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Abstract 
Brus, D.J. & G.B.M. Heuvelink, 2007. Towards a Soil Information System with quantified accuracy; Three approaches for 
stochastic simulation of soil maps. Wageningen, Statutory Research Tasks Unit for Nature and the Environment. WOt-rapport 
58. 96 p. 15 Fig.; 1 Tab.; 51 Ref. 
 
This report describes (geo)statistical methods for mapping soil type and soil properties from soil observations and explanatory 
information. These methods do not only produce a map, but also quantify the associated uncertainty in terms of probability 
distributions. Stochastic simulation is used to generate possible realities from the probability distribution of the soil property, 
which are useful to communicate uncertainty about the soil and can also be used in Monte Carlo uncertainty propagation 
studies. Three approaches for deriving the complex probability distributions are described: Kriging, Bayesian Maximum 
Entropy, and Markov random fields. All three methods apply to quantitative (continuous) and qualitative (categorical) soil 
properties. The theory is illustrated with simulation of soil properties used as input by the soil acidification model SMART2. It is 
concluded that Kriging methods are well-developed and have proven their use on numerous occasions, but the Bayesian 
Maximum Entropy and Markov random field approach are valuable alternatives that deserve attention, 
particularly for statistical modelling of qualitative soil properties. 
 
Key words: Soil map, Uncertainty, Kriging, Geostatistics, Bayesian Maximum Entropy, Markov random field 
 
Referaat 
Brus, D.J. & G.B.M. Heuvelink, 2007. Naar een bodeminformatiesysteem met gekwantificeerde nauwkeurigheid: drie 
benaderingen voor het stochastisch simuleren van bodemkaarten. Wageningen, Wettelijke Onderzoekstaken Natuur & Milieu, 
WOt-rapport 58. 96 blz. 15 fig.; 1 tab.; .51 ref.  
 
In dit rapport worden (geo)statistische methoden beschreven voor het in kaart brengen van bodemtypen en 
bodemeigenschappen op basis van veldwaarnemingen en verklarende informatie. Deze methoden leveren niet alleen een kaart 
op, maar kwantificeren tevens de bijbehorende mate van onzekerheid in termen van kansverdelingen. Met behulp van 
stochastische simulatie worden ‘mogelijke werkelijkheden’ gegenereerd uit de kansverdeling van de bodemeigenschap, 
waarmee de mate van onzekerheid over de bodem inzichtelijk kan worden gemaakt en die tevens kunnen worden toegepast in 
Monte Carlo studies over onzekerheidsvoortplanting. Drie benaderingen voor het verkrijgen van de complexe kansverdelingen 
worden beschreven: kriging, Bayesian Maximum Entropy en Markov random fields. Alle drie de methoden kunnen worden 
toegepast zowel op kwantitatieve (continue) als kwalitatieve (categorische) bodemeigenschappen. De theorie wordt 
geïllustreerd met een simulatie van bodemeigenschappen die worden gebruikt als invoer voor het bodemverzuringsmodel 
SMART2. Geconcludeerd wordt dat de kriging-methoden goed ontwikkeld zijn en hun nut vele malen hebben bewezen, maar 
dat Bayesian Maximum Entropy en Markov random fields waardevolle alternatieven vormen die het overwegen waard zijn, met 
name als het gaat om het gebruik van statistische modellen voor kwalitatieve ruimtelijke variabelen.  
 
Trefwoorden: Bodemkaart, Onzekerheid, Kriging, Geostatistiek, Bayesian Maximum Entropy, Markov random fields 
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Preface

Alterra has a long tradition in making soil maps. These soil maps, together with the
observations at points (soil profile descriptions) are stored in a unique Soil Informa-
tion System covering the Netherlands. The information in this system is widely used
for a large variety of applications. Decisions in e.g. land use planning and environ-
mental policy making are based on this information. Triggered by the discussion on
the quality of environmental models, initiated in 1999 by Hans de Kwaadsteniet of
the National Institute for Public Health and the Environment (RIVM) through an
interview in the newspaper ’Trouw’, Alterra also started research on the quality of
their models and databases. For the Soil Map of the Netherlands 1 : 50 000, already
in 1988 a project started, under the supervision of Jaap de Gruijter, to quantify the
quality of this map in terms of purity and spatial variation of soil properties within
mapping units. This project resulted in valuable information on the quality of soil
maps. For some applications, this information is not enough, and information is
required on the spatial distribution of errors in the soil map. This knowledge gap
was the main motivation of the research reported here.

The study was part of the program Basic Research for the Netherlands Environmen-
tal assessment Agency (MNP). This program is funded by the Dutch Ministry of
agriculture, Nature and Food Quality (LNV). We would like to thank Harm Houwel-
ing of MNP for his efforts to keep this important topic on the research agenda. Also
we would like to thank Dimitri D’Or of FSS International. Large parts of this report,
mainly those on Bayesian Maximum Entropy, are based on his PhD thesis.
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Summary

Soil maps are usually constructed such that they provide the best estimate of the
spatial distribution of the soil. However, the estimates contained in the soil map
are not perfect because they are typically based on limited knowledge and limited
information. To acknowledge that soil maps are not free of errors, the uncertainty
in the estimates may therefore be represented with error bounds that characterize
the accuracy of the map. This report uses (geo)statistical methods to derive maps
of soil type and soil properties from soil observations and explanatory information.
A principal property of these methods is that they do not only produce a map but
also quantify the associated uncertainty.

In statistics, the value of an uncertain variable, such as that of a soil property at
a given geographic location, is characterized by a probability distribution. This
signifies that there is not one possible outcome but instead that there is a range
of possible outcomes, each with a probability of occurrence. Wide probability dis-
tributions mean large uncertainty, narrow distributions refer to small uncertainty.
For soil properties that are spatially distributed, a complex probability distribution
must be defined, with parameters that may vary with location and that includes
spatial correlation. Once the full probability distribution of a spatially distributed
soil property is derived it may be used for prediction and stochastic simulation.
Prediction refers to taking at each location a central value from the probability dis-
tribution, such as the mean, median or mode. This results in a single deterministic
map that provides the best estimate of the soil property at each location. Stochastic
simulation is used to generate a possible reality from the probability distribution of
the soil property, using a pseudo-random number generator. Stochastic simulation
produces an infinite number of possible realities, which is useful to communicate the
uncertainty about the soil and can also be used in Monte Carlo uncertainty propa-
gation studies. These and some other introductional issues are discussed in the first
chapter of this report.

The report is then split in three main parts. Parts I and II present the theory of three
approaches to deriving the complex probability distribution of a soil property. The
three approaches are Kriging methods, Bayesian Maximum Entropy, and Markov
random fields. Part I (chapters 2 to 4) addresses quantitative soil properties that
are measured on a continuous numerical scale, part II (chapters 5 to 7) deals with
qualitative soil properties that are measured on a categorical or discrete numerical
scale. Part III (chapters 8 to 10) applies several of the presented methods to map
soil type and selected soil chemical properties for natural areas in the Netherlands.

Chapter 2 reviews existing Kriging methods for quantitative properties. The basic
idea of kriging is to exploit the fact that observations close to one another are more
alike than observations further apart. The spatial correlation is quantified by means
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of a (auto)covariance function or semivariogram, which is subsequently used to make
predictions at unobserved locations. The chapter discusses simple, ordinary and co-
kriging and extends these to universal and stratified kriging. The latter two not
only use point observations for prediction and simulation, but also use spatially
exhaustive explanatory information, either to define a trend function or to divide
the area into relatively homogeneous strata.

The Bayesian Maximum Entropy (BME) method presented in chapter 3 also charac-
terizes uncertain spatial variables with probability distribution functions. However,
it takes a somewhat different approach than kriging and can therefore result in dif-
ferent probability distributions characterizing the same soil property. The basic idea
is to choose probability distribution functions that have maximum entropy, while
satisfying a number of constraints. The entropy of a random variable is a measure
of its uncertainty. The larger the entropy, the larger the uncertainty. Common
constraints are that the mean, variance and spatial correlation of the resulting prob-
ability distribution are known and fixed. Under these three constraints, BME yields
a normal distribution and the results are identical to those of kriging. However,
BME can also handle different and additional constraints. In this respect it is more
flexible than kriging, but the price paid for this is an increased numerical complex-
ity. The two main steps in BME are first to compute the unconditional probability
distribution of the variable using a numerical technique known as iterative scaling,
and second to condition the distribution on the available observations.

The goal of the Markov random field (MRF) approach discussed in chapter 4 is
similar to that of Kriging and Bayesian Maximum Entropy. It aims to characterize
uncertain spatially distributed variables with probability distribution functions. In
the case of MRF, the starting point is defined in terms of conditional probability
distributions, in which case the probability of occurrence of the variable of interest
at some location is defined conditional to the value of the variable at neighbouring
locations. Key property of the MRF approach is that it assumes that the local
neighbourhood contains all information necessary to characterize the probability
distribution of the variable. In addition, it uses numerical approaches, in particular
Markov Chain Monte Carlo simulation, to compute predictions and simulations
of the uncertain variable. MRF is not as well developed as BME and kriging,
but it appears a promising technique that has recently drawn increased attention,
simultaneously with the development of Markov Chain Monte Carlo methods.

Chapters 5 to 7 present the theory of Kriging, BME and MRF for qualitative spatial
variables. For Kiging, this leads to indicator kriging techniques, which are well-
developed in geostatistics but have been criticized for their weak statistical basis.
BME is a good alternative, although the numerical complexity is quite demanding,
particularly when the number of classes is large. MRF can handle a large number
of classes more easily, but it is not easy to estimate the many parameters required
by the method and to verify that the chosen parameter combination is statistically
valid.

The theory presented in parts I and II is illustrated with examples in part III. Chap-
ter 8 gives an introduction, in which background information about the data used
and the necessity of stochastic simulation of the soil properties considered is ex-
plained. The data are soil type and chemical soil properties of the Netherlands, as
used by the soil acidification model SMART2. An uncertainty propagation analysis
of SMART2 requires that the uncertainty in soil type and soil properties is charac-
terized using probability distribution functions and that ’possible realities’ of these
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variables are generated using spatial stochastic simulation.

Chapter 9 uses the Bayesian Maximum Entropy method to simulate the Dutch soil
type for all natural areas in the Netherlands. Seven different soil types are consid-
ered. Information used to build the statistical model and condition the simulated
maps are provided by the 1 : 50 000 Dutch soil map and observations of soil type
at over 8000 points. The point observations are considered error-free, whereas the
soil map information is not. Therefore, the simulated soil type at some location
may differ from that predicted by the 1 : 50 000 soil map. Indeed the simulated
maps show that deviations occur, but overall the simulated maps do not differ much
from the 1 : 50 000 soil map and among each other. Apparently, the information
contained in the 1 : 50 000 soil map and in the 8000 observations is that high that
little uncertainty about the spatial distribution of soil type remains.

Three quantitative soil properties were interpolated and simulated using the Krig-
ing approach in chapter 10. These were the selectivity constant for H - (Ca,Mg)
exchange, the selectivity constant for Al - (Ca,Mg) exchange, and the dissolution
constant for Al-hydroxide. Exploratory data analysis on 317 observations from for-
est soils in the Netherlands showed that the latter of the three was severely skewed.
It was therefore log-transformed prior to the statistical modelling. The analysis also
showed that the selectivity constant for Al - (Ca,Mg) exchange was significantly
correlated with soil type. The mean of this variable was therefore modelled as soil
type-dependent and a universal kriging approach was used. The semivariograms of
all three variables showed clear spatial dependence, with spatial correlation lengths
ranging from 60 to 100 km. Consequently, the prediction maps showed clear spatial
patterns, some of which could not easily be explained. As expected, the simulated
maps of the soil properties are more noisy than the prediction maps, but the over-
all spatial pattern is still present. Differences between the simulated maps were
meaningful and indicate that the uncertainty about the spatial distribution of these
properties is far from negligible.

The final chapter discusses the advantages and disavantages of the three approaches
described in this report. Kriging methods are well-developed and have proven their
use on numerous occasions, but the Bayesian Maximum Entropy and Markov ran-
dom field approach are valuable alternatives that deserve attention, particularly for
statistical modelling of qualitative spatial variables.
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Samenvatting

Bodemkaarten worden gewoonlijk dusdanig samengesteld dat ze een zo goed mogelijk
beeld bieden van de ruimtelijke verdeling van de bodem. De bodemkaart is echter
niet volmaakt, omdat ze gebaseerd is op beperkte kennis en informatie. Om aan te
geven dat bodemkaarten niet vrij zijn van fouten, zou de onzekerheid in de schat-
tingen kunnen worden weergegeven door middel van foutenmarges, die de mate van
nauwkeurigheid van de kaart weergeven. In het huidige rapport worden met behulp
van (geo)statistische methoden kaarten van bodemtypen en bodemeigenschappen
afgeleid uit waarnemingen aan de bodem en informatie over omgevingskenmerken
die gerelateerd zijn aan de bodem. Een belangrijk kenmerk van deze methoden is dat
ze niet alleen een kaart opleveren maar tevens de bijbehorende mate van onzekerheid
kwantificeren.

In de statistiek wordt de waarde van een onzekere variabele, zoals die van een bode-
meigenschap op een gegeven geografische locatie, gekenmerkt door een bepaalde
kansverdeling. Dit houdt in dat er niet maar n bepaalde uitkomst mogelijk is,
maar een zekere range aan mogelijke uitkomsten, die elk met een bepaalde mate
van waarschijnlijkheid kunnen optreden. Brede kansverdelingen betekenen een hoge
mate van onzekerheid, terwijl smalle verdelingen overeenkomen met een lage onzeker-
heid. Voor ruimtelijk verdeelde bodemeigenschappen moet een complexe kansverdel-
ing worden gedefinieerd, met parameters die kunnen variren met de locatie, en die
voorzien is van een ruimtelijke correlatie. Wanneer de volledige kansverdeling van
een ruimtelijk verdeelde bodemeigenschap eenmaal is afgeleid, kan deze worden ge-
bruikt voor voorspellingen en stochastische simulatie. Voorspelling verwijst hierbij
naar het voor elke locatie nemen van een centrale waarde uit de kansverdeling,
zoals het gemiddelde, de mediaan of de modus. Dit resulteert in n enkele deter-
ministische kaart met voor elke locatie de beste schatting van de bodemeigenschap.
Stochastische simulatie wordt gebruikt om een mogelijke werkelijkheid te genereren
uit de kansverdeling van de bodemeigenschap, met behulp van een generator van
pseudo-toevalsgetallen. Stochastische simulatie leidt tot een oneindig aantal mo-
gelijke werkelijkheden, wat kan worden gebruikt om de mate van onzekerheid over
de bodem inzichtelijk te maken, evenals in Monte Carlo-studies over onzekerhei-
dsvoortplanting. Deze en enkele andere achtergrondaspecten worden besproken in
Hoofdstuk 1.

De rest van het rapport is onderverdeeld in drie gedeelten. In Deel I en II wordt de
theorie van drie benaderingen voor het afleiden van de complexe kansverdeling van
een bodemeigenschap beschreven. Bij deze drie benaderingen gaat het respectievelijk
om kriging-methoden, Bayesian Maximum Entropy en Markov random fields. In
deel I (hoofdstuk 2 t/m 4) worden kwantitatieve bodemeigenschappen behandeld
gemeten op een continue numerieke schaal, terwijl het in deel II (hoofdstuk 5 t/m 7)
gaat om kwalitatieve bodemeigenschappen gemeten op een categorische of discrete

9



numerieke schaal. In deel III (hoofdstuk 8 t/m 10) worden verschillende van de
beschreven methoden toegepast voor het in kaart brengen van bodemtypen en enkele
bodemchemische eigenschappen in natuurgebieden in Nederland.

In hoofdstuk 2 wordt een overzicht gegeven van bestaande kriging-methoden voor
kwantitatieve eigenschappen. Het uitgangspunt bij kriging is dat gebruik wordt
gemaakt van het gegeven dat waarnemingen die dicht bij elkaar zijn gedaan meer
op elkaar lijken dan waarnemingen die op grotere afstand van elkaar zijn gedaan. De
ruimtelijke correlatie wordt gekwantificeerd door middel van een (auto)covariantiefunctie
of semivariogram, dat dan vervolgens wordt gebruikt om voorspellingen te doen over
locaties waar geen waarnemingen zijn gedaan. In dit hoofdstuk bespreken we sim-
ple, ordinary en cokriging, en breiden dit uit naar universal en stratified kriging. Bij
deze laatste twee worden voor voorspellingen en simulaties niet alleen puntwaarne-
mingen gebruikt, maar ook gebiedsdekkende verklarende informatie, hetzij om een
trendfunctie te definiren hetzij om het onderzoeksgebied in relatief homogene strata
onder te verdelen.

Bij de in het derde hoofdstuk besproken Bayesian Maximum Entropy (BME) meth-
ode worden ook onzekere ruimtelijke variabelen gekarakteriseerd met behulp van
kansverdelingsfuncties. Hierbij wordt echter een enigszins andere benadering ge-
bruikt dan bij kriging, wat kan leiden tot een andere kansverdeling voor dezelfde
bodemeigenschap. Het uitgangspunt is het kiezen van de kansverdelingsfuncties met
de hoogste entropie, waarbij moet worden voldaan aan een aantal randvoorwaarden.
De entropie van een stochastische variabele is een maat voor de onzekerheid ervan.
Hoe hoger de entropie, hoe groter de onzekerheid. Gebruikelijke randvoorwaarden
zijn onder andere dat het gemiddelde, de variantie en de ruimtelijke correlatie van de
resulterende kansverdeling bekend en overal hetzelfde moeten zijn. Onder deze drie
randvoorwaarden levert BME een normale verdeling op, met resultaten die identiek
zijn aan die van kriging. BME kan echter ook omgaan met andere en bijkomende
randvoorwaarden. In dit opzicht is deze methode meer flexibel dan kriging, maar de
prijs die hiervoor wordt betaald is een grotere numerieke complexiteit. De twee voor-
naamste stappen bij BME zijn ten eerste het berekenen van de onvoorwaardelijke
kansverdeling van de variabele met behulp van een numerieke techniek die iterative
scaling wordt genoemd, en ten tweede het conditioneren van de verdeling op de
beschikbare waarnemeringen

Het doel van de in hoofdstuk 4 besproken Markov random fields (MRF) benader-
ing lijkt op dat van kriging en van BME. Doel is het karakteriseren van onzekere
ruimtelijk verdeelde variabelen met behulp van kansverdelingsfuncties. In het geval
van MRF wordt begonnen met het definiren van voorwaardelijke kansverdelingen,
waarbij de kans dat de bestudeerde variabele op een locatie een bepaalde waarde
aanneemt wordt gedefinieerd in termen van de waarde van deze variabele op naburige
locaties. Een essentile eigenschap van de MRF-benadering is dat hierbij wordt
aangenomen dat de plaatselijke omgeving alle informatie bevat die nodig is voor
het karakteriseren van de kansverdeling van de variabele. Daarnaast wordt gebruik
gemaakt van numerieke benaderingen, met name Markov Chain Monte Carlo simu-
latie, voor het berekenen van voorspellingen en simulaties van de onzekere variabele.
MRF is nog niet zo ver ontwikkeld als BME en kriging, maar lijkt toch een veel-
belovende techniek, die de laatste tijd steeds meer aandacht krijgt, naarmate de
Markov Chain Monte Carlo methoden verder worden ontwikkeld.

In hoofdstuk 5 tot en met 7 wordt de theorie achter kriging, BME en MRF voor
kwalitatieve ruimtelijke variabelen besproken. Voor kriging leidt dit tot indicator-
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kriging technieken, die in de geostatistiek goed ontwikkeld zijn, maar waarop kritiek
is geleverd vanwege hun zwakke theoretische onderbouwing. BME is een goed al-
ternatief, ondanks de nogal veeleisende numerieke complexiteit, vooral wanneer het
aantal klassen groot is. MRF heeft minder moeite met grote aantallen klassen,
maar het is niet gemakkelijk het grote aantal parameters dat de methode vereist te
schatten en te verifiren dat de gekozen combinatie van parameters statistisch valide
is.

De in deel I en II gepresenteerde theorie wordt in deel III gellustreerd met voor-
beelden. In Hoofdstuk 8 wordt ter inleiding achtergrondinformatie gepresenteerd
over de gebruikte gegevens en wordt de noodzaak van het gebruik van stochastische
simulatie van de bestudeerde bodemeigenschappen toegelicht. De gegevens betreffen
bodemtypen en chemische bodemeigenschappen voor Nederland, zoals die worden
gebruikt in het bodemverzuringsmodel SMART2. Voor een analyse van de manier
waarop onzekerheden zich voortplanten in SMART2 is het nodig om de onzekerheid
in bodemtype en bodemeigenschappen te karakteriseren met behulp van kansverdel-
ingsfuncties en om de mogelijke werkelijkheden van deze tien in WOt-rapport 58
genoemde variabelen te genereren met behulp van ruimtelijke stochastische simu-
latie.

In hoofdstuk 9 wordt met behulp van de Bayesian Maximum Entropy methode
voor alle natuurgebieden in Nederland het bodemtype gesimuleerd. Hierbij worden
zeven verschillende bodemtypen meegenomen. De informatie die nodig is om het
statistische model te construeren en de gesimuleerde kaarten te conditioneren wordt
verkregen uit de bodemkaart van Nederland (1:50.000) en uit waarnemingen van
het bodemtype afkomstig van meer dan 8000 punten. Van de puntwaarnemingen
wordt aangenomen dat deze foutloos zijn, in tegenstelling tot de informatie uit de
kaart. Het kan dus voorkomen dat het gesimuleerde bodemtype voor een bepaalde
locatie verschilt van het type dat door de 1:50.000 kaart wordt aangegeven. Uit de
gesimuleerde kaarten blijkt inderdaad dat er afwijkingen optreden, maar over het
algemeen verschillen de gesimuleerde kaarten niet sterk van de 1:50.000 kaart, en
ook vertonen ze geen grote onderlinge verschillen. Kennelijk bevatten de 1:50.000
bodemkaart en de 8000 waarnemingen zo veel informatie dat er wat betreft de
ruimtelijke verdeling van het bodemtype weinig onzekerheid overblijft.

In hoofdstuk 10 worden met behulp van kriging drie kwantitatieve bodemeigenschap-
pen genterpoleerd en gesimuleerd. Hiervoor werden gekozen de selectiviteitscon-
stante voor H (Ca, Mg) uitwisseling, de selectiviteitsconstante voor Al (Ca, Mg)
uitwisseling en de oplossingsconstante voor Al-hydroxide. Uit een orinterende gegeven-
sanalyse van 317 waarnemingen afkomstig van Nederlandse bosbodems bleek dat de
derde van deze eigenschappen een zeer scheve verdeling had. Daarom werden deze
gegevens voorafgaand aan het gebruik in het statistische model log-getransformeerd.
Uit de analyse bleek ook dat de selectiviteitsconstante voor Al (Ca, Mg) uitwissel-
ing significant gecorreleerd was met het bodemtype. Daarom werd de gemiddelde
waarde van deze variabele gemodelleerd als bodemtype-afhankelijk, en werd univer-
sal kriging toegepast. Uit het semivariogram van alle drie de variabelen bleek een
duidelijke ruimtelijke afhankelijkheid, waarbij de ruimtelijke correlatielengte uiteen-
liep van 60 tot 100 km. Als gevolg hiervan vertoonden de voorspellingskaarten
duidelijke ruimtelijke patronen, waarvan sommige niet eenvoudig te verklaren waren.
Zoals verwacht bevatten de gesimuleerde kaarten van de bodemeigenschappen meer
ruis dan de voorspellingskaarten, maar het algehele ruimtelijke patroon blijft aan-
wezig. De verschillen tussen de gesimuleerde kaarten waren betekenisvol en geven
aan dat de onzekerheid in de ruimtelijke verdeling van deze eigenschappen beslist
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niet verwaarloosbaar is.

In het laatste hoofdstuk worden de voor- en nadelen van de drie in dit rapport
beschreven benaderingen besproken. De kriging-methoden zijn goed ontwikkeld
en hebben hun nut talloze malen bewezen, maar Bayesian Maximum Entropy en
Markov random fields vormen waardevolle alternatieven die het overwegen waard
zijn, met name als het gaat om het gebruik van statistische modellen voor kwali-
tatieve ruimtelijke variabelen.

12 WOt–Rapport 58



Chapter 1

Introduction

1.1 Defining the problem

Soil maps are used for many purposes. To name a few examples, they are used in
planning to evaluate land allocation scenarios, in agronomy to assess the suitability
of the land for growing crops or assess the faith of pollutants such as pesticides, in
ecology to develop nature conservation plans, and in hydrology and climatology to
describe the role of the soil in the hydrological cycle. Since many years, national
governments and international organisations have therefore put much effort in map-
ping the soil. Soil maps are also increasingly used to derive spatially distributed
soil inputs to environmental and ecological process models. For instance, soil maps
provide important information about physical, chemical and biological soil proper-
ties needed by acidification, groundwater flow and greenhouse gas emission models.
However, it is well known that soil maps are not perfect and contain errors. Soil
map units are usually impure, meaning that not all locations in a soil map unit
have the soil type associated with the unit. Also, continuous soil properties such as
pH, clay and organic carbon content always show spatial variation within soil map
units, even within units that are perfectly pure. Hence thematic soil maps that are
derived from the general soil map by assigning constant values to map units using
pedo-transfer functions will contain errors, even if the general soil map would be
free of errors.

Besides soil maps, many countries and organisations also have soil information sys-
tems, which are digital data bases that store measurements of the soil at point
locations. At these points, the soil profile is described and classified. Basic soil
properties such as the organic carbon and clay content of the soil horizons are es-
timated in the field by hand-estimates, or measured in the laboratory, and stored
in the data base. Much of the data collected in this way can be considered as hard
information, i.e. relatively certain, when compared to the information derived from
the soil map. Nonetheless, these data are also not error-free and are affected by
measurement and interpretation errors. Maps of specific soil properties obtained by
spatial interpolation in between the observation points are in addition affected by
interpolation error.

In the Netherlands the situation is as described above. The soil map at scale
1 : 50 000, which was completed in the 1990s (Stichting voor Bodemkartering, 1995),
is used in many agricultural, environmental and ecological studies. Many of these
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studies are commissioned by the Statutory Research Tasks Unit for Nature and the
Environment. The soil map of the Netherlands 1 : 50 000 is also used to generate
soil-related input for process models such as the soil acidification model SMART,
using pedo-transfer functions. Stimulated by a national discussion on the accuracy
of outputs of process models used by the National Institute for Public Health and
the Environment (RIVM), the Board of Directors of Wageningen University and
Research Centre and the Directors of Alterra installed a task force for the quality
control of datasets and models used for the Statutory Research Tasks. In their final
report, the task force presents several recommendations how to improve the quality
control of the datasets and models (Jansen (ed), 2004). In the meantime, several
studies were executed to analyze the uncertainty of the output of individual process
models and of chains of models (Schouwenberg et al., 2000; van Dobben et al., 2002a;
Wamelink et al., 2003). However, in these studies only the contribution of uncertain
non-spatial model parameters was analyzed, whereas the contribution of spatially
varying input variables such as soil properties was ignored. The main reason for
this was the lack of information about the uncertainties associated with the soil
map and properties derived from it. An exception is the study by Brus and Jansen
(2004) on uncertainty of heavy metal concentrations in arable crops. They studied
the combined effect of uncertainty about: 1) basic soil properties derived from the
soil map and heavy metal concenrttaions in soil, both used as model input; 2) model
parameters and, 3) residual variance, on the model output.

Several validation studies have been done to assess the quality of the soil map
1 : 50 000 (Marsman and de Gruijter, 1986). Although these studies reveal the
overall quality of the soil map 1 : 50 000, expressed in terms of map purity and spa-
tial variance of quantitative soil properties within mapping units (Visschers et al.,
2007), in many cases this is insufficient information for a spatial uncertainty analysis.
The accuracy obtained is not location-specific but merely an overall measure. If the
model includes spatial interactions or if one wants to compute spatial aggregates of
the model output, then one must also characterize the uncertainty about the spatial
distribution of the soil property, including how the uncertainty at one location is
related to that at neighbouring locations and beyond.

Rather than validation studies that quantify the accuracy of an existing map af-
terwards in a global measure such as purity or mean squared error, there is a need
for methods that yield maps of soil types and soil properties that simultaneously
quantify the accuracy of the map produced. In order to be used in uncertainty prop-
agation studies, the accuracy must be fully specified and include location-specific
accuracy measures as well as quantify the spatial dependence of uncertainties. This
calls for a geostatistical approach, in which case maps of soil types and soil properties
are represented by probability distributions.

1.2 Aim of project

In this report we describe and illustrate statistical methods for mapping soil prop-
erties measured on a qualitative scale (categorical and ordinal data, such as soil
type, soil colour and soil erodibility class) and a quantitative scale (interval and
ratio data, such as soil pH, organic matter content and soil thickness). Qualitative
soil maps are also referred to as categorical soil maps. Quantitative variables can
be discrete (finite or countably infinite number of possible outcomes) or continu-
ous (infinite number of possible outcomes). In this report we consider continuous
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quantitative data only. An important aspect in the evaluation is the appropriate-
ness of the method for handling different sources of data and information, such as
certain (effectively error-free, ’hard’) and uncertain (’soft’) point observations of the
target soil property, and a map of the soil property. In the case of a map one has
spatially exhaustive information, but this information is usually uncertain, i.e. the
values depicted on the map must be interpreted as merely an estimate of the target
property. Also the possibility of exploiting ancillary information, i.e. information
on covariates related to the target soil property, observed at points or contained in
maps, is evaluated. Examples of ancillary information on maps are digital terrain
models, land use and geological maps and remote sensing images.

Key property of all statistical methods presented in this work is that they not only
produce a map of the soil property, but that they also quantify the uncertainty
associated with the map produced. This is what is lacking in most of the existing
soil maps and soil information systems. A convenient and powerful way to describe
uncertainty is to make use of probability distribution functions. Before presenting an
outline of this report, we therefore first introduce the basic concepts of probability
distributions and describe how probability theory and statistics may be used to
describe the uncertainty in mapped soil properties.

1.3 Modelling uncertain soil properties with probability
distributions

In the previous section we observed that soil maps are rarely, if ever, free of errors.
The problem is that although we may know that a soil map contains errors, we do
not in fact know these errors. After all, if we would know them then we could simply
eliminate the errors by adjusting the map. For example, if the soil map specifies
that at some location the clay content of the topsoil equals 32 per cent, while we
know that in reality it is 27 per cent, then we could simply eliminate the error by
subtracting 5 per cent from the mapped value. If we would measure the clay content
everywhere with negligible measurement error, then we could easily adjust the soil
map everywhere and obtain an error-free map of soil clay content. However, in reality
we are not able to do so, because we do not have the resources to exhaustively and
accurately measure soil clay content with sufficient spatial resolution.

Although we may not know the error, in many cases we do have some idea about
the distribution of values that the error is likely to take. For example, we may know
or have sufficient confidence that the chances are equal that the error is positive or
negative (no bias or systematic error), or we may know that in only one out of ten
cases the absolute error is greater than a given number (known width of confidence
interval). Such knowledge may be based on validation data, expert judgement or,
under certain assumptions, be derived from the spatial variation of the soil property
and the method that was used to create the soil map. A major part of this report
is dedicated to how the error in maps of soil properties can be characterized in this
way. Where it boils down to in the end is that, although we may not be able to
determine the actual error, we are able to quantify the error in statistical terms
using probability distribution functions. In this section we introduce the theory and
basic concepts of probability distribution theory applicable to spatially distributed
soil properties.
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1.3.1 Uncertain soil properties at a single location

For a continuous soil property at a single location, we represent its unknown (be-
cause of uncertainty) value by a random variable. A random variable has no fixed
value but has many (often infinite) possible values, each with a certain probability
of occurrence. A random variable is completely characterized by its probability dis-
tribution function (pdf). If we denote the continuous soil property by Ẑ then its
cumulative pdf FẐ at some location s is defined as:

FẐ(ẑ, s) = P [Ẑ(s) ≤ ẑ] (1.1)

where P represents probability. Note that the hat-symbol (^) is used to underline
that the random variable is an estimator or predictor of the true soil property. In
fact, this notation will also be useful in chapter 2, where a distinction between Z and
Ẑ will be made. For all s, the function FẐ must be a non-decreasing continuously
differentiable function of ẑ with limit values FẐ(−∞, s) = 0 and FẐ(∞, s) = 1.
There are no other restrictions. The shape of FẐ can take many forms, although
in practice one often parametrizes the pdf to a common shape, such as the normal,
lognormal, exponential or uniform distribution. Important parameters of the pdf
are its mean µẐ(s), which represents the expected or average value of Ẑ(s), and
its variance VẐ(s), which characterizes the variation or spread of Ẑ(s) around its
central value. The mean and variance are defined as:

µẐ(s) = E[Ẑ(s)] =

∞∫
−∞

ẑ · fẐ(ẑ, s) dẑ (1.2)

VẐ(s) = E[(Ẑ(s)− µẐ(s))2] =

∞∫
−∞

(ẑ − µẐ(s))2 · fẐ(ẑ, s) dẑ (1.3)

where E means mathematical expectation and fẐ is the mathematical derivative
of FẐ , commonly known as the probability density function. The variance VẐ(s),
or alternatively its square root the standard deviation σẐ(s), is a measure for the
uncertainty in the soil property. For example, when the soil property is assumed
normally distributed then there is a 95% chance that the true value of the soil
property lies within two standard deviations from its expected value.

Uncertain categorical soil properties are also characterized with pdfs. However, the
difference is that here discrete pdfs are used, since the number of outcomes of the
soil property is typically finite. The discrete pdf πC characterising the uncertain
categorical soil property C at s is given by

πC(ci, s) = P [C(s) = ci] (1.4)

where i = 1, . . . , nc with nc the number of soil categories. The uncertain soil property
is fully characterized at s when πC(ci, s) is known for all ci. Each of the individual
probabilities must be greater or equal to zero and their sum must equal one. Com-
mon shapes for discrete pdfs are the uniform, binomial and multinomial distribution.
In soil science applications non-parametric discrete pdfs are also often used, which
means that one simply needs to specify the probability for all soil categories. The
degree of uncertainty about the categorical soil property is contained in these prob-
abilities. An uncertain categorical soil property will have multiple outcomes with
non-zero probability. A certain categorical soil property will have only one outcome
with probability one, while all other outcomes have probability zero.
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1.3.2 Spatially distributed uncertain soil properties

We can be uncertain about the soil at multiple or all locations in an area of interest.
In this case we do not have a single random variable, but a set of random variables,
one for each location in the study area. This set of random variables is referred
to as a Spatial Random Field (SRF). The (one-point) pdfs defined above can then
be specified for each location and used to describe the uncertainty at all locations
within the area, yielding pdfs and pdf parameters for all locations s in the domain
of interest D. Thus, neither the mean µẐ(s) and variance VẐ(s) of an uncertain
continuous soil property nor the probability πC(s) of an uncertain categorical soil
property need be constant in space but will typically vary with s.

In addition, spatially distributed uncertain soil properties will usually be spatially
dependent. In order to represent spatial dependence, it is necessary to specify the
multi-point probability distribution function:

FẐ...Ẑ(ẑ1, . . . , ẑn, s1, . . . , sn) = P [Ẑ(s1) ≤ ẑ1, . . . , Ẑ(sn) ≤ ẑn] (1.5)

πC...C(ci, . . . , cj , s1, . . . , sn) = P [C(s1) = ci, . . . , C(sn) = cj ] (1.6)

For the continuous case, important parameters of the multi-point pdf are the vector
of means µẐ = [µẐ(s1) µẐ(s2) . . . µẐ(sn)]T and the n×n variance-covariance matrix
CẐ , whose ij-th element stores the covariance of Ẑ(si) and Ẑ(sj). The number
of parameters of these multi-point pdfs can be extremely large, particularly in the
discrete case. For instance, even for the relatively simple case of nc = 12 categories
and n = 6 locations, nearly three million (126) probabilities need to be specified.
Clearly, simplifying assumptions are needed to reduce the number of parameters
in practical applications. One important simplifying assumption that is frequently
made is stationarity . Stationarity entails that the probability distributions, Eq.
(1.5) and Eq. (1.6), are invariant to spatial translation, meaning that

P [Ẑ(s1 + h) ≤ ẑ1, . . . , Ẑ(sn + h) ≤ ẑn]

= P [Ẑ(s1) ≤ ẑ1, . . . , Ẑ(sn) ≤ ẑn] (1.7)

P [C(s1 + h) = ci, . . . , C(sn + h) = cj ]
= P [C(s1) = ci, . . . , C(sn) = cj ] (1.8)

for all h. A slightly less rigid assumption for the continuous case is that of second-
order stationarity, which states that µẐ does not depend on s and that the covariance
between Ẑ(s) and Ẑ(s+h) only depends on the separation vector h. Under second-
order stationarity, a useful parameter characterising the spatial dependence in Ẑ is
the autocovariance function CẐ(h):

CẐ(h) = Cov[Ẑ(s), Ẑ(s + h)] = E[(Ẑ(s)− µẐ(s)) · (Ẑ(s + h)− µẐ(s + h))] (1.9)

1.3.3 Multiple uncertain soil properties

The soil has many properties. In the previous section we presented a generic sta-
tistical model for representing these properties in situations where we are uncertain
about them and where these properties are spatially dependent. However, often
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the properties are also mutually dependent or cross-correlated. This may have an
important impact on analyses that use multiple soil properties as inputs, such as in
crop growth and soil erosion models. In order to take these mutual dependencies
into account in a statistical framework, the joint distribution of multiple soil proper-
ties must be considered. In case of two continuous soil properties Ẑ1 and Ẑ2 or two
categorical soil properties C and D, the joint distribution of the pair of variables is
given by:

FẐ1Ẑ2
(ẑ1, ẑ2, s, s′) = P [Ẑ1(s) ≤ ẑ1, Ẑ2(s′) ≤ ẑ2] (1.10)

πCD(ci, dj , s, s′) = P [C(s) = ci, D(s′) = dj ] (1.11)

Extension to dependencies between more than two properties is straightforward.
Under the second-order stationarity assumption, the statistical dependence between
Ẑ1 and Ẑ2 as a function of distance is characterized by the cross-covariance function:

CẐ1Ẑ2
(h) = Cov[Ẑ1(s), Ẑ2(s + h)] (1.12)

The multivariate extension makes parametrisation even more complex.

Much of the theory developed in geostatistics and spatial statistics has been de-
voted to simplification of the generic models introduced in this section, in order to
reduce the number of parameters such that they can reliably be estimated from the
amount of information and observations that are typically available in practice. The
challenge is to make assumptions that leave an estimable model that still captures
the essentials of the studied soil properties and their uncertainties. The stationarity
assumption is an important one, but particularly for the discrete case additional as-
sumptions are required. Also, in some cases the stationarity assumption is too rigid
and needs to be relaxed by specifying trend functions or splitting up the domain in
strata that each have different probability models. These and other issues will be
addressed in subsequent chapters, where state of the art approaches for modelling
uncertain soil properties are described and illustrated.

1.4 Prediction versus simulation

The probability distributions defined in the previous section fully characterize the
spatial and multivariate distribution of soil properties, including the uncertainties
associated with them. However, in many practical circumstances users will not
want to work with a complex probability distribution of a given soil property but
will want to use a single map of that soil property, which must somehow be derived
from the probability distribution. In such cases, it seems sensible to choose from the
probability distribution that value which is most likely, where we obviously need to
specify more precisely what we mean by ’most likely’. In statistics, this procedure
is referred to as (spatial) prediction. Alternatively, users may want to generate
multiple possible realities by sampling from the probability distributions, in analogy
to throwing a die or tossing a coin. This is useful to visualize and communicate
the uncertainty about the soil property and necessary for so-called Monte Carlo
uncertainty propagation analyses (Heuvelink et al., 2007). This procedure is referred
to as (stochastic) simulation. Both procedures are briefly described below.
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1.4.1 Prediction

Let us consider the probability distribution of a continuous soil property at some
location, as given in Eq. (1.1). The distribution conveys that the soil property can
take an infinite number of possible values, each with a certain probability, but from
these we wish to choose one, representative value, in the centre of the probability
distribution. One possibility is to use the most likely value, now meaning the value
which has the largest probability density. This value is known as the mode of the
distribution, which, in fact, need not be unique. Another possibility, more common
and also the one that we will use throughout this report, is to use the mean or
expected value of the distribution, given in Eq. (1.2). This gives a unique value
which in addition has the attractive property that it is unbiased , meaning that the
expected value of the difference between the soil property and its predicted value
equals zero:

E[(µẐ(s)− Ẑ(s))] = µẐ(s)− E[Ẑ(s)] = 0 (1.13)

The expected value of Ẑ, given by µẐ , can be computed for all s, yielding a prediction
map of the continuous soil property. The prediction map may be interpreted as
our ’best guess’ of the true soil map, whereby unbiasedness guarantees that on
average over- and underestimations cancel out. Unbiasedness means that there is
no systematic error, but random errors cannot be eliminated. The magnitude of the
random errors is quantified by the prediction error variance as given by Eq. (1.3).

Prediction maps of continuous soil variables tend to be much smoother than reality.
Because it is unknown whether the soil property is greater or smaller than the mean
of the probability distribution, it is best to use the mean as prediction, thus pulling
the prediction towards the centre of the distribution. As a result, extremes in the
probability distribution of the soil property are not represented in the prediction
map.

For categorical soil properties we cannot compute an expected value. Instead, the
obvious alternative is to use the category with the maximum probability for predic-
tion, i.e. the mode. For example, when the probability associated with soil types A,
B and C at some location equals 0.30, 0.55 and 0.15, respectively, then the predicted
soil type would be soil type B. In rare cases where there are more categories that have
equal and maximum probability, one of these categories may be chosen at random.
The probability of making a wrong prediction is 1 minus the mode. Computing the
prediction at all locations in the geographical domain of interest (in practice grid
cells or polygons), yields a prediction map of the categorical soil variable. Note that
using the mode for prediction means that soil types with small probabilities are not
selected. Thus, soil types with large probabilities will be over-represented on the
prediction map. For example, if at each location soil type A has probability 0.30
and type B has probability 0.70, then the prediction map will assign type B to all
locations, whereas we would expect that in reality about 30 per cent of the area is
occupied by soil type A.

1.4.2 Simulation

In stochastic simulation, it is not the most likely or expected value of the soil prop-
erty that one aims for, but instead the goal is to generate a possible reality from the
probability distribution of the uncertain soil property. As explained in section (1.3),
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we imagine that the true reality is one of an infinite number of possible realities
that can be generated. Because of uncertainty we do not know which of the sim-
ulated realities is the true one. Therefore simulation is often used repeatedly (say
100 or 500 times), because the purpose is to create a sample of realizations that
reproduces the original probability distribution sufficiently accurately. Realizations
are typically generated using a pseudo random number generator, which is fairly
easily accomplished for one-point (marginal) distributions, but becomes more tricky
for multi-point (joint) distributions and for distributions of spatially dependent soil
variables. Several algorithms are described in detail in later chapters.

For continuous soil properties, a histogram of a sufficiently large sample of real-
izations generated by the simulation will closely match the imposed probability
distribution. This implies that extremes are not under-represented, as was the case
in prediction. Thus, smoothing does not occur and the spatial pattern in the simu-
lated maps more realistically represents the true spatial variation of the soil property.
However, the price paid for this is that the difference between a single realization
and the true soil map is greater than that between the prediction map and the true
soil map. In fact, the variance of the difference for simulation is twice as large as
that for prediction with the mean:

E[(Ẑ(s)− Z̃(s))2] = E[(Ẑ(s)− µẐ(s)− (Z̃(s)− µẐ(s)))2]

= E[(Ẑ(s)− µẐ(s))2] + E[(Z̃(s)− µẐ(s))2] = 2VẐ(s) (1.14)

where Z̃(s) represents the simulated continuous soil property at s. It has the same
probability distribution as Ẑ(s) and is statistically independent from it. It is there-
fore not wise to use a simulated reality as a prediction. However, simulation is
useful for several other reasons. First, as noted above, the spatial pattern of a simu-
lation reproduces the true spatial variation of the soil property. Second, presenting
and comparing multiple simulated realities (such as in animations or simply a dis-
play of several realizations next to each other) is an attractive way to communicate
uncertainty. Third, simulated realities are required for a Monte Carlo uncertainty
propagation analysis, whereby it is analysed how uncertainty in the soil property
propagates through a model (i.e. a soil acidification model, crop growth model or
greenhouse gas emission model) that uses the soil property as input.

It is worthwhile to note that the average of a large number of realizations is equal
to the prediction and that the sample variance computed from a large number of
simulations will be equal to the prediction variance VẐ . This is because for large
sample sizes the sample mean and variance closely approximate the true mean µẐ
and variance VẐ .

Simulation from an uncertain categorical soil property means drawing realizations
from a discrete probability distribution. Here, the probability of drawing a specific
value is simply equal to the probability associated with that value. Thus, if soil
type A has probability 0.30 at some location then it will be simulated in about 30
of 100 cases. Again, simulation is easy for marginal distributions but becomes more
difficult for multivariate distributions or when the uncertain categorical soil property
is spatially dependent. Simulated maps of categorical soil properties will typically be
more noisy than the corresponding prediction maps. Unlike for prediction, categories
with relatively small probabilities are not under-represented and will be simulated
in proportion to their probability of occurrence. For example, if at each location
soil type A has probability 0.30 and B has probability 0.70, then about 30 per cent
of the area of each simulated map will be occupied by soil type A and about 30 per
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cent by type B.

1.5 Contents of this report

The remainder of this report is divided in three parts. The first part describes three
specific approaches to derive the probability distribution of a spatially distributed
quantitative soil property. The second part applies these approaches to spatially
distributed qualitative soil properties. The three approaches are:

1. Kriging

2. Bayesian Maximum Entropy

3. Markov Random Fields

The common goal of all three approaches is to obtain a probability distribution
of a spatially distributed soil property from available information, which may be
observations at point locations, (e.g. measurements of the target soil property or
correlated environmental variables, such as other soil properties, geological and hy-
drological properties), spatially exhaustive information (e.g. a soil type map, land
use map or digital terrain model), or both. The probability distribution must reflect
the knowledge gained from the available information and must realistically describe
the remaining uncertainty about the target soil properties. Once the probability
distributions are derived, prediction and simulation can be based on them using the
approach presented in section (1.4), although in practice prediction and simulation
are firmly integrated in the three approaches.

Part three illustrates the approaches with examples. All examples use the Nether-
lands as the study area and focus on soil properties that are crucial to predicting
the soil status for biodiversity and biomass accumulation in semi-natural ecosys-
tems, such as can be predicted with the SMART - SUMO - MOVE model chain
(Schouwenberg et al., 2000; van Dobben et al., 2002b).

Conclusions on the appropriateness of the three approaches are presented in a final
chapter.

It is useful to note that the only maps considered in this work are raster maps, which
are defined at a suitable spatial resolution (trade-off between sufficient spatial detail
and computational and storage requirements). Polygon maps must therefore be
rasterized before they enter the analysis. Output cannot be produced as a polygon
map because this would presume that the area of interest can be divided in a limited
number of map units for which all locations have the same probability distribution,
which is not realistic. Raster maps are also often referred to as continuous maps, as
opposed to discontinuous or choropleth maps. However, in this report we will not
use this term because it can be confused with maps depicting a continuous variable,
i.e. a variable measured on interval- or ratio scale.
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Part I

QUANTITATIVE SOIL MAPS
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Chapter 2

Kriging methods

Kriging refers to a set of techniques in which the value of the target variable at a non-
observed location s0 is predicted as a linear combination of the observed values in the
neighbourhood of that location. The kriging predictor is the Best Linear Unbiased
Predictor (BLUP), which means that it has the smallest mean squared error among
all linear unbiased predictors. The kriging predictor can be formulated as a predictor
from a generalized linear regression model (Christensen, 1991). Generalized in this
case refers to the relaxation of the assumption of independent observations made in
classical linear regression.

In kriging a continuous random variable Z(s) is decomposed as the sum of a trend
component µ(s) (model mean) and a residual component R(s):

Z(s) = µ(s) +R(s) (2.1)

The aim of kriging is to predict Z(s0) at an unobserved location s0 from point
observations and additional information, by conditioning Z(s0) to the observations
and additional information. The prediction will be referred to as Ẑ(s0), which is
identical to the Ẑ(s0) introduced in chapter (1).

As stated above there are several kriging predictors, and these predictors differ with
respect to the model for the trend component µ(s). Distinction can be made between
kriging predictors assuming that the model mean is constant (over the area as a
whole or within a neighbourhood of the prediction location) and kriging predictors
in which the model mean varies in space. In practice, the choice between these two
types is based on the available data and information. We distinguish between the
following situations

1. observations of the target variable and covariable at points only

2. observations at points and map of covariable

In the first situation one has no information about the model mean at the prediction
location s0. In this situation, the assumption is made that this mean is constant
over the area of interest, or within a the neighbourhood of the prediction location.
In simple kriging it is assumed that the model mean is known, whereas in ordinary
kriging the model mean (possibly within neighbourhoods) is estimated from the
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sample. The consequence is that in simple kriging the uncertainty about the model
is not incorporated in the calculated prediction-error variance, whereas it is in the
ordinary kriging variance. If one has, besides the observations of the target variable,
observations of a covariable, multivariate kriging predictors can be used, of which
we treat the co-kriging predictor.

In the second situation, besides the observations at points, one has a map of a co-
variable. In this situation the map may be used to model the spatial variation of the
trend component (model mean), and possibly the model variance. The appropriate
kriging predictor in this case is the universal kriging predictor. The covariable can
be categorical or continuous.

2.1 Observations at points only

2.1.1 Simple kriging

In simple kriging it is assumed that the Spatial Random Function (SRF) Z is second-
order stationary, i.e the model mean µ(s) is constant, the variance is constant and
finite, and the (auto)-covariance is not dependent on the locations but only on the
separation vector h. Moreover, it is assumed that the model mean is known without
error. The value at a non-observed location is predicted as the model mean plus
a linear combination of the deviations of the values at neighbouring locations from
the model mean:

Ẑ(s0) = µ+
n∑

α=1

λα[Z(sα)− µ] (2.2)

where Ẑ(s0) is the predicted value for the continuous random variable Z(s0), λα is
the weight assigned to datum Z(sα), and n is the number of data considered in the
neighbourhood of s0. The weights λα should be chosen such that the prediction-error
variance is minimized. The prediction-error variance equals

σ2
SK = C(0) +

n∑
α=1

n∑
β=1

λαλβC(hαβ)− 2
n∑

α=1

λαC(hα0) (2.3)

This variance can be minimized by equating the partial derivatives with respect to
the λα’s to zero:

∂σ2
SK

∂λα,i
= 2

n∑
β=1

λβ C(hαβ)− 2C(hα0) = 0 α = 1, . . . , n . (2.4)

This results in the following matrix equation, referred to as the simple kriging system C(h11) · · · C(h1n)
...

. . .
...

C(hn1) · · · C(hnn)

 λ1
...
λn

 =

 C(h10)
...

C(hn0)

 (2.5)

For the simple kriging predictor the prediction-error variance, Eq. (2.3), can be
simplified to (de Marsily, 1986, p. 290)

σ2
SK = C(0)−

n∑
α=1

λαCα0(h). (2.6)
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Until now it is assumed that the observations (measurements) are certain, errorless.
If all the observations are uncertain, and the uncertainty (variance) is more or less
equal for all observations, then we can simply estimate the experimental variogram
for these uncertain data, and proceed as described above. The observation error
is automatically accounted for in the fitted variogram (nugget > 0), and in the
computed kriging variance. If some observations are more uncertain (have larger
variance) than the others, then this additional uncertainty can be accounted for by
adding this extra variance to the elements on the diagonal of the covariance-matrix
associated with these observations (Delhomme, 1978).

2.1.2 Ordinary kriging

The simple kriging variance, Eq. (2.6), does not include uncertainty about the model
mean, which is in many situations unrealistic and undesirable. If we want to incor-
porate this uncertainty, then the value of the continuous variable at a non-observed
location can be predicted with the ordinary kriging predictor. The unknown model
mean is filtered from the simple kriging predictor (Eq. (2.2)) by forcing the kriging
weights to sum to 1:

n∑
α=1

λα = 1. (2.7)

This leads to the ordinary kriging predictor:

Ẑ(s0) =
n∑

α=1

λαZ(sα). (2.8)

Minimizing the prediction-error variance, Eq. (2.3), under the unbiasedness con-
straint (Eq. (2.7)) leads to the following matrix equation (ordinary kriging system):

C(h11) · · · C(h1n) 1
...

. . .
...

...
C(hn1) · · · C(hnn) 1

1 · · · 1 0



λ1
...
λn
ν

 =


C(h10)

...
C(hn0)

1

 , (2.9)

where ν is a Lagrange parameter.

For the ordinary kriging predictor, the prediction-error variance (Eq. (2.3)) can be
simplified to

σ2
OK = C(0)−

n∑
α=1

λαC(hα0)− ν. (2.10)

This ordinary kriging system in terms of (auto-)covariances holds for second-order
stationary SRF’s, with finite variance C(0). For intrinsic SRF’s (no finite variance)
the ordinary kriging system must be written in terms of semivariances:


γ(h11) · · · γ(h1n) 1

...
. . .

...
...

γ(hn1) · · · γ(hnn) 1
1 · · · 1 0



λ1
...
λn
ν

 =


γ(h10)

...
γ(hn0)

1

 . (2.11)
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The prediction-error variance, Eq. (2.3), can then be simplified to

σ2
OK =

n∑
α=1

λαγ(hα0) + ν. (2.12)

Similar to simple kriging, observation errors can be accounted for by adding the
observation-error variance to the diagonal of the covariance-matrix (Delhomme,
1978). In this way any mixture of hard and soft data can be processed.

2.1.3 Co-kriging

We now consider the case where one has, besides observations on the target variable
Z1, observations at locations on a quantitative covariable Z2. If the means of the
target variable and covariable are unknown, the appropriate predictor is the ordinary
co-kriging predictor:

Ẑ1(s0) =
n∑

α=1

λ1αZ1(sα) +
m∑
β=1

λ2βZ2(sβ), (2.13)

with
n∑

α=1

λ1α = 1, (2.14)

and
m∑
β=1

λ2β = 0. (2.15)

Minimizing the prediction-error variance under the unbiasedness constraints (Eqs
(2.14) and (2.15)) leads to the following matrix equation (ordinary co-kriging sys-
tem):



C11(h11) · · · C11(h1n) C12(h11) · · · C12(h1m) 1 0
...

. . .
...

...
. . .

...
...

...
C11(hn1) · · · C11(hnn) C12(hn1) · · · C12(hnm) 1 0
C21(h11) · · · C21(h1n) C22(h11) · · · C22(h1m) 1 0

...
. . .

...
...

. . .
...

...
...

C21(hm1) · · · C21(hmn) C22(hm1) · · · C22(hmm) 1 0
1 · · · 1 0 · · · 0 0 0
0 · · · 0 1 · · · 1 0 0





λ11
...
λ1n

λ21
...

λ2m

ν1

ν2


=



C11(h10)
...

C11(hn0)
C21(h10)

...
C21(hm0)

1
0


.

(2.16)

The minimum prediction-error variance thus obtained can be calculated with

σ2
OCK = C11(0)−

n∑
α=1

λ1αC11(hα0)− ν1 −
m∑
β=1

λ2βC21(hβ0). (2.17)
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2.2 Observations at points and map of covariable

2.2.1 Universal kriging

If one has a map of a covariable or maps of several covariables, then the universal
kriging predictor is appropriate. In this predictor the model mean µ in Eq. (2.1) is
modelled as a linear function of the covariables:

µ(s) =
p∑
j=0

Xj(s)βj (2.18)

where Xj(s) is the jth covariable (predictor or regressor) at location s and βj is the
regression coefficient associated with this covariable. The first covariable X0 has the
constant value 1, which makes that the kriging weights sum to 1 (see hereafter). The
universal kriging predictor can then be obtained by substituting this trend function
in Eq. (2.2):

Ẑ(s0) =
p∑
j=0

Xj(s0)βj +
n∑

α=1

λα[Z(sα)−
p∑
j=0

Xj(sα)βj ]. (2.19)

Similar to the ordinary kriging predictor, the unknown coefficients are filtered from
the predictor by imposing the following constraints:

n∑
α=1

λαxj(sα) = xj(s0) j = 0, · · · , p. (2.20)

Minimisation of the prediction-error variance leads to the following matrix equation:



C(h11) · · · C(h1n) 1 x1(s1) · · · xp(s1)
...

. . .
...

...
...

. . .
...

C(hn1) · · · C(hnn) 1 x1(sn) · · · xp(sn)
1 · · · 1 0 0 · · · 0

x1(s1) · · · x1(sn) 0 0 · · · 0
xp(s1) · · · xp(sn) 0 0 · · · 0





λ1
...
λn
ν0

ν1
...
νp


=



C(h10)
...

C(hn0)
1

x1(s0)
...

xp(s0)


.

(2.21)

The minimum prediction-error variance thus obtained equals

σ2
UK = C(0)−

n∑
α=1

λαC(hα0)−
p∑

k=1

νpxp(s0). (2.22)

Note that the (auto-)covariance terms in Eqs (2.21) and (2.22) are the (auto-
)covariances for the residuals, i.e. the observations minus the trend. Estimating
this residual covariance function (variogram) is not trivial because, to estimate the
residual covariance function (variogram), one must know the trend, and for estimat-
ing the trend one must know the residual covariance function (variogram). A proper
way of estimating the trend and the covariance function (variogram) of the residuals
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simultaneously is Residual Maximum Likelihood (Lark and Webster, 2006). A sim-
ple alternative, leading to biased estimates of the variogram, is iterative Generalized
Least Squares fitting of the trend. In the first iteration the trend is estimated by
Ordinary Least Squares, i.e. one assumes that the residuals are uncorrelated. The
estimated trend is filtered from the data, and the covariance function (variogram)
of the residuals is calculated. This covariance function (variogram) is used to re-
estimate the trend by Generalized Least Squares, and to re-calculate the residuals
and its variogram. This is repeated until the estimated trend coefficients do not
change anymore.

The covariable can also be categorical. In this case the categorical variable is re-
placed by nc indicator-variables (with nc the number of categories) that are used
as regressors, see chapter (5). Note that in universal kriging it is assumed that
the residuals for all categories have common mean, variance and (auto-)covariance
function. If this is too strong an assumption, residuals can be standardized before
estimating the variogram and spatial interpolation of the residuals. This necessary
leads to iterative GLS fitting of the trend (Finke et al., 2004).

2.2.2 Stratified kriging

In stratified kriging the study area is partitioned into a finite number of subareas,
referred to as strata. Besides this, the data are partitioned into the same groups.
After stratification, spatial interpolation is performed for each stratum separately,
i.e. only observations within the stratum of the interpolation location are used
(Stein et al., 1988; M. Voltz, 1990; Brus et al., 1996). The rationale for this is that,
contrary to universal kriging with a categorical covariable, in stratified kriging the
target variables Z(s) at locations in different strata are assumed independent. To
interpolate or simulate values within a given stratum, simple or ordinary kriging can
be used. Simple kriging requires knowledge of the stratum means (model means per
stratum), whereas ordinary kriging does not.

2.3 Simulation

Various techniques can be used for stochastic spatial simulation, perhaps the most
attractive one being the sequential Gaussian simulation algorithm (Goovaerts,
1997). This method works will all kriging methods discussed so far but it does
assume that the variable of interest is normally distributed. Briefly, this method
works as follows.

Each location (grid cell) of the spatial domain is visited in a random sequence (in
fact, random visiting is not strictly required). At each location, the conditional prob-
ability distribution of the variable is computed. For the first location, this is simply
the normal distribution with a user-specified model mean and standard deviation.
A value from this probability distribution is drawn using an appropriate pseudo-
random number generator and assigned to the location. At the second location, the
conditional probability distribution is computed by conditioning the variable at the
location to the value that was sampled at the first location. This is usually done
using simple kriging.

Simple kriging, like all kriging methods, not only produces an estimate of the at-
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tribute value but also quantifies the uncertainty attached to it, by means of a kriging
standard deviation. The conditional probability distribution at the second location
has as mean Ẑ (Eq. (2.2)), and as standard deviation the square root of the simple
kriging variance, σ2

SK (Eq. (2.6)). From this distribution, a value is drawn. At the
third location, the conditional probability distribution is calculated again, now using
the two previous locations as conditioning data in simple kriging. This process is
repeated until values for all locations have been drawn.

Note that in an early stage, when values have been drawn at only few locations, it is
possible that the next random location is outside the range of influence of the other
locations. In that case, the simple kriging estimate and standard deviation equal
the pre-defined mean and standard deviation. At a later stage, previously drawn
locations are more likely to be within the range and will influence the mean and
standard deviation.

The sequential simulation method can also be used in cases where the variable is a
priori known at some locations. This is referred to as conditional simulation. The
prior data are used as conditioning data from the beginning. When one has prior
data, one may use ordinary kriging, or even universal kriging, to estimate the mean
and variance of the pdf at simulation nodes.

There is a choice on freely available software-packages for simulation with kriging
techniques: GSLIB (Deutsch and Journel, 1992), GSTAT (Pebesma and G.Wesseling,
1998), and BMELIB contains MATLAB scripts for unconditional (simuseq.m) and
conditional simulation (simuseqcond.m) (Christakos et al., 2002).
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Chapter 3

Bayesian Maximum Entropy

Bayesian Maximum Entropy is a relatively new approach for spatial mapping that
allows the user to incorporate a wide variety of data sources of various quality on
a sound theoretical basis (Christakos, 1990, 2000; Christakos et al., 2002; Bogaert
and D’Or, 2002). Broadly speaking, BME consists of two steps. In the first step
the unconditional multi-point pdf at the prediction location and the neighbouring
observation locations is computed. This is done by maximizing the entropy of the
distribution under several constraints. In the second step this unconditional multi-
point pdf is conditioned on the observations at the neighbouring locations.

The central concept in the BME approach is entropy. The entropy of a discrete
random variable is defined as:

HC =
nc∑
i=1

πC(ci, s) log
1

πC(ci, s)
= −

nc∑
i=1

πC(ci, s) log πC(ci, s), (3.1)

where πC(ci, s) is the probability that the random variable C at location s takes the
value ci and nc is the number of categories.

For continuous random variables, summation is replaced by integration, and the
πC(ci, s)’s by the pdf values fZ(z, s):

HZ = −
∫
DZ

fZ(z, s) log fZ(z, s)dz, (3.2)

where DZ is the domain of the random variable Z.

For discrete random variables the minimum value for the entropy is 0, which occurs
when one of the possible outcomes has probability 1, and the maximum is log nc,
occurring when all outcomes have equal probability. In other words, the maximum
entropy distribution for discrete random variables is the uniform distribution. This
shows that entropy is a measure of uncertainty: the larger the uncertainty, the
larger the entropy. For continuous random variables the shape of the distribution
with maximum entropy depends on the constraints, see Table 3.1.

Any continuous distribution must fulfil the normalization constraint
∫
fZ(z, s)dz =

1. If we add the constraint that z is bounded on both sides (z ∈ [α;β]), then
the maximum entropy distribution is the uniform distribution between α and β
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Table 3.1: Constraints and resulting probability distribution function with maximum en-
tropy. After D’Or (2003)

Constraints Resulting pdf Entropy expression∫
fZ(z, s)dz = 1 Z ∼ Uni(α, β) HZ = − log(β − α)

z ∈ [α;β]∫
fZ(z, s)dz = 1 Z ∼ Exp(1/a) HZ = 1 + log(a)

z ∈ [0; +∞]
E[Z] = a∫
fZ(z, s)dz = 1 Z ∼ N(0, σ2) HZ = (1/2) log(2πeσ2)

E[Z] = 0
V ar[Z] = σ2

(fZ(z, s) = 1/(β−α)). In this case the maximum entropy equals HZ = − ln(β−α).
If Z is non-negative (z ∈ [0; +∞]) and the expectation of the distribution is finite and
known, then the maximum entropy distribution will be an exponential distribution
given by fZ(z, s) = (1/a)e(−z/a), where a is the mean. The entropy is then given by
HZ = 1+ln(a). Finally, if the mean is zero and the variance is equal to σ2, then the
maximum entropy distribution takes a Gaussian shape, i.e. Z ∼ N(0, σ2). In this
case, the entropy is given by HZ = (1/2) ln(2πeσ2).

Choosing the pdf with maximum entropy makes sense because we do not want to go
beyond the data. For discrete pdfs, we prefer pdfs with (nearly) equal probabilities
for all categories over pdfs with strongly different probabilities, unless there is strong
evidence from the data that some categories are more likely. In other words, we do
not claim to be more certain than we are. As will be shown in section (3.1.1), the
entropy is maximized under several constraints, which makes that in practice the
estimated discrete pdf deviates from the uniform distribution.

In BME two important steps can be distinguished:

1. Computing the unconditional multi-point pdf (prior step)

2. Conditioning the multi-point pdf (posterior step)

Christakos (2000) distinguishes an intermediate step, the meta-prior step, in which
the site-specific information is analyzed, evaluated and translated in mathematical
relations so that it can be used in the posterior step to condition the unconditional
multi-point pdf. In this report we will focus on the prior and posterior steps. We
assume that the conditioning data are there, and that the quality of the data is
quantified.

In the remaining part of this chapter we will elaborate on the prior and posterior
step for continuous variables. In chapter (6) we will do this for categorical variables.

With respect to the availability of data and information used in conditioning the
unconditional multi-point pdf, we distinguish between the following situations:

1. observations at points only
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2. observations at points and map of target variable

3.1 Observations at points only

We first consider the situation where one has observations of the target variable at a
finite number of locations only. A map of the target variable or of a variable related
to the target variable (covariable) is lacking.

3.1.1 Computing the unconditional multi-point pdf

Eq. (3.2) defines the entropy of a one-point (univariate) pdf, i.e. the pdf of a random
variable at a single location. This definition can be extended to the entropy for the
multi-point (joint) pdf:

H(fZ...Z(z0, . . . , zn, s0, . . . , sn)) =

−
∫
DZ

fZ...Z(z0, . . . , zn, s0, . . . , sn) log fZZ(z0, . . . , zn, s0, . . . , sn)dz,
(3.3)

∫
denotes a multiple integration with the number of dimensions equal to the number

of sample points + 1 (1 for the prediction location s0).

For convenience, in the following of this subsection we will write fZ...Z(z0, . . . , zn, s0, . . . , sn)
as f(z), where z denotes the unknown value of the target variable at the prediction
location plus the observations at the sample locations: z = (z(s0), z(s1), · · · , z(sn)),
and z(sα) (Z(sα)) is written as zα (Zα).

The entropy of this multi-point pdf is maximized under several constraints. Al-
though there are no problems with constraints on statistical moments of higher
order, in practice the following constraints are enforced:

1. Normalization constraint

2. Constraints on the mean

3. Constraints on the variance

4. Constraints on the (auto-)covariance

The normalization constraint
∫
DZ

f(z)dz = 1 enforces the multi-point pdf to ”sum”

to 1. If we have n sample points, then we have n+1 constraints on the mean, one for
each sample location and one for the prediction location. For the variance we have
again n + 1 constraints. For the (auto-)covariance we have (n + 1)n/2 constraints,
as many constraints as pairs that can be formed with the n + 1 locations. The
mean, variance and (auto-)covariances are unknown and must be estimated from
the observations.

For further development, it is convenient to write the constraints as

E[gi] =
∫
gi(z)f(z)dz i = 0, . . . , Nc, (3.4)
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with Nc + 1 the total number of constraints, and the gi(z) known functions of z.
g0(z) = 1 leading to the normalization constraint. For the constraints on the mean
gi(zα) = Zα, for the constraints on the variances gi(zα) = [Zα − µα]2, and for the
(auto-)covariances gi(zα, zβ) = [Zα − µα][Zβ − µβ].

Maximizing the entropy under these constraints can be done with the Lagrange
multiplier method:

L[f(z)] = −
∫
f(z) log f(z)dz

−
Nc∑
i=0

µi[
∫
gi(z)f(z)dz− E[gi(z)]].

(3.5)

Setting the partial derivatives to zero and solving the system of equations with
respect to the µi yields the maximum entropy solution for the unconditional multi-
point pdf:

f(z) =
1
A

exp(
Nc∑
i=1

µigi(z)), (3.6)

where A enforces the normalization constraint:

A =
∫

exp(
Nc∑
i=1

µigi(z))dz. (3.7)

With constraints on the mean, variance and (auto-)covariance only, the uncondi-
tional multi-point pdf is multivariate Gaussian (Rao, 1973, p. 162-163 and p. 532-
533).

3.1.2 Conditioning the multi-point pdf

In the posterior step the unconditional multi-point pdf is conditioned on the ob-
servations at the neighbouring sample locations. This can be done by using the
definition of a conditional distribution:

f(z0 | z1, · · · , zn) =
f(z0, z1, · · · , zn)
f(z1, · · · , zn)

. (3.8)

The multi-point pdf in the denominator is the marginal of the unconditional multi-
point pdf in the numerator and therefore can simply be obtained by integration.

If the observations of the target variable are uncertain at part of the locations, it
is important to account for these differences in observation accuracy. In this case
the sample data must be split in a subsample of hard (certain) data z1, · · · , zn
denoted as zh, and a subsample of soft data zn+1, · · · , zn+m denoted as zs. If one
has hard conditioning data only, BME is equivalent to simple kriging (Christakos,
2000; Christakos et al., 2002).

The uncertainty of soft observations is often expressed by specifying a lower and
upper bound for each soft observation (interval data). In some cases a complete pdf
is specified, denoted hereafter as fO(zs) (probabilistic data). The subscript O of this
pdf refers to the source of uncertainty, the observation method.
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For probabilistic data the conditional pdf can be obtained by multiplying the un-
conditional (n+m+1)-point probability densities and the (n+m)-point probability
densities by the m-point probability densities associated with the soft data, followed
by multiple integration (D’Or, 2003, p. 34). In formula:

f(z0 | zh, zs)) =
∫
f(z0,zh,zs)fO(zs)dzs∫
f(zh,zs)fO(zs)dzs

=

∫
f(zs|z0,zh)fO(zs)dzsf(z0,zh)∫

f(zh,zs)fO(zs)dzs
,

(3.9)

with
fO(zs) = Πm

i=1fO(zs,i). (3.10)

For interval data the conditional pdf Eq. (3.9) can be simplified to

f(z0) =

u∫
l

f(z0,zh,zs)dzs

u∫
l

f(zh,zs)dzs

=

u∫
l

f(zs|z0,zh)dzsf(z0,zh)

u∫
l

f(zh,zs)dzs

. (3.11)

In words, the conditional pdf is obtained by multiple integration of the unconditional
(n + m + 1)-point pdf (numerator) and of the (n + m)-point pdf (nominator) with
as many dimensions as there are soft data in the neighbourhood.

Unlike ordinary kriging, BME requires that the unknown local mean µ(s0) be esti-
mated explicitly from the data. This is done by Generalized Least Squares, which
works fine if the soft observations follow a normal distribution. Orton and Lark
(2007) show that for interval data, especially censored observations, GLS-estimation
of the local mean can be biased, and may result in suboptimal BME predictions.
They propose to estimate the local mean by a maximum likelihood method.

3.2 Observations at points and map of target variable

In this case one has, besides hard observations of the target variable at locations, a
map of the target variable. This map can be used to derive a soft observation at any
location. In practice, a soft observation is derived at the estimation (simulation)
location only. This soft observation at the estimation (simulation) location can be
used to condition the prior distribution in the same way as soft observations in the
neighbourhood. The procedure is analogous to that described in section (3.1.2).

3.3 Simulation

Using the Bayesian Maximum Entropy approach for unconditional simulation and
for conditional simulation with hard conditioning observations only, is equivalent to
sequential Gaussian simulation, see section (2.3). This is because the conditional
distribution obtained with BME in these cases are Gaussian.
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Chapter 4

Markov Random Fields

The goal of the Markov Random Field (MRF) approach is similar to that of Kriging
and Bayesian Maximum Entropy. It aims to define and calibrate statistical models
of quantitative and qualitative spatially distributed variables, and use these models
for spatial prediction and simulation. The difference between the three approaches
is that the models used are different. In the case of MRF, the models are defined
in terms of conditional probability distributions. The modeller defines or calibrates
the probability of occurrence of the variable of interest at some location, conditional
to the value of the variable at neighbouring locations. When a grid representation of
the geographic domain is used, as assumed throughout this work, the neigbourhood
is typically taken as the four or eight cells surrounding the cell of interest. However,
larger neighbourhoods may also be used. Critical assumption of the MRF approach
is that the local neighbourhood contains all information necessary to characterize
the probability distribution of the variable in the centre cell (i.e. information from
outside the local neighbourhood has no longer added value). This will be explained
in more detail below, but it is important here to underline that while this key
assumption may greatly facilitate estimation, prediction and simulation, one should
always question the practical validity of the assumption in real-world cases.

The Markov Random Field approach has not yet been widely used in soil science
and the environmental sciences in general. Some recent examples are Norberg et al.
(2002); Wu et al. (2004); Kasetkasem et al. (2005); Hartman (2006). Compared
to Kriging and to a lesser extent Bayesian Maximum Entropy, application of the
Markov Random Field approach to the problems addressed in this work is still in
the development phase with many important problems yet to be resolved. However,
the approach has many attractive properties and is potentially very valuable. Re-
cently, it enjoys much interest from various disciplines, ranging from land use change
modelling to image analysis. The method has a sound statistical basis, starting with
the fundamental work of Besag (1974). The method seems particularly attractive
for modelling qualitative soil properties, because unlike with Kriging, the extension
from the quantitative to the qualitative domain does not greatly complicate matters
or introduce major heuristic choices. However, for completeness sake and because
the method may be interesting for quantitative appliations as well, in this chapter
we first describe the use of MRF to model, predict and simulate quantitative soil
properties.
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4.1 The Markov property

Let us consider the SRF Z again, which represents an uncertain quantitative soil
property and which was introduced in chapter (2). The probability distribution of
Z may be thought of as a prior distribution of the continuous soil property that has
not yet exploited the information contained in the point observations and any other
relevant information (such as spatially exhaustive covariates). Conditioning of Z
to the point observations and ancillary information yields the SRF Ẑ, which has a
narrower conditional distribution that conveys that uncertainty may be reduced by
incorporating the ancillary information. Before discussing how conditioning is done
in the MRF case, let us first characterize Z.

Because Z is continuously distributed, it has a multi-point probability density:

fZ(z1, . . . , zn, s1, . . . , sn). (4.1)

If we discretize the geographic domain and assume that all locations are on a rect-
angular grid, then n refers in this context to the total number of grid cells in the
domain. Using the definition of conditional probability and dropping the explicit
naming of the locations, we can now define the conditional probability of Z at some
location sk given the value of Z at all other locations as

fZ(zk|Zi = zi, i = 1, . . . , n, i 6= k) =
fZ(zi, i = 1, . . . , n)

fZ(zi, i = 1, . . . , n, i 6= k)
. (4.2)

This shows how the conditional distribution can be derived from the full distri-
bution. Brooks lemma (Banerjee et al., 2004, section 3.2) can be used to do the
reverse and derive the full distribution from the conditional. This is more difficult
though, and not all hypothesized conditional distributions render a unique and valid
full probability distribution. The Markov property now states that the conditional
distribution of Zk satisfies:

fZ(zk|Zi = zi, i = 1, . . . , n, i 6= k) = fZ(zk|Zi = zi, si ∈ δsk), (4.3)

where δsk is a set containing the locations that are in the neighbourhood of sk
(Figure 4.1). The size of the neighbourhood may be chosen as preferred. A larger
neighbourhood produces a more flexible and realistic model but is more complex. In
practice, neigbourhoods are rarely larger than the four immediate neighbours in the
grid (i.e. the von Neumann neighbourhood) or extends these with the diagonal neigh-
bours to eight neighbouring cells (i.e. the Moore neighbourhood). Equation (4.3)
states that given the value of Z in the neighbourhood, Zk does not depend on the
value of Z at locations outside the neighbourhood. The equation also shows the
great similarity between Markov Random Fields and stochastic cellular automata
(Baltzer et al., 1998; Baltzer, 2000).

We can now summarize the rationale of the MRF approach. The idea is to define
the full multi-point probability of Z through the conditional distribution Eq. (4.2),
which is greatly simplified such that it can be estimated in practice from available
information, by invoking the Markov property. Conditioning to observations is very
easy as we will see in sections (4.3) and (4.4).
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Figure 4.1: The Markov property states that the value at a location only depends directly
on the values in its neighbourhood. In this example the neighbourhood consist of the four
immediate neighbours of the centre cell.

4.2 Estimation of the conditional density

To estimate the shape and parameters of the conditional density, we might take a
pragmatic approach whereby we assume that the variable is normally distributed
with mean and variance equal to that of the sample of neighbourhood values:

fZ(zk|Zi = zi, si ∈ δsk) ∼ N(z̄, s2), (4.4)

where z̄ and s2 are the sample mean and sample variance of the neighbouring values
zi, respectively. A better alternative, however, is to parametrize the conditional
density and estimate its parameters with additional information such as contained
in observations of the target variable across the entire study area. For example,
one might assume that the conditional distribution is Gaussian with a mean that
is a weighted linear combination of the neighbouring observations and a constant
variance that is not affected by the neighbouring values (see also Banerjee et al.
(2004), Eq. (3.12)):

fZ(zk|Zi = zi, si ∈ δsk) ∼ N(
∑
i

biyi, τ
2). (4.5)
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In practice, one might achieve the calibration (i.e. the estimation of the parameters of
the distribution) by generating possible realities of Z using the method discussed in
the next section, computing an experimental variogram from these realities, compar-
ing it with that of the observations, and adjusting the parameters of the conditional
density such that a closer match is obtained. Clever calibration algorithms such as
simulated annealing (Van Groenigen et al., 1999; Brus and Heuvelink, 2007) may be
needed to speed up the computationally demanding calibration process.

4.3 Simulation

Unlike for Kriging and Bayesian Maximum Entropy, for the MRF approach we first
discuss simulation and next prediction. This is because with MRF prediction is done
by using the results of the simulation.

Stochastic simulation of Z under the MRF approach is done using Markov Chain
Monte Carlo (MCMC) methods (Banerjee et al., 2004). These methods have recently
been introduced to statistical computing, mainly in the context of Bayesian statistics,
and have in fact revolutionary changed statistical computing. The MCMC methods
are very flexible and have made it possible to numerically solve problems that cannot
be solved using analytical methods and were therefore practically unresolvable until
the introduction of these methods. It is beyond the scope of this work to explain
and give an overview of MCMC methods. We will only briefly explain one example
from the multitude of techniques, namely the MCMC technique that we will use to
simulate Z. This is the so-called Gibbs sampler, which is remarkably simple and
generic. It is explained in more detail by Casella and George (1992).

Using the Gibbs sampler we generate a realization of Z at the n grid locations si as
follows:

1. Start with an arbitrary initial soil map z;

2. Visit an arbitrary grid location si, compute the conditional distribution Eq. (4.3)
at si and draw a random number from the conditional distribution using a
pseudo-random number generator;

3. Replace the current value of z(si) by the number drawn and go to a next grid
location not yet visited;

4. Repeat the simulation procedure for the new grid cell and continue with se-
lecting grid cells and replacing values until all grid cells have been visited;

5. Repeat the grid simulation and replacement procedure many times.

Provided the number of repetitions is large enough, the final map will be a realization
from the joint probability distribution Eq. (4.1). The procedure can be repeated to
generate multiple realizations of Z, but alternatively one can also use the previously
simulated map as a starting point for the next simulation, effectively running the
simulation procedure only once for a longer time, periodically using intermediate
maps as independent realizations from Z. To ensure that the realizations are indeed
independent, one must allow a sufficiently large number of runs in between subse-
quent samples (i.e. the so-called thinning ratio must be sufficiently large). Moreover,
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the initial number of runs that must be executed before the first realization is taken
(the so-called burn-in period) must be sufficiently large to guarantee that the first
realization drawn is not affected by the initial soil map and is a realization from the
distribution of Z.

Although the procedure is remarkably simple, the downside is that it is computa-
tionally demanding, also for the many modifications to the basic algorithm that
have been proposed to speed up the computations. Another difficulty is finding the
right values for the burn-in period and thinning ratio. This particular problem has
been thoroughly investigated in the literature, but results are case-specific to some
extent.

A more fundamental problem is that the Gibbs sampler will produce realizations
even when the conditional distributions are ill-specified and do not have a proper
corresponding full distribution. Thus it is imperative that a sound check is made
that the conditional distributions used yield a valid full distribution. The statisti-
cal literature provides valuable entries to this problem (Griffith and Layne, 1999;
Cressie, 1993; Banerjee et al., 2004).

4.3.1 Conditioning to point observations

We can also use the method described in the previous section to sample from the
conditional distribution Ẑ(s0 = Z(s0|Z(si) = z(si), i = i, . . . , n), where n represents
the number of observations and s0 is an unobserved location. The objective is
to condition the simulations of Z to the observations. With the Gibbs sampler,
this is extremely simple. One runs the sampling procedure described above with
fixed values at the observation locations. Thus, each time a grid location is visited
that is a sampling location, the value of Z at the location is not sampled from the
conditional probability distribution but the observed value is used instead (note that
this assumes that observation locations coincide with grid locations, which may be
a problem when using coarse grids).

4.3.2 Conditioning to maps of covariables

Conditioning to maps of covariables is more difficult with MRF because the covari-
ables do not represent true values of Z at some locations but provide a spatially
exhaustive ’hint’ about Z. In this case we need to adjust the probability model of
Z to the ancillary information. The logical approach is then to let the conditional
density Eq. (4.5) depend on the ancillary information as well. For instance, the
conditional probability density of clay content of the topsoil would not only depend
on the clay content at neigbouring cells but also on the soil type at the centre cell.
The difficulty here is that this means an extension of the probability model with
additional parameters that somehow need to be derived from the data. Also, prov-
ing that the extended conditional model yields a proper full model may be more
difficult.
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4.4 Prediction

Recall from section (1.4) that prediction usually means that we compute the ex-
pected value of Ẑ at all locations in the geographical domain. In (linear) Kriging,
computation of the conditional probability distribution of Z is solved by setting Ẑ
equal to a linear combination of the Z(si), so that its expected value can directly be
computed once the values of the Z(si) are known. This is not possible with MRF
because we have no simple explicit equation expressing Ẑ as a linear combination of
the observations. Rather, we have a numerical algorithm that allows us to simulate
from Ẑ as discussed in the previous section. Prediction with MRF is therefore done
simply by averaging a large number of simulations.

Prediction with MRF makes use of the fact that the frequency distribution of a suffi-
ciently large number of realizations from a probability distribution approximates the
probability distribution. The approximation error vanishes when the number of re-
alizations gets large. Properties of the frequency distribution, such as the mean and
variance, also approximate the corresponding properties of the probability distribu-
tion. Thus we can compute the mean (or other properties) of Ẑ simply by generating
a sufficiently large sample and computing the corresponding sample statistic (i.e. the
sample mean).

This is easy but we must be aware that the sample statistic only approximates the
true mean. We can approximate it arbitrary well, but only at the expense of increas-
ing computation costs. Also, we do not have an analytical expression for the mean
and other properties of Ẑ, which means that we cannot easily generalize the results
obtained to other situations (e.g. minor changes in the model parameters). Gener-
alization is only possible by repeating the entire procedure with the new parameter
settings.
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Chapter 5

Kriging methods

When adopting a kriging approach for simulation of realizations of a categorical
Spatial Random Function (SRF), the single categorical random field is replaced
by nc indicator random fields. For this transformation the observations on the
categorical variable are coded as indicators:

δi(sα) = δiα =
{

1 if C(sα) = ci
0 if C(sα) 6= ci

(5.1)

For ordinal categorical variables this coding (Eq. (5.1)) can be replaced by a cumu-
lative coding:

δiα =
{

1 if C(sα) ≤ ci
0 if C(sα) > ci

(5.2)

If we have nc categories each observation is transformed into an nc-vector with a 1
at the entry for the observed category, and 0’s at the remaining entries. This gives
nc random fields of indicators.

The expectation of the indicator random variable equals the unconditional proba-
bility of occurrence of category ci at location sα (Eq. 1.4):

E[δiα ] = πiα . (5.3)

The expectation of the product of the indicator random variables δiα and δjβ equals
the multi-point probability of occurrence of categories ci and cj at locations sα and
sβ, respectively:

E[δiαδjβ ] = πij(hαβ) = P (C(sα) = ci, C(sβ) = cj). (5.4)

Similar to the SRF of a continuous random variable, the spatial structure of the SRF
of an indicator random variable is characterized by the (auto)covariance function or
the variogram. Note that we have nc indicator random fields, one for each category.
The spatial interaction between two indicator random fields can be characterized
by the indicator cross-covariance function or the indicator cross-variogram. The
indicator (cross-)covariance function is defined as:

Cδiα ,δjβ (hαβ) ≡ E[δiαδjβ ]− E[δiα ]E[δjβ ]
= πij(hαβ)− πiαπjβ
= πij(hαβ)− πiπj

. (5.5)
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The estimated covariance function (experimental covariance function) can be ob-
tained by substituting the estimated bivariate and univariate probabilities in Eq. (5.5):

Cδi,δj (h) = pij(h)− pi · pj , (5.6)

with pij(h), the estimated bivariate probability, given by:

pij(h) =
1
Nh

Nh∑
α=1

δiα · δjα+h
, (5.7)

with Nh denoting the number of pairs of points in the distance class corresponding
to lag h, and pi and pj the estimated univariate probabilities, computed with:

pi =
1
N

N∑
α=1

δiα . (5.8)

After one has estimated the experimental covariance function, a model must be
selected and calibrated. To ensure positive-definiteness a permissible model must
be selected. In case of co-kriging this can be ensured by fitting a linear model of
coregionalization, see section (5.1.3).

With indicator kriging it is neither guaranteed that the probabilities are in the
interval [0,1], nor that the sum of the probabilities over all categories equals 1.
Perhaps this problem can be tackled using compositional kriging (Walvoort and
de Gruijter, 2001)

With respect to the availability of data and information, we distinguish between the
following situations

1. observations at points only;

2. observations at points and map of covariable.

5.1 Observations at points only

We first consider the situation where one has no local information about the (un-
conditional) probability of occurrence of the categories. The only assumption made
is that these probabilities are constant over the area of interest (global kriging), or
within a neighbourhood of the prediction location (local kriging).

5.1.1 Simple indicator kriging

Simple indicator kriging assumes that the (unconditional) probabilities of occur-
rences of the categories are constant over the area of interest. Moreover, it is as-
sumed that these probabilities are known without error. The conditional probability,
conditioned on the indicators at locations in the neighbourhood, {δiα}, for a given
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category ci is predicted as a linear combination of the deviations from this uncon-
ditional probability at the data locations in the neighbourhood:

pi(s0 | {δiα}) = pi +
n∑

α=1

λα,i(δiα − pi). (5.9)

where λα,i is the weight attributed to the data location sα for the prediction of
category ci, and δiα is the Kronecker delta operator defined in Eq. (5.1). For ordinal
categorical variables, cumulative indicators may be used, Eq. (??), and the predicted
conditional probability obtained with Eq. (5.9) must be interpreted as the cumulative
conditional probability of having categories up to ci. The weights λα,i are chosen
such that the prediction-error variance is minimized. The prediction-error variance
equals

σ2
SIK(s0) =

n∑
α=1

n∑
β=1

λα,i λβ,iCii(hαβ)− 2
n∑

α=1

λα,iCii(h0α) + Cii(0). (5.10)

To minimize Eq. (5.10), its partial derivatives with respect to the λα,i are equated
to zero:

∂σ2
SIK(s0)
∂λα,i

= 2
n∑
β=1

λβ,iCii(hαβ)− 2Cii(h0α) = 0 α = 1, . . . , n . (5.11)

This results in the following system of n equations, referred to as the ‘simple indicator
kriging system’: Cii(h11) · · · Cii(h1n)

...
. . .

...
Cii(hn1) · · · Cii(hnn)

 λ1
...
λn

 =

 Cii(h10)
...

Cii(hn0)

 , (5.12)

where Cii(h) is the indicator (auto-)covariance model for category ci.

Using Eq. (5.6) this system can also be written as: pii(h11)− p2
i · · · pii(h1n)− p2

i
...

. . .
...

pii(hn1)− p2
i · · · pii(hnn)− p2

i


 λ1

...
λn

 =

 pii(h10)− p2
i

...
pii(hn0)− p2

i

 . (5.13)

The minimum of the prediction-error variance, Eq. (5.10) equals

σ2
SIK(s0) = Cii(0)−

n∑
α=1

λα,iCii(hα0). (5.14)

5.1.2 Ordinary indicator kriging

The simple kriging variance Eq. (5.10) does not include uncertainty about the un-
conditional probability, which might be unrealistic. If we want to incorporate this
uncertainty, then we recommend to predict the conditional probability of a given

Towards a Soil Information System with quantified accuracy 49



category ci with the ordinary indicator kriging predictor in which the unconditional
probability (within neighbourhoods) is estimated from the sample data:

pi(s0 | {δiα}) =
n∑

α=1

λα,iδiα . (5.15)

To obtain unbiased predictions, the weights must sum to 1. The prediction-error
variance can be minimized under this constraint by the Lagrangian multiplier method.
This yields the following ordinary indicator kriging system:

Cii(h11) · · · Cii(h1n) 1
...

. . .
...

...
Cii(hn1) · · · Cii(hnn) 1

1 · · · 1 0



λ1
...
λn
ν

 =


Cii(h10)

...
Cii(hn0)

1

 , (5.16)

where ν is a Lagrange parameter. In terms of bivariate probabilities this system can
be written as

pii(h11) · · · pii(h1n) 1
...

. . .
...

...
pii(hn1) · · · pii(hnn) 1

1 · · · 1 0



λ1
...
λn
ν

 =


pii(h10)

...
pii(hn0)

1

 . (5.17)

The variance of the ordinary indicator kriging error equals

σ2
OIK(s0) = Cii(0)−

n∑
α=1

λα,iCii(hα0)− ν. (5.18)

5.1.3 Indicator-cokriging

In simple and ordinary indicator kriging the indicators associated with the other
categories (the categories not being processed) are not used. This can be inefficient,
especially when the number of categories is small, and a clear dependence exists
between the indicators. In that case co-kriging of the indicators can be advantageous.
The simple indicator co-kriging predictor can be written as

pi(s0 | {δiα}) =
nc∑
i=1

n∑
α=1

λα,i(δiα − pi) + pi, (5.19)

while the ordinary indicator co-kriging predictor is given by

pi(s0 | {δiα}) =
nc∑
i=1

n∑
α=1

λα,iδiα , (5.20)

subject to the unbiasedness constraints
n∑

α=1
λα,i = 1

n∑
α=1

λα,β = 0 ∀j 6= i
(5.21)
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In case of indicator-cokriging, the (auto)covariance and cross-covariance models
cannot be fitted independently. They must satisfy the positive-definiteness con-
dition. This can be ensured by fitting a Linear Model of Coregionalization (LMC)
(Goovaerts, 1997, p. 107-123). For categorical variables, Bogaert (2002) has shown
that the only valid expression for the LMC is

Σh = Σ0

∑
m

wmC
m(h), (5.22)

with
∑

mwm = 1 and m the number of models considered in the nested structure.
In this expression, the Cm(h)’s are permissible models of covariance functions with
Cm(0) = 1, the wm are scalar constants, and

Σh =

 Cδ1δ1(h) . . . Cδ1δnc (h)
...

. . .
...

Cδncδ1(h) . . . Cδncδnc (h)

 , (5.23)

and

Σ0 =

 Cδ1δ1(0) . . . Cδ1δnc (0)
...

. . .
...

Cδncδ1(0) . . . Cδncδnc (0)

 . (5.24)

Any other form of the LMC leads to inconsistent models for bivariate probabilities.
The fitting of the LMC for the indicators can become difficult, especially when the
number of categories is large, and data are scarce.

5.1.4 Soft-indicator kriging

In some situations we are uncertain about the categories at a sample location. As
an example, consider the water table class. The mean highest water table (MHW)
often is difficult to determine on the basis of hydromorphic soil properties, and
consequently we may conclude that there are two or even more water table classes
with non-zero probabilities at a measurement location. These soft observations of the
categories can be used if we are able to quantify the probabilities for the categories.
These probabilities are then used in simple or ordinary indicator kriging.

5.2 Observations at points and map of categories

We now discuss the case where besides observations of categories at points, we
also have a map of the categories. The mapping units of this map are impure,
i.e. a mapping unit of a given category also contains locations with other categories.
Nonetheless, the map provides useful information. The map is used by letting the
unconditional probabilities of occurrence of the categories depend on the mapping
unit.

5.2.1 Simple indicator kriging with local prior means

In simple indicator kriging with local prior means a table with (one-point) bivariate
probabilities is constructed, and the entries of this table are used as unconditional

Towards a Soil Information System with quantified accuracy 51



probabilities in simple indicator kriging. The procedure is analogous to that de-
scribed in section (5.1.1).

5.3 Indicator simulation of soil categories

Maps with soil categories can be generated by sequential simulation. The procedure
is analogous to that desccribed in section (2.3). The simulation nodes are visited
in a random sequence. In the absence of prior conditioning data (unconditional
simulation), at the first node a random category is drawn from the unconditional
probability distribution of the soil categories, which is assumed known. The drawn
category is used as a conditioning, hard observation in simulating soil categories at
subsequent nodes. The conditional probabilities are estimated by simple indicator
kriging, Eq. (5.9). Software for indicator simulation of soil categories is available
in GSLIB (Deutsch and Journel, 1992), and in GSTAT (Pebesma and G.Wesseling,
1998). Finke et al. (1999) used the latter software for stratified simulation of 28
soil/vegetation categories in Europe.

If prior data are available, and one wants to use these data as conditioning data
in conditional simulation, then the conditional probabilities can be estimated by
ordinary indicator kriging, Eq. (5.15).

Cross-correlations between the indicators can be taken into account by estimating
the conditional probabilities by simple indicator co-kriging, Eq. (5.19) or ordinary
indicator co-kriging, Eq. (5.20). This requires calibration or the postulation of a
complex model with many parameters.
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Chapter 6

Bayesian Maximum Entropy

In chapter (3) the Bayesian Maximum Entropy approach was introduced for spatial
prediction of continuous soil properties. Here we will elaborate on BME for cate-
gorical variables. Similar to BME estimation for continuous variables, the pdf for
categorical variables is obtained in two steps:

• computing the unconditional multi-point pdf

• conditioning the unconditional multi-point pdf

With respect to the availability of data and information, in the sections hereafter
the following situations with respect to the available data and information are con-
sidered:

1. observations at points only

2. observations at points and map of categories

6.1 Observations at points only

This section deals with the situation where one has observations of the categories at
points only. A map depicting the categories is absent, so at the prediction location
itself we have no information about the category. For this situation we define the
multi-point discrete probability distribution function (pdf) for the random variables
C(s0), . . . , C(sn) as:

πC...C(ci, . . . , cj ; s0, . . . , sn) ≡

P [C(s0) = ci, . . . , C(sn) = cj ] .
(6.1)

This pdf can be represented as an nc × ... × nc hypersquare probability table with
n + 1 dimensions. For instance, for a prediction location with two neighbouring
data points, this probability table is a cube with nc × nc × nc cells with three-point
probabilities (see Figure 6.1).
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Figure 6.1: Maximization of the entropy for three categories and three locations (s0: pre-
diction location; s1 and s2: data locations) (a) Construction of the two-point probability
tables. (b) Searching for the three-point probabilities with maximum entropy that satisfies
the constraints on the three tables with two-point probabilities. Copied with permission
from D’Or (2003)

.

6.1.1 Computing the unconditional multi-point pdf

In the first step the unconditional multi-point pdf is computed by maximizing the
entropy under constraints specified hereafter. The entropy of the multi-point discrete
pdf is defined as (compare with Eq. (3.1))

H = −
∑

i,...,j,k πC...C(ci, . . . , cj ; s0, . . . , sn)

log πC...C(ci, . . . , cj ; s0, . . . , sn),
(6.2)

where
∑

i,...,j is a sum over al possible combinations of categories at the prediction
location and observation locations.

Constraints are imposed on the two-point probabilities of occurrence of the cate-
gorical variable C. The two-point probabilities for a given pair of locations can be
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obtained by summing the multi-point probabilities over the cells along the axes rep-
resented by the remaining locations. For instance, in Figure 6.1, the three marginal
tables of the cube contain two-point probabilities. In general, for any dimension > 2,
the two-point probabilities are obtained by summing the multi-point probabilities
over the cells along the axes represented by the locations not considered.

In computing the multi-point probabilities the marginal two-point probabilities must
equal the two-point probabilities as estimated from the data:

πCC(ci, cj ; sα, sβ) = pCC(ci, cj ; sα, sβ) ∀α 6= β;∀i, j = 1, . . . , nc, (6.3)

where πCC(ci, cj ; sα, sβ) is the marginal two-point probability, and pCC(ci, cj ; sα, sβ)
the two-point probability estimated from the data.

Assuming invariance under translation, Eq. (1.8), and rotation, the two-point prob-
abilities pCC(ci, cj ; sα, sβ) equal pCC(ci, cj ;hαβ). For a chosen series of lags h, these
two-point probabilities can be estimated from the data by the method-of-moments
estimator

pCC(ci, cj ;h) =
1
Nh

Nh∑
α=1

δ(ci; sα) · δ(cj ; sα + h), (6.4)

with Nh the number of pairs of points separated by lag h, and δ(ci; sα) the Kronecker
delta operator:

δ(ci; sα) =
{

1 if C(sα) = ci
0 if C(sα) 6= ci

(6.5)

In practice a tolerance interval for lag h is used to obtain enough pairs of points
for each lag, as classically done in variogram estimation. To be used as constraints,
we also need two-point probabilities for any intermediate value of h. This can be
achieved by a Gaussian kernel smoothing procedure (Bogaert, 2002).

Maximizing the multi-point entropy, Eq. (6.2), under the constraints of Eq. (6.3)
can be done with iterative scaling, also referred to as iterative proportional fitting
(Bishop et al., 1976, p. 83). The iterative search starts with a uniform pdf. In our
case this means that the probabilities in all cells of the hypersquare probability table
equal 1

nn+1
c

with n the number of neighbouring observation locations. In subsequent
iterations the probabilities are multiplied by the ratio of the two-point probabilities
used as constraints and the marginal two-point probabilities obtained by summing
the multi-point probabilities of the previous iteration. For instance, if we have two
neighbouring observation location, then the hypersquare probability table is a cube
with n3

c cells, see Figure 6.1. In this case three marginal tables are used in scaling the
multi-point probabilities. In formula, the first three iterations proceed as follows:

π
(1)
CCC(ci, cj , ck; s0, s1, s2) = π

(0)
CCC(ci, cj , ck; s0, s1, s2) pCC(ci,cj ;s0,s1)

π
(0)
CC+(ci,cj ;s0,s1)

π
(2)
CCC(ci, cj , ck; s0, s1, s2) = π

(1)
CCC(ci, cj , ck; s0, s1, s2) pCC(ci,ck;s0,s2)

π
(1)
C+C(ci,ck;s0,s2)

π
(3)
CCC(ci, cj , ck; s0, s1, s2) = π

(2)
CCC(ci, cj , ck; s0, s1, s2) pCC(cj ,ck;s1,s2)

π
(2)
+CC(ci,ck;s1,s2)

(6.6)

with π
(0)
CC+(ci, cj ; s0, s1) the marginal two-point probability at iteration 0 (start of

iteration), obtained by summing the multi-point probabilities along the axis repre-
sented by the categories at the second observation location s2, π(1)

C+C(ci, ck; s0, s2) the
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marginal two-point probability at iteration 1, obtained by summing the multi-point
probabilities along the axis represented by the categories at the first observation lo-
cation s1, and π

(2)
+CC(cj , ck; s0, s2) the marginal two-point probability at iteration 2,

obtained by summing the multi-point probabilities along the axis represented by the
categories at the prediction location s0. The iteration proceeds until the differences
between the marginal probabilities and the probabilities used as constraints become
smaller than a user-specified value.

6.1.2 Conditioning the multi-point pdf

In this step the unconditional distribution of the previous step is conditioned on the
data (observations of categories) in the neighbourhood. These data and information
are referred to as the specific knowledge KS . The conditional probability distribu-
tion, also referred to as the posterior distribution, at a prediction location is defined
as:

πC|KS (ci; s0) = P [C(s0) = ci | KS ]

=
P [C(s0) = ci,KS ]

P [KS ]
, ∀i0 = 1, . . . , nc,

(6.7)

with P [KS ] =
∑

i P [C(s0) = ci,KS ].

The observations can be either hard (errorless) or soft. In the latter case the obser-
vation errors cannot be neglected.

Hard observations

We first consider the case where the specific knowledge consists of errorless obser-
vations of the categories. The specific knowledge can then be represented as:

KS ≡ {C(s1) = ci, . . . , C(sn) = cj}. (6.8)

The conditional probability (posterior probability) can then be obtained by substi-
tuting for the numerator in Eq. (6.7):

P [C(s0) = ci,KS ] = πC...C(ci, . . . , cj ; s0, . . . , sn), (6.9)

and for the denominator:

P [KS ] =
∑
i

πC...C(ci . . . cj ; s1, . . . , sn). (6.10)

Soft observations

The observed categories at the neighbouring locations need not be errorless to be
used in the conditioning of the unconditional distribution. Also uncertain observa-
tions of the categories can be used. If the soft observations have the form of the
probability of a given combination of categories at the neighbouring locations

KS ≡ {PS [C(s1) = ci, . . . , C(sn) = cj)], i, . . . , j = 1, . . . , nc}, (6.11)

56 WOt–Rapport 58



then the numerator in Eq. (6.7) is given by

P [C(s0) = ci,KS ] =∑
j,...,k πC...C(ci, cj , . . . , ck; s0, s1, . . . , sn)PS [C(s1) = cj , . . . , C(sn) = ck].

(6.12)

6.2 Observations at points and map of categories

This section considers the situation where one has a map depicting the categories,
besides observations of the categories at points. An example of BME prediction and
simulation making use of a traditional soil map as soft information is Brus et al.
(2008). The map can be used to obtain a first estimate of the category at any
prediction location. Of course the map is not errorless, i.e. the map units contain
impurities, and consequently at any prediction location, the category as depicted on
the map must be used as a soft observation of the category. These soft observations
are treated as observations on a second categorical variable D, which is related to the
primary variable C. The sets of possible outcomes for the two categorical variables
C and D are equal: ΩC ≡ {ci, i = 1, . . . , nc} = ΩD ≡ {di, i = 1, . . . , nd}, and
consequently nc = nd.

For this situation, it is convenient to define the one-point bivariate probability. The
probability that at a location sα the two categorical random variables C and D take
the values ci and dj , respectively, is defined as

πCD(ci, dj ; sα) ≡ P [C(sα) = ci, D(sα) = dj ], (6.13)

with i = 1, . . . , nc and j = 1, . . . , nd.

Similar to the univariate case (one categorical variable), we may define two-point
bivariate probabilities and multi-point bivariate probabilities. The multi-point bi-
variate probability is defined as:

πC...CD...D(ci, . . . , cj , dk, . . . , dl; sα, . . . , sβ) ≡

P [C(sα) = ci, . . . , C(sβ) = cj , D(sα) = dk, . . . , D(sβ) = dl] .
(6.14)

In this section the categorical variable D is considered at the prediction location
s0 only, the soft categories at the neighbouring locations s1, . . . , sn are not used in
prediction, leading to the multi-point bivariate probability:

πC...CD(ci, . . . , cj , dk; s0, . . . , sn, s0) ≡

P [C(s0) = ci, . . . , C(sn) = cj , D(s0) = dk] .
(6.15)

This pdf can be represented as an nc×. . .×nc hypersquare probability table with n+2
dimensions. Compared to the previous section, which dealt with hard observations
only, there is one dimension extra, for the soft categories at the prediction location.

Again, first the unconditional multi-point pdf is computed, after which this pdf is
conditioned on the data and information (specific knowledge). As we will see, the
soft observation at the prediction location is used in the first step, i.e. to compute
the unconditional multi-point pdf.
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6.2.1 Computing the unconditional multi-point pdf

The unconditional multi-point pdf is computed much in the same way as in the
situation with observations at neighbouring points only. The only difference is that
in maximizing the entropy an extra constraint is used. The entropy of the multi-
point discrete pdf, Eq. (6.15), equals

H = −
∑

i,...,j,k πC...CD(ci, . . . , cj , dk; s0, . . . , sn, s0)

log πC...CD(ci, . . . , cj , dk; s0, . . . , sn, s0),
(6.16)

where
∑

i,...,j,k is a sum over al possible combinations of hard categories at all lo-
cations (prediction location plus observation locations) and soft categories at the
prediction location.

The entropy is maximized under constraints on the two-point probabilities, see sec-
tion (6.1.1), Eq. (6.3). Additional constraints are enforced on the one-point bivariate
probabilities of hard and soft categories at the prediction location. The marginal bi-
variate probabilities obtained by summing the multi-point probabilities over the cells
along the axes represented by the neighbouring locations must equal the bivariate
probabilities estimated from the data:

πCD(ci, dj ; s0) = pCD(ci, dj ; s0) ∀i = 1, . . . , nc,∀j = 1, . . . , nd. (6.17)

To estimate the bivariate probabilities, the soft category (soil map unit) is deter-
mined for all locations with hard observations of the category. The probability of
occurrence of each pair of hard and soft category can then be estimated by

pCD(ci, dj ; s0) =
1
N

N∑
α=1

δ(ci; sα) · δ(dj ; sα), (6.18)

with N the number of locations with hard observations.

Again, the optimal solution can be found by iterative scaling (compare section (6.1.1)).
For instance, if we have only one neighbouring observation location, then the hy-
persquare probability table is a cube with n3

c cells. In this case only two marginal
tables are used in scaling the multi-point probabilities. The square with two-point
probabilities of hard and soft categories is not used. In mathematical terms, the
first two iterations proceed as follows:

π
(1)
CCD(ci, cj , dk; s0, s1, s0) = π

(0)
CCD(ci, cj , dk; s0, s1, s0) pCC(ci,cj ;s0,s1)

π
(0)
CC+(ci,cj ;s0,s1)

π
(2)
CCD(ci, cj , dk; s0, s1, s0) = π

(1)
CCD(ci, cj , dk; s0, s1, s0) pCD(ci,dk;s0)

π
(1)
C+D(ci,dk;s0)

,

(6.19)

with π
(0)
CC+(ci, cj ; s0, s1) the marginal two-point probability at iteration 0 (start of

iteration), obtained by summing the multi-point probabilities along the axis repre-
sented by the soft categories at the prediction location s0, and π

(1)
C+D(ci, dk; s0) the

marginal bivariate probability of hard and soft categories at iteration 1, obtained by
summing the multi-point probabilities along the axis represented by the hard cat-
egories at the observation location s1. The iteration proceeds until the differences
between the marginal probabilities and the probabilities used as constraints become
smaller than a user specified value.
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6.2.2 Conditioning the multi-point pdf

In the second step the unconditional pdf of the first step is conditioned on the
observations at the neighbouring sample locations and on the observed soft category
at the prediction location. Using the definition of the conditional probability, we
obtain:

P [(C(s0) = ci) | C(s1) = cj , . . . , C(sn) = ck, D(s0) = dl] =

P [C(s0) = ci, C(s1) = cj , . . . , C(sn) = ck, D(s0) = dl]
P [C(s1) = cj , . . . , C(sn) = ck, D(s0) = dl]

(6.20)

Applying the law of total probability for the denominator, we finally obtain for the
conditional pdf at the prediction location

P [(C(s0) = ci) | C(s1) = cj , . . . , C(sn) = ck, D(s0) = dl] =

P [C(s0) = ci, C(s1) = cj , . . . , C(sn) = ck, D(s0) = dl]∑
i P [C(s0) = ci, C(s1) = cj , . . . , C(sn) = ck, D(s0) = dl]

(6.21)

6.3 Simulation of soil categories with Bayesian Maximum
Entropy

Categorical (qualitative) soil maps can be simulated by sequential simulation, much
in the same way as sequential simulation of quantitative soil maps. A random
visit path through the nodes is followed. If there are no conditioning, prior data
(unconditional simulation), then at the first node the prior probabilities are taken as
the posterior probabilities from which a category is randomly drawn. This category
is used in computing the conditional distribution (posterior distribution) at the next
node, etc. If there are prior data (conditional simulation), then these data are used
from the beginning of the sequence to compute the conditional distributions.

If a soil map exists, then this soil map can be used in simulating possible categorical
soil maps. At the first simulation node a category is drawn from the prior distribution
for the soil map unit this node is falling in. In subsequent steps, besides the soil
map unit (soft category) at these nodes, the categories drawn in previous steps are
used as hard conditioning data.

The BMELIB package contains several MATLAB scripts for simulation of categorical
random fields (simucat.m, simucatcond.m, simucatcondPdf.m, simucatHardk.m).
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Chapter 7

Markov Random Fields

Markov Random Fields (MRF) were already introduced in chapter (4). We men-
tioned that the MRF approach is particularly useful for modelling, prediction and
simulation of qualitative spatial variables, which is the subject of this chapter. How-
ever, the methodology is largely the same as that used for MRF of quantitative
variables. In this chapter, we will therefore frequently refer to chapter (4).

Our interest in this chapter is in the probability distribution of C as defined in
Eq. (1.6). As before, we take an approach in which we characterize the probability
distribution of C by means of conditional probability distributions, with the pos-
sibility to use Brooks Lemma to derive the full distribution, Eq. (1.6), from the
conditional distribution if desired, although in practice we will rarely do so because
we will use simulation methods that work with the conditional distribution.

The natural analog of the Markov property, Eq. (4.3), for qualitative variables is

P [C = ck|Ci = ci, i = 1, . . . , n, i 6= k] = P [C = ck|Ci = ci, i ∈ δsk]. (7.1)

where the neighbourhood δsk may for instance be chosen as the Von Neumann or
Moore neighbourhood as discussed in chapter (4).

The central object of the MRF approach is the conditional distribution Eq. (7.1). It
is all that is needed for simulation and prediction of C. Once it is known, algorithms
to generate realizations of C run smoothly although they will likely use up a lot of
computing time. However, estimation of the conditional distribution from point
observations and ancillary information is a tricky problem, particularly because the
distributions must be chosen such that they yield a unique and proper full probability
model (see also the discussion in chapter (4)).

7.1 Estimation of the conditional probability

Even though the conditional distribution of C has been confined to the values of
C in its local neighbourhood, it is still enormously complex. For instance, if C
can take on eight values and four neighbours are considered, Eq. (7.1) requires that
58 = 390625 probabilities are specified. In order to reduce the complexity, one must
make assumptions about the structure of the probabilities. One option that has
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been successfully applied in land use change modelling is to use a logistic regression
approach:

Log(
P

1− P
) =

∑
j

βjFj , (7.2)

where P is the conditional probability in Eq. ( 7.1) and where the Fj are explanatory
variables that depend on the values of C in the neighbourhood. Verburg et al. (2004)
use so-called enrichment factors as explanatory variables. These are computed as
the frequency of cells in the neighbourhood that have a particular outcome relative
to the overall occurrence of the outcome. Other explanatory variables can also be
used, such as maps of covariates (see below) or the presence/absence of a particular
outcome in the neighbourhood. The difficulty is in choosing relevant explanatory
variables without increasing the dimensionality too much. If the number of explana-
tory variables is large, then it will be more difficult to estimate the logistic regression
coefficients βj and there will be an increased risk of introducing artefacts through
over-fitting.

Estimation of the βj is a difficult task in itself. A large body of literature and tools
are available from the logistic regression literature, but these typically assume that
simultaneous observations of the dependent and explanatory variables are available.
In our case they are not, because rarely will the soil be sampled using a grid sample
with resolution equal to the resolution of the target map (in fact, if this were the case
then there would be no need for modelling because the spatial distribution of the soil
property would be known). Thus, estimation of the logistic regression coefficients
will involve a computationally demanding calibration procedure in which a combi-
nation of regression coefficients is tried, realizations of C are generated using this
combination, statistics are computed and compared with those of the observations,
after which the calibration will modify one or more of the coefficients to obtain a
closer match between the statistics from the generated realities and that from the
observations. Realistically speaking, such a method would only work if the number
of coefficients is smaller than 10, preferably even smaller.

To circumvent the computer-intensive calibration routine one might also design sam-
pling experiments specifically dedicated to estimation of the logistic regression coef-
ficients. This would mean that multiple locations in the field are visited, each time
sampling the soil at the centre cell as well as in the neighbourhood cells.

One other option that may be tried is to let the conditional probabilities or alterna-
tively the explanatory variables and associated regression coefficients be determined
by an experienced soil surveyor. For instance, the soil surveyor should be able to
tell what the chances of soil type A are at some location, given that three of its four
neighbours also have soil type A and the fourth neighbour has soil type B.

7.2 Simulation and Prediction

Simulation and prediction of qualitative soil variables is practically identical to the
methods described in chapter (4). The Gibbs sampler works equally well with cate-
gorical data as with continuous data and conditioning to point observations is done
in the same way as before. Conditioning to maps of covariables is done by letting
the conditional probabilities depend on the covariable, either directly or through
using the covariables as explanatory variables in the logistic regression Eq. (7.2).
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Calibration is relatively easy in this case because the covariable is available as a
map and exhaustively known.

Prediction for qualitative variables is again done by generating many simulations
and summarising the resulting frequency distributions. For instance, the soil type
with maximum frequency (i.e. probability) may be used as a prediction, or alterna-
tively one may use the observed frequencies for all outcomes as an estimate of the
probability vector of the true categorical soil variable.
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Part III

EXAMPLES: MAPPING SOIL
PROPERTIES USED BY THE

SMART - SUMO - MOVE
MODEL CHAIN

65





Chapter 8

Introduction

SMART (Simulation Model for Acidification’s Regional Trends) is a dynamic soil
acidification model aimed at the evaluation of the effectiveness of emission control
strategies for SO2, NOx and NH3 at the European scale. SMART includes only
geochemical buffer processes such as weathering and cation exchange. SMART2,
developed for evaluations at the national level, furthermore includes nutrient cycling
and solute input through upward seepage (Kros et al., 1999; Kros, 2002).

SMART2 requires quite a few of soil variables as input, such as (Kros, 2002, Table 8,
p. 157).

• bulk density in the root zone (ρ)

• volumetric moisture content in the soil (θ)

• base saturation fraction (Bsat)

• cation exchange capacity (CEC)

• selectivity constant for Al - (Ca,Mg) exchange (KAlBC2)

• selectivity constant for H - (Ca,Mg) exchange (KHBC2)

• dissolution constant for Al-hydroxide (KAlox)

• Al-content in secondary Al compounds in the soil (Al)

• C/N ratio of the soil (C/N)

In this report we present the simulation results for three soil properties, viz. KHBC2,
KAlBC2, and KAlox. KAlBC2 appears to be related to soil type to some extent.
To simulate maps of this soil property, a universal kriging model was used, with
the means of soil types as fixed effects (deterministic trend). Simulation of maps of
KAlox illustrates how to deal with a clearly non-normal distribution.

In the next chapter we explain how we simulated the soil types assumed to have
a different frequency distribution for one or more of the soil properties used as
input by the model SMART. These soil types are 1. poor sand (SP); 2. rich sand
(SR); 3. calcareous sand (SC); 4. non-calcareous clay (CN); 5. calcareous clay
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(CC); 6. non-calcareous loam (LN); 7. peat (PN). These soil categories are groups
of units of the soil map of the Netherlands at scale 1 : 50 000. In chapter (10)
the simulation of the three selected continuous soil properties is explained. The
multi-point (multivariate) distribution after subtraction of the mean per soil type
(KAlBC2) or after transformation (KAlox) is assumed to be normal (Gaussian).
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Chapter 9

BME simulation of soil type

The data and information used to estimate the probabilities of occurrence of the
seven soil categories consist of 8369 observations of the soil categories at points
taken from the Dutch Soil Information System (http://www.bodemdata.nl), and a
map of the categories at scale 1 : 50 000 (Fig. 9.1). The observations at points are
considered as error free (hard observations), whereas the map is treated as spatially
exhaustive soft information on the soil categories.

The 8369 hard observations of the soil categories at points were used to estimate the
two-point probabilities, Eq. (6.4). Figure 9.2 shows the results. Note that categories
3 to 7 show almost no spatial auto-correlation, as seen from the probabilities in the
diagonal subplots that fall sharply down and reach more or less its minimum value
at the second lag (ca. 1000 m) in the subplots. For categories 1 and 2 spatial auto-
correlation is stronger, whereas categories 4, 5 and 6 take an intermediate position.

Table 9.1 shows the one-point bivariate probabilities for the hard and soft categories.
Note that the row-totals correspond with the intercepts in the diagonal subplots of
Figure 9.2, and that the table margins correspond with the category frequencies as
estimated either from the hard observations or the soil map.

All computations have been made using BMELIB 2.0b, a free Matlab toolbox (see
Christakos et al. (2002)) and the website http://www.unc.edu/depts/case/BMELIB).
To simulate we extended the BMELIB 2.0b toolbox with an additional script named
simucatHardkcond.m (available upon request). Figure 9.3 depicts the soil category
with the largest estimated probability. Figure 9.4 depicts four example simulations.
Differences between these four maps are noticeable but small, indicating that the
information contained in the 1 : 50 000 soil map and the hard observations leaves
little uncertainty about the soil categories at unobserved locations.
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Figure 9.1: Hard observations of soil categories at points (left) and soft soil categories as
derived from the soil map of the Netherlands 1 : 50 000 (right).

Table 9.1: One-point bivariate probabilities for hard and soft categories. Rows: hard
categories, columns: soft categories.

SP SR SC CN CC LN PN Σ
SP 0.236 0.064 0.001 0.006 0.000 0.000 0.011 0.319
SR 0.050 0.198 0.001 0.022 0.000 0.001 0.010 0.282
SC 0.001 0.000 0.015 0.000 0.003 0.000 0.001 0.021
CN 0.006 0.020 0.000 0.113 0.012 0.003 0.007 0.160
CC 0.000 0.000 0.004 0.013 0.091 0.000 0.001 0.109
LN 0.001 0.001 0.000 0.002 0.000 0.019 0.000 0.023
PN 0.005 0.008 0.000 0.004 0.000 0.000 0.067 0.085
Σ 0.299 0.292 0.021 0.160 0.107 0.023 0.097 1.000
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Figure 9.2: Model for two-point univariate (diagonal plots) and bivariate (off-diagonal
plots) probabilities of SMART-categories. Distance in m.
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Figure 9.3: Soil categories predicted with BME from hard observations plus existing soil
map.
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Figure 9.4: Four possible realities of the soil type map generated with BME simulation,
using both hard and soft data.
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Chapter 10

Sequential Gaussian simulation
of continuous soil properties

Three continuous soil properties were selected for which statistical models are built
and simulations are generated. These are the selectivity constant for H - (Ca,Mg)
exchange (KHBC2), the selectivity constant for Al - (Ca,Mg) exchange (KAlBC2),
and the dissolution constant for Al-hydroxide (KAlox). For all three properties we
use the methodology described in chapter (2) and take the model (2.1) as a starting
point. The trend component µ may be a constant or a function of soil type, depend-
ing on whether soil type has predictive power for the particular property. When the
trend of the continuous soil property depends on soil type, then simulated maps of
the soil property use simulated maps of soil type, as created in the previous chap-
ter, as the trend. In this way, uncertainty about soil type will affect the uncertainty
about the continuous soil property. Before building the probability models and using
these for spatial prediction and simulation of the three soil properties, we first ex-
plore the available data and the strength of the relationships between soil properties
and soil type.

10.1 Exploratory data analysis

For exploratory data analysis and simulation of the three selected soil properties we
used 317 observations from forests in the Netherlands (Klap et al., 1999). Loca-
tions were chosen such that all important soils of the Netherlands were represented.
Besides this, spatial coverage and coverage of soil parent materials was taken into
account in the selection of the sites.

Figure 10.1 presents histograms of the three soil properties. These are useful to
detect outliers and verify whether the frequency distributions are sufficiently normal.
None of the three distributions show clear outliers, but the distributions of KAlox and
to a lesser extent KAlBC2 are clearly skewed. The histogram of the log-transfomed
KAlox (using a shift parameter of 100) is therefore also given. It is apparent that
log-transformation removes much of the skewness in KAlox.

The distribution of the three soil properties over the seven soil types is given in
Figure 10.2. Note that soil type CC (calcareous clay) has no observations. The box
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Figure 10.1: Histograms of the three selected soil properties and the log-transformed
KAlox.

plots show that KAlBC2 strongly depends on soil type, while KHBC2 and logKAlox
are less influenced by soil type. The KAlox (and logKAlox) values for soil type SC
(calcareous sand) are markedly different from those for other soil types, but the
frequency distribution is based on 7 observations only. KHBC2 has smaller values
for soil type PN (peat), but overall KHBC2 does not seem to vary much with soil
type.

Based on the results of the exploratory data analysis it was decided to log-transform
KAlox prior to model building and not to tranform KHBC2 and KAlBC2. Also, it
was assumed that logKAlox and KHBC2 had a constant model mean, whereas the
model mean of KAlBC2 was assumed to vary with soil type. In all three cases it
was assumed that the variance of the soil properties is the same for all soil types. It
must be noted that these decisions are based on a preliminary assessment. A more
thorough analysis might reveal more appropriate assumptions about the character-
istics of the uncertain soil properties. However, the assumptions made are judged
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Figure 10.2: Box plots of the soil properties for each of the seven soil types.

satisfactory, because the purpose of this chapter is mainly to illustrate the theory of
previous chapters, not to produce the definitive probability models of the three soil
properties. For illustration purposes, we prefer relatively simple models.

10.2 Variography

Experimental semivariograms of the three soil properties are given in Figure 10.3.
Note that for KAlBC2 the semivariogram was computed on its residual, i.e. after
removal of the soil type-dependent mean. Note also that anisotropy was not con-
sidered, since there is no plausible reason why the spatial correlation of the soil
properties should depend on direction. All three semivariograms show clear spatial
dependence, with spatial correlation lengths ranging from 60 (KHBC2 and KAlBC2)
to 100 km (logKAlox). The nugget-to-sill ratio is approximately 0.5 for KHBC2 and
KAlBC2, indicating substantial short-distance spatial variation. For logKAlox it is
only about 0.2. This, together with the fact that its spatial correlation length is large,
implies that logKAlox is much more strongly spatially correlated than KHBC2 and
(residual) KAlBC2. This should be confirmed by less noise in the simulated maps
to be presented in the next section. Consultation with soil scientists specialized in
the spatial distribution of these soil properties may help explain the similarities and
differences of the three semivariograms.
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Figure 10.3: Experimental and fitted semivariograms of the three soil properties.

10.3 Spatial prediction and simulation

10.3.1 Selectivity constant for H - (Ca,Mg) exchange (KHBC2)

Since the model mean and variance of KHBC2 was assumed constant and spatial
correlation was assumed to depend only on the geographical distance between lo-
cations, a map of KHBC2 may be created from the 317 point observations using
ordinary kriging (section (2.1.2)). The maps of the ordinary kriging prediction and
kriging variance are given in Figure 10.4. The spatial pattern in the prediction map
cannot easily be explained. Small values are generally predicted in the lower parts
of the Netherlands with marine and fluviatile sediments, with an exception for the
North-West, where large predictions are made. Perhaps these are caused by a spa-
tial outlier in the data. Greater values are generally predicted for the sandy, higher
elevation parts in the East and South-East, but again a few spatial outliers mask
this effect. The pattern of the kriging variance map reflects the spatial configuration
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Figure 10.4: Maps of kriging predictions (left) and kriging variances (right) for KHBC2.

of the 317 point locations: the variance is small near observation locations and large
further away from them. Indeed, few observations were taken in the South-West
and North of the country. The average kriging variance is about 1.0, indicating a
fairly large uncertainty about the predicted KHBC2 (i.e. standard deviations are on
average 1.0 as well, with predicted values ranging from -7 to -2).

Figure 10.5 presents four possible realities of KHBC2 from an infinite number that
could have been generated. These were created using conditional sequential Gaussian
simulation, using the 317 observations as conditioning data (see section (1.4.2)). The
global pattern of the four simulated maps is the same as that of the kriging prediction
map, but the simulated realities are more erratic. The amount of ’noise’ that is
superimposed over the prediction map signifies our uncertainty about KHBC2. The
uncertainty is also reflected in the differences between the four simulated realities:
the greater the differences, the greater the uncertainty. Note that the differences
are indeed greater in the South-West, there where the kriging variance is large and
where there are no conditioning data.

10.3.2 Selectivity constant for Al - (Ca,Mg) exchange (KAlBC2)

The kriging prediction and prediction variance maps of KAlBC2 are given in Fig-
ure 10.6. In this case universal kriging was used, because the model of KAlBC2
assumes a non-constant mean. Since the mean of KAlBC2 depends on soil type,
the underlying pattern of the Dutch soil map (right panel of Figure 9.1) is clearly
visible in the kriging prediction map. Superimposed on the per-unit mean is the
interpolated residual of KAlBC2, which causes gradual changes in the interpolated
values within the mapping units. However, these variations are small compared to
the differences between the map unit means. Consequently, fairly discrete jumps in
the predicted KAlBC2 are observed, such as at the border between the clayey river
soils and sandy aeolian deposits. Note also that the kriging variance map is hardly
influenced by the soil map. This indicates that the uncertainty in the kriging pre-
dictions is mainly caused by the interpolation error, not by the estimation errors of
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Figure 10.5: Four possible realities of KHBC2 generated with conditional sequential sim-
ulation.

the per-unit means. In fact, this should not come as a surprise, because the number
of observations used to estimate the means are fairly large.

The four example realizations of KAlBC2 given in Figure 10.7 all used the Dutch soil
map (i.e. right panel of Figure ??) to stratify the Netherlands in different soil map-
ping units. However, the soil map itself is uncertain as well. In the previous chapter
we simulated possible realities of the soil map using the Bayesian Maximum Entropy
method. To acknowledge the uncertainty about the soil map, we must therefore also
use these simulated soil maps (i.e. such as those presented in Figure 9.4) as starting
points for simulation of KAlBC2. The simulated maps also show the influence of
the soil map, but much less pronounced than for the kriging prediction map. Here,
the residual variation is not averaged out by the smoothing effect of kriging, but
adds a substantial spatially correlated ’noise’ to the per-unit means. Nonetheless,
the relatively small differences between the simulated realities shows that the uncer-
tainty about the spatial distribution of the true KAlBC2 is small compared to the
predicted pattern. Note that the differences between the maps are small.

80 WOt–Rapport 58



Figure 10.6: Maps of kriging predictions (left) and kriging variances (right) for KAlBC.

10.3.3 Dissolution constant for Al-hydroxide (KAlox)

The kriging maps for logKAlox are given in Figure 10.8. Note that the legends of
these maps refer to the log-transformed KAlox. Back-transformation to the original
scale is not trivial, but feasible (Journel and Huijbregts, 1978). Direct transforma-
tion of the kriged map by taking its antilog produces the median KAlox value, not
the mean. The spatial pattern of the predicted logKAlox show small values in the
North-West and in the marine clay soils of the polders near the IJsselmeer and in the
South-Western part of the Netherlands. However, these patterns cannot be directly
related to soil type because the West has similar soils but has large predicted values
(see also Figure 10.2).

Four simulations of KAlox are presented in Figure 10.9. Back-transformation is easy
and involves a simple antilog operation. Note the skew distribution of the simulated
KAlox (i.e. the main part of the map has small values shown in blue, whereas there
are much fewer locations with large values shown in orange and yellow). The patterns
are similar to what we observed before and show a superposition of the kriged map
and a spatially correlated ’noise’. As before, the differences between the four maps
are a measure of the uncertainty about the spatial distribution of KAlox.
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Figure 10.7: Four possible realities of KAlBC2 generated with conditional sequential sim-
ulation, taking uncertainty in the soil categories into account.
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Figure 10.8: Maps of kriging predictions (left) and kriging variances (right) for log-
transformed KAlox.
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Figure 10.9: Four possible realities of KAlox generated with conditional sequential simu-
lation.
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Chapter 11

Discussion and conclusions

This chapter discusses the suitability of the three methods (Kriging, Bayesian Maxi-
mum Entropy and Markov Random Fields) for prediction and stochastic simulation
of soil maps. For quantitative soil properties, sequential simulation making use of
one of the Kriging models has proven its value. There are many examples in the
literature, and well-tested public domain software is widely available.

Spatial prediction and simulation with Bayesian Maximum Entropy is far less well-
known. There are not many case studies yet that have been published, and its
potential still has to be explored further. Nevertheless, Bayesian Maximum Entropy
has proven its value already for prediction and simulation of categorical variables
such as soil type. Compared to the kriging alternative, indicator kriging, this method
is much better founded on theory and, perhaps more importantly, results have shown
to be superior to those obtained with indicator kriging. A serious problem encoun-
tered in this project is the computational burden of the Bayesian Maximum Entropy
method for categorical methods. Only for a very limited number of categories (say
< 10), and a very limited number of neighbouring observations (say < 5), computing
time is acceptable for projects at a national scale. For larger numbers of categories,
one may possibly make use of the hierarchical nature of the soil classification system.
We recommend this as an interesting topic for future research.

Bayesian Maximum Entropy also seems to have interesting potentials for prediction
and simulation of continuous soil variables in situations where (part of) the obser-
vations are uncertain (soft). The Soil Information System contains numerous soft
data, such as soil profile descriptions with interval estimates of soil organic mat-
ter, clay content and Mean Highest Water table (MHW), and censored observations
such as clay content < 1% and MHW > 1.20 m. Kriging also offers possibilities for
dealing with soft data, but these possibilities seem to be more restricted, because
it assumes that the soft observations are Gaussian distributed, which is clearly not
realistic for interval estimates and censored observations of soil properties. Public
domain software for Bayesian Maximum Entropy prediction and simulation is avail-
able (BMELIB), but is relatively new and, at least some programmes in this library,
are not yet widely tested.

Even more unexplored than Bayesian Maximum Entropy is the approach based on
Markov Random Fields. Compared to Bayesian Maximum Entropy the computa-
tional burden is small, even for a large number of soil categories. However, little
work has been done on calibrating the Markov Random Field model. One problem,
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yet to be explored in more detail, is that the calibrated model must satisfy some
basic requirements to arrive at a valid distribution for the variable of interest. It is
only fair to say that the ins and outs of conditional density estimation under the
Markov Random Field approach is a largely undiscovered field that needs to be thor-
oughly investigated before the method can be applied in practice. Both practical as
well as theoretical problems need to be tackled.
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