexc specific activities in the upper 

sediment layers can be used to obtain a first estimate of the 
210

Pbexc fluxes onto the SWI if any 

post-depositional remobilization is discarded. Thus, for core A, this resulted in a flux onto the 

SWI of 25.6 kBq.m
-2

.y
-1

, being two orders of magnitude higher than the expected atmospheric 

deposition of 
210

Pbexc in the Tema Harbour area (typically in the range of 100-200 Bq.m
-2

.y
-1

). 

This means that fluxes of 
210

Pbexc onto the SWI must be governed by fluxes of matter (Abril 

and Brunskill, 2014). Furthermore, the models handling high diffusion coefficients and null or 

low SAR values under steady-state conditions could roughly fit the profiles from cores A, B 

and C (not shown). However, these models require fluxes of up to 100 kBq.m
-2

.y
-1

 to enter 

into the SWI (mostly in the dissolved form), which cannot be supplied by atmospheric 

deposition.  

 

About mixing, on the other hand, no observational evidence of bioturbation was available that 

would induce sediment mixing over large mass depths. Some degree of horizontal and vertical 

mixing may, nevertheless, exist due to the remobilization forced by ship displacements. But as 

data from sediment traps integrate a large number of such events, mixing in the sediments is 

not expected to exceed the 1-2 cm surface layer. About 70 vessels enter and leave the Tema 

Harbour weekly, most of them being cargo, tug and tanker vessels; and they follow well- 

defined tracks within the harbour 
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(http://www.marinetraffic.com/en/ais/details/ports/86/Ghana_port:TEMA). In contrast, the 

depth profiles of 
7
Be and 

234
Th in the sampling sites showed sharp gradients in the 0-2 cm 

layers, which are not compatible with a well-mixed layer. The hypothesis of mixing can thus 

be discarded as a main governing factor to explain the observed profiles. As the cores were 

sampled out of the dredged area (Fig. 7.1), they must have preserved a sequence of continuous 

sediment deposition.  

   

http://www.marinetraffic.com/en/ais/details/ports/86/Ghana_port:TEMA
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Fig. 7.4 210Pbexc versus mass depth profile for (a) core A, (b) core B, (c) core C and 

(d) core D in the Tema Harbour (Ghana). Vertical bars correspond to the associated 

uncertainties (1-σ), while the horizontal ones define the mass depth interval of each 

sediment slice. The numerical solution generated by the TERESA model is plotted as 

points at the centre of each slice interval (continuous line is only for guiding-eyes). 

 

 



Settling Fluxes and Sediment Accumulation Rates by the Combined Use of Sediment 
Traps and Sediment Cores in Tema Harbour (Ghana) 

202 
 

7.3.5. Analyses of 210Pb profiles and estimation of SARs using the TERESA model  

The hypothesis of varying, but statistically correlated, fluxes of matter and 
210

Pbexc onto the 

SWI seems reasonable for the Tema Harbour and thus, the conditions for applying the 

TERESA model can be met. Maps for the χ function (described in Section 7.2.3) in the ( 0A , 

w )
 
and (SA - SW) spaces for the four studied cores were computed with the TERESA model 

(not shown). The computation was done with the stand-alone version of the model and with 

the basic method-A (Abril, 2016), and they show relatively well defined valleys which 

determine the parameter values along with their associated fitting uncertainties, reported in 

Table 7.4. The computed 
210

Pbexc vs. mass depth profiles are shown in Fig. 7.4(a-d), and they 

match the experimental data with the χ values reported in Table 7.4. Finally, the resulting 

chronologies for the four cores are shown in Fig. 7.5. 

 

Table 7.4 Entry parameters of the TERESA model and fitting-error estimates1 for the 

     investigated cores from the Tema Harbour, where 0A (Bq.kg-1) is the mean  

     initial concentration,  ̅ is the mean SAR value (g.cm-2.y-1) and SA, Sw are 

     the corresponding relative standard deviations.  

1
 Through the second derivative of the Q

2
 function (Bevington and Robinson, 2003) 

 

 

 

 

 

 

 

 

Core 0A  w  SA Sw χ 

A 364.0 ± 0.2 1.620 ± 0.008 0.175 ± 0.003 0.384 ± 0.006 1.90 

B 262.0 ± 1.0 1.87 ± 0.07 0.169 ± 0.009 0.322 ± 0.024 0.96 

C 253.0 ± 1.2 3.27 ± 0.21 0.200 ± 0.010 0.27 ± 0.08 0.61 

D 152.5 ± 0.1 4.080 ± 0.004 0.600 ± 0.001 0.990 ± 0.003 1.09 
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Fig. 7.5 Chronologies estimated by the TERESA model for the investigated sediment 

cores from the Tema Harbour (Ghana) along with their corresponding uncertainty 

intervals (from the propagation of error associated to the fitting parameters of Table 

7.4).  

 

7.3.6. Analyses of sediment cores A, B and C 

Data from sediment core A showed the highest values of 
210

Pbexc specific activities and they 

remained almost constant downcore. The TERESA model produced a reasonable fit to the 

data with arithmetic means of 364 Bq kg
-1

 and 1.62 g.cm
-2

.y
-1

 and normalised standard 

deviations of 0.175 and 0.384 for the initial specific activity and SAR, respectively. It is worth 

noting that there were no alternative valley regions in the χ surface, and the fit, although not 

especially good, was well constrained, as inferred from the low fitting uncertainties (which are 

related to the curvature of the χ-surface along the parametric lines). There was a trend of 

decreasing radionuclide specific activities in recent dates, which compensates for the 

radioactive decay in the deeper layers and explains the observed profile. The age of the 

deepest measured sediment slice (32-34 cm) was estimated at 16 y, which implies a time-

averaged SAR of 1.4 g.cm
-2

.y
-1

 (or 2.1 cm.y
-1

). The time-averaged SAR is used likewise the 

CRS dating model in order to make these values comparable with literature data. 
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The chronological line generated by the TERESA model for sediment core B ran close to the 

one from core A (Fig. 7.5), with a slightly higher value of SAR and lower initial radionuclide 

specific activity (arithmetic means of 1.87 g.cm
-2

.y
-1

 and 262 Bq kg
-1

, respectively). The age 

of the deepest measured sediment slice (28-30 cm) was estimated at 13 y, which implies a 

time-averaged SAR of 1.6 g.cm
-2

.y
-1

 (or 2.4 cm.y
-1

). 

 

Sediment core C showed a 
210

Pbexc profile with a distinct sub-surface peak followed by a 

plateau area, and it was well reproduced by the TERESA model (Fig. 7.4c). The arithmetic 

mean value for the initial specific activity was close to the one for sediment core B, but the 

SAR value was noticeably higher. The age of the deepest measured sediment slice (46-48 cm) 

was estimated at 16 y (with a time-averaged SAR of 2.9 g.cm
-2

.y
-1

 or 3.0 cm.y
-1

). The distinct 

peak extended up to a mass-depth of 4.06 g.cm
-2

, for which the TERESA-derived age was 1.5 

(± 0.5) y (Fig. 7.5). The building of the wharf structure between 2013 and 2014 might have 

changed the local sedimentological conditions. Under the new conditions, the radionuclides 

content in sediment core C tends to the values found in sediment core A (see Table 7.2). This 

implies that before the deployment of the pillars, the fluxes of matter on the site of sediment 

core C were contributed by both marine inflow and some local sources, which resulted in 

higher bulk densities (Fig. 7.2), higher SAR (Table 7.4), lower 
210

Pbexc activity content and 

some higher 
40

K specific activities (see Table 7.2). The sharp discontinuity in radionuclides 

profiles at the mass-depth of 4.06 g.cm
-2 

confirms the hypothesis of negligible post 

depositional processes.  

 

7.3.7. Analysis of sediment core D 

Sediment core D showed a complex 
210

Pbexc profile with high specific activities around 270 

Bq.kg
-1

 at the top layers, which decline till 13 Bq.kg
-1

 at a mass depth of 17 g.cm
-2

 and then 

increase downcore till 170 Bq.kg
-1

 (Fig. 7.4d). The area with low 
210

Pbexc specific activities 

was associated with high values of bulk density (Fig. 7.2). The TERESA model was able to 

reasonably reproduce the complex 
210

Pbexc profile of sediment core D (χ = 1.09, see Fig. 7.4d) 

with arithmetic means of initial activities and SAR which are roughly 2/5 and 5/2 of the ones 

found for sediment core A (Table 7.4). A large variability was ascribed to both values with 

reference normalised standard deviations of 0.60 and 0.99, respectively. The computed initial 

specific activities was plotted versus mass depths to display a U-shape with a minimum mass 

depth around 17-21 g.cm
-2

 (age 11-13 y). This induced a huge dilution effect, most likely 
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attributable to local sources of matter with negligible 
210

Pbexc content, so the mean value of the 

flux onto the SWI was 6.2 kBq.m
-2

.y
-1

, as in sediment core A. As in the case of sediment core 

C, these local sources also resulted in higher bulk densities (Fig. 7.2) and the overall higher 

SAR (Table 7.4). The variability in SAR was very high, but randomly distributed, which 

resulted in a relatively uniform chronological line (Fig. 7.5). The age of the deepest measured 

sediment slice (38-40 cm) was estimated at 24 y, which implies a time-averaged SAR of 2.1 

g.cm
-2

.y
-1

 (or 1.7 cm.y
-1

). 

 

The above interpretation can be further supported by the analysis of the 
234

Thexc profile in 

sediment core D. When excluding the topmost layers, the 
234

Th concentrations were almost 

constant downcore with almost uniform 
234

Th/
226

Ra isotopic ratios, having mean (± standard 

deviation) values of 2.24 (± 0.17), 2.57 (± 0.45), 2.28 (± 0.33) and 1.72 (± 0.15) for sediment 

cores A, B, C and D, respectively. When comparing the concentrations of 
234

Th and 
226

Ra 

along the four sediment cores, it is striking to note that in core D, their values were about a 

factor of 2 lower in the central layers associated with low values of 
210

Pbexc and high bulk 

density values. The low radionuclide specific activities, while keeping the isotopic ratios, can 

only be explained by the dilution of naturally settling material with other sources of matter. A 

similar effect of dilution is observed for 
226

Ra and 
212

Pb isotopes, which show an increasing 

rend in the top sediment layers (Fig. 7.6). This means that the dilution effect progressively 

vanished during the last six years, according to the chronology reported in Fig. 7.5. Their 

concentrations at the recent SWI converge to the ones found for sediment core A (see Table 

7.2). The dilution was not so apparent for 
40

K (Fig. 7.6) and thus this radionuclide should be 

present in the local source of matter at concentrations somewhat lower than those found in 

sediment core A.  

 

The reported uncertainties in the entry parameters of the TERESA model (Table 7.4) came 

from the fitting procedure, while the ones reported with the chronologies (Fig. 7.5) came from 

their propagation. As with all the models, there are other sources of uncertainty associated 

with the partial accomplishment of the model assumptions. In the TERESA model, the 

reference normal distributions for initial activities and SAR (truncated with the minimum 

threshold values) are only a proxy to the real ones occurring in nature. The incomplete 

sequence of measurements make interpolations necessary, and the absence of independent and 

well distributed chronostratigraphic marks did not allow the use of the complete model 

capabilities (Abril, 2016).  
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Fig. 7.6 Normalised (to their maximum value) 226Ra, 212Pb and 40K specific activities 

versus mass depth for sediment core D sampled from the Tema Harbour (Ghana). 

 

7.3.8. Comparison of SAR values among sediment cores A, B, C and D 

Despite the above limitations, the TERESA model was able to depict a good scenario for the 

sedimentation in the Tema Harbour, with overall SAR values with time-averages in the range 

of 1.4-3.0 g.cm
-2

.y
-1

. The analysed sediment core lengths were too short and only captured the 

last 13-24 years of sedimentation (extreme values for sediment cores B and D, respectively). 

Sediment cores A and B seemed to capture the less perturbed conditions, and they were 

governed by the marine inflow of SPM with higher 
210

Pbexc specific activities and most likely 

linked to a finer granulometry. The TERESA model captured a change in the sedimentary 

conditions for sediment core C, whose age is in reasonable agreement with the time of 

deployment of the concrete pillars of the new wharf structure. According to the model results, 

the previous sedimentary environment around sediment core C also received matter with 

lower radionuclide activity content from local sources, leading to high SAR and high bulk 

densities. A more extreme change in sedimentary conditions was observed for the sediment 

core D site, which is located in the harbour area transited by cargo ships. Here, the TERESA 

model reproduced a noticeable dilution effect also attributable to the mixing of the marine 
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inflow of SPM with local sources of matter that had low specific activities of 
210

Pbexc, 
226

Ra, 

234
Th and 

212
Pb.  

 

7.3.9. Comparison of the TERESA- and 7Be-derived SARs 

The SAR values derived from the TERESA model were of the same order, but noticeably 

lower than those estimated from the 
7
Be data. As discussed above, the assumption of a 

constant flux may be an oversimplification for 
7
Be and so the SAR was not constant. The 

overestimation of SAR calculated by 
7
Be is most likely the major effect of a mass-depth 

penetration of a fraction of the 
7
Be fluxes (non-ideal deposition as described by Abril and 

Gharbi, 2012). A fraction of the radiotracer flux crossing the SWI exists in dissolved form or 

attached to small grain-size fractions. This fraction can penetrate through the connected water 

pores and be distributed at depth instead of being deposited over the previously existing 

material. This effect has been widely observed for 
7
Be in soils (Taylor et al., 2013), riverine 

floodplain sediments (Sommerfield et al., 1999), and in marine environments (Rose and 

Kuehl, 2010). Thus, as a demonstration of the concept, Fig. 7.7 plots the results from a 

numerical simulation for the 
7
Be distribution in core A using the SAR value from the 

TERESA model, and a non-ideal deposition described by factors g = 0.5 and α = 0.6 g
-1

.cm
2
 

(see Abril and Gharbi, 2012). The plot was compared against the corresponding exponential 

decline from a CF-CS model with ideal deposition under the same sedimentological 

conditions. Figure 7.7 confirms non-ideal deposition may seriously limit the applicability of 

short-lived radionuclides to radiometric dating of recent sediments, while its effects less 

affected 
210

Pbexc: it produced slight distortions in the upper layers, where subsurface maxima 

are often found (Abril and Gharbi, 2012). The TERESA model compensates for these effects 

on the 
210

Pbexc profile through an equivalent variability in initial radionuclide activities and/or 

SAR, as shown in Abril (2016) with the TERESA chronology for a varved sediment core 

from the Santa Barbara Basin (California, USA) for which non-ideal sediment deposition has 

been described by Abril and Gharbi (2012). 
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Fig. 7.7 Numerical simulation for the 7Be distribution in sediment core D using the 

SAR value from the TERESA model, and a non-ideal deposition described by factors 

g = 0.5, α = 0.6 g-1cm2 (see Abril and Gharbi, 2012), and the simplifying assumption 

of constant flux. The plot is compared against the corresponding exponential decline 

from a CF-CS with ideal deposition under the same sedimentological conditions. 

Horizontal bars correspond to the depth intervals. 

 

The time-averaged SAR values found in the tropical coastal Tema Harbour by the TERESA 

model (1.4-3.0 g.cm
-2

.y
-1

) were very high when compared with most of the literature data for 

lacustrine and coastal environments from other climatic regions. Accounting for the high bulk 

density of the sediments in the Tema Harbour, the accretion rates were in the range of 1.7-3 

cm.y
-1

. Also, these accretion rates were higher than values reported in the scientific literature 

for harbour areas, e.g. 0.57 cm.y
-1

 in the Tanjung Pelepas Harbour, Malaysia (Yussof et al., 

2015); 1.2 cm.y
-1

 in the Victoria Harbour, Hong Kong (Tang et al., 2008); 0.2-2 cm.y
-1

 for 

Sydney Harbour, Nova Scotia, Canada (Smith et al., 2009). This implies that typical coring 

devices, allowing for core lengths below 1 m may be too short for recovering the whole 

210
Pbexc inventory. This, along with irregular non-monotonic profiles, seriously limited the 

application of most of the conventional 
210

Pb-based dating models in the studied Tema 

Harbour cores. The accretion rates in the Tema Harbour are, nevertheless, only of moderate 

concern for the harbour sustainability, i.e. filling up the harbour basin and imposing a need for 
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dredging. If these conditions had prevailed since its construction in 1962, the net accretion 

around the studied sites would have been in the range of 0.9-1.6 m, which is in agreement 

with the partial dredging conducted in 2014. 

 

7.4. Conclusions 

Settling fluxes and sedimentation rates in coastal Tema Harbour (Ghana) have been 

investigated based on accumulated dry mass in sediment traps and radionuclide (
7
Be, 

234
Th, 

210
Pb, 

226
Ra, 

40
K, 

212
Pb and 

137
Cs) profiles in four sediment cores. The average settling fluxes 

ranged from 15 (± 3) to 54 (± 18) g.cm
-2

.y
-1

, showing spatial and temporal variations from 

which a complex dynamics of suspended particulate matter in the Tema Harbour is inferred. 

The analysed sediment cores were too short to allow any reliable estimation of SARs in the 

Tema Harbour based on the 
210

Pbexc inventories and traditional dating models (CF-CS and 

CRS).
 
The 

210
Pb-based TERESA model was successfully applied to depict a good scenario for 

sedimentation rates in the Tema Harbour over the past 13-24 y, with overall time-averaged 

SAR values in the range of 1.4-3.0 g.cm
-2

.y
-1

. These SAR values imply sediment accretion 

rates of 1.7-3 cm.y
-1

 in the Tema Harbour, which poses a moderate problem of sustainability 

for its management. 
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Abstract  

Sediment traps were deployed in the Tema Harbour to estimate the settling fluxes of silt-clay 

particles and associated metals (Fe, Mn, Pb, Cr, Cu, Zn, Ni, Hg, Sn and As) and characterise 

their potential ecotoxicological risks. The mean daily settling fluxes of the silt-clay particles 

and associated metals ranged from 42.7 to 85.0 g m
-2 

d
-1

 and 1.3 x 10
-2

 to 49.4 mg m
-2

 d
-1

, 

respectively, and were characterised by large fluctuations at each station. The silt-clay and 

metal fluxes strongly correlated, indicating the important role of the silt-clay particles in metal 

transport and distribution in the harbour. Geochemical indices indicated anthropogenic 

influences on the harbour as the Pb, Cr, Zn, Hg, Sn and As content in the settling silt-clay 

particles exceeded average crustal concentrations. Sediment quality guidelines indicated these 

metals pose appreciable ecotoxicological risks, particularly As. Increasing temporal trends in 

As necessitates increased pollution control efforts at the harbour.  

 

8.1. Introduction 

Many West African coastal states are tapping into the blue economy by the construction of 

new harbours along their coasts and expansion of existing ones. These harbours are often sited 

close to industrial, urban and agricultural areas that serve as important sources of chemical 

contamination, aside contamination from shipping activities within the harbour itself 

(Petrosillo et al., 2009; Lepland et al., 2010; Mestres et al., 2010; Schipper et al., 2010; Botwe 

et al., 2017a). Chemical contamination in harbours poses a threat to their sustainability as it 

can result in adverse impacts such as hindrance to harbour activities, alteration of ecological 

habitats, death of marine organisms resulting in loss of biodiversity, decline in productivity, 

fishing restrictions, dietary restrictions on seafood (Lepland et al., 2010), increased incidence 

of human diseases and high costs of maintenance dredging (Botwe et al., 2017b). Although 

environmental issues and sustainability are becoming an integral part of harbour development, 

operation and management (Mestres et al., 2010), effective regulation of contaminant 

discharges into harbours from diffuse sources still remains a challenge (Petrosillo et al., 

2009), particularly for developing countries. Thus, continuous monitoring and assessment of 

chemical contamination in harbours is crucial for their management (Pozza et al., 2004; 

Botwe et al., 2017c).  

 

Metals are among the widespread environmental contaminants due to their wide societal use 

and applications. Metals such as Pb, Cr, Cu, Zn, Ni, As, Sn and Hg are not only hazardous to 



Settling Fluxes and Ecotoxicological Risk Assessment of Fine Sedimentary Metals in 
Tema Harbour (Ghana) 

217 
 

humans and non-human biota, but are also persistent and bioaccumulative (Casado-Martínez 

et al., 2006; Nyarko et al., 2011; Botwe et al., 2017d). Therefore, their contamination deserves 

great attention. In aquatic environments, metals are scavenged and accumulated by fine 

sedimentary materials, particularly silt-clay (< 63 µm)  particles, as a result of their high 

sorptive capacity (Horowitz, 1985; Horowitz and Elrick, 1987; Horowitz et al., 1989; Lepland 

et al., 2010; Hamzeh et al., 2014). Thus, the silt-clay particles play a major role in the fate of 

metals in aquatic ecosystems, including their fluxes, deposition, burial and resuspension 

(Hostache et al., 2014; Botwe et al., 2017b). Therefore, in order to adequately address the 

problem of metal contamination in aquatic ecosystems, the fine sedimentary materials should 

be the prime materials for investigation (Horowitz, 1985). Moreover, information on the 

fluxes of fine sedimentary materials and associated metals can provide an insight into recent 

anthropogenic influences on the ecosystem under study and hence, the effectiveness of metal 

pollution control measures.  

 

Sediment traps, which passively collect and accumulate settling particulates, have proven 

useful for the investigation of particulate matter fluxes in lacustrine (Hakanson, 2006; de 

Vicente et al., 2010; Kelderman et al., 2012) and marine (Buesseler et al., 2007; Santos-

Echeandía et al., 2012; Liu et al., 2014; Szmytkiewicz and Zalewska, 2014; Helali et al., 

2016) ecosystems. To enhance trap efficiency and minimise loss of trapped material as a 

result of current-induced resuspension, sediment traps with aspect ratios (i.e. height/diameter) 

> 5 are recommended (Bloesch & Burns, 1980; Kelderman et al., 2012; de Vicente et al., 

2010). Retrieving sediment traps after 2 weeks of deployment is also recommended as it 

allows accumulation of sufficient particulate matter, while minimising organic matter 

decomposition (Hakanson and Jansson, 1983; Buesseler et al., 2007; Kelderman et al., 2012).  

 

The coastal marine Tema Harbour in Ghana is one of the large harbours in West Africa and 

has a long history of urbanisation and industrialisation within its catchments (Botwe et al, 

2017b). Due to a lack of regulations on industrial discharges or weak enforcement in Ghana, 

the Tema Harbour may act as a repository for contaminants from point and diffuse sources. In 

order to understand and minimise anthropogenic impact on the harbour, it is essential to 

characterise contaminant fluxes, sources and associated ecotoxicological risks (Pozza et al., 

2004). However, existing literature does not provide information on metal fluxes in the 

harbour. The objectives of this study, therefore, were to (1) estimate settling fluxes of silt-clay 

particles and associated metals (Mn, Pb, Cr, Cu, Zn, Ni, Hg, Sn and As) in the Tema Harbour, 
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(2) quantify the extent of metal contamination in the sediments and (3) characterise the 

potential ecotoxicological risks. 

 

8.2. Materials and methods 

8.2.1. Study area 

The Tema Harbour is situated along the Ghana sea coast at Tema, the industrial city of Ghana 

(Botwe et al., 2017c). It was constructed in 1960 to support industrial growth in Ghana and is 

partitioned into a Main Harbour, an Inner Fishing Harbour, an Outer Fishing Harbour and a 

Canoe Basin (Botwe et al., 2017c) with a water area of 1.7 km
2
, an average tidal range of 1.6 

m and tidal currents in the range of 0.1-0.5 ms-1 (Botwe et al. 2017b). The Main Harbour is 

designated for shipping activities and has a 240 m wide entrance, a breakwater of 4850 m 

length and water depths in the range of 7.5 to 11.4 m (Botwe et al., 2017b, e). The Fishing 

Harbours and the Canoe Basin provide landing and fuel storage facilities that sustain a 

productive fishery (Botwe et al., 2017a, d). Notable industrial activities in Tema are crude oil 

refining, alumina smelting, paint, steel and cement production (Botwe et al., 2017c). The main 

land uses in the Tema metropolis are residential, agricultural (largely subsistence), industrial 

and commercial. Industrial effluents, domestic wastes and wastewater from the industrial 

areas and other parts of the Tema township may eventually reach the Tema Harbour via 

drains, surface runoff and alongshore transport.  

 

8.2.2. Sediment sampling and analyses 

The sediment samples were collected as part of a broader study on sedimentation conditions 

in the Tema Harbour, in which the sampling methodology has been described (Botwe et al. 

2017b). In that study, settling fluxes of bulk sediment in the water column and sediment 

accumulation rates in the Tema Harbour were quantified, while the present study quantified 

the settling fluxes of only the silt-clay particles and their associated metals as they represent 

the most bioavailable and ecologically relevant sediment grain-sizes (Bat and Raffaelli, 1998; 

Bat, 2005). Briefly, cylindrical sediment traps made of polyvinyl chloride (PVC) with aspect 

ratios of 6.0 were deployed at five stations (I, II, III, IV and V) along a transect in a less busy 

area within the Main Harbour (see Fig. 1 in Botwe et al., 2017b), where the water depths 

ranged from 9 to 11 m. At each station, a vertical array of two sediment traps, positioned 0.6 

m apart in an alternating fashion, were deployed to collect settling particles at two water 

depths of approximately 1.8 m (top trap) and 0.6 m (bottom trap) from the seabed. The 
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sediment traps were retrieved every two weeks over a period of 12 weeks (23 May - 8 August, 

2015). The sediment traps were capped prior to their retrieval in order to keep the trapped 

materials intact. A total of 56 sediment trap samples were collected over the study period. 

Following retrieval, the sediment traps with their contents were kept in upright positions in a 

rack and transported to the Department of Marine and Fisheries Sciences laboratory 

(University of Ghana) for further processing and analysis.  

 

In the laboratory, the trapped sediment samples were separated into silt-clay (< 63 µm) and 

sand (> 63 µm) particles by wet-sieving over a 63 µm stainless steel mesh and then oven-

dried at 50°C till constant weight (Wang et al., 2001; Botwe et al., 2017c). Only the silt-clay 

particles were processed for metal, total organic carbon (TOC) and total nitrogen (TN) 

analyses. In this study, metals were analysed in the silt-clay particles in order to minimise the 

potential effect of grain size on the metal distribution (Horowitz, 1985). Prior to the analyses 

of metals, TOC and TN, the silt-clay samples were homogenised using a Fritsch Pulveriser 

(Botwe et al., 2017d). For the metal analysis, 2.5 ml of 65% HNO3 was added to about 0.25 g 

portions of the sediment samples in Teflon tubes, placed in a stainless steel bomb, and 

digested on a hot plate at 120°C for 4 h following the Canadian National Laboratory for 

Environmental Testing (1994) protocol. Each digested sediment sample was quantitatively 

transferred into a polypropylene tube using deionised water to obtain 50 ml final solution and 

subsequently assayed for metal concentrations by Atomic Absorption Spectrometry (Varian 

AA 240FS) with deuterium background correction. Mn, Pb, Cr, Cu, Zn, Ni and Fe were 

analysed using the Flame Technique, Sn and As by the Graphite Furnace Technique, and Hg 

by the Cold Vapour Technique. The detection limits for the analysed metals were: 0.10 mg 

kg-1 dw for Hg and As; 0.50 mg kg-1 dw for Mn, Pb, Cr, Zn, Ni, Sn and Fe; and 1.0 mg kg-1 

dw for Cu. The TOC and TN contents of the sediments were determined on 0.5 g of dry 

sediment samples using the Walkley-Black wet oxidation and the Kjeldahl methods, 

respectively, following Botwe et al. (2017c).  

 

8.2.3. Quality control/assurance 

Prior to the metal analyses, auto calibration of the AAS was made by aspirating a bulk 

standard (Multi-elemental standard solution for ICP, Fluka Analytical, Switzerland). 

Procedural blanks and a Certified Reference Material for marine sediments (IAEA-158) were 

processed in a similar way as the field samples and analysed to check the quality of all results. 
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Sediment samples were analysed in duplicates while reference materials were analysed in 

triplicates. Chemicals, solvents and reagents used were of trace metal analysis grade (from 

Sigma-Aldrich, U.S.A). All containers were thoroughly washed with detergent, soaked in a 

10% HNO3 solution overnight, rinsed with deionised water and dried in an oven prior to their 

use. Sediment traps were also conditioned with dilute nitric acid and rinsed with distilled 

water prior to their use. Metal recoveries were in the range of 63-95.5 %, with relative 

standard deviations (RSD) of <5% (not shown). 

 

8.2.4. Data analysis 

One-way analysis of variance (ANOVA) and the Holm-Sidak multiple comparison test were 

performed to assess the spatial and temporal variations in the accumulated dry mass of silt-

clay and their associated metal and TOC contents using the statistical software SigmaPlot 

(version 11.0). When the normality test failed, Kruskal-Wallis one-way ANOVA on ranks 

was performed instead of the Holm-Sidak multiple comparison test. Two-tailed Pearson 

correlations were conducted to examine linear relationships among the measured metals, 

accumulated dry mass of silt-clay and TOC concentrations using SPSS (version 16.0). 

Descriptive statistics such as means, standard deviations and standard errors were computed in 

Microsoft Excel 2007 at the 95% confidence level. 

 

The settling fluxes of silt-clay (Fs), with units of g m
-2

 d
-1

, were estimated using Eq. 1 (Botwe 

et al., 2017b):  

 

Fs =  (M )/(A x D)                           (1) 

 

where M is the dry accumulated mass of silt-clay (kg) in the sediment trap, A is the cross-

sectional area of the sediment trap (m
2
) and D is the duration of trap deployment (d). 

 

The settling fluxes of silt-clay associated metals (Fm, with units of mg m
-2

 d
-1

) were estimated 

using Eq. 2:  

 

Fm= Fs x Cm                           (2) 

 

where Cm is the metal concentration in the silt-clay particles (mg g
-1

 d.w). 
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Metal contamination in sediments may originate from lithogenic and anthropogenic sources 

(Clark, 2001). To delineate lithogenic from anthropogenic metal contamination in the Tema 

Harbour sediments, metal enrichments in the sediments were assessed against average crustal 

metal concentrations (Taylor, 1964) by deriving the metal enrichment factors (EFs) using Fe 

as a normaliser according to Eq. (3) (Addo et al., 2011; Yilgor et al., 2012): 

 

EF = [M/Fe]Sample/[M/Fe]Crust     (3) 

 

where [M/Fe]Sample is the metal-iron ratio in the Tema Harbour sediments and [M/Fe]Crust is 

the metal-iron ratio based on the average crustal concentrations reported by Taylor (1964) as 

proxies for their background concentrations in the Tema Harbour and were: Fe = 56,300; Mn 

= 950; Pb = 12.5; Cr = 100; Cu = 55; Zn = 70; Ni = 75; Hg = 0.08; Sn = 2; As = 1.8 mg.kg
-1

. 

By this approach, the progression of metal enrichment is as follows: deficient (EF ≤ 1), minor 

enrichment (1 < EF ≤ 3), moderate enrichment (3 < EF ≤ 5), moderately severe enrichment (5 

< EF ≤ 10), severe enrichment (10 < EF ≤ 25), very severe enrichment (25 < EF ≤ 50), and 

extremely severe enrichment (EF > 50). 

 

Quantitative assessment of metal contamination in the Tema Harbour sediments was 

conducted by deriving metal geo-accumulation indices (Igeo) (Muller, 1969), following 

Botwe et al. (2017d) according to Eq. (4): 

 

Igeo = Log2 [Cn/(1.5 x Bn)]    (4) 

 

where Cn is the metal concentration in the Tema Harbour sediment and Bn is the 

corresponding average crustal concentration (Taylor, 1964) taken as a proxy for the metal 

background concentration (Botwe et al., 2017b).  The Igeo quantifies the progression of metal 

contamination in sediments as follows (Muller, 1969): uncontaminated (Igeo < 0), 

uncontaminated to moderately contaminated (0 ≤ Igeo < 1), moderately contaminated (1 ≤ 

Igeo < 2), moderately to highly contaminated (2 ≤ Igeo < 3), heavily contaminated (3 ≤ Igeo < 

4), highly to very highly contaminated (4 ≤ Igeo < 5), very heavily contaminated (Igeo ≥ 5).  
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8.3. Results 

8.3.1. Metals, TOC and TN concentrations in settling silt-clay particles in the Tema 

Harbour  

Table 8.1 presents the accumulated dry masses of sediment fractions in the sediment traps and 

silt-clay associated metal, TOC and TN contents at the different sampling stations and for the 

sampling periods. The accumulated sediments in the sediment traps were mainly composed of 

sand with dry masses ranging from 7.8 to 412 g, representing 67-99 % of the dry bulk 

sediment mass accumulated in the traps, while the dry masses of the silt-clay particles were in 

the range of 1.9-38.5 g, representing 1-33 % of the dry bulk sediment mass accumulated in the 

traps. The silt-clay particles contained varying concentrations of metals with Fe occurring in 

relatively higher concentrations. Among the other metals, Mn (260-1083 mg.kg
-1

 dw) and As 

(146-1470 mg.kg
-1

 dw) were present in relatively high concentrations. The Hg concentrations 

were relatively low and ranged from <0.1 to 3.0 mg.kg
-1

 dw, while those of Pb, Cr, Cu, Zn, Ni 

and Sn were in the ranges of 20.3-229, 22.5-373, 15.8-119, 94.6-354, 18.4-66.1 and 6.2-49.2 

mg.kg
-1

 dw, respectively. The TOC content of the accumulated silt-clay particles ranged from 

2.1 to 13.3%, while the TN content ranged from 0.42 to 0.98% with corresponding TOC/TN 

ratios in the range of 3.3-27.7 (Table 8.1).  

 

Table 8.2 presents the correlation matrix of the metal concentrations with the TOC content. 

The results show a strong direct correlation between Cu and Zn concentrations (r = 0.76, p 

<0.01). Both Cu and Zn exhibited statistically significant moderate correlations with Pb and 

Fe. Cr exhibited statistically significant moderate correlations with Cu (r = 0.49, p <0.01) and 

Sn (r = 0.45, p <0.01), but weak correlations with Fe (r = 0.37, p <0.01) and Ni (r = 0.28, p 

<0.05). Hg and Sn were also correlated (r = 0.44, p <0.01), while Mn exhibited weak but 

statistically significant inverse correlations with Pb (r = -0.28, p <0.05) and As (r = -0.27, p 

<0.05). There were no statistically significant correlations between the TOC and the measured 

metals. 

 



 

 

      

 Table 8.1 Accumulated sediment fractions in sediment traps deployed at different sampling stations (see Fig. 7.1) and  

      periods in Tema Harbour (Ghana) and the silt-clay particles associated metal, TOC and TN contents  

   
Sediment fractions  Silt-clay particles associated metal concentrations (mg kg

-1
 dw)  

   
Sampling 

 period 

Sampling  

station 

Trap  

position 

Silt-clay  

(g dw) 

Sand 

(g dw) 
 Mn Pb  Cr Cu Zn Ni Hg Sn As Fe  

TOC  

(%) 

TN  

(%) 
TOC/TN 

Week 2 I Top 5.1 24.2  418 65.0 189 63.6 244 34.4 0.40 24.0 374 35740  3.6 0.64 5.6 

  
Bottom 2.7 26.9  611 47.3 217 64.9 251 54.8 0.47 35.5 147 40840  9.6 0.62 15.5 

 
II Top 4.1 36.7  530 55.4 187 59.7 236 23.2 0.43 22.6 192 51940  4.0 0.64 6.3 

  
Bottom 3.1 42.6  607 75.3 210 62.5 230 27.0 0.30 22.8 226 40740  3.2 0.48 6.7 

 
III Top 2.0 120.1  289 229 231 67.7 271 22.5 0.41 31.2 440 49240  2.4 0.64 3.8 

  
Bottom 2.3 181.5  282 26.7 132 21.3 210 18.4 0.12 25.5 259 37440  2.3 0.52 4.4 

 
IV Top 4.5 119.8  592 28.3 167 49.3 193 23.0 0.23 16.4 148 40590  9.2 0.42 21.9 

  
Bottom  3.6 95.4  510 43.9 200 52.5 206 31.5 0.50 25.8 336 52840  8.4 0.58 14.5 

 
V Top 7.2 268  770 21.0 162 50.4 195 38.6 0.42 24.2 614 56300  4.4 0.7 6.3 

  
Bottom 2.0 214.8  1183 20.3 175 40.8 168 22.5 0.36 20.4 146 36380  9.2 0.42 21.9 

Week 4 I Bottom 4.9 45.1  616 65.3 204 54.5 193 54.7 0.24 31.8 454 41770  5.0 0.50 10.0 

 
II Top 5.2 89.6  640 54.9 184 50.3 196 54.4 0.20 21.5 403 39170  2.1 0.53 4.0 

  
Bottom  4.7 69.1  678 36.3 32.5 38.2 187 63.7 0.30 8.5 443 37610  4.0 0.45 8.9 

 
III Top 9.8 113.5  548 26.4 26.5 29.6 175 44.5 0.17 6.2 403 40330  3.6 0.86 4.2 

  
Bottom 4.9 249.2  523 21.6 41.3 34.5 186 47.8 0.10 6.8 522 43230  5.2 0.5 10.4 

 
IV Top 9.3 69.2  616 33.2 199 45.4 195 55.7 0.30 14.1 493 49880  8.0 0.81 9.9 

  
Bottom 10.5 30.2  517 50.3 287 49.6 185 56.6 0.16 20.8 758 47710  3.6 0.47 7.7 

 
V Top 9.9 88.0  553 41.6 61.5 38.5 188 52.1 0.26 32.9 352 38530  5.2 0.45 11.6 

  
Bottom 3.5 76.3  709 22.6 196 43.9 189 52.8 0.30 35.6 373 43440  8.4 0.5 16.8 

Week 6 I Top 4.1 11.8  538 45.6 225 65.8 208 66.1 0.42 32.3 572 63690  4.4 0.56 8.5 

  
Bottom 4.4 19.9  563 45.5 231 57.7 198 62.7 0.27 29.8 656 54130  6.4 0.44 14.5 

 
II Top 20.6 68.6  598 42.2 202 46.5 172 53.2 0.51 25.0 606 35860  4.0 0.47 8.5 

  
Bottom 1.9 7.8  486 41.1 231 55.5 190 61.7 0.25 22.6 427 42690  6.2 0.58 10.7 

 
III Top 3.6 84.2  483 34.1 204 48.5 196 37.1 0.20 35.0 508 40530  5.8 0.45 12.9 

  
Bottom 6.2 24.3  284 49.6 146 36.5 217 39.2 0.38 24.7 480 39330  2.4 0.72 3.3 

 
IV Top 11.0 77.9  541 44.4 172 37.0 150 42.5 1.33 39.9 539 41670  7.9 0.98 8.1 

  
Bottom  38.5 139.6  657 31.7 195 43.4 171 47.2 3.00 47.3 612 50020  6.0 0.53 11.3 

  



 

 
 

  Table 8.1 continued 

 

 

 

 

   

Sediment 

fractions 
 Silt-clay particles associated metal concentrations (mg kg

-1
 dw)  

   

Sampling 

 period 

Sampling  

Station 

Trap  

position 

Silt-

clay  

(g dw) 

Sand 

(g dw) 
 Mn Pb  Cr Cu Zn Ni Hg Sn As Fe  

TOC  

(%) 

TN  

(%) 
TOC/TN 

 
V Top 5.7 34.2  510 50.2 236 36.3 168 53.1 0.25 34.7 683 35180  7.2 0.82 8.8 

  
Bottom 5.8 42.4  511 41.3 212 26.1 171 39.7 0.10 49.2 491 38010  4.4 0.67 6.6 

Week 8 I Bottom 3.8 33.1  402 31.8 22.5 21.9 95 22.4 0.10 22.8 378 37040  7.8 0.55 14.2 

 
II Top 3.1 64.8  563 47.6 34.3 15.8 154 19.4 0.10 24.4 382 40460  6.4 0.58 11.0 

 
III Top 5.4 350  422 47.6 61.0 33.9 157 26.9 0.18 24.5 551 37860  3.2 0.57 5.6 

  
Bottom 7.7 153  406 46.6 136 43.9 164 35.4 0.23 22.2 603 39850  4.4 0.54 8.1 

 
IV Top 7.1 184  426 51.2 215 40.4 164 27.5 0.28 24.8 278 36080  7.2 0.5 14.4 

  
Bottom 8.6 26.9  679 31.8 179 31.9 156 31.0 0.30 27.7 244 34900  4.7 0.62 7.6 

 
V Top 2.1 32.7  637 29.8 181 38.2 153 46.5 0.48 20.4 617 48980  7.2 0.54 13.3 

  
Bottom  5.4 47.8  537 25.3 184 40.8 169 45.6 0.28 30.6 569 44950  4.4 0.56 7.9 

Week 10 I Top 4.5 118.4  368 31.6 138 48.6 162 34.9 0.21 22.5 520 35720  4.4 0.5 8.8 

  
Bottom 4.6 155.2  406 50.2 373 62.2 206 58.4 0.29 35.9 1137 57960  6.5 0.53 12.3 

 
II Top 6.3 112.2  597 80.2 270 70.1 226 44.3 0.53 38.5 775 65920  5.2 0.62 8.4 

  
Bottom 3.7 38.5  260 44.8 245 49.7 149 38.3 0.22 16.7 615 37600  4.0 0.42 9.5 

 
III Top 5.3 111  409 47.4 200 50.9 174 35.4 0.10 23.6 342 37100  8.4 0.44 19.1 

  
Bottom 2.7 49.7  402 32.4 210 47.7 171 36.9 0.30 23.5 399 26240  8.8 0.95 9.3 

 
IV Top 3.6 66.8  309 48.6 173 32.4 120 27.1 0.54 20.7 628 39360  3.6 0.45 8.0 

  
Bottom 2.3 28.7  438 41.5 233 47.6 157 44.1 0.81 28.9 573 53920  5.8 0.73 7.9 

 
V Top 4.8 49.2  557 35.0 180 119.4 354 28.6 0.20 31.5 1051 49340  6.0 0.48 12.5 

  
Bottom 3.8 56.1  460 44.1 232 42.4 156 39.6 0.26 33.9 591 56070  6.3 0.45 14.0 

Week 12 I Bottom 8.7 72.4  358 51.1 228 64.1 212 35.6 1.12 34.4 888 34550  4.8 0.42 11.4 

 
II Top 2.4 20.7  400 34.6 179 46.7 136 27.8 0.41 25.9 1054 38010  4.0 0.53 7.5 

  
Bottom 7.5 28.1  434 41.3 195 50.4 186 32.2 0.71 23.6 1137 40050  6.7 0.45 14.9 

 
III Top 5.5 11.2  294 42.0 187 45.5 144 31.3 0.44 22.3 1467 33290  7.9 0.67 11.8 

  
Bottom 5.8 68.8  368 32.7 106 47.8 166 33.2 0.81 31.9 1470 39810  5.2 0.62 8.4 

 
IV Top 8.2 412  469 43.4 267 55.3 177 41.4 0.21 29.0 1045 49920  4.7 0.49 9.6 

  
Bottom 4.2 31.5  786 37.6 270 53.8 173 45.1 0.40 26.5 1161 44710  2.8 0.53 5.3 

 
V Top 4.1 30.8  494 38.2 276 46.8 152 45.4 0.93 31.4 426 44710  13.3 0.48 27.7 

  
Bottom 5.3 33.6  580 43.1 226 57.9 155 42.8 0.28 26.4 434 34970  13.3 0.67 19.9 
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Table 8.2 Correlation matrix of metal and TOC concentrations in settling silt-clay  

      particles in the Tema Harbour, Ghana (n = 56) 

  

 

 

 

 

 

 

 

*Correlation is significant at the 0.05 level (2-tailed) 

**Correlation is significant at the 0.01 level (2-tailed)  

 

8.3.2. Distributions  and fluxes of  silt-clay  particles  associated  metals  in  the Tema 

Harbour 

At all the sampling stations, t-tests revealed no significant differences (p > 0.05) between the 

mean silt-clay particles associated metal concentrations in the top and bottom traps. Similarly, 

the mean TOC content in the silt-clay did not differ significantly (p > 0.05) between the top 

and bottom traps across the sampling stations. Therefore, the mean metal concentrations for 

the top and bottom traps at each station were determined to assess the temporal and spatial 

distributions of the metals, which are presented in Figs. 8.1 and 8.2, respectively. One-way 

ANOVA with pairwise multiple comparison procedures (Holm-Sidak method) and Kruskal-

Wallis one way ANOVA on ranks with pairwise multiple comparison procedures (Dunn's 

Method) revealed statistically significant temporal variations in the concentrations of Ni (p 

<0.001), Cu (p = 0.010), Zn (p <0.001), Sn (p = 0.034) and As (p <0.001). Relatively higher 

concentrations of Ni occurred in weeks 4 and 6 (Fig. 8.1f), the lowest concentrations of Cu 

(Fig. 8.1d) and Zn (Fig. 8.1e) occurred in week 8, the highest concentration of Sn was 

observed during week 6 (Fig. 8.1h), while the concentrations of As increased over the period 

with a decrease during the eighth week (Fig. 8.1i). 

 

 

 
Mn Pb  Cr Cu Zn Ni Hg Sn As Fe 

Pb  -0.28* 
         

Cr -0.01 0.23 
        

Cu 0.04 0.30* 0.49** 
       

Zn 0.07 0.38** 0.20 0.76** 
      

Ni 0.23 -0.14 0.28* 0.14 0.05 
     

Hg 0.07 -0.01 0.14 0.05 -0.06 0.07 
    

Sn -0.01 0.16 0.45** 0.19 0.14 0.10 0.44** 
   

As -0.27* -0.05 0.24 0.27* -0.05 0.09 0.17 0.17 
  

Fe 0.16 0.16 0.37** 0.38** 0.32* 0.32* 0.16 0.25 0.16 
 

TOC  0.21 -0.26 0.18 0.04 -0.19 0.05 0.12 0.12 -0.14 -0.07 
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Fig. 8.1 Temporal distribution of settling silt-clay particles associated metal 

concentrations (mean ± standard error) in the Tema Harbour (Ghana): (a) Mn, (b) Pb, 

(c) Cr, (d) Cu, (e) Zn, (f) Ni, (g) Hg, (h) Sn, (i) As and (j) Fe.  

 

The spatial trends in the metal concentrations in the settling silt-clay particles in the Tema 

Harbour are shown in Fig. 8.2. Among the analysed metals, Kruskal-Wallis one-way ANOVA 

on ranks with pairwise multiple comparison procedures (Dunn's Method) revealed statistically 

significant spatial variations in the concentrations of Mn (p = 0.003), Pb (p = 0.041) and Cu (p 

= 0.032). Relatively lower concentrations of Mn (Fig. 8.2a) and Cu (Fig. 8.2d) were observed 

at station III, while relatively lower concentrations of Pb were observed at station V (Fig. 

8.2b).  
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Fig. 8.2 Spatial distribution of settling silt-clay particles associated metal 

concentrations (mean ± standard error) in the Tema Harbour (Ghana): (a) Mn, (b) Pb, 

(c) Cr, (d) Cu, (e) Zn, (f) Ni, (g) Hg, (h) Sn, (i) As and (j) Fe. See sampling stations A-

E in Fig. 7.1.  

 

The estimated mean daily settling fluxes of silt-clay and associated metals at the five sampling 

stations in the Tema Harbour are presented in Table 8.3. The mean daily settling fluxes of silt-

clay across the sampling stations ranged from 42.7 (± 5.1) to 85.0 (± 31) g.m
-2

.d
-1

, while the 

mean fluxes of associated metals across the sampling stations ranged from 15.8 (± 3.9) to 49.4 

(± 20.4) mg.m
-2

.d
-1

 for Mn, 1.6 (± 0.4) to 3.3 (± 1.0) mg.m
-2

.d
-1

 for Pb, 5.7(± 1.3) to 17.6(± 

6.1) mg.m
-2

.d
-1

 for Cr, 1.8 (± 0.6)  to 3.7 (± 1.4) mg.m
-2

.d
-1

 for Cu, 6.4 (± 1.9) to 14.9 



 

 

Table 8.3 Estimated daily settling fluxes of silt-clay particles and associated metals (mean ± standard error) at different sampling 

     stations over a 12-week period in the Tema Harbour (Ghana)  

 
   Metal flux 

Sampling 

station 
 

Silt-clay flux 

(g.m
-2

.d
-1

) 
 Mn* Pb* Cr* Cu* Zn* Ni* Hg** Sn* As* 

a
I  42.7 ± 5.1  15.8 ± 3.9 1.6 ± 0.5 6.8 ± 2.2 1.8 ± 0.6 6.4 ± 1.9 2.0 ± 0.4 14.9 ± 8.4 2.1 ± 0.3 18.5 ± 7.2 

b
II  50.6 ± 17.0  26.2 ± 10.2 2.4 ± 0.8 8.9 ± 3.8 2.4 ± 0.9 8.9 ± 3.1 2.0 ± 0.9 20.3 ± 10.7 1.2 ± 0.5 29.0 ± 13.4 

c
III  46.3 ± 8.7  19.0 ± 4.7 2.0 ± 0.5 5.7 ± 1.3 1.9 ± 0.3 8.3 ± 1.5 1.7 ± 0.4 13.0 ± 4.5 1.0 ± 0.2 30.2 ± 10.1 

c
IV  85.0 ± 31.0  49.4 ± 20.4 3.3 ± 1.0 17.6 ± 6.1 3.7 ± 1.4 14.9 ± 5.8 3.0 ± 0.8 114 ± 85 2.8 ± 1.5 45.2 ± 17.8 

c
V  45.1 ± 7.7  26.9 ± 4.2 1.6 ± 0.4 8.2 ± 1.3 2.2 ± 0.5 8.5 ± 1.6 2.0 ± 0.5 14.5 ± 2.9 1.4 ± 0.3 24.1 ± 4.9 

*
Measured in mg.m

-2
d

-1
 

 **Measured in µg.m
-2

d
-1

; 
a
n = 9; 

b
n = 11; 

c
n = 12 

 

 



Settling Fluxes and Ecotoxicological Risk Assessment of Fine Sedimentary Metals in 
Tema Harbour (Ghana) 

231 
 

(± 5.8) mg.m
-2

.d
-1

 for Zn, 1.7 (± 0.4) to 3.0 (± 0.8) mg.m
-2

.d
-1

 for Ni, 13.0 (± 4.5) to 114 (± 

85) µg.m
-
 
2
.d

-1
 for Hg, 1.0 (± 0.2) to 2.8 (± 1.5) mg.m

-2
.d

-1
 for Sn, and 18.5 (± 7.2) to 45.2 (± 

17.8) mg.m
-2

.d
-1

 for As. The settling fluxes of Pb, Cu, Ni and Sn were comparable, being an 

order of magnitude lower than those of Mn and As, but about two orders of magnitude higher 

than those of Hg. Relatively higher silt-clay and metal fluxes occurred at the more outer 

station IV although no clear spatial trend was observed.  

 

There were strong correlations between the silt-clay fluxes and the fluxes for the different 

metals (r values ranging from 0.87 to 0.96, p < 0.01), while the fluxes for the different metals 

investigated were also strongly correlated (r values ranging from 0.71 to 0.99, p <0.01) (Table 

8.4).  

 

Table 8.4 Correlation matrix of silt-clay particle and metal fluxes in the Tema 

Harbour, Ghana (n = 56) 

  
Silt-

clay 
Mn Pb Cr Cu Zn Ni Hg Sn 

Mn 0.96 
        

Pb 0.87 0.86 
       

Cr 0.95 0.97 0.87 
      

Cu 0.94 0.96 0.93 0.95 
     

Zn 0.95 0.97 0.92 0.94 0.99 
    

Ni 0.91 0.97 0.91 0.94 0.98 0.98 
   

Hg 0.93 0.90 0.71 0.89 0.85 0.86 0.83 
  

Sn 0.95 0.98 0.82 0.97 0.94 0.95 0.95 0.94 
 

As 0.89 0.89 0.92 0.88 0.93 0.96 0.92 0.81 0.89 

All correlations are significant at the 0.01 level (2-tailed) 

 

8.4. Discussion 

8.4.1. Metal distribution and contamination in settling silt-clay partices in the Tema 

Harbour 

The settling sediments in the Tema Harbour were characterised by a predominance of sand, 

which may be attributed to its quicker removal from the water column than the silt-clay 

particles (Eisma, 1993; Ji, 2008). The Ni, Cu, Zn, Sn, As Mn, Pb and Cu concentrations in the 

silt-clay particles exhibited temporal and/or spatial variations. Generally, variations in 

sediment-metal concentrations are commonly attributed to variations in silt-clay, Fe and Mn 

oxides and hydroxides as well as organic matter content in sediments as these tend to 

concentrate metals (Horowitz, 1985; Horowitz and Elrick, 1987; Horowitz et al., 1989; 
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Hamzeh et al., 2014). The analysis of the silt-clay particles might have diminished the 

potential effect of TOC on sediment metal distribution, resulting in the poor correlations 

between TOC and metal concentrations (Table 8.2). The statistically significant Cu/Fe, Zn/Fe, 

Cr/Fe, Pb/Mn and As/Mn correlations indicate a potential influence of Fe oxides and 

hydroxides on Cu, Zn and Cr distributions as well as of Mn oxides and hydroxides on Pb and 

As distributions in the harbour sediments.  

 

The calculated EFs indicated varying levels of metal enrichment in the Tema Harbour 

sediments, which are summarised in Table 8.5.  The harbour sediments were predominantly 

characterised by severe As enrichment, moderate to severe Pb, Zn and Sn enrichments, 

deficient to minor Mn, Cr, Cu and Hg enrichments, and were deficient in Ni. The EFs of As 

and Sn (in 91% of the cases) were >10, indicating they were mainly derived from 

anthropogenic inputs (Addo et al., 2011; Yilgor et al., 2012; Botwe et al., 2017d). For Pb, Cr, 

Zn and Hg, the EFs were mostly between 1.5 and 10, indicating considerable anthropogenic 

inputs of these metals in the Tema Harbour sediments. On the contrary, the low EFs (<1.5) of  

Mn, Cu and Ni suggest mainly lithogenic sources of these metals in the Tema Harbour 

sediments (Addo et al., 2011; Yilgor et al., 2012; Botwe et al., 2017d). 

 

The computed Igeo values, summarised in Table 8.5, indicated that metal enrichment in the 

Tema Harbour sediments had reached varying pollution levels. All the harbour sediments 

were potentially very heavily polluted with As, while potentially high Sn pollution and 

moderate Pb, Cr and Zn pollution occurred in the majority of the sediments  (over 60%). The 

sediments exhibited a predominance of moderate to very high Hg pollution, but were 

potentially unpolluted with Mn and Ni. The Igeo values also indicated that Cu enrichment in 

the sediments had not reached pollution levels. These results indicate considerable 

anthropogenic inputs of As, Sn, Hg, Pb, Zn and Cr as compared to Mn, Cu and Ni in the Tema 

Harbour, which agrees well with findings from a previous study on bottom sediments in the 

harbour (Botwe et al., 2017d).  

 

Anthropogenic metal inputs into the Tema Harbour may derive principally from shipping and 

fishing activities such as sand blasting, scraping and painting of ships, bunkering, bilge 

discharges, debalasting, refueling and associated oil spills (Lepland et al., 2010; Mestres et al., 

2010; Nyarko et al., 2014; Botwe et al., 2017a, 2017d) as well as metal-containing wastewater 

and particulates discharged from oil refinery, cement production, ore smelting, automobile  
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Table 8.5 Metal enrichment and pollution levels and their incidence of occurrence in  

                settling silt-clay particles in Tema Harbour (Ghana) 

Metal enrichment levels and contamination status were based on their enrichment factors 

(EFs) and geo-accumulation indices (Igeo), respectively. For interpretation of the EF and Igeo 

values, see Section 8.2.4.  

 

exhaust and agrochemical use within the harbour area (Yilgor et al., 2012; El-Sorogy et al., 

2016; Botwe et al., 2017c). The occurrence of Sn contamination in harbour sediments is 

mainly attributable to the use of tributyltin (TBT)-based anti-fouling paints on ships, boats 

and docks (Berto et al., 2007; Nyarko et al. 2011; Castro et al. 2012; Botwe et al., 2017d). In 

2001, the International Maritime Organisation (IMO) adopted the International Convention on 

the Control of Harmful Anti-fouling Systems on Ships, which calls on states to take steps 

toward the reduction of organotin pollution due to the ecological risks posed by TBT to the 

marine environment and human health. Since then, TBT use has been restricted in many 

countries (Berto et al., 2007), but could remain in use in developing countries like Ghana. 

Thus, the presence of Sn in the Tema Harbour sediments may derive from current use of TBT-

based anti-fouling paints in the Tema Harbour or residual/secondary contaminant sources 

Enrichment level 
 Incidence of occurrence for measured metals (%, n = 56) 

 Mn Pb  Cr Cu Zn Ni Hg Sn As 

No enrichment   94.6 0 12.5 39.3 0 100 39.3 1.8 0 

Minor enrichment   5.4 16.1 62.5 60.7 28.6 0 30.4 0.0 0 

Moderate enrichment  0 46.4 25.0 0 66.1 0 26.8 73.2 0 

Moderate to severe enrichment  0 35.7 0 0 5.4 0 1.8 25.0 0 

Severe enrichment  0 1.8 0 0 0 0 1.8 0 100 

Very severe enrichment  0 0 0 0 0 0 0 0 0 

Extremely severe enrichment  0 0 0 0 0 0 0 0 0 

Contamination status 
 Incidence of occurrence for measured metals (%, n = 56) 

 Mn Pb Cr Cu Zn Ni Hg Sn As 

Uncontaminated    100 16.1 25.0 100 1.8 100 8.9 0 0 

Uncontaminated to moderately 

contaminated   
 0 75.0 75.0 0 76.8 0 19.6 0 0 

Moderately contaminated   0 7.1 0 0 21.4 0 48.2 5.4 0 

Moderately to highly 

contaminated   
 0 1.8 0 0 0 0 16.1 26.8 0 

Heavily contaminated  0 0 0 0 0 0 5.4 64.2 0 

Highly to very highly 

contaminated  
 0 0 0 0 0 0 1.8 3.6 0 

Very heavily contaminated   0 0 0 0 0 0 0 0 100 
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since TBT is persistent in the environment (Berto et al., 2007) and, therefore, its attenuation 

and recovery in sediments may be a slow process. Arsenic (As) is hazardous (Casado-

Martínez et al., 2006; Affum et al., 2016; Botwe et al., 2017d) and a Class A human 

carcinogen (Chen, 2001) and therefore, its "heavy" contamination in the Tema Harbour 

sediments is of considerable concern. The increasing temporal trend of As concentrations 

(Fig. 8.1i) points to the existence of continuous sources of As at the harbour, which may be 

linked to metal smelting activities and the use of As-containing agrochemicals in Tema (El-

Sorogy et al., 2016). 

 

Significant  correlations among metals in sediments have commonly been attributed to similar 

sources of the metals (Qu and Kelderman, 2001; Ramirez et al., 2005; Nyarko et al., 2011; 

Nyarko et al., 2014; Affum et al., 2016; Botwe et al., 2017d). Since the EF and Igeo values 

indicate Ni and Cu in the Tema Harbour sediments derived mainly from lithogenic origin, 

other factors such as similar accumulation patterns of the metals in sediments could also 

explain the observed Cu/Zn, Cu/Pb, Cu/Cr, Zn/Pb, Cr/Sn, Cr/Ni and Sn/Hg correlations in the 

harbour sediments (Aloupi and Angelidis, 2001). Thus, it is important to exercise caution in 

the use of EFs and Igeo as interpretative tools for the assessment of metal sources and 

contamination, especially when average crustal metal concentrations are used as proxies for 

background metal concentrations. 

 

Despite potential differences in grain size distribution, geology and methodologies, we 

compared the Sn and As concentrations in the Tema Harbour sediments with concentrations 

found in other coastal sediments worldwide (Table 8.6). The As concentrations in the Tema 

Harbour sediments were high compared to values reported for gold mining areas in Ghana 

(Affum et al., 2016) and coastal sediments from Egypt (Mostafa et al., 2004; Abdel Ghani et 

al., 2013), Finland (Vallius et al., 2007), China (Luo et al., 2010), Spain (Díaz-de Alba et al., 

2011), Tanzania (Rumisha et al., 2012), the French Mediterranean (Mamindy-Pajany et al., 

2013), and Saudi Arabia (Al-Taani et al., 2014; Youssef et al., 2015; El-Sorogy et al., 2016). 

The concentrations of Sn in the Tema Harbour sediments were low compared to values 

reported for coastal sediments from Spain (Arambarri et al., 2003) and some parts of Egypt 

(Abdel Ghani et al., 2013), but high compared to other parts of Egypt (El-Moselhy and 

Hamed, 2000; Mostafa et al., 2004; Hamed et al., 2013) and China (Liu et al., 2011).  
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Table 8.6 Comparison of Sn and As concentrations in the Tema Harbour fine  

                sediments investigated with concentrations in other coastal sediments 

     worldwide (mg kg-1 dw) 

 

 

8.4.2. Settling fluxes of silt-clay particles and associated metals in the Tema Harbour 

The fluxes of silt-clay particles and metals in the Tema Harbour were characterised by large 

local fluctuations, which may be attributed to localised metal inputs and complex dynamics of 

sediments under the prevailing conditions in the Tema Harbour (Botwe et al., 2017b, e). In the 

Tema Harbour, the shear bottom stress associated with the maximum tidal currents exceeds 

the threshold value for resuspension of clays and fine silts (Botwe et al., 2017b) and thus, tidal 

and wave actions are bound to cause resuspension and redistribution of (metal-contaminated) 

sediments following deposition. Moreover, anthropogenic disturbances such as the movement 

of vessels may induce sediment resuspension with subsequent redistribution in the harbour 

(Lepland et al., 2010; Green and Coco, 2014). Since sediment traps integrate sediment settling 

and resuspension (Botwe et al., 2017b), the sediment trap-derived fluxes represent the gross 

Sediment location   Sn  As  Reference 

Tema Harbour (Ghana)  6.2-49.2 146-1470 This study 

Gipuzkoa Estuary (Spain)  11-113 - Arambarri et al., 2003 

Abu-Qir Bay and Eastern Harbour  

(Alexandria, Egypt) 
 

3.4-355 

 

1.6-16.2 

 

Abdel Ghani et al., 2013 

 

Red Sea coast (Egypt)  0.02-1.2 - El-Moselhy and Hamed, 2000 

Western Harbour (Alexandria, 

Egypt) 
 2.1-15.3 4.7-15 Mostafa et al., 2004 

Pearl River Estuary (China)  1.7-8 - Liu et al., 2011 

Mediterranean coast (Egypt)  0.42-3.8 - Hamed et al., 2013 

Bonsa River (Ghana)  - 0.35-1.09 Affum et al., 2016 

Gulf of Finland  - 7.3-19.1 Vallius et al., 2007 

Northern Bohai and Yellow Seas 

(China) 
 - 5.6-13 Luo et al., 2010 

Algeciras Bay (Spain)  - 8-23 Díaz-de Alba et al., 2011 

Salaam coast (Tanzania)  - 0.2-1.3 Rumisha et al., 2012 

French Mediterranean marinas  - 17-350 Mamindy-Pajany et al., 2013 

Gulf of Aqaba (Saudi Arabia)  - 12.2-15.1 Al-Taani et al., 2014 

Arabian Gulf (Saudi Arabia)  - 148 Youssef et al., 2015 

Tarut Island (Arabian Gulf, Saudi 

Arabia) 
 - 53-342 El-Sorogy et al., 2016 
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downward fluxes (depositional rates) of silt-clay and associated contaminants from the water 

column into bottom sediments.  

 

Although there were no clear spatial trends in the fluxes of the silt-clay particles and 

associated metals, relatively higher fluxes occurred at station IV. This is possibly a direct 

result of the high tidal current at the entrance of the Main Harbour, which has the potential to 

cause influxes and remobilisation of large amounts of sediment compared with the inner 

stations where the tidal currents are lower (Botwe et al., 2017b). Considering that station V is 

closer to the harbour entrance but recorded lower particle fluxes than station IV, it is also 

possible that the tidal currents begin to lose a significant amount of energy around station IV 

upon entry into the harbour. Strong direct correlations were observed among the silt-clay 

particles and metal fluxes indicating that metal transport to depth and its distribution in the 

Tema Harbour are well-regulated by settling of the silt-clay particles, which can be attributed 

to strong metal-silt-clay interactions in the water column (Horowitz and Elrick, 1987; 

Horowitz et al., 1989; Hostache et al., 2014). Thus, high settling fluxes of silt-clay in the 

harbour may result in substantial fluxes of metals into the bottom sediments, a situation that 

can have adverse ecological effects such as contaminant uptake by benthic organisms, reduced 

light availability, loss of spawning areas, and smothering of benthic eggs and larvae (Green 

and Coco, 2014).  

 

8.4.3. Ecotoxicological risks of metal contamination in settling silt-clay particles in the 

Tema Harbour  

Contaminated silt-clay particles represents an important pathway of contaminant exposure to 

the aquatic food chain as it can be easily ingested by benthic organisms (Bat and Raffaelli, 

1998; Bat, 2005; Botwe et al., 2017a). A pair of empirically derived numerical sediment 

quality guidelines (SQGs), namely the effects-range low (ERL) and effects-range median 

(ERM) (Long et al., 1995; Long et al., 1998) were used to evaluate the potential 

ecotoxicological risks associated with metal contamination in the settling silt-clay particles in 

the Tema Harbour (Botwe et al., 2017a). Metal concentrations < ERL may cause rare 

occurrence of adverse biological effects and thus pose low potential ecotoxicological risk, 

concentrations > ERM may cause frequent occurrence of adverse biological effects and thus 

pose high potential ecotoxicological risk, whereas concentrations in the ERL-ERM range may 

cause infrequent occurrence of adverse biological effects and thus pose medium potential 
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ecotoxicological risk (Long et al., 1995; Long et al., 1998). Table 8.7 shows that As 

concentrations in all the analysed sediments may pose high ecotoxicological risk, while the 

concentrations of Cr, Cu, Zn, Ni and Hg may mainly pose medium risk. On the contrary, the 

sediment Pb concentrations may be mainly associated with low ecotoxicological risk. SQGs 

for Mn and Sn are not available and therefore, their associated ecotoxicological risks cannot 

be evaluated using the ERL/ERM approach. Thus, although the settling fluxes of the silt-clay 

particles were low, they are potentially hazardous due to the high concentrations of the 

associated metals, particularly As and Sn, for which appropriate (bio)remediation strategies 

need to be developed. 

 

Table 8.7 Comparison of metal concentrations in the settling silt-clay particles at 

     Tema Harbour (Ghana) with effects-range low (ERL) and effects-range 

     median (ERM) sediment quality guideline (SQG) values  

a
Long et al. (1995); NA = not available 

 

8.5. Conclusions 

Settling fluxes of the silt-clay particles and their associated metals (Mn, Pb, Cr, Cu, Zn, Ni, 

Hg, Sn and As) in the Tema Harbour have been investigated. The mean daily fluxes ranged 

from 42.7 to 85.0 g m
-2

 d
-1

 for the silt-clay particles and from 15.8-49.4,  1.6-3.3, 5.7-17.6, 

1.8-3.7, 6.4-14.9, 1.7-3.0,  (1.3-11.4) x10
-2

,  1.0-2.8, 18.5-45.2 mg m
-2

 d
-1

 for Mn, Pb, Cr, Cu, 

Zn, Ni, Hg, Sn and  As, respectively. The silt-clay fluxes and metal fluxes were characterised 

by large local fluctuations possibly due to localised inputs and complex sediment dynamics in 

the harbour. The silt-clay fluxes and metal fluxes showed strong correlations, indicating the 

important role of the silt-clay particles in metal transport and distribution in the harbour. 

Comparison with SQGs show that the concentrations of most metals in the settling silt-clay 

particles are potentially toxic to benthic species and pose high ecotoxicological risks, with As 

posing the greatest risk. Geochemical indices revealed different extents of metal 

contamination in the harbour sediments, being most polluted with As and least polluted with 

SQG 
 SQG value (mg kg

-1
 dw) 

 Mn Pb  Cr Cu Zn Ni Hg Sn As 
a
ERL  NA 46.7 81 34 150 20.9 0.15 NA 8.2 

a
ERM  NA 218 370 270 410 51.6 0.71 NA 70 

% samples below ERL  - 68 12 14 7 4 11 - 0 

% samples within ERL-ERM 

range 
 - 30 86 86 93 71 77 - 0 

% samples exceeding ERM  - 2 2 0 0 25 12 - 100 
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Mn, Cu and Ni. The As concentrations showed an increasing temporal trend, indicating the 

existence of continuous sources of As at the Tema Harbour, likely linked to metal smelting 

and the use of As-containing agrochemicals in the area. This study shows that the Tema 

Harbour is increasingly being impacted by anthropogenic activities. The concentrations of As 

and Sn are of concern, which calls for increased efforts to address the contamination problem.  
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9.1. Sediment pollution and accumulation in habours 

Sediment pollution is a global issue that threatens environmental sustainability and human 

health. Coastal marine environments, particularly harbours, are potential hot-spots of sediment 

pollution, as they are bound to receive considerable amounts of chemical contaminants from 

intense maritime and other anthropogenic activities such as industrialisation, agriculture and 

urbanisation (Smith et al., 2009; Petrosillo et al., 2009; Lepland et al., 2010; Mestres et al., 

2010; Schipper et al., 2010; Romero et al., 2014). Moreover, water exchanges within coastal 

harbours can result in the influx of large amounts of suspended sediments, which settle and 

accumulate within harbour basins under low hydrodynamic conditions (Lepland et al., 2010; 

Luo et al., 2010; Mestres et al., 2010). These sediments may derive from varied sources, but 

are mainly supplied by riverine discharges. Globally, the discharge of sediments by rivers is 

estimated at 2.3 billion tonnes per year (Syvitski et al., 2005). In Ghana, rivers discharge 

about 2.4 million tonnes of sediment per year into the sea (Akrasi, 2011). Since sediments 

play an important role in the fate of chemical pollutants in aquatic systems (Mulligan et al., 

2001; Ruiz-Fernandez et al 2009; Prato et al., 2011; Jiang et al., 2013), the accumulation of 

sediments in harbour basins can result in the accumulation of chemical pollutants.  

  

Considering the important role harbours play in the socio-economic development of human 

societies, sediment pollution, along with high sediment accumulation rates (SARs) in harbours 

imposes remedial measures, often dredging, to ensure harbour sustainability. Annually, 

several millions of tonnes of sediments are dredged from harbours around the world at huge 

cost and subsequently disposed of at sea (Witt et al., 2004; Bolam et al., 2006; Schipper et al., 

2010). Alternatively, dredged materials may be disposed of on land for agriculture, landfill, 

beach nourishment and restoration of wetlands (Choueri et al., 2009). Apart from the high cost 

of dredging, the potential of dredged materials to cause detrimental effects on receiving 

ecosystems has been recognised (Hong et al., 1995; Burton, 2002; Caille et al., 2003; 

Stronkhorst and van Hattum, 2003; Casado-Martinez et al., 2006; Birch and Hutson, 2009; 

Choueri et al 2009; Schipper et al., 2010). 

 

Global concerns about the potential adverse impact of dredged sediments from harbours and 

their subsequent disposal on the marine environment has led to the establishment of 

international treatises such as the London Convention (1972) and the London Protocol (1996), 

which impose rigorous assessment of dredged materials in order to minimise their adverse 

impacts. Thus, chemical pollution and sediment accumulation rates in harbours are of wide 
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interest to harbour engineers and managers. Many developed countries including The 

Netherlands, United States, Canada, Australia, New Zealand and Spain have therefore 

established regulatory standards for dredged materials based on potentially hazardous 

concentrations of chemical pollutants to guide the management of dredged material (Burton, 

2002; Casado-Martinez et al., 2006; Birch and Hutson, 2009; Kelderman et al., 2012). These 

standards may be referred to as Sediment Quality Guidelines (SQGs) or Action Levels (ALs) 

in different countries of origin, and they are used in ecotoxicological risk assessment for 

evaluating the likelihood of a sediment contaminant to elicit adverse biological effects.  

 

In Ghana, no national regulatory standards have been developed to guide the management of 

dredged materials. In this thesis, a pair of SQGs namely the effects-range low (ERL) and the 

effects-range median (ERM) (Long et al., 1995) were used to predict the likelihood of 

ecotoxicological effect due to the measured sediment contaminants. Although the ERL and 

ERM have been found to have good predictive ability (Long et al., 1995; Long et al., 1998), it 

is worthy to note that SQGs have several limitations, and have been found to result in false 

positive and false negative predictions in some instances (Burton, 2002). Moreover, SQGs are 

chemical specific and do not establish causality where mixtures of chemicals are present 

(Burton, 2002). Nonetheless, they are useful for identifying contaminants of potential concern 

(Burton, 2002; Long et al., 2006; Birch and Hutson 2009) and should be used in a ―screening-

level‖ manner or ―weight-of-evidence‖ approach (Burton, 2002).  

 

9.1.1. Chemical pollution assessment of Tema Harbour sediments 

In this thesis, a ―weight-of-evidence‖ approach was adopted to pollution assessment of the 

Tema Harbour sediments. A screening-level assessment was first conducted to provide a first 

line of evidence of chemical pollution in the harbour sediments, characterise the potential 

sources of the pollutants and identify those of potential concern (Burton, 2002; Long et al., 

2006). Based on the results from the screening-level assessment, bioassays were conducted as 

a further line of evidence of chemical pollution of the Tema Harbour sediments. 

 

9.1.1.1.  Screening-level assessment of chemical pollution in the Tema Harbour 

sediments 

 Radiological hazard indices (Chapter 3), SQGs (Chapters 4 and 5), total toxicity equivalence 

(Chapter 4) and risk assessment code (Chapter 5) were used as screening tools for the 
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assessment of chemical pollution in the Tema Harbour sediments. This screening-level 

assessment classified the Tema Harbour sediments as potentially toxic due to DDTs, HCHs 

and PAHs (Chapter 4), As, Cd, Hg and Zn (Chapter 5) contamination. γ-HCH and Hg were 

identified as contaminants of potential  concern in Chapters 4 and 5, respectively. This first 

line of evidence necessitated a more refined assessment (Burton, 2002; Long et al., 2006), 

which will be discussed shortly.  

 

To assess anthropogenic influences on harbours, many researchers have analysed the deep and 

surficial layers of sediment cores (Birch and Olmos, 2008; Abrahim and Parker, 2008; Yilgor 

et al., 2012). The deep layers of sediment cores represent materials deposited before the 

construction of the harbour and may thus reveal the pre-impacted environmental conditions 

for the harbour area. The surficial layers of sediment cores, on the other hand, represent those 

that were deposited after the construction of the harbour and occur closer to the sediment-

water interface. Therefore, contaminant levels in the deep sediment layers of sediment cores 

can be used to establish background levels for the harbour area, against which the levels in the 

surficial sediments can be compared to assess the extent of contamination. This approach is 

ideal considering that background levels of chemical contaminants may vary regionally due to 

potential differences in geological properties (Jiang et al., 2013).  

 

Chapter 7 showed that the lengths of sediment cores collected from the Tema Harbour were 

too short and only captured the past 13-24 years of sedimentation. Considering that the 

harbour has been in existence for over fifty years, the sediment cores could not be used to 

establish contaminant background levels in the Tema Harbour. Moreover, no consistent 

sediment contamination monitoring data have been collected for the harbour over the years. 

Therefore, for the assessment of metal contamination levels and sources in the Tema Harbour 

(Chapters 5 and 8), two widely used quantitative geochemical indices, namely the metal 

enrichment factor (EF) proposed by Sinex and Helz (1981) and the geo-accumulation index 

(Igeo) proposed by Muller (1969) were applied. These geochemical indices were used to 

characterise the extent of metal enrichment/contamination and apportion their sources as 

natural or anthropogenic, adopting the average crustal concentrations of metals reported by 

Taylor (1964) as proxies for the metal background levels. Although this has become a 

standard approach used by many authors (e.g. Addo et al., 2012; Mahu et al., 2015), there is a 

need to exercise caution in the interpretation of the results.  
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For the characterisation of the dominant sources of PAH contamination in sediments, the 

ΣLPAH/ΣHPAH ratio (Rocher et al., 2004) and various PAH isomeric ratios including 

anthracene/[anthracene + phenanthrene], fluoranthene/[fluoranthene + pyrene] and 

benzo(a)anthracene/[benzo(a)anthracene + chrysene] have been widely used (Yunker et al., 

2002; Abrajano et al., 2003; Rocher et al., 2004; Nyarko et al., 2011; Guerra, 2012). Chapter 4 

showed that these PAH source diagnostic tools did not yield consistent results for the Tema 

Harbour sediments. This is an interesting finding, which suggests that a number of indices 

should be used when assessing PAH sources in sediments. 

 

9.1.1.2.  Bioassay testing of Tema Harbour sediment 

Results from Chapters 4 and 5 indicated potential toxicity of the harbour sediments, which 

required a more refined assessment. Whole-sediment toxicity bioassays are recommended as a 

valuable tool in ecotoxicological assessment of contaminated sediments (Annicchiarico et al., 

2007; Ré et al., 2009; Schipper et al., 2010) as they integrate the toxic effects of contaminant 

mixtures present in a sediment sample (Forrester et al., 2003; Escher et al., 2008).  In many 

countries, bioassays are now required in the assessment of dredged materials and for the 

licensing of their subsequent disposal (DelValls et al., 2004; Rose et al., 2006; Casado-

Martinez et al., 2006, 2007; van Dam et al., 2008; Prato et al., 2011). Thus, in Chapter 6, the 

standard acute 10-day C. volutator (Roddie and Thain, 2002; Schipper et al., 2006) and the 

standard chronic 28-day H. diversicolor (Hannewijk et al., 2004) whole-sediment bioassays 

were combined with chemical analysis, SQGs and ALs to characterise the potential 

hazard/toxicity of the Tema Harbour sediments as a further line of evidence of sediment 

pollution in the Tema Harbour. For the bioassay, mortality and metal bioaccumulation were 

evaluated as endpoints. 

 

The C. volutator and H. diversicolor whole-sediment bioassay tests were chosen for the 

following reasons (Ciarelli et al., 1998; Uwadiae, 2010; Carvalho et al., 2012). First, these 

protocols are standard (Roddie and Thain, 2002; Schipper et al., 2006; Hannewijk et al., 

2004). Secondly, they have been widely used in the scientific literature (Stronkhorst et al., 

2003; Scarlett et al., 2007; van den Heuvel-Greve et al., 2007; Moreira et al., 2006; Mayor et 

al., 2008), but rarely as complementary test species. Thirdly, they are abundant, available 

throughout the year and, easily accessible and maintained under laboratory conditions (Scaps, 

2002; Bat, 2005). Fourthly, they are known to tolerate a wide range of salinities, temperatures, 
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sediment grain sizes and organic carbon contents (Ciarelli et al., 1998; Roddie and Thain, 

2002; Scaps, 2002; Bat, 2005; Philippe et al., 2008). Lastly, they have wide geographic 

distributions across polar, temperate and tropical marine regions (Bat, 2005; Moreira et al., 

2006; Uwadiae, 2010; Carvalho et al., 2012). In the case of the C. volutator whole-sediment 

toxicity bioassay, a sediment toxicity classification scheme has been developed (EPA, 1998). 

 

Although the use of local species from the study area as bioassay test organism is prefereable, 

a biological baseline survey conducted on benthic species in the Tema Harbour in 2010 by 

Nyarko et al. (unpublished) revealed the absence of C. valuator and H. diversicolor in the 

harbour. Moreover, whole-sediment toxicity bioassays with tropical species are not yet well 

developed (Adams and Stauber, 2008). Therefore, for this thesis, whole-sediment toxicity 

bioassay tests on the tropical Tema Harbour sediments were conducted in Europe, using C. 

volutator and H. diversicolor of European origin (Chapter 6).  

 

The bioassay tests showed that the Tema Harbour sediments are hazardous as predicted by the 

SQGs and the TEQs (Table 4.5; Table 5.4). Thus, the absence of these species at the Tema 

Harbour may partly be due to their vulnerability to the toxicity of the harbour sediments. 

Chapters 3-5 indicated that the bottom water within the harbour was anoxic, which could also 

be unfavourable for C. valuator and H. diversicolor to thrive. The pH range (7.3-8.3) of the 

harbour sediments (Chapter 5) was, however, comparable to the pH range (7.7-8.5) of the 

overlying water in the bioassays (Chapter 6). Different benthic species may display different 

sensitivities to sediment toxicity (Dauvin et al., 2016) and this was observed, C. volutator 

being more sensitive than H. diversicolor (Figs. 6.2 and 6.3). The difference in the 

sensitivities may be partly due to the presence of different toxicants in the harbour sediments 

(Bat and Raffaelli, 1998; Forrester et al., 2003; Long et al., 2006; Mayor et al., 2008), i.e. 

radionuclides (Chapter 3), DDTs, HCHs and PAHs (Chapter 4) and metals (Chapters 5 and 6). 

Based on SQGs, the sediment concentrations of Pb, Ni, Cu, Zn and As may pose medium 

potential ecotoxicological risks (Table 6.5). A logarithmic relationship was observed between 

C. volutator mortality and sediment Cd concentration (Fig. 6.4a), whereas a linear relationship 

was observed between H. diversicolor mortality and sediment Cu concentration (Fig. 6.4b), 

suggesting Cd and Cu may play a role in the mortality of C. valuator and H. diversicolor, 

respectively.  
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Amphipods are generally highly sensitive to low levels of hydrocarbon contamination, 

whereas polychaetes are more tolerant (Dauvin et al., 2016). During the bioassay experiments, 

petroleum contamination was visible in the sediments from the Fishing Harbour and the 

Canoe Basin, possibly as a result of oil spills during refuelling of fishing vessels and fuel 

leakage in these sampling areas (Chapter 6). Thus, PAH contamination could potentially 

contribute to the toxicity in the Tema Harbour sediments. This requires further investigation 

using appropriate sediment sampling techniques for PAH assessment. For this bioassay study, 

the sediments were sampled in accordance with metal analysis.   

 

Sediment toxicity to C. volutator and H. diversicolor may occur as a result of contaminant 

uptake and subsequent bioaccumulation (Luoma and Rainbow, 2008; Rainbow et al., 2009). 

The contaminated harbour sediments were predominantly composed of the silt-clay fraction, 

which can be easily ingested by the test organisms (Bat and Raffaelli, 1998; Burton, 2002). 

Therefore, to provide a further line of evidence of the potential biological effects of sediment 

pollution in the Tema Harbour, Chapter 6 also evaluated the bioaccumulation potential of 

sediment-bound metals (Cd, Pb, Cr, Ni, Cu, Zn and As) in the exposed C. volutator and H. 

diversicolor based on the biota-sediment bioaccumulation factors (BSAFs) (Aydin-Onen et 

al., 2015).  

 

Compared with the control organisms, it was evident that metal bioaccumulation occurred in 

both C. volutator and H. diversicolor exposed to the Tema Harbour sediments. This indicates 

high potential bioavailability and risk of metals entering the food. Comparison of metal 

concentrations in the Tema Harbour sediments with international Action Levels (Table 6.6) 

indicated unacceptable levels of Cu and Zn in the harbour sediments. This, together with the 

bioassay results, is of concern considering the adverse implications for the aquatic food web 

and the disposal of dredged material at sea without any prior remediation at the Tema 

Harbour. In year 2013, the Ghana Ports and Harbours Authority embarked on a port 

expansion project aimed at increasing the vessel handling capacity at the Tema Harbour to 

about 1,000,000 Twenty-Foot Equivalent Units (TEUs) in order to meet the growing needs of 

the international maritime market (http://ghanaports.gov.gh/GPHA). Since then, undisclosed 

quantities of sediments have been dredged and disposed of at sea (P.K. Ofori-Danson, pers. 

comm.). 

 

http://ghanaports.gov.gh/GPHA
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In this study, the metal concentrations in the tissues of both C. volutator and H. diversicolor 

neither correlated statistically with the sediment total metal concentrations nor the 

exchangeable metal fraction in the sediments, which poses the greatest risk of entering the 

food chain (Jain, 2004; van Hullebusch et al., 2005; Dung et al., 2013; Kalwa et al., 2013; Pini 

et al., 2015). These non-correlations suggest mediation of metal bioaccumulation by processes 

such as detoxification (Rainbow and Luoma, 2011), storage or elimination in the organisms 

(Adams et al., 2011). 

 

9.1.2. Assessment of SARs in harbours 

Sediment accumulation rates in harbours are a key factor that determines the timing of 

dredging and the quantity of material to dredge. Information on sedimentation processes and 

accurate quantification of SARs in harbours is therefore essential for harbour management 

(Buesseler et al., 2007; Leys and Mulligan, 2011). The development of the 
210

Pb sediment 

dating technique has contributed to our understanding of the dynamics and functioning of 

aquatic systems, with the unique ability to provide insight into the natural variability in 

environmental conditions as well as anthropogenic impacts in sedimentary systems on time 

scales spanning 100-150 years (Lu, 2007; Appleby, 2008; Díaz-Asencio et al., 2009). The 

210
Pb dating technique can be applied in establishing sediment chronology in lacustrine, 

estuarine and marine environments, based on which sedimentation rates can be evaluated and 

pollution history reconstructed.  

 

Deriving accurate sediment chronology and evaluating sediment accumulation rates from 

210
Pb profiles in sediment cores is, however, not a simple and straight-forward task as the 

usual assumptions involved in this technique could not be accomplished in perturbed 

environments. The delivery of sediments and 
210

Pb to aquatic systems is controlled by 

complex processes which may not be well understood. Moreover, sediment mixing is a major 

constraint in the quatification of recent SARs in
 
disturbed environments such as harbours 

since undisturbed sediments are the optimal materials for the applicability of the widely used 

210
Pb sediment dating models (Santschi et al., 2001; Bellucci et al., 2012).  

 

In harbours, the movement of vessels and other activities such as dredging often induce 

sediment resuspension and mixing (Lepland et al., 2010; Leys and Mulligan, 2011; Green and 

Coco, 2014), disrupting natural sedimentation processes such as deposition (Klubi et al., 
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2017) and the original imprint in the sediments (Santschi et al., 2001). Therefore, when 

assessing sedimentation in harbours, the issue of mixing is quite pertinent. Mixing of particle-

bound tracers implies that the grain particles within the sediments are reworked, and the 

causal mechanisms (physical, chemical and/or biological) must be identified, as well as their 

depth-dependence. Thus, some authers incorporate sediment imaging techniques such as X-

radiography (Schmidt et al., 2007; Bellucci et al 2010, 2012; Lepland et al 2010) and 

magnetic measurements (Bellucci et al., 2012) into the sediment core dating process to assess 

sediment mixing. X-radiographic imaging and magnetic measurements are useful tools for 

elucidating the sediment stratigraphy and variability in sediment texture and chemistry 

(Schmidt et al., 2007a).  

 

9.1.2.1. Assessment of SARs in the Tema Harbour 

In this thesis (Chapter 7), a rigorous approach involving sediment traps, sediment cores and 

the use of multitracers (
7
Be, 

234
Th and 

210
Pb) and different radiometric models was employed 

to investigate suspended particulate matter (SPM) dynamics and quantify recent SARs in the 

Tema Harbour. All the sediment cores were sampled out of the dredged area in the Tema 

Harbour and were expected to have preserved a sequence of continuous sediment deposition. 

Sediment mixing was examined by visual inspection of the core surfaces for biological 

activity and analyses of short-lived radionuclides (
7
Be and 

234
Th) profiles in the upper layers 

of the sediment cores (Erten, 1997; Schmidt et al., 2007a, b). Due to their short half-lives, 

234
Th and 

7
Be can provide reliable information on sediment mixing or particle reworking 

processes over a period of 4-8 months (Schmidt et al., 2007a). Subsurface occurrence of 
234

Th 

and 
7
Be in areas of low sedimentation rates indicates post-depositional sediment mixing 

(Schmidt et al., 2007b). Visual examination of the cores revealed no evidence of bioturbation 

in the surficial layers, which can cause sediment mixing over large sediment mass depths. In 

addition, specific activities of 
7
Be and 

234
Th were measured in the top layers of the sediment 

cores to serve as a quality test for the complete surface recovery of the core, which is 

necessary for dating (Erten et al., 1985; Erten, 1997). The depth profiles of these 

radionuclides showed sharp gradients in the upper 2 cm layers (Table 7.2). Since this 

observation is not consistent with a well-mixed layer, the hypothesis of mixing was rejected 

(Section 7.3.4).  
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The sediment cores exhibited variable bulk density profiles (Fig. 7.2), from which highly 

dynamic and non-steady sedimentation conditions were inferred. The sediment trap-derived 

settling fluxes revealed the existence of local disturbances with a highly irregular spatial and 

temporal character, which pointed to a complex dynamics of rising clouds of SPM and settling 

in the Tema Harbour (Section 7.3.1).  

 

9.1.2.1.1. Quantification of recent SARs in the Tema Harbour based on 7Be and 234Th 

profiles and conventional 210Pb dating models 

7
Be, 

234
Th and 

210
Pb are useful complementary tracers for studying sedimentation processes 

(Smoak and Patchineelam, 1999; Smoak et al., 1999; Yeager et al., 2005). Studies have shown 

that it is necessary to recover sedimentation records of at least five decades in order to 

calculate 
210

Pb-derived sedimentation rates and nuclide inventories more rigorously (Su and 

Huh, 2002). The analysed cores were too short (up to ≈50 cm)  to allow any reliable 

estimation of the total 
210

Pbexc inventories required for the application of the constant rate of 

supply (CRS) model (Fig. 7.5). Moreover, a clear monotonic exponential trend of decrease 

was absent in the cores and thus, the application of the CF-CS model for deriving SAR values 

was not reliable. The low values and large uncertainties in the 
137

Cs data did not allow any 

proper identification of chronostratigraphic horizons in the sediment cores, hence restricting 

its use as a tracer for sedimentation (Pfitzner et al., 2004). 

  

Under some simplifying assumptions of the Constant Flux Constant Sedimentation (CF-CS) 

model, the 
7
Be profiles were used to obtain a first estimate of the order of magnitude of very 

recent SARs over the past 6-8 months in the Tema Harbour ranging from 2.5 to 9.0 (± 1.3) 

g.cm
-2

.y
-1

 (Table 7.3). The 
7
Be-derived SAR values, along with the 

210
Pbexc specific activities 

in the upper sediment layers, was then used to obtain a first estimate of the 
210

Pbexc fluxes onto 

the SWI for one core (core A = 25.6 kBq.m
-2

.y
-1

) (Section 7.3.4). This value is two orders of 

magnitude higher than the expected atmospheric deposition of 
210

Pbexc in the Tema Harbour 

area (typically in the range of 100-200 Bq.m
-2

.y
-1

) (Section 7.3.4). The SAR values estimated 

from the 
7
Be data were

 
consistent with the

 234
Th activity versus mass depth profiles, which 

showed a near-constant background level along the cores at the 2-3 cm upper sediment slices 

(Table 7.2).  
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9.1.2.1.2. Estimation of SARs from the 210Pb-based TERESA model 

Despite the potential of the TERESA model (Abril, 2016), literature survey showed that it has 

not yet been explored for dating sediment cores from disturbed sedimentary environments. 

The model hypothesis of varying, but statistically correlated, fluxes of matter and 
210

Pbexc onto 

the SWI seemed reasonable for the Tema Harbour and thus, Chapter 7 explored the 

applicability of the TERESA model (Abril, 2016) for deriving recent SARs in the harbour. 

The TERESA model produced a sharp discontinuity in radionuclides profiles at the mass-

depth of 4.06 g.cm
-2

 (Section 7.3.6), which confirmed the hypothesis of negligible post 

depositional processes. The TERESA model also produced a reasonable fit to the data and 

generated SARs of 1.4-3.0 g.cm
-2

.y
-1

 and accretion rates of 1.7-3 cm.y
-1

 for the Tema Harbour 

(Section 7.3.9).   

 

Although the TERESA model has been validated against synthetic cores and real data from 

varved sediments, this is the first time it has been applied to date sediment cores from a 

harbour. Other investigators have used integrated approaches to evaluate sedimentation rates 

in harbours (Tang et al., 2008; Smith et al., 2009; Lepland et al., 2010; Yussof et al., 2015) 

and disturbed bays (Bellucci et al., 2012), which could not be possible with the sole 

application of 
210

Pb models. The time-averaged SAR values for the Tema Harbour by the 

TERESA model (1.4-3.0 g.cm
-2

.y
-1

) were very high in comparison to most of the data in the 

literature for lacustrine and coastal environments from other climatic regions. The accretion 

rates (1.7-3 cm.y
-1

) were higher when compared with 0.57 cm.y
-1

 reported by Yussof et al. 

(2015) for the Tanjung Pelepas Harbour (Malaysia), 1.2 cm.y
-1

 reported by Tang et al. (2008) 

for the Victoria Harbour (Hong Kong) and 0.2-2 cm.y
-1

 reported by Smith et al. (2009) for the 

Sydney Harbour (Nova Scotia, Canada).  

 

9.1.2.2. Ecotoxicological implications of metal contamination in settling silt-clay 

particles in the Tema Harbour 

The fine fractions of sediments, particularly the silt-clay particles, can be easily ingested by 

benthic organisms (Bat and Raffaelli, 1998; Bat, 2005). Therefore, chemical contamination of 

silt-clay particles is a threat to benthic organisms and other organisms in the aquatic food 

chain. Based on the ERL and ERM sediment quality guidelines (Long et al., 1995; Long et al., 

1998), Chapter 8 assessed the ecotoxicological implications of metal contamination in settling 

silt-clay particles collected in the sediment traps (Chapter 7). The results showed that As 
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concentrations in the trapped silt-clay particles (146-1470 mg.kg
-1

 dw; see Table 8.1) far 

exceeded its ERM value (70 mg.kg
-1

 dw; Table 8.7) by about 2-3 orders of magnitude. In 

most cases, the concentrations of Cr (86%), Cu (86%), Zn (93%), Ni (71%) and Hg (77%) in 

the trapped silt-clay particles were higher than their respective ERL values, but lower than 

their corresponding ERM values (Table 8.7). Thus, the settling silt-clay particles were 

potentially hazardous and pose medium to high ecotoxicological risks to benthic invertebrates 

due to the concentrations of As, Cr, Cu, Zn, Ni and Hg.  

 

The As concentrations in the settling silt-clay particles were higher than previously measured 

As concentrations in bulk surface sediments (Table 5.1) or As concentrations in silt-clay 

normalised sediments from the Tema Harbour (Table 6.6). Table 8.6 showed that the As 

concentrations in the settling silt-clay particles were high compared with As concentrations 

reported for sediments from  gold mining areas in Ghana (Affum et al., 2016) and coastal 

areas of Egypt (Mostafa et al., 2004; Abdel Ghani et al., 2013), Finland (Vallius et al., 2007), 

China (Luo et al., 2010), Spain (Díaz-de Alba et al., 2011), Tanzania (Rumisha et al., 2012), 

the Mediterranean (Mamindy-Pajany et al., 2013), and Saudi Arabia (Al-Taani et al., 2014; 

Youssef et al., 2015; El-Sorogy et al., 2016). An increasing trend in As concentrations in the 

settling silt-clay particles was observed across the sampling period (Fig. 8.1i), which 

suggested the existence of continuous sources of As at the Tema Harbour. Potential As 

sources include industrial activities such as metal smelting, the use of As-containing 

agrochemicals in the harbour area and spillage of As-containing chemicals in the harbour.  

 

9.2. General conclusions 

This study is the first comprehensive assessment of sediments in the Tema Harbour in terms 

of chemical pollution and accumulation rates. The thesis contributes to improving our ability 

to combine sediment chemistry with bioassays in one comprehensive assessment of the 

contamination state of a coastal harbour. The study results showed that the harbour has been 

severely affected by anthropogenic activities, resulting in pollution of the sediments, 

especially those from the Fishing Harbour and the Canoe Basin. This raises concerns about 

sediment and general environmental management at the Tema Harbour, considering the lack 

of engineered fields where dredged materials from the harbour can be stored or treated.  The 

expansion of the Tema Harbour and maintenance operations requires dredging and disposal of 

the dredged material at sea may be the only option. In the context of this study, there is a need 
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to undertake remedial measures that will minimize the impact of dredging and the disposal of 

dredged sediments from the harbour. Equally important is the need for enforcement of 

environmental regulations to control point and non-point sources of pollution at the Tema 

Harbour.  

 

This thesis further demonstrates how sediment trap data can complement sediment core data 

with the use of multi-tracers and radiometric dating models in the marine environment to 

obtain reliable information on sediment dynamics in a disturbed coastal harbour area where 

conventional 
210

Pb-based dating methods fail. In particular, the 
210

Pb-based TERESA model is 

a good tool for quantifying sedimentation rates in the Tema Harbour with overall time-

averaged SAR values in the range of 1.4-3.0 g.cm
-2

.y
-1

 and sediment accretion rates of 1.7-3 

cm.y
-1

. These accretion rates pose moderate problems for sustainable management of the 

harbour. The main findings of the thesis for environmental management at the Tema Harbour 

are presented in Fig.9.1. 

 

 

 

 

  

 

 

 

 

 

 

 

 

Fig. 9.1 Schematic presentation of the main findings of the thesis for environmental 

management at the Tema Harbour 
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Samenvatting 

De haven van Tema in Ghana is al bijna zes decennia in bedrijf en is onderhevig aan een grote 

toevoer van sedimenten en verontreinigingde sedimenten als gevolg van de intense 

antropogene activiteiten in het havengebied. Dit proefschrift beoordeelde de sediment 

verontreiniging in de Tema haven door gebruik te maken van de standaard 10-daagse 

Corophium volutator en 28-daagse Hediste diversicolor sediment toxiciteit bioassays evenals 

het bepalen van de concentraties van chemische contaminanten (DDT's, HCH's, PAK's en 

metaal - Cd, Pb, Cr, Ni , Cu, Zn en As). De resultaten van de bioassays toonden significante 

C. volutator en H. diversicolor mortaliteit, wat aangeeft dat de Tema Harbour-sedimenten 

vervuild en toxisch zijn. Biota-sediment accumulatiefactoren onthulden verder een hoog 

potentieel voor bioaccumulatie van de sediment-geassocieerde metalen, wat nadelige 

gevolgen kan hebben voor de voedselketen. De sedimenten van de Tema haven zijn dus 

ongeschikt voor baggeren en dumpen op zee zonder sanering. 

 

Het proefschrift onderzocht verder de accumulatie percentages van sedimenten (SAR's) in de 

Tema-haven door de gecombineerde analyse van sediment profielen en sediment profiel 

gegevens. De sediment profielen vertoonden variabele bulk dichtheidsprofielen, wat wijst op 

zeer dynamische en niet-stabiele sedimentatie omstandigheden. De brutoschattingen van zeer 

recente sediment accumulatiesnelheden met behulp van het constante flux sedimentatie (CF-

CS) model lagen in het bereik van 2,5-9,0 g.cm
-2

.y
-1

. Deze waarden waren veel lager dan de 

geschatte gemiddelde bezinkingsfluxen op basis van de gegevens uit sedimentenvallen (15,2-

53,8 g.cm
-2

.y
-1

), wat aangeeft dat resuspensie van de sedimenten een belangrijke rol speelt in 

sedimentatie in de Tema haven. Conventionele 
210

Pb modellen voor sediment datering konden 

niet worden gebruikt om de SAR's in de Tema-haven te schatten. Het TERESA-model op 

basis van 
210

Pb bleek echter een goed hulpmiddel te zijn om de accumulatie van sedimenten in 

de Tema haven te kwantificeren met tijdsgemiddelde waarden variërend tussen 1,4-3,0 g.cm
-

2
.y

-1
 en met sediment accumulatiesnelheden van 1,7-3 cm.y

-1
. 

 

Concluderend heeft deze studie aangetoond dat de haven van Tema ernstig is aangetast door 

antropogene activiteiten, resulterend in vervuiling van de sedimenten, vooral die van de 

Visserijhaven en het Kanobasin. Bovendien kan de sediment accumulatie in de haven 

gematigde problemen opleveren voor het duurzaam gebruik van de haven. Er is daarom 
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behoefte aan verbetering van het sediment en milieubeheer in de haven van Tema en het 

reguleren van de afvoer van het gebaggerde materiaal uit deze tropische kusthaven. 
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