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Abstract 

A	major	factor	of	influence	for	inflammatory	bowel	
diseases	are	the	bacteria	residing	in	the	gut.	This	is	
caused	 by	 changes	 in	 the	 metabolism	 of	 the	
microbiome,	 such	 as	 a	 lowered	 short-chain	 fatty	
acid	 availability	 to	 the	 host.	 It	 is	 shown	here	 that	
pathways	 of	 these	 specialised	metabolites	 can	 be	
detected	 from	 metagenomics	 data	 through	
automated	analyses	and	that	healthy	and	diseased	
individuals	 can	 be	 accurately	 classified	 based	 on	
biosynthetic	 gene	 cluster	 abundances.	
Nonetheless,	improvements	on	the	pipelines	could	
be	beneficial	 to	understanding	the	mechanisms	of	
the	diseases.	
	

Introduction 

The	 inflammatory	 bowel	 diseases	 (IBDs)	 are	 a	
group	 of	 chronic	 inflammatory	 autoimmune	
disorders	that	involve	environmental,	host	genetic,	
and	 microbial	 factors.	 They	 can	 be	 differentiated	
by	 the	 region	 of	 affected	 tissue	 of	 the	
gastrointestinal	 tract	 and	 the	 severity	 of	 their	
symptoms	 [1].	 The	 two	 most	 typical	 forms	 are	
Crohn’s	 Disease	 (CD)	 and	 Ulcerative	 Colitis	 (UC).	
Correct	 diagnosis	 can	 be	 difficult	 given	 their	 high	
similarity	and	no	cures	have	been	found	so	far	[2].	
A	 major	 factor	 of	 influence	 for	 IBDs	 are	 the	
bacteria	 residing	 in	 the	 gut	 [3][4].	 For	 example,	 a	
lack	 of	 bacteria	 producing	 short-chain	 fatty	 acids	
(SCFAs),	 can	 negatively	 influence	 SCFA	 pools	
available	 to	 the	 host	 [5].	 This	 causes	 gut	 mucus	
permeability	 to	 increase.	 Hence,	 SCFAs	 are	
associated	 with	 the	 pathogenesis	 of	 IBD	 [6].	 In	
turn,	 the	 host	 genetics	 influence	 the	 microbial	
species	composition	[7].	Dominant	phyla	present	in	
the	 gut	 of	 healthy	Dutch	 individuals	 are,	 amongst	
others,	 Bacteroidetes	 (8.1%	 and	 7.4%	 based	 on	
metagenomics	 sequencing	 (MGS)	 and	 16S	 rRNA,	

respectively)	and	Actinobacteria	(22.3%	and	12.3%,	
MGS	 and	 16S	 rRNA)	 [8].	 In	 IBD	 patients	 however,	
colonic	samples	are	depleted	of	Bacteroidetes	and	
enriched	in	Actinobacteria	[9].	This	directly	relates	
to	the	beneficial	effects	of	the	immunostimulatory	
and	 immunoregulatory	 activities	 of	 Bacteroides	
fragilis,	i.a.	through	production	of	polysaccharide	A	
[10].	 This	 and	many	other	 saccharides,	 along	with	
the	SCFAs,	belong	to	the	specialised	metabolism	of	
bacteria.	 Under	 disease	 conditions	 as	 described	
here,	 microbial	 function	 can	 be	 affected	 much	
more	 than	 species	 composition	 [11].	 Oppositely,	
human	gene	expression	 can	also	be	 influenced	by	
the	 gut	 microbiome	 [12]	 and	 changes	 in	 the	
specialised	 metabolism	 of	 the	 microbiome	 could	
affect	the	onset	and	course	of	a	disease.		
	
Up	 until	 now,	 research	 on	 the	 functional	 changes	
of	 specialized	 metabolism	 in	 the	 gut	 microbiome	
has	not	been	plentiful	[13].	This	is	partly	caused	by	
a	 lack	 of	 tools	 for	 large-scale	 analysis	 of	 genomic	
data	regarding	metabolism.	With	the	development	
of	antiSMASH	[14]	in	2011	(currently	at	version	4.0	
[15]),	 the	 first	 step	 towards	 these	 analyses	 was	
made.	 It	 is	 used	 to	 discover	 Biosynthetic	 Gene	
Clusters	 (BGCs),	 which	 indicate	 potential	
production	 of	 specialised	 metabolites	 and	 has	
already	 led	 to	 the	 discovery	 of	 a	 family	 of	
antibiotics	 in	 the	 human	 microbiome	 [16].	 A	
subsequent	 analysis	 on	 the	 Human	 Microbiome	
Project	 (HMP)	 data	 has	 revealed	 tremendous	
numbers	of	BGCs	(which	included	ClusterFinder	for	
prediction	 of	 BGCs	 in	 genomes	 [17],	 nowadays	
integrated	into	antiSMASH).	Among	the	results	was	
an	 oligosaccharide	 ligand	 for	 nucleotide-binding	
oligomerization	 domain–containing	 protein	 2	
(NOD2)	 [18],	 which	 is	 one	 of	 the	 genes	 strongly	
associated	with	CD	[19].		
	
More	 steps	 towards	 a	 fully	 automated	 analysis	
were	 taken	with	 the	 release	 of	 BBSplit	 [20]	 (read	
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binning	tool	for	metagenomes	that	uses	the	short-
read	 aligner	 BBMap	 [21])	 to	 facilitate	 multi-
reference	 input	 for	 mapping	 and	 finally,	 the	
release	 of	 BiG-SCAPE	 [22]	 (generates	 similarity	
networks	 for	 BGCs),	 which	 makes	 it	 possible	 to	
create	 Gene	 Cluster	 Families	 (GCFs)	 from	 BGCs.	
These	GCFs	are	highly	related	groups	of	BGCs	that	
produce	 metabolites	 with	 the	 same	 function.	 As	
such,	 BiG-SCAPE	 allows	 for	 homology-based	
comparisons	between	BGCs.	This	shows	that	 tools	
have	 become	 available	 to	 facilitate	 metabolite	
analyses	through	metagenomics.	
	
Here,	those	tools	are	used	to	elucidate	changes	 in	
the	genomic	abundances	of	specialized	metabolite	
pathways	 of	 the	 human	 gut	microbiome	between	
healthy	 and	 diseased	 individuals	 through	 an	
automated	pipeline.	Two	methods	are	attempted.	
One	uses	reference	genomes	as	a	means	of	guided	
discovery,	 by	 which	 well-annotated	 BGCs	 are	
thought	 to	 be	 found.	 The	 other	 uses	 a	 de	 novo	
approach,	meaning	that	any	discovered	BGCs	come	
from	 the	 metagenomic	 data	 of	 the	 individuals	
themselves.	 This	 can	 lead	 to	 more	 detailed	
discovery	of	the	specialized	metabolites	present	in	
the	gut.	
	

Methods 

Two	 analysis	 pipelines	 were	 constructed	 for	
detecting	 changes	 in	 specialised	 metabolite	
production	 with	 metagenomics	 data	 (Figure	 1).	
Tool	version	numbers,	used	commands	and	scripts,	
etc.	can	be	found	in	Supplementary	file	1.		
	
The	 first	 pipeline	 detects	 BGCs	 in	 reference	
genomes.	 It	will	 therefore	be	 called	 the	 reference	
genome	 pipeline	 from	 now	 on.	 In	 this	 study,	 the	
complete	 set	of	 457	genomes	of	 the	HMP	gastro-
intestinal	 tract	 reference	 dataset	 [23]	 have	 been	
selected	 for	 analysis.	 Although	 the	 HMP	 does	
contain	 microbial	 genomes	 extracted	 from	 other	
regions	 of	 the	 human	 body,	 those	 have	 not	 been	
included	 here	 because	 of	 time	 and	 resource	
constraints.	 Inclusion	of	the	other	genomes	would	
result	 in	 a	 higher	 amount	 of	 detected	 BGCs.	
Around	 44,000	 BGCs	 have	 been	 detected	 in	 the	
entire	 HMP	 dataset	 [16],	 but	 this	 will	 probably	
include	many	similar	and	redundant	BGCs,	or	even	
irrelevant	to	this	study	(BGCs	of	species	that	do	not	
occur	in	the	gastro-intestinal	tract).	
	
The	 other	 pipeline	 detects	 BGCs	 in	 the	 contigs	 of	
assembled	 reads,	 therefore	 dubbed	 the	 de	 novo	
pipeline.	 The	 reference	 genome	 pipeline	 yields	
BGCs	 with	 a	 better	 annotation	 than	 the	 de	 novo	
pipeline,	 yet	 less	 certainty	 regarding	 the	presence	

of	a	gene	in	the	real	genome.	To	elaborate,	species	
in	the	sample	may	have	lost	one	or	more	genes	of	
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a	 BGC	 and	 gained	 others.	 The	 de	 novo	 pipeline	
therefore	 yields	 more	 accurate	 results,	 but	 far	
more	often	unannotated.		
	
	

The reference genome pipel ine 

The	University	Medical	 Center	Groningen	 (UMCG)	
has	 provided	 a	 set	 of	 MGS	 samples	 (paired-end	
reads)	taken	from	the	human	gut,	consisting	of	65	
individuals	(20	healthy	and	45	diseased).	The	reads	
were	trimmed	to	a	minimum	quality	of	28	with	the	
FASTQ	 Quality	 Trimmer	 from	 the	 FASTX-toolkit	
[24].	 Afterwards,	 they	 were	mapped	 to	 the	 BGCs	
from	 the	 HMP.	 Multi-mapped	 reads	 were	 also	
included	 for	 determining	 the	 BGC	 abundance.	
Uniquely	 mapped	 reads	 were	 counted	 once,	 but	
multi-mapped	 read	 counts	 were	 divided	 by	 the	
number	 of	 BGCs	 they	 map	 to.	 This	 was	 done	 to	
prevent	 distorted	 organism	 abundances.	 Non-
normalised	read	counts	were	used	here	(as	well	as	
normalised),	 because	 there	 is	 plausible	 evidence	
that	microbial	load	has	predictive	potential	for	IBD	
[25].	 It	 is	suggested	that	read	counts	of	organisms	
normalised	by	the	total	read	count	per	sample	give	
a	false	indication	that	certain	organisms	have	been	
enriched	while,	 in	 fact,	 they	are	not.	Rather,	 read	
counts	 normalised	 by	 cell	 counts	 should	 be	 used,	
though	 such	 data	 was	 not	 available	 here.	
Therefore,	 it	 is	 impossible	 to	 account	 for	 possible	
technical	 sequencing	 artefacts	 and	 no	 definitive	
choice	can	be	made	between	normalised	and	non-
normalised	 read	 counts,	 so	 both	 are	 included	 in	
the	 analysis.	 To	 reduce	 over-fitting	 to	 sample-
specific	 BGCs,	 the	maximum	 read	 count	 of	 a	 BGC	
must	at	 least	be	10	 for	a	 single	 sample.	However,	
BGCs	 below	 the	 threshold	 were	 still	 included	 in	
GCF	 clustering,	 because	 they	 might	 hold	 useful	
information	 about	 related	 BGCs	 and	 influence	
which	 BGCs	 end	 up	 in	 the	 same	 GCF.	 BiG-SCAPE	
generates	 similarity	 networks	 of	 these	 GCFs	 with	
several	 distance	 cut-offs.	 The	network	 that	 shows	
the	 smallest	 amount	 of	 multi-product	 GCFs	 while	
keeping	 the	 number	 of	 GCFs	 low,	was	 chosen	 for	
further	 analysis.	Here,	 a	 cut-off	 of	 0.55	was	used.	
After	 this	 clustering,	 reads	 were	 binned	 to	 the	
GCFs.	 Reads	 were	 also	 binned	 to	 the	 species	 of	
origin	 (the	 genome	 from	 which	 a	 BGC	 was	
predicted).	Classification	was	then	performed	with	
each	 of	 these	 binning	 methods	 and	 on	 the	 BGCs	
without	binning.	
	
A	random	forest	algorithm	with	bootstrapping	[26]	
was	used	to	classify	samples	as	either	diseased	or	
healthy	 based	 on	 the	 BGC	 abundances.	 The	
random	 forest	 was	 created	 1000	 times,	 with	

randomly	divided	training	and	test	sets	(50	and	15	
samples,	 respectively)	 each	 time.	 Each	 random	
forest	 consists	 of	 1000	 decision	 trees	 and	 these	
were	 trained	 on	 either	 BGCs,	 GCFs,	 or	 organisms.	
The	 average	 percentage	 correctly	 classified	
samples	 of	 all	 random	 forests	 of	 one	 binning	
method	 combined	 is	 the	 final	 result	 for	 that	
method.	 Reduced	 feature	 sets	were	 used	 as	well.	
These	 were	 randomly	 sampled	 1000	 times	 from	
the	 entire	 feature	 set	 (BGCs,	 GCFs	 or	 organisms)	
and	 a	 random	 forest	 was	 created	 100	 times	 to	
determine	 which	 reduced	 set	 of	 25	 features	
performed	 best.	 Again,	 the	 average	 result	 of	 a	
method	 is	 used	 as	 the	 final	 result.	 Since	 future	
additional	 samples	 may	 differ	 from	 the	 samples	
used	 here,	 average	 linkage	 hierarchical	 clustering	
was	 used	 to	 see	 if	 the	 current	 diagnostic	 classes	
were	 resembled	 without	 the	 class	 labels.	 This	 is	
indicative	 for	 the	 likelihood	of	new	samples	being	
correctly	 classified.	 Furthermore,	 this	 clustering	
method	 does	 not	 assign	 weights	 to	 the	 features.	
Thus,	 it	 is	 not	 likely	 to	 divide	 control	 and	 IBD	
samples	 correctly	 with	 the	 full	 feature	 set.	
However,	 it	 does	 add	 another	 measure	 for	
robustness	 of	 the	 features	 of	 the	 reduced	 set,	
because	it	can	be	considered	to	be	a	simulation	of	
shifting	weights	 (e.g.	when	adding	more	samples).	
In	that	regard,	having	a	smaller	feature	set	gives	an	
advantage,	 because	 it	 contains	 less	 noise	 and,	
when	 chosen	 correctly,	 is	 probable	 to	be	 relevant	
to	IBD.	
	
More	 information	 was	 needed	 to	 check	 the	
relevance	 to	 IBD	 for	 the	 highest-scoring	 reduced	
feature	 sets.	 Pfam	 [27]	 webpages	 (and	 the	
integrated	InterPro	[28]	webpages)	of	the	domains	
contained	 in	 their	 BGCs	 (in	 case	 of	 GCFs	 and	
organisms,	 their	 BGCs	 were	 obtained	 first)	 were	
searched	for	words	containing	one	or	more	of	the	
following	terms:	sacchar,	 fatty,	 inflamma,	 immune	
and	 antib.	 These	 give	 further	 clues	 about	 the	
function	of	 the	BGC.	These	results,	along	with	 the	
percentage	 of	 correctly	 classified	 samples,	 are	
indicators	 for	 the	 suitability	 of	 the	 classification	
model	 as	 a	 means	 of	 identifying	 specialised	
metabolites	involved	with	IBD.		
	

The de novo pipel ine 

Only	 additional	 stages	 to	 the	 reference	 genome	
pipeline	 are	 explained	 here,	 see	 Figure	 1	 and	 the	
previous	 chapter	 for	 an	 explanation	 on	 the	 other	
stages.		
	

Figure	1.	Schematic	overview	of	the	pipelines.	
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After	 trimming,	 the	 reads	 were	 assembled	 with	
SPAdes	[29].	metaSPAdes	[30]	was	not	chosen	here	
due	to	a	mistake	 in	determining	the	type	of	reads	
(single-end	 instead	 of	 paired-end).	 There	was	 not	
enough	 time	 to	 re-run	 the	 assembly.	 BGCs	 were	
detected	 in	 the	 contigs	 and	 taxonomy	 was	
assigned	 to	 the	 BGCs	 with	 DIAMOND	 [31].	 The	
taxonomy	 is	 needed	 for	 binning	 to	 organisms.	 At	
the	 same	 time,	 the	 reads	 were	 mapped	 to	 the	
BGCs,	equal	to	the	reference	genome	pipeline.	The	
remaining	stages	were	also	equal	to	that	pipeline.	 	
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Results and discussion of the 
reference genome pipel ine 

The	 reference	 genome	 pipeline	 started	 with	
running	 antiSMASH	 against	 each	 reference	
genome	 separately,	 to	 ultimately	 result	 in	 10455	
BGCs.	 Reads	 were	 trimmed	 and	 mapped	 against	
these	BGCs	and	a	total	of	7341	BGCs	were	present	
in	 the	 samples.	 The	 BGCs	 were	 binned	 into	 3074	
GCFs	 by	 BiG-SCAPE	 and	 2991	 GCFs	 had	 up	 to	 10	
BGCs	 in	 them.	 The	 largest	 three	 GCFs	 contained	
243,	 193	 and	 124	 BGCs	 (Figure	 3)	 and	 their	most	
often	 predicted	 product	 types	 were	 putative,	
saccharide	 and	 putative,	 respectively.	 The	 large	
number	of	predicted	putative	BGCs	underlines	the	
need	for	enhanced	annotation	of	BGCs,	which	will	
be	 discussed	 later.	 The	 BGCs	 were	 binned	 to	
organisms	as	well	and	446	genomes	of	the	original	
457	 had	 reads	 mapped	 against	 them.	 The	 three	
genomes	with	 the	most	 BGCs	were	 Streptomyces	
sp.	 HGB0020,	 Streptomyces	 sp.	 HPH0547	 and	
Pseudomonas	 sp.	 2_1_26,	 with	 119,	 97	 and	 58	

BGCs,	respectively	(Figure	2).		

BGC abundances decrease in  IBD 
patients  

	The	 average	 BGC	 abundance	 across	 control	
samples	is	310.74	reads,	whereas	it	is	182.40	reads	
for	 IBD	 samples,	 with	 standard	 deviations	 of	
137.12	 and	 67.66	 reads,	 respectively.	 Briefly,	 a	
student	t-test	was	run.	The	resulting	p-value	of	less	
than	 0.0001	 suggests	 that	 technical	 variation	
cannot	 cause	 this	 alone.	 Another,	 yet	 unlikely,	
cause	 is	 that	DNA	could	be	easier	 to	extract	 from	
the	control	 samples.	Therefore,	 it	 is	probable	 that	
read	 count	 itself	 counts	 as	 a	 biomarker	 for	 IBD.	
Still,	 the	decrease	might	not	be	evenly	distributed	
over	 the	BGCs	and	 classification	 can	help	uncover	
this.	
	
	  

Figure	2.	Distribution	of	BGCs	over	organisms.	Figure	3.	Distribution	of	BGCs	over	GCFs.		

2991	
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Accurate c lass if icat ion of  IBD is  
possible 

The	 classification	was	 done	with	 several	 different	
binning	methods,	on	full	and	reduced	feature	sets,	
with	 non-normalised	 and	 normalised	 read	 counts	
(Table	 1),	 from	 here	 on	 referred	 to	 as	 “settings”.		
The	 highest	 number	 of	 correct	 classifications	 was	
achieved	 with	 the	 reduced	 feature	 set,	 of	 which	
the	 non-normalised	 read	 counts	 without	 binning	
scored	 best.	 Near-equal	 percentages	 were	
achieved	with	 the	 non-normalised	 read	 counts	 of	
binning	by	GCFs		
and	 by	 organisms.	 The	 increased	 overall	 score	 of	
the	 reduced	 feature	 set	 settings	might	 be	 due	 to	
over-fitting	 to	 some	 of	 those	 features	
(Supplementary	 file	 2).	 For	 example,	 the	 feature	
with	the	second	highest	weight	for	the	normalised	
reduced	 feature	 set	 without	 binning	 has	 average	
read	 counts	 of	 0.0002%	 for	 IBD	 and	 0.0006%	 for	

control	 samples	 (Figure	 4).	 Such	 features	 are	 not	
likely	to	retain	their	classification	weight	when	the	
number	 of	 samples	 is	 increased.	 On	 the	 other	
hand,	the	non-normalised	reduced	feature	set	with	
binning	by	organisms	has	Roseburia	intestinalis	L1-
82	 as	 one	 of	 the	 features.	 This	 is	 interesting,	
because	 a	 decrease	 in	 Roseburia	 spp	 leads	 to	 a	
higher	 IBD	genetic	 risk	score	 [7]	and	a	decrease	 is	
measured	 here	 as	well	 (an	 average	 read	 count	 of	
5541.97	for	IBD	samples	versus	7919.98	for	control	
samples).	This	shows	that	even	though	the	binning	
by	 organisms	 was	 not	 as	 successful	 as	 the	 other	
methods,	 valuable	 information	 is	 still	 gained	 from	
it.	 Binning	 BGCs	 as	 organisms	 can	 skew	 the	
abundance	 of	 those	 organisms,	 though	 it	 does	
make	it	easier	to	extract	the	most	important	BGCs	
per	organism.	Follow-up	research	could	investigate	
if	mapping	the	reads	directly	to	the	genomes	yields	
different	 results.	Another	 reason	 the	 classification	
on	 the	 organisms	 performed	 worse,	 was	 because	

BGCs	binned	
as	

	 Full	feature	set	 Reduced	feature	set	
Non-normalised	
read	counts	

Normalised	
read	counts	

Non-normalised	
read	counts	

Normalised	
read	counts	

No	binning	 Training	set	 100%	 100%	 100%	 100%	
Test	set	 90.05%	 84.54%	 95.47%	 90.53%	

GCFs	 Training	set	 100%	 100%	 100%	 100%	
Test	set	 89.76%	 84.82%	 94.47%	 91.33%	

Organisms	 Training	set	 100%	 100%	 100%	 100%	
Test	set	 88.76%	 82.13%	 93.73%	 90.00%	

Table	1.	Percentage	correctly	classified	samples	per	setting.	
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Figure	4.	Feature	weights	and	normalised	read	counts	for	the	reduced	feature	set	without	binning.	
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the	 genomes	 used	 in	 the	 reference	 genome	
pipeline	 were	 not	 always	 the	 actual	 organism	
present	 in	 the	sample.	A	BGC	can	be	 found	 in	 the	
reference	organism,	but	the	actual	organism	might	
have	lost	it,	while	retaining	the	other	genes	of	the	
BGC.	 Possibly,	 another	 organism	 present	 in	 the	
sample	 might	 have	 gained	 it.	 Such	 genomic	
rearrangements	 have	 their	 effect	 on	 the	 total	
organism	 counts	 and	 subsequently	 on	 its	
classification	performance.	The	de	novo	pipeline	is	
likely	to	perform	better	in	this	regard.	
	

Forecasts  of  the c lass if icat ion score 

Future	 research	 may	 include	 more	 or	 different	
samples	and	it	is	therefore	necessary	to	know	how	
well	the	classification	will	perform	during	follow-up	
research.	 To	 investigate	 this,	 clustering	 was	
performed	with	the	same	settings	as	classification,	
using	 both	 the	 full	 feature	 set	 as	 well	 as	 the	
reduced	 feature	 set	 from	 classification.	 The	
resulting	 dendrograms	 can	 be	 found	 in	
Supplementary	file	3.	None	of	the	settings	result	in	
a	 clear	 distinction	 between	 control	 and	 IBD	
samples,	 meaning	 that	 false	 classifications	 are	
bound	 to	 happen	 if	 future	 samples	 do	 not	
resemble	the	currently	included	samples.	
	
Another	 measure	 for	 the	 classification	
performance	for	the	reduced	feature	sets,	was	the	
biological	 background	 of	 the	 features.	 Their	
functions	could	affirm	or	refute	their	eligibility	as	a	
biomarker.	 Protein	 domains	 were	 retrieved	 for	
each	 gene	 in	 each	 BGC	 for	 each	 of	 the	
aforementioned	 settings	 (for	 the	 GCFs	 and	
organisms,	BGCs	were	first	extracted).	This	yielded	
702	 unique	 domains.	 Next,	 Pfam	 database	
webpages	of	these	domains	were	searched	for	the	
terms	sacchar,	fatty,	inflamma,	immune	and	antib.	
The	 full	 list	 of	 these	 domains	 with	 links	 to	 their	
Pfam	webpages	and	the	weights	of	 the	BGCs	they	
derive	 from,	 for	 each	 of	 the	 six	 settings,	 can	 be	
found	 in	 Supplementary	 file	 4.	 This	 search	 has	
provided	a	lot	of	extra	information	about	the	BGCs	
and	 helps	 in	 determining	 their	 products.	 Take	
GG730105.1.cluster032	 for	 example.	 This	 putative	
BGC	 has	 the	 term	 sacchar	 in	 11	 out	 of	 13	 of	 its	
Pfam	 webpages	 and	 is	 part	 of	 the	 GCF	
cf_saccharide_235.	 This	 combination	 of	 web	
scraping	and	BiG-SCAPE	gives	great	confidence	that	
this	 BGC	 produces	 a	 saccharide	 metabolite.	 False	
positives	 occur	 as	 well,	 such	 as	 the	 putative	 BGC	
AGEO01000001.1.cluster009,	 which	 has	 the	 term	
antib	on	6	of	 its	 21	domain	webpages,	but	 seems	
to	 be	 involved	 in	 transcription,	 rather	 than	
antibiotic	 or	 antibacterial	 activities.	 Furthermore,	

this	BGC	 is	 the	second-most	 important	 feature	 for	
the	 normalised	 reduced	 feature	 set	 without	
binning.	It	is	safe	to	say	that	this	BGC	is	not	likely	to	
keep	its	classification	weight	when	the	sample	size	
is	 increased,	 as	 it	 is	 easily	 interchangeable	 with	
other	 BGCs	 that	 indicate	 an	 overall	 loss	 of	
microbes	in	the	gut.	It	also	means	that	the	current	
web	 scraping	 method	 is	 far	 from	 perfect.	
Development	of	a	tool	for	accurately	scraping	both	
Pfam	and	InterPro	databases	is	advised.	
	
Currently,	the	non-normalised	reduced	feature	set	
with	binning	by	GCFs	seems	to	be	the	best	method.	
The	 features	 and	 their	 weights	 are	 least	 likely	 to	
change	 out	 of	 the	 six	 investigated	 settings.	 This	
robustness	 is	 caused	 by	 adequate	 numbers	 of	
reads	 for	 the	 GCFs	 (most	 importantly,	 the	 ones	
with	a	higher	weight)	and	because	 they	consist	of	
multiple	 BGCs.	 Even	 when	 one	 BGC	 of	 a	 GCF	
becomes	 absent,	 another	 similar	 member	 may	
arise	 and	 take	 its	 place,	 keeping	 the	 overall	 GCF	
read	 count	 equal.	 Accurate	GCFs	 are	 crucial	 here.	
As	 such,	 future	 research	 may	 incorporate	 the	
MIBiG	 database	 [32]	 (which	 holds	 well-annotated	
BGCs)	 in	 the	 GCF	 construction	 stage,	 or	 rather,	
including	the	database	should	become	available	as	
an	option	in	BiG-SCAPE.	
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Results and discussion of the  
de novo pipel ine 

The	 de	 novo	 pipeline	 seems	 promising	 in	 theory,	
but	 in	 practice	 it	 required	 too	 much	 time	 and	
resources	to	be	fully	run	during	this	research	study.	
The	results	obtained	thus	far	are	reported	here.	
	
After	 trimming,	 the	 reads	 were	 assembled	 per	
sample.	This	resulted	in	an	average	N50	of	3797	for	
IBD	 samples	 and	 1463.58	 for	 control	 samples	
(Error!	 Reference	 source	 not	 found.).	
Simultaneously,	IBD	samples	have	a	larger	amount	
of	 contigs	 than	 the	 control	 samples.	 In	 all	 of	 the	
samples	combined,	91	BGCs	were	detected.	This	is	
a	 stunningly	 low	 number	 compared	 to	 the	 10455	
with	the	reference	genome	pipeline.	As	mentioned	
in	 the	Methods	 chapter,	 this	 is	 due	 to	 the	 use	 of	
the	 wrong	 assembly	 tool.	 This	 also	 means	 that	
nothing	 can	 be	 said	 here	 about	 differences	
between	 IBD	 and	 control	 samples	 with	 this	
pipeline,	 nor	 about	 differences	 between	 the	 two	
pipelines	 until	 it	 has	 been	 re-run	with	 the	 correct	
tool.		
	

Table	2.	Assembly	statistics.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	

Wisdom l ies  in  the sands of  t ime 

Running	 times	 and	 server	 loads	 were	 major	
constraints	 during	 this	 study	 and	 made	 it	
impossible	 to	 run	 this	 pipeline	 within	 reasonable	
time.	Briefly,	the	code	of	BiG-SCAPE	was	improved,	
which	 resulted	 in	 a	 running	 time	 of	 roughly	 1200	
seconds	with	 this	dataset.	This	 is	an	 improvement	
of	around	25%	compared	to	the	old	code.	Further	
improvements	 are	 still	 possible,	 but	 may	 require	
part	 of	 the	 code	 to	 be	written	 in	 C++	 rather	 than	
Python.	 Such	 improvements	may	 also	 be	 possible	
for	 antiSMASH.	 For	 example,	 by	 using	 the	 best	
programming	 language	 for	 a	 certain	 process	 (e.g.	
Perl	for	parsing,	Python	or	C++	for	calculations	and	
Bash	 scripts	 when	 executing	 other	 programs).	
Nonetheless,	 it	 is	 a	 great	 tool	 for	 detecting	 BGCs	
and	 such	 problems	 only	 arise	 when	 dealing	 with	
large	 datasets	 in	 combination	 with	 running	 many	
of	the	prediction	modules	of	the	tool.	
	
If	 future	 studies	 on	 this	 subject	 apply	 the	
suggested	 improvements	 and	 recommendations	
given	here,	it	will	lead	to	fast	comparative	analyses	
of	metagenomic	 samples.	 This	will	 include	 a	well-
performing,	 robust	 classification	 model	 for	
distinguishing	 between	 diseased	 and	 healthy	
individuals	 and	 highly-accurate	 detection	 of	
involved	 specialised	metabolite	pathways.	 In	 turn,	
these	pathways	can	provide	a	role	in	development	
of	medicines,	 in	 deciding	which	 and	what	 dosage	
of	medicine	to	use	on	a	patient	or	in	dietary	advice	
for	both	diseased	and	healthy	people.	
	

	
	
	 	

	 IBD	 Control	
#	contigs		
(>=	0	bp)	 135637.42	 82606.98	

#	contigs		
(>=	1000	bp)	 16869.49	 11445.31	

#	contigs	
(>=	10000	bp)	 856.02	 548.07	

N50	 3797.00	 1463.58	
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