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 General introduction                                                 Durum wheat and septoria tritici blotch 
 

The domestication of tetraploid wheat and the onset of modern agriculture 

Describing the history of mankind requires a range of books, but in short one can state 

that it coincided with major changes in lifestyle and also resulted in massive demographic 

events, often displacing one culture by the other involving huge social and economic battles, 

eventually resulting in our contemporary civilization (Harman 2008). A major move that 

enabled the development of agriculture was the transition from the hunter-gatherer to a 

sedentary life style. This shift occurred between 10,000 and 5,000 years B.C and is known as 

the Neolithic Revolution that gave rise to the first agrarian communities (Faris 2014; Harman 

2008). Inhabitants of the Levant pioneered farming as a main food supply and spread 

agricultural practices throughout the Fertile Crescent (Faris 2014), which is therefore 

considered as the cradle of the agriculture and a rich niche of biodiversity, particularly for cereal 

crops (Gepts 2010; Zeder 2008). Early human settlers in the region likely harvested the wild 

forms of wheat, and other cereals, from natural stands before domestication of tetraploid wheats 

and agriculture developed into deliberate cultivation (Salamini et al. 2002) that started around 

7.000 B.C (Harlan and Zohary 1966; Newton et al. 2010). The factors driving domestication 

and the change from hunter-gatherers to growers remain enigmatic, but one of the possibilities 

is a ~1,000-year episode of a cold and dry climate, known as the Younger Dryas, 10,000 – 9,000 

B.C, which restricted and impaired vast natural stands of wheat, thereby constraining primary 

human civilizations and hence initial domestication of plants and animals. However, regardless 

on the precise events and timing, the start of agriculture was enabled by a set of domesticated 

primitive landraces of cereals, many of which are still in use in various parts of the world  in 

contemporary rural areas (Gepts 2010; Salamini et al. 2002). The domestication of wild 

tetraploid wheat species, as well as other cereals, and their adoption as potential staple crops 

was not only a crucial step for the onset of agriculture, but also paved the way for a durum 

wheat based diet in the Mediterranean basin that lasts until now in well-known dishes such as 

pasta, couscous and bulgur (Elias 1995). 

The evolution of tetraploid wheat and its genetic diversity 

Tetraploid wheats (Triticum turgidum ssp.) are believed to be among the first cereal 

grains that were domesticated during the Neolithic era (Tadesse et al. 2016). Archaeological 

studies revealed that tetraploid emmer (T. turgidum ssp. dicoccum) was among the first forms 

of wheat that was domesticated from wild emmer, T. dicoccoïdes (2n = 2x = 28, AuAuBB) 

(Heun et al. 1997; Newton et al. 2010). This species emerged from natural hybridizations 
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between diploid wheat species (Tadesse et al. 2016), that subsequently gave rise to a wide range 

of sub-species, which widened the genetic diversity of wheat and hence, its wide adaptation and 

cultivation across the globe (Feuillet et al. 2008; Newton et al. 2010; Serrão et al. 2016), 

particularly after amphidiploidization with Aegilops squarrosa, the D genome donor that has a 

vast natural distribution area compared to the diploid ancestors of tetraploid wheats  (Feldman 

and Levy 2005; Feldman and Sears 1981; Zohary et al. 2012). Such an amphidiploidization 

took place between the parental diploid, einkorn T. urartu (2n = 2x = 14, AuAu) and the B 

genome progenitor, Ae. speltoides (2n=2x= 14, SS) giving rise to wild emmer wheat (Dvorak 

and Akhunov 2005; Feldman and Levy 2005; Johnson and Dhaliwal 1976). Several other 

tetraploid wheats have also been domesticated and cultivated, even though to a limited extent 

including T. araraticum (2n=4x= 28; AuAuGG) and T. timopheevii (2n = 4x = 28, AtAtGG). 

The former containing a pair of A genomes from T. urartu and a pair of G genomes, which is 

believed to be a divergent form of the S genome of the Aegilops progenitor (Rodriguez et al. 

2000). Triticum timopheevii is assumed to be domesticated from the wild emmer T dicoccoides 

ssp. armeniacum (William et al. 2011), and most probably has resulted from a secondary 

domestication due to its limited significance as a crop in the Georgia region (Nesbitt et al. 1996). 

The T. turgidum subspecies emerged due to a species-specific translocation in T. timopheevii 

involving the 6At, 1G, and 4G chromosomes that distinguished it from T. turgidum (Jiang and 

Gill 1994; Naranjo 1990). The former contains a translocation involving chromosomes 4A, 5B 

and 7B (Devos et al. 1995). Triticum turgidum subspecies have also been progenitors of the 

hexaploid bread wheats, which developed into one of the top global staple foods (Harlan and 

Zohary 1966; Tadesse et al. 2016; Zohary et al. 2012). Hexaploid wheat is solely known in its 

domesticated form as no direct hexaploid wild progenitor is recognised (Charmet 2011; Kilian 

et al. 2010; Newton et al. 2010; Qin et al. 2017).  

During domestication tetraploid wheats have undergone a suite of anatomical and 

morphological changes that marked its divergence from its wild ancestor(s) (Charmet 2011; 

Newton et al. 2010). The genetic modifications have been described as the domestication 

syndrome (Harlan 1971; Harlan 1992; Harlan et al. 1973; Meyer et al. 2012) comprising 

characteristics such as seed retention (non-shattering), increased seed size, changes in 

branching and stature, change in reproductive strategy, and changes in secondary metabolism. 

The first and foundational morphological divergence occurred in wild emmer wheat; non-brittle 

rachis prevents the natural seed dispersal mechanisms, enabling the harvest of entire heads, 

which must have contributed to enhanced grain yields (Faris 2014; Peleg et al. 2011) (Figure1). 
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Other domestication-related traits include larger seeds, loss of seed dormancy, the free-

threshing character, and enhanced grain quality (Faris 2014; Harlan et al. 1973; Nevo et al. 

2013). These changes were mainly driven by mutations in the major hallmark genes of wheat 

evolution; Br, Tg and q, conferring brittle rachis, tenacious glume, and a hulled seed, 

respectively (Avni et al. 2017; Dubcovsky and Dvorak 2007; Faris 2014; Peng et al. 2011) 

(Figure 1). These changes eventually increased the geographical diffusion of wheat, which 

intimately contributed to the rise of  human civilization (Nevo et al. 2013). Archaeological 

records revealed that free-threshing tetraploids first appeared around 8,000-9,000 BC in Tell 

Aswad and other Syrian sites as well as Can Hassan III in southern Turkey (Colledge and 

Conolly 2010; Faris 2014). Free-threshing derivatives of domesticated emmer, such as the 

extinct tetraploid T. turgidum ssp. parvicoccum, appear in the archaeological record shortly 

after emmer was domesticated. Free-threshing durum wheat replaced the domesticated emmer 

around 1,000 BC, when it disseminated to the Middle-East, the Mediterranean basin, and 

Europe (Feldman and Levy 2005). It appears that free-threshing durum, emmer, and probably 

other tetraploids were cultivated in mixtures for many years until free-threshing durum wheat 

was established as a prominent crop in the Mediterranean basin and the Near East almost 3,000 

years ago (Faris 2014; Thuillet et al. 2005; Vigouroux et al. 2011). Ever since, durum wheat 

has spread to even more remote geographical areas, and its expansion has intimately followed 

human migration. From the ancient Egypt, durum wheat disseminated to Europe, and from there 

across the entire continent by the end of the 15th century. It then reached the American continent 

in 1492 with the first European settlers (Baloch et al. 2017; Capparelli et al. 2005; Ren et al. 

2013). Nowadays, durum wheat is mainly cultivated in the Mediterranean basin that 

encompasses Southern Europe and North Africa, the Norther Great Plains of the U.S. and more 

recently in Southern Asia (Baloch et al. 2017; Faris 2014) and represents approximately 10% 

of the global cultivated wheat area (Magallanes-López et al. 2017). 

Evidently, wheat domestication has not only shaped the genetic structure of the crop but 

also contributed to micro-environmental changes that affected microbes and pests, which 

enforces selection pressure and together with the influence of mankind completed the disease 

triangle of the crop. One of the pathogens that co-evolved with wheat crops is the damaging 

foliar blight Zymoseptoria tritici (Desm.) Quaedvlieg & Crous (formerly Mycosphaerella 

graminicola [Fuckel] J. Schröt. in Cohn) (Stukenbrock et al. 2006). 
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Zymoseptoria tritici: The intimate perilous tracker of wheat  

Several studies have recognised that the origin of Z. tritici coincided with wheat 

domestication. This foliar fungal pathogen has been an intimate tracker and emerged in parallel 

with wheat in the Fertile Crescent from its ancestors Z. ardabiliae and Z. pseudotritici that were 

Figure 1. Major morphological divergence of the wheat spike occurred during wheat domestication. 

Figure (A) corresponds to the wild emmer wheat (T. dicoccoides) characterized by a brittle rachis 

and a hulled grain. Figure (B) shows the domesticated emmer (T. dicoccum) divergent from the T. 

dicoccoides by its non-brittle rachis. Alike T. dicoccoides, T. dicoccum (B) is characterized by a 

hulled grain. Figures (C) and (D) represent cultivated forms of wheat, the durum (T. durum) (C) and 

the common or bread wheats (T.aestivum) (D) characterized by a non-brittle rachis and a naked grain. 

White scale bars represent 1 cm. The genome formula of each type of wheat is indicated at the lower 

right corner. Genes conferring brittle rachis (Br), tenacious glume (Tg) and hulled grain (q) are major 

genes that marked wheat evolution (adopted from (Dubcovsky and Dvorak 2007)). 



General Introduction

11

1

 General introduction                                                 Durum wheat and septoria tritici blotch 
 

Other domestication-related traits include larger seeds, loss of seed dormancy, the free-

threshing character, and enhanced grain quality (Faris 2014; Harlan et al. 1973; Nevo et al. 

2013). These changes were mainly driven by mutations in the major hallmark genes of wheat 

evolution; Br, Tg and q, conferring brittle rachis, tenacious glume, and a hulled seed, 

respectively (Avni et al. 2017; Dubcovsky and Dvorak 2007; Faris 2014; Peng et al. 2011) 

(Figure 1). These changes eventually increased the geographical diffusion of wheat, which 

intimately contributed to the rise of  human civilization (Nevo et al. 2013). Archaeological 

records revealed that free-threshing tetraploids first appeared around 8,000-9,000 BC in Tell 

Aswad and other Syrian sites as well as Can Hassan III in southern Turkey (Colledge and 

Conolly 2010; Faris 2014). Free-threshing derivatives of domesticated emmer, such as the 

extinct tetraploid T. turgidum ssp. parvicoccum, appear in the archaeological record shortly 

after emmer was domesticated. Free-threshing durum wheat replaced the domesticated emmer 

around 1,000 BC, when it disseminated to the Middle-East, the Mediterranean basin, and 

Europe (Feldman and Levy 2005). It appears that free-threshing durum, emmer, and probably 

other tetraploids were cultivated in mixtures for many years until free-threshing durum wheat 

was established as a prominent crop in the Mediterranean basin and the Near East almost 3,000 

years ago (Faris 2014; Thuillet et al. 2005; Vigouroux et al. 2011). Ever since, durum wheat 

has spread to even more remote geographical areas, and its expansion has intimately followed 

human migration. From the ancient Egypt, durum wheat disseminated to Europe, and from there 

across the entire continent by the end of the 15th century. It then reached the American continent 

in 1492 with the first European settlers (Baloch et al. 2017; Capparelli et al. 2005; Ren et al. 

2013). Nowadays, durum wheat is mainly cultivated in the Mediterranean basin that 

encompasses Southern Europe and North Africa, the Norther Great Plains of the U.S. and more 

recently in Southern Asia (Baloch et al. 2017; Faris 2014) and represents approximately 10% 

of the global cultivated wheat area (Magallanes-López et al. 2017). 

Evidently, wheat domestication has not only shaped the genetic structure of the crop but 

also contributed to micro-environmental changes that affected microbes and pests, which 

enforces selection pressure and together with the influence of mankind completed the disease 

triangle of the crop. One of the pathogens that co-evolved with wheat crops is the damaging 

foliar blight Zymoseptoria tritici (Desm.) Quaedvlieg & Crous (formerly Mycosphaerella 

graminicola [Fuckel] J. Schröt. in Cohn) (Stukenbrock et al. 2006). 
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with wheat in the Fertile Crescent from its ancestors Z. ardabiliae and Z. pseudotritici that were 

Figure 1. Major morphological divergence of the wheat spike occurred during wheat domestication. 

Figure (A) corresponds to the wild emmer wheat (T. dicoccoides) characterized by a brittle rachis 

and a hulled grain. Figure (B) shows the domesticated emmer (T. dicoccum) divergent from the T. 

dicoccoides by its non-brittle rachis. Alike T. dicoccoides, T. dicoccum (B) is characterized by a 

hulled grain. Figures (C) and (D) represent cultivated forms of wheat, the durum (T. durum) (C) and 

the common or bread wheats (T.aestivum) (D) characterized by a non-brittle rachis and a naked grain. 

White scale bars represent 1 cm. The genome formula of each type of wheat is indicated at the lower 

right corner. Genes conferring brittle rachis (Br), tenacious glume (Tg) and hulled grain (q) are major 

genes that marked wheat evolution (adopted from (Dubcovsky and Dvorak 2007)). 
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isolated from the wild grasses Elymus repens, Dactylis glomerata and Lolium perenne in Iran 

(Stukenbrock et al. 2006; Stukenbrock et al. 2011; Stukenbrock and Croll 2014; Stukenbrock 

and McDonald 2008; Stukenbrock et al. 2012; Torriani et al. 2011). The newly evolved Z. tritici 

pathogen, causal agent of septoria tritici blotch (STB), has diverged towards a specialized 

pathogen of wild and cultivated wheats. 

Zymoseptoria tritici is currently globally distributed, threatening durum and bread 

wheat production that might decline to 50% under conducive conditions (O’Driscoll et al. 2014; 

Ponomarenko et al. 2011). In Europe, STB is the most economically important disease of wheat, 

with an estimated ∼€1 billion per year in fungicide expenditure directed toward its control 

(Kettles and Kanyuka 2016). Septoria tritici blotch drew international attention after an 

epidemic in North-Africa in 1968–1969, following the introduction of semi-dwarf wheat 

cultivars and the inherent use of artificial fertiliser (Brown et al. 2015; Saari and Wilcoxson 

1974). The high genetic plasticity and diversity, and the active sexual reproduction of Z. tritici 

have hampered the implementation of an efficient strategy to control STB (Goodwin et al. 2011; 

Torriani et al. 2015; Wittenberg et al. 2009). 

Zymoseptoria tritici: the art of know-how of a fungus  

Zymoseptoria tritici is an ascomycete belonging to the family of the 

Mycosphaerellaceae in the class of the Dothideomycetes. It was formerly known as septoria 

tritici that was discovered by Desmazières in 1842 and its teleomorph Mycosphaerella 

graminicola was described 150 years later by (Sanderson 1976). Recently, the fungus has been 

renamed as Zymoseptoria tritici following the one-name-one-fungus taxonomy (Quaedvlieg et 

al. 2011). Zymoseptoria tritici has a heterothallic bipolar mating system with two mating type 

alleles, mat1-1 and mat1-2 (Waalwijk et al. 2002), and actively sporulates through asexual and 

sexual fructifications that release splash-borne pycnidisopores and air-borne ascospores, 

respectively (Ponomarenko et al. 2011), both contributing to epidemics. Ascospores can be 

formed year-round, and constitute the primary inoculum released from wheat debris. During 

the growing season, disease progress is ensured by the pycnidisopores (Figure2) (Eyal 1999; 

Eyal et al. 1987; Hunter et al. 1999; Kema et al. 1996b; McDonald and Linde 2002; 

Ponomarenko et al. 2011).  

Albeit Zymoseptoria tritici′s lifestyle has been considered as hemibiotrophic, a late 

necrotroph has been suggested to be more accurate  (Sanchez-Vallet et al. 2015) and recently 

Fones et al. (2017) described a role for epiphytic growth of the fungus prior to penetration. In 
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any case, the infection cycle includes a biotrophic symptomless phase during which the fungus 

colonizes the extracellular space surrounding the mesophyll cells without any apparent damage 

to the host. Upon landing on a wheat leaf surface and under conditions of high humidity, 

germinating ascospores and conidia produce hyphae that penetrate through the stomata to 

access the apoplast without developing haustoria or any other visible feeding structures, where 

it slowly grows in a close contact with the plant cell wall  (Kema et al. 1996a; Marshall et al. 

2011; Mehrabi 2006). The life strategy of Z. tritici during the initial symptomless colonization 

remains enigmatic. Despite the macoscopical lack of symptoms, microscopic observations by 

Kema et al. (1996a) showed that chloroplasts are in constant move towards the cell wall during 

this phase, which suggests that Z. tritici acts on the plant cell physiology by altering its 

functionality. The release of small secreted proteins may explain these observations (Ben 

M’Barek et al. 2015; Gohari 2015; Kettles et al. 2017; Kettles and Kanyuka 2016; Mirzadi 

Gohari et al. 2015; Palma‐Guerrero et al. 2016; Rudd et al. 2015), and contrary to other 

ascomycete cereal pathogens, Z. tritici also encodes a few carbohydrate-active enzyme family 

proteins, but abundant peptidase and alpha-amylase enzymes, which suggests an alternative 

nutrient acquisition of Z. tritici from its host environment (Fones et al. 2017; Goodwin et al. 

2011). Moreover, genes encoding for lipases, cutinases and fatty acid metabolism enzymes are 

up-regulated during this phase (Keon et al. 2007; Palma-Guerrero et al. 2017; Rudd et al. 2015), 

which suggests that Z. tritici relies upon stored energy in germinating spores that are 

conceivably supplemented by cuticular waxes rather than tapping directly from host resources 

(Kettles et al. 2017; Kettles and Kanyuka 2016; Rudd et al. 2015). Host defence mechanisms 

are most probably supressed during this latent phase (Hammond-Kosack and Rudd 2008; 

Palma-Guerrero et al. 2016; Rudd 2015). The secretion of LysM effectors by Z. tritici prevents 

chitin recognition, which also supports its invasion and one LysM effector plays a role in 

virulence, suggesting various roles of these effectors (Lee et al. 2014; Marshall et al. 2011).  

In a compatible interaction, the necrotrophic phase occurs 10-14 days after inoculation, 

depending on environmental conditions, and is characterized by the appearance of 

macroscopically visible chlorotic lesions that turn into larger necrotic blotches bearing the 

pycnidia, the asexual fructifications of the fungus (Duncan and Howard 2000; Kema et al. 

1996a; Shetty et al. 2003). Genetic factors that trigger the switch from a biotrophic lifestyle to 

the ramifying necrotrophic state are still unidentified (Mirzadi Gohari et al. 2015; Palma-

Guerrero et al. 2016). It is associated with the induction of host defences, but not with the 

classical hypersensitive response (HR) despite characteristics of HR-associated programmed 
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al. 2011). Zymoseptoria tritici has a heterothallic bipolar mating system with two mating type 

alleles, mat1-1 and mat1-2 (Waalwijk et al. 2002), and actively sporulates through asexual and 

sexual fructifications that release splash-borne pycnidisopores and air-borne ascospores, 

respectively (Ponomarenko et al. 2011), both contributing to epidemics. Ascospores can be 

formed year-round, and constitute the primary inoculum released from wheat debris. During 

the growing season, disease progress is ensured by the pycnidisopores (Figure2) (Eyal 1999; 

Eyal et al. 1987; Hunter et al. 1999; Kema et al. 1996b; McDonald and Linde 2002; 

Ponomarenko et al. 2011).  

Albeit Zymoseptoria tritici′s lifestyle has been considered as hemibiotrophic, a late 

necrotroph has been suggested to be more accurate  (Sanchez-Vallet et al. 2015) and recently 
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any case, the infection cycle includes a biotrophic symptomless phase during which the fungus 
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to the host. Upon landing on a wheat leaf surface and under conditions of high humidity, 

germinating ascospores and conidia produce hyphae that penetrate through the stomata to 

access the apoplast without developing haustoria or any other visible feeding structures, where 

it slowly grows in a close contact with the plant cell wall  (Kema et al. 1996a; Marshall et al. 

2011; Mehrabi 2006). The life strategy of Z. tritici during the initial symptomless colonization 

remains enigmatic. Despite the macoscopical lack of symptoms, microscopic observations by 

Kema et al. (1996a) showed that chloroplasts are in constant move towards the cell wall during 

this phase, which suggests that Z. tritici acts on the plant cell physiology by altering its 

functionality. The release of small secreted proteins may explain these observations (Ben 

M’Barek et al. 2015; Gohari 2015; Kettles et al. 2017; Kettles and Kanyuka 2016; Mirzadi 

Gohari et al. 2015; Palma‐Guerrero et al. 2016; Rudd et al. 2015), and contrary to other 

ascomycete cereal pathogens, Z. tritici also encodes a few carbohydrate-active enzyme family 

proteins, but abundant peptidase and alpha-amylase enzymes, which suggests an alternative 

nutrient acquisition of Z. tritici from its host environment (Fones et al. 2017; Goodwin et al. 

2011). Moreover, genes encoding for lipases, cutinases and fatty acid metabolism enzymes are 

up-regulated during this phase (Keon et al. 2007; Palma-Guerrero et al. 2017; Rudd et al. 2015), 

which suggests that Z. tritici relies upon stored energy in germinating spores that are 

conceivably supplemented by cuticular waxes rather than tapping directly from host resources 

(Kettles et al. 2017; Kettles and Kanyuka 2016; Rudd et al. 2015). Host defence mechanisms 

are most probably supressed during this latent phase (Hammond-Kosack and Rudd 2008; 

Palma-Guerrero et al. 2016; Rudd 2015). The secretion of LysM effectors by Z. tritici prevents 

chitin recognition, which also supports its invasion and one LysM effector plays a role in 

virulence, suggesting various roles of these effectors (Lee et al. 2014; Marshall et al. 2011).  

In a compatible interaction, the necrotrophic phase occurs 10-14 days after inoculation, 

depending on environmental conditions, and is characterized by the appearance of 

macroscopically visible chlorotic lesions that turn into larger necrotic blotches bearing the 

pycnidia, the asexual fructifications of the fungus (Duncan and Howard 2000; Kema et al. 

1996a; Shetty et al. 2003). Genetic factors that trigger the switch from a biotrophic lifestyle to 
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classical hypersensitive response (HR) despite characteristics of HR-associated programmed 
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cell death (PCD) and the regulation of wheat Mitogen-Activated Protein Kinase (MAPK). Other 

mechanisms also occur during this switch that are mainly associated with Effector-Triggered 

Immunity (ETI), which essentially play a role in reducing cell permeability leading to a nutrient 

leakage from dying plant cells that enables fungal proliferation in the apoplast (Keon et al. 

2007; Rudd et al. 2008). The subsequent extended necrotrophic phase characterizes the final 

infection phase, during which the pathogen feeds on nutrients released from dying host tissue 

and produces the asexual pycnidia that contribute significantly to the development of epidemics 

(Shaw 1987; Shaw and Royle 1989). 

Zymoseptoria tritici has proven its high adaptability to diverse agricultural ecosystems 

(Croll et al. 2017; Croll and McDonald 2017; McDonald et al. 1995; McDonald and Mundt 

2016). It is omnipresent in temperate climates where bread wheat cultivation is significant 

(O’Driscoll et al. 2014), as well as in the hot dry climate of North Africa and the Mediterranean 

basin, suitable for durum wheat cultivation  (Brown et al. 2015; Meamiche Neddaf et al. 2017), 

as well as the cold areas of North America (Banke and McDonald 2005; Eyal et al. 1985; Linde 

et al. 2002; Zhan et al. 2003). The high genome plasticity of Z. tritici, illustrated by the high 

number of accessory chromosomes that can be lost without any apparent impact on the 

pathogenic fitness (Stukenbrock et al. 2010; Wittenberg et al. 2009), has likely contributed to 

its survival, adaptation and speciation to various agro-ecosystems (Croll et al. 2017; Croll and 

McDonald 2012; Croll and McDonald 2016), including its resistance to fungicides that limits 

the efficacy of the chemical control (Brunner et al. 2013; Torriani et al. 2009; Torriani et al. 

2015). 

Interestingly, breeding for resistance to Z. tritici in bread wheat has taken off once Stb 

genes were identified thanks to the use of well-characterized Z. tritici isolates (Adhikari et al. 

2003; Adhikari et al. 2004a; Adhikari et al. 2004b; Arraiano et al. 2001a; Brading et al. 2002; 

Brown et al. 2001; Brown et al. 2015; Chartrain et al. 2005b; Chartrain et al. 2004). Hence, 

breeding for resistance in durum wheat is promising despite its current standing. In this thesis 

the foundation for such an endeavour is presented and discussed.  

 

 

 

 

 General introduction                                                 Durum wheat and septoria tritici blotch 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Zymoseptoria tritici specificity: the mysterious black box  

Species specificity in the Z. tritici- wheat pathosystem generated a nearly 50 years’ long 

debate in the Septoria community. Although denied in some studies (Johnson 1992; Parlevliet 

1993; Van Ginkel and Scharen 1988), cultivar specificity has been widely reported in bread 

wheat (Ahmed et al. 1995; Kema et al. 1996a; Kema et al. 1996b; Kema et al. 1996c; Kema 

and van Silfhout 1997; Kema et al. 1996d), as well as in durum wheat (Ghaneie et al. 2012; 

Kema et al. 1996c; Medini and Hamza 2008), suggesting a gene-for-gene (GFG) interaction 

between wheat and Z. tritici isolates. This model was supported by the single gene inheritance 

Figure 2. A schematic description of the septoria tritici leaf blotch (STB) disease dissemination on wheat 

(outer ring) overlain with the commercial wheat production cycle (inner ring)  

(adopted from (O’Driscoll et al. 2014)). 
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cell death (PCD) and the regulation of wheat Mitogen-Activated Protein Kinase (MAPK). Other 

mechanisms also occur during this switch that are mainly associated with Effector-Triggered 

Immunity (ETI), which essentially play a role in reducing cell permeability leading to a nutrient 

leakage from dying plant cells that enables fungal proliferation in the apoplast (Keon et al. 

2007; Rudd et al. 2008). The subsequent extended necrotrophic phase characterizes the final 

infection phase, during which the pathogen feeds on nutrients released from dying host tissue 

and produces the asexual pycnidia that contribute significantly to the development of epidemics 

(Shaw 1987; Shaw and Royle 1989). 

Zymoseptoria tritici has proven its high adaptability to diverse agricultural ecosystems 

(Croll et al. 2017; Croll and McDonald 2017; McDonald et al. 1995; McDonald and Mundt 

2016). It is omnipresent in temperate climates where bread wheat cultivation is significant 

(O’Driscoll et al. 2014), as well as in the hot dry climate of North Africa and the Mediterranean 

basin, suitable for durum wheat cultivation  (Brown et al. 2015; Meamiche Neddaf et al. 2017), 

as well as the cold areas of North America (Banke and McDonald 2005; Eyal et al. 1985; Linde 

et al. 2002; Zhan et al. 2003). The high genome plasticity of Z. tritici, illustrated by the high 

number of accessory chromosomes that can be lost without any apparent impact on the 

pathogenic fitness (Stukenbrock et al. 2010; Wittenberg et al. 2009), has likely contributed to 

its survival, adaptation and speciation to various agro-ecosystems (Croll et al. 2017; Croll and 

McDonald 2012; Croll and McDonald 2016), including its resistance to fungicides that limits 

the efficacy of the chemical control (Brunner et al. 2013; Torriani et al. 2009; Torriani et al. 

2015). 

Interestingly, breeding for resistance to Z. tritici in bread wheat has taken off once Stb 

genes were identified thanks to the use of well-characterized Z. tritici isolates (Adhikari et al. 

2003; Adhikari et al. 2004a; Adhikari et al. 2004b; Arraiano et al. 2001a; Brading et al. 2002; 

Brown et al. 2001; Brown et al. 2015; Chartrain et al. 2005b; Chartrain et al. 2004). Hence, 

breeding for resistance in durum wheat is promising despite its current standing. In this thesis 

the foundation for such an endeavour is presented and discussed.  
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of avirulence in Z. tritici (Kema et al. 2000) and further detailed by Brading et al. in (2002) in 

a genetic study carried out on the cross between the Z. tritici isolates IPO323 avirulent on cv. 

Shafir (carrying the Stb6 resistance gene) and IPO94269 (virulent on cv. Shafir). The 

(a)virulence gene was subsequently mapped on the distal part of chromosome 5, and co-

segregates with the genomic region responsible for the host specificity, widely reported in a 

range of studies (Eyal et al. 1973; Kema et al. 1996a; Mirzadi Gohari et al. 2015; Van Ginkel 

and Scharen 1988; Ware 2006). Albeit early reported, host specificity and cultivar specificity 

in the Z. tritici pathosystem remain inscrutable as so far only genes controlling cultivar 

specificity have been identified (this thesis;(Zhong et al. 2017)). Nevertheless, whilst the 

reported GFG model has greatly enhanced gene postulation in bread wheat resulting into the 

identification of 21 Stb major resistance genes (Brown et al. 2015), the dichotomy in Z. tritici 

is a burden for gene postulation in durum wheat, hampering its improvement for STB resistance.  

Wheat-Zymoseptoria tritici interaction: The incomplete story 

The increased awareness about the destructive effects of Z. tritici in wheat that peril 

global food security has urged the need to adopt sustainable strategies for STB control. The 

repeatedly reduced efficacy of fungicides due to the emergence of resistance among natural 

populations of Z. tritici (Torriani et al. 2009; Torriani et al. 2015; Torriani et al. 2011), has 

directed wheat producers to associate chemical control with the use of germplasm with 

enhanced resistance to STB and to adopt better cultural practices (Omrane et al. 2015). 

Tremendous efforts have been made to improve resistance to Z. tritici in bread wheat. This has 

started early in 1957 with the identification of the first Stb gene, Stb1 in the winter wheat cv. 

Bulgaria 88, which was the first commercially deployed gene in cvs. Oasis and Sullivan 

(Goodwin 2007; Narvaez and Caldwell 1957; Tabib Ghaffary 2011). Ever since, numerous 

other Stb resistance genes have been identified and mapped in various bread wheat cultivars 

(Cuthbert 2011; Tabib Ghaffary 2011). The formal elucidation of an operational GFG 

interaction by Brading et al. in (2002) has greatly advanced the identification of additional 

resistance genes, most importantly the Stb6 gene in cv. Shafir, proven to interact in a GFG 

model with the Avrstb6 effector gene mapped in Z. tritici isolate IPO323 (Arraiano and Brown 

2006). The widespread distribution of Stb6 in the European bread wheat cultivars highlights its 

importance as a valuable source for Z. tritici resistance (Arraiano et al. 2007b). Since 2003, 

nine new resistance genes (Stb7- Stb15) were characterized and mapped in bread wheat (Tabib 

Ghaffary 2011). A unique wide spectrum resistance gene, Stb16q was identified in the synthetic 

hexaploid accession M3 (W-7976) in 2011, together with Stb17 that confers adult plant stage 
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resistance to a limited number of isolates (Tabib Ghaffary et al. 2012). The resistance gene 

Stb18, which also has a limited efficacy and a largely partial effect, was mapped in the French 

contemporary bread wheat cv. Apache (Brown et al. 2015; Tabib Ghaffary et al. 2011). All 

abovementioned Stb resistance genes, together with StbWW, identified in three mapping 

populations in Australia (Raman et al. 2009), constitute the 20 Stb genes that were in bread 

wheat. In addition, TmStb1 was derived from the T. monococcum accession MDR043 (Jing et 

al. 2008) (Table1). In addition to these qualitative resistance sources, 167 quantitative trait loci 

(QTLs) contributing to STB resistance were also identified (Brown et al. 2015). This arsenal of 

qualitative and quantitative resistances have enhanced bread wheat resistance breeding to 

manage Z. tritici and to sustain the yield potential of contemporary bread wheat cultivars 

(Arraiano and Brown 2016). Although the number of Stb genes and identified QTLs is limited 

compared to the high number of resistance genes to for instance the rusts diseases of wheat 

(McIntosh et al. 1995), in durum wheat not a single Stb gene has been identified, which 

contributes to the overall vulnerability of the far majority of durum germplasm to Z. tritici.  

Despite its historical and dietary importance in the Mediterranean basin, durum wheat 

has received very limited attention compared to bread wheat (Royo et al. 2007). During the last 

25 years, durum wheat resistance to Z. tritici has been hardly investigated leading to a poor 

understanding of the Z. tritici-durum wheat interaction. This staple crop, is largely grown under 

the constraining climatic conditions of the Mediterranean, where 75% of the global durum 

wheat production is located (Baloch et al. 2017; Faris 2014; Zapata et al. 2004). Worlwide 

durum wheat production is estimated to be around 36 to 38  million tonnes (Magallanes-López 

et al. 2017) (Figure 3 ). Nonetheless, this estimate does not accurately reflect the importance of 

durum wheat in various developing countries, which are often excluded from the statitics 

compiled by the wheat industry mainly due to unaccurate or unavailable data (Cakmak et al. 

2010). Moreover, durum wheat is commonly conceived in statistics along with bread wheat and 

other cultivated  wheat  species. Hence, credible data to calculate statistics such as per capita 

intake are rather hard to define (Cakmak et al. 2010).  

A closer look at the durum wheat production estimated at different regional scales 

indicates an unbalanced yield potential between developing countries where the crop is grown 

under low input in semi-arid regions and other marginal areas characterized by sharp annual 

fluctuations in cropping conditions, and non-developing countries where moisture and other 

resources are less obstructive (Abdalla et al. 1992) (Figure 3). Durum wheat in developing 

countries often constitutes the livestock of small holder farmers,  grown under harsh, drought-
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of avirulence in Z. tritici (Kema et al. 2000) and further detailed by Brading et al. in (2002) in 
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resistance to a limited number of isolates (Tabib Ghaffary et al. 2012). The resistance gene 
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Despite its historical and dietary importance in the Mediterranean basin, durum wheat 

has received very limited attention compared to bread wheat (Royo et al. 2007). During the last 

25 years, durum wheat resistance to Z. tritici has been hardly investigated leading to a poor 
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durum wheat production is estimated to be around 36 to 38  million tonnes (Magallanes-López 

et al. 2017) (Figure 3 ). Nonetheless, this estimate does not accurately reflect the importance of 

durum wheat in various developing countries, which are often excluded from the statitics 

compiled by the wheat industry mainly due to unaccurate or unavailable data (Cakmak et al. 

2010). Moreover, durum wheat is commonly conceived in statistics along with bread wheat and 

other cultivated  wheat  species. Hence, credible data to calculate statistics such as per capita 
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prone, and even marginal conditions with very low chemical inputs (Cakmak et al. 2010). These 

vulnerable  environments are often subject to high  production variability due to annual 

variation  in  rainfall (Gharbi et al. 2008). Juxtaposed to the frequent (a)biotic limiting factors, 

fungal diseases, particularly STB, constitute an additional threat to yield stability in durum 

wheat production.  

Thus, studying the genetic basis of the Z. tritici - durum wheat interaction is required to 

enhance the resistance level of the durum germplasm to STB, that would unquestionably help 

small holder farmers to maintain yield potential of their durum wheat crops. Taking into account 

the history, strategies and most recent advances - particularly for the determinants of the GFG 

interaction - for a better understanding of the bread Z. tritici - wheat interaction, it is necessary 

to investigate and dissect the genetic diversity in the durum wheat – Z. tritici interaction. The 

identification of resistance genes by using well-characterized Z. tritici isolates is a foundational 

starting point to resolve specificity in this system and to enable marker assisted breeding to 

advance the improvement of STB resistance in durum wheat. 
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Figure 3. Estimate of the durum wheat world production in million tonnes compared to other 

cereals based on 5 years trimmed average date (A) and shares of the main durum producer 

countries (B) (adopted from Willems, 2017) 
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Scope of the thesis  

This thesis aims at elucidating the genetic basis of resistance to Z. tritici in tetraploid 

wheats and at identifying the fungal genes involved in the GFG interaction between wheat and 

Z. tritici and understanding there epidemiological consequences that are intimately linked with 

the reproductive biology of the pathogen in natural and agricultural environments.  Together, 

these objectives will be a solid foundation to further research in the Z. tritici – durum wheat 

interaction to support effective resistance breeding.  

Chapter 1 provides an historical overview of the evolution of tetraploid wheats and the 

importance of the domesticated form as a food source for the Mediterranean basin. Futhermore, 

it describes the advances in Z. tirtici research, but also highlights the lack of information and 

limited translation of the generated know-how to durum wheat.  

Chapter 2 describes the cloning and functional analysis of the first Z. tritici effector 

Avrstb6  and the translation of the observed ubiquitous sexual reproduction, despite one of the 

Z. tritici parents is unable to infect the host in the in-planta crossing protocol. The reproductive 

consequence of this observation is developed into a new epidemiological model that we present 

as exclusive paternal parenthood (EPP), which likely has a wide application in natural and 

agricultural settings, thereby providing a new view on durability of host resistance. This is 

important for newly identified resistance genes, which are dercribed in the following chapters.  

In Chapter 3, the resistance to Z. tritici in the Triticum dicoccum accession PI41025 is 

identified and characterized. Subsequently, the inheritance of the resistance was determined in 

a mapping population generated from the cross between the durum wheat cultivar cv. Ben and 

PI41025. This resulted in the identification of the first major quatitative trait locus (QTL) 

confering a wide-spectrum resistance to Z. tritici in durum wheat. The QTL was mapped on 

chromosome 3AL and was derived from PI41025 and was designated as Stb22q. Furthermore, 

another novel locus mapped on chromosome 5A and provides an isolate-specific resistance with 

a narrow efficacy and was derived from cv. Ben. 

In Chapter 4 the resistance to Z. tritici in a suite of Tunisian durum landraces was 

investigated. One of the most outstanding landraces was “Agili 39”, which was crossed with 

the contemporary cv. Khiar that is high-yielding, but very susceptible to Z. tritici. Analyses of 

the greenhouse and field data indicated that the broad spectrum resistance of “Agili 39” results 

form the natural pyramiding of several minor effect QTLs. Albeit that no new mapping 
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locations were identified, the strongest effect were generated by QTLs on chromosome 2BL 

and 2BS. The latter was exclusivly associated with adult plant resistance, whereas the former 

co-locolizes with Stb9 that has a very low efficacy in bread wheat, but is crucial in “Agili 39”.  

Chapter 5, embarks on the characterization of STB resistance in high yielding 

contemporary durum wheat cultivars that are currently preferred by farmers. From a suite of 

durum wheat cultivars that were screened with a panel of Z. tritici isolates, the cvs. Simeto, 

Levante, Kofa and Svevo were chosen for further analayses. Recombinant inbred populations 

were generated between Simeto/Levante and Kofa/Svevo and recombinant inbred lines  (RILs) 

were tested with four Z. tritici isolates under greenhouse conditions and with one strain in the 

field. After analyses of the generated data it was shown that the STB resistance in these cultivars 

results from the synergic effect of several minor effect QTLs on several new genomic locations, 

providing an acceptable level of STB resistance. 

Chapter 6 is a general discussion placing all generated data in an overarching context. 

It highlights the importance of the EPP model and the lack of boom-and-bust cycles in the Z. 

tritici – wheat pathosystem, thereby tailoring the STB epidemiological model and 

differentiating it from other cereal pathogens. The EPP model applies to both bread wheat and 
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Abstract 

Host resistance and fungicide treatments are cornerstones for plant disease control. Here, 

we show these do not prevent sex and modulate parenthood in the fungal wheat 

pathogen Zymoseptoria tritici. We prove that the Z. tritici-wheat interaction complies with the 

gene-for-gene model by identifying the effector AvrStb6 that is recognized by the wheat resistance 

protein Stb6. Recognition triggers host resistance, implying removal of avirulent strains from 

pathogen populations. However, Z. tritici crosses on wheat reveal that sex occurs even with an 

avirulent parent, thereby retaining avirulence alleles in forthcoming populations. Crossing 

fungicide sensitive and resistant isolates under fungicide pressure shows a rapid increase of the 

resistance allele frequency. Isolates under selection always act as male donor, and thus disease 

control modulates parenthood. Modelling these observations for agricultural and natural 

environments reveals extended durability of host resistance and rapid emergence of fungicide 

resistance. Therefore, fungal sex has significant implications for disease control. 

 

Sexual reproduction is common in nearly all branches of the eukaryotic tree of life, 

including microbial organisms like fungi 1,2, and has been considered an important driver for rapid 

adaption to novel or changing environments3. Dothideomycete fungi represent the largest and most 

ecologically diverse group of ascomycetes with approximately 20,000 species4, and most of them 

reproduce sexually and asexually. One of them is the plant pathogen Zymoseptoria tritici that 

causes septoria tritici blotch in wheat. At the onset of the wheat growing season, Z. tritic produces 

air-borne sexual ascospores, thereby releasing genetically diverse founding populations in 

commercial wheat fields5-7, and splash-dispersed asexual conidia that drive epidemics during the 

growing season8. Fungicides and host resistance are paramount for disease control. Until now, 21 

resistance genes to septoria tritici blotch (Stb genes) have been identified (Table S1) and mapped, 

and Stb6, which is ubiquitous in European wheat cultivars9, is the first resistance gene that was 

recently cloned10. However, the molecular processes underlying the Z. tritici-wheat interaction are 

still relatively poorly understood4,11-13. 

Gene-for-gene (GFG) interaction models have been suggested for a plethora of plant-

pathogen interactions14, but genetic proof was only provided for a limited number of 

pathosystems15,16. After more than a decade of genetic studies4,6,12,17-20, we report the map-based 
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cloning of the first Z. tritici avirulence effector AvrStb6, which triggers Stb6-mediated immunity10 

that underlies GFG in the Z. tritici-wheat interaction. We previously developed a mapping 

population between Z. tritici isolates IPO323 and IPO942694,12,17,19 that we saturated here with 

Diversity Array Technology (DarTseq) markers (Table S2-4, Fig. S1) and mapped a putative 

avirulence effector gene on the tip of chromosome 5 (Table 1, Fig. 1, Supplementary Note). Public 

RNAseq data21 were used to predict a single gene candidate (four exons; Supplementary Note, 

Figs. S2-4), which was highly expressed in planta, encoding a small secreted protein (82 amino 

acids [aa], 12 cysteines, mature size 63 aa; Fig. 1). Deletion in the avirulent strain IPO323 resulted 

in compatibility on cv. Shafir that carries Stb6, identifying the candidate as AvrStb6. Introducing 

AvrStb6 into the compatible strain IPO94269 resulted in incompatibility on cv. Shafir, thereby 

demonstrating that AvrStb6 is recognized by Stb6 (Figs. 1, S5). Recently, AvrStb6 was also 

identified in a genome-wide association study and subsequent ectopic integration in a virulent Z. 

tritici strain22. Analyses of the IPO323/IPO94269 mapping population and a panel of Z. tritici 

isolates suggests that pathogenicity on cultivars carrying Stb6 is consistent with two aa changes in 

the AvrStb6 protein (Table S5, Fig. S6).  
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Abstract 

Host resistance and fungicide treatments are cornerstones for plant disease control. Here, 

we show these do not prevent sex and modulate parenthood in the fungal wheat 
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control modulates parenthood. Modelling these observations for agricultural and natural 

environments reveals extended durability of host resistance and rapid emergence of fungicide 

resistance. Therefore, fungal sex has significant implications for disease control. 
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including microbial organisms like fungi 1,2, and has been considered an important driver for rapid 
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ecologically diverse group of ascomycetes with approximately 20,000 species4, and most of them 
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causes septoria tritici blotch in wheat. At the onset of the wheat growing season, Z. tritic produces 
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and Stb6, which is ubiquitous in European wheat cultivars9, is the first resistance gene that was 

recently cloned10. However, the molecular processes underlying the Z. tritici-wheat interaction are 

still relatively poorly understood4,11-13. 

Gene-for-gene (GFG) interaction models have been suggested for a plethora of plant-

pathogen interactions14, but genetic proof was only provided for a limited number of 

pathosystems15,16. After more than a decade of genetic studies4,6,12,17-20, we report the map-based 
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cloning of the first Z. tritici avirulence effector AvrStb6, which triggers Stb6-mediated immunity10 

that underlies GFG in the Z. tritici-wheat interaction. We previously developed a mapping 

population between Z. tritici isolates IPO323 and IPO942694,12,17,19 that we saturated here with 

Diversity Array Technology (DarTseq) markers (Table S2-4, Fig. S1) and mapped a putative 

avirulence effector gene on the tip of chromosome 5 (Table 1, Fig. 1, Supplementary Note). Public 

RNAseq data21 were used to predict a single gene candidate (four exons; Supplementary Note, 

Figs. S2-4), which was highly expressed in planta, encoding a small secreted protein (82 amino 

acids [aa], 12 cysteines, mature size 63 aa; Fig. 1). Deletion in the avirulent strain IPO323 resulted 

in compatibility on cv. Shafir that carries Stb6, identifying the candidate as AvrStb6. Introducing 

AvrStb6 into the compatible strain IPO94269 resulted in incompatibility on cv. Shafir, thereby 

demonstrating that AvrStb6 is recognized by Stb6 (Figs. 1, S5). Recently, AvrStb6 was also 

identified in a genome-wide association study and subsequent ectopic integration in a virulent Z. 

tritici strain22. Analyses of the IPO323/IPO94269 mapping population and a panel of Z. tritici 

isolates suggests that pathogenicity on cultivars carrying Stb6 is consistent with two aa changes in 

the AvrStb6 protein (Table S5, Fig. S6).  
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Figure 1. DArTSeq markers mapping combined with RNAseq revealed the Avr effector gene of 

Zymoseptoria tritici. (a) Illustration of the genetic and physical map on the tip of chromosome 5 
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of Z. tritici isolate IPO323. A cluster of 22 DArTSeq markers fully co-segregating with AvrStb6 

is highlighted in red, and DArTSeq markers flanking AvrStb6 are highlighted in blue. The physical 

locations of DArTSeq markers (excluding markers with non-unique mapping; grey) on 

chromosome 5 are indicated by arrows, and the genomic location harboring the avirulence effector 

AvrStb6 is highlighted in red. (b) Genomic location of DArTSeq markers on chromosome 5 of Z. 

tritici reference isolate IPO323 are indicated by coloured lines. For each location, the fraction of 

DArTSeq markers in the avirulent or virulent Z. tritici progeny is colour-coded (scale 0 [white] to 

1 [blue]), and the squared difference between these fractions is shown. The dashed rectangle on 

the tip of this chromosome highlights the only polymorphic region in the genome of Z. tritici 

characterized by a high squared difference. (c) Magnification of the polymorphic region (the first 

250 kb on chromosome 5) with the genomic location of the DArTSeq markers (color code as in 

(b)). The position of predicted genes in this region is indicated by grey bars, and red bars highlight 

genes encoding secreted proteins. RNAseq reads mapped to Z. tritici reference isolate IPO323 

derived from wheat cv. Riband infection21 indicate a single, highly expressed gene, designated 

AvrStb6, which encodes a secreted, cysteine-rich effector protein. The AvrStb6 gene model is 

schematically displayed, where the blue line indicates exon-intron structure and the coding region 

is highlighted by extended line width. Green and red colored amino acids highlight the predicted 

signal peptide and the cysteines, respectively. (d) Functional analysis of AvrStb6. Top row: mock 

and wt Z. tritici isolates IPO323 and IPO94269, which are avirulent and virulent on cv. Shafir, 

respectively, carrying resistance gene Stb6. Middle row: Three independent knock-out mutants of 

AvrStb6 in IPO323, which are consequently virulent on cv. Shafir. Bottom row: Two independent 

introductions of AvrStb6 into the virulent strain IPO94269, resulted in two avirulent strains (#1 

and #2). The ectopic integration of the deletion construct in IPO323 resulted in IPO323::hyg E, 

which had the same phenotype as the wt strain on cv. Shafir. 

 
 

Z. tritici isolates are crossed in planta (see also Supplementary Note), which is similar to 

sex in nature, to generate segregating populations4-7,12,15,17-19. Apart from demonstrating a GFG 

interaction between wheat and Z. tritici, we observed unexpected sexual reproduction between 

IPO323 and IPO94269 on cv. Shafir, despite the presence of AvrStb6 in the avirulent parent 

IPO323 (Table 1, see also Supplementary Note). Sexual reproduction was further confirmed by 

crossing IPO323 and IPO95052 on the cvs. Obelisk or Inbar, which are susceptible to IPO323 and 
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resistant to IPO95052 or vice versa, respectively (Table 1). We analyzed the four progenies with 

three nuclear markers (the avirulence gene AvrStb6; the mating type alleles mat1-1 or mat1-2; a 

random nuclear SSR marker) and a mitochondrial SSR marker (mt-SSR) and conclude that 

IPO323, despite its avirulence, undergoes sexual reproduction with isolates IPO94269 or 

IPO95052 (Table 1, Fig. S7). Thus, although IPO323 cannot infect cvs. Shafir and Inbar, it 

completes a sexual cycle, thereby maintaining AvrStb6 in subsequent populations (Figs. 2-3, S8). 

Moreover, crosses between sexually compatible Z. tritici strains never fail unless both parents are 

avirulent (Table S3). Notably, IPO323 is the exclusive paternal donor in the cross with the virulent 

isolate IPO94269 on cv. Shafir, but swaps to the exclusive maternal - and virulent - donor in the 

cross with the avirulent isolate IPO95052 on cv. Obelisk, as shown by the mt-SSR marker that is 

only maternally inherited21 (Table 1). Thus, isolate IPO323 circumvents unfavorable host 

conditions (i.e. resistance) via sexual reproduction as male partner; a mechanism that we here call 

exclusive paternal parenthood (EPP, Table 1, Fig. 2). Hence, we conclude that host resistance is a 

biotic stress factor that modulates parenthood in fungal sex. Therefore, our data challenge the 

common belief14,16 that avirulent individuals disappear from natural populations since they can 

neither infect nor reproduce on resistant host. 
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IPO323, despite its avirulence, undergoes sexual reproduction with isolates IPO94269 or 

IPO95052 (Table 1, Fig. S7). Thus, although IPO323 cannot infect cvs. Shafir and Inbar, it 

completes a sexual cycle, thereby maintaining AvrStb6 in subsequent populations (Figs. 2-3, S8). 

Moreover, crosses between sexually compatible Z. tritici strains never fail unless both parents are 

avirulent (Table S3). Notably, IPO323 is the exclusive paternal donor in the cross with the virulent 

isolate IPO94269 on cv. Shafir, but swaps to the exclusive maternal - and virulent - donor in the 

cross with the avirulent isolate IPO95052 on cv. Obelisk, as shown by the mt-SSR marker that is 

only maternally inherited21 (Table 1). Thus, isolate IPO323 circumvents unfavorable host 

conditions (i.e. resistance) via sexual reproduction as male partner; a mechanism that we here call 

exclusive paternal parenthood (EPP, Table 1, Fig. 2). Hence, we conclude that host resistance is a 

biotic stress factor that modulates parenthood in fungal sex. Therefore, our data challenge the 

common belief14,16 that avirulent individuals disappear from natural populations since they can 

neither infect nor reproduce on resistant host. 
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Figure 2. Sex in Zymoseptoria tritici. The fungus has a heterothallic bipolar mating 

system. Each strain has a unique mating type, either mat1-1 (blue) or mat1-2 (orange). 

When both strains infect the same host, they produce female (ascogonia) and male 

(microconidia or spermatia37,38) reproductive organs. Both strains have equal chances 

for maternal or paternal parenthood. Heterothallism defines that mat1-1 ascogonia are 

exclusively fertilized by mat1-2 spermatia and vice versa. (a) Optimal conditions for 

two pathogenic strains. (b) An avirulent strain (mat1-1, blue) encounters biotic stress 
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on resistant wheat, despite penetration39. The virulent strain (mat1-2, orange) colonizes 

the mesophyll. Biotic stress reduces biomass of the avirulent strain, but allows the 

production of spermatia. Exclusive paternal parenthood (EPP) determines that 

ascogonia of the virulent strain are exclusively fertilized by the avirulent strain.  

Consequently, avirulence genes are transmitted to the progeny and distributed by 

airborne ascospores. (c) The sensitive isolate (mat1-1, blue dotted line) is under abiotic 

stress, while the resistant strain (mat1-2, orange solid line) colonizes the host after 

strobilurin application. Sensitive strains are shown during colonization or just after 

penetration for strobilurin applications under field conditions are preventive/curative. 

Abiotic stress reduces biomass of the sensitive strain but allows the production of 

spermatia. EPP determines that mating is exclusively accomplished by fertilizing the 

ascogonia of the resistant strain. Consequently, the entire progeny caries the cytb gene 

with the G143A mutation (fungicide resistance), which is maternally transferred and 

further disseminated by airborne ascospores. 

 

To generalize these observations, we considered fungicides as abiotic stress 

factors for Z. tritici and hypothesized that they result in EPP of sensitive strains. We 

used the strobilurin fungicide Amistar® and resistance as the maternally inherited 

marker (Figs. 3, S9). Six Z. tritici field isolates originating from Germany and The 

Netherlands with equal pathogenicity, opposite mating types and contrasting fungicide 

resistance were crossed in three sets (Tables 2, S6, Figs. 3, S10, Supplementary Note). 

We produced 42 progenies under various concentrations of Amistar® (Table 2) and the 

percentage of resistant ascospores was determined through either visual observation 

(9,025 ascospores) or by PCR assays on 2,100 progeny isolates (50 per cross) (Table 2, 

Supplementary Note). Despite the use of fungicides, we confirmed sexual reproduction 

for all crosses (Table 2, Fig. S11). Sensitive strains were outcompeted in each crossing 

assay (Figs. 3, S10). Under normal and double azoxystrobin concentrations all 

progenies were entirely fixed for resistance in one generation (Table 2). Thus, 

Amistar® applications direct resistant and sensitive isolates into maternal and paternal 

parenthood, respectively, leading to a rapidly increasing frequency of resistance alleles 

in the generated progenies. In conclusion, we observed that biotic and abiotic stresses 

may hamper or restrict host colonization but cannot preclude sexual reproduction as 

male gametes (spermatia) presumably survive (a)biotic stresses (Fig. 2) 
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on resistant wheat, despite penetration39. The virulent strain (mat1-2, orange) colonizes 

the mesophyll. Biotic stress reduces biomass of the avirulent strain, but allows the 

production of spermatia. Exclusive paternal parenthood (EPP) determines that 

ascogonia of the virulent strain are exclusively fertilized by the avirulent strain.  

Consequently, avirulence genes are transmitted to the progeny and distributed by 

airborne ascospores. (c) The sensitive isolate (mat1-1, blue dotted line) is under abiotic 

stress, while the resistant strain (mat1-2, orange solid line) colonizes the host after 

strobilurin application. Sensitive strains are shown during colonization or just after 

penetration for strobilurin applications under field conditions are preventive/curative. 

Abiotic stress reduces biomass of the sensitive strain but allows the production of 

spermatia. EPP determines that mating is exclusively accomplished by fertilizing the 

ascogonia of the resistant strain. Consequently, the entire progeny caries the cytb gene 

with the G143A mutation (fungicide resistance), which is maternally transferred and 

further disseminated by airborne ascospores. 

 

To generalize these observations, we considered fungicides as abiotic stress 

factors for Z. tritici and hypothesized that they result in EPP of sensitive strains. We 

used the strobilurin fungicide Amistar® and resistance as the maternally inherited 

marker (Figs. 3, S9). Six Z. tritici field isolates originating from Germany and The 

Netherlands with equal pathogenicity, opposite mating types and contrasting fungicide 

resistance were crossed in three sets (Tables 2, S6, Figs. 3, S10, Supplementary Note). 

We produced 42 progenies under various concentrations of Amistar® (Table 2) and the 

percentage of resistant ascospores was determined through either visual observation 

(9,025 ascospores) or by PCR assays on 2,100 progeny isolates (50 per cross) (Table 2, 

Supplementary Note). Despite the use of fungicides, we confirmed sexual reproduction 

for all crosses (Table 2, Fig. S11). Sensitive strains were outcompeted in each crossing 

assay (Figs. 3, S10). Under normal and double azoxystrobin concentrations all 

progenies were entirely fixed for resistance in one generation (Table 2). Thus, 

Amistar® applications direct resistant and sensitive isolates into maternal and paternal 

parenthood, respectively, leading to a rapidly increasing frequency of resistance alleles 

in the generated progenies. In conclusion, we observed that biotic and abiotic stresses 

may hamper or restrict host colonization but cannot preclude sexual reproduction as 

male gametes (spermatia) presumably survive (a)biotic stresses (Fig. 2) 
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Figure 3. Inoculation and mating/competition assays using Zymoseptoria tritici strains 

with opposite virulence characteristics or fungicide sensitivity. (a) Quantitative fungal 

biomass detection of Z. tritici isolates IPO323 (left, virulent) and IPO95052 (middle, 

avirulent) and their mixture (right) on the bread wheat cv. Taichung 29 at 0, 5, 10, 15, 

and 20 dpi (bars; average of two biological replicates; dots indicate the individual 

measurements and whiskers the standard deviations). Percent leaf area covered by 
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pycnidia at each time point is shown as numbers over each bar. (b) Fungicide sensitivity 

screen at 20 dpi with Z. tritici. Plants of wheat cv. Taichung 29 were treated (48h prior 

to inoculation) with the full recommended rate of the strobilurin fungicide Amistar® 

(active ingredient [ai] azoxystrobin) and then inoculated with the sensitive Z. tritici 

isolates 04001, 03005 or 03003 and with the resistant isolates 04011, 03002 or 03001 

(right panel; Percent pycnidia (leaf area covered) based on visual observations (average 

of two biological replicates, whiskers indicate standard deviations)). This resulted in 

significantly different disease severities between the sensitive and resistant Z. tritici 

strains (both panels). (c) Quantitative fungal biomasses detection of Z. tritici isolates 

on cv. Taichung 29 after preventative treatment (48 h prior to inoculation) with the full 

recommended field rate of Amistar® at 0, 5, 10, 15, 20, 25, and 30 dpi (three 

independent crossing experiments for the phenomenon; bars are averages of two 

technical replicates; dots indicate the individual measurements and whiskers the 

standard deviations). Plants were inoculated with the sensitive isolate IPO04001 (left), 

the resistant isolate IPO04011 (middle), and their mixture (right). Percent leaf area 

covered by pycnidia at each time point is shown as numbers over each bar.
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Figure 3. Inoculation and mating/competition assays using Zymoseptoria tritici strains 

with opposite virulence characteristics or fungicide sensitivity. (a) Quantitative fungal 

biomass detection of Z. tritici isolates IPO323 (left, virulent) and IPO95052 (middle, 

avirulent) and their mixture (right) on the bread wheat cv. Taichung 29 at 0, 5, 10, 15, 

and 20 dpi (bars; average of two biological replicates; dots indicate the individual 

measurements and whiskers the standard deviations). Percent leaf area covered by 
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pycnidia at each time point is shown as numbers over each bar. (b) Fungicide sensitivity 

screen at 20 dpi with Z. tritici. Plants of wheat cv. Taichung 29 were treated (48h prior 

to inoculation) with the full recommended rate of the strobilurin fungicide Amistar® 

(active ingredient [ai] azoxystrobin) and then inoculated with the sensitive Z. tritici 

isolates 04001, 03005 or 03003 and with the resistant isolates 04011, 03002 or 03001 

(right panel; Percent pycnidia (leaf area covered) based on visual observations (average 

of two biological replicates, whiskers indicate standard deviations)). This resulted in 

significantly different disease severities between the sensitive and resistant Z. tritici 

strains (both panels). (c) Quantitative fungal biomasses detection of Z. tritici isolates 

on cv. Taichung 29 after preventative treatment (48 h prior to inoculation) with the full 

recommended field rate of Amistar® at 0, 5, 10, 15, 20, 25, and 30 dpi (three 

independent crossing experiments for the phenomenon; bars are averages of two 

technical replicates; dots indicate the individual measurements and whiskers the 

standard deviations). Plants were inoculated with the sensitive isolate IPO04001 (left), 

the resistant isolate IPO04011 (middle), and their mixture (right). Percent leaf area 

covered by pycnidia at each time point is shown as numbers over each bar.
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We developed a population genetic model by incorporating EPP into Leonard’s seminal 

model of GFG coevolution of a plant-pathogen system23 (see Supplementary Note). In this 

model, a plant has one locus with alleles for resistance and susceptibility, and the pathogen has 

a corresponding locus with alleles for avirulence and virulence. The proportion of each allele 

in a well-mixed population is modelled over time. In real-life cases alleles often co-exist in 

stable or cyclic polymorphisms, however in Leonard’s model the frequency of resistance and 

virulence alleles in the respective population only results in fixation of one of the genes – 

coexistence is not possible (Fig. 4). Because of this Leonard’s model forms the theoretical 

framework to identify traits whose inclusion can result in stable or cyclic polymorphisms (such 

as having multiple pathogen cycles per plant cycle, including a seed bank, or incorporating 

spatial structure)4. We explore the consequences of incorporating the EPP reproduction 

mechanism into the Leonard model under two scenarios: firstly, when the frequency of the plant 

alleles is constant, as can be assumed in an agricultural system, and secondly, when the 

frequency of the plant is free to vary, as in a natural ecosystem. In the agricultural scenario, the 

frequency of virulence in the pathogen population increases slower when avirulent strains 

partake in sexual reproduction on resistant hosts (Fig. 4). Additionally, polymorphisms (where 

the two alleles can coexist indefinitely) are possible, although unlikely (see Supplementary 

Note), which is not the case without the EPP mechanism24. This implies that resistance in crop 

cultivars will erode slower, which can have significant consequences for the sustainability of 

disease control in crop production systems. In the natural scenario, our model (Fig. 4) shows 

stable or cyclic polymorphisms occurring across a wide range of parameter values (see 

Supplementary Note). We therefore showed that the presence of sex under biotic stress allows 

the occurrence of stable polymorphisms simply as a result of the pathogens’ genetic system. 

Moreover, the model confirms that when fungicide sensitive strains partake in sex, the 

mitochondrially inherited cytb resistance allelle invades faster than any nuclear inherited 

fungicide resistance allelle (not shown).  
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Supplementary Note). We therefore showed that the presence of sex under biotic stress allows 
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Figure 4. Comparison of the EPP model and Leonard’s model. In the figure showing the 

agricultural scenario (a) the frequency of the resistance allele in the plant population is kept 

constant – in agricultural systems this frequency is under the control of the growers and not 

affected by the selection pressures imposed by the pathogen. In the natural scenario (b) the 

frequency of the resistance allele is dynamic and under control of the selection pressures in the 

system. The parameters of the model represent various fitness costs and allele frequencies. 

Briefly, c represents the cost to the host plants’ fitness from being infected, d represents the 

cost of having a resistance allele, k represents the cost of virulence, σ represents the probability 

that an avirulent pathogen will mate with a virulent individual on the resistant cultivar, and the 

parameter q represents the frequency of the susceptible allele, which is fixed in the agricultural 

system (see also Supplementary Note). In the agricultural scenario (a) a comparison of the solid 

line of the EPP model and the dotted line of Leonard’s model demonstrates the reduced rate of 

build-up of virulence. The parameters used for these simulations are k=0.5, q=0.45 and in the 

EPP model σ=0.1. Additionally, the dashed line of the EPP model represents a different set of 

parameters, k=0.7 q=0.3 and σ=0.6, and demonstrate a polymorphis in the pathogen population. 
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In the natural scenario (b) the stable internal equilibrium point of the EPP model is 

demonstrated. In this simulation, the parameters used are c=0.2, d=0.1, k=0.35 and in the EPP 

model, σ=0.5. A comparison between the dotted line of Leonard’s model and the solid line of 

the EPP model demonstrates the possible stability of the internal equilibrium point in the EPP 

model, and the instability of the corresponding internal equilibrium point in Leonard’s model.  

In the Supplementary Note we show that the model output shows stable and cyclic 

polymorphisms for a wide range of parameter values. 

The experimental data and our theoretical model provide explanations for practical 

observations. Slow decline of host resistance is commonly observed in the wheat-Z. tritici 

pathosystem matching the unanticipated, but ubiquitous presence of Stb6 in many old and 

contemporary wheat cultivars around the world (Table S1)9,25. Compared to the typical boom-

and-bust cycle in the yellow rust pathogen Puccinia striiformis, resistance to septoria tritici 

blotch declined significantly slower over a period of 10 years in the United Kingdom26. 

Strobilurin fungicides were commercially introduced in 1996 and showed initially excellent 

control of a wide range of plant pathogens including Z. tritici. However, in 1998 resistance 

appeared for powdery mildew in wheat, caused by Blumeria graminis27, in 2002 for Z. tritici, 

which then occurred throughout Europe one year later and presently strobilurin resistance is 

fixed in the vast majority of Z. tritici populations28,29. A similar trend for strobilurin resistance 

dynamics was observed in Pseudocercospora fijiensis, the banana Black Sigatoka fungus30,31. 

Plant disease management mostly relies on host resistance or fungicide applications32,33. 

Therefore, our observations on fungal sex have a broad relevance for developing resistant host 

varieties and shaping disease control strategies. This not only applies to plant pathogens, but 

also to human fungal pathogens such as Aspergillus fumigatus, where sex probably also 

contributes to the development of new life-threatening resistance mechanisms34,35. We 

conclude that fungal sex is an underestimated aspect in disease control that requires much more 

attention. 

Materials and Methods 

Primer development and PCR conditions 

We developed a mismatch amplification mutation assay (MAMA)41 on part of the 

cytochrome b (cytb) gene to determine azoxystrobin sensitivity or resistance among generated 

Zymoseptoria tritici ascospore progenies. Primers were designed with a mismatch on the 

penultimate nucleotide and the ultimate nucleotide was at position 143 of cytb. The primer set 
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In the natural scenario (b) the stable internal equilibrium point of the EPP model is 

demonstrated. In this simulation, the parameters used are c=0.2, d=0.1, k=0.35 and in the EPP 

model, σ=0.5. A comparison between the dotted line of Leonard’s model and the solid line of 

the EPP model demonstrates the possible stability of the internal equilibrium point in the EPP 

model, and the instability of the corresponding internal equilibrium point in Leonard’s model.  

In the Supplementary Note we show that the model output shows stable and cyclic 

polymorphisms for a wide range of parameter values. 

The experimental data and our theoretical model provide explanations for practical 

observations. Slow decline of host resistance is commonly observed in the wheat-Z. tritici 

pathosystem matching the unanticipated, but ubiquitous presence of Stb6 in many old and 

contemporary wheat cultivars around the world (Table S1)9,25. Compared to the typical boom-

and-bust cycle in the yellow rust pathogen Puccinia striiformis, resistance to septoria tritici 

blotch declined significantly slower over a period of 10 years in the United Kingdom26. 

Strobilurin fungicides were commercially introduced in 1996 and showed initially excellent 

control of a wide range of plant pathogens including Z. tritici. However, in 1998 resistance 

appeared for powdery mildew in wheat, caused by Blumeria graminis27, in 2002 for Z. tritici, 

which then occurred throughout Europe one year later and presently strobilurin resistance is 

fixed in the vast majority of Z. tritici populations28,29. A similar trend for strobilurin resistance 

dynamics was observed in Pseudocercospora fijiensis, the banana Black Sigatoka fungus30,31. 

Plant disease management mostly relies on host resistance or fungicide applications32,33. 

Therefore, our observations on fungal sex have a broad relevance for developing resistant host 

varieties and shaping disease control strategies. This not only applies to plant pathogens, but 

also to human fungal pathogens such as Aspergillus fumigatus, where sex probably also 

contributes to the development of new life-threatening resistance mechanisms34,35. We 

conclude that fungal sex is an underestimated aspect in disease control that requires much more 

attention. 

Materials and Methods 

Primer development and PCR conditions 

We developed a mismatch amplification mutation assay (MAMA)41 on part of the 

cytochrome b (cytb) gene to determine azoxystrobin sensitivity or resistance among generated 

Zymoseptoria tritici ascospore progenies. Primers were designed with a mismatch on the 

penultimate nucleotide and the ultimate nucleotide was at position 143 of cytb. The primer set 
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to specifically amplify a DNA fragment in sensitive isolates used a sense primer StrobSNP2fwd 

[5’-3’ (404-428)] with a mismatch of T instead of G at nucleotide 427 of cytb and an antisense 

primer StrobSNP1rvs [5’-3’ (1024-1043)]. The primer set to specifically amplify a DNA 

fragment in resistant isolates used an antisense primer StrobSNPrcF7[5’-3’(428-453)] with a 

mismatch of T instead of G at nucleotide 429 and a sense primer StrobSNPrcR1 [5’-3’ (152-

173)]. One and 0.5 μl of DNA were used for the MAMA and mating-type PCR assays, 

respectively. 

Mating type PCR primers and thermal cycling conditions were as previously 

described20. Amplicons were analyzed on 1.2% agarose gels using 25 μl aliquots of the PCR 

products. PCRs to amplify simple sequence repeats (SSRs) were in a 20 μl volume containing 

20 ng DNA, 2 μl 10X PCR buffer with MgCl2+, 2 μl each forward and reverse primers (2 μM), 

0.8 μl dNTPs (5 mM), 0.2 μl Taq DNA polymerase (5U/ μl), and x μl sdd water. Thermal 

cycling was as follows: cycle 1; 94°C for 2 mins., cycle 2 (repeated 12x); 94°C for 30 sec then 

66°C for 30 secs. minus 1°C per cycle, then 72°C for 30 secs., cycle 3 (repeated 27x); 94°C for 

30 secs., then 53°C for 30 secs., then 72°C for 30 secs. and cycle 4; 72°C for 7 mins., followed 

by a cooling-off step to 10°C. Fragments were separated on a Mega-Gel Dual High-Throughput 

Vertical Electrophoresis Unit (CBS Scientific, Del Mar, CA, USA) with 6% non-denaturing 

acrylamide gels stained with ethidium bromide during the run. 

To monitor biomass of isolates in crossing and infection assays, we designed specific 

TaqMan® probe/primer combinations for quantitative PCRs (qPCR) based on the mat1-1 and 

mat1-2 idiomorph sequences of the two reference Z. tritici isolates IPO323 and IPO94269, 

respectively20. Primers that specifically amplify DNA fragments in mat1-1 isolates were 

Mmat1F3/Mmat1R3, with a FAM-fluorescent probe IP3, and primers to specifically amplify 

DNA fragments in mat1-2 isolates were Mmat2F7/Mmat2R7, with a YY-fluorescent probe 

2P4. Both quantitative real-time amplifications were performed in a single PCR on an Applied 

Biosystems 7500 Real-time PCR System (Foster City, CA, USA). Total reaction volumes were 

25 μl, including 3 μl DNA, 12.5 μl Premix Ex Taq™ (2X) (TaKaRa, Shiga, Japan), 1 μl each 

forward and reverse primers (6 μM), 0.67 μl for each probe (5 mM), 0.5 μl ROX Reference 

Dye II (50x), and 8.33 μl ultraPURE™ nuclease-free water (Gibco, Paisley, Scotland). Thermal 

cycling was as follows: cycle 1; 50°C for 2 mins., cycle 2; 95°C for 10 mins., cycle 3 (repeated 

39x); 95°C for 15 secs., then 60°C for 20 secs. Results were analyzed using Sequence Detection 

Software version 1.2.3 (Applied Biosystems, Foster City, CA, USA). Standard curves from 

serial dilutions of known concentrations of pure fungal DNA of the six parental isolates plus 
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the DNA from the reference isolates (Table S6) gave highly similar results in CT values. 

Therefore, serial dilutions of DNA from isolates IPO323 and IPO94269 were included in each 

TaqMan® PCR run to calculate the unknown concentrations of fungal DNA in inoculated wheat 

seedlings. The standard curves had very high R2 values (0.990-0.996) for all data points from 

3 pg to 30 ng and, therefore, CT values within this range were reliable (data not shown). See 

Table S7 for all used probes and primers. 

Generation and analyses of segregating Zymoseptoria tritici populations 

Crossing assays. We used an in planta crossing protocol for all mating assays6. For 

mapping, we extended the existing Z. tritici mapping population IPO323/IPO94269 to 400 

progeny isolates and the IPO323/IPO95052 population to 165 progeny isolates by manually 

collecting individual ascospores. For the EPP-biotic stress validation, we independently 

performed six crosses between avirulent and virulent isolates (IPO323, IPO94269, IPO95052) 

on five wheat cultivars (Obelisk, Shafir, Taichung 29, Inbar or Volcani 447) in multiple (>=2) 

biological replications. In addition, we used eight isolates in 19 crosses on nine wheat varieties 

(seven bread wheat and two durum wheat) and one barley accession (Tables S2, S3) to test the 

occurrence of sex despite one of the parents is avirulent. For the EPP-abiotic stress validation 

we conducted 42 crosses between three sets of fungicide resistant and sensitive isolates on cv. 

Taichung 29 (Figs. 3 and S8, S10; Table S6). Single sequence repeat (SSR) genotyping was 

routinely used to either confirm that segregating populations resulted from the applied parental 

isolates (Table 1, Figs. S7, S11) or to determine the genotype of asexual fructifications that 

appeared in crossing assays (Figs. S12, S13). Populations were maintained at -80°C42 for further 

detailed analyses, including DArTSeq as well as MAMA, diagnostic PCRs for mating type 

determinations20 and the maternal/paternal contributions to sexual development, 

sequencing/phenotyping to determine (a)virulence in progeny and wild type strains (Tables 1, 

2, S4, S5, Fig. S8) and qPCR (Figs. 3, S8, S10).  

Phenotyping. We prepared inoculum following published procedures19 and performed 

seedling assays at growth stage (GS) 11-1243 either by painting a spore suspension using a soft 

brush (mapping populations) or by atomizing a spore suspension onto the potted seedlings that 

were placed at the perimeter of a circular rotary table in an inoculation cabinet, adjusted at 15 

rpm, which is equipped with interchangeable atomizers and a water cleaning device to avoid 

cross-contamination between isolates (all other assays). Infected plants were incubated in 

transparent plastic bags for 48h at 100% RH in the aforementioned greenhouse. Disease 
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respectively. 
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by a cooling-off step to 10°C. Fragments were separated on a Mega-Gel Dual High-Throughput 

Vertical Electrophoresis Unit (CBS Scientific, Del Mar, CA, USA) with 6% non-denaturing 

acrylamide gels stained with ethidium bromide during the run. 

To monitor biomass of isolates in crossing and infection assays, we designed specific 

TaqMan® probe/primer combinations for quantitative PCRs (qPCR) based on the mat1-1 and 

mat1-2 idiomorph sequences of the two reference Z. tritici isolates IPO323 and IPO94269, 

respectively20. Primers that specifically amplify DNA fragments in mat1-1 isolates were 

Mmat1F3/Mmat1R3, with a FAM-fluorescent probe IP3, and primers to specifically amplify 

DNA fragments in mat1-2 isolates were Mmat2F7/Mmat2R7, with a YY-fluorescent probe 

2P4. Both quantitative real-time amplifications were performed in a single PCR on an Applied 

Biosystems 7500 Real-time PCR System (Foster City, CA, USA). Total reaction volumes were 

25 μl, including 3 μl DNA, 12.5 μl Premix Ex Taq™ (2X) (TaKaRa, Shiga, Japan), 1 μl each 

forward and reverse primers (6 μM), 0.67 μl for each probe (5 mM), 0.5 μl ROX Reference 

Dye II (50x), and 8.33 μl ultraPURE™ nuclease-free water (Gibco, Paisley, Scotland). Thermal 

cycling was as follows: cycle 1; 50°C for 2 mins., cycle 2; 95°C for 10 mins., cycle 3 (repeated 

39x); 95°C for 15 secs., then 60°C for 20 secs. Results were analyzed using Sequence Detection 

Software version 1.2.3 (Applied Biosystems, Foster City, CA, USA). Standard curves from 

serial dilutions of known concentrations of pure fungal DNA of the six parental isolates plus 
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the DNA from the reference isolates (Table S6) gave highly similar results in CT values. 

Therefore, serial dilutions of DNA from isolates IPO323 and IPO94269 were included in each 

TaqMan® PCR run to calculate the unknown concentrations of fungal DNA in inoculated wheat 

seedlings. The standard curves had very high R2 values (0.990-0.996) for all data points from 

3 pg to 30 ng and, therefore, CT values within this range were reliable (data not shown). See 

Table S7 for all used probes and primers. 

Generation and analyses of segregating Zymoseptoria tritici populations 

Crossing assays. We used an in planta crossing protocol for all mating assays6. For 

mapping, we extended the existing Z. tritici mapping population IPO323/IPO94269 to 400 

progeny isolates and the IPO323/IPO95052 population to 165 progeny isolates by manually 

collecting individual ascospores. For the EPP-biotic stress validation, we independently 

performed six crosses between avirulent and virulent isolates (IPO323, IPO94269, IPO95052) 

on five wheat cultivars (Obelisk, Shafir, Taichung 29, Inbar or Volcani 447) in multiple (>=2) 

biological replications. In addition, we used eight isolates in 19 crosses on nine wheat varieties 

(seven bread wheat and two durum wheat) and one barley accession (Tables S2, S3) to test the 

occurrence of sex despite one of the parents is avirulent. For the EPP-abiotic stress validation 

we conducted 42 crosses between three sets of fungicide resistant and sensitive isolates on cv. 

Taichung 29 (Figs. 3 and S8, S10; Table S6). Single sequence repeat (SSR) genotyping was 

routinely used to either confirm that segregating populations resulted from the applied parental 

isolates (Table 1, Figs. S7, S11) or to determine the genotype of asexual fructifications that 

appeared in crossing assays (Figs. S12, S13). Populations were maintained at -80°C42 for further 

detailed analyses, including DArTSeq as well as MAMA, diagnostic PCRs for mating type 

determinations20 and the maternal/paternal contributions to sexual development, 

sequencing/phenotyping to determine (a)virulence in progeny and wild type strains (Tables 1, 

2, S4, S5, Fig. S8) and qPCR (Figs. 3, S8, S10).  

Phenotyping. We prepared inoculum following published procedures19 and performed 

seedling assays at growth stage (GS) 11-1243 either by painting a spore suspension using a soft 

brush (mapping populations) or by atomizing a spore suspension onto the potted seedlings that 

were placed at the perimeter of a circular rotary table in an inoculation cabinet, adjusted at 15 

rpm, which is equipped with interchangeable atomizers and a water cleaning device to avoid 

cross-contamination between isolates (all other assays). Infected plants were incubated in 

transparent plastic bags for 48h at 100% RH in the aforementioned greenhouse. Disease 
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severity was assessed at 21 days post-inoculation using necrosis and pycnidial development 

estimated as percentage of the total primary leaf area of individual seedlings. Following these 

procedures, we screened 190 IPO323/IPO94269 offspring isolates, partly in three independent 

replicates (81 isolates) or singular tests (Fig. S14) with the parental strains as controls, on cv. 

Shafir, carrying Stb6, and the susceptible control cv. Taichung 29. 

Genetic mapping. Fungal genomic DNA was isolated using a standard CTAB-

chloroform protocol. The parents and off-spring (N=282) of the Z. tritici mapping population 

(IPO323/IPO94269)4,12, were assayed of which 171 isolates showed distinct 

avirulence/virulence phenotypes on cv. Shafir. We used DArTSeq™, a genotyping-by-

sequencing (GBS) method that combines diversity-arrays-technology (DArT) and next 

generation sequencing platforms44. In total 5,392 polymorphic DArTSeq markers Z. tritici 

isolates were obtained. Marker sequences (max 69 nt) were placed on the Z. tritici reference 

genome (Fig. 1), using NCBI BLASTn (megablast)45 and visualized using the GViz package46 

(Fig. 1). Multi-mapping markers were only placed on the genome at the best position if there 

was a considerable difference in bit-scores (difference ≥5). 

For fine mapping, the 5,392 generated DArTSeq markers were sorted according to their 

discrimination power for avirulent/virulent isolates by calculating the squared differences of 

genotype frequencies, and 60 DArTSeq markers linked with avirulence were selected. These 

markers were sorted into a genetic linkage map, using JoinMap® 4 software with settings LOD 

(Log of Odds) ≥3 for grouping, and the maximum likelihood mapping option for linkage group 

generation47. Since the segregation of avirulence fitted the model of single gene inheritance 

(Fig. S14)18, phenotypic data were converted to an appropriate marker (AvrStb6) using scoring 

codes that are required for JoinMap, and this was integrated in the mapping procedure.  

Offspring isolates with more than 10% missing genotypic values were removed from 

the analysis. Moreover, isolates without recombination near the (a)virulence locus, and eight 

showing discrepancies between the genotyping and phenotyping were not considered for 

analysis. To delimit the physical region harboring AvrStb6, we deployed a graphical mapping 

approach using the recombinant offspring isolates and clustered the markers that co-segregated 

with AvrStb6 into bins with the marker order as estimated by JoinMap as a reference. The 

generated genetic linkage map was compared to the IPO323 reference genome sequence by 

aligning the DArTSeq (http://genome.jgi.doe.gov/Mycgr3/Mycgr3.home.html) to determine 

the physical position of AvrStb6. 
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Gene annotation  

Gene annotation was performed on the Z. tritici reference genome isolate IPO3234 using 

the Maker2 pipeline48, combining ab initio protein-coding gene evidence from SNAP49, 

Augustus50, and GeneMark-HMM51. Additionally, Maker2 was provided with protein 

alignments to 35 predicted fungal proteomes, Z. tritici reference gene models annotated by the 

Joint Genome Institute (JGI)4, and transcriptome data (assembled transcripts and splice-

junctions) derived from two previously published RNA-seq datasets21,36. For gene annotation, 

RNA-seq data (single-end) were mapped to the Z. tritici reference genome with TopHat 

(version 2.0.13) (--min-intron-length 20 --max-intron-length 2000 --max-multihits 5)52. Z. 

tritici transcripts were assembled using Cufflinks53. Gene models predicted with Maker2 were 

manually evaluated and refined54, for example by excluding protein-encoding genes <60 aa or 

lacking a starting methionine. 

Identification of effector candidates 

Gene expression, expressed as fragments per kilobase of exon per million fragments 

mapped (FPKM), during wheat colonization for newly predicted protein-coding genes was 

inferred using Cuffdiff (version 2.2.1)53. Similar to previous observations21,55, the third replicate 

of the RNA-seq experiment of Rudd et al.21 behaved differently and was therefore excluded 

from all further analyses. Pair-wise log2-fold expression changes as well as multiple-testing 

corrected p-values (P <0.05) were inferred for in planta RNA-seq samples compared to CDB21. 

N-terminal secretion signals were predicted in all proteins using SignalP (version 4.1)56. Protein 

domains were predicted with InterProScan57. 

Functional analyses of AvrStb6 

Strains, media and growth conditions. Z. tritici strains IPO323 and IPO94269, which 

are avirulent and virulent on cv. Shafir, were used as wild type strains (WTs) and recipient 

strains for gene deletion and ectopic expression (Fig. S15). The WTs and all deletion strains 

were kept at -80°C and were re-cultured on potato dextrose agar (PDA) (Sigma-Aldrich 

Chemie, Steinheim, Germany) at 15°C once desired for experimentation. Yeast-like spores 

were produced in yeast glucose broth (YGB) medium (yeast extract 10 g.L-1, glucose 30 g.L-1) 

after placement in an orbital shaker (Innova 4430, New Brunswick Scientific, Nijmegen, The 

Netherlands) at 15°C. For in vitro expression analyses in Z. tritici blastospores we used YGB 

and MM58 under similar conditions, whereas we adjusted the conditions in YGB to 25°C for 
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severity was assessed at 21 days post-inoculation using necrosis and pycnidial development 

estimated as percentage of the total primary leaf area of individual seedlings. Following these 

procedures, we screened 190 IPO323/IPO94269 offspring isolates, partly in three independent 

replicates (81 isolates) or singular tests (Fig. S14) with the parental strains as controls, on cv. 

Shafir, carrying Stb6, and the susceptible control cv. Taichung 29. 

Genetic mapping. Fungal genomic DNA was isolated using a standard CTAB-

chloroform protocol. The parents and off-spring (N=282) of the Z. tritici mapping population 

(IPO323/IPO94269)4,12, were assayed of which 171 isolates showed distinct 

avirulence/virulence phenotypes on cv. Shafir. We used DArTSeq™, a genotyping-by-

sequencing (GBS) method that combines diversity-arrays-technology (DArT) and next 

generation sequencing platforms44. In total 5,392 polymorphic DArTSeq markers Z. tritici 

isolates were obtained. Marker sequences (max 69 nt) were placed on the Z. tritici reference 

genome (Fig. 1), using NCBI BLASTn (megablast)45 and visualized using the GViz package46 

(Fig. 1). Multi-mapping markers were only placed on the genome at the best position if there 

was a considerable difference in bit-scores (difference ≥5). 

For fine mapping, the 5,392 generated DArTSeq markers were sorted according to their 

discrimination power for avirulent/virulent isolates by calculating the squared differences of 

genotype frequencies, and 60 DArTSeq markers linked with avirulence were selected. These 

markers were sorted into a genetic linkage map, using JoinMap® 4 software with settings LOD 

(Log of Odds) ≥3 for grouping, and the maximum likelihood mapping option for linkage group 

generation47. Since the segregation of avirulence fitted the model of single gene inheritance 

(Fig. S14)18, phenotypic data were converted to an appropriate marker (AvrStb6) using scoring 

codes that are required for JoinMap, and this was integrated in the mapping procedure.  

Offspring isolates with more than 10% missing genotypic values were removed from 

the analysis. Moreover, isolates without recombination near the (a)virulence locus, and eight 

showing discrepancies between the genotyping and phenotyping were not considered for 

analysis. To delimit the physical region harboring AvrStb6, we deployed a graphical mapping 

approach using the recombinant offspring isolates and clustered the markers that co-segregated 

with AvrStb6 into bins with the marker order as estimated by JoinMap as a reference. The 

generated genetic linkage map was compared to the IPO323 reference genome sequence by 

aligning the DArTSeq (http://genome.jgi.doe.gov/Mycgr3/Mycgr3.home.html) to determine 

the physical position of AvrStb6. 
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Gene annotation  

Gene annotation was performed on the Z. tritici reference genome isolate IPO3234 using 

the Maker2 pipeline48, combining ab initio protein-coding gene evidence from SNAP49, 

Augustus50, and GeneMark-HMM51. Additionally, Maker2 was provided with protein 

alignments to 35 predicted fungal proteomes, Z. tritici reference gene models annotated by the 

Joint Genome Institute (JGI)4, and transcriptome data (assembled transcripts and splice-

junctions) derived from two previously published RNA-seq datasets21,36. For gene annotation, 

RNA-seq data (single-end) were mapped to the Z. tritici reference genome with TopHat 

(version 2.0.13) (--min-intron-length 20 --max-intron-length 2000 --max-multihits 5)52. Z. 

tritici transcripts were assembled using Cufflinks53. Gene models predicted with Maker2 were 

manually evaluated and refined54, for example by excluding protein-encoding genes <60 aa or 

lacking a starting methionine. 

Identification of effector candidates 

Gene expression, expressed as fragments per kilobase of exon per million fragments 

mapped (FPKM), during wheat colonization for newly predicted protein-coding genes was 

inferred using Cuffdiff (version 2.2.1)53. Similar to previous observations21,55, the third replicate 

of the RNA-seq experiment of Rudd et al.21 behaved differently and was therefore excluded 

from all further analyses. Pair-wise log2-fold expression changes as well as multiple-testing 

corrected p-values (P <0.05) were inferred for in planta RNA-seq samples compared to CDB21. 

N-terminal secretion signals were predicted in all proteins using SignalP (version 4.1)56. Protein 

domains were predicted with InterProScan57. 

Functional analyses of AvrStb6 

Strains, media and growth conditions. Z. tritici strains IPO323 and IPO94269, which 

are avirulent and virulent on cv. Shafir, were used as wild type strains (WTs) and recipient 

strains for gene deletion and ectopic expression (Fig. S15). The WTs and all deletion strains 

were kept at -80°C and were re-cultured on potato dextrose agar (PDA) (Sigma-Aldrich 

Chemie, Steinheim, Germany) at 15°C once desired for experimentation. Yeast-like spores 

were produced in yeast glucose broth (YGB) medium (yeast extract 10 g.L-1, glucose 30 g.L-1) 

after placement in an orbital shaker (Innova 4430, New Brunswick Scientific, Nijmegen, The 

Netherlands) at 15°C. For in vitro expression analyses in Z. tritici blastospores we used YGB 

and MM58 under similar conditions, whereas we adjusted the conditions in YGB to 25°C for 
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expression in mycelium. Escherichia coli DH5α was used for general plasmid transformation 

and Agrobacterium tumefaciens strain AGL-1 was used for all fungal transformations. 

Fungal transformation. All transformations were performed using A. tumefaciens 

mediated transformation (ATMT) as described previously59,60. Genomic DNA of stable 

transformants was extracted according to standard protocols61. For ectopic complementation, 

the same procedure was utilized with minor modifications, including the use of 250 µg m.L-1 

geneticin for the selection of mutants. 

RNA isolation and qRT-PCR. In vitro and in planta expression profiling of AvrStb6 was 

performed using quantitative real-time PCR (qRT-PCR). For in planta analyses, wheat cv. 

Shafir was inoculated, in triplicate, with the WT isolates as described60, and leaf samples were 

collected at seven hours post-inoculation, and subsequently at 1, 2, 4, 8, 12, 16 and 20 dpi, 

followed by flash freezing and grinding in liquid nitrogen using a mortar and pestle. Total RNA 

was extracted either from ground leaves or fungal biomass produced in YGB using the RNeasy 

plant mini kit (Qiagen, MA, USA). DNA contamination was removed with the DNAfree kit 

(Ambion, Cambridgeshire, U.K.). First-strand cDNA was synthesized from approximately 2 

µg of total RNA primed with oligo(dT) using the SuperScript III following manufacturers’ 

instructions. One µl of the resulting cDNA was used in a 25 µl PCR reaction using a QuantiTect 

SYBR Green PCR Kit and run and analyzed using an ABI 7500 Real-Time PCR System. The 

relative expression of each gene was initially normalized with the constitutively expressed Z. 

tritici beta-tubulin gene62 and then calculated based on the comparative C (t) method described 

previously (Fig. S2)63. 

Pathogenicity assays and quantitative fungal biomass analyses. All assays were 

conducted as described above using wheat cvs. Shafir and Taichung 29 (Figs. S5, S16). Disease 

development was monitored and recorded every three days and leaves of cv. Taichung 29 were 

harvested at 2, 4, 8, 12, 16 and 20 dpi for qRT-PCR expression analyses and for qPCR fugal 

biomass determination of all WTs and transformed Z. tritici strains20,64 (Fig. S16). Genomic 

DNA was extracted from approximately 100 mg of infected leaves using a standard 

phenol/chloroform DNA extraction61.  

Generation of gene deletion and ectopic integration constructs. To generate the AvrStb6 

deletion construct, pKOZtAvrStb6, the multisite Gateway® three-fragment vector construction 

kit was used, enabling the cloning of three fragments into the destination vector, which was 

compatible with the ATMT procedure. A 2 kb upstream and downstream sequence of AvrStb6 
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was cloned in pDONR™P4-P1R and pDONR™P2R-P3. The generated constructs along with 

pRM25013 containing the hygromycin phosphotransferase (Hph) gene as a selection marker 

were cloned into the destination vector, pPm43GW, via the LR reaction. In order to make the 

AvrStb6 ectopic integration construct (pZtAvrStb6.com), the full ORF of AvrStb6, including a 

1,020 bp upstream stretch as its promoter and 552 bp stretch downstream as terminator, were 

cloned into pDONR™P221 (Invitrogen, CA, USA) resulting in the generation of p221-

ZtAvrStb6.com. The p221-ZtAvrStb6.com as well as two entry vectors pRM245 and 

pRM23413, were used to clone these three fragments into the destination vector, pPm43GW, 

through the LR reaction. 

Determining exclusive paternal parenthood 

EPP-biotic stress. To determine parenthood in the conducted crosses, we analyzed four 

crosses (Table 1; Figs. S6, S7) using four markers (AvrStb6, mat, ag-0006 and mt-SSR) and 

monitored fungal biomass development by qPCR (Figs. 3, S8).  

EPP-abiotic stress. Strobilurin sensitivity was assayed in six strains (Table S6) on potato 

dextrose agar (PDA) plates that were amended with kresoxim-methyl (BASF, Ludwigshafen, 

Germany) and trifloxystrobin (Bayer CropScience, Monheim am Rhein, Germany) and 

determined minimal inhibitory concentrations (MICs) of two different technical samples of the 

fungicides by spotting isolates on strobilurin amended PDA plates. The concentrations for 

kresoxim-methyl were 0.0025, 0.005, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5, and 1.0 ppm, and the 

concentrations for trifloxystrobin were 0.00025, 0.0005, 0.001, 0.0025, 0.005, 0.01, 0.025, 

0.05, 0.1 and 0.25 ppm. All isolates were spotted in triplicate in a volume of 5 μl per spot at a 

concentration of 4 x 105 spores ml-1. As a positive control for growth isolates were also plated 

on PDA amended with the strobilurin solvent (1% methanol). Plates were placed at 18°C in the 

dark for 10 days, after which MIC values were assessed. A test progeny was generated by 

crossing Z. tritici isolates IPO03001 and IPO03003 and analyzed it on amended PDA plates 

and with MAMA assays to conclude that both methods are congruous. 

MIC values for the six parental isolates (Table S6) for the commercially available fungicide 

Amistar™ (Syngenta, Roosendaal, Netherlands) were determined, containing the active 

ingredient azoxystrobin, at 0.1, 1.0, and 10 ppm and then determined which concentrations of 

azoxystrobin to use for infection and crossing assays using an in planta dose response curves 

for the sensitive Z. tritici isolates using different preventive applications of azoxystrobin (250 

g.L-1 a.i. of azoxystrobin; 50% E.C.) on 10 day-old seedlings of cv. Taichung 29 that were 

preventatively treated (48h) using a track sprayer that was calibrated to deliver the 
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expression in mycelium. Escherichia coli DH5α was used for general plasmid transformation 

and Agrobacterium tumefaciens strain AGL-1 was used for all fungal transformations. 

Fungal transformation. All transformations were performed using A. tumefaciens 

mediated transformation (ATMT) as described previously59,60. Genomic DNA of stable 

transformants was extracted according to standard protocols61. For ectopic complementation, 

the same procedure was utilized with minor modifications, including the use of 250 µg m.L-1 

geneticin for the selection of mutants. 

RNA isolation and qRT-PCR. In vitro and in planta expression profiling of AvrStb6 was 

performed using quantitative real-time PCR (qRT-PCR). For in planta analyses, wheat cv. 

Shafir was inoculated, in triplicate, with the WT isolates as described60, and leaf samples were 

collected at seven hours post-inoculation, and subsequently at 1, 2, 4, 8, 12, 16 and 20 dpi, 

followed by flash freezing and grinding in liquid nitrogen using a mortar and pestle. Total RNA 

was extracted either from ground leaves or fungal biomass produced in YGB using the RNeasy 

plant mini kit (Qiagen, MA, USA). DNA contamination was removed with the DNAfree kit 

(Ambion, Cambridgeshire, U.K.). First-strand cDNA was synthesized from approximately 2 

µg of total RNA primed with oligo(dT) using the SuperScript III following manufacturers’ 

instructions. One µl of the resulting cDNA was used in a 25 µl PCR reaction using a QuantiTect 

SYBR Green PCR Kit and run and analyzed using an ABI 7500 Real-Time PCR System. The 

relative expression of each gene was initially normalized with the constitutively expressed Z. 

tritici beta-tubulin gene62 and then calculated based on the comparative C (t) method described 

previously (Fig. S2)63. 

Pathogenicity assays and quantitative fungal biomass analyses. All assays were 

conducted as described above using wheat cvs. Shafir and Taichung 29 (Figs. S5, S16). Disease 

development was monitored and recorded every three days and leaves of cv. Taichung 29 were 

harvested at 2, 4, 8, 12, 16 and 20 dpi for qRT-PCR expression analyses and for qPCR fugal 

biomass determination of all WTs and transformed Z. tritici strains20,64 (Fig. S16). Genomic 

DNA was extracted from approximately 100 mg of infected leaves using a standard 

phenol/chloroform DNA extraction61.  

Generation of gene deletion and ectopic integration constructs. To generate the AvrStb6 

deletion construct, pKOZtAvrStb6, the multisite Gateway® three-fragment vector construction 

kit was used, enabling the cloning of three fragments into the destination vector, which was 

compatible with the ATMT procedure. A 2 kb upstream and downstream sequence of AvrStb6 
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was cloned in pDONR™P4-P1R and pDONR™P2R-P3. The generated constructs along with 

pRM25013 containing the hygromycin phosphotransferase (Hph) gene as a selection marker 

were cloned into the destination vector, pPm43GW, via the LR reaction. In order to make the 

AvrStb6 ectopic integration construct (pZtAvrStb6.com), the full ORF of AvrStb6, including a 

1,020 bp upstream stretch as its promoter and 552 bp stretch downstream as terminator, were 

cloned into pDONR™P221 (Invitrogen, CA, USA) resulting in the generation of p221-

ZtAvrStb6.com. The p221-ZtAvrStb6.com as well as two entry vectors pRM245 and 

pRM23413, were used to clone these three fragments into the destination vector, pPm43GW, 

through the LR reaction. 

Determining exclusive paternal parenthood 

EPP-biotic stress. To determine parenthood in the conducted crosses, we analyzed four 

crosses (Table 1; Figs. S6, S7) using four markers (AvrStb6, mat, ag-0006 and mt-SSR) and 

monitored fungal biomass development by qPCR (Figs. 3, S8).  

EPP-abiotic stress. Strobilurin sensitivity was assayed in six strains (Table S6) on potato 

dextrose agar (PDA) plates that were amended with kresoxim-methyl (BASF, Ludwigshafen, 

Germany) and trifloxystrobin (Bayer CropScience, Monheim am Rhein, Germany) and 

determined minimal inhibitory concentrations (MICs) of two different technical samples of the 

fungicides by spotting isolates on strobilurin amended PDA plates. The concentrations for 

kresoxim-methyl were 0.0025, 0.005, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5, and 1.0 ppm, and the 

concentrations for trifloxystrobin were 0.00025, 0.0005, 0.001, 0.0025, 0.005, 0.01, 0.025, 

0.05, 0.1 and 0.25 ppm. All isolates were spotted in triplicate in a volume of 5 μl per spot at a 

concentration of 4 x 105 spores ml-1. As a positive control for growth isolates were also plated 

on PDA amended with the strobilurin solvent (1% methanol). Plates were placed at 18°C in the 

dark for 10 days, after which MIC values were assessed. A test progeny was generated by 

crossing Z. tritici isolates IPO03001 and IPO03003 and analyzed it on amended PDA plates 

and with MAMA assays to conclude that both methods are congruous. 

MIC values for the six parental isolates (Table S6) for the commercially available fungicide 

Amistar™ (Syngenta, Roosendaal, Netherlands) were determined, containing the active 

ingredient azoxystrobin, at 0.1, 1.0, and 10 ppm and then determined which concentrations of 

azoxystrobin to use for infection and crossing assays using an in planta dose response curves 

for the sensitive Z. tritici isolates using different preventive applications of azoxystrobin (250 

g.L-1 a.i. of azoxystrobin; 50% E.C.) on 10 day-old seedlings of cv. Taichung 29 that were 

preventatively treated (48h) using a track sprayer that was calibrated to deliver the 
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recommended application of 1 L.ha-1 sprayed at a rate of 250 L.ha-1, with the following 

percentages of the full recommended dose: 0, 3.125, 6.25, 12.5, 25,50, 100 and 200% (which 

correspond with fungicide solutions of 0, 0.03125, 0.0625, 0.125, 0.25, 0.5, 1, and 2 g 

azoxystrobin.L-1, respectively). We then inoculated with Z. tritici and percentages of leaf area 

covered by pycnidia were recorded at 20, 23, 26, and 29 dpi for dose response curve 

experiments, at 20 dpi for infection assays, and at 0, 5, 10, 15, 20, 25 and 30 dpi for qPCR 

biomass monitoring over time (Figs. 3, S9, S10). Finally, three sets of Z. tritici field isolates 

IPO03001/IPO03003, IPO03002/IPO03005 and IPO04001/IPO04011, with equal 

pathogenicity, opposite mating types and contrasting sensitivity to azoxystrobin (Table 2, Figs. 

3, S9) were used for the generation of 42 in planta ascospore progenies and fungal biomass 

development of each isolate in each crossing assay (Figs. 3, S10) individually and in pairwise 

mixtures on untreated and preventatively treated (48h, 100% azoxystrobin) seedlings of the 

wheat cv. Taichung 29 was monitored. Leaf samples were collected at 0, 5, 10, 15, 20, 25 and 

30 dpi and were immediately frozen in liquid nitrogen before storage at -80°C until 

lyophilization, subsequent DNA extraction, and qPCR analyses. Two extractions were made 

from each sample (technical repeats), and the mean results were expressed in ng of fungal 

DNA.mg-1 dry weight leaf material. A first set of 18 crosses was performed in seedlings of cv. 

Taichung 29 that were preventively treated (48h) with Amistar™ at 0 (control), 3.125, 6.25, 

12.5, 25 and 50% of the full rate. In a second set of 24 crosses we repeated these conditions but 

added two concentrations; full rate (100%), and the double rate (200%) (Tables 2, S6). From 

six through 12 weeks after inoculation, material was harvested for ascospore discharge and 

collection6. Ascospores were isolated as much as possible from diverse locations within a plate 

or within several plates from each cross to obtain random ascospore progenies. Baseline 

germination frequencies on unamended WA plates for all 42 progeny sets (N=15,975) and 

randomly selected ascospores were determined. Germination frequencies of the 24 ascospore 

progenies for the second series of crosses were also determined on WA amended with 1 ppm 

active ingredient azoxystrobin (N=9,025), and these frequencies were expressed as percentages 

relative to the mean of the control germination frequencies on unamended water agar. We 

evaluated the percentage of resistant offspring by 2,100 independent MAMA PCRs (Table 2). 

 

Developing the new population genetics model 

 

The model equations were numerically solved in C++. Output was plotted using the 

graphics package Sigmaplot. The calculation showing that, independent of the parameter 
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values, the frequency of virulence increases slower when the avirulent strain takes part in the 

sexual reproduction was done by hand and checked using the package Maple. We modelled the 

population genetic consequences of this new observation using an allele frequency model as 

introduced by Leonard23. 

 

Data Availability and Accession Code Availability Statements 

All data are available and deposited in NCBI Genbank under accession number 

ACPE000000004, in Gene Expression Omnibus under the accession number GSE5487436, and 

as a BioProject with the accession number PRJEB879821. 
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experiments, at 20 dpi for infection assays, and at 0, 5, 10, 15, 20, 25 and 30 dpi for qPCR 

biomass monitoring over time (Figs. 3, S9, S10). Finally, three sets of Z. tritici field isolates 

IPO03001/IPO03003, IPO03002/IPO03005 and IPO04001/IPO04011, with equal 
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development of each isolate in each crossing assay (Figs. 3, S10) individually and in pairwise 

mixtures on untreated and preventatively treated (48h, 100% azoxystrobin) seedlings of the 

wheat cv. Taichung 29 was monitored. Leaf samples were collected at 0, 5, 10, 15, 20, 25 and 
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12.5, 25 and 50% of the full rate. In a second set of 24 crosses we repeated these conditions but 

added two concentrations; full rate (100%), and the double rate (200%) (Tables 2, S6). From 

six through 12 weeks after inoculation, material was harvested for ascospore discharge and 

collection6. Ascospores were isolated as much as possible from diverse locations within a plate 

or within several plates from each cross to obtain random ascospore progenies. Baseline 

germination frequencies on unamended WA plates for all 42 progeny sets (N=15,975) and 

randomly selected ascospores were determined. Germination frequencies of the 24 ascospore 

progenies for the second series of crosses were also determined on WA amended with 1 ppm 

active ingredient azoxystrobin (N=9,025), and these frequencies were expressed as percentages 

relative to the mean of the control germination frequencies on unamended water agar. We 

evaluated the percentage of resistant offspring by 2,100 independent MAMA PCRs (Table 2). 
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The model equations were numerically solved in C++. Output was plotted using the 
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values, the frequency of virulence increases slower when the avirulent strain takes part in the 

sexual reproduction was done by hand and checked using the package Maple. We modelled the 
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Supplementary Information  
 
 
Specificity and mating in the Zymoseptoria tritici – wheat pathosystem 

 

Zymoseptoria tritici has a bipolar heterothallic mating system, each partner has a unique 

mating type (mat1-1 or mat1-2) (Waalwijk et al. 2002), but can produce female (ascogonia) as 

well as male (spermatia) gametes. However, thus far crosses can only be made in planta, by co-

inoculating the mating partners on a susceptible wheat cultivar (Kema et al. 1996a). To our 

surprise, we noticed that crosses are also successful in case one of the mating partners is 

avirulent on the used wheat cultivar, e.g. the cross between the avirulent isolate Z. tritici IPO323 

(carrying AvrStb6) with the virulent isolate IPO94269 on cv. Shafir (carrying Stb6) (Table 1, 

Fig. S7). We then further demonstrated and generalized this observation by a range of additional 

and routine crosses (at least two pots with >10 seedlings per cross; Tables S2, S3), including 

crosses between Z. tritici isolates that are specific for either bread wheat (AABBDD, 2x=42) 

or durum wheat (AABB, 2x=28). This pathogenic dichotomy for either bread wheat or durum 

wheat is a remarkable phenomenon in Z. tritici that thus far has not been elucidated(Kema et 

al. 1996). Since there are no wheat cultivars that are highly susceptible to both types of isolates, 

we used wheat cultivars with high susceptibility for either of them in the in planta crossing 

protocol. All crosses resulted in substantial progeny (not counted, but accumulative estimations 
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Specificity and mating in the Zymoseptoria tritici – wheat pathosystem 

 

Zymoseptoria tritici has a bipolar heterothallic mating system, each partner has a unique 

mating type (mat1-1 or mat1-2) (Waalwijk et al. 2002), but can produce female (ascogonia) as 

well as male (spermatia) gametes. However, thus far crosses can only be made in planta, by co-

inoculating the mating partners on a susceptible wheat cultivar (Kema et al. 1996a). To our 

surprise, we noticed that crosses are also successful in case one of the mating partners is 

avirulent on the used wheat cultivar, e.g. the cross between the avirulent isolate Z. tritici IPO323 

(carrying AvrStb6) with the virulent isolate IPO94269 on cv. Shafir (carrying Stb6) (Table 1, 

Fig. S7). We then further demonstrated and generalized this observation by a range of additional 

and routine crosses (at least two pots with >10 seedlings per cross; Tables S2, S3), including 

crosses between Z. tritici isolates that are specific for either bread wheat (AABBDD, 2x=42) 

or durum wheat (AABB, 2x=28). This pathogenic dichotomy for either bread wheat or durum 

wheat is a remarkable phenomenon in Z. tritici that thus far has not been elucidated(Kema et 

al. 1996). Since there are no wheat cultivars that are highly susceptible to both types of isolates, 

we used wheat cultivars with high susceptibility for either of them in the in planta crossing 

protocol. All crosses resulted in substantial progeny (not counted, but accumulative estimations 
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are at least >1,000 ascospores per cross), except in attempts to cross two avirulent isolates 

(Table S3). In all these cases, no ascospores were observed in multiple ascospore discharge 

experiments. 

Albeit that specificity in the Z. tritici-wheat pathosystem was already expected (Eyal et 

al. 1973; Kema and van Silfhout 1997; Kema et al. 1996; Kema et al. 1996a) the elucidation of 

the mating system was the necessary step to eventually confirm that avirulence to cv. Shafir – 

and other wheat cultivars – was controlled by a single locus (Kema et al. 2000). This was the 

onset of a range of new experiments that eventually resulted in claiming a gene-for-gene 

relationship between Z. tritici and wheat (Brading et al. 2002) and the identification of 21 Stb 

genes (Brown et al. 2015) by using well characterized pathogen isolates, both under greenhouse 

and field conditions (Table S1). 

In the current suite of experiments, we confirmed single gene inheritance of avirulence 

in Z. tritici isolate IPO323. All the phenotyped IPO323/IPO94269 offspring showed high 

pathogenicity towards the susceptible cv. Taichung 29 with very high necrosis and pycnidia 

levels across all replicates (Fig. S14). Both parental strain showed a differential response on cv. 

Shafir, carrying Stb6, and the progeny consequently segregated 1:1 for avirulence: virulence 

(Figs. 1, S14; avirulence: virulence = 101:93; 2 = 0.164, P= 0.05), thereby confirming the 

monogenic inheritance of AvrStb6. 

Genetic (fine) mapping of AvrStb6 

 

In total 5,392 polymorphic DArTSeq markers (max length 69nt) for a cross between 

avirulent IPO323 and virulent IPO94269 Z. tritici isolates were obtained. As virulence and 

avirulence segregated clearly into two distinct groups, we used avirulence as a phenotypic 

marker, allowing selection of 60 DArTSeq markers that co-segregated with avirulence. We 

sorted these markers, thus developing a local genetic linkage map. From these 60 markers we 

selected a cluster of 22 DArTSeq markers that perfectly co-segregated with the AvrStb6 locus 

without any recombination with avirulence. This cluster could be positioned at the tip of 

chromosome 5, spanning the physical interval from 0 to 140 kbp of this chromosome in the 

reference genome (Fig.1).  

A graphical positioning of the AvrStb6 was displayed by sorting offspring isolates with 

recombination events closely linked to the AvrStb6 gene. A plausible genomic position of the 
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AvrStb6 was thus defined and a graphical representation of the recombination events was 

generated (Fig. S17).  

Alignment of the closest markers to AvrStb6 to the reference genome IPO323 assembly 

version 2 for Mycosphaerella graminicola, available on the JGI database 

(http://genome.jgi.doe.gov/pages/blast-query.jsf?db=Mycgr3) showed that the co-segregating 

markers with AvrStb6 had either a hit with the distal part of chromosome 5 or in another 

genomic region with lower score and E-values. We, therefore, considered only markers having 

a perfect hit with the reference genome to physically delimit the genomic region carrying 

AvrStb6. Consequently, and by combining the QTL, graphical and physical mapping 

approaches, we located AvrStb6 at the distal part of chromosome 5 between 0 bp and 140,950 

bp on the reference genome IPO323 (Table S4, Fig. 1). 

Functional analysis of AvrStb6 

 

Deletion and ectopic integration of AvrStb6. To verify the function of AvrStb6 

disruption and recombinant strains were generated in Z. tritici IPO323 and IPO4269, 

respectively. We generated three independent disruption strains of AvrStb6 in IPO323, 

IPO323ΔAvrStb6#14, #19 and #33 (Fig. S15), which were all pathogenic on cv. Shafir (carrying 

Stb6) and showed similar phenotypes as IPO94269 (Figs. 1, S5). Alternatively, a fragment of 

1,937 bp corresponding to the entire open reading frame of AvrStb6, a promoter region of 1,020 

bp and a terminator region of 552 bp was ectopically integrated in the virulent IPO94269 by 

Agrobacterium tumefaciens-mediated transformation (ATMT). This resulted in two 

independent transformants expressing the AvrStb6, designated as IPO94269::AvrStb6#1 and 

IPO94269::AvrStb6#2, which are avirulent on cv. Shafir, showing similar phenotypes as 

IPO323. We, thereby, have formally shown that AvrStb6 is a single avirulence factor explaining 

gene-for-gene relationship in the wheat-Z. tritici pathosystem. 

 

Expression profiling of AvrStb6 during compatible and incompatible interactions with 

wheat 

 

The in vitro expression of AvrStb6 in IPO323 conidial blastospores declined from 44x 

(fold change compared to beta-tubulin) to 16x in mycelium and finally to 12x in MM, whereas 

the expression in IPO94269 was naught. Expression in planta was much lower during 

compatible (IPO94269) and incompatible (IPO323) interactions with cv. Shafir and varied 
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are at least >1,000 ascospores per cross), except in attempts to cross two avirulent isolates 

(Table S3). In all these cases, no ascospores were observed in multiple ascospore discharge 

experiments. 

Albeit that specificity in the Z. tritici-wheat pathosystem was already expected (Eyal et 

al. 1973; Kema and van Silfhout 1997; Kema et al. 1996; Kema et al. 1996a) the elucidation of 

the mating system was the necessary step to eventually confirm that avirulence to cv. Shafir – 

and other wheat cultivars – was controlled by a single locus (Kema et al. 2000). This was the 

onset of a range of new experiments that eventually resulted in claiming a gene-for-gene 

relationship between Z. tritici and wheat (Brading et al. 2002) and the identification of 21 Stb 

genes (Brown et al. 2015) by using well characterized pathogen isolates, both under greenhouse 

and field conditions (Table S1). 

In the current suite of experiments, we confirmed single gene inheritance of avirulence 

in Z. tritici isolate IPO323. All the phenotyped IPO323/IPO94269 offspring showed high 

pathogenicity towards the susceptible cv. Taichung 29 with very high necrosis and pycnidia 

levels across all replicates (Fig. S14). Both parental strain showed a differential response on cv. 

Shafir, carrying Stb6, and the progeny consequently segregated 1:1 for avirulence: virulence 

(Figs. 1, S14; avirulence: virulence = 101:93; 2 = 0.164, P= 0.05), thereby confirming the 

monogenic inheritance of AvrStb6. 

Genetic (fine) mapping of AvrStb6 

 

In total 5,392 polymorphic DArTSeq markers (max length 69nt) for a cross between 

avirulent IPO323 and virulent IPO94269 Z. tritici isolates were obtained. As virulence and 

avirulence segregated clearly into two distinct groups, we used avirulence as a phenotypic 

marker, allowing selection of 60 DArTSeq markers that co-segregated with avirulence. We 

sorted these markers, thus developing a local genetic linkage map. From these 60 markers we 

selected a cluster of 22 DArTSeq markers that perfectly co-segregated with the AvrStb6 locus 

without any recombination with avirulence. This cluster could be positioned at the tip of 

chromosome 5, spanning the physical interval from 0 to 140 kbp of this chromosome in the 

reference genome (Fig.1).  

A graphical positioning of the AvrStb6 was displayed by sorting offspring isolates with 

recombination events closely linked to the AvrStb6 gene. A plausible genomic position of the 
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AvrStb6 was thus defined and a graphical representation of the recombination events was 

generated (Fig. S17).  

Alignment of the closest markers to AvrStb6 to the reference genome IPO323 assembly 

version 2 for Mycosphaerella graminicola, available on the JGI database 

(http://genome.jgi.doe.gov/pages/blast-query.jsf?db=Mycgr3) showed that the co-segregating 

markers with AvrStb6 had either a hit with the distal part of chromosome 5 or in another 

genomic region with lower score and E-values. We, therefore, considered only markers having 

a perfect hit with the reference genome to physically delimit the genomic region carrying 

AvrStb6. Consequently, and by combining the QTL, graphical and physical mapping 

approaches, we located AvrStb6 at the distal part of chromosome 5 between 0 bp and 140,950 

bp on the reference genome IPO323 (Table S4, Fig. 1). 

Functional analysis of AvrStb6 

 

Deletion and ectopic integration of AvrStb6. To verify the function of AvrStb6 

disruption and recombinant strains were generated in Z. tritici IPO323 and IPO4269, 

respectively. We generated three independent disruption strains of AvrStb6 in IPO323, 

IPO323ΔAvrStb6#14, #19 and #33 (Fig. S15), which were all pathogenic on cv. Shafir (carrying 

Stb6) and showed similar phenotypes as IPO94269 (Figs. 1, S5). Alternatively, a fragment of 

1,937 bp corresponding to the entire open reading frame of AvrStb6, a promoter region of 1,020 

bp and a terminator region of 552 bp was ectopically integrated in the virulent IPO94269 by 

Agrobacterium tumefaciens-mediated transformation (ATMT). This resulted in two 

independent transformants expressing the AvrStb6, designated as IPO94269::AvrStb6#1 and 

IPO94269::AvrStb6#2, which are avirulent on cv. Shafir, showing similar phenotypes as 

IPO323. We, thereby, have formally shown that AvrStb6 is a single avirulence factor explaining 

gene-for-gene relationship in the wheat-Z. tritici pathosystem. 

 

Expression profiling of AvrStb6 during compatible and incompatible interactions with 

wheat 

 

The in vitro expression of AvrStb6 in IPO323 conidial blastospores declined from 44x 

(fold change compared to beta-tubulin) to 16x in mycelium and finally to 12x in MM, whereas 

the expression in IPO94269 was naught. Expression in planta was much lower during 

compatible (IPO94269) and incompatible (IPO323) interactions with cv. Shafir and varied 
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between 2x-8x, with slight (8x at 1 dpi with IPO323), but overall differential peaks between 

both isolates at virtually all sampling moments (except at 12 dpi) (Fig. S2). At 8 dpi expression 

of AvrStb6 was significantly higher in IPO94269 than in IPO323, which may suggest a role 

during the transition from biotrophy to necrotrophy (Mirzadi Gohari et al. 2015). However, the 

expression of AvrStb6 in the susceptible cv. Riband, as derived from RNAseq 

experiments(Rudd et al. 2015) was much higher and showed a completely different pattern, 

with major peaks at 10 dpi and 14 dpi (Fig. S3). We currently cannot explain these differences, 

but the data were clearly independently collected during different experimental conditions, 

which would confirm that Z. tritici is very sensitive to environmental fluctuations (Ben 

M’Barek et al. 2015). However, notwithstanding these differences, AvrStb6 - as a classical 

avirulence effector - determines the outcome of the interaction as shown by the current data and 

by previous data (Kema et al. 2000; Zhong et al. 2017). 

 We quantified fungal biomass during compatible interactions of the WT strains IPO323 

and IPO94269 along with the transformants IPO323ΔAvrStb6-33 and IPO94269ΔAvrStb6-1 on 

cv. Taichung to determine any possible virulence function of AvrStb6 (Fig. S16). As we did not 

observe any significant difference, except at 16 dpi in the comparison between IPO323 and 

IPO323ΔAvrStb6-33, we conclude that AvrStb6 has no virulence function, at least not in these 

interactions. Tests were performed in three biological replicates and repeated thrice. 

Crosses elucidating exclusive paternal parenthood: host resistance as a biotic stress factor 

 

We used the established crossing protocol developed by Kema et al.2 that is the basis 

for all genetic studies published thus far. In short, crosses are initiated on plants by co-

inoculation of strains with opposite mating types. After initial symptom development for 

approximately 14 days, plants are placed in the outside, natural environment – crosses can be 

made throughout the year – and after six to seven weeks deteriorated primary leaves are 

collected, submerged in water, for 30 min. and then placed on filter paper in one quarter of the 

lid of a Petri dish and the excess of water is blotted away. The Petri plate is then closed and 

placed upside down - thus agar up -  to prevent contamination and to capture discharged 

ascospores from the agar after 24h germination. Discharges start within 15 min. after closing 

the Petri dish and were continued for one hour, by turning the plate every 15 min. To our 

surprise all crosses were successful irrespective of the avirulence of one parent that could not 

establish a pathogenic relationship with the used wheat cultivar. The only crosses that failed 

were those between isolates that are both avirulent on the used wheat cultivar or on a non-host 
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crop such as barley (Table S3). In total eight isolates, either virulent or avirulent on wheat 

cultivars that were used to perform in planta crosses, from different origin (Table S2) were used 

in 19 crosses. All crosses were successful, except for the six crosses between two avirulent 

partners (Table S3). This is fundamentally different from the current paradigm in plant disease 

epidemiology where avirulent isolates are thought to be eliminated from the population as they 

do not colonize the host, do not reproduce and consequently do not contribute to the epidemic 

(Van der Plank 1982; Zadocs and Schein 1979). However, we show that in Z. tritici avirulent 

strains can successfully enter a sexual cycle, and consequently transmit their genes to 

subsequent populations. Thus, genotypes are lost, but their genes - here avirulence genes - are 

saved. This would temporally affect adaptation to host resistance and hence the longevity of 

host resistance (Brown 2015). 

To determine female and male contributions to the mating process we deployed several 

nuclear and mitochondrial markers in 46 crosses. In four crosses - Z. tritici IPO323/IPO94269 

and IPO323/IPO95052 each on two wheat cultivars (Tables 1, S4, Fig. S7) – the nuclear 

markers (AvrStb6, mat, SSR ag-0006) segregated according to the expected 1:1 ratios. 

However, the segregation of the mitochondrial SSR (mt-SSR) marker was significantly skewed, 

confirming that the partaking of non-pathogenic or avirulent isolates affects the expected 1:1 

ratio for maternal or paternal parenthood when both parents are pathogenic (Table 1, Fig. 2). 

The 19:55 mt-SSR segregation in the Z. tritici IPO323/IPO94269 cross on the susceptible bread 

wheat cv. Obelisk shows that both isolates were either paternal or maternal donors, the ration 

probably depending on sexual fitness or slight differences in aggressiveness. However, 

conducting the same cross on cv. Shafir that carries Stb6 (Kettles et al. 2017; Saintenac et al. 

This issue) and is resistant to Z. tritici IPO323 (Brading et al. 2002; Kema et al. 2002), the 

segregation was 0:87. Hence, Z. tritici IPO323 was the exclusive paternal donor. We then 

further substantiated this observation by the Z. tritici IPO323/IPO95052 cross on cv. Obelisk. 

This cultivar is completely resistant to Z. tritici IPO95052, which is a durum wheat strain, and 

observed a 99:0 ratio indicating the exclusive paternal contribution of IPO95052 to the 

successful sexual reproduction. This clearly demonstrates that Z. tritici IPO323 swaps exclusive 

paternal or maternal parenthood in sexual reproduction, depending on its avirulence or 

virulence towards the resistant or susceptible crossing host, respectively. Repetition of the Z. 

tritici IPO323/IPO95052 cross on the durum wheat cv. Inbar indicated mutual parenthood as Z. 

tritici IPO323 has low pathogenicity on this cultivar (see Table 1, subscript c). 
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between 2x-8x, with slight (8x at 1 dpi with IPO323), but overall differential peaks between 

both isolates at virtually all sampling moments (except at 12 dpi) (Fig. S2). At 8 dpi expression 

of AvrStb6 was significantly higher in IPO94269 than in IPO323, which may suggest a role 

during the transition from biotrophy to necrotrophy (Mirzadi Gohari et al. 2015). However, the 

expression of AvrStb6 in the susceptible cv. Riband, as derived from RNAseq 

experiments(Rudd et al. 2015) was much higher and showed a completely different pattern, 

with major peaks at 10 dpi and 14 dpi (Fig. S3). We currently cannot explain these differences, 

but the data were clearly independently collected during different experimental conditions, 

which would confirm that Z. tritici is very sensitive to environmental fluctuations (Ben 

M’Barek et al. 2015). However, notwithstanding these differences, AvrStb6 - as a classical 

avirulence effector - determines the outcome of the interaction as shown by the current data and 

by previous data (Kema et al. 2000; Zhong et al. 2017). 

 We quantified fungal biomass during compatible interactions of the WT strains IPO323 

and IPO94269 along with the transformants IPO323ΔAvrStb6-33 and IPO94269ΔAvrStb6-1 on 

cv. Taichung to determine any possible virulence function of AvrStb6 (Fig. S16). As we did not 

observe any significant difference, except at 16 dpi in the comparison between IPO323 and 

IPO323ΔAvrStb6-33, we conclude that AvrStb6 has no virulence function, at least not in these 

interactions. Tests were performed in three biological replicates and repeated thrice. 

Crosses elucidating exclusive paternal parenthood: host resistance as a biotic stress factor 

 

We used the established crossing protocol developed by Kema et al.2 that is the basis 

for all genetic studies published thus far. In short, crosses are initiated on plants by co-

inoculation of strains with opposite mating types. After initial symptom development for 

approximately 14 days, plants are placed in the outside, natural environment – crosses can be 

made throughout the year – and after six to seven weeks deteriorated primary leaves are 

collected, submerged in water, for 30 min. and then placed on filter paper in one quarter of the 

lid of a Petri dish and the excess of water is blotted away. The Petri plate is then closed and 

placed upside down - thus agar up -  to prevent contamination and to capture discharged 

ascospores from the agar after 24h germination. Discharges start within 15 min. after closing 

the Petri dish and were continued for one hour, by turning the plate every 15 min. To our 

surprise all crosses were successful irrespective of the avirulence of one parent that could not 

establish a pathogenic relationship with the used wheat cultivar. The only crosses that failed 

were those between isolates that are both avirulent on the used wheat cultivar or on a non-host 
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crop such as barley (Table S3). In total eight isolates, either virulent or avirulent on wheat 

cultivars that were used to perform in planta crosses, from different origin (Table S2) were used 

in 19 crosses. All crosses were successful, except for the six crosses between two avirulent 

partners (Table S3). This is fundamentally different from the current paradigm in plant disease 

epidemiology where avirulent isolates are thought to be eliminated from the population as they 

do not colonize the host, do not reproduce and consequently do not contribute to the epidemic 

(Van der Plank 1982; Zadocs and Schein 1979). However, we show that in Z. tritici avirulent 

strains can successfully enter a sexual cycle, and consequently transmit their genes to 

subsequent populations. Thus, genotypes are lost, but their genes - here avirulence genes - are 

saved. This would temporally affect adaptation to host resistance and hence the longevity of 

host resistance (Brown 2015). 

To determine female and male contributions to the mating process we deployed several 

nuclear and mitochondrial markers in 46 crosses. In four crosses - Z. tritici IPO323/IPO94269 

and IPO323/IPO95052 each on two wheat cultivars (Tables 1, S4, Fig. S7) – the nuclear 

markers (AvrStb6, mat, SSR ag-0006) segregated according to the expected 1:1 ratios. 

However, the segregation of the mitochondrial SSR (mt-SSR) marker was significantly skewed, 

confirming that the partaking of non-pathogenic or avirulent isolates affects the expected 1:1 

ratio for maternal or paternal parenthood when both parents are pathogenic (Table 1, Fig. 2). 

The 19:55 mt-SSR segregation in the Z. tritici IPO323/IPO94269 cross on the susceptible bread 

wheat cv. Obelisk shows that both isolates were either paternal or maternal donors, the ration 

probably depending on sexual fitness or slight differences in aggressiveness. However, 

conducting the same cross on cv. Shafir that carries Stb6 (Kettles et al. 2017; Saintenac et al. 

This issue) and is resistant to Z. tritici IPO323 (Brading et al. 2002; Kema et al. 2002), the 

segregation was 0:87. Hence, Z. tritici IPO323 was the exclusive paternal donor. We then 

further substantiated this observation by the Z. tritici IPO323/IPO95052 cross on cv. Obelisk. 

This cultivar is completely resistant to Z. tritici IPO95052, which is a durum wheat strain, and 

observed a 99:0 ratio indicating the exclusive paternal contribution of IPO95052 to the 

successful sexual reproduction. This clearly demonstrates that Z. tritici IPO323 swaps exclusive 

paternal or maternal parenthood in sexual reproduction, depending on its avirulence or 

virulence towards the resistant or susceptible crossing host, respectively. Repetition of the Z. 

tritici IPO323/IPO95052 cross on the durum wheat cv. Inbar indicated mutual parenthood as Z. 

tritici IPO323 has low pathogenicity on this cultivar (see Table 1, subscript c). 
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We determined the fungal biomass of both mating partners of four crosses over time 

through qPCR (Table 1, Figs. 3, S8). First, we quantified biomass of each individual isolate, 

and then each isolate during the in planta mating process. While virulent isolates in compatible 

interactions increase in biomass and (eventually) develop pycnidia, avirulent isolates do not or 

hardly exceed the biomass of the applied starting inoculum in incompatible interactions and 

never reproduce asexually (no pycnidia). In mixed inoculations avirulent isolates always show 

a similar pattern. They do not increase in biomass and are outcompeted by the virulent isolates 

that exclusively produce the asexual fructifications (Figs. 3, S8, S12). Hence, we conclude that 

the avirulent parent is the exclusive paternal donor. 

 

Crosses elucidating exclusive paternal parenthood: azoxystrobin as an abiotic stress 

factor 

We subsequently considered that fungicides may cause a similar effect as they disable 

either germination or fungal development. Strobilurin fungicides were chosen as abiotic stress 

factor as the target cytb gene is on the mitochondrion. This also enabled the analysis of 

parenthood of either sensitive or resistant Z. tritici isolates in crosses on plants that were treated 

with Amistar® (ai azoxystrobin) prior to co-inoculations, as mitochondria are usually 

exclusively maternally inherited in filamentous fungi (Basse 2010). Furthermore, strobilurin 

resistance is qualitative, due to the G143A QoI single nucleotide polymorphism (SNP), which 

can be easily detected with the developed MAMA assay that enabled precise genetic analyses 

of the generated progenies. In total, we performed 42 additional crosses on Amistar® treated 

cv. Taichung 29 plants tested whether sensitive strains still participate in sexual reproduction. 

All crosses were between sensitive and resistant strains on plants that were preventatively 

treated with various doses of the fungicide. Three sets of Z. tritici field isolates 

IPO03001/IPO03003, IPO03002/IPO03005 and IPO04001/IPO04011, with equal 

pathogenicity, opposite mating types and contrasting azoxystrobin resistance (Figs. 3, S9, S10) 

were crossed in two rounds of crossing experiments comprising 18 (round 1) and 24 (round 2) 

crosses using the same azoxystrobin concentrations, but the latter had two additional 

concentration (100% and 200%). Despite the used azoxystrobin concentrations, all crosses 

generated offspring (Table 2). Thus, effective azoxystrobin concentrations for disease 

management do not prevent sexual reproduction of Z. tritici. We subsequently evaluated the 

percentage of resistant offspring by determining the germination patterns in all offspring 

populations on water agar with (N=9,025) and without (N=15,975) azoxystrobin as well as by 

2,100 independent diagnostic MAMA assays (Table 2). The percentage of resistant off-spring 
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rapidly increases to 100% under suboptimal azoxystrobin concentrations and at the 

recommended full dose all progenies were entirely fixed for resistance in one generation (Table 

2). This shows that azoxystrobin applications direct resistant and sensitive Z. tritici isolates into 

maternal and paternal parenthood, respectively. 

In order to further substantiate these results, we also determined the biomass of the 

parental strains by qPCR in plants that were preventatively treated with azoxystrobin and 

subsequently used for individual or co- inoculation assays as part of the in planta crosses (Figs. 

3, S10). The individually inoculated resistant parents developed biomass and symptoms 

whereas the sensitive parents hardly developed, but eventually produced pycnidia, indicating 

that the used azoxystrobin concentrations are not lethal but fungistatic for sensitive Z. tritici 

strains (Fig. S9). In the co-inoculations, however, the sensitive parents were undetectable and 

apparently completely out-competed by the resistant strains. Still all co-inoculations resulted in 

successful sexual reproduction (Table 2, Figs. 3, S10).  

Genotyping of the developed asexual pycnidia from co-inoculated isolates with opposite mating 

types for crosses aiming at understanding the effect of biotic stress, through host resistance, 

confirmed that all these fructifications were merely produced by the virulent strains (Fig. S13).  

 

The population genetic consequences 

 

Our model consists of an extension of the model developed by Leonard (Leonard 1969), 

to include the mechanism described here, i.e. an avirulent pathogen is able to undergo sexual 

reproduction with a virulent pathogen strain on a resistant crop within the framework of a well-

mixed Z. tritici-wheat system. The model describes the dynamics of a haploid pathogen 

infecting a population of a diploid plant. Both the plant and pathogen have a single bi-allelic 

locus conferring resistance and virulence, respectively, and the frequency of the pathogen 

virulence allele and the plants’ resistance allele is simulated over time. The frequency of the 

virulent (V) allele in the pathogen population is represented by the number 0 <  𝑛𝑛 <  1. The 

frequency of the avirulent allele (A) is 1 −  𝑛𝑛 =  𝑚𝑚. Similarly, for the plant population the 

frequency of the resistant (R) allele in the host species is represented by the number 0 <  𝑝𝑝 <
 1, while the frequency of the susceptible (S) allele is 1 −  𝑝𝑝 =  𝑞𝑞. For simplicity of analyses 

we assume that the resistance gene in the plant population is fully dominant, and therefore 

consider only two plant genotypes: 𝑆𝑆𝑆𝑆 and 𝑅𝑅 −. As with the typical GFG model, we assume 

that the avirulent strain of the pathogen can only develop on the susceptible plant, while the 
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We determined the fungal biomass of both mating partners of four crosses over time 

through qPCR (Table 1, Figs. 3, S8). First, we quantified biomass of each individual isolate, 

and then each isolate during the in planta mating process. While virulent isolates in compatible 

interactions increase in biomass and (eventually) develop pycnidia, avirulent isolates do not or 

hardly exceed the biomass of the applied starting inoculum in incompatible interactions and 

never reproduce asexually (no pycnidia). In mixed inoculations avirulent isolates always show 

a similar pattern. They do not increase in biomass and are outcompeted by the virulent isolates 

that exclusively produce the asexual fructifications (Figs. 3, S8, S12). Hence, we conclude that 

the avirulent parent is the exclusive paternal donor. 

 

Crosses elucidating exclusive paternal parenthood: azoxystrobin as an abiotic stress 

factor 

We subsequently considered that fungicides may cause a similar effect as they disable 

either germination or fungal development. Strobilurin fungicides were chosen as abiotic stress 

factor as the target cytb gene is on the mitochondrion. This also enabled the analysis of 

parenthood of either sensitive or resistant Z. tritici isolates in crosses on plants that were treated 

with Amistar® (ai azoxystrobin) prior to co-inoculations, as mitochondria are usually 

exclusively maternally inherited in filamentous fungi (Basse 2010). Furthermore, strobilurin 

resistance is qualitative, due to the G143A QoI single nucleotide polymorphism (SNP), which 

can be easily detected with the developed MAMA assay that enabled precise genetic analyses 

of the generated progenies. In total, we performed 42 additional crosses on Amistar® treated 

cv. Taichung 29 plants tested whether sensitive strains still participate in sexual reproduction. 

All crosses were between sensitive and resistant strains on plants that were preventatively 

treated with various doses of the fungicide. Three sets of Z. tritici field isolates 

IPO03001/IPO03003, IPO03002/IPO03005 and IPO04001/IPO04011, with equal 

pathogenicity, opposite mating types and contrasting azoxystrobin resistance (Figs. 3, S9, S10) 

were crossed in two rounds of crossing experiments comprising 18 (round 1) and 24 (round 2) 

crosses using the same azoxystrobin concentrations, but the latter had two additional 

concentration (100% and 200%). Despite the used azoxystrobin concentrations, all crosses 

generated offspring (Table 2). Thus, effective azoxystrobin concentrations for disease 

management do not prevent sexual reproduction of Z. tritici. We subsequently evaluated the 

percentage of resistant offspring by determining the germination patterns in all offspring 

populations on water agar with (N=9,025) and without (N=15,975) azoxystrobin as well as by 

2,100 independent diagnostic MAMA assays (Table 2). The percentage of resistant off-spring 
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rapidly increases to 100% under suboptimal azoxystrobin concentrations and at the 

recommended full dose all progenies were entirely fixed for resistance in one generation (Table 

2). This shows that azoxystrobin applications direct resistant and sensitive Z. tritici isolates into 

maternal and paternal parenthood, respectively. 

In order to further substantiate these results, we also determined the biomass of the 

parental strains by qPCR in plants that were preventatively treated with azoxystrobin and 

subsequently used for individual or co- inoculation assays as part of the in planta crosses (Figs. 

3, S10). The individually inoculated resistant parents developed biomass and symptoms 

whereas the sensitive parents hardly developed, but eventually produced pycnidia, indicating 

that the used azoxystrobin concentrations are not lethal but fungistatic for sensitive Z. tritici 

strains (Fig. S9). In the co-inoculations, however, the sensitive parents were undetectable and 

apparently completely out-competed by the resistant strains. Still all co-inoculations resulted in 

successful sexual reproduction (Table 2, Figs. 3, S10).  

Genotyping of the developed asexual pycnidia from co-inoculated isolates with opposite mating 

types for crosses aiming at understanding the effect of biotic stress, through host resistance, 

confirmed that all these fructifications were merely produced by the virulent strains (Fig. S13).  

 

The population genetic consequences 

 

Our model consists of an extension of the model developed by Leonard (Leonard 1969), 

to include the mechanism described here, i.e. an avirulent pathogen is able to undergo sexual 

reproduction with a virulent pathogen strain on a resistant crop within the framework of a well-

mixed Z. tritici-wheat system. The model describes the dynamics of a haploid pathogen 

infecting a population of a diploid plant. Both the plant and pathogen have a single bi-allelic 

locus conferring resistance and virulence, respectively, and the frequency of the pathogen 

virulence allele and the plants’ resistance allele is simulated over time. The frequency of the 

virulent (V) allele in the pathogen population is represented by the number 0 <  𝑛𝑛 <  1. The 

frequency of the avirulent allele (A) is 1 −  𝑛𝑛 =  𝑚𝑚. Similarly, for the plant population the 

frequency of the resistant (R) allele in the host species is represented by the number 0 <  𝑝𝑝 <
 1, while the frequency of the susceptible (S) allele is 1 −  𝑝𝑝 =  𝑞𝑞. For simplicity of analyses 

we assume that the resistance gene in the plant population is fully dominant, and therefore 

consider only two plant genotypes: 𝑆𝑆𝑆𝑆 and 𝑅𝑅 −. As with the typical GFG model, we assume 

that the avirulent strain of the pathogen can only develop on the susceptible plant, while the 
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virulent strain can develop on both the susceptible and resistant plants. In addition, we include 

the mechanism described here, i.e. if an avirulent pathogen lands on a resistant plant, although 

unable to develop into a lesion, it is able to sexually reproduce with a virulent strain of the 

pathogen. 

In our model, we simulate the dynamics of the frequency of each pathogen and plant 

strain. As in Leonard’s model, we assume that selection pressures, such as the cost to a pathogen 

of having a virulence allele (𝑘𝑘), the reduced fitness of a plant infected by a pathogen (𝑐𝑐), and 

the cost of having a resistance allele to a resistant plant’s fitness (𝑑𝑑), direct the change in allele 

frequency in the pathogen population. In addition, we consider the effect of the newly observed 

mechanism of pathogen reproduction (EPP) on the co-evolution of alleles. We introduce a new 

parameter, 𝜎𝜎, representing the probability of an avirulent individual on a resistant cultivar 

mating with a virulent individual. We consider two scenarios regarding the plant population. 

Firstly, we assume the frequency of the plant population is under the control of growers, and 

therefore not governed by the evolutionary forces, instead, we assume a constant frequency of 

resistance in the plant. We term this the ‘agricultural scenario’. Secondly, in the ‘natural 

scenario’, we allow the frequency of susceptible and resistance alleles in the plant population 

to vary as a result of the selection pressure of being infected and/or resistant. 

We first describe the derivation of the equations governing the frequency of virulence 

in both scenarios, before deriving the equations governing the frequency of resistance in the 

plant population. 

The dynamics of the frequency of virulence 

The frequency of virulent pathogens following one cycle of selection (𝑛𝑛𝑖𝑖+1) can be 

determined by: 

𝑛𝑛𝑖𝑖+1 = ∑ (genotype V fitness)⋅(V allele freq.on host)𝐻𝐻
∑ [(genotype V fitness⋅V allele freq.on host)+(genotype A fitness⋅A allele freq.on host)]𝐻𝐻

  (Y1)  

where the summation is over the host genotypes (𝐻𝐻). The numerator in (Y1) represents the sum 

of the virulent pathogen strain infecting all host genotypes, while the denominator is the sum 

of all pathogen strains on all host genotypes. In each case the change in the frequency of a 

pathogen genotype on a host genotype is given by the frequency of that pathogen genotype on 

the host (hereafter denoted 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑋𝑋 𝑜𝑜𝑛𝑛  𝑌𝑌𝑌𝑌), for pathogen allele X on host genotype YY) 

multiplied by the fitness of that pathogen on that host (hereafter denoted 𝐹𝐹𝐹𝐹𝐹𝐹(𝑋𝑋 𝑜𝑜𝑛𝑛 𝑌𝑌𝑌𝑌)). 

The frequency of each pathogen strain on each plant genotype in genotype 𝐹𝐹 is given by: 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐴𝐴 𝑜𝑜𝑛𝑛 𝑆𝑆𝑆𝑆) = 𝐹𝐹𝑖𝑖
2𝑚𝑚𝑖𝑖, 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐴𝐴 𝑜𝑜𝑛𝑛 𝑅𝑅 −) = (1 − 𝐹𝐹𝑖𝑖

2)𝑚𝑚𝑖𝑖, 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑉𝑉 𝑜𝑜𝑛𝑛 𝑆𝑆𝑆𝑆) = 𝐹𝐹𝑖𝑖
2𝑛𝑛𝑖𝑖, and 
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𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑉𝑉 𝑜𝑜𝑜𝑜 𝑅𝑅 −) = (1 − 𝐹𝐹𝑖𝑖
2)𝑜𝑜𝑖𝑖. The fitness of each pathogen strain on each plant genotype can 

be specified similarly: 𝐹𝐹𝐹𝐹𝐹𝐹(𝐴𝐴 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆) = 1, 𝐹𝐹𝐹𝐹𝐹𝐹(𝐴𝐴 𝑜𝑜𝑜𝑜 𝑅𝑅−) = 0, and 𝐹𝐹𝐹𝐹𝐹𝐹(𝑉𝑉 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆) =
𝐹𝐹𝐹𝐹𝐹𝐹(𝑉𝑉 𝑜𝑜𝑜𝑜 𝑅𝑅−) = (1 − 𝑘𝑘). The denominator therefore becomes: 

(1 − 𝑘𝑘)(1 − 𝐹𝐹𝑖𝑖
2)𝑜𝑜𝑖𝑖 +  (1 − 𝑘𝑘)𝐹𝐹𝑖𝑖

2𝑜𝑜𝑖𝑖 +  𝐹𝐹𝑖𝑖
2 𝑚𝑚𝑖𝑖 = 𝐹𝐹𝑖𝑖

2 + 𝑜𝑜𝑖𝑖((1 − 𝐹𝐹𝑖𝑖
2) − 𝑘𝑘) 

To calculate the numerator, the number of new pathogen infections of each genotype is 

determined from the sexual recombination of strains on the same host genotype. The proportion 

of pathogen lesions that are on susceptible hosts is 𝜉𝜉 =  𝐹𝐹𝑖𝑖
2 ⋅ ((1 − 𝑘𝑘)𝑜𝑜𝑖𝑖 + 𝑚𝑚𝑖𝑖), and the 

proportion on resistant hosts is 𝜑𝜑 =  (1 − 𝐹𝐹𝑖𝑖
2) ⋅ ((1 − 𝑘𝑘) ⋅ 𝑜𝑜𝑖𝑖). In each case we determine the 

proportion of reproduction events on each host that produce virulent offspring: 𝑓𝑓𝑉𝑉 and 𝑔𝑔𝑉𝑉 on 

the susceptible and resistant hosts respectively. 

𝑔𝑔𝑣𝑣= = 𝐹𝐹𝑖𝑖𝐹𝐹(𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆)×𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆)+1
2𝐹𝐹𝑖𝑖𝐹𝐹(𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆)×𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆)

𝐹𝐹𝑖𝑖𝐹𝐹(𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆)×𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆)+𝐹𝐹𝑖𝑖𝐹𝐹(𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆)×𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆)+𝐹𝐹𝑖𝑖𝐹𝐹(𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆)×𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆)  

𝑓𝑓𝑣𝑣 = 𝐹𝐹𝑖𝑖𝐹𝐹(𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑅𝑅−)×𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑅𝑅−)+1
2𝐹𝐹𝑖𝑖𝐹𝐹(𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑅𝑅−)×𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑅𝑅−)

𝐹𝐹𝑖𝑖𝐹𝐹(𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑅𝑅−)×𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑅𝑅−)+𝐹𝐹𝑖𝑖𝐹𝐹(𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑅𝑅−)×𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑅𝑅−)+𝐹𝐹𝑖𝑖𝐹𝐹(𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑅𝑅−)×𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑅𝑅−)  

 

For the proportion of mating events on susceptible plants that result in virulent lesions, 𝑔𝑔𝑣𝑣, 

𝐹𝐹𝐹𝐹𝐹𝐹(𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆) = (1 − 𝑘𝑘)2, 𝐹𝐹𝐹𝐹𝐹𝐹(𝑉𝑉𝐴𝐴 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆) = (1 − 𝑘𝑘), 𝐹𝐹𝐹𝐹𝐹𝐹(𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆) = 1, 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆) = 𝑜𝑜𝑖𝑖
2, 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑉𝑉𝐴𝐴 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆) = 2𝑜𝑜𝑖𝑖𝑚𝑚𝑖𝑖 and 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆) = 𝑚𝑚𝑖𝑖

2. With 

substitution and simplification, we establish 𝑔𝑔𝑣𝑣 as: 

𝑔𝑔𝑣𝑣 = (1 − 𝑘𝑘)𝑜𝑜𝑖𝑖
(1 − 𝑘𝑘)𝑜𝑜𝑖𝑖 + 𝑚𝑚𝑖𝑖 

 

However, in order to calculate the proportion of reproduction events on resistant plants 

that result in virulent offspring, 𝑓𝑓𝑣𝑣, we now account for the possibility that avirulent pathogen 

strains are involved in reproduction. Therefore, 𝐹𝐹𝐹𝐹𝐹𝐹(𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑅𝑅 −) = (1 − 𝑘𝑘)2, 

 𝐹𝐹𝐹𝐹𝐹𝐹(𝑉𝑉𝐴𝐴 𝑜𝑜𝑜𝑜 𝑅𝑅 −) = (1 − 𝑘𝑘), 𝐹𝐹𝐹𝐹𝐹𝐹(𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜 𝑅𝑅 −) = 0, 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑅𝑅 −) =
𝑜𝑜𝑖𝑖

2, 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑉𝑉𝐴𝐴 𝑜𝑜𝑜𝑜 𝑅𝑅 −) = 2𝜎𝜎𝑜𝑜𝑖𝑖𝑚𝑚𝑖𝑖 and 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜 𝑅𝑅 −) = 𝑚𝑚𝑖𝑖
2. The parameter σ describes 

the proportional decrease in participation in sexual reproduction by the avirulent males on the 

resistant plant. With substitution and simplification, 𝑓𝑓𝑣𝑣 is found to be: 

𝑓𝑓𝑣𝑣 = 𝜎𝜎 + (1 − 𝑘𝑘 − 𝜎𝜎) 𝑜𝑜𝑖𝑖
2𝜎𝜎 + (1 − 𝑘𝑘 − 2𝜎𝜎) 𝑜𝑜𝑖𝑖

 

The numerator of (Y1) is therefore: 

𝜑𝜑𝑓𝑓𝑣𝑣 +  𝜉𝜉𝑔𝑔𝑣𝑣 = (1 − 𝐹𝐹𝑖𝑖
2)((1 − 𝑘𝑘)𝑜𝑜𝑖𝑖)

𝜎𝜎 + (1 − 𝑘𝑘 − 𝜎𝜎) 𝑜𝑜𝑖𝑖
2𝜎𝜎 + (1 − 𝑘𝑘 − 2𝜎𝜎) 𝑜𝑜𝑖𝑖

+ 𝐹𝐹𝑖𝑖
2((1 − 𝑘𝑘)𝑜𝑜𝑖𝑖 + 𝑚𝑚𝑖𝑖) (1 − 𝑘𝑘)𝑜𝑜𝑖𝑖

(1 − 𝑘𝑘)𝑜𝑜𝑖𝑖 + 𝑚𝑚𝑖𝑖 
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virulent strain can develop on both the susceptible and resistant plants. In addition, we include 

the mechanism described here, i.e. if an avirulent pathogen lands on a resistant plant, although 

unable to develop into a lesion, it is able to sexually reproduce with a virulent strain of the 

pathogen. 

In our model, we simulate the dynamics of the frequency of each pathogen and plant 

strain. As in Leonard’s model, we assume that selection pressures, such as the cost to a pathogen 

of having a virulence allele (𝑘𝑘), the reduced fitness of a plant infected by a pathogen (𝑐𝑐), and 

the cost of having a resistance allele to a resistant plant’s fitness (𝑑𝑑), direct the change in allele 

frequency in the pathogen population. In addition, we consider the effect of the newly observed 

mechanism of pathogen reproduction (EPP) on the co-evolution of alleles. We introduce a new 

parameter, 𝜎𝜎, representing the probability of an avirulent individual on a resistant cultivar 

mating with a virulent individual. We consider two scenarios regarding the plant population. 

Firstly, we assume the frequency of the plant population is under the control of growers, and 

therefore not governed by the evolutionary forces, instead, we assume a constant frequency of 

resistance in the plant. We term this the ‘agricultural scenario’. Secondly, in the ‘natural 

scenario’, we allow the frequency of susceptible and resistance alleles in the plant population 

to vary as a result of the selection pressure of being infected and/or resistant. 

We first describe the derivation of the equations governing the frequency of virulence 

in both scenarios, before deriving the equations governing the frequency of resistance in the 

plant population. 

The dynamics of the frequency of virulence 

The frequency of virulent pathogens following one cycle of selection (𝑛𝑛𝑖𝑖+1) can be 

determined by: 

𝑛𝑛𝑖𝑖+1 = ∑ (genotype V fitness)⋅(V allele freq.on host)𝐻𝐻
∑ [(genotype V fitness⋅V allele freq.on host)+(genotype A fitness⋅A allele freq.on host)]𝐻𝐻

  (Y1)  

where the summation is over the host genotypes (𝐻𝐻). The numerator in (Y1) represents the sum 

of the virulent pathogen strain infecting all host genotypes, while the denominator is the sum 

of all pathogen strains on all host genotypes. In each case the change in the frequency of a 

pathogen genotype on a host genotype is given by the frequency of that pathogen genotype on 

the host (hereafter denoted 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑋𝑋 𝑜𝑜𝑛𝑛  𝑌𝑌𝑌𝑌), for pathogen allele X on host genotype YY) 

multiplied by the fitness of that pathogen on that host (hereafter denoted 𝐹𝐹𝐹𝐹𝐹𝐹(𝑋𝑋 𝑜𝑜𝑛𝑛 𝑌𝑌𝑌𝑌)). 

The frequency of each pathogen strain on each plant genotype in genotype 𝐹𝐹 is given by: 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐴𝐴 𝑜𝑜𝑛𝑛 𝑆𝑆𝑆𝑆) = 𝐹𝐹𝑖𝑖
2𝑚𝑚𝑖𝑖, 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐴𝐴 𝑜𝑜𝑛𝑛 𝑅𝑅 −) = (1 − 𝐹𝐹𝑖𝑖

2)𝑚𝑚𝑖𝑖, 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑉𝑉 𝑜𝑜𝑛𝑛 𝑆𝑆𝑆𝑆) = 𝐹𝐹𝑖𝑖
2𝑛𝑛𝑖𝑖, and 
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𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑉𝑉 𝑜𝑜𝑜𝑜 𝑅𝑅 −) = (1 − 𝐹𝐹𝑖𝑖
2)𝑜𝑜𝑖𝑖. The fitness of each pathogen strain on each plant genotype can 

be specified similarly: 𝐹𝐹𝐹𝐹𝐹𝐹(𝐴𝐴 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆) = 1, 𝐹𝐹𝐹𝐹𝐹𝐹(𝐴𝐴 𝑜𝑜𝑜𝑜 𝑅𝑅−) = 0, and 𝐹𝐹𝐹𝐹𝐹𝐹(𝑉𝑉 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆) =
𝐹𝐹𝐹𝐹𝐹𝐹(𝑉𝑉 𝑜𝑜𝑜𝑜 𝑅𝑅−) = (1 − 𝑘𝑘). The denominator therefore becomes: 

(1 − 𝑘𝑘)(1 − 𝐹𝐹𝑖𝑖
2)𝑜𝑜𝑖𝑖 +  (1 − 𝑘𝑘)𝐹𝐹𝑖𝑖

2𝑜𝑜𝑖𝑖 +  𝐹𝐹𝑖𝑖
2 𝑚𝑚𝑖𝑖 = 𝐹𝐹𝑖𝑖

2 + 𝑜𝑜𝑖𝑖((1 − 𝐹𝐹𝑖𝑖
2) − 𝑘𝑘) 

To calculate the numerator, the number of new pathogen infections of each genotype is 

determined from the sexual recombination of strains on the same host genotype. The proportion 

of pathogen lesions that are on susceptible hosts is 𝜉𝜉 =  𝐹𝐹𝑖𝑖
2 ⋅ ((1 − 𝑘𝑘)𝑜𝑜𝑖𝑖 + 𝑚𝑚𝑖𝑖), and the 

proportion on resistant hosts is 𝜑𝜑 =  (1 − 𝐹𝐹𝑖𝑖
2) ⋅ ((1 − 𝑘𝑘) ⋅ 𝑜𝑜𝑖𝑖). In each case we determine the 

proportion of reproduction events on each host that produce virulent offspring: 𝑓𝑓𝑉𝑉 and 𝑔𝑔𝑉𝑉 on 

the susceptible and resistant hosts respectively. 

𝑔𝑔𝑣𝑣= = 𝐹𝐹𝑖𝑖𝐹𝐹(𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆)×𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆)+1
2𝐹𝐹𝑖𝑖𝐹𝐹(𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆)×𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆)

𝐹𝐹𝑖𝑖𝐹𝐹(𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆)×𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆)+𝐹𝐹𝑖𝑖𝐹𝐹(𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆)×𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆)+𝐹𝐹𝑖𝑖𝐹𝐹(𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆)×𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆)  

𝑓𝑓𝑣𝑣 = 𝐹𝐹𝑖𝑖𝐹𝐹(𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑅𝑅−)×𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑅𝑅−)+1
2𝐹𝐹𝑖𝑖𝐹𝐹(𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑅𝑅−)×𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑅𝑅−)

𝐹𝐹𝑖𝑖𝐹𝐹(𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑅𝑅−)×𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑅𝑅−)+𝐹𝐹𝑖𝑖𝐹𝐹(𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑅𝑅−)×𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑅𝑅−)+𝐹𝐹𝑖𝑖𝐹𝐹(𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑅𝑅−)×𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑅𝑅−)  

 

For the proportion of mating events on susceptible plants that result in virulent lesions, 𝑔𝑔𝑣𝑣, 

𝐹𝐹𝐹𝐹𝐹𝐹(𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆) = (1 − 𝑘𝑘)2, 𝐹𝐹𝐹𝐹𝐹𝐹(𝑉𝑉𝐴𝐴 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆) = (1 − 𝑘𝑘), 𝐹𝐹𝐹𝐹𝐹𝐹(𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆) = 1, 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆) = 𝑜𝑜𝑖𝑖
2, 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑉𝑉𝐴𝐴 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆) = 2𝑜𝑜𝑖𝑖𝑚𝑚𝑖𝑖 and 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆) = 𝑚𝑚𝑖𝑖

2. With 

substitution and simplification, we establish 𝑔𝑔𝑣𝑣 as: 

𝑔𝑔𝑣𝑣 = (1 − 𝑘𝑘)𝑜𝑜𝑖𝑖
(1 − 𝑘𝑘)𝑜𝑜𝑖𝑖 + 𝑚𝑚𝑖𝑖 

 

However, in order to calculate the proportion of reproduction events on resistant plants 

that result in virulent offspring, 𝑓𝑓𝑣𝑣, we now account for the possibility that avirulent pathogen 

strains are involved in reproduction. Therefore, 𝐹𝐹𝐹𝐹𝐹𝐹(𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑅𝑅 −) = (1 − 𝑘𝑘)2, 

 𝐹𝐹𝐹𝐹𝐹𝐹(𝑉𝑉𝐴𝐴 𝑜𝑜𝑜𝑜 𝑅𝑅 −) = (1 − 𝑘𝑘), 𝐹𝐹𝐹𝐹𝐹𝐹(𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜 𝑅𝑅 −) = 0, 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑅𝑅 −) =
𝑜𝑜𝑖𝑖

2, 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑉𝑉𝐴𝐴 𝑜𝑜𝑜𝑜 𝑅𝑅 −) = 2𝜎𝜎𝑜𝑜𝑖𝑖𝑚𝑚𝑖𝑖 and 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜 𝑅𝑅 −) = 𝑚𝑚𝑖𝑖
2. The parameter σ describes 

the proportional decrease in participation in sexual reproduction by the avirulent males on the 

resistant plant. With substitution and simplification, 𝑓𝑓𝑣𝑣 is found to be: 

𝑓𝑓𝑣𝑣 = 𝜎𝜎 + (1 − 𝑘𝑘 − 𝜎𝜎) 𝑜𝑜𝑖𝑖
2𝜎𝜎 + (1 − 𝑘𝑘 − 2𝜎𝜎) 𝑜𝑜𝑖𝑖

 

The numerator of (Y1) is therefore: 

𝜑𝜑𝑓𝑓𝑣𝑣 +  𝜉𝜉𝑔𝑔𝑣𝑣 = (1 − 𝐹𝐹𝑖𝑖
2)((1 − 𝑘𝑘)𝑜𝑜𝑖𝑖)

𝜎𝜎 + (1 − 𝑘𝑘 − 𝜎𝜎) 𝑜𝑜𝑖𝑖
2𝜎𝜎 + (1 − 𝑘𝑘 − 2𝜎𝜎) 𝑜𝑜𝑖𝑖

+ 𝐹𝐹𝑖𝑖
2((1 − 𝑘𝑘)𝑜𝑜𝑖𝑖 + 𝑚𝑚𝑖𝑖) (1 − 𝑘𝑘)𝑜𝑜𝑖𝑖

(1 − 𝑘𝑘)𝑜𝑜𝑖𝑖 + 𝑚𝑚𝑖𝑖 
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= (1 − 𝑞𝑞𝑖𝑖
2)((1 − 𝑘𝑘)𝑛𝑛𝑖𝑖) [ 𝜎𝜎 + (1 − 𝑘𝑘 − 𝜎𝜎)𝑛𝑛𝑖𝑖

2𝜎𝜎 + (1 − 𝑘𝑘 − 2𝜎𝜎)𝑛𝑛𝑖𝑖
] + 𝑞𝑞𝑖𝑖

2(1 − 𝑘𝑘)𝑛𝑛𝑖𝑖 

Therefore, the following equation determines the frequency of the virulent pathogen 

allele at generation 𝑖𝑖 +  1: 

𝑛𝑛𝑖𝑖+1 =
(1 − 𝑞𝑞𝑖𝑖

2)((1 − 𝑘𝑘)𝑛𝑛𝑖𝑖) [ 𝜎𝜎 + (1 − 𝑘𝑘 − 𝜎𝜎)𝑛𝑛𝑖𝑖
2𝜎𝜎 + (1 − 𝑘𝑘 − 2𝜎𝜎)𝑛𝑛𝑖𝑖

] + 𝑞𝑞𝑖𝑖
2(1 − 𝑘𝑘)𝑛𝑛𝑖𝑖

𝑞𝑞𝑖𝑖2 + 𝑛𝑛𝑖𝑖((1 − 𝑞𝑞𝑖𝑖2) − 𝑘𝑘)    (Y2)  

 When there is no chance for avirulent pathogen spores to mate with virulent lesions on a 

resistant host, then 𝜎𝜎 =  0 and our model is reduced to a form of Leonard’s model, where there 

is no advantage of virulent race on hosts with corresponding gene for resistance, and resistance 

is completely effective: 

𝑛𝑛𝑖𝑖+1 =
(1 − 𝑞𝑞𝑖𝑖

2)((1 − 𝑘𝑘)𝑛𝑛𝑖𝑖) + 𝑞𝑞𝑖𝑖
2(1 − 𝑘𝑘)𝑛𝑛𝑖𝑖

𝑞𝑞𝑖𝑖2 +  𝑛𝑛𝑖𝑖 ((1 − 𝑞𝑞𝑖𝑖2) − 𝑘𝑘) ≡ 𝑛𝑛𝑖𝑖(1 − 𝑘𝑘) 
𝑞𝑞𝑖𝑖2 +  𝑛𝑛𝑖𝑖 ((1 − 𝑞𝑞𝑖𝑖2) − 𝑘𝑘) (Y3)  

 

 

The dynamics of the frequency of resistance: 

As stated previously, we model two scenarios for the frequency of resistance. In the 

agricultural scenario, the frequency of resistance in the plant population is not dependent on 

evolutionary dynamics, but rather on the planting frequency, and therefore: 

𝑝𝑝𝑖𝑖+1 = 𝑝𝑝𝑖𝑖 = 𝑝𝑝0 

In the natural scenario, we allow the frequency of resistance in the plant population to 

vary as a result of the fitness of each strain; the susceptible plants have a cost of being infected 

(c) by both strains of the pathogen, while the resistant plants have a cost of carrying a resistant 

allele (d). Compared to the model described by Leonard, we assume there is no advantage of a 

virulent strain developing on hosts with the corresponding gene for resistance (𝑎𝑎 = 0) and that 

resistance is absolute (𝑡𝑡 = 1). There is random mating between hosts, so the genotype 

frequencies are given by RR is 𝑝𝑝𝑖𝑖
2, RS is 2𝑝𝑝𝑖𝑖𝑞𝑞𝑖𝑖, SS is 𝑞𝑞𝑖𝑖

2. In this case we assume that the 

resistance allele is not fully dominant. We establish the equation for the frequency of resistance 

using the following: 

 

Σ(resistant host fitness)×(allele frequencies)
Σ(resistant host fitness)×(allele frequencies)+(susceptible host fitness)×(allele frequencies)  

 

(Y4)  
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Host fitness is affected by the pathogen population, depending on which allele variants 

are present in the host. The allele frequencies of the pathogen population also affect the allele 

frequency of resistance. We thus describe the frequency of resistance as: 

 

𝑝𝑝𝑖𝑖+1 = 𝑎𝑎
𝑏𝑏 

 

Where: 

𝑎𝑎 = 𝐹𝐹𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅 𝑤𝑤. 𝐴𝐴) × 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅 𝑤𝑤. 𝐴𝐴) + 𝐹𝐹𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅 𝑤𝑤. 𝑉𝑉) × 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅 𝑤𝑤. 𝑉𝑉)
+ 𝐹𝐹𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅 𝑤𝑤. 𝐴𝐴) × 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅 𝑤𝑤. 𝐴𝐴) + 𝐹𝐹𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅 𝑤𝑤. 𝑉𝑉) × 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅𝑤𝑤. 𝑉𝑉) 

𝑏𝑏 = 𝑎𝑎 + 𝐹𝐹𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅 𝑤𝑤. 𝐴𝐴) × 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅 𝑤𝑤. 𝐴𝐴) + 𝐹𝐹𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅 𝑤𝑤. 𝑉𝑉) × 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅 𝑤𝑤. 𝑉𝑉) 

We define 𝐹𝐹𝐹𝐹𝐹𝐹(𝑋𝑋𝑋𝑋 𝑤𝑤. 𝑌𝑌) as the fitness of host with an 𝑋𝑋𝑋𝑋 allele pairing infected by a pathogen 

of genotype 𝑌𝑌, similarly 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑋𝑋𝑋𝑋 𝑤𝑤. 𝑌𝑌) is the frequency of host with an 𝑋𝑋𝑋𝑋 allele pairing 

infected by a pathogen of genotype 𝑌𝑌. Here 𝐹𝐹𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅 𝑤𝑤. 𝐴𝐴) = 𝐹𝐹𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅 𝑤𝑤. 𝐴𝐴) = 1 −
𝑑𝑑, 𝐹𝐹𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅 𝑤𝑤. 𝑉𝑉) = 𝐹𝐹𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅 𝑤𝑤. 𝑉𝑉) = 1 − 𝑑𝑑 − 𝑐𝑐(1 − 𝑘𝑘), 𝐹𝐹𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅 𝑤𝑤. 𝐴𝐴) = 1 − 𝑐𝑐, 𝐹𝐹𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅 𝑤𝑤. 𝑉𝑉) =
1 − 𝑐𝑐(1 − 𝑘𝑘); 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅 𝑤𝑤. 𝐴𝐴) = 𝑝𝑝𝑖𝑖

2 ⋅ 𝑚𝑚𝑖𝑖, 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅 𝑤𝑤. 𝑉𝑉) = 𝑝𝑝𝑖𝑖
2 ⋅ 𝑛𝑛𝑖𝑖, 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅 𝑤𝑤. 𝐴𝐴) = 2𝑝𝑝𝑖𝑖𝐹𝐹𝑖𝑖 ⋅

𝑚𝑚𝑖𝑖, 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅 𝑤𝑤. 𝑉𝑉) = 2𝑝𝑝𝑖𝑖𝐹𝐹𝑖𝑖 ⋅ 𝑛𝑛𝑖𝑖, 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅 𝑤𝑤. 𝐴𝐴) = 𝐹𝐹𝑖𝑖
2 ⋅ 𝑚𝑚𝑖𝑖 and 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅 𝑤𝑤. 𝑉𝑉) = 𝐹𝐹𝑖𝑖

2 ⋅ 𝑛𝑛𝑖𝑖. 

With substitution and simplification, the change in the resistant allele is modelled by: 

𝑝𝑝𝑖𝑖+1 = 𝑝𝑝𝑖𝑖[1 − 𝑑𝑑 − 𝑛𝑛𝑖𝑖𝑐𝑐(1 − 𝑘𝑘)]
1 − 𝑐𝑐 + 𝑛𝑛𝑖𝑖𝑘𝑘𝑐𝑐 + (1 − 𝐹𝐹𝑖𝑖

2)[𝑐𝑐 − 𝑑𝑑 − 𝑛𝑛𝑖𝑖𝑐𝑐] (Y5)  

 

Systems summary 

We thus have two model variants for the system simulated (agricultural and natural) and 

two model variants simulating the classical sexual reproduction where the avirulent strains does 

not partake in the sexual reproduction on the resistant plant (𝜎𝜎 = 0) and the newly discovered 

system where the avirulent strain does partake in the reproduction (𝜎𝜎 > 0). The equations that 

describe the entirety of each model are summarised in Table S8. The model incorporating the 

classical genetics is identical to the model described by Leonard and the model with the newly 

discovered genetics will be termed the exclusive paternal parenthood (EPP) model. Our 

model results in Fig. 4a and shows that in agricultural systems, the possibility of virulent 

pathogen strains mating with avirulent ones reduces the rate of virulence selection when 

compared with the traditional Leonard’s model (Leonard 1969). Moreover, we observe that for 

large values of σ the possibility of a polymorphism in the pathogen population can arise. This 

contrasts Leonard’s model results where this could not occur.  
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= (1 − 𝑞𝑞𝑖𝑖
2)((1 − 𝑘𝑘)𝑛𝑛𝑖𝑖) [ 𝜎𝜎 + (1 − 𝑘𝑘 − 𝜎𝜎)𝑛𝑛𝑖𝑖

2𝜎𝜎 + (1 − 𝑘𝑘 − 2𝜎𝜎)𝑛𝑛𝑖𝑖
] + 𝑞𝑞𝑖𝑖

2(1 − 𝑘𝑘)𝑛𝑛𝑖𝑖 

Therefore, the following equation determines the frequency of the virulent pathogen 

allele at generation 𝑖𝑖 +  1: 

𝑛𝑛𝑖𝑖+1 =
(1 − 𝑞𝑞𝑖𝑖

2)((1 − 𝑘𝑘)𝑛𝑛𝑖𝑖) [ 𝜎𝜎 + (1 − 𝑘𝑘 − 𝜎𝜎)𝑛𝑛𝑖𝑖
2𝜎𝜎 + (1 − 𝑘𝑘 − 2𝜎𝜎)𝑛𝑛𝑖𝑖

] + 𝑞𝑞𝑖𝑖
2(1 − 𝑘𝑘)𝑛𝑛𝑖𝑖

𝑞𝑞𝑖𝑖2 + 𝑛𝑛𝑖𝑖((1 − 𝑞𝑞𝑖𝑖2) − 𝑘𝑘)    (Y2)  

 When there is no chance for avirulent pathogen spores to mate with virulent lesions on a 

resistant host, then 𝜎𝜎 =  0 and our model is reduced to a form of Leonard’s model, where there 

is no advantage of virulent race on hosts with corresponding gene for resistance, and resistance 

is completely effective: 

𝑛𝑛𝑖𝑖+1 =
(1 − 𝑞𝑞𝑖𝑖

2)((1 − 𝑘𝑘)𝑛𝑛𝑖𝑖) + 𝑞𝑞𝑖𝑖
2(1 − 𝑘𝑘)𝑛𝑛𝑖𝑖

𝑞𝑞𝑖𝑖2 +  𝑛𝑛𝑖𝑖 ((1 − 𝑞𝑞𝑖𝑖2) − 𝑘𝑘) ≡ 𝑛𝑛𝑖𝑖(1 − 𝑘𝑘) 
𝑞𝑞𝑖𝑖2 +  𝑛𝑛𝑖𝑖 ((1 − 𝑞𝑞𝑖𝑖2) − 𝑘𝑘) (Y3)  

 

 

The dynamics of the frequency of resistance: 

As stated previously, we model two scenarios for the frequency of resistance. In the 

agricultural scenario, the frequency of resistance in the plant population is not dependent on 

evolutionary dynamics, but rather on the planting frequency, and therefore: 

𝑝𝑝𝑖𝑖+1 = 𝑝𝑝𝑖𝑖 = 𝑝𝑝0 

In the natural scenario, we allow the frequency of resistance in the plant population to 

vary as a result of the fitness of each strain; the susceptible plants have a cost of being infected 

(c) by both strains of the pathogen, while the resistant plants have a cost of carrying a resistant 

allele (d). Compared to the model described by Leonard, we assume there is no advantage of a 

virulent strain developing on hosts with the corresponding gene for resistance (𝑎𝑎 = 0) and that 

resistance is absolute (𝑡𝑡 = 1). There is random mating between hosts, so the genotype 

frequencies are given by RR is 𝑝𝑝𝑖𝑖
2, RS is 2𝑝𝑝𝑖𝑖𝑞𝑞𝑖𝑖, SS is 𝑞𝑞𝑖𝑖

2. In this case we assume that the 

resistance allele is not fully dominant. We establish the equation for the frequency of resistance 

using the following: 

 

Σ(resistant host fitness)×(allele frequencies)
Σ(resistant host fitness)×(allele frequencies)+(susceptible host fitness)×(allele frequencies)  

 

(Y4)  
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Host fitness is affected by the pathogen population, depending on which allele variants 

are present in the host. The allele frequencies of the pathogen population also affect the allele 

frequency of resistance. We thus describe the frequency of resistance as: 

 

𝑝𝑝𝑖𝑖+1 = 𝑎𝑎
𝑏𝑏 

 

Where: 

𝑎𝑎 = 𝐹𝐹𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅 𝑤𝑤. 𝐴𝐴) × 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅 𝑤𝑤. 𝐴𝐴) + 𝐹𝐹𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅 𝑤𝑤. 𝑉𝑉) × 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅 𝑤𝑤. 𝑉𝑉)
+ 𝐹𝐹𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅 𝑤𝑤. 𝐴𝐴) × 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅 𝑤𝑤. 𝐴𝐴) + 𝐹𝐹𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅 𝑤𝑤. 𝑉𝑉) × 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅𝑤𝑤. 𝑉𝑉) 

𝑏𝑏 = 𝑎𝑎 + 𝐹𝐹𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅 𝑤𝑤. 𝐴𝐴) × 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅 𝑤𝑤. 𝐴𝐴) + 𝐹𝐹𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅 𝑤𝑤. 𝑉𝑉) × 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅 𝑤𝑤. 𝑉𝑉) 

We define 𝐹𝐹𝐹𝐹𝐹𝐹(𝑋𝑋𝑋𝑋 𝑤𝑤. 𝑌𝑌) as the fitness of host with an 𝑋𝑋𝑋𝑋 allele pairing infected by a pathogen 

of genotype 𝑌𝑌, similarly 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑋𝑋𝑋𝑋 𝑤𝑤. 𝑌𝑌) is the frequency of host with an 𝑋𝑋𝑋𝑋 allele pairing 

infected by a pathogen of genotype 𝑌𝑌. Here 𝐹𝐹𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅 𝑤𝑤. 𝐴𝐴) = 𝐹𝐹𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅 𝑤𝑤. 𝐴𝐴) = 1 −
𝑑𝑑, 𝐹𝐹𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅 𝑤𝑤. 𝑉𝑉) = 𝐹𝐹𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅 𝑤𝑤. 𝑉𝑉) = 1 − 𝑑𝑑 − 𝑐𝑐(1 − 𝑘𝑘), 𝐹𝐹𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅 𝑤𝑤. 𝐴𝐴) = 1 − 𝑐𝑐, 𝐹𝐹𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅 𝑤𝑤. 𝑉𝑉) =
1 − 𝑐𝑐(1 − 𝑘𝑘); 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅 𝑤𝑤. 𝐴𝐴) = 𝑝𝑝𝑖𝑖

2 ⋅ 𝑚𝑚𝑖𝑖, 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅 𝑤𝑤. 𝑉𝑉) = 𝑝𝑝𝑖𝑖
2 ⋅ 𝑛𝑛𝑖𝑖, 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅 𝑤𝑤. 𝐴𝐴) = 2𝑝𝑝𝑖𝑖𝐹𝐹𝑖𝑖 ⋅

𝑚𝑚𝑖𝑖, 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅 𝑤𝑤. 𝑉𝑉) = 2𝑝𝑝𝑖𝑖𝐹𝐹𝑖𝑖 ⋅ 𝑛𝑛𝑖𝑖, 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅 𝑤𝑤. 𝐴𝐴) = 𝐹𝐹𝑖𝑖
2 ⋅ 𝑚𝑚𝑖𝑖 and 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑅𝑅𝑅𝑅 𝑤𝑤. 𝑉𝑉) = 𝐹𝐹𝑖𝑖

2 ⋅ 𝑛𝑛𝑖𝑖. 

With substitution and simplification, the change in the resistant allele is modelled by: 

𝑝𝑝𝑖𝑖+1 = 𝑝𝑝𝑖𝑖[1 − 𝑑𝑑 − 𝑛𝑛𝑖𝑖𝑐𝑐(1 − 𝑘𝑘)]
1 − 𝑐𝑐 + 𝑛𝑛𝑖𝑖𝑘𝑘𝑐𝑐 + (1 − 𝐹𝐹𝑖𝑖

2)[𝑐𝑐 − 𝑑𝑑 − 𝑛𝑛𝑖𝑖𝑐𝑐] (Y5)  

 

Systems summary 

We thus have two model variants for the system simulated (agricultural and natural) and 

two model variants simulating the classical sexual reproduction where the avirulent strains does 

not partake in the sexual reproduction on the resistant plant (𝜎𝜎 = 0) and the newly discovered 

system where the avirulent strain does partake in the reproduction (𝜎𝜎 > 0). The equations that 

describe the entirety of each model are summarised in Table S8. The model incorporating the 

classical genetics is identical to the model described by Leonard and the model with the newly 

discovered genetics will be termed the exclusive paternal parenthood (EPP) model. Our 

model results in Fig. 4a and shows that in agricultural systems, the possibility of virulent 

pathogen strains mating with avirulent ones reduces the rate of virulence selection when 

compared with the traditional Leonard’s model (Leonard 1969). Moreover, we observe that for 

large values of σ the possibility of a polymorphism in the pathogen population can arise. This 

contrasts Leonard’s model results where this could not occur.  
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Our analyses for the natural system show that the dynamics of the system can lead to 

stable or cyclic polymorphisms. Fig. 4b shows that in our model a stable polymorphism is 

obtained (solid line) whereas Leonard’s model shows that although there can be internal steady 

states in a natural setting, these are always unstable (Tellier and Brown 2007).  

The model results explain the reduction in the rate of virulence build-up and the 

existence of polymorphisms in agricultural systems, and the existence of stable and cyclic 

polymorphisms in natural systems which have been observed in other studies (Tellier and 

Brown 2007), but cannot be explained through Leonard’s GFG model. The stable and cyclic 

polymorphisms occur for a wide range of parameter values. Fig. S18 shows sub-sets of 

parameter space that result in stable polymorphisms. The practical implication of these 

outcomes is that resistance of wheat to septoria tritici blotch in the field will show a ‘durable’ 

effect, being an absence of boom-and-bust phenomena and sustained longevity of resistance. 

This is exactly what was observed and calculated in a recent overview where the durability of 

resistance of various wheat pathogens was compared (Brown 2015). The current data and 

analyses show that this phenomenon is due to the unique ability to sexually reproduce 

irrespective of host resistance. Evidently, this maintains effector genes in natural populations 

that are by definition genetically diverse due to the heterothallic bipolar mating system and a 

virtual continuum of sexual reproduction (Kema et al. 1996a). Based on our model and data, 

we also conclude that the model confirms that when QoI sensitive strains still partake in sexual 

reproduction (Table 2), the mitochondrially inherited cytb resistance allele invades faster than 

any nuclear inherited fungicide resistance allele (Torriani et al. 2009), a mechanism that might 

well account for similar observations in the related banana pathogen Pseudocercospora fijiensis 

(Amil et al. 2007; Arango Isaza et al. 2016).  

We observe that our data address a major flaw in epidemiological models and 

considerations (McDonald and Mundt 2016) which have GFG models as a basis, and anticipate 

that similar mechanisms are operational for many other Dothideomycetes. Hence, our 

observations have a very broad application and open a new window in disease epidemiology. 
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Our analyses for the natural system show that the dynamics of the system can lead to 

stable or cyclic polymorphisms. Fig. 4b shows that in our model a stable polymorphism is 

obtained (solid line) whereas Leonard’s model shows that although there can be internal steady 

states in a natural setting, these are always unstable (Tellier and Brown 2007).  

The model results explain the reduction in the rate of virulence build-up and the 

existence of polymorphisms in agricultural systems, and the existence of stable and cyclic 

polymorphisms in natural systems which have been observed in other studies (Tellier and 

Brown 2007), but cannot be explained through Leonard’s GFG model. The stable and cyclic 

polymorphisms occur for a wide range of parameter values. Fig. S18 shows sub-sets of 

parameter space that result in stable polymorphisms. The practical implication of these 

outcomes is that resistance of wheat to septoria tritici blotch in the field will show a ‘durable’ 

effect, being an absence of boom-and-bust phenomena and sustained longevity of resistance. 

This is exactly what was observed and calculated in a recent overview where the durability of 

resistance of various wheat pathogens was compared (Brown 2015). The current data and 

analyses show that this phenomenon is due to the unique ability to sexually reproduce 

irrespective of host resistance. Evidently, this maintains effector genes in natural populations 

that are by definition genetically diverse due to the heterothallic bipolar mating system and a 

virtual continuum of sexual reproduction (Kema et al. 1996a). Based on our model and data, 

we also conclude that the model confirms that when QoI sensitive strains still partake in sexual 

reproduction (Table 2), the mitochondrially inherited cytb resistance allele invades faster than 

any nuclear inherited fungicide resistance allele (Torriani et al. 2009), a mechanism that might 

well account for similar observations in the related banana pathogen Pseudocercospora fijiensis 

(Amil et al. 2007; Arango Isaza et al. 2016).  

We observe that our data address a major flaw in epidemiological models and 

considerations (McDonald and Mundt 2016) which have GFG models as a basis, and anticipate 

that similar mechanisms are operational for many other Dothideomycetes. Hence, our 

observations have a very broad application and open a new window in disease epidemiology. 
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Supplementary Figure 1. Genome positions of the mapped DArT markers. Genome positions 

for individual DArT markers that are present (blue bars) or absent in the avirulent (A) or virulent 

(B) progeny (282 Z. tritici isolates have been genotyped of which 158 phenotyped isolates are 

shown) is displayed using the core chromosomes (Chr. 1-13; left) and the dispensable 

chromosomes (Chr.14-21; right) of Z. tritici IPO323 as a reference. The values of presence (1) 
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or absence (0) of individual DArT markers was summarized for all avirulent (C) or virulent (D) 

progeny. This was calculated by taking the fraction of DArT marker present in the avirulent or 

virulent progeny (range between 0 and 1). The squared difference (E) between the fractions of 

DArT markers present in the avirulent or virulent progeny is calculated, identifying a single 

polymorphic region in the genome of Z. tritici located on the tip of chromosome 5. 

Supplementary Figure 2. In vitro and in planta expression of AvrStb6. For in vitro conditions, 

AvrStb6 expression was profiled in spores and mycelium produced in either YGB or MM medium, 

respectively. For in planta expression, leaves of cv. Shafir were inoculated with the wt strains 

(IPO323 and IPO94269) and harvested 7 hours, 1, 2, 4, 8, 12, 16 and 20 days post-inoculation (dpi). 

Data were normalized with the constitutively expressed Z. tritici beta-tubulin gene. Bar plots display 

mean expression of three independent experiments; whiskers show standard deviations 
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Supplementary Figure 3. Expression of AvrStb6 as measured in an RNAseq experiment using 

various in vitro and in planta conditions (Rudd et al. 2015). Bar plots display the mean expression 

based on two independent experiments (see Online Methods); whiskers show standard deviations 
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Supplementary Figure 4. Genomic location of AvrStb6 on chromosome 5. The gene model (exon-

intron structure) of AvrStb6 is displayed. Wide bars represent the coding DNA regions, the narrow 

bars are the 5’ and 3’ untranslated regions. Mapping of RNA sequencing reads to the reference 

genome of Z. tritici IPO323 is shown as a coverage and as a read alignment track. The 

transcriptomic data was derived from in planta (9 dpi) and in vitro (PDB) condition, respectively 

(Rudd et al.,2015).
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Supplementary Figure 5.  The effect of Zymoseptoria tritici AvrStb6 deletion on disease 

development in the wheat cv. Shafir (Stb6). Primary leaves were inoculated with (from left to right) 

Z. tritici IPO323 and IPO94269 (WTs), and the deletion strains IPO323ΔAvrStb6#14-19-33, the 

complemented strains IPO94269::AvrStb6#1-2 and the ectopic strain IPO323::hyg E. Experiments 

were triplicated and photographs were taken at 20 days post-inoculation. 
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Supplementary Figure 6. Protein alignment highlighting amino acid differences between virulent 

and avirulent Zymoseptoria tritici wild type isolates and IPO323/IPO94269 progeny isolates. In 

the alignment amino acid substitutions are indicated, identical amino acids are denoted with “.“. 
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Supplementary Figure 7. Examples of segregating markers in populations that were derived from in 

planta Zymoseptoria tritici crosses. Z. tritici isolates IPO323 and IPO94269 crossed on the bread wheat 

cvs. Obelisk (left) and Shafir (right). 1, mat. Upper band = mat 1-1, lower band = mat 1-2. 2, ag-0006. 

3, mt-SSR (see also Table1). 
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Supplementary Figure 8. Quantitative fungal biomass detection of Zymoseptoria tritici isolates 

IPO323 and IPO94269 on bread wheat cvs. Taichung 29 and Shafir, and isolates IPO323 and 

IPO95052 on durum wheat cv. Volcani 447 at 0, 5, 10, 15, and 20 dpi (bars; average of two 

independent experiments; whiskers indicate standard deviations) and percent leaf area covered by 

pycnidia at each time point (numbers above each bar).  
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Supplementary Figure 9. Responses of seedlings of wheat cv. Taichung 29 at 29 dpi after 

inoculation with sensitive (04001, 03005 and 03003) or resistant (04011, 03002 and 03001) 

isolates of Zymoseptoria tritici after a pre-treatment (48h prior to inoculation) with the full 

recommended rate of Amistar®. (A) Percent pycnidia (leaf area covered) based on visual 

observations (average of two independent experiments, whiskers indicate standard deviations). (B) 

Overall view of seedlings. 
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Supplementary Figure 10. Fungal biomasses and percent pycnidia of parental isolates of 

Zymoseptoria tritici inoculated individually and in mixtures on cv. Taichung 29 after preventative 

treatment (48h prior to inoculation) with the full recommended field rate of Amistar® at 0, 5, 10, 

15, 20, 25, and 30 dpi (bars; average of two technical replicates; whiskers indicate standard 

deviations). Left to right, upper panel: IPO03003 (sensitive), IPO03001 (resistant), and mixture of 

IPO03001 and IPO03003. Lower panel: IPO03005 (sensitive), IPO03002 (resistant), and mixture 

of IPO03002 and IPO03005. Pycnidial percentages based on visual observations are shown above 

each bar (numbers above each bar). 
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Supplementary Figure 11. Example of SSR genotyping of progeny from crosses between 

Zymoseptoria tritici strains with opposite Amistar® phenotypes (resistant and sensitive). 

Isolates IPO04001 (sensitive) and IPO04011 (resistant) generated off spring on wheat seedlings 

preventatively treated with Amistar® in doses ranging from 0-200%. Multi-plexed PCRs using 

the differentiating SSR marker primer sets ag-0003, tcc-0006 and tcc-0008 revealed 

recombinant SSR profiles in progeny.
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Supplementary Figure 12. 

SSR genoyping of re-

isolations of asexual 

pycnidial isolates from 

wheat leaves that were co-

inoculated with 

Zymoseptoria tritici 

isolates. (a) From mixtures 

of IPO323 and IPO94269 

on cvs. Taichung 29 and 

Shafir using SSR markers 

(from top to bottom) ac-0001, ggc-0001, and caa-0002. (b) From mixtures of IPO323 and 

IPO95052 on cvs. Taichung 29 and Volcani 447 using SSR markers (from top to bottom) ag-0003, 

ag-0006, and ac-0007. 

 

 

 

 

 

Supplementary Figure 13. 

SSR genotyping of 

pycnidial isolates of 

Zymoseptoria tritici 

recovered from wheat seedlings preventatively treated with Amistar® at half and full doses. All 

SSR patterns are clonal like the sensitive pycnidial isolates IPO04001 or IPO03003. Multi-plexed 

PCRs using the differentiating SSR marker primer sets ag-0003, tcc-0006 and tcc-0008 revealed 

no recombinant SSR patterns in recovered pycnidial isolates. 
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Supplementary Figure 14. Segregation of the F1 IPO323/IPO94269 progeny isolates for pycnidia 

development on cv. Shafir carrying the Stb6 resistance gene at 21 days post-inoculation. (A) Average 

leaf area covered by pycnidia for each IPO323/IPO94269 progeny isolates and their parental isolates, 

is shown. Individual isolates were ordered along the x-axis based on their average leaf area covered 

by pycnidia. Isolates for which more than one up to three independent experiments have been 

performed are highlighted in green (whiskers indicate standard deviations), while isolates used in a 

single experiment are shown in red. Distributions of pycnidia development (median leaf area covered) 

for (B) all isolates and (C) isolates with >1 independent experiment are shown. Arrows indicate 

average parental pycnidia development on cv. Shafir. 
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Supplementary Figure 15. 

Graphical genotyping of DArTseq 

markers and (a)virulence to 

'Shafir'. By sorting the progeny 

isolates from the F1-population 

from IPO323 x IPO94269 

according to the positions of 

recombination events on 

chromosome 5 of Zymoseptoria 

tritici, the avirulence gene AvrStb6 

could be positioned between the 

blue flanking markers as shown on 

the picture. The isolates are 

haploid, and therefore have either 

the maternal locus from the 

avirulent parent or the paternal 

locus from the virulent parent. Red 

color indicates loci inherited from 

the avirulent parent IPO323, 

whereas loci inherited from the 

virulent parent IPO94269 are 

displayed in green. Grey dashes 
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ZtAvrStb6-F1 and ZtAvrStb6-R1, which are located in the middle of the hph gene and downstream 
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IPO323ΔAvrStb6#14, IPO323ΔAvrStb6#19 and IPO323ΔAvrStb6#33. 
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Supplementary Figure 17. Fungal biomass quantifications of Zymoseptoria tritici in the susceptible wheat 

cv. Taichung 29 at 2, 4, 8, 12, 16 and 20 days post inoculation. A, Fungal biomass comparison of Z. tritici 

IPO323 (wt) and the knock-out strain IPO323ΔAvrStb6-33, B, Fungal biomass comparison of Z. tritici 

IPO94269 (wt) and the AvrStb6 random integration strain IPO94269::AvrStb6-1. Squares display average 

fungal biomass based on three independent experiments, whiskers indicate standard deviations. 

 

Supplementary Figure 18. (a) The parameter space σ vs k. The dotted area of the graph shows the pair of (σ,k) 

parameters where the internal equilibrium point is stable. In this plot, the fitness cost to the plant by being 

infected was 0.2, the fitness cost to the plant of resistance was 0.1. (b)The parameter space σ vs c. The dotted 

area of the graph shows the pair of (σ,c) parameters where the internal equilibrium point is stable. In this plot, 

the fitness cost to the pathogen of being virulent was 0.2, the fitness cost to the plant of resistance was 0.1 
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Supplementary Table 2. Summary information about the Zymoseptoria tritici isolates that 

were used in the in planta crossing protocol on wheat cultivars with various levels of resistance. 

1derived from a hexaploid derivative of a cross between bread wheat and wild emmer wheat 

(T. dicoccoïdes, AABB, 2n=28). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Isolate Year Origin Host Virulent on Mating type 
IPO001 unknown Netherlands Bread Wheat1 Bread Wheat mat 1-1 
IPO323 1981 Netherlands Bread Wheat Bread Wheat mat 1-1 
IPO87019 1987 Uruguay Bread Wheat Bread Wheat mat 1-2 
IPO88004 1988 Ethiopia Durum Wheat Durum Wheat mat 1-2 
IPO94269 1994 Netherlands Bread Wheat Bread Wheat mat 1-2 
IPO95054 1995 Algeria Bread Wheat Bread Wheat mat 1-2 
IPO95050 1995 Algeria Durum Wheat Durum Wheat mat 1-1 
IPO95052 1995 Algeria Durum Wheat Durum Wheat mat 1-2 
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Supplementary Table 3. Crosses between isolates of Zymoseptoria tritici using an in planta 

protocol of co-inoculation of two strains with opposite mating types on both bread wheat and 

durum wheat cultivars and on barley. V = virulent; A = avirulent. 

 

Isolates Crossed1 Cultivar Species Progeny 

bread wheat strains    

IPO323 (V) x IPO94269 (V) Obelisk Bread Wheat yes 

IPO323 (V) x IPO94269 (V) Taichung 29 Bread Wheat yes 

IPO323 (A) x IPO94269 (V) Shafir Bread Wheat yes 

IPO323 (A) x IPO94269 (A) Volcani 447 Durum Wheat no 

IPO323 (A) x IPO94269 (A) Topper 33 Barley no 

IPO001 (V) x IPO94269 (V) Obelisk Bread Wheat yes 

IPO001 (V) x IPO94269 (A) Lakhish Bread Wheat yes 

IPO001 (A) x IPO94269 (V) Clement Bread Wheat yes 

IPO323 (A) x IPO87019 (A) Kavkaz-K4500 Bread Wheat no 

IPO323 (A) x IPO88004 (A) Veranopolis Bread Wheat no 

durum wheat strains    

IPO95050 (V) x IPO95052 (V) Volcani 447 Durum Wheat yes 

IPO95050 (A) x IPO95052 (A) Obelisk Bread Wheat no 

bread wheat x durum wheat strains    

IPO323 (A) x IPO95052 (V) Inbar Durum Wheat yes 

IPO323 (V) x IPO95052 (A) Obelisk Bread Wheat yes 

IPO323 (A) x IPO95052 (A) Shafir Bread Wheat no 

IPO94269 (A) x IPO95050 (V) Inbar Durum Wheat yes 

IPO94269 (V) x IPO95050 (A) Obelisk Bread Wheat yes 

IPO95054 (A) x IPO95050 (V) Inbar Durum Wheat yes 

IPO95054 (V) x IPO95050 (A) Obelisk Bread Wheat yes 
1Mutiple crosses, on at least two pots with wheat seedlings. The number of ascospores retrieved per 
cross was not counted or estimated but is usually >1,000. We only observed significant reductions in 
progeny size in crosses between Z. tritici isolates with reduced numbers of dispensable chromosomes, 
but this is not addressed in the current paper. 
 
 
Supplementary Table 4. DArT Seq genotyping of the Zymoseptoria tritici IPO323 x 
IPO94269 mapping population. (Please refer to the online version: 
(https://www.nature.com/articles/s41588-018-0052-9#Sec4) or at doi:10.1038/s41588-018-
0052-9)). 
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Supplementary Table 6. Summary information about the Zymoseptoria tritici isolates used in 

the in planta crossing protocol under various levels of preventative strobilurin applications. 

Pycnidial isolate Location Year 
Strobilurin 
application 

Strobilurin 
phenotype 

Mating 
type 

IPO03001 (BCS3R)a Germany  2003 unknown Resistant mat1-1 

IPO03002 (BCS8S)b Germany 2003 unknown Resistant mat1-2 

IPO03003 (BCS16S) Germany 2003 unknown Sensitive mat1-2 

IPO03005 (BCS17S) Germany 2003 unknown Sensitive mat1-1 

IPO04001 Netherlands 2004 No Sensitive mat1-1 

IPO04011 Netherlands 2004 No Resistant mat1-2 

IPO323 (reference) Netherlands 1981 No Sensitive mat1-1 

IPO94269 (reference) Netherlands 1994 No Sensitive mat1-2 

a Isolate code from Bayer CropScience; bPhenotype of isolate was mislabeled. Sequence 
information and additional Phenotyping confirmed its resistance to strobiluri
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Supplementary Table 7. Probes and primers for Zymoseptoria tritici used in this study 

Name Sequence (5' to 3') 
MAT1-1 F CCGCTTTCTGGCTTCTTCGCACTG 
MAT1-1 R TGGACACCATGGTGAGAGAACCT 
MAT1-2 F GGCGCCTCCGAAGCAACT 
MAT1-2 R GATGCGGTTCTGGACTGGAG 
StrobSNP2fwd   CTTATGGTCAAATGTCTTTATGATG 
StrobSNP1rvs GGTGACTCAACGTGATAGC 
StrobSNPrcF7 CAATAAGTTAGTTATAACTGTTGCGG 
StrobSNPrcR1  CTATGCATTATAACCCTAGCGT 
Mmat1P3 FAM- CGCAGTCTGCTTTGAATGAGAAGTTATC –Darquencher  
Mmat1F3 GGCATTTCGCAGTATGTG 
Mmat1R3 CTGCGCATTTCTCGTC 
Mmat2P4 YY- CCTCGCAAGCCATCGGAGA -Darquencher 
Mmat2F7 GCATCCGGGATACCAGTA 
Mmat2R7 CTTGGTCATGCGACGTT 
ag-0003 F ACTTGGGGAGGTGTTGTGAG 
ag-0003 R ACGAATTGTTCATTCCAGCG 
gca-0004 F TAACGGTAACGGCAACAACC 
gca-0004 R GTGTACCCTTGAATCGCAGC 
tcc-0008 F AAAAGACATGACGCCCGAC 
tcc-0008 R ACGAGGAATAATCGCGGAAC 
ag-0006 F TAACCAACACCAGGGGAATG 
ag-0006 R CATCAGTTGTCAGCGAATGG 
ag-0009 F GACTCCATTTACCTGTGGCG 
ag-0009 R TGTGAAGGACACGCAAAGAG 
tcc-0006 F ATCTGGACACCATCCACCAG 
tcc-0006 R GTAGGTGGGAGGGTTCATGC 
ac-0001 F CACCACACCGTCGTTCAAG 
ac-0001 R CGTAAGTTGGTGGAGATGGG 
ggc-0001F GATACCAAGGTGGCCAAGG 
ggc-0001R CACGTTGGGAGTGTCGAAG 
caa-0002 F TCTGCAGAGATCCCGTTACC 
caa-0002 R ATCCATCACATGACGCACAC 
ac-0007 F TGCTCGCAAGACATAAAACG 
ac-0007 R CTCTTAGCATTGGTCGGTGG 
ZtAvrSt6-F TTCCACACTTCTTTCCACAACTCC 
ZtAvrSt6-R CATGCAATGGAGGTATGTATGGG 
ZtAvrStb6-F1 GTACACTTGTTTAGAGGTAATCCTTC 
ZtAvrStb6-R1 GTCGTCGTCGTCGCAATTGATAA 
Q- ZtAvrSt6-F TTCCAGGACGGGCAATATC 
Q- ZtAvrSt6-R AGCCACAACCAAGAATGACC 
Mt-SSR-F CTCAGTTCAAGTCTGAGTGC 
Mt-SSR-R GACGCACGCATTTCCACTCTA 
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Supplementary Table 8. Natural and agricultural systems for Leonard’s model and EEP 

model 

 Leonard’s model EEP model 

Natural 

system 

𝑛𝑛𝑖𝑖+1

= 𝑛𝑛𝑖𝑖(1 − 𝑘𝑘)
𝑞𝑞𝑖𝑖2 + 𝑛𝑛𝑖𝑖((1 − 𝑞𝑞𝑖𝑖2) − 𝑘𝑘) 

 

𝑝𝑝𝑖𝑖+1 =
𝑝𝑝𝑖𝑖[1−𝑑𝑑−𝑛𝑛𝑖𝑖𝑐𝑐(1−𝑘𝑘)]

1−𝑐𝑐+𝑛𝑛𝑖𝑖𝑘𝑘𝑐𝑐+(1−𝑞𝑞𝑖𝑖2)[𝑐𝑐−𝑑𝑑−𝑛𝑛𝑖𝑖𝑐𝑐]
  

𝑛𝑛𝑖𝑖+1 =
(1−𝑞𝑞𝑖𝑖2)(1−𝑘𝑘)𝑛𝑛𝑖𝑖[

𝜎𝜎+(1−𝑘𝑘−𝜎𝜎)𝑛𝑛𝑖𝑖
2𝜎𝜎+(1−𝑘𝑘−2𝜎𝜎)𝑛𝑛𝑖𝑖

]+𝑞𝑞𝑖𝑖2(1−𝑘𝑘)𝑛𝑛𝑖𝑖
𝑞𝑞𝑖𝑖2+𝑛𝑛𝑖𝑖((1−𝑞𝑞𝑖𝑖2)−𝑘𝑘)

  

 

𝑝𝑝𝑖𝑖+1 =
𝑝𝑝𝑖𝑖[1 − 𝑑𝑑 − 𝑛𝑛𝑖𝑖𝑐𝑐(1 − 𝑘𝑘)]

1 − 𝑐𝑐 + 𝑛𝑛𝑖𝑖𝑘𝑘𝑐𝑐 + (1 − 𝑞𝑞𝑖𝑖2)[𝑐𝑐 − 𝑑𝑑 − 𝑛𝑛𝑖𝑖𝑐𝑐]
 

Agricultural 

system 

 

𝑛𝑛𝑖𝑖+1 =
𝑛𝑛𝑖𝑖(1 − 𝑘𝑘)

𝑞𝑞2 + 𝑛𝑛𝑖𝑖((1 − 𝑞𝑞2) − 𝑘𝑘) 

 

𝑞𝑞𝑖𝑖+1 = 𝑞𝑞𝑖𝑖 = 𝑞𝑞 

 

𝑛𝑛𝑖𝑖+1 =
(1−𝑞𝑞2)(1−𝑘𝑘)𝑛𝑛𝑖𝑖[

𝜎𝜎+(1−𝑘𝑘−𝜎𝜎)𝑛𝑛𝑖𝑖
2𝜎𝜎+(1−𝑘𝑘−2𝜎𝜎)𝑛𝑛𝑖𝑖

]+𝑞𝑞2(1−𝑘𝑘)𝑛𝑛𝑖𝑖
𝑞𝑞2+𝑛𝑛𝑖𝑖((1−𝑞𝑞2)−𝑘𝑘)

  

 

𝑞𝑞𝑖𝑖+1 = 𝑞𝑞𝑖𝑖 = 𝑞𝑞 
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Abstract 

Durum wheat varieties are notoriously susceptible to Zymoseptoria tritici (Z. tritici), the 

septoria tritici blotch (STB) fungus. This might be one of the reasons why research into the Z. 

tritici - wheat pathosystem has almost entirely focused on bread wheat. The identified Stb 

resistance genes in bread wheat, however, do not protect durum wheats from STB, due to the 

pathogenic dichotomy of Z. tritici to tetraploid and hexaploid wheat germplasm. Thus far, no 

Stb genes have been identified or mapped in durum wheat. Here, we describe the broad efficacy 

of resistance to STB in the tetraploid emmer wheat accession PI41025 to a panel of 31 diverse 

Z. tritici isolates originating from durum wheat. A recombinant inbred population was 

developed by crossing PI41025 with the susceptible durum wheat cv. Ben. The phenotyping of 

this population resulted in the identification and mapping of the first resistance gene in 

tetraploid wheat. We designated this gene as Stb22q, which is located on chromosome 3AL. A 

minor QTL on chromosome 5A provides partial resistance to one of the used Z. tritici isolates. 

Despite its efficacy, Stb22q does not protect PI41025 from necrosis development, a 

phenomenon that is commonly observed in durum wheats, but remains to be elucidated. 

Nonetheless, Stb22q is a valuable resource for STB resistance breeding in durum wheat.  

 

Key words: Emmer wheat, durum wheat, Zymoseptoria tritici, Stb22q, resistance gene 
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Introduction 

Wheat is a staple food throughout the ages and has been crucial for the development of 

mankind (Faris 2014; Tadesse et al. 2016) and was first cultivated about 12,000 years ago in 

the Fertile Crescent, where emmer wheat (T. turgidum ssp. dicoccum) was domesticated from 

its wild ancestor Triticum turgidum ssp. dicoccoïdes (or wild emmer) (Ren et al. 2013). 

Although, we lack accurate archaeological records (Nesbitt and Samuel 1998; Zeder et al. 2006; 

Zohary et al. 2012), it is likely that the transition from the hunter-gatherer lifestyle to primitive 

forms of agriculture were accompanied by the selection and cultivation of altered populations 

of wild grasses into domesticated varieties of wheat, which were characterized by anatomical 

and morphological changes oriented towards new environments  (Charmet 2011; Stukenbrock 

et al. 2006). The major morphological features that drove wheat domestication were the 

mutations in three major genes during wheat evolution that ultimately generated fully 

domesticated wheats with non-brittle rachis preventing shattering and allowing farmers to 

harvest entire heads. These genes are the Br, Tg and q genes which confer brittle rachis, 

tenacious glume, and a hulled seed, respectively (Avni et al. 2017; Dubcovsky and Dvorak 

2007). In addition, ongoing selection also resulted in larger and more plump seeds, loss of seed 

dormancy and improved grain quality, which resulted in of the transition of cultivated emmer 

wheat into fully-domesticated landraces of durum wheat (Faris 2014).  

The first free-threshing tetraploid wheats occurred between 8,000 - 9,000 BC in the 

Damascus basin in Southern Syria. Durum wheat first appeared in Can Hassan III, Turkey 

6.200-7500 years ago, and disseminated later in the eastern Mediterranean, replaced emmer 

wheat and developed into the major cultivated form of allotetraploid wheat by the second 

millennium BC (Dvorak et al. 2011; Ren et al. 2013). The geographical expansion of durum 

wheat intimately followed human migration  (Baloch et al. 2017). It was initially introduced to 

Europe and North Africa during the Neolithic period, but remained most preferred in the 

western Mediterranean (Zapata et al. 2004). By the end of the 15th century, durum wheat spread 

out in Europe after the replacement of the staple emmer in Ancient Egypt by durum wheat 

during the Hellenistic Period  (Moragues et al. 2007; Ren et al. 2013);  and from there to the 

‘new world’ when Europeans touched the shores of the Americas across the Atlantic in 1492 

(Capparelli et al. 2005) .  
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Hereafter, many durum wheat-derived dishes developed and became a trade mark of the 

Mediterranean diet. Nevertheless, dishes such as “pasta” and “couscous” were most likely 

introduced to the Mediterranean. A common hypothesis is that Marco Polo brought noodles or 

noodle recipes to Italy from China in the 13th century, where it developed into pasta.  However, 

pasta was already gaining popularity in other areas of Italy during the 13th century, making it 

very unlikely that Marco Polo introduced these dishes to Italy (Sher 2015). Cous-cous is a staple 

in the North African “Maghreb region “where it was the ideal food for nomadic tribes. Charles 

de Clairambault, a naval commissioner from Brittany, reported  a Moroccan delicacy in a letter 

dated January 12, 1699, but the traveler Jean-Jacques Bouchard described already in a letter 

from Toulon, Provence, France, in 1630 a “certain kind of pasta which is made of little grains 

like rice, and which puffs up considerably when cooked” (Wright 1999).  

Nowadays, durum wheat accounts for 5% of the cultivated wheat acreage, mainly 

concentrated in the marginal areas of Mediterranean region, the Norther Great Plains of the 

U.S., Southern Europe, and North Africa, and more recently in Southern Asia  (Baloch et al. 

2017; Faris 2014) . It plays a key role in traditional farming practices and is a staple food and 

the basis for many typical dishes in the Mediterranean region, which represents approximately 

75% of the global durum wheat production area  (Zapata et al. 2004). Despite its limited 

geographical distribution when compared to the hexaploid bread wheat, which represents 95% 

of the global wheat acreage (Shewry 2009), durum wheat has provided a range of sub-species 

that were widely cultivated across the globe for thousands of years, and is therefore considered 

to be a major contributor to the current wheat diversity (Feuillet et al. 2008; Newton et al. 2010). 

Nonetheless, as in many other crops, domestication and intensive selection have reduced the 

genetic diversity of durum wheat. Emmer wheat and durum landraces became almost extinct 

due to the introduction and wide adoption of semi-dwarf so-called ‘elite’ germplasm during the 

Green Revolution (Serrão et al. 2016). Albeit the Green Revolution, which occurred in the 20th 

century at the mid-1960s (Borlaug 2002; Hedden 2003), greatly contributed to an increase in 

wheat productivity and mitigation of hunger for millions of people, the trade-offs of reduced 

diversity and genetic uniformity of the most productive contemporary well-adapted durum 

cultivars cannot be neglected (Serrão et al. 2016). The bottle-neck of ‘genetic erosion’ was 

addressed in several studies (Autrique et al. 1996; Maccaferri et al. 2005; Soleimani et al. 2002), 

which demonstrated that successful modern wheat varieties usually originate from a limited 
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number of ancestors (Serrão et al. 2016). This has contributed significantly to the vulnerability 

of durum wheat to abiotic and biotic threats  (Newton et al. 2010). 

Fungal diseases are among the most frequent biotic constraints to durum wheat 

production. Coalescence analyses suggest that Zymoseptoria tritici (Desm.) Quaedvlieg & 

Crous (formerly Mycosphaerella graminicola [Fuckel] J. Schröt. in Cohn) has a relatively 

recent origin that overlaps with the known domestication of wheat in the Fertile Crescent  

(Stukenbrock et al. 2006), and emerged as a host-specialized wheat pathogen (Stukenbrock and 

McDonald 2008) during the domestication of wheat (McDonald and Mundt 2016; Torriani et 

al. 2011). Zymoseptoria tritici is currently globally distributed and causes septoria tritici blotch 

(STB) on wheat  (O’Driscoll et al. 2014). The first STB epidemic occurred in North Africa in 

1968-1969 and coincided with the introduction of semi-dwarf wheat cultivars and the intensive 

use of fertilizers (Brown et al. 2015). These epidemics raised international awareness of the 

threat of STB as Z. tritici is omnipresent throughout the temperate regions (Fones and Gurr 

2015). Under conducive conditions, STB may reduce yields by 35 to 50% (Ponomarenko et al. 

2011) and disease management mostly has relied on fungicide applications combined with 

sustainable agricultural practices (Omrane et al. 2015). However, fungicide efficacy regularly 

fails or continuously drops (Cools and Fraaije 2008; Torriani et al. 2009; Torriani et al. 2015), 

as a result of the high adaptability of Z. tritici populations (Goodwin et al. 2011; Stukenbrock 

et al. 2011). Therefore, breeding for resistance to Z.  tritici is the most sustainable alternative to 

manage STB.  

Thus far, 21 Stb resistance genes have been identified  (Brown et al. 2015), but none 

have been identified in durum wheat. The emphasis of research into the Z. tritici – wheat 

relationship has been dominated by bread wheat, despite the high and overall susceptibility of 

durum wheats. Therefore, breeding for resistance to Z. tritici in durum wheat is hampered by a 

major lack of information, which is largely due to the biological phenomenon that Z. tritici 

populations show a remarkable pathogenic dichotomy to either bread wheat or durum wheat  

(Ware 2006). This nullifies the applicability of results derived from bread wheat research to 

durum wheat research and breeding. Hence, efforts to characterize the Z. tritici - durum wheat 

pathosystem are important and urgently required (Brown et al. 2015; Gharbi et al. 2008). 

Recently, a few Tunisian landraces with resistance to STB were identified  (Ferjaoui et al. 2015; 

Ferjaoui et al. 2011) and the screening of contemporary Tunisian and Italian durum wheat 

cultivars resulted in the characterization of partial resistance to STB (Berraies et al. 2014; 
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pasta was already gaining popularity in other areas of Italy during the 13th century, making it 

very unlikely that Marco Polo introduced these dishes to Italy (Sher 2015). Cous-cous is a staple 

in the North African “Maghreb region “where it was the ideal food for nomadic tribes. Charles 

de Clairambault, a naval commissioner from Brittany, reported  a Moroccan delicacy in a letter 

dated January 12, 1699, but the traveler Jean-Jacques Bouchard described already in a letter 

from Toulon, Provence, France, in 1630 a “certain kind of pasta which is made of little grains 

like rice, and which puffs up considerably when cooked” (Wright 1999).  

Nowadays, durum wheat accounts for 5% of the cultivated wheat acreage, mainly 

concentrated in the marginal areas of Mediterranean region, the Norther Great Plains of the 

U.S., Southern Europe, and North Africa, and more recently in Southern Asia  (Baloch et al. 

2017; Faris 2014) . It plays a key role in traditional farming practices and is a staple food and 

the basis for many typical dishes in the Mediterranean region, which represents approximately 

75% of the global durum wheat production area  (Zapata et al. 2004). Despite its limited 

geographical distribution when compared to the hexaploid bread wheat, which represents 95% 

of the global wheat acreage (Shewry 2009), durum wheat has provided a range of sub-species 

that were widely cultivated across the globe for thousands of years, and is therefore considered 

to be a major contributor to the current wheat diversity (Feuillet et al. 2008; Newton et al. 2010). 

Nonetheless, as in many other crops, domestication and intensive selection have reduced the 

genetic diversity of durum wheat. Emmer wheat and durum landraces became almost extinct 

due to the introduction and wide adoption of semi-dwarf so-called ‘elite’ germplasm during the 

Green Revolution (Serrão et al. 2016). Albeit the Green Revolution, which occurred in the 20th 

century at the mid-1960s (Borlaug 2002; Hedden 2003), greatly contributed to an increase in 

wheat productivity and mitigation of hunger for millions of people, the trade-offs of reduced 

diversity and genetic uniformity of the most productive contemporary well-adapted durum 

cultivars cannot be neglected (Serrão et al. 2016). The bottle-neck of ‘genetic erosion’ was 

addressed in several studies (Autrique et al. 1996; Maccaferri et al. 2005; Soleimani et al. 2002), 

which demonstrated that successful modern wheat varieties usually originate from a limited 
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number of ancestors (Serrão et al. 2016). This has contributed significantly to the vulnerability 

of durum wheat to abiotic and biotic threats  (Newton et al. 2010). 

Fungal diseases are among the most frequent biotic constraints to durum wheat 

production. Coalescence analyses suggest that Zymoseptoria tritici (Desm.) Quaedvlieg & 

Crous (formerly Mycosphaerella graminicola [Fuckel] J. Schröt. in Cohn) has a relatively 

recent origin that overlaps with the known domestication of wheat in the Fertile Crescent  

(Stukenbrock et al. 2006), and emerged as a host-specialized wheat pathogen (Stukenbrock and 

McDonald 2008) during the domestication of wheat (McDonald and Mundt 2016; Torriani et 

al. 2011). Zymoseptoria tritici is currently globally distributed and causes septoria tritici blotch 

(STB) on wheat  (O’Driscoll et al. 2014). The first STB epidemic occurred in North Africa in 

1968-1969 and coincided with the introduction of semi-dwarf wheat cultivars and the intensive 

use of fertilizers (Brown et al. 2015). These epidemics raised international awareness of the 

threat of STB as Z. tritici is omnipresent throughout the temperate regions (Fones and Gurr 

2015). Under conducive conditions, STB may reduce yields by 35 to 50% (Ponomarenko et al. 

2011) and disease management mostly has relied on fungicide applications combined with 

sustainable agricultural practices (Omrane et al. 2015). However, fungicide efficacy regularly 

fails or continuously drops (Cools and Fraaije 2008; Torriani et al. 2009; Torriani et al. 2015), 

as a result of the high adaptability of Z. tritici populations (Goodwin et al. 2011; Stukenbrock 

et al. 2011). Therefore, breeding for resistance to Z.  tritici is the most sustainable alternative to 

manage STB.  

Thus far, 21 Stb resistance genes have been identified  (Brown et al. 2015), but none 

have been identified in durum wheat. The emphasis of research into the Z. tritici – wheat 

relationship has been dominated by bread wheat, despite the high and overall susceptibility of 

durum wheats. Therefore, breeding for resistance to Z. tritici in durum wheat is hampered by a 

major lack of information, which is largely due to the biological phenomenon that Z. tritici 

populations show a remarkable pathogenic dichotomy to either bread wheat or durum wheat  

(Ware 2006). This nullifies the applicability of results derived from bread wheat research to 

durum wheat research and breeding. Hence, efforts to characterize the Z. tritici - durum wheat 

pathosystem are important and urgently required (Brown et al. 2015; Gharbi et al. 2008). 

Recently, a few Tunisian landraces with resistance to STB were identified  (Ferjaoui et al. 2015; 

Ferjaoui et al. 2011) and the screening of contemporary Tunisian and Italian durum wheat 

cultivars resulted in the characterization of partial resistance to STB (Berraies et al. 2014; 
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Gharbi et al. 2000). In bread wheat breeding, valuable genes for resistance have been identified 

and deployed that originate from wild ancestors  (Mujeeb-Kazi et al. 1996; Tabib Ghaffary et 

al. 2012; Yang et al. 2009). For instance, the Stb5 gene was identified in a synthetic hexaploid 

derived from T. turgidum ssp. dicoccoïdes and Ae. tauschii  (Arraiano et al. 2001),  and Stb16q 

was identified in the synthetic hexaploid M3 (W-7976) and has a wide efficacy to over 100 

different Z. tritici pathotypes (Makhdoomi et al. 2015; Mehrabi et al. 2015). Here, we identified 

broad resistance to Z. tritici isolates from durum wheat in the emmer accession PI41025 and 

mapped the responsible genes by screening recombinant inbred populations from crosses with 

the commercial durum wheat cv. Ben with a range of isolates. This is the first report of a major 

QTL for resistance to durum wheat-derived Z. tritici isolates and an important starting point to 

improve the understanding of STB disease management in an under-investigated, important, 

but largely neglected crop. 

Materials and Methods  

Plant and fungal materials, and experimental conditions 

The cultivated emmer wheat accession PI41025 was collected near Samara, Russia in 

1909, and it is characterized by a moderate resistance to Fusarium head blight (FHB), caused 

by Gibberella zeae (Schweinty) Petch anamorph Fusarium graminearum Schwabe) (Oliver et 

al. 2008) and by an adult susceptibility to stripe rust as described in the U.S. National Plant 

Germplasm System. The modern durum wheat cv. Ben (PI596557) 

(https://npgsweb.arsgrin.gov/gringlobal/accessiondetail.aspx?id=1105105) is an amber variety 

developed in North Dakota and was released in 1996. In addition to its high yield potential, cv. 

Ben is characterized by its resistance to most races of wheat stem rust (caused by Puccinia 

graminis Pers.), a good level of resistance to tan spot (caused by Pyrenophora tritici-repentis) 

and a moderate level of resistance to FHB (Elias and Miller 1998). Seeds of PI41025 and ‘Ben’ 

were provided by the NDSU durum breeding program in Fargo, North Dakota, and the USDA-

ARS National Small Grains Collection (NSGC) in Aberdeen, Idaho, respectively. We 

developed a recombinant inbred population (RIL) by crossing cv. Ben with PI41025 as 

described in (Faris et al. 2014; Zhang et al. 2014). The study of the Z. tritici resistance 

inheritance in the BP025 population was performed using the F6 RILs.  
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 With slight modifications due to the origin of the materials, we followed similar 

protocols and used the same materials for plant management, inoculum production and 

inoculations as described in chapter 4  (Aouini et al. 2017).   

Experimental design, data collection and QTL analyses 

As no predisposed information was available on the resistance of the PI41025 and cv. 

Ben to Z. tritici, we used a diverse set of 31 Z. tritici isolates for the initial screening of the 

parents of the BP025 population (experiment 1, three replicates, Table 1). We then reduced the 

screening panel to the six most differentiating Z. tritici isolates in a single screen of the 193 

RILs (experiment 2, one replication, Table 1), and subsequently to the two isolates (IPO91009 

and 2B123), which showed the highest logarithm of the odds (LOD) values in the preliminary 

QTL analysis for an additional screening (experiment 3, two replicates, Table 1).  

Seedlings of the 193 BP025 RILs were tested following a split plot design with trays as 

whole plots. Individual pots were the experimental units and they were randomly arranged for 

each isolate/replicate combination on separate parallel greenhouse tables. The parents PI41025 

and cv. Ben were included in all replicates as checks.  

Seedling disease severities were evaluated by assessing the quantitative (%) presence of 

necrosis (N) and pycnidia (P) on the primary inoculated leaves at 15, 18 and 21 days post-

inoculation (dpi), which enabled the calculations of the Area Under the Disease Progress Curve 

(AUDPC) for quantitative analyses of temporal differences in disease progress (Madden et al. 

2007).  

The Fisher’s unprotected Least Significant Difference (LSD) test was used to determine 

significant differences between means of the parents at a probability of P=0.05. LSD-values 

were determined and applied to the table of means. The mixed models were analyzed using  the 

restricted maximum likelihood REML procedure in GenStat (Searle et al. 1992). Fixed effects 

were tested by computing approximate F-tests following (Kenward and Roger 1997) and were 

used to test for main effects of isolate and line and their  interaction.  In case a significant line 

by isolate interaction was determined, the agglomerative hierarchical clustering procedure 

(Corsten and Denis 1990) implemented in the XLstat was used for identifying simultaneously 

groups of isolates and groups of lines in the two way table of isolate by line predicted means, 

such that interaction is due to interaction between those groups. A normality test for distribution 

of the pycnidia residuals was also performed using GenStat. The homogeneity of error variances 

among replications was checked by inspecting the error plot and the equal variance plot. As 
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ARS National Small Grains Collection (NSGC) in Aberdeen, Idaho, respectively. We 

developed a recombinant inbred population (RIL) by crossing cv. Ben with PI41025 as 

described in (Faris et al. 2014; Zhang et al. 2014). The study of the Z. tritici resistance 

inheritance in the BP025 population was performed using the F6 RILs.  
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among replications was checked by inspecting the error plot and the equal variance plot. As 



Chapter 3

114

Chapter 3                                                                     Emmer wheat source of STB resistance 
 
 
 
error variances were homogeneous among replications, the scores of each replicate were used 

to calculate the overall mean per Z. tritici isolate for each RIL. Mean values were subsequently 

used for QTL analyses. 

QTL analyses were performed using two datasets: (i) The first replicate of the BP025 

RILs screen and (ii) the mean values of two Z. tritici isolates of the first, second, and the third 

replicates of the RILs screen. QTL analysis was performed using a high-density genetic map 

comprised of 2,461 SNP, 128 SSR, and four EST–STS markers spanning a genetic distance of 

2,444.4 cM with an average marker density in the whole genome of 0.94 cM between each 

marker  (Faris et al. 2014). Multiple interval mapping (MIM) was used to identify significant 

associations using the software program QGenev.4.3 (Joehanes and Nelson 2008). A 

permutation test with 1,000 permutations was performed in order to determine the critical LOD 

threshold at the P = 0.05 level of probability to be 3.3.  
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Table 1. Thirty-One Zymoseptoria tritici isolates that were derived from durum wheat in the 

Mediterranean basin and were used to phenotype the cultivated emmer wheat accession 

PI41025 and the durum wheat cv. Ben as well as a recombinant inbred population derived 

from a cross between these tetraploid wheats. 
     Experiment  
Region  Isolate ID Country   Location Year 1 2 3  
Middle-East IPO91004 Syria Lattakia 1991 +    
 IPO95004 Syria Lattakia 1995 +    
 IPO95005 Syria Lattakia 1995 +    
 IPO86022 Turkey Altinova 1986 +    
         

North Africa IPO92042 Algeria  Oum 
Bouachi 1992 + + 

 
 

 
IPO95042 Algeria  Menzel el 

abtal 1995 + 
  

 

 
IPO95052 Algeria  Menzel el 

abtal 1995 + + 
 

 

 IPO95053 Algeria  Berrahal 1995 +    

 IPO07001 Tunisia  Bejá 2007 +    

 IIB123 Tunisia  Bejá 2005 + + +  

 Tun1 Tunisia Qued bagrat - + +   

 Tun6 Tunisia Sidi Nsir - +    

 IPO91009 Tunisia Bejá 1991 + + +  

 IPO91012 Tunisia  Sidi Nsir 1991 +    

 IPO91016 Tunisia  Bejá 1991 +    

 IPO91018 Morocco Jenica Shaim 1991 + +   

 IPO91020 Morocco Doukkala 1991 +    
         
Europe IPO92003 Portugal - 1992 +    

 
IPO13001 Italy Emilia 

Romagna 2013 + 
  

 

 IPO13010 Italy Bologna  2013 +    

 IPO13013 Italy Bologna  2013 +    

 IPO13014 Italy Bologna  2013 +    

 IPO13015 Italy Bologna  2013 +    
 IPO13018 Italy Sicily 2013 +    
 IPO13022 Italy Sicily 2013 +    
 IPO13024 Italy Sicily 2013 +    
 IPO13025 Italy Sicily 2013 +    
 IPO13057 Italy Toscani  2013 +    
 IPO13058 Italy Toscani  2013 +    
 IPO13059 Italy Toscani  2013 +    
 IPO13061 Italy Toscani  2013 +    
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Results 

Resistance to Zymoseptoria tritici in the parents of the BP025 population  

To understand the efficacy of STB resistance in cv. Ben and PI41025, we screened these 

accessions with 31 Z. tritici isolates originating from durum wheat in the Mediterranean basin. 

The selected isolates grew successfully under laboratory conditions, resulting in optimal 

inoculum quality, and after application and incubation the disease developed as expected. 

Necrosis development at 21 dpi was 100% for all Z. tritici isolates (not shown), but pycnidia 

development differed significantly (Table 2), and a subsequent analysis of the mean variances 

indicates significant host/isolate interactions (Table 3, Figure S1). Overall, PI41025 was not 

significantly different from 0P for the far majority of isolates in the Z. tritici panel, except for 

isolates IIB123 and the IPO91004, where it developed an intermediate response (significantly 

different from 0P<actual score<maxP). The scores of cv. Ben were not significantly different 

from maxP for nearly all isolates, except for Z. tritici isolate IPO13058, which is avirulent on 

both accessions (Table 2). 

BP025 RILs screen and pycnidia distribution on the BP025 population. 

The first RIL screen was conducted on a single replicate using six Z. tritici isolates 

(Table 1, Figure 1). Disease developed well but was not normally distributed and the scores 

indicated negative and positive transgressive segregation, as some RILs were either more 

susceptible than cv. Ben, or more resistant than PI41025, respectively (Figure 1). The BP025 

population means for disease parameter P ranged between 25.49% and 46.52%, with the lowest 

and the highest values prompted by Z. tritici isolates IPO95052 and IPO91009, respectively 

(Figure 1). Eventually, we determined that over 50 % (N=105) of the screened BP025 RILs 

exceeded the susceptibility of cv. Ben with Z. tritici isolate IPO91009, whereas 102 RILs were 

more resistant than PI41025 with isolate IIB123. Therefore, we used these strains to conduct 

second and third replicate screening of the BP025 RIL population. Error variances were 

homogeneous across replications and, hence, average scores across the replicates could be used 

for the QTL analyses (not shown). Analysis of mean variances of the BP025 RILs with the 

IPO91009 and IIB123 Z. tritici isolates showed a significant difference between the isolates, 

indicating that the observed variation in the data is accounted for by the diverging isolates’ 

pathogenicity (Table 4). 
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Table 3. Results of REML analysis of  pycnidia (P) seedling data of the cv.Ben and PI41025 accession 
inoculated with 31 Zymoseptoria tritici isolates 

Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 

isolate 1610.63 30 53.69 124.0  <0.001 

accession 11036.73 1 11036.73 124.0  <0.001 

Isolate x accession 1306.96 30 43.57 124.0  <0.001 

Table 4. Results of REML analysis of  pycnidia (P) seedling data of the BP025 population RILs 
inoculated with the IPO91009 and IIB123 Zymoseptoria tritici isolates 

Fixed term 
Wald 

statistic n.d.f. F statistic d.d.f. F pr 

Isolate 34.46 1 34.46 772.0  <0.001 

RIL 276.30 192 1.44 772.0  <0.001 

Isolate X RIL 102.60 192 0.53 772.0 1.000 
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Figure 1. Distribution of the percent of the leaf area covered by pycnidia (x-axis) for the PB025 recombinants 

inbred lines (y-axis) for six Zymoseptoria tritici isolates in the prescreening (A panels) and the average of three 

replicates with two isolates (B panels). 
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QTL mapping of resistance to Zymoseptoria tritici in the BP025 population 

QTL analysis revealed three genomic regions associated with resistance to Z. tritici in 

the BP025 population, and these three regions were located on chromosomes 3A, 5A, and 6A. 

The QTL identified on chromosome 6A was significantly associated with necrosis development 

at 14 dpi only, but as all RILs scored 100N at 21dpi we did not consider it any further (not 

shown).  

The QTL on chromosome 3A (LOD range 4.4-18; explained variance between 14-29%) 

was located in the distal region of the long arm, and resistance effects at this locus were derived 

from PI41025. This QTL was significantly associated with STB caused by all isolates, and it 

peaked at position 177.4 cM between the two SNP markers IWA7812 and IWA3949 for isolates 

IPO91009, IPO91018, IPO92042, IPO95052 and IIB123, and at 175.8 cM for isolate Tun1 

(Flanking markers: IWA4905-IWA3031). This locus represents a new genomic location 

associated with Z. tritici seedling resistance, and it is the first major QTL identified in tetraploid 

wheat. Therefore, we propose to designate this QTL as Stb22q (Table 5; Figure 2).  

In addition, one minor QTL was identified on the long arm of chromosome 5A, associated with 

resistance to isolates IPO91009 and IIB123 (LOD range 5.5 – 5.9, explained variance range -

8%). Resistance effects for this QTL were derived from Ben, and it peaked at position 169.9 

cM between the two SNP markers IWA1942 and IWA5154 (Table 5; Figure 2). This genomic 

region has not previously been associated with a Z. tritici resistance, therefore it is a novel 

location conferring partial resistance to Z. tritici in durum wheat. 
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Discussion 

It is remarkable that durum wheat, despite its importance as a staple crop in North Africa  

and importance for pasta delicacies around the world has gained such little attention with regard 

to disease resistance (Prat et al. 2014). Septoria tritici blotch is no exception. Virtually all 

progress in this research area has entirely focused on the interaction between the causal agent 

Z. tritici and bread wheat (Brown et al. 2015). Throughout the history of plant breeding, 

expanding the genetic diversity by introgression of genes from wild ancestors of agricultural 

crops has been crucial to generate superior genotypes (Blanca et al. 2015; McCouch 2004). 

Wheat domestication has particularly benefited from polyploidization (Dubcovsky and Dvorak 

2007), and deploying the rich diversity from wild ancestors has substantially contributed to 

managing biotic threats, particularly the cereal rusts (Edae et al. 2016; Gyani et al. 2017; Zhang 

et al. 2016). Such resources have been used in direct hybridizations or by making these gene 

pools available through developed synthetic hexaploid wheats (Dreisigacker et al. 2008; Yang 

et al. 2009). Also for Z. tritici, the most efficacious Stb genes were derived from wild wheat 

relatives through synthetic hexaploids, such as Stb16  (Tabib Ghaffary et al. 2012),  which is 

already used in commercial bread wheat cultivars (Dalvand et al. 2016). Other broad-spectrum 

resources in T. monococcum and various Aegilops species have been identified, but not 

commercially deployed (Jing et al. 2008). Hence, the strategy to enhance disease resistance in 

durum wheat by exploring wild ancestors is valid and entails the identification of new sources 

of quantitative resistance and major genes in durum wheat landraces and progenitors. Oliver et 

al.(2008) reported moderate FHB resistance in the emmer accession PI41025, and  Zhang et al. 

(2014) mapped the underlying QTLs on chromosomes 3A and 5A. 

Here, we used the same accession to investigate resistance to Z. tritici. In contrast to the 

durum cv. Ben, which was susceptible to all tested Z. tritici isolates, PI 41025 showed resistance 

to all but one of these Z. tritici isolates (pycnidia level not significantly different from 0P). Only 

isolate IPO91004 from Syria induced pycnidia production, but still at a moderate level (25%). 

Clearly, this could be explained by an adaptation of the Z. tritici population from the Middle-

East to domesticated emmer wheats, which emerged in the same geographical area as the 

pathogen  (Stukenbrock et al. 2006). Subsequent analyses of the RIL population identified the 

underlying QTL that we designate Stb22 on chromosome arm 3AL, which provides broad-

spectrum resistance to a plethora of Z. tritici isolates and is closely linked to the threshability 

QTL ‘QFt.fcu-3A’(Faris et al. 2014). Chromosome 3AS has been associated with STB 

resistance and carries the recently cloned Stb6 (Saintenac 2017) that is omnipresent in European 
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wheat varieties (Chartrain et al. 2005b), as well as  StbSm3, which is derived from the hexaploid 

landrace Salamouni and confers resistance to two Canadian Z. tritici isolates (Cuthbert 2011). 

The minor QTL on chromosome 5A is distinct from Stb17 and provides resistance to isolates 

IPO91009 and IIB123, hence has a narrow efficacy. Recent studies have shown that pyramiding 

such QTLs also leads to acceptable levels of STB resistance (Aouini et al. 2017; Berraies et al. 

2014). 

 Contrary to the Z. tritici – bread wheat pathosystem, interactions with durum wheat and 

isolates retrieved from this species almost exclusively occur for pycnidia development (P), but 

not for necrosis (N) (Aouini et al. 2017; Kema et al. 1996a)  . Similarly, the broad efficacy of 

Stb22q is demonstrated for P, but not for N. We do not know why durum wheats exhibit 

extensive necrosis as a result of Z. tritici infections, but the current data also demonstrate that 

N and P are under different genetic control  (Kema et al. 1996b). The recent cloning of AvrStb6  

(Kema et al. 2017; Zhong et al. 2017); will likely help to resolve more mechanistic details of Z. 

tritici pathogenesis in wheat (Kettles et al. 2017), as it also unveiled the exclusive paternal 

parenthood phenomenon that contributes to overall durability of resistance to STB.  

 Despite the demonstrated value of Stb22q, subsequent field trials and adult plant tests 

will be conducted to verify its broad efficacy in the adult plant stage. Most Stb genes were 

identified in seedling assays (Brown et al. 2015), but a few comparative seedling/adult mapping 

studies showed specificity for growth stage, such as Stb17 (Chartrain et al. 2004; Ghaffary et 

al. 2012; Ghaffary et al. 2011); and recently also in durum wheat (Aouini et al. 2017). 

Therefore, field trials may reveal more insight into the specificity of Stb22q to Z. tritici isolates. 

It is also possible that PI41025 carries additional resistance factors for specific adult plant 

resistance, which could contribute to its resilience under STB selection pressure (Gieco et al. 

2004). The observation that Z. tritici isolate IPO91004 caused moderate disease severity 

suggests that the commercial deployment of Stb22q should be done in conjunction with other 

STB resistance QTLs to protect its efficacy. This can be done most efficiently with the aid of 

molecular markers, which are available for most STB resistance genes and QTLs. Gene 

pyramiding has proven to be an efficient approach in plant breeding to manage the damaging 

effects of diverse and rapidly evolving pathogens, including Z. tritici and stem rust caused by 

Puccinia graminis  (Mundt 2014). Examples of broadened resistance to STB are available in 

well characterized germplasm such as in the bread wheat differentials ‘KK4500’ and ‘TE11’ 

(Chartrain et al. 2005a; Chartrain et al. 2004). We recently showed that co-occurring QTLs with 

limited efficacy also occur in durum wheat landraces, likely explaining their renowned 
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resilience to STB  (Aouini et al. 2017). The identification of Stb22, therefore, is an important 

discovery, which may facilitate the release of new STB resistant durum wheat varieties. 
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Abstract 

Septoria tritici blotch (STB), caused by the Dothideomycete Zymoseptoria tritici, is the 

most important disease of bread wheat in Europe, and a very important biotic threat to durum 

wheat in the entire Mediterranean Basin. The majority of durum wheat cultivars are very 

susceptible to Z. tritici, but most efforts in understanding the pathosystem have focused on the 

Z. tritici – bread wheat interaction. Hence, research in durum wheat has been limited and no 

resistance genes to Z. tritici were identified until now. Here, we have identified resistance to a 

wide array of Z. tritici isolates in the Tunisian durum wheat landrace ‘Agili 39’. In subsequent 

analyses, recombinant inbred populations were developed and tested under greenhouse 

conditions at seedling stage with eight Z. tritici isolates and for five years under field conditions 

with three Z. tritici isolates. Mapping of quantitative trait loci (QTL) resulted in the 

identification of one major QTL at chromosomes 2BL (highest LOD 17.7, explained variance 

38%) for seedling resistance to pycnidia development and effective against five Z. tritici isolates 

out of the eight used isolates and one for adult plant resistance on chromosome 2BS (highest 

LOD 25.7, explained variance 42.%) that has been effective against the three used Z. tritici 

isolates at the field trials. In addition, we identified two minor QTLs on chromosomes 1A and 

7AS (highest LODs 7.5 and 5, and explained variances of 18 % and 14%, respectively) that 

were specific to three and two Z. tritici isolates, respectively, as well as a QTL that contributed 

to STB susceptibility on chromosome 2A (LOD 6.0, explained variance 13%) derived from the 

susceptible parent cv. Khiar and detected with two Z. tritici isolates. We provide evidence that 

the broad efficacy of the resistance to STB in ‘Agili 39’ is due to a natural pyramiding of these 

QTLs. Some of the identified QTLs, such as the one on chromosome 2BL, map on the same 

positions as Stb9, which was identified with Z. tritici isolates from bread wheat. However, its 

efficacy to Z. tritici isolates from durum wheat is much better than to isolates from bread wheat, 

which illustrates the dichotomy of pathogenicity in Z. tritici for thesetetraploid durum and 

hexaploid bread wheat hosts.  

 

Key Words: durum wheat-, landraces, Zymoseptoria tritici, major quantitative trait loci, gene 

efficacy, susceptibility locus, gene pyramiding.
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Introduction 
Wheat has been, for centuries, the prime food and feed crop for humanity (Arzani and 

Ashraf 2017) and currently – after rice and maize (FAOSTAT 2017)- supplies 20% of the 

human calorie intake, and is thereby a major component for global food security (Shiferaw et 

al. 2013). The genus Triticum L. comprises several wheat species with various ploidy levels, 

but global wheat production is almost entirely based on bread wheat, T. aestivum L. em. Thell. 

(2n=6x = 42, AABBDD), and durum wheat, T. turgidum L. var durum (2n=4x = 28, AABB), 

also known as macaroni wheat (Charmet 2011). Durum wheat accounts for about 8% to the 

global wheat production, and its cultivation is concentrated in latitudes ranging from 55°N to 

40°S (Palamarchuk 2005; Royo et al. 2014), corresponding mostly to the Mediterranean Basin, 

the North American Great Plains, India and the former USSR  (Royo et al. 2014). Northern 

Africa has been the cradle of wheat production for centuries and was the bread basket for the 

Roman Empire (Fabricant 1998; Oliveira et al. 2012) with locations such as Dougga in Tunisia, 

as exquisite trading zones for wheat and other commodities until the late 500’s AD (Davis 

2007). Nowadays, the Maghreb zone of North Africa is still the major durum wheat production 

region covering 17 million ha, which is a basis for many traditional dishes such as couscous, 

but also for the popular pastas. In Tunisia, durum wheat approximates 49% of the total annual 

cereal area, with an average yield of 1.6 tons/ha between 2000 and 2012  (Nefzaoui et al. 2012; 

Rastoin and Benabderrazik 2014). However, ongoing climate events, such as the regular, but 

infrequent El Niño episodes significantly affect global wheat production and particularly durum 

wheat production due to abiotic stress conditions - mostly drought - and the emergence of more 

aggressive pathogens (McDonald and Mundt 2016). Throughout the Maghreb region, the foliar 

blight septoria tritici blotch (STB), caused by the hemibiotroph Zymoseptoria tritici (Desm.) 

Quaedvlieg & Crous (formerly Mycosphaerella graminicola (Fuckel) J. Schröt. in Cohn), is 

among the major threats, particularly since durum wheat isoverall very susceptible to this 

disease. Estimated yield losses amount up to 385 kg.ha-1 in 2008-2009, which is more than 30% 

in most regions (Berraies et al. 2014). Recent research increased the general understanding of 

the Z. tritici epidemiology in the Maghreb. Hamada (2014) reported the occurrence of the 

teleomorph of the fungus in Tunisia, despite the arid conditions in the region, and Meamiche 

Neddaf et al. (2017) determined an equal distribution of both mating types in Algeria, indicating 

regular sexual reproduction, which likely contributes to the vast genetic diversity in this region. 

The use of fungicides has been slowly adopted by durum wheat growers as compared to bread 

wheat producers in Europe, and the first occurrences of strobilurin resistance have been reported 

in Tunisia and Algeria (Boukef et al. 2012; Meamiche Neddaf et al. 2017).  
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Roman Empire (Fabricant 1998; Oliveira et al. 2012) with locations such as Dougga in Tunisia, 
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region covering 17 million ha, which is a basis for many traditional dishes such as couscous, 
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aggressive pathogens (McDonald and Mundt 2016). Throughout the Maghreb region, the foliar 

blight septoria tritici blotch (STB), caused by the hemibiotroph Zymoseptoria tritici (Desm.) 

Quaedvlieg & Crous (formerly Mycosphaerella graminicola (Fuckel) J. Schröt. in Cohn), is 

among the major threats, particularly since durum wheat isoverall very susceptible to this 

disease. Estimated yield losses amount up to 385 kg.ha-1 in 2008-2009, which is more than 30% 

in most regions (Berraies et al. 2014). Recent research increased the general understanding of 

the Z. tritici epidemiology in the Maghreb. Hamada (2014) reported the occurrence of the 

teleomorph of the fungus in Tunisia, despite the arid conditions in the region, and Meamiche 

Neddaf et al. (2017) determined an equal distribution of both mating types in Algeria, indicating 

regular sexual reproduction, which likely contributes to the vast genetic diversity in this region. 

The use of fungicides has been slowly adopted by durum wheat growers as compared to bread 

wheat producers in Europe, and the first occurrences of strobilurin resistance have been reported 

in Tunisia and Algeria (Boukef et al. 2012; Meamiche Neddaf et al. 2017).  
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One of the best management strategies for virtually all plant diseases is the generation 

of new excelling disease resistant germplasm through plant breeding. The huge genetic 

diversity in wheat and its ancestors has provided new varieties for almost a century (Charmet 

2011). Even, re-emerging and upcoming threats such as stem rust caused by the strain Ug99 

(Bajgain et al. 2016; Chen et al. 2015; Saintenac et al. 2013), have been managed during the 

last decade by releasing new germplasm that turned the potential havoc into a manageable 

problem (Singh et al. 2014; Singh et al. 2011). Before the upcoming of plant breeding, improved 

crops frequently resulted from farmers’ selections of outperforming genotypes in terms of yield 

stability. Often, such so-called landraces contained a variety of closely related lines that 

quenched biotic threats. During the onset of breeding, these landraces were often the starting 

material for targeted efforts to improve for instance disease resistance (Kingsbury 2009; Lopes 

et al. 2015; Mondal et al. 2016). In this study, we have surveyed resistance to Z. tritici in a suite 

of Tunisian landraces, which could be the basis for durum wheat improvement.  

Studies into the genetic basis of resistance to Z. tritici have exclusively been addressed 

in bread wheat. Until now, up to 21 septoria tritici blotch (Stb) resistance genes have been 

identified and mapped (Brown et al. 2015). However, due to the apparent dichotomy in natural 

Z. tritici populations for either bread wheat or durum wheat (Kema et al. 1996a; Kema et al. 

1996b; Kema and van Silfhout 1997), the presence of these mapped Stb genes in durum wheat 

cannot be determined using well characterized Z. tritici strains originating from bread wheat. 

Thusfar, the substantial progress in understanding the wheat-Z. tritici pathosystem (Arraiano 

and Brown 2017; Kema et al. 2000; Kema et al. 2017; Tabib Ghaffary 2011; Zhong et al. 2017) 

is entirely based on the Z. tritici – bread wheat pathosystem. Therefore, resistance breeding to 

Z. tritici in durum wheat has hardly progressed over the last 25 years. This affects many small 

growers who produce this wheat as a staple crop in an area that is severely struck by septoria 

tritici blotch. We have embarked on increasing the understanding of the Z. tritici - durum wheat 

pathosystem. Here, we have first screened for diversity for pathogenicity in the pathogen and 

resistance in Tunisian landraces. Subsequently, we developed a mapping population between 

the resistant landrace ‘Agili39’ and the susceptible modern cv. Khiar to identify the genetic 

basis of resistance to Z.tritici and identify and map the involved genes under greenhouse and 

field conditions.  
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Materials and Methods  

Experimental design, Plants management and growth conditions  

Eleven durum wheat accessions (Table 1) and a bi-parental recombinant inbred 

population derived from a single seed descent cross between the Tunisian landrace ‘Agili 39’ 

and the commercial cv. Khiar, were screened for resistance to septoria tritici leaf blotch. We 

performed a total of three experiments (Table 2). The first experiment was repeated three times 

and comprised the screening of the 11 Tunisian landraces with the panel of 20 Z. tritici isolates 

to understand overall resistance patterns to STB and to select potential parents for further 

detailed genetic analyses. In addition, we used these data to select eight differential Z. tritici 

isolates for the genetic analysis of the Agili 39/Khiar population, which was performed thrice 

in the second experiment. Finally, in the third experiment we tested the Agili 39/Khiar 

population under field conditions in Oued-Bejá, located in North-Western Tunisia, over a 

period of five years, 2011 – 2014 and 2016, with three different Z. tritici isolates. This region 

belongs to the sub-humid bioclimatic zone of Tunisia with an average rainfall ranging from 500 

to 850 mm and a daily mean temperature between 10-28°C, and is particularly known as a hot 

spot for STB (Ferjaoui et al. 2015). 

For the seedling assay of the RIL population, we followed a split plot design with trays 

as whole plots. Individual pots were the experimental units and were randomly arranged in the 

trays for each isolate/replicate combination on separate parallel greenhouse tables. Several 

checks were included with both parents ‘Agili 39’ and cv. Khiar (Table1). Seedlings of the 

durum wheat accessions were linearly grown, five seeds per pot, in VQB 7x7x8 cm plastic pots 

(TEKU®, Lohne, Germany), whereas 157 F6 recombinant inbred lines (RILs) of the “Agili 

39”/Khiar mapping population were planted in round peat pots (Jiffy, Moerdijk, Netherlands), 

also five seeds per pot, using a special mixture for growing seeds (Substraat Zaai) provided by 

the greenhouse facility Unifarm of Wageningen University and Research (WUR), The 

Netherlands. Pre-inoculation plant development was allowed for 10 days in a greenhouse 

adjusted at a temperature of 18/16°C (day/night rhythm) and relative humidity (RH) of 70%. 

Post-inoculation conditions were set at a temperature of 22/±2°C and RH of 95%. Light 

intensity (son-T Agro 400 W lamps) and day length (16/8 h light/dark) were similar during pre- 

and post- inoculation conditions. Ten days after inoculation, seedlings were trimmed for the 

second and subsequent leaves to enable sufficient light on the inoculated primary leaves for 
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also five seeds per pot, using a special mixture for growing seeds (Substraat Zaai) provided by 
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Netherlands. Pre-inoculation plant development was allowed for 10 days in a greenhouse 

adjusted at a temperature of 18/16°C (day/night rhythm) and relative humidity (RH) of 70%. 

Post-inoculation conditions were set at a temperature of 22/±2°C and RH of 95%. Light 
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appropriate disease development. Fertilizer (Sporumix PG®, Rotterdam, Netherlands; 0.5 g.l1) 

was applied to maintain plant condition. 

For the field trials, we used an augmented randomized complete block design. Five 

blocks with 1.5 m width and spaced 1.5 m were linearly drilled with 30 to 35 RILs per block. 

Each RIL was sown as one row per spike of 1.5 m length and spaced 25 cm. We randomized 

all RILs, the parents and four additional checks modern durum wheat cvs. Karim, Nasr, Maali 

and Salim, important in Tunisian breeding programs and showing different levels of 

susceptibility in each block. For the 2016 field trial we used a complete random block design 

with three replicates with both parents ‘Agili 39’ and ‘Khiar’ as checks. 

Zymoseptoria tritici isolates and inoculation procedures 

Initial screening of durum wheat germplasm was performed with 20 Z. tritici isolates 

(Table 2). Finally, eight isolates were selected to study the inheritance of resistance to STB in 

the RIL population in the seedling stage and three Z. tritici isolates were individually used under 

field conditions. Pre-cultures of each isolate were prepared in an autoclaved 100 ml Erlenmeyer 

flask containing 50 ml yeast glucose (YG) liquid medium (30 g glucose, 10 g yeast per liter 

demineralized water). The flasks were inoculated with frozen isolate samples that were directly 

taken from the Z. tritici isolate collection at WUR that is maintained at -80°C and subsequently 

placed in an incubated rotary shaker (Innova 4430, New Brunswick Scientific, USA) set at 125 

rpm and 15°C for 5–7 days. These pre-cultures were then used to inoculate two 1L Erlenmeyer 

flasks containing 500 ml YG media per isolate that were incubated under the aforementioned 

conditions to provide sufficient inoculum for the seedling inoculation assays at growth stage 

(GS) 11 (Zadoks et al. 1974). Spores were collected after overnight settling in static cultures, 

concentrated by decanting the supernatant medium, adjusted to 1.107 spores.ml-1 in a total 

volume of 40 ml for a set of 18 plastic pots or 24 Jiffy® pots and supplemented with two drops 

of Tween 20 surfactant (MERCK®, Nottingham, UK). Inoculations were conducted by spraying 

the inoculum over the seedlings that were placed in an inoculation cabinet on a rotary table, 

adjusted at 15 rpm, which is equipped with interchangeable atomizers and a water cleaning 

device to avoid cross- contamination. Infected plants were incubated in transparent plastic bags 

for 48 h under 100% RH in the aforementioned greenhouse.  

Field inoculations were conducted with three isolates (Tun1, Tun6 and IIB123) across 

the F6-F10 RILs generations. We used Z. tritici isolate Tun6 during three years to screen the 
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F6 (N=164), the F8 (N=158) and the F9 (N=157) RILs in 2011, 2013 and 2014, respectively 

and isolate Tun1 to screen the F7 (N=158) in 2012 and the F9 (N= 157) in 2013. In 2016 we 

screened the F10 (N=155) with Z. tritici isolate IIB123. In all field trials and across all 

generations, plants were inoculated twice at the three leaf stage and at stem elongation GS 37, 

(Zadoks et al. 1974), adjusted to 107 spores/ml  of the corresponding Z. tritici isolates using a 

CO2-pressurized knapsack sprayer with a 1 m hand-held boom till run-off. 

Table 1. Nine Tunisian durum wheat landraces and two cultivars that were investigated 

for resistance to Zymoseptoria tritici. 

Name Habitus Source Empiric evaluation of septoria 

tritici blotch under field 

conditions  

Agili 37 landrace INAT2 Resistant 

Agili 38 landrace INAT Resistant 

Agili 39 (P)1 landrace INAT Resistant 

Agili 41 landrace INAT Resistant 

Azizi 27 landrace INAT Resistant 

Derbessi 12 landrace INAT Resistant 

Jneh Khotifa 85 landrace INAT Resistant 

Mahmoudi 101 landrace INAT Resistant 

Sbei 99 landrace INAT Resistant 

Khiar (P)1 cultivar INRAT3 Susceptible 

Karim cultivar INRAT Susceptible 

1Parents of the recombinant inbred population. 
2National Institute of Agronomy-Tunis, Tunisia.  
3National Institute of Agronomical Research-Tunis, Tunisia 
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Table 2. Origin of 20 Zymoseptoria tritici isolates that were isolated from durum wheat in the 
Mediterranean Basin and that were used for phenotyping in the seedling and adult plant stage. 

     Experiment 

Region  Isolate ID Country   Location Year 1 2 3 

Middle-East IPO91004 Syria Lattakia 1991 + +  

 IPO95002 Syria Lattakia 1995 +   

 IPO95003 Syria Lattakia 1995 +   

North Africa IPO91009 Tunisia Bejá 1991 + +  

 IIIB-123 Tunisia Bejá 2005 + + + 

 Tun1 Tunisia Qued bagrat - + + + 

 Tun6 Tunisia Sidi Nsir - + + + 

 IPO91019 Morocco Jenica Shaim 1991 + +  

 IPO95052 Algeria Berrahal 1995 + +  

Europe IPO92003 Portugal - 1992 + +  

 IPO13001 Italy Emilia Romagna 2013 +   

 IPO13003 Italy Emilia Romagna 2013 +   

 IPO13006 Italy Emilia Romagna 2013 +   

 IPO13007 Italy Emilia Romagna 2013 +   

 IPO13008 Italy Emilia Romagna 2013 +   

 IPO13018 Italy Sicily 2013 +   

 IPO13019 Italy Sicily 2013 +   

 IPO13023 Italy Sicily 2013 +   

 IPO13024 Italy Sicily 2013 +   

 IPO13056 Italy Tuscany 2013 +   

 

Data collection and analyses 

In the seedling assays, disease severities were evaluated at 15, 18 and 21 days post-

inoculation (dpi). These multiple observations enabled Area Under the Disease Progress Curve 

(AUDPC) calculations for quantitative analyses of temporal differences in disease progress. 
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We estimated the quantitative presence of necrosis (N) and pycnidia (P) on the inoculated 

seedling leaves in percentages. AUDPC calculations for seedling scores followed the 

trapezoidal method, which approximates the time variable and calculates the average disease 

intensity between each pair of adjacent time points (Madden et al. 2007). For the field 

evaluations, we scored pycnidial classes at 28 days post the second inoculation (Zadoks scale 

51) that were later transformed to P values (0 = no pycnidia, 1=12%, 2=25%, 3=50%, 4=75% 

and 5=87%)  (Adhikari et al. 2004a; Eyal and Brown 1976).  

The RIL N and P scores were transformed to the logit scale for statistical analysis and 

subsequently a residual maximum likelihood (REML) variance component analysis, using 

Genstat (13th edition,) (VSN International 2013) was performed (Alvey et al. 1982; Searle et 

al. 1992). Significant differences were determined using the least significant difference (LSD) 

of back-transformed N and P values. The data transformations resulted in minor changes 

between observed and processed data to cope with zero N or P scores. Homogeneity of the 

seedling replicates was checked and homogeneous data across replications were subsequently 

averaged and used for the seedling QTL analysis (Chu et al. 2010). However, individual field 

year scores where considered for the field QTL analysis. 

For QTL analyses we used MapQTL® 6.0 (Van Ooijen 2004) for interval mapping (IM) 

for QTL positioning, followed by multiple QTL analysis (MQM) after cofactor selection by 

manually investigating the marker alignment on the linkage groups where the peaks of IM QTLs 

were detected. A permutation test with 1,000 permutations was conducted to determine the 

critical LOD threshold for this mapping population and the QTL profiles were plotted against 

their LOD and drawn using MapChart 2.3 (Voorrips 2002). 

Genotyping by sequencing 

Genomic DNA was extracted from fresh leaves using a modified CTAB 

(cetyltrimethylammonium bromide) method and quantified using NanoDrop 8000 

spectrophotometer V 2.1.0. Whole-genome profiling was performed using DArT-Seq™ 

technology by Diversity Arrays Technology Pty Ltd, Australia, as described by Kilian et al. 

(2012) and Raman et al. (2014). In brief, the DArT-Seq™ technology was optimized by 

selecting the most appropriate complexity reduction method for wheat (PstI-MseI restriction 

enzymes). DNA fragments digested with restriction enzymes were ligated with PstI adaptors 

and unique barcodes, and then amplified following PCR. Amplicons were pooled and 
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sequenced in a 96-multiplex on a HiSeq2000 (Illumina, USA) resulting in a total of 5,891 GBS 

SNP markers, which subsequently filtered according to their polymorphism between the 

parents ‘Agili 39’ and ‘Khiar’ and then used to generated a genetic linkage map using JoinMap 

® 4 software (Van Ooijen 2006). 

 

Results  

Phenotyping of RILs, landraces and modern cultivars. 

The selected 20 Z. tritici isolates grew successfully under the laboratory conditions 

enabling appropriate inoculum production and phenotyping assays. None of the tested durum 

landraces and cultivars was resistant to the entire suite of Z. tritici isolates (Table 3), but the 

landraces showed a broader efficacy compared to the cvs. Khiar and Karim, resulting in a 

significant isolate by cultivar/landrace interaction, indicating specific gene action (Table S1; 

Figure 1). Interestingly, for necrosis values were high and ranged between 72 and 97 % and 

hence these interactions were not observed (Figure 1). The parents of the developed 

recombinant inbred population, ‘Agili 39’ and cv. Khiar showed highly significantly different 

P values (ranging between 6-96%, respectively) and henceforward we selected a set of eight Z. 

tritici isolates that discriminated between ‘Agili39’ and cv. Khiar for subsequent phenotyping 

of the developed F6 RILs population (Table 2).  

The seedling screening of the RILs resulted in non-symmetric frequency distributions. 

Overall, a skewed distribution was recorded, indicating substantial transgressive segregation 

towards susceptibility (Figure 2). Subsequent REML analyses revealed no significant 

difference between replicates and the RIL-by-isolate interaction term was large and highly 

significant, indicating that the observed variation in the data is accounted for by host and 

pathogen genes conditioning specificity (Table 4).  
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Table 4. Results of REML analysis of necrosis (N) and pycnidia (P) seedling data from the 
Agili39/Khiar recombinant inbred lines (RILs).  

Fixed terms Wald statistic  df1  Wald/d.f.  Chi-square 
probability 

 N P    N P  N P 

Replicate  5.14 8.63  2  2.57 4.31  0.077 0.013 

Isolates 5.14 12.02  7  0.86 2.00  0.522 0.061 

RILs  1772.97 3314.45  157  11.29 21.11  <0.001 <0.001 

Isolates x RILs 2087.60 3169.60  942  2.22 3.36  <0.001 <0.001 
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Figure 1. Scatter plot of necrosis and pycnidia of the durum wheat landraces and cultivars after 

inoculation with 20 Zymoseptoria tritici isolates. The three clusters show significantly different 

groups; green = not significantly different from 0P, yellow = significantly different from 0P and 

maxP and red = not significantly different from maxP. 
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During all field trials, STB developed well after the inoculations, but only pycnidia 

coverage was assessed. Cultivar Khiar showed high disease severities throughout the trials (rate 

4.1-5 for Tun6 and IIB123, and 3.1-4 for Tun1), whereas ‘Agili 39’ remained free of disease 

(0P) (Figure 3). The analysis of variance revealed no significant variation between blocks, 

indicating no variation in the micro-environment and the homogeneity of the field inoculation 

and - similar to the seedling assays – the interaction component was significant, indicating also 

specificity in the adult plant stage (Table 5). The F6-Tun6 data correlated well with subsequent 

F8 tests, which was also observed by comparing the F9 and F10 RILs after inoculation with 

isolates Tun6 and IIB123, respectively, indicating stable performance of the entries in the field 

assays across the years (Table S2). The comparative single isolate 2016 trial showed significant 

main effects for the tested RILs, indicating important differences in genetic make-up resulting 

in varying levels of STB severity (data not shown). 
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Figure 3. Frequency distributions of disease severity, assessed as percentage pycnidia and processed into 

pycnidia formation classes, in adult plants of the F6-F10 recombinant inbred lines of Agili39/Khiar with 

three Zymoseptoria tritici under field conditions. 

Chapter 4                                                                                                 The Landrace Agili39 
 
 

 

Table 5.  Analysis of variance for adult plant disease severity scores in the F6-F9 Agili39/Khiar 

recombinant inbred lines (RILs) that were inoculated with Zymoseptoria tritici isolates Tun1 or Tun6 

Z. tritici isolates. 

Source of variation df1 MS2 P-value 

Block 4 0.37333 0,408 

Check 5 10.74141 <0.0001 

Isolate 1 34.06406 <0.0001 
RILs 153 5.33980 <0.0001 

Isolate. RILs  153 3.04266 <0.0001 

Error 593 0.37443  
R² = 98%.  
 1df = Degree of freedom 
 2MS = Mean of squares 

 

Identification of quantitative trait loci for resistance to Zymoseptoria tritici in the Agili39/Khiar 

population at the seedling and adult stages 

A genetic linkage map carrying 2,425 GBS markers with an average length of 88.10 cM 

and 30 linkage groups that represent the 14 chromosomes of durum wheat was used to map 

resistance/susceptibility to Z. tritici. The permutation test was used to define a significant 

threshold LOD value at 3.5, hence only QTLs with a LOD ≥ 3.5 were considered, which 

excluded all detected QTLs with isolate IPO92003. In total, we identified five significant QTLs 

on four chromosomes. None of these QTLs was mapped with every tested Z. tritici isolate, 

which underscores specificity of the interaction between Z. tritici and durum wheat. Two QTLs 

were identified on the long and short arm of chromosome 2B (Table 6; Figure 4). QTL-2BL 

was effective in both the seedling stage - particularly against isolates Tun6, IIB123, IPO91009, 

IPO95052 and IPO91004, but not for isolates Tun1, IPO91018 and IPO92003 - and adult plant 

stage, where it provided resistance to Z. tritici isolates Tun6 and IIB-123, but not to Tun1. 

Overall, the 2B-QTLs had the widest efficacy, the highest LOD values and the largest explained 

variance, particularly to Tun6 (LOD 32.57; explained variance 57.6%) (Table 6, Figure 4). 

Finally, three additional QTLs with lower LODs and explained variances were mapped on 

chromosomes 1A and 7AS and showed specificity for Z. tritici isolates Tun1, Tun6, IPO91018 

and IPO95052 (Table 6). All abovementioned QTLs were derived from ‘Agili 39’, but a minor 

QTL on chromosome 2A, was contributed by cv. Khiar, and significantly increased disease 
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in varying levels of STB severity (data not shown). 
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Figure 3. Frequency distributions of disease severity, assessed as percentage pycnidia and processed into 

pycnidia formation classes, in adult plants of the F6-F10 recombinant inbred lines of Agili39/Khiar with 

three Zymoseptoria tritici under field conditions. 
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Table 5.  Analysis of variance for adult plant disease severity scores in the F6-F9 Agili39/Khiar 

recombinant inbred lines (RILs) that were inoculated with Zymoseptoria tritici isolates Tun1 or Tun6 

Z. tritici isolates. 

Source of variation df1 MS2 P-value 

Block 4 0.37333 0,408 

Check 5 10.74141 <0.0001 

Isolate 1 34.06406 <0.0001 
RILs 153 5.33980 <0.0001 

Isolate. RILs  153 3.04266 <0.0001 

Error 593 0.37443  
R² = 98%.  
 1df = Degree of freedom 
 2MS = Mean of squares 
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threshold LOD value at 3.5, hence only QTLs with a LOD ≥ 3.5 were considered, which 

excluded all detected QTLs with isolate IPO92003. In total, we identified five significant QTLs 

on four chromosomes. None of these QTLs was mapped with every tested Z. tritici isolate, 

which underscores specificity of the interaction between Z. tritici and durum wheat. Two QTLs 

were identified on the long and short arm of chromosome 2B (Table 6; Figure 4). QTL-2BL 

was effective in both the seedling stage - particularly against isolates Tun6, IIB123, IPO91009, 

IPO95052 and IPO91004, but not for isolates Tun1, IPO91018 and IPO92003 - and adult plant 

stage, where it provided resistance to Z. tritici isolates Tun6 and IIB-123, but not to Tun1. 

Overall, the 2B-QTLs had the widest efficacy, the highest LOD values and the largest explained 

variance, particularly to Tun6 (LOD 32.57; explained variance 57.6%) (Table 6, Figure 4). 

Finally, three additional QTLs with lower LODs and explained variances were mapped on 

chromosomes 1A and 7AS and showed specificity for Z. tritici isolates Tun1, Tun6, IPO91018 

and IPO95052 (Table 6). All abovementioned QTLs were derived from ‘Agili 39’, but a minor 

QTL on chromosome 2A, was contributed by cv. Khiar, and significantly increased disease 
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Isolate. RILs  153 3.04266 <0.0001 

Error 593 0.37443  
R² = 98%.  
 1df = Degree of freedom 
 2MS = Mean of squares 

 

Identification of quantitative trait loci for resistance to Zymoseptoria tritici in the Agili39/Khiar 

population at the seedling and adult stages 

A genetic linkage map carrying 2,425 GBS markers with an average length of 88.10 cM 

and 30 linkage groups that represent the 14 chromosomes of durum wheat was used to map 

resistance/susceptibility to Z. tritici. The permutation test was used to define a significant 

threshold LOD value at 3.5, hence only QTLs with a LOD ≥ 3.5 were considered, which 

excluded all detected QTLs with isolate IPO92003. In total, we identified five significant QTLs 

on four chromosomes. None of these QTLs was mapped with every tested Z. tritici isolate, 

which underscores specificity of the interaction between Z. tritici and durum wheat. Two QTLs 

were identified on the long and short arm of chromosome 2B (Table 6; Figure 4). QTL-2BL 

was effective in both the seedling stage - particularly against isolates Tun6, IIB123, IPO91009, 

IPO95052 and IPO91004, but not for isolates Tun1, IPO91018 and IPO92003 - and adult plant 

stage, where it provided resistance to Z. tritici isolates Tun6 and IIB-123, but not to Tun1. 

Overall, the 2B-QTLs had the widest efficacy, the highest LOD values and the largest explained 

variance, particularly to Tun6 (LOD 32.57; explained variance 57.6%) (Table 6, Figure 4). 

Finally, three additional QTLs with lower LODs and explained variances were mapped on 

chromosomes 1A and 7AS and showed specificity for Z. tritici isolates Tun1, Tun6, IPO91018 

and IPO95052 (Table 6). All abovementioned QTLs were derived from ‘Agili 39’, but a minor 

QTL on chromosome 2A, was contributed by cv. Khiar, and significantly increased disease 
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severity (Figures 5 and 6). We also noticed that only QTL-1A and QTL-2BL were effective to 

both N and P, whereas all others were detected for either N or P. The 1A (with IPO91018) and 

7AS QTLs were specifically restricted to N in the seedling stage (Table 6).  

Interactions between QTLs  

Several Z. tritici isolates detected multiple QTLs. With Z. tritici isolate Tun6 we 

identified QTLs on chromosomes 1A, 2A, 2BL and 7AS, with isolate IPO91009 we detected 

QTLs on chromosomes 2A and 2BL and with IPO95052 we found QTLs on chromosomes 2BL 

and 7AS. We selected the three QTLs that were detected for P with isolate Tun6 on 

chromosomes 1A, 2A and 2BL in the seedling stage (Table 6) for two-way and three-way 

interaction tests. RILs lacking the 1A and 2BL markers had an average P score of 61.90%. RILs 

with the 1A QTL marker showed a significantly reduced P score of 21.13% and those with the 

2BL QTL marker had an average P score of 5.76 %. Both QTLs showed a clear additive effect 

as the presence of markers for QTL-1A and QTL-2BL reduced STB severity to a P score of 

2.3%. However, the presence of the marker for QTL-2A always significantly increased the P 

scores, except in the presence of QTL-2BL, showing a dominant effect of reducing disease 

severity (Figure 5). Hence, QTL-2A seems to be associated with a susceptibility locus derived 

from the susceptible modern cv. Khiar.  

Finally, we investigated the three-way interactions between QTLs on chromosomes 1A, 

2A and 2BL by calculating the average P scores of RILs carrying the identified markers for 

these QTLs in the various combinations (Figure 6). Absence of all marker resulted in a P score 

of 55.67%, whereas adding the QTL-2A maker significantly increased disease severity to a P 

score of 69.3%. Individual markers for the QTLs on chromosomes 1A and 2BL as well as their 

combination resulted in a significant disease reduction of P=3.17%. Addition of the QTL-2A 

marker again did not increase disease severity in this case, supporting the abovementioned 

observation that QTL-2BL has a dominant effect over QTL-2A.  

At the adult plant stage, we mapped one QTL on each arm of chromosome 2B with Z. 

tritici isolates Tun6 and IIB-123 and one QTL on chromosome 2BS with isolate Tun1, which 

provides specific partial resistance to this isolate that is overcome by isolate Tun6. Absence of 

the 2BL and 2BS QTLs results in in high P scores for isolates Tun6 and IIB123, respectively 

54.81% and 43% (Figure 7). The average P score of RILs with QTL-2BL is zero for both 

isolates. We could not determine the effect of QTL-2BS separately as no RILs were identified 
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that uniquely carries the associated marker, suggesting that both QTLs are closely linked, likely 

in the proximity of the centromere. Also, here QTL-2BL showed a dominant effect as adding 

the markers for QTL-2BS did not lower disease severity for isolate Tun6, but slightly increased 

the P score for isolate IIB-123 (Figure 7). 
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Discussion 

Cereal diseases threaten food security (Roelfs and Bushnell 2014). Increasing demand 

and changing climatic conditions cause extreme events that strongly affect yield stability 

(Newton et al. 2011; Strange and Scott 2005). Zymoseptoria tritici is a major threat to European 

and Mediterranean bread and durum wheat production (Fones and Gurr 2015). However, the 

emphasis in research has been skewed towards bread wheat (Brown et al. 2015).The complexity 

of mapping resistance genes in durum wheat is twofold; (i) the majority of durum wheat 

varieties is highly susceptible to Z. tritici and (ii) mapping resistance genes requires using 

specific isolates with pathogenicity to durum wheat as the majority of bread wheat derived Z. 

tritici isolates is non-pathogenic on durum wheat. Therefore, we made an effort to investigate 

the genetics of resistance by collecting and using Z. tritici strains from durum growing countries 

after determining that Z. tritici has a typical dichotomy in pathogenicity for either bread or 

durum wheat (Kema et al. 1996a; Ware 2006). Here, we report effective QTLs mapped for 

resistance to STB in durum wheat after exploring diversity for resistance in a suite of Tunisian 

landraces. We then furthered these studies by genetic analyses that revealed five QTL on four 

chromosomes. All data indicated and confirmed significant host x pathogen interactions - both 
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in the seedling and adult plant stages - as determined in earlier studies (Arraiano et al. 2001; 

Kema et al. 1996a; Kema et al. 1996b); and recently proven in the bread wheat – Z. tritici 

pathosystem where both Stb6 and AvrStb6 were cloned (Kema et al. 2017; Zhong et al. 2017).  

Four of the QTL affected disease severity towards specific isolates under seedling and 

adult plant conditions in multiple field trials, but one QTL on chromosome 2A significantly 

contributed to susceptibility and was derived from the modern cv. Khiar. Resistance breeding 

has been associated with removing such alleles (Arraiano and Brown 2016) and hence negative 

selection for the identified marker could help to increase disease resistance as shown in all 

interactions between the resistance QTL on chromosomes 1A, 2BS and 2BL. In addition we 

also determined QTLs that are specific for either the seeding or adult plant stage as well as a 

QTL that was expressed at both stages, similar to other cereal diseases , namely to rust (Hou et 

al. 2015; Lin et al. 2014). Overall, our data contrast the observations and conclusions of Van 

Ginkel and Scharen (1988) who concluded that resistance to Z. tritici in durum wheat is 

explained by additive gene action and general combining ability, thus denying specificity. Since 

the cloning of the first Stb gene and the corresponding avirulence effector, the controversy - see 

also (Johnson 1992) and (Parlevliet 1993) as well as many other studies (Ben M’Barek et al. 

2015; Kema et al. 2000; Mirzadi Gohari et al. 2015; Zhong et al. 2017) - on specificity in the 

Z. tritici – wheat pathosystem has finally ended. 

 The initial screening of the Tunisian landraces showed a remarkable genetic diversity 

for STB resistance. Eight landraces (Agili 37; Agili 38; Agili 39, Sbei99; Derbessi 12, 

Mahmoudi 101, JK85 and Azizi 27) were highly resistant and one landrace showed an 

intermediate response (‘Agili 41’). The different ‘Agili’ landrace accessions reacted differently 

to the deployed Z. tritici isolates, suggesting a different genetic background, which is in accord 

with  Ferjaoui et al. (2015) who hypothesized that the tested ‘Agili’ accessions most likely carry 

different Stb genes. Our data, however, contrast the findings of these authors, which is most 

likely due to the fact that we used different and many more Z. tritici isolates, underscoring the 

specificity in the durum wheat pathosystem (Ghaneie et al. 2012; Kema et al. 1996a; Kema et 

al. 1996b; Medini and Hamza 2008).  

 We eventually selected ‘Agili 39’ for a detailed analysis of the genetic basis of its 

resistance to Z. tritici by crossing it to cv. Khiar, a contemporary high yielding durum wheat 

developed by INRAT (Tunisian National Research Institute of Agronomy) and CIMMYT in 

1992, formerly reported to be susceptible to Z. tritici (Ferjaoui et al. 2015; Ferjaoui et al. 2011; 

Gharbi et al. 2008; Medini et al. 2014). Previously, Ferjaoui et al. (2011) reported a single gene 
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different Stb genes. Our data, however, contrast the findings of these authors, which is most 

likely due to the fact that we used different and many more Z. tritici isolates, underscoring the 

specificity in the durum wheat pathosystem (Ghaneie et al. 2012; Kema et al. 1996a; Kema et 

al. 1996b; Medini and Hamza 2008).  

 We eventually selected ‘Agili 39’ for a detailed analysis of the genetic basis of its 

resistance to Z. tritici by crossing it to cv. Khiar, a contemporary high yielding durum wheat 

developed by INRAT (Tunisian National Research Institute of Agronomy) and CIMMYT in 

1992, formerly reported to be susceptible to Z. tritici (Ferjaoui et al. 2015; Ferjaoui et al. 2011; 

Gharbi et al. 2008; Medini et al. 2014). Previously, Ferjaoui et al. (2011) reported a single gene 
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determining the adult plant resistance in ‘Agili 39’ to Tun6 under field conditions based on F2 

and F3 analyses. Our data do not support that conclusion as we identified two QTLs on the short 

and long arm of chromosome 2B that are required for adult plant resistance. One of these, QTL-

2BL was also expressed at the seedling stage - for both N and P - and is a major determinant of 

resistance to five Z. tritici isolates, including Tun6 with a LOD value of 17.67 and explained 

variance of 38.4, IPO91004 with a LOD of 17.36 and an explained variance of 39.2 and IIB-

123 with a LOD value of 15.93 and explained variance of 37%. The remaining two QTLs for 

seedling resistance on chromosomes 1A and 7AS had lower LOD values, explained the 

observed variance to a lesser extent and were effective for either N or P, except for QTL-1A 

for Tun1. However, it clearly demonstrates that the broad efficacy of the observed STB 

resistance in ‘Agili 39’ is due to several stacked QTLs, both for the seedling as well as the adult 

plant stage, which was also commonly observed in inheritance studies in bread wheat (Brown 

et al. 2015; Ghaffary et al. 2012). Despite the susceptibility of cv. Khiar, transgressive 

segregation towards resistance was also observed for several isolates, which is likely due to the 

absence of the susceptibility QTL on chromosome 2A in some RILs. Recently, (Arraiano and 

Brown 2016) reported three alleles on chromosomes 3A, 6A and 2D that contribute STB 

susceptibility in a suite of cultivars bred and released by the former Plant Breeding Institute 

(PBI, Cambridge, UK) between the mid-1960s and the mid-1980s. Introduction of these alleles 

may be a trade-off from using germplasm to increase yield, rust resistance and eyespot 

resistance in UK wheat breeding programs between the 1950s and 1980s. The overall STB 

susceptibility in durum wheat may also result from such events. Cultivar Khiar was generated 

from a cross between Chen “S” and  Altar 84 – CD 57 005-1Y-2B-5Y-1M-0Y  and was 

successfully introduced to Tunisia because of its high yield potential (Gilchrist et al. 1999; 

Maccaferri et al. 2005).  

 For the four QTLs contributing to resistance, we compared the linked GBS markers 

with the publically available database ‘Ensemble genome’ by aligning them to the reference 

genome of Triticum aestivum 

(http://plants.ensembl.org/Triticum_aestivum/Info/Index?db=core. ) 

A QTL for resistance to Z. tritici was mapped on chromosome 1A  by Goudemand et al.  (2013) 

in the bread wheat Apache/Balance population, which could co-localize with the QTL we 

mapped in the ‘Agili 39’/Khiar population. However, we cannot discern whether the identified 

1A-QTL in the ‘Agili 39’/Khiar population is the same as in the Apache/Balance population, 

as the sequences of the linked markers in the Apache/Balance population are not publicly 
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available. The 7AS-QTL particularly conferred reduced necrosis values to Z. tritici isolates 

IPO95052 and Tun6 and co-localizes with Stb3 that was mapped in the bread wheat cultivar 

Israel 493 (Adhikari et al. 2004b; Goodwin et al. 2015). Also, markers for the chromosome 

2BL QTL co-align with the known major gene Stb9 that was mapped in the French bread wheat 

cv. Courtot (Chartrain et al. 2009). The 2BL-QTL is effective in the seedling and adult plant 

stages, whereas Stb9 in cv. Courtot is mostly ineffective in the seedling stage  (Chartrain et al. 

2009; Goudemand et al. 2013; Tabib Ghaffary 2011). Nevertheless, we conclude that it is likely 

that the 2BL-QTL is identical with Stb9, but acts differently in a tetraploid background. Finally, 

chromosome arm 2BS was also associated with Z. tritici resistance in the mapping populations 

Apache/Balance and FD3/Robigus (Goudemand et al. 2013) for both necrosis and pycnidia 

development in the adult plant stage. However, due to the unavailability of the GBS tag 

sequences, we cannot conclude that the ‘Agili39’/Khiar 2BS-QTL is the same locus that was 

mapped in the aforementioned bread wheat mapping populations.  

Thus, the identified QTLs in ‘Agili 39’ co-align with previously mapped QTLs for STB 

resistance in bread wheat, hence we cannot claim a new Stb gene in ‘Agili 39’. However, we 

clearly have identified the first QTLs conferring resistance to a wide range of Z. tritici isolates 

under artificial inoculation conditions  in seedlings and adult plants, known as field resistance 

(Arraiano et al. 2009; Ghaffary 2011). Thus far, only partial resistance to Z. tritici was reported 

(Berraies et al. 2014; Tuberosa 2014). Here, we derived a QTL from “Agili 39” that provides 

resistance to at least five Z. tritici isolates, but likely more.  

 Pyramiding genes for disease resistance has been an effective strategy in preventing 

boom-and-bust cycles, and is now amenable through marker assisted breeding as a strategy to 

maintain disease resistance durability, such as for wheat stem rust where various resistance gene 

combinations have well controlled the disease since the mid-1950s and more recently to the 

devastating Ug99 race (Mundt 2014; Singh et al. 2011). A concrete illustration for Z. tritici is 

effective resistance to a wide range of isolates in the bread wheat germplasm ‘KK4500’ and 

‘TE11’ which is conferred by stacking several known Stb genes (Chartrain et al. 2005a; 

Chartrain et al. 2005b; Chartrain et al. 2004) and also in other germplasm several QTLs have 

contributed to broad efficacy of resistance (Ghaffary et al. 2011). Our data also confirm that 

stacking QTLs in durum wheat results in broad efficacy of STB resistance. The QTL interaction 

analyses clearly showed the additive effect of most QTLs, which is promising news for durum 

wheat breeding because deciphering ancient broad-based resistance to Z. tritici in a durum 

wheat landrace now indicates that negative selection for the 2A-QTL along with positive 
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determining the adult plant resistance in ‘Agili 39’ to Tun6 under field conditions based on F2 

and F3 analyses. Our data do not support that conclusion as we identified two QTLs on the short 

and long arm of chromosome 2B that are required for adult plant resistance. One of these, QTL-

2BL was also expressed at the seedling stage - for both N and P - and is a major determinant of 

resistance to five Z. tritici isolates, including Tun6 with a LOD value of 17.67 and explained 

variance of 38.4, IPO91004 with a LOD of 17.36 and an explained variance of 39.2 and IIB-

123 with a LOD value of 15.93 and explained variance of 37%. The remaining two QTLs for 

seedling resistance on chromosomes 1A and 7AS had lower LOD values, explained the 

observed variance to a lesser extent and were effective for either N or P, except for QTL-1A 

for Tun1. However, it clearly demonstrates that the broad efficacy of the observed STB 

resistance in ‘Agili 39’ is due to several stacked QTLs, both for the seedling as well as the adult 

plant stage, which was also commonly observed in inheritance studies in bread wheat (Brown 

et al. 2015; Ghaffary et al. 2012). Despite the susceptibility of cv. Khiar, transgressive 

segregation towards resistance was also observed for several isolates, which is likely due to the 

absence of the susceptibility QTL on chromosome 2A in some RILs. Recently, (Arraiano and 

Brown 2016) reported three alleles on chromosomes 3A, 6A and 2D that contribute STB 

susceptibility in a suite of cultivars bred and released by the former Plant Breeding Institute 

(PBI, Cambridge, UK) between the mid-1960s and the mid-1980s. Introduction of these alleles 

may be a trade-off from using germplasm to increase yield, rust resistance and eyespot 

resistance in UK wheat breeding programs between the 1950s and 1980s. The overall STB 

susceptibility in durum wheat may also result from such events. Cultivar Khiar was generated 

from a cross between Chen “S” and  Altar 84 – CD 57 005-1Y-2B-5Y-1M-0Y  and was 

successfully introduced to Tunisia because of its high yield potential (Gilchrist et al. 1999; 

Maccaferri et al. 2005).  

 For the four QTLs contributing to resistance, we compared the linked GBS markers 

with the publically available database ‘Ensemble genome’ by aligning them to the reference 

genome of Triticum aestivum 

(http://plants.ensembl.org/Triticum_aestivum/Info/Index?db=core. ) 

A QTL for resistance to Z. tritici was mapped on chromosome 1A  by Goudemand et al.  (2013) 

in the bread wheat Apache/Balance population, which could co-localize with the QTL we 

mapped in the ‘Agili 39’/Khiar population. However, we cannot discern whether the identified 

1A-QTL in the ‘Agili 39’/Khiar population is the same as in the Apache/Balance population, 

as the sequences of the linked markers in the Apache/Balance population are not publicly 
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available. The 7AS-QTL particularly conferred reduced necrosis values to Z. tritici isolates 

IPO95052 and Tun6 and co-localizes with Stb3 that was mapped in the bread wheat cultivar 

Israel 493 (Adhikari et al. 2004b; Goodwin et al. 2015). Also, markers for the chromosome 

2BL QTL co-align with the known major gene Stb9 that was mapped in the French bread wheat 

cv. Courtot (Chartrain et al. 2009). The 2BL-QTL is effective in the seedling and adult plant 

stages, whereas Stb9 in cv. Courtot is mostly ineffective in the seedling stage  (Chartrain et al. 

2009; Goudemand et al. 2013; Tabib Ghaffary 2011). Nevertheless, we conclude that it is likely 

that the 2BL-QTL is identical with Stb9, but acts differently in a tetraploid background. Finally, 

chromosome arm 2BS was also associated with Z. tritici resistance in the mapping populations 

Apache/Balance and FD3/Robigus (Goudemand et al. 2013) for both necrosis and pycnidia 

development in the adult plant stage. However, due to the unavailability of the GBS tag 

sequences, we cannot conclude that the ‘Agili39’/Khiar 2BS-QTL is the same locus that was 

mapped in the aforementioned bread wheat mapping populations.  

Thus, the identified QTLs in ‘Agili 39’ co-align with previously mapped QTLs for STB 

resistance in bread wheat, hence we cannot claim a new Stb gene in ‘Agili 39’. However, we 

clearly have identified the first QTLs conferring resistance to a wide range of Z. tritici isolates 

under artificial inoculation conditions  in seedlings and adult plants, known as field resistance 

(Arraiano et al. 2009; Ghaffary 2011). Thus far, only partial resistance to Z. tritici was reported 

(Berraies et al. 2014; Tuberosa 2014). Here, we derived a QTL from “Agili 39” that provides 

resistance to at least five Z. tritici isolates, but likely more.  

 Pyramiding genes for disease resistance has been an effective strategy in preventing 

boom-and-bust cycles, and is now amenable through marker assisted breeding as a strategy to 

maintain disease resistance durability, such as for wheat stem rust where various resistance gene 

combinations have well controlled the disease since the mid-1950s and more recently to the 

devastating Ug99 race (Mundt 2014; Singh et al. 2011). A concrete illustration for Z. tritici is 

effective resistance to a wide range of isolates in the bread wheat germplasm ‘KK4500’ and 

‘TE11’ which is conferred by stacking several known Stb genes (Chartrain et al. 2005a; 

Chartrain et al. 2005b; Chartrain et al. 2004) and also in other germplasm several QTLs have 

contributed to broad efficacy of resistance (Ghaffary et al. 2011). Our data also confirm that 

stacking QTLs in durum wheat results in broad efficacy of STB resistance. The QTL interaction 

analyses clearly showed the additive effect of most QTLs, which is promising news for durum 

wheat breeding because deciphering ancient broad-based resistance to Z. tritici in a durum 

wheat landrace now indicates that negative selection for the 2A-QTL along with positive 
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selection for the other markers may result in new high yielding durum wheat cultivars with 

wide resistance to Z. tritici reminiscent of the durable resistance to STB in landraces. Provided 

the overall high susceptibility to STB in modern durum wheat cultivars, our data shed new light 

on disease resistance breeding in durum wheat. 
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wide resistance to Z. tritici reminiscent of the durable resistance to STB in landraces. Provided 

the overall high susceptibility to STB in modern durum wheat cultivars, our data shed new light 

on disease resistance breeding in durum wheat. 
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Table S1. Analysis of variance of pycnidia percent of nine Tunisian durum landraces and two 

modern varieties inoculated with a diverse range of twenty durum derived Zymoseptoria tritici 

isolates 

 
Fixed terms Df Sum Sq Mean Sq F value Pr(>F)  
Isolate 19 54958 2893 97.16 <2e-16 *** 
accessions 10 69442 6944 233.26 <2e-16 *** 
Isolate x accessions 119 69149 581 19.52 <2e-16 *** 
Residuals 221 6579 30    

 

 

 

Table S2. Adult plant correlations of the Agili39/Khiar RILs tested with the Tun6 and IIB123 

Z. tritici isolates under field conditions for five years (2011-2016) 

 

RIL generation 
/Z.tritici isolate / Year F6/Tun6/2011 F8 /Tun6 /2013 F9 /Tun6/-2014 F10/IIB123/ 2016 

F6/Tun6/2011 1       
F8/Tun6/2013 0,8 1   

F9/Tun6/2014 0,8 0,8 1  

F10/IIB123/2016 0,4 0,5 0,5 1 
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Abstract 

Zymoseptoria tritici causes septoria tritici blotch (STB), a primary biotic threat for 

durum wheat production in the Mediterranean Basin, the cradle of durum wheat. Here, we 

report on the dissection of STB resistance in two bi-parental recombinant inbred line (RIL) 

mapping populations derived from crosses between the Italian cultivars Simeto and Levante as 

well as between the premium quality Italian durum cv. Svevo and the DesertDurum® cv. Kofa. 

We assessed the RILs for STB response to four Z. tritici isolates in the greenhouse and under 

field conditions. QTL analysis revealed that STB resistance resulted from the additive effect of 

several loci providing various levels of quantitative resistance. This involved some novel 

genetic regions, including those on chromosomes 6B and 4B. Two QTLs identified in the 

Simeto/Levante population on chromosome 4B conferred resistance to four Z. tritici isolates, 

both in the greenhouse and in field trials. In addition, in the Kofa/Svevo population we 

identified loci mapped closely to known Stb resistance genes such as Stb2 that conferred 

resistance at adult plant and seedling stages. Our study demonstrates that contemporary durum 

wheat cultivars are sources of novel, quantitative and partial resistance alleles that can be 

cumulated by targeted breeding in segregating progenies to enhance STB resistance.  

Key words: durum wheat, recombinant inbred lines, septoria, Zymoseptoria tritici, durable 

resistance, QTL, SNP, Marker-Assisted Selection. 

Introduction 

Food security has always been a major concern in many civilizations. Hence, increasing 

the resilience of staple crops to biotic and abiotic stresses in diverse environments is key to 

enhance food security. Wheat is the third staple crop after rice and maize (FAOSTAT 2017). 

Over 600 million tons of wheat are harvested each year (Shewry 2009), and its global 

production mainly relies on hexaploid bread wheat or Triticum aestivum L. (2n = 6x = 42, 

AABBDD genomes) and tetraploid durum or pasta wheat or T. turgidum L. ssp. durum (2n = 

4x = 28; AABB genomes). In terms of cultivated land, bread wheat occupies approximately 

90% of the global production area, whereas durum wheat (Dixon et al. 2009) covers not more 

than 8%, with an estimated production of 36 million tons (Magallanes-López et al. 2017) of 

which about 35% are produced in North Africa and West Asia, 25% in North America, 30% in 

the EU and 10% in India. Nonetheless, the global durum wheat area does not reflect its 

importance as a staple crop in the Mediterranean Basin, the West Asian and the North African 
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countries, the so-called WANA region, where durum wheat plays a key role in classical farming 

practices and is the basis for many typical dishes such as pasta, couscous and burgul. Even 

though 75 and 50% of the worldwide acreage and production, respectively, are concentrated in 

the Mediterranean Basin, the production of durum wheat has recently expanded to southern and 

Central Asia underlining its importance as a regional staple crop (Baloch et al. 2017). 

Furthermore, durum wheat has a historical legacy for wheat diversity, including a range of sub-

species that were widely cultivated across the globe for thousands of years  (Newton et al. 

2010).  

Regardless of its historical and dietary significance, durum wheat has received far less 

attention compared to the bread wheat from the scientific community (Royo et al. 2007). The 

limited scientific efforts and the so-called ‘genetic erosion’ underlined by several studies 

(Maccaferri et al. 2005; Soleimani et al. 2002) gave rise to a higher vulnerability of durum 

wheat germplasm to the majority of biotic constrains, in particular to fungal diseases such as 

Fusarium head blight and leaf rust (Prat et al. 2017).  

Septoria tritici blotch (STB) caused by the foliar fungal pathogen Zymoseptoria tritici 

(formerly Mycosphaerella graminicola) is no exception and the same case scenario has been 

noticed and reported for the durum wheat-Z. tritici interaction (Brown et al. 2015). This 

devastating fungus has caught the attention of the scientific community after damaging 

epidemics occurred in North Africa between 1968 and 1969, in coincidence with the 

introduction of novel semi-dwarf cultivars and the intensive use of fertilizers (Saari and 

Wilcoxson 1974). Even though precise grain yield losses due to STB are still not precisely 

defined, loss reports have always claimed to range between 35 to 50% under conducive 

conditions (Ponomarenko et al. 2011). Thus far, disease management has largely relied on 

chemical control and more recently on selection of resistant wheat varieties once Stb genes were 

discovered and mapped (Brown et al. 2001; Orton et al. 2011), particularly after elucidating the 

Z. tritici – wheat interaction and the underlying genetics (Kema et al. 1996a; Kema and van 

Silfhout 1997; Orton et al. 2017). However, effectiveness of the chemical control has rapidly 

declined with the frequent and the rapid emergence of fungicide resistance (Cools and Fraaije 

2008; Torriani et al. 2009; Torriani et al. 2015), mainly due to the high adaptability of the Z. 

tritici populations and to its high genome plasticity (Goodwin et al. 2011). Furthermore, the 

accessibility of chemical control is restricted by its high cost for smallholder farmers in less 

developed regions (Altieri 2004; Sahri et al. 2014) and for European growers by new EU 
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Abstract 

Zymoseptoria tritici causes septoria tritici blotch (STB), a primary biotic threat for 

durum wheat production in the Mediterranean Basin, the cradle of durum wheat. Here, we 

report on the dissection of STB resistance in two bi-parental recombinant inbred line (RIL) 

mapping populations derived from crosses between the Italian cultivars Simeto and Levante as 

well as between the premium quality Italian durum cv. Svevo and the DesertDurum® cv. Kofa. 

We assessed the RILs for STB response to four Z. tritici isolates in the greenhouse and under 

field conditions. QTL analysis revealed that STB resistance resulted from the additive effect of 

several loci providing various levels of quantitative resistance. This involved some novel 

genetic regions, including those on chromosomes 6B and 4B. Two QTLs identified in the 

Simeto/Levante population on chromosome 4B conferred resistance to four Z. tritici isolates, 

both in the greenhouse and in field trials. In addition, in the Kofa/Svevo population we 

identified loci mapped closely to known Stb resistance genes such as Stb2 that conferred 

resistance at adult plant and seedling stages. Our study demonstrates that contemporary durum 

wheat cultivars are sources of novel, quantitative and partial resistance alleles that can be 

cumulated by targeted breeding in segregating progenies to enhance STB resistance.  

Key words: durum wheat, recombinant inbred lines, septoria, Zymoseptoria tritici, durable 

resistance, QTL, SNP, Marker-Assisted Selection. 
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countries, the so-called WANA region, where durum wheat plays a key role in classical farming 
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Wilcoxson 1974). Even though precise grain yield losses due to STB are still not precisely 

defined, loss reports have always claimed to range between 35 to 50% under conducive 
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Chapter 5

168

Chapter 5                                                                        Resistance to STB in elite durum wheat  
  
 
regulations restricting fungicide use (Kettles and Kanyuka 2016). Since the increased incidence 

over the years, STB eventually became one of the major wheat diseases in Europe, hence 

breeding for resistance was prioritized and research intensified (Fones and Gurr 2015) leading 

to the identification of 21 major genes (Stb) and to 167 quantitative trait loci (QTLs) associated 

with Z. tritici resistance (Brown et al. 2015). However, most studies that led to the identification 

of major resistance genes and more recently QTLs for partial resistance only targeted bread 

wheat (Brown et al. 2015; Dreisigacker et al. 2015; Mirdita et al. 2015), leaving fewer resources 

for understanding the basis of resistance in durum wheat. The reported dichotomy and 

speciation in the Z. tritici populations (Kema et al. 1996a; Kema and van Silfhout 1997; Ware 

2006) prevented the use of well-defined Z. tritici isolates for gene postulation in durum wheat, 

further limiting resistance breeding in durum wheat. Nonetheless, few efforts to dissect STB 

resistance in contemporary tetraploid wheats and durum landraces showed an abundance of 

partial resistance in modern cultivars (Gharbi et al. 2000; Gharbi et al. 2008; Kidane et al. 2017). 

More recently, the presence of loci for quantitative STB partial resistance has been studied 

using mapping by association in modern durum wheat germplasm (Maccaferri et al. 2010) and 

recombinant inbred line (RIL) populations from the cross between the susceptible high-yielding 

cv. Karim and the moderately resistant cv. Salim (Berraies et al. 2014). Partial resistance to 

STB was also reported in Italian durum wheat germplasm (Tuberosa 2014). The first major 

QTL for STB resistance in durum wheat was identified in the Tunisian landrace ‘Agili’ 

(Ferjaoui et al. 2015; Ferjaoui et al. 2011), which was recently mapped on chromosome 2B by 

Ferjaoui et al. (Personnal communication).  

The current study focused on analyzing STB resistance in well-adapted and high-

yielding contemporary durum wheat cvs. Simeto, Levante, Kofa and Svevo using a range of Z. 

tritici isolates in greenhouse assays as well as in field trials.  We show that the inheritance of 

resistance to STB in contemporary durum wheat germplasm is complex and results from the 

additive effects of multiple Z. tritici strain-specific major and minor effect QTLs.  

Materials and Methods  

Plant materials and Zymoseptoria tritici isolates  

Two bi-parental mapping populations were obtained from crosses between the durum 

wheat cvs. Simeto and Levante and between cvs. Kofa and Svevo (Table 1), all considered as 

modern, semi-dwarf and highly productive cultivars. Cultivar Simeto (pedigree Capeiti 

8/Valnova) was released by “Stazione Sperimentale di Granicoltura per la Sicilia”, Caltagirone, 
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Italy in 1974. This cultivar has been derived from the local Mediterranean germplasm (North 

African and Syrian origin), with Valnova parent considered as representative of the innovation 

based on the first successful introduction of the Rht-B1b semi-dwarf allele from the early 

Mexican germplasm (Vallega and Zitelli 1974). Simeto has been the Italian reference for the 

first generation of semi-dwarf, early-heading genotypes and is characterized by high end-use 

quality (semolina) and a well-defined adaptability to Central-Southern Italy and Mediterranean 

countries, such as Spain and Greece. Levante is a modern high-yielding Italian durum wheat 

bred from the North American germplasm introduction, renowned for its excellent agronomic 

features, pasta quality and SBCMV resistance (Maccaferri et al. 2012; Rubies-Autonell et al. 

2009). The third Italian cv. Svevo was derived from a cross between a CIMMYT line (pedigree 

rok/fg//stil/3/dur1/4/sapi/ teal//hui) related to the widely utilized Yavaros79 genetic background 

(Jori/Anhinga//Flamingo) and cv. Zenit, originating from a cross between Italian and American 

accessions (Valriccardo/Vic). Desert Durum® cv. Kofa originates from the United States and 

was derived from a population based on multiple parents (dicoccum alpha pop-85 S-1) mainly 

related to US and CIMMYT germplasm, with the inclusion of emmer accessions, and was 

released by Western Plant Breeders (Arizona, US). Both cvs. Kofa and Svevo are well adapted 

to the Mediterranean climate and can be classified as early-flowering genotypes in such 

conditions (Maccaferri et al. 2008). The Simeto/Levante population was developed by single 

seed descent (SSD) up to the F5 generation in the greenhouse and subsequently, a single spike 

from each F6 family was harvested and sown in the field as single spike/row progeny to produce 

F7 RIL foundation seed and DNA for the molecular analysis (Maccaferri et al. 2012). The 

Kofa/Svevo population of 249 RILs was developed by “Società Produttori Sementi” (Bologna, 

Italy), through SSD from (Maccaferri et al. 2008). 

All parents were pre-screened at the seedling stage with 22 Z. tritici isolates obtained 

from durum wheat and randomly selected from the available collection at Wageningen 

University and Research (WUR). Eventually, four isolates were used to study the response of 

the RIL populations (Table 2).  

 

Seedling assays 

• Plant and Zymoseptoria tritici management, growth conditions and inoculation 

procedures 

Seedlings of the four parents were sown in VQB TEKU® 7x7x8 cm plastic pots, using 

five seeds per pot, whereas smaller, round peat pots (Jiffy, Moerdijk, Netherlands) were used 
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2006) prevented the use of well-defined Z. tritici isolates for gene postulation in durum wheat, 
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resistance in contemporary tetraploid wheats and durum landraces showed an abundance of 
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cv. Karim and the moderately resistant cv. Salim (Berraies et al. 2014). Partial resistance to 
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(Ferjaoui et al. 2015; Ferjaoui et al. 2011), which was recently mapped on chromosome 2B by 

Ferjaoui et al. (Personnal communication).  

The current study focused on analyzing STB resistance in well-adapted and high-

yielding contemporary durum wheat cvs. Simeto, Levante, Kofa and Svevo using a range of Z. 

tritici isolates in greenhouse assays as well as in field trials.  We show that the inheritance of 

resistance to STB in contemporary durum wheat germplasm is complex and results from the 

additive effects of multiple Z. tritici strain-specific major and minor effect QTLs.  

Materials and Methods  

Plant materials and Zymoseptoria tritici isolates  

Two bi-parental mapping populations were obtained from crosses between the durum 

wheat cvs. Simeto and Levante and between cvs. Kofa and Svevo (Table 1), all considered as 

modern, semi-dwarf and highly productive cultivars. Cultivar Simeto (pedigree Capeiti 
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African and Syrian origin), with Valnova parent considered as representative of the innovation 

based on the first successful introduction of the Rht-B1b semi-dwarf allele from the early 

Mexican germplasm (Vallega and Zitelli 1974). Simeto has been the Italian reference for the 

first generation of semi-dwarf, early-heading genotypes and is characterized by high end-use 

quality (semolina) and a well-defined adaptability to Central-Southern Italy and Mediterranean 

countries, such as Spain and Greece. Levante is a modern high-yielding Italian durum wheat 

bred from the North American germplasm introduction, renowned for its excellent agronomic 

features, pasta quality and SBCMV resistance (Maccaferri et al. 2012; Rubies-Autonell et al. 

2009). The third Italian cv. Svevo was derived from a cross between a CIMMYT line (pedigree 

rok/fg//stil/3/dur1/4/sapi/ teal//hui) related to the widely utilized Yavaros79 genetic background 

(Jori/Anhinga//Flamingo) and cv. Zenit, originating from a cross between Italian and American 

accessions (Valriccardo/Vic). Desert Durum® cv. Kofa originates from the United States and 

was derived from a population based on multiple parents (dicoccum alpha pop-85 S-1) mainly 

related to US and CIMMYT germplasm, with the inclusion of emmer accessions, and was 

released by Western Plant Breeders (Arizona, US). Both cvs. Kofa and Svevo are well adapted 

to the Mediterranean climate and can be classified as early-flowering genotypes in such 

conditions (Maccaferri et al. 2008). The Simeto/Levante population was developed by single 

seed descent (SSD) up to the F5 generation in the greenhouse and subsequently, a single spike 

from each F6 family was harvested and sown in the field as single spike/row progeny to produce 

F7 RIL foundation seed and DNA for the molecular analysis (Maccaferri et al. 2012). The 

Kofa/Svevo population of 249 RILs was developed by “Società Produttori Sementi” (Bologna, 

Italy), through SSD from (Maccaferri et al. 2008). 

All parents were pre-screened at the seedling stage with 22 Z. tritici isolates obtained 

from durum wheat and randomly selected from the available collection at Wageningen 

University and Research (WUR). Eventually, four isolates were used to study the response of 

the RIL populations (Table 2).  

 

Seedling assays 

• Plant and Zymoseptoria tritici management, growth conditions and inoculation 

procedures 

Seedlings of the four parents were sown in VQB TEKU® 7x7x8 cm plastic pots, using 

five seeds per pot, whereas smaller, round peat pots (Jiffy, Moerdijk, Netherlands) were used 
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to accommodate all RILs, also with five seeds per pot, of the Simeto/Levante and Kofa/Svevo 

populations. Parents and RILs were sown in a special mixture for growing seeds (Substraat 

Zaai) provided by Unifarm, WUR, The Netherlands and maintained in a greenhouse with a 

similar pre- and post-inoculation environment with respect to light (son-T Agro 400 W lamps) 

and day length (16/8 h light/ dark).  Temperature and relative humidity (RH) were adjusted for 

10 days to 18/16 °C (day/night) and 70%, respectively, prior to inoculation. Post-inoculation 

conditions, including 48 h incubation, were set at a temperature of 22/±2 °C and a RH > 95%. 

Ten days after inoculation, all seedlings were trimmed for the second and subsequent leaves to 

enable sufficient light on the inoculated primary leaves for appropriate disease development. 

Fertilizer (Sporumix PG®, a commercial fertiliser containing microelements, Rotterdam, 

Netherlands; 0.5 g L-1) was applied to maintain healthy plant conditions. 

Z. tritici isolates were pre-cultured in autoclaved 100 ml Erlenmeyer flasks containing 

50 ml yeast glucose (YG) liquid medium (30 g glucose, 10 g yeast per liter of demineralized 

water). The flasks were inoculated with frozen isolate samples directly taken from the -80 °C 

maintained collection and subsequently placed in an incubated rotary shaker (Innova 4430, New 

Brunswick Scientific, USA) set at 125 rpm and 15 °C for 5-7 days. These pre-cultures were 

then used to inoculate 1L Erlenmeyer flasks containing 500 ml YG media per isolate that were 

incubated under the aforementioned conditions to provide sufficient inoculum for the seedling 

inoculation assays at growth stage (GS) 11 (Zadoks et al. 1974). Spores were collected, and the 

inoculum concentration was adjusted to 1×107 spores ml-1 in a total volume of 40 ml for a set 

of 18 plastic pots or 24 Jiffy® pots and supplemented with two drops of Tween 20 surfactant 

(MERCK®, Nottingham, UK). Inoculations were conducted by spraying the spore suspension 

over the seedlings placed in an inoculation cabinet on a rotary table, adjusted at 15 rpm, which 

is equipped with interchangeable atomizers and a water-cleaning device to avoid cross-

contamination. Infected plants were incubated in transparent plastic bags for 48 h under 100% 

RH in the greenhouse. 

The same inoculation protocol reported above was applied to assay in the growth 

chamber the Simeto/Levante and Kofa/Svevo recombinant inbred line populations with four 

selected isolates and three replicates per RIL population. 

• Experimental design, data collection and statistical analysis 

The Simeto/Levante and Kofa/Svevo RILs were tested in three independent replicates 

in time following a split-plot design with isolates as main plots and genotypes as subplots. 

Subplots were randomly arranged for each isolate and replicate on greenhouse tables in trays 
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each containing 54 subplots. The parents were included throughout all replicates and trays as 

checks. Disease severities were evaluated by assessing the quantitative presence of necrosis 

(NEC) and pycnidia (PYC) on the inoculated leaves in percentages at three stages post-

inoculation, at 15, 18 and 21 days post-inoculation (dpi), which enabled the calculation of the 

Area Under the Disease Progress Curve (AUDPC) values (Shaner and Finney 1977). 

Performing three consecutive disease severity assessment allowed us to obtain more precise 

estimates as compared to recording the disease severity at the end of disease cycle (21 dpi) only.  

For the initial parental screening experiment, analysis of variance (ANOVA) was 

conducted on NEC and PYC scores of the tested parents based on the mean values of the 

experimental units and Fisher’s Least Significant Difference (LSD) was used to detect 

significant disease severity differences among parents at a 0.05 probability. For the RIL 

experiments, ANOVA was performed based on mixed linear models built in PROC MIXED in 

SAS v. 9.3 (SAS Institute Inc., Cary, NC, USA). Initially, the whole experiment, including the 

four isolates, was jointly analyzed for each RIL population. The mixed model included 

replicates, isolates, isolates × replicates, genotypes, isolates × genotypes as random effects, 

trays as random nested within isolates × replicates. Subsequently, data from each isolate 

(specifically selected to maximize the differential response between parents, therefore to be 

considered as fixed effects) were analyzed separately. The model included replicates and 

genotypes as random effects, trays as random nested within replications. Estimates of variance 

component were obtained using the Restricted Maximum Likelihood (REML) method. 

Repeatability (h2) within each isolate was computed based on the variance components using 

the following formula: 

h2 = 2
G / [2

G + 2
e ∕ n] 

where σ2
G is the variance component due to genotypes, σ2

e is the variance due to residual effcts 

and n is the number of replicates per isolate. 

For subsequent QTL analysis, Best Linear Unbiased Estimators (BLUEs) for RILs were 

calculated for each population and each isolate considering genotypes as fixed effects.  

 

Field trials  

• Field experimental design; inoculation procedures and data collection 

Field experiments to assess the RILs response to STB at adult plant stages were 

conducted at the experimental station of the University of Bologna located in Cadriano (44°35’ 

N 11°27’ E), Po Valley, Italy, in the 2010, 2013 and 2014 seasons. The Kofa/Svevo RIL 
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is equipped with interchangeable atomizers and a water-cleaning device to avoid cross-
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RH in the greenhouse. 

The same inoculation protocol reported above was applied to assay in the growth 

chamber the Simeto/Levante and Kofa/Svevo recombinant inbred line populations with four 

selected isolates and three replicates per RIL population. 

• Experimental design, data collection and statistical analysis 

The Simeto/Levante and Kofa/Svevo RILs were tested in three independent replicates 

in time following a split-plot design with isolates as main plots and genotypes as subplots. 

Subplots were randomly arranged for each isolate and replicate on greenhouse tables in trays 
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each containing 54 subplots. The parents were included throughout all replicates and trays as 
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(specifically selected to maximize the differential response between parents, therefore to be 

considered as fixed effects) were analyzed separately. The model included replicates and 

genotypes as random effects, trays as random nested within replications. Estimates of variance 

component were obtained using the Restricted Maximum Likelihood (REML) method. 

Repeatability (h2) within each isolate was computed based on the variance components using 

the following formula: 

h2 = 2
G / [2

G + 2
e ∕ n] 

where σ2
G is the variance component due to genotypes, σ2

e is the variance due to residual effcts 

and n is the number of replicates per isolate. 

For subsequent QTL analysis, Best Linear Unbiased Estimators (BLUEs) for RILs were 

calculated for each population and each isolate considering genotypes as fixed effects.  

 

Field trials  

• Field experimental design; inoculation procedures and data collection 

Field experiments to assess the RILs response to STB at adult plant stages were 

conducted at the experimental station of the University of Bologna located in Cadriano (44°35’ 

N 11°27’ E), Po Valley, Italy, in the 2010, 2013 and 2014 seasons. The Kofa/Svevo RIL 
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population was evaluated together with the two parents in 2010 under high natural inoculation, 

and in 2013 under artificial inoculation (isolate IPO92003) while the Simeto/Levante RIL 

population, together with its two parents and susceptible checks, was evaluated in 2014 under 

artificial inoculation (isolate IPO92003). 

In all experiments, the genotypes were evaluated as 2-m-long double row (twin) plots and 

experimental fields were equipped with a mist supplementary irrigation that aided the disease 

spread and development in flag leaves after inoculation. The mist irrigation was applied starting 

one week before inoculation until disease assessment. A randomized complete block design 

was adopted in all trials with two replicates for the Kofa/Svevo population and three replicates 

for the Simeto/Levante population.  

Artificial inoculation was carried out according to Ghaffary et al. (2011) on adult plants with 

developed flag leaves at the booting and early heading stages. Heading date and plant height 

were recorded and used as covariates in the ANOVA model and to obtain adjusted BLUEs for 

the RILs. Disease severity assessment and AUDPC computation were carried out as reported 

for seedling experiments. The statistical analysis was performed using PROC MIXED in SAS 

v. 9.3 (SAS Institute Inc., Cary, NC, USA). The mixed linear model included heading date and 

plant height as covariates, genotypes and replicates as random effects, field columns and rows 

as random nested within replicates. 

Additionally, for the Kofa/Svevo population only, a combined analysis of the two years was 

carried out in a model including heading date and plant height as covariates, genotypes as 

random, years, replicates nested within years, field columns and rows nested within replicates 

and genotype x year as random. Adjusted BLUEs for the RILs were obtained by considering 

genotypes as fixed. 

QTL analysis  

The two dense linkage maps included up to 5,000 markers as follows: i) simple sequence 

repeats, SSRs (Maccaferri et al. 2003; Röder et al. 1998), Diversity Array Technology markers 

(DArT®, Yarralumla, Australia; (Mantovani et al. 2008) and Illumina transcript-derived single 

nucleotide polymorphism (SNP) markers (Maccaferri et al. 2015; Wang et al. 2014). Up to 

13,823 SNPs were informative in a durum wheat panel and were genetically ordered based on 

a SNP consensus map (Maccaferri et al. 2012; Maccaferri et al. 2015; Maccaferri et al. 2008) 

(Table1). QTL analyses were computed based on the BLUEs of the AUDPC of NEC (=Naudpc) 

and of the relative PYC AUDPC square root (=Paudpc), hereafter referred as N and P, 

respectively, and analyses were performed using the MapQTL® 6.0 software (Van Ooijen 
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2009). QTLs were initially positioned based on interval mapping (IM) analyses, followed by a 

multiple QTL model (MQM) analysis after cofactor selection by manually investigating the 

marker alignment on the linkage groups where the peaks of IM QTLs were detected. A 

permutation test with 1,000 permutations was conducted to determine the critical logarithm of 

the odds (LOD) threshold for each Z. tritici isolate in each mapping population. All identified 

QTLs were projected on a consensus map comprising 30,144 markers (including 26,626 SNPs 

and 791 SSRs) and spanning 2,631 cM (Maccaferri et al. 2015) by using the BioMercator V4.2 

® software (Arcade et al. 2004; Sosnowski et al. 2012), 

(https://urgi.versailles.inra.fr/Tools/BioMercator-V4). Two input files, a map file and a QTL 

file, were prepared for the BioMercator V 4.2 ® software according to its requirements. The 

QTL profiles were plotted against their LOD values and drawn using MapChart 2.3 (Voorrips 

2002). 
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Table 2. Zymoseptoria tritici isolates derived from durum wheat originated from diverse 
geographical areas that were used in seedling assays and field trials in Italy.  
     Experiment    

Region  Isolate ID Country   Location Year Parental 
screen  

Sm x Lv 
Seedling 
assays 

Kf x Sv 
Seedling 
assays 

Field  
trials  

 

Middle-East IPO91004 Syria Lattakia 1991 + ─ ─ ─  

 IPO86022 Turkey Altinova 1986 + + + ─ 
 

North Africa IPO92042 Algeria Oum Bouachi  1992 + ─ + ─  
 IPO95052 Algeria Berrahal 1995 + + + ─  
 IPO95062 Algeria Berrahal 1995 + ─ ─ ─  
 IPO91018 Morocco JenicaShaim 1991 + ─ ─ ─  
 IPO91020 Morocco Doukkala 1991 + + ─ ─  
 IPO91009 Tunisia Bejá 1991 + ─ ─ ─  
 IPO91014 Tunisia Mateur 1991 + ─ ─ ─  
 IIIB-123 Tunisia Bejá 2005 + ─ ─ ─  
          
Europe IPO92003 Portugal - 1992 + + + +  
 IPO13001 Italy Emilia R. 2013 + ─ ─ ─  
 IPO13003 Italy Emilia R. 2013 + ─ ─ ─  
 IPO13006 Italy Emilia R. 2013 + ─ ─ ─  
 IPO13007 Italy Emilia R. 2013 + ─ ─ ─  
 IPO13008 Italy Emilia R. 2013 + ─ ─ ─  
 IPO13018 Italy Sicily 2013 + ─ ─ ─  
 IPO13019 Italy Sicily 2013 + ─ ─ ─  
 IPO13023 Italy Sicily 2013 + ─ ─ ─  
 IPO13024 Italy Sicily 2013 + ─ ─ ─  
 IPO13056 Italy Tuscany 2013 + ─ ─ ─  
          
North America  07-MG-020 Canada  Saskatchewan 2008 + ─ ─ ─   

 

Results  
Phenotyping  

Parental screens. Inoculation of the selected Z. tritici isolates allowed for good 

development of the disease symptoms and accurate phenotyping of the parental cultivars and 

the derived RIL populations. The initial screening of the parental cvs. Kofa, Svevo, Simeto and 

Levante was carried out with 22 Z. tritici isolates to obtain an overall estimate of their 

differential resistance/susceptibility to STB and to select individual Z. tritici isolates 

informative for the genetic analyses of the RILs (Table 3). The necrosis (NEC) level was equal 
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Region  Isolate ID Country   Location Year Parental 
screen  

Sm x Lv 
Seedling 
assays 

Kf x Sv 
Seedling 
assays 

Field  
trials  

 

Middle-East IPO91004 Syria Lattakia 1991 + ─ ─ ─  

 IPO86022 Turkey Altinova 1986 + + + ─ 
 

North Africa IPO92042 Algeria Oum Bouachi  1992 + ─ + ─  
 IPO95052 Algeria Berrahal 1995 + + + ─  
 IPO95062 Algeria Berrahal 1995 + ─ ─ ─  
 IPO91018 Morocco JenicaShaim 1991 + ─ ─ ─  
 IPO91020 Morocco Doukkala 1991 + + ─ ─  
 IPO91009 Tunisia Bejá 1991 + ─ ─ ─  
 IPO91014 Tunisia Mateur 1991 + ─ ─ ─  
 IIIB-123 Tunisia Bejá 2005 + ─ ─ ─  
          
Europe IPO92003 Portugal - 1992 + + + +  
 IPO13001 Italy Emilia R. 2013 + ─ ─ ─  
 IPO13003 Italy Emilia R. 2013 + ─ ─ ─  
 IPO13006 Italy Emilia R. 2013 + ─ ─ ─  
 IPO13007 Italy Emilia R. 2013 + ─ ─ ─  
 IPO13008 Italy Emilia R. 2013 + ─ ─ ─  
 IPO13018 Italy Sicily 2013 + ─ ─ ─  
 IPO13019 Italy Sicily 2013 + ─ ─ ─  
 IPO13023 Italy Sicily 2013 + ─ ─ ─  
 IPO13024 Italy Sicily 2013 + ─ ─ ─  
 IPO13056 Italy Tuscany 2013 + ─ ─ ─  
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Results  
Phenotyping  

Parental screens. Inoculation of the selected Z. tritici isolates allowed for good 

development of the disease symptoms and accurate phenotyping of the parental cultivars and 

the derived RIL populations. The initial screening of the parental cvs. Kofa, Svevo, Simeto and 

Levante was carried out with 22 Z. tritici isolates to obtain an overall estimate of their 

differential resistance/susceptibility to STB and to select individual Z. tritici isolates 

informative for the genetic analyses of the RILs (Table 3). The necrosis (NEC) level was equal 
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in all Z. tritici/parent combinations and reached the maximum of 100% (data not shown). 

However, pycnidia (PYC) scores varied and showed significant differences and cultivar-by-

isolate interactions (Table 3, Supplemental Table 1). None of the tested cultivars was resistant 

to all Z. tritici isolates; one isolate (IPO13007, Italy) was pathogenic on all cultivars, whereas 

the Canadian strain 07-MG-020-Canada was found to be avirulent on all of them. This likely 

indicates that this isolate, though collected from durum wheat, is a bread wheat strain. Four Z. 

tritici isolates (IPO86022, IPO92042, IPO95052, IPO91020) that differentiated the parental 

cultivars were selected for the progeny trials in the greenhouse and isolate IPO92003 was used 

for the field experiments at the Cadriano station for the Simeto/Levante population (2014) and 

the Kofa/Svevo population (2013) which was previously (2010) evaluated at the same site under 

natural infection conditions. 

RIL screens. The ANOVA of the NEC and PYC values for the seedling screening 

showed significant interactions between the RILs of both mapping populations and the Z. tritici 

isolates (Supplemental Tables 2 and 3). The observed phenotypic variations were in large 

portion explained by the specific interactions between the applied isolates and the RILs 

(combined ANOVA analysis, Supplemental Tables 2 and 3). Thus, the single isolates chosen 

for the QTL analysis were considered separately in the subsequent statistical analysis.  

At the seedling stage, parents and population means and ranges for NEC and PYC were 

variable between the tested isolates, which were five in total, considering the two populations 

(Table 4). Overall, the repeatability was higher for PYC (from 40.48 to 71.02%) than for the 

NEC (from 22.78 to 48.75%) in both mapping populations. Repeatability values mainly ranged 

between ca. 40 and 70%, except for the Kofa/Svevo population for the Naudpc/IPO86022 and for 

the Naudpc/IPO95052 combination (h2 = 28.72 and 22.78%, respectively). However, for the latter 

isolates, the same Kofa/Svevo population showed much higher repeatability values when 

considering Paudpc (h2 = 71.02 and 43.55%, respectively). 

For the RILs tested with both isolates, the genetic component of the observed variation 

for Paudpc were high in the case of IPO86022 and IPO92003, and lower for IPO95052. On the 

contrary, the variation for the Naudpc in Simeto/Levante inoculated with IPO92042 and in 

Kofa/Svevo after inoculation with IPO95052 was poorly associated with genotypic variation, 

indicating strong environmental effects contributing to the observed phenotypic variation 

(Supplemental Tables 3 and 4).  

Chapter 5                                                                        Resistance to STB in elite durum wheat  
  
 

In the field trials, differences were non-significant in the Kofa/Svevo population for 

PYC under natural infection in 2010 and for the inoculated trial in 2013. However, NEC scores 

were higher in the inoculated trial and reached 54.04, whereas the maximum score was 48.09 

under natural infection. Repeatability of both traits was significantly higher in the inoculated 

trials than under natural infection (Table 5). A similar trend was observed in the Simeto/Levante 

population, where NEC showed much more variation than PYC, was highly associated with the 

genotypic variation, as the observed h2 was equal to 0.76. Environmental effects strongly 

impacted PYC (Table 5). Transgressive segregation was observed towards both resistance and 

susceptibility in all populations/traits and isolate combinations (Figure 1).  
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indicates that this isolate, though collected from durum wheat, is a bread wheat strain. Four Z. 

tritici isolates (IPO86022, IPO92042, IPO95052, IPO91020) that differentiated the parental 

cultivars were selected for the progeny trials in the greenhouse and isolate IPO92003 was used 

for the field experiments at the Cadriano station for the Simeto/Levante population (2014) and 

the Kofa/Svevo population (2013) which was previously (2010) evaluated at the same site under 

natural infection conditions. 

RIL screens. The ANOVA of the NEC and PYC values for the seedling screening 

showed significant interactions between the RILs of both mapping populations and the Z. tritici 

isolates (Supplemental Tables 2 and 3). The observed phenotypic variations were in large 

portion explained by the specific interactions between the applied isolates and the RILs 

(combined ANOVA analysis, Supplemental Tables 2 and 3). Thus, the single isolates chosen 

for the QTL analysis were considered separately in the subsequent statistical analysis.  

At the seedling stage, parents and population means and ranges for NEC and PYC were 

variable between the tested isolates, which were five in total, considering the two populations 

(Table 4). Overall, the repeatability was higher for PYC (from 40.48 to 71.02%) than for the 

NEC (from 22.78 to 48.75%) in both mapping populations. Repeatability values mainly ranged 

between ca. 40 and 70%, except for the Kofa/Svevo population for the Naudpc/IPO86022 and for 

the Naudpc/IPO95052 combination (h2 = 28.72 and 22.78%, respectively). However, for the latter 

isolates, the same Kofa/Svevo population showed much higher repeatability values when 

considering Paudpc (h2 = 71.02 and 43.55%, respectively). 

For the RILs tested with both isolates, the genetic component of the observed variation 

for Paudpc were high in the case of IPO86022 and IPO92003, and lower for IPO95052. On the 

contrary, the variation for the Naudpc in Simeto/Levante inoculated with IPO92042 and in 

Kofa/Svevo after inoculation with IPO95052 was poorly associated with genotypic variation, 

indicating strong environmental effects contributing to the observed phenotypic variation 

(Supplemental Tables 3 and 4).  
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In the field trials, differences were non-significant in the Kofa/Svevo population for 

PYC under natural infection in 2010 and for the inoculated trial in 2013. However, NEC scores 

were higher in the inoculated trial and reached 54.04, whereas the maximum score was 48.09 

under natural infection. Repeatability of both traits was significantly higher in the inoculated 

trials than under natural infection (Table 5). A similar trend was observed in the Simeto/Levante 

population, where NEC showed much more variation than PYC, was highly associated with the 

genotypic variation, as the observed h2 was equal to 0.76. Environmental effects strongly 

impacted PYC (Table 5). Transgressive segregation was observed towards both resistance and 

susceptibility in all populations/traits and isolate combinations (Figure 1).  
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Assessment of the frequency distributions at both the seedling and adult plant stages 

indicated a polygenic inheritance of the Z. tritici response (Figure 1; Supplemental Figures S1 

and S2). A double-oriented transgressive segregation towards susceptibility and resistance was 

observed for both populations indicating that both parents contributed to the observed genetic 

variation with beneficial/susceptibility alleles in different combinations. In particular, the 

Simeto/Levante population segregated positively towards resistance in the tests with isolates 

IPO86022 and IPO95052 at the seedling stage, with a noticeable number of RILs falling outside 

the parental range. A similar trend was observed for the Simeto/Levante RILs in the test with 

IPO92003, but more specifically for NEC. A tendency towards segregation for susceptibility 

was more rarely observed in both populations. Similarly, normal distributions indicating 

polygenic inheritance for STB resistance was observed in the field trials for both populations 

(Figure 1), but contrary to the seedling assays, transgressive segregation was more evident 

towards susceptibility, particularly in the Simeto/Levante population, which showed a 

remarkably high number of RILs that were more susceptible than the susceptible parent Simeto 

(Figure 1).  

Overall, significant, albeit weak to moderate, correlations were obtained for the RIL 

response phenotypes among isolates, between seedling and field trials and among field trials 

(Table 6), suggesting that the responses to different Z. tritici isolates and the performance at 

different physiological stages are – in these trials – driven by different genetic factors. In 

particular, the response to different isolates cannot be generalized, indicating the lack of strong 

resistance genes effective across the majority of isolates.  
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Assessment of the frequency distributions at both the seedling and adult plant stages 

indicated a polygenic inheritance of the Z. tritici response (Figure 1; Supplemental Figures S1 

and S2). A double-oriented transgressive segregation towards susceptibility and resistance was 

observed for both populations indicating that both parents contributed to the observed genetic 

variation with beneficial/susceptibility alleles in different combinations. In particular, the 

Simeto/Levante population segregated positively towards resistance in the tests with isolates 

IPO86022 and IPO95052 at the seedling stage, with a noticeable number of RILs falling outside 

the parental range. A similar trend was observed for the Simeto/Levante RILs in the test with 

IPO92003, but more specifically for NEC. A tendency towards segregation for susceptibility 

was more rarely observed in both populations. Similarly, normal distributions indicating 

polygenic inheritance for STB resistance was observed in the field trials for both populations 

(Figure 1), but contrary to the seedling assays, transgressive segregation was more evident 

towards susceptibility, particularly in the Simeto/Levante population, which showed a 

remarkably high number of RILs that were more susceptible than the susceptible parent Simeto 

(Figure 1).  

Overall, significant, albeit weak to moderate, correlations were obtained for the RIL 

response phenotypes among isolates, between seedling and field trials and among field trials 

(Table 6), suggesting that the responses to different Z. tritici isolates and the performance at 

different physiological stages are – in these trials – driven by different genetic factors. In 

particular, the response to different isolates cannot be generalized, indicating the lack of strong 

resistance genes effective across the majority of isolates.  
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Figure 1. Phenotypic variation for resistance to Zymoseptoria tritici under field conditions, scored as 

Naudpc (Naudpc) and PaudpcSQRT (Paudpc), of recombinant inbred lines (RILs) of the Kofa/Svevo population 

(A) in 2010 and 2013 (y-axis) and the Simeto/Levante population (B) in 2014 (y-axis). 
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Chromosomes associated with quantitative responses to Zymoseptoria tritici in contemporary 

durum wheat cultivars  

Quantitative trait loci (QTLs) for resistance to Z. tritici were identified using the dense 

genetic linkage maps available for both populations. Comparative analyses with known Stb 

resistance genes, mainly mapped in hexaploid wheat, were possible due to the presence of 

common markers in both populations and the consensus maps available for both tetraploid and 

hexaploid wheat. The comparative analysis was based on the recent review by Brown et al. 

(2015) on currently mapped sources of resistance to Z. tritici. Consequently, QTLs were 

projected along major reported resistance genes (Stb) in the consensus map (Figure 2).  

Permutation tests indicated that the threshold for significant LOD differentiation should 

be set at LOD ≥ 3 for both mapping populations. Thus, QTLs with a LOD ≥ 3 were considered 

as effective and QTLs with LOD ranging between 2 and 3 were considered as putative. 

Subsequently, a total of 52 effective and putative QTLs were identified on the durum wheat 

populations which were associated to nearly all chromosomes, except for chromosomes 2A and 

6A where no resistance loci were detected (Tables 7, 8, S5 and S6; Figure 2). None of the 

detected QTLs showed a significant effect to all tested Z. tritici isolates; nonetheless, some 

QTLs showed a better efficacy than others and were detected for multiple isolates at the seeding 

stage or at both seedling and field trials for NEC and PYC.  

In the Simeto/Levante population, chromosome 4B was associated to Z. tritici resistance 

to all tested isolates at the seedling stage and to adult plants when inoculated with IPO92003 

(Tables 7 and S5, Figure 2). The comparative analysis of the identified QTLs revealed that 

chromosome 4B contains two closely linked genomic regions that confer a wide spectrum of 

resistance to Z. tritici (Figure 2). The first QTL spanned a genetic region ranging between 83.8 

and 115.5 cM corresponding to the interval between SNP IWB73770 and SSR WMC47. This 

region carried a QTL identified with Z. tritici isolates IPO86022, IPO95052 and IPO91020, 

controlling seedling NEC for the two first isolates and PYC development for the former isolate. 

The highest LOD and explained variance of this QTL were those determined with IPO91020 

(8.65 and 20%, respectively), while the lowest LOD (2.23) and explained variance (5%) were 

observed with IPO86022. The second QTL was located 2.3 cM distal from the first QTL and 

spanned a genetic distance ranged between 86.1 and 101.3 cM in the genetic linkage map of 

chromosome 4B flanked by the SNP marker IWB72179 and the DArT marker wPt-8291. This 

QTL was detected with isolate IPO92003 for PYC and NEC development and with IPO91020 
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for necrosis and was confirmed for PYC and NECin the adult stage test with IPO92003. The 

highest LOD (5.38) and explained variance (12.8%) were determined with isolate IPO92003 

for pycnidia development at the seedling stage. Under the field trial, this QTL had a LOD score 

of 4.55 and explained 9.9% of variance for NEC, slightly higher than for PYC (Tables 7 and 

S5). The region covered a minor effect QTL for NEC with isolate IPO91020 (LOD 2.09 and 

explained variance 5.3%). Chromosome 4B also carries two unique and closely linked QTLs 

for field resistance under natural conditions to NEC and PYCdevelopment detected in the 

Kofa/Svevo (Tables 8 and S6, Figure 2). These QTLs are 40 cM distal from the Simeto/Levante 

QTL and explained up to 5.3% of the observed NEC phenotypic variance (Tables 8 and S6). 

All mapped QTLs on chromosome 4B represent new locations not yet reported in bread wheat 

(Figure 2, Tables 7, 8, S5 and S6).  

For the Kofa/Svevo population, chromosome 1B is associated with seedling resistance 

to two isolates and with field resistance, thereby presenting a location with broader effects 

compared to other QTLs that were either exclusively detected in the seedling or the adult plant 

stage (Table 8; Figure 2). One QTL spanned a genetic distance ranged between 27.4 and 48.5 

cM, is flanked by the SSR markers BARC119 and KSUM28, and controls NEC (highest LOD 

6.51 and explained variance 11.5%), and PYC development under natural conditions as well as 

PYC development after inoculation with isolate IPO92003. In addition, it controls NEC seedling 

resistance with isolate IPO86022 (Tables 8 and S6; Figure 2). An additional QTL, positioned 

13.1 cM distal from the abovementioned QTL controls resistance to NEC (LOD 8.47, explained 

variance 14.2%) and PYC (LOD 8.08, explained variance 14.6%) with IPO92003 (Tables 8 and 

S6). Contrary to the novel chromosome 4 region detected in the Simeto/Levante population, the 

Kofa/Svevo 1B region also carries StbWW and Stb2/Stb11 that were reported in bread wheat 

(Liu et al. 2013; Raman et al. 2009).   

Our analyses also revealed QTLs identified for specific individual isolates, such as the 

6B-QTL that was mapped with isolate IPO95052 for NEC and PYCdevelopment and for field 

resistance to PYC in the Simeto/Levante (Tables 7 and S5). A closely linked QTL (8.8 cM 

distal) was detected in the Kofa/Svevo population with isolates IPO95052 and IPO86022 for 

NEC and PYCresistance, respectively (Tables 8 and S6). These QTLs also represent new 

locations not reported in bread wheat and provide sources for quantitative resistance to STB in 

durum wheat (Figure 2, Tables 7, 8, S5 and S6). Other isolate-specific QTLs herein detected 

co-aligned with known Stb genes, such as Stb7/Stb12 mapped in the Simeto/Levante population 
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region carried a QTL identified with Z. tritici isolates IPO86022, IPO95052 and IPO91020, 

controlling seedling NEC for the two first isolates and PYC development for the former isolate. 

The highest LOD and explained variance of this QTL were those determined with IPO91020 

(8.65 and 20%, respectively), while the lowest LOD (2.23) and explained variance (5%) were 

observed with IPO86022. The second QTL was located 2.3 cM distal from the first QTL and 

spanned a genetic distance ranged between 86.1 and 101.3 cM in the genetic linkage map of 

chromosome 4B flanked by the SNP marker IWB72179 and the DArT marker wPt-8291. This 

QTL was detected with isolate IPO92003 for PYC and NEC development and with IPO91020 
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for necrosis and was confirmed for PYC and NECin the adult stage test with IPO92003. The 

highest LOD (5.38) and explained variance (12.8%) were determined with isolate IPO92003 

for pycnidia development at the seedling stage. Under the field trial, this QTL had a LOD score 

of 4.55 and explained 9.9% of variance for NEC, slightly higher than for PYC (Tables 7 and 

S5). The region covered a minor effect QTL for NEC with isolate IPO91020 (LOD 2.09 and 

explained variance 5.3%). Chromosome 4B also carries two unique and closely linked QTLs 

for field resistance under natural conditions to NEC and PYCdevelopment detected in the 

Kofa/Svevo (Tables 8 and S6, Figure 2). These QTLs are 40 cM distal from the Simeto/Levante 

QTL and explained up to 5.3% of the observed NEC phenotypic variance (Tables 8 and S6). 

All mapped QTLs on chromosome 4B represent new locations not yet reported in bread wheat 

(Figure 2, Tables 7, 8, S5 and S6).  

For the Kofa/Svevo population, chromosome 1B is associated with seedling resistance 

to two isolates and with field resistance, thereby presenting a location with broader effects 

compared to other QTLs that were either exclusively detected in the seedling or the adult plant 

stage (Table 8; Figure 2). One QTL spanned a genetic distance ranged between 27.4 and 48.5 

cM, is flanked by the SSR markers BARC119 and KSUM28, and controls NEC (highest LOD 

6.51 and explained variance 11.5%), and PYC development under natural conditions as well as 

PYC development after inoculation with isolate IPO92003. In addition, it controls NEC seedling 

resistance with isolate IPO86022 (Tables 8 and S6; Figure 2). An additional QTL, positioned 

13.1 cM distal from the abovementioned QTL controls resistance to NEC (LOD 8.47, explained 

variance 14.2%) and PYC (LOD 8.08, explained variance 14.6%) with IPO92003 (Tables 8 and 

S6). Contrary to the novel chromosome 4 region detected in the Simeto/Levante population, the 

Kofa/Svevo 1B region also carries StbWW and Stb2/Stb11 that were reported in bread wheat 

(Liu et al. 2013; Raman et al. 2009).   

Our analyses also revealed QTLs identified for specific individual isolates, such as the 

6B-QTL that was mapped with isolate IPO95052 for NEC and PYCdevelopment and for field 

resistance to PYC in the Simeto/Levante (Tables 7 and S5). A closely linked QTL (8.8 cM 

distal) was detected in the Kofa/Svevo population with isolates IPO95052 and IPO86022 for 

NEC and PYCresistance, respectively (Tables 8 and S6). These QTLs also represent new 

locations not reported in bread wheat and provide sources for quantitative resistance to STB in 

durum wheat (Figure 2, Tables 7, 8, S5 and S6). Other isolate-specific QTLs herein detected 

co-aligned with known Stb genes, such as Stb7/Stb12 mapped in the Simeto/Levante population 
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with IPO86022 and IPO92003 at seedling and adult plant stage, respectively. The latter QTL 

was also detected in the Kofa/Svevo population under field conditions after inoculation with 

isolate IPO92003. Overall, neither of the detected QTLs have a major effect and explained 

variances ranged between 5 and 30.8%, with LODs ranging between 2 and 15.44. The QTLs 

with the highest LOD and explained variance were new, have an isolate-specific mode of action 

and mapped on chromosomes 6B (LOD = 15.44, 30.8%) and 7B (LOD = 15.75; 24.7%) in the 

Simeto/Levante and Kofa/Svevo populations (Tables 7 and 8), respectively. 

In total, our study revealed several new locations contributing to isolate specific 

resistance to STB in durum wheat (Tables 7, 8, S5 and S6, S7; Figure 2), of which the majority 

was derived from cvs. Simeto, Levante and Svevo. Cv. Kofa confirmed to be a reliable 

susceptible test genotypes to map resistance as well as partial resistance QTLs in durum wheat. 
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and mapped on chromosomes 6B (LOD = 15.44, 30.8%) and 7B (LOD = 15.75; 24.7%) in the 

Simeto/Levante and Kofa/Svevo populations (Tables 7 and 8), respectively. 

In total, our study revealed several new locations contributing to isolate specific 

resistance to STB in durum wheat (Tables 7, 8, S5 and S6, S7; Figure 2), of which the majority 

was derived from cvs. Simeto, Levante and Svevo. Cv. Kofa confirmed to be a reliable 
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Mediterranean Basin where septoria and other fungi often compromise productivity and 

continuously challenge the host immune response (Bevan et al. 2017). Zymoseptoria tritici is 

one of the most relevant biotic threats with a notably rapid evolution to adapt to the constant 

environmental fluctuations (Goodwin et al. 2011; Stukenbrock et al. 2011; Stukenbrock and 

Croll 2014; Stukenbrock and Francis 2014), a threat for the release of new wheat varieties 

(Eckhoff et al. 2017; Gharbi et al. 2000; Gharbi et al. 2008). Regrettably, STB in durum wheat 

has been largely neglected, unlike in bread wheat  (Brown et al. 2015).  

Our study sheds light on the genetic architecture of resistance to Z. tritici in 

contemporary durum wheat varieties widely adopted in Mediterranean environments. We show 

that the Italian cvs. Simeto, Levante and Svevo harbor several and diverse, novel QTLs for 

partial resistance to STB. Altogether, we identified several new QTLs for STB resistance in 

durum wheat that can be deployed via marker-assisted selection to enhance STB resistance. The 

QTLs in the Italian cultivars partially control STB resistance in the seedling and adult plant 

stages and are mostly isolate-specific. However, chromosomes 1B and 4B were associated with 

QTLs effective to at least three Z tritici isolates out of four at the seedling stage and also to 

natural population and individual isolates in the adult plant stage.  

In the Kofa/Svevo population, two QTLs were identified on chromosome 1B. The first 

QTL contributes to the field resistance for NEC and PYC development under natural conditions 

as well as to PYC development after inoculation with isolate IPO92003 and to necrosis 

resistance at the seedling stage when tested with isolate IPO86022. The second closely linked 

QTL is mapped 13.1 cM distal from the first and contributes to seedling resistance to isolate 

IPO92003.  In the Simeto/Levante population, two QTLs were identified in chromosome 4B. 

The first QTL contributes to seedling STB resistance to Z. tritici isolates IPO86022, IPO95052 

and IPO91020, and the second 4B QTL was detected with the latter isolate and with IPO92003 

in the adult plant stage. 

All four QTLs covered genetic regions that were previously not associated with 

resistance to Z. tritici, unlike the two 1B QTLs that co-aligned with StbWW (Raman et al. 2009) 

and Stb2/Stb11(Liu et al. 2013). In bread wheat, the efficacy to StbWW is limited to a single Z. 

tritici isolate (79.2.1A) at the seedling stage, whereas Stb2 has a much wider efficacy (Cuthbert 

2011; Ghaffary 2011; Goudemand et al. 2013; Liu et al. 2013). Other minor QTLs with a narrow 

efficacy co-aligned with Stb7 (4A), Stb12 (4A), Stb3 (7A) and Stb6 (3A), all showing a much 
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QTL is mapped 13.1 cM distal from the first and contributes to seedling resistance to isolate 
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and Stb2/Stb11(Liu et al. 2013). In bread wheat, the efficacy to StbWW is limited to a single Z. 

tritici isolate (79.2.1A) at the seedling stage, whereas Stb2 has a much wider efficacy (Cuthbert 
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efficacy co-aligned with Stb7 (4A), Stb12 (4A), Stb3 (7A) and Stb6 (3A), all showing a much 
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wider efficacy in bread wheat (Brown et al. 2015; Cuthbert 2011). However, we cannot claim 

that these known Stb genes providing resistance to Z. tritici isolates are derived from durum 

wheat. The reported dichotomy in Z. tritici pathogenicity for bread wheat and durum wheat 

(Kema et al. 1996a; Kema et al. 1996b; Kema et al. 1996c; Kema and van Silfhout 1997; Kema 

et al. 1996d; Ware 2006) has largely contributed to the limited progress in the identification of 

resistance genes in the latter species, as even the most susceptible durum wheats are resistant 

to Z. tritici isolates derived from bread wheat. Therefore, the use of well-characterized Z. tritici 

isolates for the Z. tritici – bread wheat pathosystem (Ghaffary 2011; Ghaffary et al. 2012; 

Ghaffary et al. 2011) appears to be unsuitable for durum wheat research and breeding.  

Even though many of the identified QTLs have a narrow spectrum, their combination 

or pyramiding showed their value in attaining broader spectrum resistance, as demonstrated by 

the wide transgressive segregation for resistance under field conditions noticed in both RIL 

mapping populations. This has also been recently demonstrated in the Tunisian landrace ‘Agili 

39’ (Ferjaoui et al., unpublished) as well as in several bread wheat cultivars, including cv. 

‘Apache’ (Ghaffary et al. 2011), and the breeding lines KK4500 and TE11 whose resistance is 

conferred by a combination of several known Stb genes (Chartrain et al. 2005a; Chartrain et al. 

2005b; Chartrain et al. 2004). Therefore, as demonstrated in this study, contemporary durum 

wheat cultivars can reveal new loci for STB resistance that, despite their limited efficacy when 

considered individually, can provide broader resistance spectrum once introgressed in new elite 

germplasm.  

Partial resistance to STB has been reported in contemporary durum wheat (Berraies et 

al. 2014; Gharbi et al. 2000; Gharbi et al. 2008; Kidane et al. 2017; Tuberosa 2014), in Ethopian 

durum Landraces (Kidane et al. 2017) and in bread wheat germplasm (Arraiano and Brown 

2017; Tabib Ghaffary et al. 2011). Possibly, partial resistance could also be associated with 

increased durability, as in other wheat pathogens such as the cereal rusts (Bansal et al. 2014; 

Lowe et al. 2011; Mundt 2014). Although causal links between the level of resistance and 

durability remain unravelled (Krattinger and Keller 2016), several studies showed partial 

resistance to be more durable than major-gene driven resistance (Brown 2015; Ellis et al. 2014; 

Krattinger et al. 2009), particularly when partial resistance QTLs are pyramided. Also, highly 

diverse and rapidly evolving fungal pathogen populations, such as Z. tritici (Goodwin et al. 

2011; Stukenbrock et al. 2011; Stukenbrock and Croll 2014; Stukenbrock and McDonald 2008), 

are frequently considered to rapidly overcome major resistance genes (Croll and McDonald 

2016; McDonald and Linde 2002; McDonald and Stukenbrock 2016). However, it is necessary 
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to place each of these projections into the correct biological and epidemiological context. 

Resistance genes that are circumvented by mutations in Z. tritici effectors not necessarily 

disseminate rapidly in natural populations resulting in boom and bust scenarios.  

Therefore, rather than advocating any specific form of resistance, particularly given the 

urgency for STB breeding in durum wheat, each and every QTL should be embraced to improve 

the overall low level of STB resistance. Our study contributes a suite of well-characterized Z. 

tritici isolates and confirms specific host-pathogen interactions (Chartrain et al. 2004; Kema et 

al. 1996a; Kema et al. 1996b) whose genetic basis was recently elucidated (Zhong et al. 2017).  

Based on the relatively high number of QTLs identified in this study, breeding for STB partial 

resistance appears feasible and its efficiency could be possibly enhanced by the use of genomic 

selection (Bassi et al. 2016; Juliana et al. 2017; Varshney et al. 2005), which allows to 

simultaneously account for the quantitative loci segregating in the breeding germplasm more 

effectively than classic marker-assisted selection.  

 

Conclusions and perspectives 

 
Our study provides a more detailed and complete view of the wheat QTLome for STB 

resistance while reporting a suite of novel QTLs for STB partial resistance, present in the durum 

wheat germplasm currently providing the basis of breeding populations. This finding supports 

the possibility to enhance STB partial resistance through both transgressive conventional and 

marker-aided breeding, as demonstrated by the high level of STB resistance reached by 

recombinant inbred lines in field experiments. Some of the identified QTLs showed appreciable 

effects and PEV values, such as in the case of QTLs identified in chromosomes 1B, 4B and 6B. 

These QTLs are good candidates for a positional cloning approach that will eventually facilitate 

the identification of rare beneficial haplotypes while paving the way to their editing to assemble 

even more beneficial alleles (Salvi and Tuberosa 2015). The recent release of the emmer 

genome assembly of wild wheat (Avni et al. 2017) and durum wheat 

(http://www.unibo.it/en/notice-board/durum-wheat-assembly-can-lead-to-better-and-more-

resilient-durum-for-more-nutritious-food: Cattivelli et al. unpublished) coupled with the use of 

high-density consensus maps of tetraploid wheat including also markers from bread wheat will 

further accelerate genomics-based approaches to enhance STB resistance in cultivated wheat.  
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Figure S1. Phenotypic variation, scores as Naudpc (N) (a panel) or PaudpcSQRT (P) (b panel) of recombinant inbred lines (RILs)  of the 
Simeto/Levante population (y-axis) to four Zymoseptoria tritici isolates in the seeding stage. The scores for the parents are indicated by 
arrows. 
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Figure S2. Phenotypic variation, scores as Naudpc (N) (a panel) or PaudpcSQRT (P) (b panel) of recombinant inbred lines (RILs)  of the 
Kofa/Svevo population (y-axis) to four Zymoseptoria tritici isolates in the seeding stage. The scores for the parents are indicated by arrows. 
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Albeit enormous progress has been achieved worldwide in improving human welfare, 

much remains to be done to fulfil the vision of the Food and Agriculture Organization of the 

United Nations (FAO) to create a world free of hunger and malnutrition, and one in which 

agriculture contributes to improve the living standards of all, especially the poorest, in an 

economically, socially and environmentally sustainable manner (FAO 2017). Improving and 

sustaining staple crop production such as wheat in a briskly expending population are important 

challenges. Even though world population growth has slowed down over the last five decades, 

populations will continue to expand well beyond 2050 in some regions, surely in Africa, leading 

to an increasing global demand for food of 70 %, making reduced hunger and malnutrition 

unreachable and burdened prospects (Bhat 2017; FAO 2017). Above and beyond the expected 

population explosion, there are stark facts evidencing the perceived challenges such as the 

growing threat of plant pathogens to global food security. Such crop-destroyers account for 

persistent yield losses of up to 20% of the world’s harvest (Bebber and Gurr 2015; Strange and 

Scott 2005). Moreover, climate change is prompting a rapid plant pathogens’ evolution to 

shifting ecosystems (Croll and McDonald 2017; McDonald and Stukenbrock 2016; Nejat et al. 

2017).  

Durum wheat, a fundamental crop for many people in the Mediterranean basin, is no 

exception. This crop contributes up to 20 % of the daily calorie intake (Shewry 2009) and is 

subject to diverse constraints that hamper its production. The continuous co-evolutionary battle 

between durum wheat and Zymoseptoria tritici (Z. tritici) (Desm.) Quaedvl. & Crous (formerly 

known as Mycosphearella graminicola), the cause of septoria leaf blotch (SLB), constitutes a 

juxtaposed fact that needs to be considered in sustaining durum wheat production and that 

cannot be ignored by breeders that are in a constant search for excelling genotypes (Chen et al. 

2017; Stukenbrock et al. 2011; Stukenbrock and Croll 2014; Stukenbrock and Francis 2014; 

Stukenbrock and McDonald 2008). The co-evolutionary history between wheat and Z. tritici 

has resulted into various levels of resistances that have increased the fitness of germplasm when 

encountering Z. tritici attacks, which are roughly divided in qualitative and quantitative 

resistance (Arraiano et al. 2009; Brown et al. 2015; Cowger et al. 2000; Eyal and Brown 1976; 

Kema et al. 1996a; Kema et al. 1996c; Kema and van Silfhout 1997; Kema et al. 2000; Simón 

2010; Simón et al. 2016). Despite a range of studies that confirmed qualitative host resistance 

in the Z. tritici-wheat pathosystem (Brading et al. 2002; Kema et al. 1996a; Kema et al. 1996c; 

Kema and van Silfhout 1997; Kema et al. 2000; Kema et al. 2017),expressed as compatible or 

incompatible interactions between hosts and pathogen genotypes complying with the gene-for-
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gene (GFG) model, it remained controversial, particularly due to different epidemiological 

perceptions (Van Ginkel and Scharen 1988). Recently, however, the first resistance gene and 

its cognate effector have been cloned thereby functionally proving that GFG underlies the 

interaction between Z. tritici and wheat (Saintenac et al. 2017; Zhong et al. 2017).  

Despite enormous progress over the last decades, the co-evolutionary study between 

wheat and Z. tritici will remain partial if it is not completed with a better underpinning of durum 

wheat resistance to Z. tritici, which is also characterized by presumed GFG interactions 

(Ghaneie et al. 2012; Kema et al. 1996a; Kema et al. 1996b; Kema et al. 1996c; Medini and 

Hamza 2008; Medini et al. 2005). However, notwithstanding the devastating impact of Z. tritici 

on durum wheat production (Brown et al. 2015; Gharbi et al. 2000; Gharbi et al. 2008; Sebei 

and Harrabi 2008), the number of studies on its interaction with Z. tritici is limited. Durum 

wheat has been treated as an orphan crop by the scientific community, which entirely focussed 

on the relationship between bread wheat and Z. tritici. This skewed interest has resulted in 21 

major Stb resistance genes and 167 quantitative trait loci (QTLs) all identified in bread wheat 

and some wild relatives leading to virtually extinct resistance sources in durum wheat (Brown 

et al. 2015).  

Therefore, this thesis has its emphasis on durum wheat resistance and also presents a 

new perception of the fungal biology and (a)biotic stresses in shaping the coevolution between 

Z. tritici and wheat.  

 

The wheat - Zymoseptoria tritici interaction: a door opened   

 
 A long coevolutionary history existst between plants and their associated pathogens in 

which the plant-pathogen interaction is considered to be a biological battlefield where both 

organisms attempt to outwit each other (Stukenbrock and McDonald 2009; Tan et al. 2010).  

Whilst the host builds-up an effective defence response upon the recognition of the pathogen, 

the pathogen coordinates its pathogenicity arsenal to facilitate a successful colonisation of the 

host tissue (Tan and Oliver 2017). The long co-evolutionary history has been a major driving 

force of diversification and speciation in fungal plant pathogens (Ravensdale et al. 2011; 

Stukenbrock and McDonald 2008), where natural selection has resulted in a diverse array of 

recognition and resistance mechanisms in plants (Hammond-Kosack and Parker 2003), and in 

the evolution of pathogen genes to counteract plant defences as well as to promote virulence 

(Stukenbrock and McDonald 2008; Stukenbrock and McDonald 2009). The interactions 
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between durum wheat and Zymoseptoria tritici (Z. tritici) (Desm.) Quaedvl. & Crous (formerly 
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juxtaposed fact that needs to be considered in sustaining durum wheat production and that 

cannot be ignored by breeders that are in a constant search for excelling genotypes (Chen et al. 

2017; Stukenbrock et al. 2011; Stukenbrock and Croll 2014; Stukenbrock and Francis 2014; 

Stukenbrock and McDonald 2008). The co-evolutionary history between wheat and Z. tritici 

has resulted into various levels of resistances that have increased the fitness of germplasm when 

encountering Z. tritici attacks, which are roughly divided in qualitative and quantitative 

resistance (Arraiano et al. 2009; Brown et al. 2015; Cowger et al. 2000; Eyal and Brown 1976; 
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gene (GFG) model, it remained controversial, particularly due to different epidemiological 

perceptions (Van Ginkel and Scharen 1988). Recently, however, the first resistance gene and 

its cognate effector have been cloned thereby functionally proving that GFG underlies the 

interaction between Z. tritici and wheat (Saintenac et al. 2017; Zhong et al. 2017).  

Despite enormous progress over the last decades, the co-evolutionary study between 

wheat and Z. tritici will remain partial if it is not completed with a better underpinning of durum 

wheat resistance to Z. tritici, which is also characterized by presumed GFG interactions 

(Ghaneie et al. 2012; Kema et al. 1996a; Kema et al. 1996b; Kema et al. 1996c; Medini and 

Hamza 2008; Medini et al. 2005). However, notwithstanding the devastating impact of Z. tritici 

on durum wheat production (Brown et al. 2015; Gharbi et al. 2000; Gharbi et al. 2008; Sebei 

and Harrabi 2008), the number of studies on its interaction with Z. tritici is limited. Durum 

wheat has been treated as an orphan crop by the scientific community, which entirely focussed 

on the relationship between bread wheat and Z. tritici. This skewed interest has resulted in 21 

major Stb resistance genes and 167 quantitative trait loci (QTLs) all identified in bread wheat 

and some wild relatives leading to virtually extinct resistance sources in durum wheat (Brown 

et al. 2015).  

Therefore, this thesis has its emphasis on durum wheat resistance and also presents a 

new perception of the fungal biology and (a)biotic stresses in shaping the coevolution between 

Z. tritici and wheat.  

 

The wheat - Zymoseptoria tritici interaction: a door opened   

 
 A long coevolutionary history existst between plants and their associated pathogens in 

which the plant-pathogen interaction is considered to be a biological battlefield where both 

organisms attempt to outwit each other (Stukenbrock and McDonald 2009; Tan et al. 2010).  

Whilst the host builds-up an effective defence response upon the recognition of the pathogen, 

the pathogen coordinates its pathogenicity arsenal to facilitate a successful colonisation of the 

host tissue (Tan and Oliver 2017). The long co-evolutionary history has been a major driving 

force of diversification and speciation in fungal plant pathogens (Ravensdale et al. 2011; 

Stukenbrock and McDonald 2008), where natural selection has resulted in a diverse array of 

recognition and resistance mechanisms in plants (Hammond-Kosack and Parker 2003), and in 

the evolution of pathogen genes to counteract plant defences as well as to promote virulence 

(Stukenbrock and McDonald 2008; Stukenbrock and McDonald 2009). The interactions 
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shaping the age-long molecular arms race between pathogens and their hosts could be proven 

and genetically elucidated by deciphering the GFG model (Rouxel and Balesdent 2017; Thrall 

et al. 2016). Although other mechanisms, such as the matching allele model (MA) (Thrall et al. 

2016), might elucidate host-pathogen interactions, the GFG model has been largely supported 

by genetic data and most convincingly by the isolation and mechanistic understanding of genes 

governing plant immune responses to biotrophic and hemibiotrophic pathogens (Dodds and 

Rathjen 2010; Thrall et al. 2016). 

Since GFG was hypothesized by Flor (1947), based on his foundational work on flax 

and flax rust, tremendous efforts have been directed to quest for molecular and biochemical 

proof of GFG (de Wit et al. 2009; Mirzadi Gohari et al. 2015). The GFG model is defined by 

the congenial interaction of a dominant (a)virulence (Avr) gene in the pathogen, with its 

corresponding (R) resistance gene in the host. The recognition of the Avr protein by its cognate 

R receptor leads to the activation of a cascade of host defence responses that hamper 

colonisation of host tissue by the pathogen (de Wit et al. 2009; Ravensdale et al. 2011). Upon 

contact with their invasive pathogens, several layers of plant defences are activated, starting 

with the recognition of conserved pathogen structures referred to as pathogen-associated 

molecular patterns (PAMPs) by plant receptors that trigger basal defences or PAMP-triggered 

immunity (PTI) (Rouxel and Balesdent 2010, 2017). Successful pathogens could overcome this 

first defence barrier by blocking PTI via the secretion of  specific effector molecules (Jones and 

Dangl 2006; Rouxel and Balesdent 2017). At a specific phase, the plant defence surveillance 

machinery is activated to recognize the effectors, by the so-called effector-triggered immunity 

(ETI), where classically a plant resistance (R) protein directly or indirectly interacts with a 

cognate pathogen (a)virulence (Avr) effector protein (Rouxel and Balesdent 2017). 

Effectors are commonly defined as small secreted molecules from a microbe that can 

alter host cell structure and function, facilitating infection, such as host-selective toxins in 

necrotrophic fungi (Friesen et al. 2008), and/or trigger defence responses, known as 

(a)virulence factors, such as in biotrophic fungi (Selin et al. 2016; Tan and Oliver 2017). Several 

bacterial, fungal and oomycetes effector genes have been studied and functionally 

characterized. The first Avr effector gene was cloned in 1984 and was derived from the bacteria 

Pseudomonas syringae pv. glycinea,  (de Wit et al. 2009; Staskawicz et al. 1984). The first 

fungal avirulence gene Avr9 of Cladosporium fulvum, the causal agent of tomato leaf mold, 

was cloned  in 1991 (de Wit et al. 2009; van Kan et al. 1991). After a decade, the Avr1b locus 

of the oomycete, Phytophthora sojae, was identified and cloned (de Wit et al. 2009; Shan et al. 
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2004). Ever since and with the prodigious advances in “omics” technologies, the identification 

of (a)virulence genes has been accelerating. At present, at least 35 Avr effector genes have been 

cloned from filamentous fungi infecting a wide variety of agronomically important crops 

(Bourras et al. 2016b; Zhong et al. 2017).  

Several levels of complexity are detected from the standard GFG model elucidated by 

the cloned avirulence genes in C. fulvum and Leptosphaeria maculans, where single Avr genes 

are recognized by their cognate resistance genes (Bourras et al. 2016a; Hayward et al. 2012; 

Wulff et al. 2009) to the recognition of a single Avr by multiple R genes such as the case for 

the Avr-Pik/km/kp in Magnaporthe oryzae (Yoshida et al. 2009) and in Melampsora lini 

secreting the AvrL567 and AvrP123 effector genes (Ravensdale et al. 2012). Other effector 

genes have, however, a divergent action such as the suppression of the recognition of other 

resistance genes as illustrated by the Avr1 effector gene encoded by Fusarium oxysporum f. sp. 

lycopersici, which is recognized by the tomato gene I-1, but also acts as a suppressor of the 

recognition of Avr2 and Avr3 by I-2 and I-3, respectively (Bourras et al. 2016a; Houterman et 

al. 2008). Therefore, abundant studies have led to an extended body of knowledge about the 

role of effectors as an expression of the “extended phenotype” and their impact in the host plants 

(Oliver and Solomon 2010; Vleeshouwers and Oliver 2014). The translation of this research 

has successfully embraced effectors for breeding purposes as illustrated in potato breeding for 

P. infestans resistance, and many other examples (Nejat et al. 2017; Zhang and Coaker 2017), 

in which “effectoromics” plays a potent role in R gene postulation  (Vleeshouwers and Oliver 

2014; Vleeshouwers et al. 2011),  

Nonetheless, effector-driven wheat breeding for Z. tritici has yet to start. Zymoseptoria 

tritici produces diverse arrays of small secreted proteins throughout the interaction with its host, 

which have been partly functionally analysed and characterized (Kettles and Kanyuka 2016; 

Mirzadi Gohari et al. 2015; Morais do Amaral et al. 2012; Rudd et al. 2015). Quite a few 

proteins have been described that contribute to Z. tritici pathogenesis on wheat (Kettles et al. 

2017). Two effectors, MgNLP and Mg3LysM, have been identified in Z. tritici with a confirmed 

implication during the two lifestyle phases that are characteristic of the hemibiotrophic nature 

of Z. tritici. MgNLP represents a unique gene and is a member of the necrosis- and ethylene-

inducing peptide 1 (Nep1)-like protein family (NLP). It is highly expressed during the 

immediate pre-symptomatic phase of colonization in a susceptible host, with a subsequent 

drastic decrease during disease lesion formation. However, deletion of this gene in Z. tritici 

does not affect pathogenicity or virulence, suggesting that this gene does not play a major direct 
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P. infestans resistance, and many other examples (Nejat et al. 2017; Zhang and Coaker 2017), 

in which “effectoromics” plays a potent role in R gene postulation  (Vleeshouwers and Oliver 

2014; Vleeshouwers et al. 2011),  

Nonetheless, effector-driven wheat breeding for Z. tritici has yet to start. Zymoseptoria 

tritici produces diverse arrays of small secreted proteins throughout the interaction with its host, 

which have been partly functionally analysed and characterized (Kettles and Kanyuka 2016; 

Mirzadi Gohari et al. 2015; Morais do Amaral et al. 2012; Rudd et al. 2015). Quite a few 

proteins have been described that contribute to Z. tritici pathogenesis on wheat (Kettles et al. 

2017). Two effectors, MgNLP and Mg3LysM, have been identified in Z. tritici with a confirmed 

implication during the two lifestyle phases that are characteristic of the hemibiotrophic nature 

of Z. tritici. MgNLP represents a unique gene and is a member of the necrosis- and ethylene-

inducing peptide 1 (Nep1)-like protein family (NLP). It is highly expressed during the 

immediate pre-symptomatic phase of colonization in a susceptible host, with a subsequent 

drastic decrease during disease lesion formation. However, deletion of this gene in Z. tritici 

does not affect pathogenicity or virulence, suggesting that this gene does not play a major direct 
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role during the fungal infection of its host (Motteram et al. 2009). The Z. tritici genome contains 

also three homologs of the extracellular protein 6 (Ecp6), the Lysin (LysM) domain-containing 

effector from the biotrophic tomato leaf mould fungus C. fulvum, which interferes with chitin-

triggered immunity in plants. The molecular and functional characterization of the three LysM 

homologs in Z. tritici have revealed that Mg3LysM and Mg1LysM were specifically up-

regulated during the symptomless phase. Uniquely, Mg3LysM blocks the elicitation of chitin-

induced plant defences, and has shown to be a virulence factor (Marshall et al. 2011). Recently, 

a study that combined bioinformatics approaches with expression profiling (Mirzadi Gohari et 

al., (2015) has revealed a number of putative effectors that are up-regulated during pathogenesis 

of Z. tritici and two top candidates, SSP15 and SSP18, were functionally analysed but appeared 

to be dispensable for pathogenicity. The first proteinaceous toxins ZtNIP1 and ZtNIP2 of  Z. 

tritici were described by Ben M'Barek et al. (2015a) and induce cell death and chlorosis, 

respectively, on some wheat cultivars, although the mechanism and contribution to virulence 

has yet to be elucidated (Kettles et al. 2017).  

In spite of these substantial efforts, the molecular details of the Z. tritici – wheat 

interaction remain to be unravelled and many questions require a deeper understanding of this 

atypical pathosystem (Rudd 2015). Elucidating the hidden genetic factors underlying GFG in 

the Z. tritici – wheat pathosystem is among these quests that have been studied for long and 

was finally opened-up during this thesis work. In chapter 2, we describe an in-depth study of 

the Z. tritici effector Avrstb6, that interacts with the widely disseminated resistance gene Stb6 

(Brading et al. 2002) by using classical genetics, bioinformatics and functional characterization 

approaches. Resistance gene Stb6 is located at the distal end of chromosome 3AS, and confers 

resistance to the Dutch Z. tritici isolate IPO323, which is present in cvs. Flame and Hereward 

(McCartney et al. 2003), and was subsequently also identified in about 15% of the European 

germplasm as well as in Chinese Spring, a selection from a landrace that is the model variety 

of wheat cytogenetics (Arraiano and Brown 2006; Chartrain et al. 2005). Our investigations in 

the architecture of the Z. tritici resistance in contemporary Italian durum wheat cultivars has 

also proven the presence of genetic regions associated with Stb6 (chapter 5). Hence, the 

abundance of this gene in bread wheat cultivars and durum wheats made the identification of 

AvrStb6 even more interesting, particularly since Stb6 was recently cloned (Saintenac et al. 

2017) .  

Previous studies to identify Z. tritici effectors were biased by inappropriate techniques, 

unfitting standard qualifiers for the effectors, and most prominently a poor quality of the 
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genome annotation (Mirzadi Gohari et al. 2015; Rudd et al. 2015). During our study, we 

combined a map-based approach, DArT sequencing and functional analysis using a corrected 

genome annotation which almost immediately yielded the successful identification of the Z. 

tritici AvrStb6 effector gene. Previous studies deploying genetics approaches have been also 

effective in mapping QTLs containing Z. tritici effectors (Lendenmann et al. 2015; 

Lendenmann et al. 2016). Thus, an effective unveiling of Z. tritici effectors requires an 

improved annotation of the Z. tritici genome and a mixed suite of genetic techniques and 

“omics” techniques. The improved annotation of the Z. tritici genome also facilitates genome 

wide association (GWAS) approaches that were recently shown to be very successful in the 

identification of AvrStb6 (Zhong et al. 2017), which surely will lead to the discovery of a 

plethora of new effectors in the Z. tritici genome. 

The unveiled AvrStb6 effector gene encodes a small, cysteine-rich, secreted protein, 

located in a highly polymorphic distal part of chromosome 5, which is packed with transposable 

elements and shares effector structures described in other fungi (De Wit 2016; de Wit et al. 

2009; Rouxel and Balesdent 2010; Stergiopoulos and de Wit 2009). The highly polymorphic 

region comprising AvrStb6 fits the “two-speed genome” hypothesis (Faino et al. 2016) involved 

in rapid evolution to overcome the Stb6 gene (Zhong et al. 2017). Expression profiling of the 

identified effector suggests that it is operating during the latent phase of the infection, which 

suggests an important role during the switch from the biotrophic phase to the necrotrophic phase 

of pathogenesis. However, a firm conclusion cannot be drawn and further investigations are 

required to answer whether AvrStb6 plays a key role in inducing necrosis and thus to the switch 

between both stages. A protein infiltration assay would be an alternative to  give us more 

insights and to answer this question (Solomon 2017). 

Undoubtedly, the characterization of the AvrStb6 effector gene provides the first key 

step towards dissecting this complex quantitative disease (Solomon 2017). The recent cloning 

of Stb6 revealed that it is a wall-associated receptor kinase (Saintenac et al. 2017), which 

emphasizes the hypothesis that AvrStb6 is recognized at the plant cell surface leading to an 

Effector-Triggered-Defence (ETD). Therefore, further investigations into the molecular 

interaction between AvrStb6 and Stb6, which was not addressed in our study, are required to 

increase our understanding of STB. 
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role during the fungal infection of its host (Motteram et al. 2009). The Z. tritici genome contains 

also three homologs of the extracellular protein 6 (Ecp6), the Lysin (LysM) domain-containing 

effector from the biotrophic tomato leaf mould fungus C. fulvum, which interferes with chitin-

triggered immunity in plants. The molecular and functional characterization of the three LysM 

homologs in Z. tritici have revealed that Mg3LysM and Mg1LysM were specifically up-

regulated during the symptomless phase. Uniquely, Mg3LysM blocks the elicitation of chitin-

induced plant defences, and has shown to be a virulence factor (Marshall et al. 2011). Recently, 

a study that combined bioinformatics approaches with expression profiling (Mirzadi Gohari et 

al., (2015) has revealed a number of putative effectors that are up-regulated during pathogenesis 

of Z. tritici and two top candidates, SSP15 and SSP18, were functionally analysed but appeared 

to be dispensable for pathogenicity. The first proteinaceous toxins ZtNIP1 and ZtNIP2 of  Z. 

tritici were described by Ben M'Barek et al. (2015a) and induce cell death and chlorosis, 

respectively, on some wheat cultivars, although the mechanism and contribution to virulence 

has yet to be elucidated (Kettles et al. 2017).  

In spite of these substantial efforts, the molecular details of the Z. tritici – wheat 

interaction remain to be unravelled and many questions require a deeper understanding of this 

atypical pathosystem (Rudd 2015). Elucidating the hidden genetic factors underlying GFG in 

the Z. tritici – wheat pathosystem is among these quests that have been studied for long and 

was finally opened-up during this thesis work. In chapter 2, we describe an in-depth study of 

the Z. tritici effector Avrstb6, that interacts with the widely disseminated resistance gene Stb6 

(Brading et al. 2002) by using classical genetics, bioinformatics and functional characterization 

approaches. Resistance gene Stb6 is located at the distal end of chromosome 3AS, and confers 

resistance to the Dutch Z. tritici isolate IPO323, which is present in cvs. Flame and Hereward 

(McCartney et al. 2003), and was subsequently also identified in about 15% of the European 

germplasm as well as in Chinese Spring, a selection from a landrace that is the model variety 

of wheat cytogenetics (Arraiano and Brown 2006; Chartrain et al. 2005). Our investigations in 

the architecture of the Z. tritici resistance in contemporary Italian durum wheat cultivars has 

also proven the presence of genetic regions associated with Stb6 (chapter 5). Hence, the 

abundance of this gene in bread wheat cultivars and durum wheats made the identification of 

AvrStb6 even more interesting, particularly since Stb6 was recently cloned (Saintenac et al. 

2017) .  

Previous studies to identify Z. tritici effectors were biased by inappropriate techniques, 

unfitting standard qualifiers for the effectors, and most prominently a poor quality of the 
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genome annotation (Mirzadi Gohari et al. 2015; Rudd et al. 2015). During our study, we 

combined a map-based approach, DArT sequencing and functional analysis using a corrected 

genome annotation which almost immediately yielded the successful identification of the Z. 

tritici AvrStb6 effector gene. Previous studies deploying genetics approaches have been also 

effective in mapping QTLs containing Z. tritici effectors (Lendenmann et al. 2015; 

Lendenmann et al. 2016). Thus, an effective unveiling of Z. tritici effectors requires an 

improved annotation of the Z. tritici genome and a mixed suite of genetic techniques and 

“omics” techniques. The improved annotation of the Z. tritici genome also facilitates genome 

wide association (GWAS) approaches that were recently shown to be very successful in the 

identification of AvrStb6 (Zhong et al. 2017), which surely will lead to the discovery of a 

plethora of new effectors in the Z. tritici genome. 

The unveiled AvrStb6 effector gene encodes a small, cysteine-rich, secreted protein, 

located in a highly polymorphic distal part of chromosome 5, which is packed with transposable 

elements and shares effector structures described in other fungi (De Wit 2016; de Wit et al. 

2009; Rouxel and Balesdent 2010; Stergiopoulos and de Wit 2009). The highly polymorphic 

region comprising AvrStb6 fits the “two-speed genome” hypothesis (Faino et al. 2016) involved 

in rapid evolution to overcome the Stb6 gene (Zhong et al. 2017). Expression profiling of the 

identified effector suggests that it is operating during the latent phase of the infection, which 

suggests an important role during the switch from the biotrophic phase to the necrotrophic phase 

of pathogenesis. However, a firm conclusion cannot be drawn and further investigations are 

required to answer whether AvrStb6 plays a key role in inducing necrosis and thus to the switch 

between both stages. A protein infiltration assay would be an alternative to  give us more 

insights and to answer this question (Solomon 2017). 

Undoubtedly, the characterization of the AvrStb6 effector gene provides the first key 

step towards dissecting this complex quantitative disease (Solomon 2017). The recent cloning 

of Stb6 revealed that it is a wall-associated receptor kinase (Saintenac et al. 2017), which 

emphasizes the hypothesis that AvrStb6 is recognized at the plant cell surface leading to an 

Effector-Triggered-Defence (ETD). Therefore, further investigations into the molecular 

interaction between AvrStb6 and Stb6, which was not addressed in our study, are required to 

increase our understanding of STB. 
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The wheat - Zymoseptoria tritici interaction: Survival of the fittest  

 
Host and pathogen diversity are driven by their constant and long evolutionary 

interaction (Ravensdale et al. 2011; Rouxel and Balesdent 2017). Despite substantial advances 

in our understanding of these interactions at both the molecular and population levels,  major 

questions are unresolved regarding the mechanisms of host resistance and pathogen virulence, 

their variation in space and time, and their long-term effect on host–pathogen co-evolution 

(Ravensdale et al. 2011). Our findings in chapter 2 have shed new light on the epidemiology 

of Z. tritici and most likely on many other pathogens. The Exclusive Paternal Parenthood (EPP) 

mechanism, includes the sexual reproduction of (a)virulent Z. tritici strains that comes down to 

the loss of the genotype, but the maintenance of the Avr loci in the population. This contradicts 

the assumed aspect in botanical epidemiology that (a)virulent strains are removed from the 

population as they cannot reproduce asexually. Hence, the classical view on botanical 

epidemiology, where allele frequencies of plants and pathogens are subject to variation relying 

on the selection forces that shape their abundance, resulting in boom-and-bust cycles such as 

for the wheat rusts (Brown and Tellier 2011), does not apply for Z. tritici and likely many other 

Dothideomycetes and has important implications for durability of resistance. The EPP model 

better explains several real-world farming observations as overcoming host resistance takes 

more time and host resistance would only be defeated when the frequency of virulence isolates 

passes a critical threshold and becomes established on a hitherto resistant cultivar (Brown 

2015). Thus, we could better relate the longevity of Stb genes and QTLs, where hardly an abrupt 

collapse has been reported or observed, resulting in the observation that an Stb resistance gene 

would be effective for an average of a decade, before its breakdown (Brown 2015; Cuthbert 

2011; Czembor et al. 2011). Nonetheless, agricultural landscapes based on monoculture and the 

intensive use of identical resistance sources would facilitate adaptation of Z. tritici, which has 

a very active sexual cycle, through the development of recombinant genotypes that eventually 

could overcome resistance (Croll and McDonald 2016; McDonald and Linde 2002a, b; 

McDonald and Mundt 2016; McDonald and Stukenbrock 2016). However, this should also be 

addressed in epidemiological studies and the careful monitoring of the occurrence of virulent 

strains upon hitherto effective Stb genes. Since Stb16q has now been introduced in commercial 

wheat cultivars in Europe, such as in cv. Cellule, these studies now become feasible. The EPP 

model better enlightens the observations of Tellier and Brown (2007) where the virulence build-

up rate is observed together with the occurrence of polymorphisms in an agricultural system as 
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a result of human selection forces, but a stable and cyclic polymorphism occurs in natural 

systems, where external selection forces are almost extinct. Similar observations were reported 

in several other studies (Brown 2015; McDonald and Linde 2002a) and are supported by the 

EPP model. The model also better explains the rapid dissemination of the QoI resistance in 

European Z. tritici populations  (Torriani et al. 2009) as our data prove that when QoI sensitive 

strains still contribute to the sexual reproduction, the mitochondrially inherited cytb resistance 

allele invades faster than any nuclear inherited fungicide resistance. 

Recently, Grandaubert et al. (2017) showed that sexual reproduction plays a central role 

in Z. tritici protein evolution and thus in the rate of genomic adaptation. Positive selection for 

genes encoding secreted proteins and putative virulence determinants is crucial to successfully 

overcome host defences or avoid host recognition. This observation matches the EPP model 

where diversifying selection for Avr effector genes would occur when an (a)virulent isolate can 

partake in sexual recombination with a virulent isolate. A similar observation has also been 

made in other fungal pathogens (Dodds and Thrall 2009; Endo et al. 1996) as pathogens can 

undergo sexual reproduction to accede favorable genes that will increase their fitness to invade 

and circumvent host resistances. A recent study illustrates the battlefield between wheat and Z. 

tritici by investigating the effect of host resistance on the genetic structure of an Irish Z. tritici 

populations. It showed that the effect of host resistance selection is minor compared with  sexual 

reproduction, thus denying the assumption that R genes constitute selection forces to remove 

avirulent isolates from the population (Welch et al. 2017).  

In conclusion, it is time to initiate studies on the impact of EPP on the structure of natural 

Z. tritici populations and other cereal pathogens, which truly will help to improve disease and 

resistance management in various crops.  

 

Zymoseptoria tritici and wheat: How knowledge of pathogen genetics 

supports breeding for STB resistance 

 
Understanding the genetic architecture of individual pathogens and subsequently the 

detailed genetic dynamics of whole populations has been the focus of efforts to develop more 

effective means of controlling the long-term disease resistance to crop pathogens (Jacobs and 

Parlevliet 2012). Over nearly 30 years, several studies have been conducted to elucidate the 

population biology of Z. tritici, their epidemiological cycles and the fungal genetic factors 
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in our understanding of these interactions at both the molecular and population levels,  major 

questions are unresolved regarding the mechanisms of host resistance and pathogen virulence, 

their variation in space and time, and their long-term effect on host–pathogen co-evolution 

(Ravensdale et al. 2011). Our findings in chapter 2 have shed new light on the epidemiology 

of Z. tritici and most likely on many other pathogens. The Exclusive Paternal Parenthood (EPP) 

mechanism, includes the sexual reproduction of (a)virulent Z. tritici strains that comes down to 

the loss of the genotype, but the maintenance of the Avr loci in the population. This contradicts 

the assumed aspect in botanical epidemiology that (a)virulent strains are removed from the 

population as they cannot reproduce asexually. Hence, the classical view on botanical 

epidemiology, where allele frequencies of plants and pathogens are subject to variation relying 

on the selection forces that shape their abundance, resulting in boom-and-bust cycles such as 

for the wheat rusts (Brown and Tellier 2011), does not apply for Z. tritici and likely many other 

Dothideomycetes and has important implications for durability of resistance. The EPP model 

better explains several real-world farming observations as overcoming host resistance takes 

more time and host resistance would only be defeated when the frequency of virulence isolates 

passes a critical threshold and becomes established on a hitherto resistant cultivar (Brown 

2015). Thus, we could better relate the longevity of Stb genes and QTLs, where hardly an abrupt 

collapse has been reported or observed, resulting in the observation that an Stb resistance gene 

would be effective for an average of a decade, before its breakdown (Brown 2015; Cuthbert 

2011; Czembor et al. 2011). Nonetheless, agricultural landscapes based on monoculture and the 

intensive use of identical resistance sources would facilitate adaptation of Z. tritici, which has 

a very active sexual cycle, through the development of recombinant genotypes that eventually 

could overcome resistance (Croll and McDonald 2016; McDonald and Linde 2002a, b; 

McDonald and Mundt 2016; McDonald and Stukenbrock 2016). However, this should also be 

addressed in epidemiological studies and the careful monitoring of the occurrence of virulent 

strains upon hitherto effective Stb genes. Since Stb16q has now been introduced in commercial 

wheat cultivars in Europe, such as in cv. Cellule, these studies now become feasible. The EPP 

model better enlightens the observations of Tellier and Brown (2007) where the virulence build-

up rate is observed together with the occurrence of polymorphisms in an agricultural system as 
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a result of human selection forces, but a stable and cyclic polymorphism occurs in natural 

systems, where external selection forces are almost extinct. Similar observations were reported 

in several other studies (Brown 2015; McDonald and Linde 2002a) and are supported by the 

EPP model. The model also better explains the rapid dissemination of the QoI resistance in 

European Z. tritici populations  (Torriani et al. 2009) as our data prove that when QoI sensitive 

strains still contribute to the sexual reproduction, the mitochondrially inherited cytb resistance 

allele invades faster than any nuclear inherited fungicide resistance. 

Recently, Grandaubert et al. (2017) showed that sexual reproduction plays a central role 

in Z. tritici protein evolution and thus in the rate of genomic adaptation. Positive selection for 

genes encoding secreted proteins and putative virulence determinants is crucial to successfully 

overcome host defences or avoid host recognition. This observation matches the EPP model 

where diversifying selection for Avr effector genes would occur when an (a)virulent isolate can 

partake in sexual recombination with a virulent isolate. A similar observation has also been 

made in other fungal pathogens (Dodds and Thrall 2009; Endo et al. 1996) as pathogens can 

undergo sexual reproduction to accede favorable genes that will increase their fitness to invade 

and circumvent host resistances. A recent study illustrates the battlefield between wheat and Z. 

tritici by investigating the effect of host resistance on the genetic structure of an Irish Z. tritici 

populations. It showed that the effect of host resistance selection is minor compared with  sexual 

reproduction, thus denying the assumption that R genes constitute selection forces to remove 

avirulent isolates from the population (Welch et al. 2017).  

In conclusion, it is time to initiate studies on the impact of EPP on the structure of natural 

Z. tritici populations and other cereal pathogens, which truly will help to improve disease and 

resistance management in various crops.  

 

Zymoseptoria tritici and wheat: How knowledge of pathogen genetics 

supports breeding for STB resistance 

 
Understanding the genetic architecture of individual pathogens and subsequently the 

detailed genetic dynamics of whole populations has been the focus of efforts to develop more 

effective means of controlling the long-term disease resistance to crop pathogens (Jacobs and 

Parlevliet 2012). Over nearly 30 years, several studies have been conducted to elucidate the 

population biology of Z. tritici, their epidemiological cycles and the fungal genetic factors 
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deployed to invade and cause diseases in wheat (McDonald and Mundt 2016). Several studies 

have dissected the molecular characterization of the major events occurring during the Z. tritici 

infection of wheat which has yielded a more thorough understanding of disease progress (Ben 

M’Barek et al. 2015a; Ben M’Barek et al. 2015b; Gohari 2015; Kettles et al. 2017; Kettles and 

Kanyuka 2016; Mirzadi Gohari et al. 2015). Albeit that the mode of action of Z. tritici effectors 

to infect plant cells remains intriguing, characterized isolates have furnished the postulation for 

resistance genes in bread wheat (Tabib Ghaffary 2011). Substantial progress has been made 

over the last 20 years in the genetics of resistance to Z. tritici. Nowadays, bread wheat 

germplasm accounts for several sources of resistance and additionally a number of exotic as 

well as synthetic wheat genotypes have been identified as good sources of STB resistance 

(Kettles and Kanyuka 2016). Alike many other fungal diseases, both qualitative and quantitative 

resistances to STB occur in wheat (Arraiano et al. 2009; Arraiano and Brown 2006). At least 

20 distinct Stb genes have been identified, which frequently have an isolate-specific efficacy. 

Up-to-date, solely the Stb16q gene has revealed a wide spectrum of resistance to a plethora of 

Z. tritici isolates. Stb6 is one of the better-characterized resistance genes that was recently 

cloned (Saintenac et al. 2017). Throughout the Z. tritici breeding history, some major Stb genes 

have been noted to last longer than others. For instance, US wheat breeders have been actively 

deploying two major resistance genes, Stb1 and Stb4, since the early 1970s (Goodwin 2007). 

Whilst Stb1 provided a long-lasting resistance to wheat in the central USA, Stb4 only remained 

effective in California for about 15 years before a noted reduced effectiveness of this gene 

(Jackson et al. 1990). Efficacy of the other known Stb genes against natural populations of Z. 

tritici are undetermined (Kettles and Kanyuka 2016). It is also still enigmatic what makes some 

Stb genes more effective than others, but our developed EPP model could very well explain 

these differences. Moreover, the recent isolation of Stb6 and AvrStb6 enables research into the 

cost of fitness of (a)virulent isolates to resistant host genotypes. Evidently, assessing the 

frequencies of avirulence towards known Stb genes in field populations of the fungus, that 

currently are unknown, would provide us with better insights on the durability of Stb resistance 

genes and their combinations (Kettles and Kanyuka 2016; Leach et al. 2001). Notably, some 

bread wheat genotypes carrying more than three isolate-specific Stb genes have been considered 

as major sources of resistance to STB, such as cvs. Kavkaz-K4500, TE9111 and Veranopolis 

(Chartrain et al. 2004; Kollers et al. 2013), which emphasizes the importance of pyramiding as 

an effective strategy to ensure durability of disease resistance (Brown 2015; Mundt 2014). 

Moreover, the 167 QTLs that have been identified and mapped in a total of 19 bi-parental 

General discussion                                                     Durum wheat and septoria tritici blotch 
 
 
mapping populations (Brown et al. 2015; Goudemand et al. 2013; Kettles and Kanyuka 2016), 

contribute to valuable genetic variation for resistance breeding, despite the limited efficacy to 

just a few Z. tritici isolates or the partial resistance. 

Despite the significance of the detected STB resistance loci, it remains a challenge to 

enhance the resistance levels of wheat cultivars because of the mostly quantitative nature of 

wheat-Z. tritici interactions and of the very high level of genetic diversity within pathogen 

populations (Ghaffary 2011; Marcel et al. 2017). This holds for bread wheat breeding and even 

more for durum wheat breeding, where the initial data on diversity are presented in this thesis.  

Translating the advanced known-how from the bread wheat pathosystem to durum wheat firstly 

required a better characterisation of the pathogenicity and specificity of durum wheat derived 

isolates. The availability of the fully sequenced genome of the durum wheat derived reference 

isolate IPO95052 is a good starting point for in-depth studies focusing on the genetics of the 

durum wheat Z. tritici interaction and populations genetics. A major point of attention should 

be the species specificity that was observed since the 1970s (Eyal et al. 1973; Kema et al. 1996a; 

Kema et al. 1996c; Kema and van Silfhout 1997) and can be addressed by the further analyses 

of crosses between Z. tritici isolates that are specific for durum wheat or bread wheat such as 

the cross between the reference strains IPO323 and IPO95052 (Ware 2006).  

 

Genetic makeup of durum wheat resistance to STB: The drastic effect of an 

intensive selection pressure 

 
This thesis is a start of unveiling durum wheat resistance to Z. tritici. An efficient use of 

biodiversity in breeding programs is imperative for improving STB resistance in these wheats. 

Therefore, we had planned to decipher STB resistance in tetraploid wheats, representing part of 

the evolutionary track of durum wheat from cultivated emmer (Chapter 3) to landraces 

(Chapter 4) to contemporary cultivars (Chapter 5). During these trials, we also surveyed a 

large number of durum derived Z. tritici isolates, which comprised a first characterisation of 

durum pathotypes and also enabled an accurate selection of the deployed strains for the genetic 

studies.  

Wild wheat relatives have been frequently deployed in breeding programs to improve 

the fitness of contemporary germplasm to encounter (a)biotic stresses  (Monneveux et al. 2000; 

Prat et al. 2014; Reynolds et al. 2007; Sheikh et al. 2017; Wang et al. 2017; Wulff and Moscou 
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deployed to invade and cause diseases in wheat (McDonald and Mundt 2016). Several studies 

have dissected the molecular characterization of the major events occurring during the Z. tritici 

infection of wheat which has yielded a more thorough understanding of disease progress (Ben 

M’Barek et al. 2015a; Ben M’Barek et al. 2015b; Gohari 2015; Kettles et al. 2017; Kettles and 

Kanyuka 2016; Mirzadi Gohari et al. 2015). Albeit that the mode of action of Z. tritici effectors 

to infect plant cells remains intriguing, characterized isolates have furnished the postulation for 

resistance genes in bread wheat (Tabib Ghaffary 2011). Substantial progress has been made 

over the last 20 years in the genetics of resistance to Z. tritici. Nowadays, bread wheat 

germplasm accounts for several sources of resistance and additionally a number of exotic as 

well as synthetic wheat genotypes have been identified as good sources of STB resistance 

(Kettles and Kanyuka 2016). Alike many other fungal diseases, both qualitative and quantitative 

resistances to STB occur in wheat (Arraiano et al. 2009; Arraiano and Brown 2006). At least 

20 distinct Stb genes have been identified, which frequently have an isolate-specific efficacy. 

Up-to-date, solely the Stb16q gene has revealed a wide spectrum of resistance to a plethora of 

Z. tritici isolates. Stb6 is one of the better-characterized resistance genes that was recently 

cloned (Saintenac et al. 2017). Throughout the Z. tritici breeding history, some major Stb genes 

have been noted to last longer than others. For instance, US wheat breeders have been actively 

deploying two major resistance genes, Stb1 and Stb4, since the early 1970s (Goodwin 2007). 

Whilst Stb1 provided a long-lasting resistance to wheat in the central USA, Stb4 only remained 

effective in California for about 15 years before a noted reduced effectiveness of this gene 

(Jackson et al. 1990). Efficacy of the other known Stb genes against natural populations of Z. 

tritici are undetermined (Kettles and Kanyuka 2016). It is also still enigmatic what makes some 

Stb genes more effective than others, but our developed EPP model could very well explain 

these differences. Moreover, the recent isolation of Stb6 and AvrStb6 enables research into the 

cost of fitness of (a)virulent isolates to resistant host genotypes. Evidently, assessing the 

frequencies of avirulence towards known Stb genes in field populations of the fungus, that 

currently are unknown, would provide us with better insights on the durability of Stb resistance 

genes and their combinations (Kettles and Kanyuka 2016; Leach et al. 2001). Notably, some 

bread wheat genotypes carrying more than three isolate-specific Stb genes have been considered 

as major sources of resistance to STB, such as cvs. Kavkaz-K4500, TE9111 and Veranopolis 

(Chartrain et al. 2004; Kollers et al. 2013), which emphasizes the importance of pyramiding as 

an effective strategy to ensure durability of disease resistance (Brown 2015; Mundt 2014). 

Moreover, the 167 QTLs that have been identified and mapped in a total of 19 bi-parental 
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mapping populations (Brown et al. 2015; Goudemand et al. 2013; Kettles and Kanyuka 2016), 

contribute to valuable genetic variation for resistance breeding, despite the limited efficacy to 

just a few Z. tritici isolates or the partial resistance. 

Despite the significance of the detected STB resistance loci, it remains a challenge to 

enhance the resistance levels of wheat cultivars because of the mostly quantitative nature of 

wheat-Z. tritici interactions and of the very high level of genetic diversity within pathogen 

populations (Ghaffary 2011; Marcel et al. 2017). This holds for bread wheat breeding and even 

more for durum wheat breeding, where the initial data on diversity are presented in this thesis.  

Translating the advanced known-how from the bread wheat pathosystem to durum wheat firstly 

required a better characterisation of the pathogenicity and specificity of durum wheat derived 

isolates. The availability of the fully sequenced genome of the durum wheat derived reference 

isolate IPO95052 is a good starting point for in-depth studies focusing on the genetics of the 

durum wheat Z. tritici interaction and populations genetics. A major point of attention should 

be the species specificity that was observed since the 1970s (Eyal et al. 1973; Kema et al. 1996a; 

Kema et al. 1996c; Kema and van Silfhout 1997) and can be addressed by the further analyses 

of crosses between Z. tritici isolates that are specific for durum wheat or bread wheat such as 

the cross between the reference strains IPO323 and IPO95052 (Ware 2006).  

 

Genetic makeup of durum wheat resistance to STB: The drastic effect of an 

intensive selection pressure 

 
This thesis is a start of unveiling durum wheat resistance to Z. tritici. An efficient use of 

biodiversity in breeding programs is imperative for improving STB resistance in these wheats. 

Therefore, we had planned to decipher STB resistance in tetraploid wheats, representing part of 

the evolutionary track of durum wheat from cultivated emmer (Chapter 3) to landraces 

(Chapter 4) to contemporary cultivars (Chapter 5). During these trials, we also surveyed a 

large number of durum derived Z. tritici isolates, which comprised a first characterisation of 

durum pathotypes and also enabled an accurate selection of the deployed strains for the genetic 

studies.  

Wild wheat relatives have been frequently deployed in breeding programs to improve 

the fitness of contemporary germplasm to encounter (a)biotic stresses  (Monneveux et al. 2000; 

Prat et al. 2014; Reynolds et al. 2007; Sheikh et al. 2017; Wang et al. 2017; Wulff and Moscou 
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2014). Remarkably, a large number of resistance genes to the most hazardous fungal diseases 

has been derived from the cultivated emmer Triticum tugidum ssp. dicoccum (Buerstmayr et al. 

2012; Faris et al. 2010; Piarulli et al. 2012; Zhang et al. 2014). It has been recognized that 12  

leaf rust resistance genes and 20 stem rust resistance genes originate from progenitors of 

cultivated wheat species (Monneveux et al. 2000). Emmer wheat is currently grown as a minor 

crop in Ethiopia, India, Italy, Turkey, France and Iran and used primarily for cultural reasons. 

However, the interest in these species has recently increased because of the demand for 

speciality breads and beers as well as due to lower requirements of nitrogen fertilizers and crop 

protection chemicals (Gooding 2009; Shevkani et al. 2017). In our attempt to better understand 

STB resistance in durum wheat, we firstly investigated the genetics of Z. tritici resistance in a 

mapping population (BP025 population) derived from a cross between the emmer wheat 

(PI41025) and the contemporary cultivar Ben (chapter 3). The pre-screening of PI41025 and 

cv. Ben with a plethora of durum derived Z. tritici isolates has revealed a broad resistance of 

the emmer accession, in contrast to the contemporary cv. Ben that exposed an overall high 

susceptibility. A subsequent study in the derived Recombinant Inbred Lines (RILs) resulted in 

the identification of a major and novel quantitative trait locus, designed as Stb22q that is derived 

from PI41025, and mapped at chromosome 3AL. However, Stb22q only confers a broad 

resistance spectrum for pycnidia coverage in the seedling stage as necrosis levels were 

invariably high. An additional minor QTL on chromosome 5A, distinct from Stb17, has been 

also identified in the BP025 population and provides resistance to isolates IPO91009 and 

IIB123, hence has a narrow efficacy, and is derived from the susceptible contemporary cv. Ben. 

As shown in chapters 4 and 5, pyramiding such QTLs also leads to acceptable levels of STB 

resistance, similar to other studies (Berraies et al. 2014; Ghaffary 2011; Ghaffary et al. 2011; 

Kelm et al. 2012; Kidane et al. 2017; Tuberosa 2014). 

Our findings emphasize that wild relatives of wheat represent a diverse gene pool 

containing novel and potentially effective resistances to wheat diseases. Breeding for Z. tritici 

resistance in bread wheat using synthetic wheat hexaploids, derived from tetraploid ancestors 

and the recently sequenced Aegilops tauschii (Zimin et al. 2017), has also been proven as a 

valuable resource for common wheat improvement (Yang et al. 2009). For Z. tritici, Stb16q that 

originates from the synthetic hexaploid M3 (W-7976) (Ghaffary et al. 2012) has the widest 

efficacy. The result of chapter 3, is a proof that major and wide spectrum resistance do 

simultaneously occur in tetraploid wheat. Stb22q is the first major QTL identified in durum 

wheat with a wide efficacy and is therefore an important discovery that will facilitate the release 
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of new STB resistant durum wheat varieties. Albeit the demonstrated value of Stb22q, 

subsequent field trials and adult plant tests are required to verify its broad efficacy in the adult 

plant stage.  

Deciphering the durum wheat resistance to STB has been subsequently investigated in 

durum wheat landraces (Chapter 4) that are commonly perceived as the outcome of natural 

and human selection, thus an intermediate stage in domestication between wild wheat and elite 

cultivars. Smallholder farmers in traditional agrosystems used to select and maintain excelling 

genotypes to form traditional varieties adapted to local conditions with an adequate level of 

resistance to biotic stress and high tolerance to abiotic stresses (Giraldo et al. 2016; Sahri et al. 

2014). These landraces are treasured sources that were often used in wheat improvement (Lopes 

et al. 2015; Newton et al. 2010; Soriano et al. 2016). Alike wild durum progenitor (chapter 3), 

landraces convey valuable resistance genes that were used to enhance durum wheat resistance 

to various fungal diseases  (Prat et al. 2017; Rahman et al. 2017), which thus stirred our interest. 

In chapter 4, we studied resistance to Z. tritici genetic in a range of Tunisian landraces, 

previously proven to contain valuable sources of resistance (Ferjaoui et al. 2015; Ferjaoui et al. 

2011; Medini et al. 2014). Analogous with the observation in chapter 3 the tested landrace 

accessions showed a broad spectrum of resistance to Z. tritici, which contrasts with the 

contemporary high yielding durum cvs. Khiar and Karim that are largely susceptible to all 

deployed isolates. Studying the RILs from the cross between the resistant landrace “Agili39” 

and the susceptible cv. Khiar at the seedling and adult stages have shown that Z. tritici is 

governed by distinct factors, which is in accord with previous studies (Brown et al. 2015; Tabib 

Ghaffary et al. 2012; Tabib Ghaffary 2011; Tabib Ghaffary et al. 2011). The broad resistance 

in “Agili39” is mainly caused by the natural pyramiding of several QTLs with partial and major 

effects in the seedling and adult stage, which provide an improved fitness to withstand Z. tritici 

encounters. The 2BL QTL is effective at both stages, with a large spectrum of resistance to the 

used Z. tritici isolates, and most likely more, and explains up to 57% of the phenotypic variance 

in the adult stage during field testing with isolate Tun6. Unexpectedly, this QTL co-aligns with 

Stb9 that is identified in bread wheat cv. Courtot (Chartrain et al. 2009) and commonly  

deceived by most Z. tritici bread wheat isolates (Tabib Ghaffary 2011; Tabib Ghaffary et al. 

2011). The confirmed effectiveness of Stb9 in durum wheat could result from the cost of 

virulence for Stb9 in durum wheat derived Z. tritici isolates. Nevertheless, longevity of Stb9 is 

also endangered in durum wheat, as we showed that virulent isolates for Stb9 already occur in 

the natural durum wheat isolates (eg in isolate IPO92003 from Portugal, chapter 3). Thus, the 
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2014). Remarkably, a large number of resistance genes to the most hazardous fungal diseases 

has been derived from the cultivated emmer Triticum tugidum ssp. dicoccum (Buerstmayr et al. 

2012; Faris et al. 2010; Piarulli et al. 2012; Zhang et al. 2014). It has been recognized that 12  

leaf rust resistance genes and 20 stem rust resistance genes originate from progenitors of 

cultivated wheat species (Monneveux et al. 2000). Emmer wheat is currently grown as a minor 

crop in Ethiopia, India, Italy, Turkey, France and Iran and used primarily for cultural reasons. 

However, the interest in these species has recently increased because of the demand for 

speciality breads and beers as well as due to lower requirements of nitrogen fertilizers and crop 

protection chemicals (Gooding 2009; Shevkani et al. 2017). In our attempt to better understand 

STB resistance in durum wheat, we firstly investigated the genetics of Z. tritici resistance in a 

mapping population (BP025 population) derived from a cross between the emmer wheat 

(PI41025) and the contemporary cultivar Ben (chapter 3). The pre-screening of PI41025 and 

cv. Ben with a plethora of durum derived Z. tritici isolates has revealed a broad resistance of 

the emmer accession, in contrast to the contemporary cv. Ben that exposed an overall high 

susceptibility. A subsequent study in the derived Recombinant Inbred Lines (RILs) resulted in 

the identification of a major and novel quantitative trait locus, designed as Stb22q that is derived 

from PI41025, and mapped at chromosome 3AL. However, Stb22q only confers a broad 

resistance spectrum for pycnidia coverage in the seedling stage as necrosis levels were 

invariably high. An additional minor QTL on chromosome 5A, distinct from Stb17, has been 

also identified in the BP025 population and provides resistance to isolates IPO91009 and 

IIB123, hence has a narrow efficacy, and is derived from the susceptible contemporary cv. Ben. 

As shown in chapters 4 and 5, pyramiding such QTLs also leads to acceptable levels of STB 

resistance, similar to other studies (Berraies et al. 2014; Ghaffary 2011; Ghaffary et al. 2011; 

Kelm et al. 2012; Kidane et al. 2017; Tuberosa 2014). 

Our findings emphasize that wild relatives of wheat represent a diverse gene pool 

containing novel and potentially effective resistances to wheat diseases. Breeding for Z. tritici 

resistance in bread wheat using synthetic wheat hexaploids, derived from tetraploid ancestors 

and the recently sequenced Aegilops tauschii (Zimin et al. 2017), has also been proven as a 

valuable resource for common wheat improvement (Yang et al. 2009). For Z. tritici, Stb16q that 

originates from the synthetic hexaploid M3 (W-7976) (Ghaffary et al. 2012) has the widest 

efficacy. The result of chapter 3, is a proof that major and wide spectrum resistance do 

simultaneously occur in tetraploid wheat. Stb22q is the first major QTL identified in durum 

wheat with a wide efficacy and is therefore an important discovery that will facilitate the release 
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of new STB resistant durum wheat varieties. Albeit the demonstrated value of Stb22q, 

subsequent field trials and adult plant tests are required to verify its broad efficacy in the adult 

plant stage.  

Deciphering the durum wheat resistance to STB has been subsequently investigated in 

durum wheat landraces (Chapter 4) that are commonly perceived as the outcome of natural 

and human selection, thus an intermediate stage in domestication between wild wheat and elite 

cultivars. Smallholder farmers in traditional agrosystems used to select and maintain excelling 

genotypes to form traditional varieties adapted to local conditions with an adequate level of 

resistance to biotic stress and high tolerance to abiotic stresses (Giraldo et al. 2016; Sahri et al. 

2014). These landraces are treasured sources that were often used in wheat improvement (Lopes 

et al. 2015; Newton et al. 2010; Soriano et al. 2016). Alike wild durum progenitor (chapter 3), 

landraces convey valuable resistance genes that were used to enhance durum wheat resistance 

to various fungal diseases  (Prat et al. 2017; Rahman et al. 2017), which thus stirred our interest. 

In chapter 4, we studied resistance to Z. tritici genetic in a range of Tunisian landraces, 

previously proven to contain valuable sources of resistance (Ferjaoui et al. 2015; Ferjaoui et al. 

2011; Medini et al. 2014). Analogous with the observation in chapter 3 the tested landrace 

accessions showed a broad spectrum of resistance to Z. tritici, which contrasts with the 

contemporary high yielding durum cvs. Khiar and Karim that are largely susceptible to all 

deployed isolates. Studying the RILs from the cross between the resistant landrace “Agili39” 

and the susceptible cv. Khiar at the seedling and adult stages have shown that Z. tritici is 

governed by distinct factors, which is in accord with previous studies (Brown et al. 2015; Tabib 

Ghaffary et al. 2012; Tabib Ghaffary 2011; Tabib Ghaffary et al. 2011). The broad resistance 

in “Agili39” is mainly caused by the natural pyramiding of several QTLs with partial and major 

effects in the seedling and adult stage, which provide an improved fitness to withstand Z. tritici 

encounters. The 2BL QTL is effective at both stages, with a large spectrum of resistance to the 

used Z. tritici isolates, and most likely more, and explains up to 57% of the phenotypic variance 

in the adult stage during field testing with isolate Tun6. Unexpectedly, this QTL co-aligns with 

Stb9 that is identified in bread wheat cv. Courtot (Chartrain et al. 2009) and commonly  

deceived by most Z. tritici bread wheat isolates (Tabib Ghaffary 2011; Tabib Ghaffary et al. 

2011). The confirmed effectiveness of Stb9 in durum wheat could result from the cost of 

virulence for Stb9 in durum wheat derived Z. tritici isolates. Nevertheless, longevity of Stb9 is 

also endangered in durum wheat, as we showed that virulent isolates for Stb9 already occur in 

the natural durum wheat isolates (eg in isolate IPO92003 from Portugal, chapter 3). Thus, the 
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effectiveness of the putative Stb9 in durum wheat is loomed and its breakdown would just be a 

matter of time if this gene is not wisely commercialized and used. Under the EPP model, 

however, its effectiveness may sustain for substantial time. 

Unfortunately, inaccessibility of DArT marker sequences disabled ascertaining whether 

the identified QTLs in the “Agili39”/Khiar population (1A and 2BS) overlap with reported Stb 

positions, and we could thus not confirm the identification of novel locations in this population. 

However, we clearly demonstrated that stacking QTLs contributed to wide spectrum resistance 

observed in “Agili39”, showing that gene pyramiding is an effective strategy for widening 

efficacy as evidenced in many other studies (McDonald and Mundt 2016; Mundt 2014; Singh 

et al. 2017; Singh et al. 2014; Singh et al. 2011; Singh et al. 2015; Singh et al. 2005; Singh et 

al. 2016). Albeit that two-way and three-way interactions (chapter 4) not always effectively 

reduce disease severity -  as further demonstrated in our analyses of resistance in contemporary 

durum cultivars (Chapter 5) - we showed that accumulating the markers for the putative Stb9 

allele and 1A-QTL considerably reduced disease in the seedling stage with a dominant effect 

of the Stb9 over the 1A-QTL. However, in the adult stage this positive effect was reduced by 

the presence of the 2BS-QTL marker, acting as a negative epistatic factor. Clearly, QTL 

interactions should be considered in order to plan combining favourable QTLs in a gene 

pyramiding approach (Vanderplank 2012). 

Unexpectedly, the susceptible high yielding Tunisian cv. Khiar, used in the cross with 

the landrace ‘Agili39’, shares a QTL on chromosome 2A that increased its susceptibility to Z. 

tritici in the derived RILs. This cultivar was introduced by CIMMYT to increase the yield 

potential in Tunisian durum wheats. Thus, one should be increasingly aware that introducing 

alleles for better yields could also drag other yield compromising susceptibility alleles into a 

breeding program, as was also observed among European bread wheats where susceptibility 

genes for Z. tritici were unconsciously introduced from CIMMYT germplasm (Arraiano and 

Brown 2016). Moreover, Arraiano and Brown (2016) also showed that such alleles are closely 

linked to partial resistance QTLs for Z. tritici, which further complicates the removal of such 

unfavourable loci in contemporary breeding programs. Thus, trade-offs should be considered 

in plant breeding when several traits are important. A counterbalance between the studied traits 

and the use of non-adapted germplasm could underlie gene drag leading to undesired genes that 

are only later to be discovered, for instance due to changes biotic stresses. The situation 

discussed by Arraiano and Brown (2016) also refers to the time that Z. tritici was not considered 
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to be of much importance for European wheat breeding (Arraiano and Brown 2016; Reif et al. 

2005).  

Studying the genetics of resistance to Z. tritici in durum wheat cannot exclude 

contemporary durum cultivars or the so called semi-dwarf cultivars that are notably the most 

desired materials for farmers due to their improved agronomical traits, their high productivity 

and their genetic uniformity (Soriano et al. 2016; Tadesse et al. 2016) (Chapter 5). Modern 

cultivars constitute the outstanding outcome of the green revolution. They are - even after 

twenty years - the touchstone in international agricultural development that prevented famine 

at a time when it seemed imminent (Wolf 1986). During the late 1960s and early 1970s, new 

varieties with semi-dwarf stature conferred by the reduced height genes Rht1 and Rht2 were 

introduced into Asia and Latin America along with fertilizers, pesticides and mechanized farm 

equipment, and dramatically increased harvests without any perceived change in the wheat 

cultivation area (Smale 1997; Tadesse et al. 2017; Tadesse et al. 2016). Meanwhile, landraces 

- once abundant – became extinct and disappeared largely from the modern farming system due 

to their undesirable agronomic characteristics with respect to plant height, general late 

flowering and low harvest index (Soriano et al. 2016). The adoption of modern wheat cultivars 

rapidly expanded in developing countries, and studies of CIMMYT/ICARDA indicated that in 

the 1990s, semi-dwarf wheats covered nearly 50 million ha., which was 70% of the total wheat 

area in the developing world, excluding China (Byerlee 1993). Albeit, the Green Revolution 

has been controversial in terms of the distribution of its benefits, the general consensus is that 

adoption of modern cultivars has, in most cases, been favourable in terms of income distribution 

(Reynolds and Borlaug 2006). Therefore, these benefits should be embraced and high-yielding 

contemporary durum wheats should be continuously developed and improved by adequate 

breeding programs using the latest practices and know-how to reduce the risk of imminent food 

shortages. 

Therefore, Chapter 5, focuses on deciphering the genetic basis of resistance in 

contemporary durum wheats from Italy, which is one of the leading durum wheat producing 

countries (Álvaro et al. 2008; Royo et al. 2007). In contrast chapters 3 and 4 where major QTLs 

were identified, the QTLs in cvs. Simeto, Levante, Kofa and Svevo have only minor effects on 

resistance, which suggests a deterioration of STB resistance compared to landraces and wheat 

progenitors as discussed in the previous chapters and similar to other studies in durum wheat  

(Berraies et al. 2014; Tuberosa 2014) and in bread wheat cultivars (Arraiano and Brown 2016; 
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effectiveness of the putative Stb9 in durum wheat is loomed and its breakdown would just be a 

matter of time if this gene is not wisely commercialized and used. Under the EPP model, 

however, its effectiveness may sustain for substantial time. 

Unfortunately, inaccessibility of DArT marker sequences disabled ascertaining whether 

the identified QTLs in the “Agili39”/Khiar population (1A and 2BS) overlap with reported Stb 

positions, and we could thus not confirm the identification of novel locations in this population. 

However, we clearly demonstrated that stacking QTLs contributed to wide spectrum resistance 

observed in “Agili39”, showing that gene pyramiding is an effective strategy for widening 

efficacy as evidenced in many other studies (McDonald and Mundt 2016; Mundt 2014; Singh 

et al. 2017; Singh et al. 2014; Singh et al. 2011; Singh et al. 2015; Singh et al. 2005; Singh et 

al. 2016). Albeit that two-way and three-way interactions (chapter 4) not always effectively 

reduce disease severity -  as further demonstrated in our analyses of resistance in contemporary 

durum cultivars (Chapter 5) - we showed that accumulating the markers for the putative Stb9 

allele and 1A-QTL considerably reduced disease in the seedling stage with a dominant effect 

of the Stb9 over the 1A-QTL. However, in the adult stage this positive effect was reduced by 

the presence of the 2BS-QTL marker, acting as a negative epistatic factor. Clearly, QTL 

interactions should be considered in order to plan combining favourable QTLs in a gene 

pyramiding approach (Vanderplank 2012). 

Unexpectedly, the susceptible high yielding Tunisian cv. Khiar, used in the cross with 

the landrace ‘Agili39’, shares a QTL on chromosome 2A that increased its susceptibility to Z. 

tritici in the derived RILs. This cultivar was introduced by CIMMYT to increase the yield 

potential in Tunisian durum wheats. Thus, one should be increasingly aware that introducing 

alleles for better yields could also drag other yield compromising susceptibility alleles into a 

breeding program, as was also observed among European bread wheats where susceptibility 

genes for Z. tritici were unconsciously introduced from CIMMYT germplasm (Arraiano and 

Brown 2016). Moreover, Arraiano and Brown (2016) also showed that such alleles are closely 

linked to partial resistance QTLs for Z. tritici, which further complicates the removal of such 

unfavourable loci in contemporary breeding programs. Thus, trade-offs should be considered 

in plant breeding when several traits are important. A counterbalance between the studied traits 

and the use of non-adapted germplasm could underlie gene drag leading to undesired genes that 

are only later to be discovered, for instance due to changes biotic stresses. The situation 

discussed by Arraiano and Brown (2016) also refers to the time that Z. tritici was not considered 
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to be of much importance for European wheat breeding (Arraiano and Brown 2016; Reif et al. 

2005).  

Studying the genetics of resistance to Z. tritici in durum wheat cannot exclude 

contemporary durum cultivars or the so called semi-dwarf cultivars that are notably the most 

desired materials for farmers due to their improved agronomical traits, their high productivity 

and their genetic uniformity (Soriano et al. 2016; Tadesse et al. 2016) (Chapter 5). Modern 

cultivars constitute the outstanding outcome of the green revolution. They are - even after 

twenty years - the touchstone in international agricultural development that prevented famine 

at a time when it seemed imminent (Wolf 1986). During the late 1960s and early 1970s, new 

varieties with semi-dwarf stature conferred by the reduced height genes Rht1 and Rht2 were 

introduced into Asia and Latin America along with fertilizers, pesticides and mechanized farm 

equipment, and dramatically increased harvests without any perceived change in the wheat 

cultivation area (Smale 1997; Tadesse et al. 2017; Tadesse et al. 2016). Meanwhile, landraces 

- once abundant – became extinct and disappeared largely from the modern farming system due 

to their undesirable agronomic characteristics with respect to plant height, general late 

flowering and low harvest index (Soriano et al. 2016). The adoption of modern wheat cultivars 

rapidly expanded in developing countries, and studies of CIMMYT/ICARDA indicated that in 

the 1990s, semi-dwarf wheats covered nearly 50 million ha., which was 70% of the total wheat 

area in the developing world, excluding China (Byerlee 1993). Albeit, the Green Revolution 

has been controversial in terms of the distribution of its benefits, the general consensus is that 

adoption of modern cultivars has, in most cases, been favourable in terms of income distribution 

(Reynolds and Borlaug 2006). Therefore, these benefits should be embraced and high-yielding 

contemporary durum wheats should be continuously developed and improved by adequate 

breeding programs using the latest practices and know-how to reduce the risk of imminent food 

shortages. 

Therefore, Chapter 5, focuses on deciphering the genetic basis of resistance in 

contemporary durum wheats from Italy, which is one of the leading durum wheat producing 

countries (Álvaro et al. 2008; Royo et al. 2007). In contrast chapters 3 and 4 where major QTLs 

were identified, the QTLs in cvs. Simeto, Levante, Kofa and Svevo have only minor effects on 

resistance, which suggests a deterioration of STB resistance compared to landraces and wheat 

progenitors as discussed in the previous chapters and similar to other studies in durum wheat  

(Berraies et al. 2014; Tuberosa 2014) and in bread wheat cultivars (Arraiano and Brown 2016; 
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Kelm et al. 2012; Tabib Ghaffary et al. 2011). Nevertheless, the Simeto/Levante and 

Kofa/Svevo mapping populations revealed new locations for partial STB resistance on 

chromosomes 4B, 5B, 6B and 7B. Apart from QTLs mapped on chromosome 4B which showed 

a wide efficacy in the seedling and adult stage, most of these were also specific to one or a few 

Z. tritici isolates. This is reminiscent of chapters 3 and 4 where - with the omission of the 

Stb22q locus - the putative Stb9 and the 2BS-QTL loci together contributed to the wide 

resistance in the landrace “Agili39”, despite their independent limited efficacy. Hence, besides 

researching and discussing GFG in clearly qualitative interactions (Eyal et al. 1973; Kema et 

al. 1996a; Kema et al. 1996b; Kema et al. 1996c; Kema and van Silfhout 1997; Kema et al. 

1996d; Medini and Hamza 2008), specificity has now been confirmed and explained by cloning 

the first (a)virulence effector Avrstb6 (Chapter 2). In addition, however, we show the value of 

genes with smaller effects and that their qualitative expression is also based on specific 

interactions with Z. tritici isolates.  However, it is clear that the apparent dichotomy in Z. tritici 

adds another layer of complexity. The identified QTL on chromosome 1B in the Kofa/ Svevo 

population co-align with StbWW (Raman et al. 2009) and Stb2 (Adhikari et al. 2004). Other 

minor effect QTLs with a narrow efficacy co-aligned with Stb7 (4A), Stb12 (4A), Stb3 (7A) 

and Stb6 (3A) that all have been mapped and showed a much wider efficacy in bread wheat 

(Cuthbert 2011; Kelm et al. 2012; Tabib Ghaffary 2011).  

Identifying the genetic factors determining this dichotomy is evidently important as it is 

plausible that (a)virulence effectors diverge pathogenicity for durum and bread wheat. Since 

this dichotomy seems to have the widest possible efficacy, which also translates in e.g. the very 

high levels and wide resistance to Z. tritici in T. monococcum (Jing et al. 2008), discovery of 

the underlying mechanisms has substantial fundamental and practical implications for 

resistance breeding in wheat and bread wheat. For now, it us useful to consider the frequency 

of (a)virulent loci in natural populations in planning wheat breeding efforts, particularly since 

we expect that soon many more effectors will be discovered and validated.  

Unravelling resistance to Z. tritici in durum wheat has shown the drastic decrease of 

gene efficacy, from a broad spectrum of resistance derived from a cultivated emmer wheat 

(chapter 3), to durum landraces (chapter 4) until a partial and narrow efficacy in contemporary 

durum cultivars (chapter 5). Hence, natural and human selection and active breeding for high-

yielding genetically uniform varieties led to the use of ultimately a small fraction of the genetic 

reservoir (Lopes et al. 2015; Maccaferri et al. 2005; Mangini et al. 2017; Royo et al. 2005a; 
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Royo et al. 2005b; Soriano et al. 2016). Our data demonstrate how domestication and modern 

plant breeding have presumably narrowed the genetic base of durum wheat. Through the 

centuries, genetic variation was reduced early from the natural genetic drift to the early selection 

of traditional farmers, which eventually resulted in landrace cultivars adapted to specific 

conditions of their habitats (Reif et al. 2005). Many of the traditional landraces were replaced 

by modern wheat cultivars that were bred with a limited number of landraces in their pedigree, 

and it is postulated that contemporary cultivars contain less genetic diversity than traditional 

landraces or wild relatives, as evidenced in our data, which could jeopardize future wheat 

improvement (Reif et al. 2005). 

Thus, gene introgression from wild progenitors and landraces can greatly enhance the 

fitness of contemporary cultivars to Z. tritici and maintain their high yield potential (Blanco et 

al. 2008; Merchuk-Ovnat et al. 2017; Rong et al. 2000; Sheikh et al. 2017; Valkoun 2001; Xie 

and Nevo 2008). In this thesis, several new and valuable QTLs were identified that show a 

broad efficacy that is mainly derived from the cultivated emmer accession (PI41025) (Chapter 

3) and the Tunisian landrace ‘Agili39’ (Chapter 4). These are likely only the “tip-of-the-

iceberg” of potential sources for Z. tritici improvement in durum wheat. Nonetheless, recent 

studies unveiling detrimental genes that were unconsciously introduced in modern wheat 

breeding programs should be taken into consideration to avoid future disappointments. 

However, it also raises the awareness that screening should not be limited to the contemporary 

diseases and threats, but that conscious breeding considers a broad phenotyping with a wide 

array of pests and pathogens. The costs aspect, however, likely will not support such a strategy 

and hence, we are dealing with a perpetual cycle of incompleteness. However, expanding data 

sets and ever increasing genomic information enabling genomic selection will likely counteract 

such developments. Hence, direct effect of an R gene on for instance yield, suggests a 

fundamental mechanistic relationship, as the genes that are linked to this R gene may also affect 

yield and therefore hamper the selection of  commercially  successful  resistant  cultivars 

(Brown 2002). There are numerous examples of yield penalties upon the introduction of R 

genes, such as the unbroken linkage between yield depression and the Lr9 R gene from Ae. 

umbellulata, which confers resistance to wheat brown rust (also known as leaf rust, caused by 

Puccinia triticina, syn. Puccinia recondita f. sp. tritici). Other R genes on introgressed 

segments that are associated with reduced yield are Wsm1 for resistance to wheat streak mosaic 

virus from Thinopyrum intermedium, associated with a yield reduction of 21%, and three genes 

for stem rust (Puccinia graminis f. sp. tritici) resistance, notably Sr26 from Agropyron 
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Kelm et al. 2012; Tabib Ghaffary et al. 2011). Nevertheless, the Simeto/Levante and 

Kofa/Svevo mapping populations revealed new locations for partial STB resistance on 

chromosomes 4B, 5B, 6B and 7B. Apart from QTLs mapped on chromosome 4B which showed 

a wide efficacy in the seedling and adult stage, most of these were also specific to one or a few 

Z. tritici isolates. This is reminiscent of chapters 3 and 4 where - with the omission of the 

Stb22q locus - the putative Stb9 and the 2BS-QTL loci together contributed to the wide 

resistance in the landrace “Agili39”, despite their independent limited efficacy. Hence, besides 

researching and discussing GFG in clearly qualitative interactions (Eyal et al. 1973; Kema et 

al. 1996a; Kema et al. 1996b; Kema et al. 1996c; Kema and van Silfhout 1997; Kema et al. 

1996d; Medini and Hamza 2008), specificity has now been confirmed and explained by cloning 

the first (a)virulence effector Avrstb6 (Chapter 2). In addition, however, we show the value of 

genes with smaller effects and that their qualitative expression is also based on specific 

interactions with Z. tritici isolates.  However, it is clear that the apparent dichotomy in Z. tritici 

adds another layer of complexity. The identified QTL on chromosome 1B in the Kofa/ Svevo 

population co-align with StbWW (Raman et al. 2009) and Stb2 (Adhikari et al. 2004). Other 

minor effect QTLs with a narrow efficacy co-aligned with Stb7 (4A), Stb12 (4A), Stb3 (7A) 

and Stb6 (3A) that all have been mapped and showed a much wider efficacy in bread wheat 

(Cuthbert 2011; Kelm et al. 2012; Tabib Ghaffary 2011).  

Identifying the genetic factors determining this dichotomy is evidently important as it is 

plausible that (a)virulence effectors diverge pathogenicity for durum and bread wheat. Since 

this dichotomy seems to have the widest possible efficacy, which also translates in e.g. the very 

high levels and wide resistance to Z. tritici in T. monococcum (Jing et al. 2008), discovery of 

the underlying mechanisms has substantial fundamental and practical implications for 

resistance breeding in wheat and bread wheat. For now, it us useful to consider the frequency 

of (a)virulent loci in natural populations in planning wheat breeding efforts, particularly since 

we expect that soon many more effectors will be discovered and validated.  

Unravelling resistance to Z. tritici in durum wheat has shown the drastic decrease of 

gene efficacy, from a broad spectrum of resistance derived from a cultivated emmer wheat 

(chapter 3), to durum landraces (chapter 4) until a partial and narrow efficacy in contemporary 

durum cultivars (chapter 5). Hence, natural and human selection and active breeding for high-

yielding genetically uniform varieties led to the use of ultimately a small fraction of the genetic 

reservoir (Lopes et al. 2015; Maccaferri et al. 2005; Mangini et al. 2017; Royo et al. 2005a; 
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Royo et al. 2005b; Soriano et al. 2016). Our data demonstrate how domestication and modern 

plant breeding have presumably narrowed the genetic base of durum wheat. Through the 

centuries, genetic variation was reduced early from the natural genetic drift to the early selection 

of traditional farmers, which eventually resulted in landrace cultivars adapted to specific 

conditions of their habitats (Reif et al. 2005). Many of the traditional landraces were replaced 

by modern wheat cultivars that were bred with a limited number of landraces in their pedigree, 

and it is postulated that contemporary cultivars contain less genetic diversity than traditional 

landraces or wild relatives, as evidenced in our data, which could jeopardize future wheat 

improvement (Reif et al. 2005). 

Thus, gene introgression from wild progenitors and landraces can greatly enhance the 

fitness of contemporary cultivars to Z. tritici and maintain their high yield potential (Blanco et 

al. 2008; Merchuk-Ovnat et al. 2017; Rong et al. 2000; Sheikh et al. 2017; Valkoun 2001; Xie 

and Nevo 2008). In this thesis, several new and valuable QTLs were identified that show a 

broad efficacy that is mainly derived from the cultivated emmer accession (PI41025) (Chapter 

3) and the Tunisian landrace ‘Agili39’ (Chapter 4). These are likely only the “tip-of-the-

iceberg” of potential sources for Z. tritici improvement in durum wheat. Nonetheless, recent 

studies unveiling detrimental genes that were unconsciously introduced in modern wheat 

breeding programs should be taken into consideration to avoid future disappointments. 

However, it also raises the awareness that screening should not be limited to the contemporary 

diseases and threats, but that conscious breeding considers a broad phenotyping with a wide 

array of pests and pathogens. The costs aspect, however, likely will not support such a strategy 

and hence, we are dealing with a perpetual cycle of incompleteness. However, expanding data 

sets and ever increasing genomic information enabling genomic selection will likely counteract 

such developments. Hence, direct effect of an R gene on for instance yield, suggests a 

fundamental mechanistic relationship, as the genes that are linked to this R gene may also affect 

yield and therefore hamper the selection of  commercially  successful  resistant  cultivars 

(Brown 2002). There are numerous examples of yield penalties upon the introduction of R 

genes, such as the unbroken linkage between yield depression and the Lr9 R gene from Ae. 

umbellulata, which confers resistance to wheat brown rust (also known as leaf rust, caused by 

Puccinia triticina, syn. Puccinia recondita f. sp. tritici). Other R genes on introgressed 

segments that are associated with reduced yield are Wsm1 for resistance to wheat streak mosaic 

virus from Thinopyrum intermedium, associated with a yield reduction of 21%, and three genes 

for stem rust (Puccinia graminis f. sp. tritici) resistance, notably Sr26 from Agropyron 
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elongatum, which resulted in a 9% yield penalty. Of course reduced yield is not the only cost 

of resistance, but is considered as most important as it hampers commercialization of a new 

resistant wheat cultivars (Cox 1997; Feuillet et al. 2008). Overall, any new disease resistance 

needs to be placed in a genetic background that meets current requirements for yield, quality, 

agronomy and resistance to other diseases and stresses (Summers and Brown 2013). Any 

deficiency in one of the abovementioned requirements will definitely affect commercialization.  

Our data show also that despite the value of the identified loci for increasing the 

resistance to Z. tritici in the cultivated emmer and the durum landraces, they could be defeated 

by some virulent Z. tritici isolates, right away revealing their limited longevity, which requires 

precautious management of the detected resistance. Uniformity of the resistance sources in 

agroecosystems often results in huge selection forces that eventually nullify valuable resistance 

whose discovery and introgression has taken many years and intrinsically high costs (van de 

Wouw et al. 2009). Despite the value of the EPP taking place in Z. tritici and likely in many 

more Dothideomycetes, we better take the above serious into consideration until EPP has been 

further validated in real life situations. In any case, gene pyramiding and the use of diverse 

sources of resistance would ensure a better longevity and durability of resistance genes 

(McDonald and Linde 2002a, b; McDonald and Mundt 2016). Using the available markers, this 

strategy is no longer a pipedream.  

Albeit that Z. tritici research is relatively young, compared to for instance the attention 

for rusts diseases, the data have shown that a poorly understood disease has risen to an 

interesting academic research area that also has resulted in the postulation and identification of 

important R genes. Our latest results (chapter 2) will undoubtedly increase the general 

understanding of the Z. tritici-wheat pathosystem. Therefore, we should not take these lessons 

for granted and actively lay the foundation under effective durum wheat breeding for resistance 

to Z. tritici.  

 

Concluding remarks and future perspectives  

 
The characterisation of the first (a)virulent effector gene and the elucidation of EPP 

resulting in a new epidemiological model will contribute to developing new and efficient 

breeding strategies for Z. tritici resistance that can predict the durability of a given resistance 

gene based on the frequency of the virulence alleles in natural populations. Despite these new 
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insights, support from field trials and observations are required to further implement this 

knowledge in breeding programs. It should start with a detailed monitoring program for Stb16q 

virulence as the first virulent strains have appeared in France, and hence this provides the 

ultimate situation to demonstrate and validate EPP, thereby predicting the commercial lifetime 

of a given Stb gene. 

Albeit, this research enabled the virtual elucidation of the GFG mechanism in the Z. 

tritici- pathosystem by the cloning and the isolation of the Avrstb6 effector gene, it is still 

unclear how Avrstb6 interacts with its cognate Stb6 gene in the Z. tritici – wheat pathosystem. 

The cloning of Stb6 will undoubtedly ease the elucidation of this mechanistic interaction, and 

will open new perspective in the understanding and the characterisation of bread and durum 

wheat resistance genes.  

The first resolved resistance to Z. tritici in durum wheat has proven that so far, all tested 

germplasm, despite resistance to pycnidia development - which is essential for epidemic 

development - displays an invariable high level of necrosis. This is puzzling and not understood, 

which requires further studies into the potential role of a selective sweep for sensitivity to - yet 

to be discovered - host selective toxins that may be produced by Z. tritici.   
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elongatum, which resulted in a 9% yield penalty. Of course reduced yield is not the only cost 

of resistance, but is considered as most important as it hampers commercialization of a new 

resistant wheat cultivars (Cox 1997; Feuillet et al. 2008). Overall, any new disease resistance 

needs to be placed in a genetic background that meets current requirements for yield, quality, 

agronomy and resistance to other diseases and stresses (Summers and Brown 2013). Any 

deficiency in one of the abovementioned requirements will definitely affect commercialization.  

Our data show also that despite the value of the identified loci for increasing the 

resistance to Z. tritici in the cultivated emmer and the durum landraces, they could be defeated 

by some virulent Z. tritici isolates, right away revealing their limited longevity, which requires 

precautious management of the detected resistance. Uniformity of the resistance sources in 

agroecosystems often results in huge selection forces that eventually nullify valuable resistance 

whose discovery and introgression has taken many years and intrinsically high costs (van de 

Wouw et al. 2009). Despite the value of the EPP taking place in Z. tritici and likely in many 

more Dothideomycetes, we better take the above serious into consideration until EPP has been 

further validated in real life situations. In any case, gene pyramiding and the use of diverse 

sources of resistance would ensure a better longevity and durability of resistance genes 

(McDonald and Linde 2002a, b; McDonald and Mundt 2016). Using the available markers, this 

strategy is no longer a pipedream.  

Albeit that Z. tritici research is relatively young, compared to for instance the attention 

for rusts diseases, the data have shown that a poorly understood disease has risen to an 

interesting academic research area that also has resulted in the postulation and identification of 

important R genes. Our latest results (chapter 2) will undoubtedly increase the general 

understanding of the Z. tritici-wheat pathosystem. Therefore, we should not take these lessons 

for granted and actively lay the foundation under effective durum wheat breeding for resistance 

to Z. tritici.  

 

Concluding remarks and future perspectives  

 
The characterisation of the first (a)virulent effector gene and the elucidation of EPP 

resulting in a new epidemiological model will contribute to developing new and efficient 

breeding strategies for Z. tritici resistance that can predict the durability of a given resistance 

gene based on the frequency of the virulence alleles in natural populations. Despite these new 
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insights, support from field trials and observations are required to further implement this 

knowledge in breeding programs. It should start with a detailed monitoring program for Stb16q 

virulence as the first virulent strains have appeared in France, and hence this provides the 

ultimate situation to demonstrate and validate EPP, thereby predicting the commercial lifetime 

of a given Stb gene. 

Albeit, this research enabled the virtual elucidation of the GFG mechanism in the Z. 

tritici- pathosystem by the cloning and the isolation of the Avrstb6 effector gene, it is still 

unclear how Avrstb6 interacts with its cognate Stb6 gene in the Z. tritici – wheat pathosystem. 

The cloning of Stb6 will undoubtedly ease the elucidation of this mechanistic interaction, and 

will open new perspective in the understanding and the characterisation of bread and durum 

wheat resistance genes.  

The first resolved resistance to Z. tritici in durum wheat has proven that so far, all tested 

germplasm, despite resistance to pycnidia development - which is essential for epidemic 

development - displays an invariable high level of necrosis. This is puzzling and not understood, 

which requires further studies into the potential role of a selective sweep for sensitivity to - yet 

to be discovered - host selective toxins that may be produced by Z. tritici.   
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Durum wheat (Triticum durum) is among the most important food crops of the 

Mediterranean Basin, encompassing regions in Southern Europe and North Africa, as well as 

the Northern Great Plains of the U.S. and parts of Southern Asia. Particularly in North Africa 

it is the prime economical and dietary crop for small holder farmers in marginal areas and has 

greatly contributed to the existing genetic diversity of bread wheat. Despite its standing as a 

staple crop, primarily in North Africa and Southern Europe, the overall vulnerability of durum 

wheat germplasm to fungal diseases is well known and frequently reported. Among those is 

septoria tritici blotch (STB), the major foliar disease of wheat in Europe that is caused by 

Zymoseptoria tritici. However, the scientific community has limited attention for this crop 

and mostly focused on bread wheat. Therefore, very little is known about the genetic basis of 

the resistance to STB in tetraploid wheat. In bread wheat, 21 Stb major genes and manifold 

quantitative trait loci (QTLs) have been identified and intensively deployed in breeding 

programs, whereas Stb genes are neither recognized nor mapped in the largely under-

investigated tetraploid wheats. One of the reasons is the reported dichotomy of the 

pathogenicity of Z. tritici isolates towards bread and durum wheat. This has been an 

additional hurdle hampering breeding for resistance in durum wheat because well 

characterized Z. tritici isolates that are pathogenic on bread wheat cannot be used in durum 

wheat phenotyping assays (and vice versa). On top of that, specificity in either of these wheat 

systems has been questioned for a long time and therefore hindered effective breeding 

strategies. Thus, deciphering the genetics of the wheat-Z. tritici interaction, specifically for 

tetraploid wheats, greatly contributes to enhancing our understanding of this important 

pathosystem and thereby to more effective breeding strategies in this important cereal staple 

crop. 

Chapter 1 is the introduction of the thesis and provides an historical overview of the 

emergence of the current forms of durum wheat and their vulnerability to Z. tritici. This 

fungal pathogen has evolved in close association with wheat, thereby deploying an arsenal of 

effector genes, and has a very strategic life style which generated abundant diversity. 

Therefore, Z. tritici has evolved as a major pathogen of wheat. The chapter concludes with an 

overview of the thesis.   

Chapter 2 describes the map-based cloning and functional analysis of the first Z. 

tritici effector gene AvrStb6 that interacts in a gene-for-gene manner with the first cloned and 

widespread major resistance gene Stb6. An even more important discovery represents the new 

exclusive paternal parenthood (EPP) epidemiological model. This shows that host resistance 

indeed precludes the developement of biomass of avirulent strains, but cannot stop sexual 

reproduction. Hence, the avirulence genes of avirulent parents are maintained in natutal 

populations, which extends the longevitiy of resistant wheat cultivars. The EPP model 

confirms many observations in agricultural and natural environments and is therefore most 

likely applicable to several other pathosystems.  

Chapter 3 unveils the genetic basis of resistance to Z. tritici in the cultivated emmer 

wheat (Triticum dicoccum) accesion PI41025. Mapping populations generated from crosses 

between PI41025 and the contemporary cv. Ben were used to unravel the reistance in the 

former accession. This resulted in a first QTL confering wide-spectrum resistance to Z. tritici 

in durum wheat. The QTL was mapped on chromosome 3AL, was derived from PI41025 and 

designated as Stb22q. In addition, another novel locus was mapped on chromosome 5A of cv. 

Ben, which provides an isolate-specific resistance, hence with a limited efficacy. 

Chapter 4 takes the reader to more recent times by focusing on the resistance to Z. 

tritici in a suite of Tunisian durum wheat landraces. The oustanding landrace accession 

„Agili39‟ was crossed to the contemporary high-yielding cv. Khiar that is very susceptible to 

Z. tritici. The analyses of the resistance in the generated recombinant inbred population 

revealed that the broad spectrum resistance of „Agili39‟ results from the natural pyramiding of 

several minor effect QTLs. Nonetheless, QTLs on chromosome 2BL and 2BS exerted a strong 

effect on „Agili39‟ resistance. The latter was exclusivly associated with adult plant resistance, 

whereas the former co-locolizes with Stb9 that has a very low efficacy in bread wheat, but is 

crucial in „Agili 39‟. 

Chapter 5 brings the reader to the present time by investigating STB resistance in 

contemporary durum wheat cultivars, which are preferred by farmers due to their high-

yielding potential. Recombinant inbred populations were subsequently generated from crosses 

between cvs. Simeto and Levante and cvs. Kofa and Svevo and were tested with four Z. tritici 

isolates under greenhouse conditions and with one strain in the field. The analyses of the 

generated data showed that the STB resistance in these cultivars results from the synergic 

effect of several minor effect QTLs on several new genomic locations that collectively 

provide an acceptable level of STB resistance. 
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Chapter 6 is the final piece of this thesis and is a general discussion that puts the 

results in a boarder prespective and places all generated data in an overarching context. The 

newly elucidated epidemiological model applies for bread and durum wheat. Along with the 

newly discovered Stb genes and QTLs, this will lead to more effective (durum) wheat 

breeding programs that aim for resistance to Z. tritici. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Samenvatting 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 6 is the final piece of this thesis and is a general discussion that puts the 

results in a boarder prespective and places all generated data in an overarching context. The 

newly elucidated epidemiological model applies for bread and durum wheat. Along with the 

newly discovered Stb genes and QTLs, this will lead to more effective (durum) wheat 

breeding programs that aim for resistance to Z. tritici. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Samenvatting 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Samenvatting

262

Samenvatting 
 

Durum tarwe (Triticum durum) is een van de belangrijkste voedselgewassen van het 

Middellandse Zeegebied, dat gebieden in Noord-Afrika en Zuid-Europa omvat, alsmede van 

de prairies in Noord-Amerika en van Zuidoost-Azië. Met name in Noord-Afrika is het gewas 

van groot economisch belang en ook een belangrijk ingrediënt in het dagelijks menu van vele 

kleine boeren. Daarnaast heeft het een grote bijdrage geleverd aan de grote genetische 

diversiteit van broodtarwe. Ondanks het feit dat durumtarwe een basisvoedsel is voor vele 

mensen, met name in Noord-Afrika en Zuid-Europa, heeft het de reputatie gevoelig te zijn 

voor schimmelziekten waarover ook regelmatig wordt gerapporteerd. Eén van deze ziekten is 

septoria tritici bladvlekkenziekte (STB), de belangrijkste tarweziekte in Europa, die wordt 

veroorzaakt door Zymoseptoria tritici. De wetenschappelijke gemeenschap heeft hier 

nauwelijks aandacht voor gehad en heeft zich vooral beziggehouden met broodtarwe. Daarom 

is er erg weinig bekend over de genetische basis van resistentie tegen STB is tetraploïde 

tarwe. In broodtarwe zijn 21 Stb resistentiegenen geïdentificeerd, naast vele loci die een 

bijdrage leveren aan kwantitatieve resistentie (QTLs). Deze worden veelvuldig gebruikt in 

veredelingsprogramma‟s, maar geen enkel Stb gen is ooit herkend laat staan gekarteerd in de 

nauwelijks onderzochte tetraploïde tarwe. Eén van de redenen is het feit dat Z. tritici òf 

broodtarwe òf durumtarwe aantast. Dit vormt een belangrijke drempel in de 

resistentieveredeling van durumtarwe omdat goed gekarakteriseerde Z. tritici isolaten die 

pathogeen zijn op broodtarwe niet gebruikt kunnen worden in infectieproeven met 

durumtarwe (en vice versa). Daarnaast is specificiteit van de interactie tussen Z. tritici en 

beide tarwesoorten gedurende lange tijd in twijfel getrokken waardoor de vooruitgang in 

effectieve veredelingstrategieën ook vertraging heeft opgelopen. Het ontcijferen van de 

genetica van de tarwe-Z. tritici interactie, vooral voor tetraploïde tarwe, zal daarom enorm 

bijdragen aan het begrip van dit belangrijke pathosysteem en daarmee de effectiviteit van de 

veredeling in dit cruciale voedselgewas verbeteren. 

Hoofdstuk 1 is een introductie van het proefschrift en geeft een historisch overzicht 

van de ontstaansgeschiedenis van de huidige durumtarwerassen en hun kwetsbaarheid voor Z. 

tritici. Deze pathogene schimmel heeft zich in nauwe samenhang met het gewas ontwikkeld, 

daarbij gebruik makend van een arsenaal van effector genen, waarbij de strategische 

levenscyclus heeft geresulteerd in een enorme genetische diversiteit. Daarom heeft Z. tritici 

zich ontwikkeld tot een van de belangrijkste pathogenen van tarwe. Het hoofdstuk besluit met 

een overzicht van de inhoud van het proefschrift. 

Hoofdstuk 2 beschrijft het gebruik van de genetische kaart van Z. tritici om het eerste 

avirulentiegen, AvrStb6, te kloneren en functioneel te analyseren. Dit gen heeft een specifieke 

gen-om-gen interactie met Stb6, het eerste gekloneerde en wijdverspreide resistentiegen tegen 

Z. tritici. Een nog belangrijkere ontdekking betreft het nieuwe epidemiologische exclusieve 

vaderlijk-ouderschapsmodel (EPP). Dit laat zien dat waardplantresistentie weliswaar de 

ontwikkeling van biomassa van avirulente stammen verhindert, maar seksuele voortplanting 

niet tegengaat. Avirulentiegenen worden daardoor gehandhaafd in natuurlijke populaties 

waardoor de levensduur van resistente tarwerassen wordt verlengd. Het EPP-model bevestigt 

vele waarnemingen in landbouwkundige en natuurlijke omgevingen en is daarom 

waarschijnlijk van toepassing op vele andere pathosystemen.  

Hoofdstuk 3 ontvouwt de genetische basis van resistentie tegen Z. tritici in de 

emmertarwe (Triticum dicoccum) accessie PI41025. Karteringspopulaties ontwikkeld uit 

kruisingen tussen PI41025 en het hedendaagse ras “Ben” zijn gebruikt om deze resistentie te 

ontrafelen. Dit heeft geresulteerd in een eerste QTL die verantwoordelijk is voor een 

breedwerkende resistentie tegen Z. tritici in durumtarwe. De QTL is gekarteerd op 

chromosoom 3AL, is afkomstig uit PI41025 en heeft als aanduidig Stb22q gekregen. 

Daarnaast is een ander nieuw locus geïdentificeerd op chromosoom 5A van cv. Ben dat 

verantwoordelijk is voor een isolaat-specifieke en dus beperkte resistentie.  

Hoofdstuk 4 neemt de lezer mee naar recentere tijden en focust op de resistentie tegen 

Z. tritici in een reeks Tunesische durumtarwe landrassen. Het uitstekende landras „Agili39‟ is 

gekruist met het hedendaagse ras “Khiar” dat zeer vatbaar is voor Z. tritici. De analyse van de 

resistentie in de genegereerde recombinante inteeltpopulatie heeft laten zien dat de breed-

spectrum resistentie in „Agili39‟ het gevolg is van een natuurlijke stapeling van QTLs met een 

beperkt kwantiatief effect. Desalniettemin vertoonden de QTLs op chromosomen 2BL en 2BS 

een groter efect op de resistentie van „Agili39‟. De laatste QTL was uitsluitend betrokken bij 

volwassenplantresistentie, terwijl de andere QTL op dezelfde plaats werd gekarteerd als Stb9, 

een resistentiegen met een zeer beperkte werkzaamheid tegen Z. tritici in broodtarwe, maar 

dat cruciaal blijkt te zijn in „Agili39‟. 

Hoofdstuk 5 voert de lezer naar de huidige tijd door STB resistentie te onderzoeken in 

hedendaagse dutumtarwerassen die door boeren worden geprefereerd omdat ze een hoog 
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Hoofdstuk 5 voert de lezer naar de huidige tijd door STB resistentie te onderzoeken in 

hedendaagse dutumtarwerassen die door boeren worden geprefereerd omdat ze een hoog 
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opbrengstpotentieel hebben.  Recombinante inteeltpopulaties werden ontwikkeld uit 

kruisingen tussen cvs. Simeto en Levante en cvs. Kofa en Svevo die vervolgens werden getest 

met vier Z. tritici isolaten onder kasomstandigheden en met één isolaat in het veld. De analyse 

van de gegenereerde data laat zien dat STB resistentie in deze rassen het gevolg is van de 

synergie tussen meerdere QTLs met een klein effect die op meerdere locaties in het genoom 

werden gelocaliseerd en gezamenlijk een acceptabel resistentieniveau bewerkstelligen.  

Hoofdstuk 6 is het afsluitend gedeelte van het proefschrift en omvat de algemene 

discussie die de resultaten in een breder perspectief en overkoepelende context plaatst. Het 

nieuw ontdekte epidemiologische model is van toepassing op zowel durum- als boordtarwe. 

Samen met de nieuw ontdekte Stb genen en QTLs zal dit leiden tot effectievere (durum) 

tarweveredelingproagramma‟s die gericht zijn op resistentie tegen Z. tritici. 

Résumé 

Le blé dur (Triticum durum) est l'une des cultures les plus importantes du bassin 

méditerranéen qui englobe l'Europe du Sud et l'Afrique du Nord, des grandes plaines du Nord 

des États-Unis et de l'Asie du Sud. Cette culture, qui représente une importance économique 

et diététique notamment pour les petites exploitations des zones marginales du Nord-Afrique, 

a amplement contribué à la diversité génétique contemporaine du blé tendre. Toutefois, et 

malgré son statut de culture de base, principalement en Afrique du Nord et en Europe du Sud, 

une vulnérabilité du blé dur aux maladies fongiques a été généralement reconnue et 

fréquemment signalée. Parmi celle-ci, la septoriose ou septoria tritici blotch (STB) qui 

représente la principale maladie foliaire du blé en Europe causée par Zymoseptoria tritici (Z. 

tritici). Cependant, la communauté scientifique a accordé très peu d'attention au blé dur et 

s‟est plutôt focalisé sur le blé tendre. Par conséquent, nos connaissances concernant la base 

génétique de la résistance au STB dans le blé tétraploïde sont très restraintes. Dans le blé 

tendre, 21 gènes majeurs (Stb) et plusieurs loci quantitatifs (QTLs) ont été identifiés et 

intensivement déployés dans des programmes de sélection, tandis qu'aucun gène Stb n'a été 

reconnu ou cartographié dans les blés tétraploïdes encore non-prospectés. L‟une des raisons 

multiples qui a entravé l‟étude de la résistance du blé dur à Z. tritici, est la spécialisation 

physiologique des isolats Z. tritici sur blé dur ou tendre. Cette dichotomie constitue un 

obstacle majeur à l‟amélioration de la résistance du blé dur à Z. tritici, vu que les isolats bien 

caractérisés de Z. tritici et qui sont virulents sur blé tendre ne peuvent pas être utilisés dans les 

essais de phénotypage du blé dur (et vice versa). En outre, la spécificité sur l'une ou l'autre des 

formes de blé a été longtemps investiguée, et a entravé les stratégies de sélection efficaces. 

Ainsi, déchiffrer la génétique de l‟interaction blé-Z. tritici, en particulier pour les blés 

tétraploïdes, contribue considérablement à améliorer notre compréhension de ce pathosystème 

important, et par conséquent, à déployer des stratégies de sélection plus efficaces dans cette 

importante culture de base. 

Le chapitre 1 est une introduction de la thèse qui donne un aperçu historique sur 

l'émergence des formes actuelles de blé dur et leurs vulnérabilités à Z. tritici. Ce pathogène 

fongique a évolué en étroite association avec le blé, déployant ainsi un arsenal de gènes 

effecteurs, et un style de vie très stratégique qui a généré une diversité abondante. Par 

conséquent, Z. tritici a évolué en tant que pathogène majeur du blé. Le chapitre se termine par 

un aperçu de la thèse. 
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tritici). Cependant, la communauté scientifique a accordé très peu d'attention au blé dur et 

s‟est plutôt focalisé sur le blé tendre. Par conséquent, nos connaissances concernant la base 

génétique de la résistance au STB dans le blé tétraploïde sont très restraintes. Dans le blé 
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multiples qui a entravé l‟étude de la résistance du blé dur à Z. tritici, est la spécialisation 

physiologique des isolats Z. tritici sur blé dur ou tendre. Cette dichotomie constitue un 

obstacle majeur à l‟amélioration de la résistance du blé dur à Z. tritici, vu que les isolats bien 

caractérisés de Z. tritici et qui sont virulents sur blé tendre ne peuvent pas être utilisés dans les 

essais de phénotypage du blé dur (et vice versa). En outre, la spécificité sur l'une ou l'autre des 

formes de blé a été longtemps investiguée, et a entravé les stratégies de sélection efficaces. 

Ainsi, déchiffrer la génétique de l‟interaction blé-Z. tritici, en particulier pour les blés 

tétraploïdes, contribue considérablement à améliorer notre compréhension de ce pathosystème 

important, et par conséquent, à déployer des stratégies de sélection plus efficaces dans cette 

importante culture de base. 

Le chapitre 1 est une introduction de la thèse qui donne un aperçu historique sur 

l'émergence des formes actuelles de blé dur et leurs vulnérabilités à Z. tritici. Ce pathogène 

fongique a évolué en étroite association avec le blé, déployant ainsi un arsenal de gènes 

effecteurs, et un style de vie très stratégique qui a généré une diversité abondante. Par 

conséquent, Z. tritici a évolué en tant que pathogène majeur du blé. Le chapitre se termine par 

un aperçu de la thèse. 

Le chapitre 2 décrit le clonage et l'analyse fonctionnelle du premier gène effecteur de 

Z. tritici, AvrStb6, qui interagit selon le modèle gène-pour-gène avec le premier gène de 

résistance majeur cloné et largement répandu Stb6. Une découverte encore plus importante 

représente le nouveau modèle épidémiologique de la parentalité paternelle exclusive 

(exclusive paternal parenthood or EPP). Ceci montre que la résistance de l'hôte empêche en 

effet le développement de la biomasse des souches (a)virulentes, mais ne peut pas arrêter la 

reproduction sexuée. Ainsi, les gènes d'avirulence des parents (a)virulents sont maintenus 

dans les populations naturelles, ce qui prolonge la durabilité des cultivars de blé résistants. Le 

modèle EPP confirme de nombreuses observations dans les milieux agricoles et naturels et est 

donc très probablement applicable à de nombreux autres pathosystèmes.  

Le chapitre 3 dévoile la base génétique de la résistance à Z. tritici dans l'accession 

sauvage de l‟Emmer cultivé (Triticum dicoccum) PI41025. La population recombinante entre 

le PI41025 et le cv contemporain. Ben a été utilisée pour étudier la résistance à Z. tritici dans 

l'ancienne accession. Cette analyse a permi l‟identification du premier QTL majeur conférant 

une résistance à large spectre à Z. tritici dans le blé dur. Le QTL a été cartographié sur le 

chromosome 3AL, et a été dérivé de PI41025, désigné par Stb22q. En outre, un autre nouveau 

locus a été cartographié sur le chromosome 5A de cv. Ben. Ce locus fournit une résistance 

spécifique à l'isolat, donc avec une efficacité limitée. 

Le chapitre 4 interpelle l‟attention du lecteur à des temps plus modernes en focalisant 

sur la résistance à Z. tritici dans une série de variétés locales de blé dur tunisien. L'accession 

rarissime „Agili39‟ a été croisée au cv contemporain à haut rendement. Khiar, très sensible à 

Z. tritici. Les analyses de la résistance dans la population recombinante générée ont révélé que 

la résistance à large spectre de 'Agili39' résulte du pyramidage naturel de plusieurs QTLs à 

effet mineur. Néanmoins, les QTLs identifiés sur les régions chromosomiques 2BL et 2BS ont 

un effet majeur sur la résistance de „Agili39‟ à Z. tritici. Le QTL 2BS est exclusivement 

associé à la résistance des plantes adultes, tandis que le QTL 2BL co-segrège avec le gène 

majeur Stb9 qui a une très faible efficacité dans le blé tendre, mais est crucial dans 'Agili 39'. 

Le chapitre 5 amène le lecteur à l‟époque actuelle en étudiant la résistance au STB 

chez les cultivars contemporains de blé dur, et qui sont préférés par les agriculteurs en raison 

de leur potentiel de rendement élevé. Des populations recombinantes ont été ensuite générées 

entre les cvs. Simeto / Levante et cvs. Kofa / Svevo et ont été testées avec quatre isolats de Z. 

tritici sous conditions contrôlées et un seul isolat sous conditions naturelles. Les analyses des 

données phénotypiques générées ont montré que la résistance au STB chez ces cultivars 
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résulte de l'effet synergique de plusieurs QTLs à effet mineur sur plusieurs nouveaux sites 

génomiques qui, conjointement, fournissent un niveau acceptable de résistance au STB. 

Le chapitre 6, la dernière partie de cette thèse, est une discussion générale qui place 

les résultats obtenus en perspective réelle et place toutes les données générées dans un 

contexte plus général. Le modèle épidémiologique nouvellement élucidé s'applique au blé 

tendre, ainsi qu‟au blé dur. Ce nouveau modèle joint aux gènes Stb et aux QTLs récemment 

découverts, mènera à des programmes d'amélioration du blé à la résistance à Z. tritici plus 

efficaces.  
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graminicola, Florimond Deprez Capelle-en-Pevele, Lille, France. 

15 May 2012 

Subtotal Scientific Exposure 25.7 credits* 

3) In-Depth Studies 
date 

►  EPS courses or other PhD courses   

  PhD Autumn School 'Host-Microbes Interactomics, Wageningen, NL Nov 1-3, 2011 

  Course 'Linkage mapping and QTL analysis', Wageningen, NL  March 20-27, 2012  

  
Course 'Mixed model based genetic analysis in GenStat:from QTL 
mapping and association mapping to genomic prediction', 
Wageningen, NL 

02-04 Sep 2013 

  
Course 'Basic Statistics', Wageningen, NL  

26-27 May, 04-06 Jun 2014 



►  
Journal club 

  

  
Participant in litterature discussion group 

2011- 2015 

►  
Individual research training 

  

  
training for 5 months at University of Bologna-Italy 

13 Feb-17 Jul 2013 

Subtotal In-Depth Studies 10.2 credits* 

4) Personal development 
date 

►  Skill training courses   

  Leadership course, Tero international, Inc., USA. 11-15 Oct 2012 

  Course 'Project and Time Managment', Wageningen, NL  Mar- Apr 2014 

  Course 'Preparation for IELTS', Wageningen, NL  18-29 Aug 2014 

  
Course 'Information Literacy PhD including EndNote Introduction', 
Wageningen, NL 02-03 Dec 2014 

  Course 'Scientific writing', Wageningen, NL  Feb-Apr 2015 

  Course 'Introduction to R for statistical analysis', Wageningen, NL  08-09 May 2017 

►  Organisation of PhD students day, course or conference   

►  Membership of Board, Committee or PhD council   

Subtotal Personal Development 6.0 credits* 

TOTAL NUMBER OF CREDIT POINTS* 
45,4 

Herewith the Graduate School declares that the PhD candidate has 
complied with the educational requirements set by the Educational 
Committee of EPS which comprises of a minimum total of 30 ECTS credits    

* A credit represents a normative study load of 28 hours of study.  
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