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Figure 8. The hypocotyl surface of a naked, dried lettuce embryo. The surface has a shrunken appearance, and the epidermal
cells are visible as depressions. White lines mark the outline of individual cells. Bar = 10 �m. 

Figure 9. Transversally cryo-fractured hypocotyl cortex cells of a dried lettuce embryo. White lines mark the outline of
individual cells. cc, Cellular contents; is, intercellular space; pl, face-fractured plasma membrane; arrow, cross-fractured cell
wall bordering the intercellular space. Bar = 10 �m.

Figure 10. Longitudinally cryo-fractured hypocotyl cortex cells of a dried lettuce embryo. Intercellular spaces (arrows) extend
over long distances along many cells. White lines mark the outline of individual cells. Bar = 10 �m.

Figure 11. High-resolution cryo-fracture image of the plasma membrane along a transverse wall of a cortex cell in the
hypocotyl of a dried lettuce embryo. Line patterns, mainly oriented from the lower left to the upper right, are imprints of the
cell wall fibrils, which are typically visible in the dry state. Arrowheads, plasmodesmata. Bar = 100 nm.

Figure 12. Transverse cryo-fracture through the hypocotyl of a naked lettuce embryo suffering from imbibitional injury. The
outer two or three cell layers (top) have heavily folded walls, while the deeper-lying cells have a normal, turgid appearance.
White lines mark the outline of individual cells. Treatment: immersion for 1 h in water at 0°C. Bar = 10 �m.

Figure 13. A damaged, longitudinally cryo-planed lettuce hypocotyl. The outer two layers (top) have a dense appearance and
lack the swelling and turgescence of the deeper layers. The third layer has cells with multiple small vacuoles (arrowheads) that
are not found in deeper cell layers. White lines mark the outline of individual cells. Treatment: naked embryo, 1.5 h immersion
in water at 0°C, followed by 4.5 h of incubation on wet filter paper at 20°C. Bar = 10 �m.
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Figure 14. Detail of the epidermal cells shown in Fig. 13. Cell contents show a poor ice crystallization, which points to a low
water content. Organelles are difficult to discern and seem to be disorganized. The transverse cell walls are highly folded. Bar =
5 �m.

Figure 15. The hypocotyl surface of an imbibed naked lettuce embryo suffering from imbibitional injury. The damaged
epidermal cells cause longitudinally curved imprints. White lines mark the outline of individual cells. Treatment: immersion
for 1 h in water at 0°C. Bar = 10 �m.

Figure 16. Cryo-fractured epidermal hypocotyl cell of a naked lettuce embryo suffering from imbibitional injury. The plasma
membrane has a folded and irregular appearance, with globular insertions (g). pl, Plasma membrane; cc, cellular contents; cw,
cell wall. Treatment: immersion for 1.5 h in water at 0°C. Bar = 1 �m.

Figure 17. High-resolution cryo-fracture image of the plasma membrane of a damaged epidermal cell of a lettuce hypocotyl.
The intra-membrane particles (IMPs) show the usual distribution, except for local irregularities (arrowheads). Treatment: as in
Fig. 16. Bar = 100 nm.

these two layers being approximately 6–7% of the
total. Although the outer cells had damaged plasma
membranes (Figs 16 and 17), the cell walls seem to
have slowed the release of K+ from the cells.

Occurrence of imbibitional injury in multicellular
organisms 

Cell walls of lettuce embryos (this paper) and other
seeds (Webb and Arnott, 1982) are highly curved in
the dry state, and their rehydration requires
coordinated cellular imbibition and cell-wall
unfolding. If one cell rehydrates faster than its
neighbours, this imposes a forced stretching of still
highly viscous membranes, walls and cytoplasm,
resulting in substantial tension. To avoid cell-to-cell
friction, imbibition of the embryo should occur
sufficiently slowly to accommodate a homogeneous

swelling. A thick-walled surrounding layer, such as
the endosperm in lettuce seeds, can act as a barrier for
too rapid a water influx. Furthermore, a network of
intercellular spaces permits water vapour to diffuse
rapidly over large areas, thus allowing a
homogeneous and mild hydration from the vapour
phase. These intercellular spaces may also permit
cells to swell at slightly different rates without
friction. 

Imbibitional injury occurs primarily at the outside
of a multicellular organism, because the peripheral
cell layers prevent too rapid a water influx into the
inner layers (Simon and Raja Harun, 1972; Powell and
Matthews, 1978; this paper). To understand the
differing results in the literature on imbibitional
injury, one has to consider membrane rupture versus
cell wall/tissue rupture as physically different
phenomena. Membrane injury has been studied



extensively in unicellular organisms, and is mainly
dependent on imbibition temperature and the fluidity
and composition of the membranes (e.g. Hoekstra et
al., 1999). The damage noted in the present
experiments on lettuce embryos is of the membrane
type, since it was dependent on temperature, and, in
the first hour of incubation, rupture of cell walls never
occurred. 

Alternatively, cell-wall injury and tissue rupture
are the result of non-homogeneous swelling of
tissues, leading to tension cracks within the cell walls.
This second type of imbibitional damage occurred in
the experiments of Duke and Kakefuda (1981), on
soybean and bean cotyledons, and of Spaeth (1987),
on bean and pea cotyledons. Both papers report on
the immediate leakage of particulate matter, which is
evidence for ruptures in the cell walls. Stelar lesions,
which occur during rapid hydration of embryos
having low moisture contents, have been found in
maize kernels (Cohn and Obendorf, 1978) and
isolated soybean embryos (Ashworth and Obendorf,
1980). In maize the stelar lesions were observed in
cold-imbibed kernels, but not in warm-imbibed ones.
However, in soybean, both cold- and warm-imbibed
embryos showed lesions. Tissue rupture as caused by
imbibition is clearly increased at low initial moisture
content, but temperature dependency appears to vary
with different samples. 

The functional loss of (parts of) the epidermis and
successive cell layers causes the deeper cell layers to
be exposed to several secondary stresses, such as

drought and microbial attack. The leakage of
nutrients from the damaged cells into the
surroundings promotes microbial growth. In
imbibitionally damaged lettuce embryos, the swelling
inner tissues led to a strain that caused the outer, dead
cell layers to break up into patches. Under the given
experimental conditions, the embryos appeared to be
able to activate deeper cell layers to replace the lost
functions of the epidermis, which led to delayed and
less homogeneous growth. Whether or not an
organism can recover from imbibitional injury
depends on the extent of the damage, on whether the
lost functions can be replaced, on the vigour of the
organism and on environmental conditions. 
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Figure 18. Effect of initial moisture content (MC) on K+

leakage from naked lettuce embryos. The embryos used were
either dry [MC = 0.040 ± 0.001 g H2O (g DW)�1] or
prehumidified overnight [MC = 0.26 ± 0.01 g H2O (g DW)�1];
they were immersed for 1 h in water at 0°C, after which the
temperature was raised to 20°C. Each point is the average of
three or four replicates of 10 embryos ± SD. 
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