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1. The reproductive cycle in mammals 

Reproduction in mammals is a complicated process including fertilization, prenatal and 

postnatal development. It includes a cascade of events such as sexual behaviour, 

pregnancy, birth, growth and subsequent sexual maturation. The reproductive process is 

organized and regulated through a variety of mechanisms at the biochemical, molecular, 

cellular, tissue and organ level, leading to embryonic differentiation and morphogenesis. 

These processes include the organization of different cells to build three-dimensional 

structures and, consequently, to form organs and the entire organism [1, 2]. The complexity 

and sensitivity of the reproductive cycle could be affected by many factors, including 

malnutrition and stressful environment, or exposure to xenobiotics, biotoxins and radiation 

[3].  

 

2. Reproductive and developmental toxicology 

Reproductive and developmental toxicology is the field of expertise that deals with effects on 

fertility and with birth defects that could occur during any stage of the reproductive cycle [4]. 

With the term “birth defects”, structural or functional abnormalities are described, which are 

identified at birth, can cause physical, intellectual and developmental disabilities and can 

lead to death of infants during their first year of life. Several birth defects are caused by 

xenobiotics, called teratogens, coming from the Greek word “teras” that means monster [5]. 

Teratology belongs to the field of developmental toxicology, and its research objective is to 

identify the cause of teratogenesis, or otherwise, the cause of morphological adverse 

outcomes of pregnancy [6]. Historically, I.G. de Saint-Hillaire firstly introduced the term of 

“teratology” during the 19th century [7]. However, rational biologically based theories of 

congenital developmental disorders caused by exogenous factors were firstly introduced by 

J. Warkany in the 1930s and 1940s [8]. Despite the birth defects observed during the first 

half of the 20th century due to exposure to teratogenic factors such as aminopterin, radiation, 

estrogens, androgens, cortisone, hypovitaminosis, folic acid, vitamin A and vitamin D 

supplements, not much attention was given to developmental toxicity studies [7]. The 

importance of developmental toxicity studies gained the scientific attention in the early 60s 

when the thalidomide tragedy occurred [9]. Thalidomide, or the commercially so-called 

Softenon, was prescribed as a sedative to pregnant women against morning sickness, 

causing severe congenital limb defects (phocomelia) in more than 10,000 children [9, 10]. In 

1973, Wilson gave a more comprehensive definition of “teratology”, introducing the terms of 

mechanism of development, time of exposure, frequency and degree of dosing and different 

manifestations of deviant development (death, malformation, growth retardation and 

functional defect), with which he formulated the principles of teratology [6].  
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Due to the thalidomide incident in the 1960s, since 1980 worldwide guidelines for 

developmental toxicity testing were incorporated by the Organization for Economic Co-

operation and Development (OECD) for improving the assessment of chemical safety and 

decreasing the risk of other tragedies such as the one caused by thalidomide. The OECD 

guidelines were designed to assess the developmental toxic effects of pharmaceuticals and 

pesticides during the entire reproductive cycle, including sexual maturation, fertilization, 

prenatal and postnatal development by implementing in vivo animal testing protocols [11]. 

The three key phases of reproduction, fertility, pre- and postnatal development, are covered 

by five OECD test guidelines, which include the prenatal developmental toxicity study 

(OECD 414), the one-generation (OECD 415) and two-generation studies (OECD 416), as 

well as the reproductive/developmental toxicity screening test (OECD 421) and the 

reproductive/developmental toxicity screening study (OECD 422) [12-16]. Later, the OECD 

426 study was established for screening developmental neurotoxic effects of chemicals [17]. 

The application of these guidelines implied the increase of animal testing, experimental costs 

and time needed for conducting a complete hazard assessment. Additionally, in 2007 the 

European legislation for Registration, Evaluation, Authorization and Restriction of Chemicals 

(REACH) was implemented to improve the hazard identification of chemicals and to perform 

a risk assessment for all chemicals, which are produced or imported in the European Union 

[18, 19]. The resulting demand to assess the safety of almost 30,000 current and of even 

more future chemicals implied a dramatic increase of the already high amount of laboratory 

animals used in chemical safety assessment. Reproductive and developmental toxicity 

studies required almost 65% of the total number of laboratory animals needed under REACH 

legislation, which are estimated to be almost 4 - 22 million vertebrates [18, 20-22]. The three 

Rs concept (reduction, refinement and replacement of animal testing) [23], the increased 

ethical concerns about animal testing in combination with the drawbacks of in vivo testing 

and issues with interspecies extrapolation, promoted the need for designing alternative in 

vitro methodologies for screening developmental toxicity. 

 

3. In vitro developmental toxicity testing 

The necessity for improved hazard identification and risk assessment for human health and 

for reducing the number of laboratory animals leads the scientific community to developing 

and establishing in vitro methodologies for screening the developmental toxicity of chemicals 

[18, 22, 24, 25]. Due to the complexity of the mammalian reproductive cycle, it can be 

anticipated that only the combination of many in vitro assays, appropriate for studying the 

various mechanisms of reproductive and developmental toxicity, could mimic the entire 

reproductive cycle [26]. For developmental toxicity testing, the last decades, more than 
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twenty in vitro assays have been developed, including cell-based methods, organ cultures, 

organ-on-a-chip concepts, whole embryo cultures and in silico simulation models [4, 21, 27]. 

Among the available alternative systems, three of them have been successfully validated. 

These are the embryonic stem cell test (EST) [28], the limb bud micromass (MM) [29] and 

the rat whole embryo culture (WEC) [30], for which standard protocols are available on the 

website of the European Centre for the Validation of Alternative Methods (ECVAM) [31]. 

Although these validated methods could importantly decrease the number of laboratory 

animals, their application is still largely restricted to screening purposes and for further 

prioritizing in vivo testing. Additionally, Hartung et al. [32] have proposed that the outcome of 

mechanistic validation could be a valuable tool for further decision-making based on in vitro 

results. Although the mechanistic approach for screening embryotoxicants is quite 

appealing, the knowledge in this area is still limited. The current validated studies are based 

on mathematical prediction models, which simplify the biological responses, while they do 

not provide mechanistic information. Piersma et al. [33] have suggested that for improving 

the hazard identification, while reducing and replacing animal testing, molecular-based 

approaches are needed for describing the key events initiated from a chemical stimuli on the 

molecular to cellular level, organs and, subsequently, to the whole organism, causing any 

toxic effect. Moreover, in-depth knowledge on the dynamics and kinetics of biological 

systems may offer a boost in better defining the applicability domain of alternative tests, 

leading to design of in vitro strategies that are more relevant for a mode-of action based 

screening of chemical hazards [32, 33].      

 

3.1. The rat whole embryo culture (WEC) 

A historical note 

In 1960s, the pioneer D. New started the research on developing the rat WEC technique, 

with which postimplantation embryos were removed from the maternal womb and transferred 

in their intact visceral yolk sac to an in vitro environment, which was ideally designed for 

supporting normal growth and development during the primary organogenesis phase [34], 

gestation days (GD) 10-12. This research was inspired by studies of Waddington and 

Waterman in 1933, who attempted to culture in vitro rabbit embryos in plasma clots [35]. 

Later, the rat WEC was established as a method mimicking organogenesis in vitro, including 

cellular proliferation, interaction, differentiation and finally pattern formation and, 

consequently, considered ideal for studying the development of mammalian embryos 

throughout the stage of neurulation and organogenesis [36]. Therefore, the rat WEC was 

suggested as a useful tool for screening teratogenic outcomes of chemicals [37].  
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Validation of rat WEC 

The first attempt for validating the rat WEC was performed in 1985 by Schmid [38], who 

suggested that WEC could be a promising screening tool for teratogenicity. The following 

upgrading of the scoring system, with which many morphological endpoints related to growth 

and development were additionally considered, improved the predictability of the rat WEC 

[39, 40]. During the 1980s, the usefulness of this technique as a system for screening 

teratogenicity of chemicals was widely employed, reaching more than 200 studies [41-47]. In 

the ECVAM validation study (2001), 20 chemicals were tested in four laboratories in a 

double blind design. The selected compounds were classified into three categories: non-

embryotoxic, weak embryotoxic and strong embryotoxic according to available data 

describing their in vivo embryotoxic profile [31]. The WEC model predicted the classification 

of the tested compounds with 80% accuracy, while the strong embryotoxicants were all 

detected (100%) with 83 and 100 % precision, depending on the prediction model used. 

However, misclassifications of non- or weak embryotoxicants were observed, which 

suggested the need of further evaluation and introducing more techniques (such as gene 

expression profiling and toxicokinetics related to placental transfer) for improving the 

prediction value of the technique [26, 30, 48].     

 

The rat WEC – a validated embryotoxicity test              

Today, the rat WEC is an established in vitro method with a standardized protocol (Figure 1) 

for screening embryotoxicants after exposure to chemicals during early organogenesis. 

Table 1 presents an overview of the total morphological score (TMS) used in the WEC 

assays performed in the present thesis. Although it is not a fully animal-free method, it is a 

valuable tool with numerous benefits [49]. The greatest advantage of the rat WEC is that 

neurulation and early organogenesis could be continuously monitored during the critical 

window of GD 10 and 12 (Figure 2 and Table 1) [36]. Importantly, the embryonic 

developmental pace during this time window is in high agreement with the in vivo situation 

for both rat and human embryos [30, 50-52]. However, the restricted experimental duration 

(48 hours), as well as the lack of maternal interaction and metabolic activity could be 

limitations for the predictability of the method [53]. Several attempts for adding metabolic 

activity to the system were not successful [49, 53], while other studies have suggested that 

individual assessment of metabolites could be a better solution [54, 55]. However, overall, 

the proposed combination of the WEC with structural- or molecular- based techniques could 

build a robust system for screening embryotoxicants and prioritizing further in vivo testing.    

           



General introduction 

16 
 

 

Figure 1: Schematic representation of the rat whole embryo culture method. On GD 10, 

dams are euthanized and their embryos are immediately separated from the uterus. The 

peripheral trophoblastic cell zone and parietal yolk sac membrane are removed under the 

microscope leaving both the visceral yolk sac and ectoplacental cone intact. Embryos with 1-

5 somites are individually cultured in flasks in 2 mL culture medium. The culture flasks are 

placed in rotating incubators, which are protected from light and their internal temperature is 

permanently at 37.7oC. The cultured flasks are oxygenated twice daily for 30 seconds per 

time, with increasing concentration of oxygen. At the end of culture, the embryos are 

microscopically evaluated and each morphological item is individually scored. The sum of 

the individual tissue-scores, the total morphological score (TMS), is a quantitative way for 

representing the embryonic developmental stage and determining the embryotoxic effect of 

chemicals on the phenotype, and is summarized in Table 1 [40].  

 

Figure 2: The continuous monitoring of the embryonic development during the critical 

window of the experimental duration (48 hours) is the greatest advantage of the rat WEC. 
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The yellow arrows indicate the closure of the neural tube, which is often the first indication of 

embryonic development, immediately determining any developmental abnormality due to 

internal (biological) or external (exposure to chemicals) factors. The q, r, s and t letters 

indicate the process (shape) of the neural tube closure, which is described in more details in 

Table 1.  
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Table 1: Illustration of the total morphological score (TMS) system, adapted from van Maele-

Fabry and Picard [56] and used for examining the rat WEC.  
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3.2. The embryonic stem cell test  

In 1909, A. Maximow firstly introduced the term “stem cells” as a type of cells that participate 

in the hemapoietic system in the bone marrow during development [57]. The presence of 

stem cells in murine bone-marrow was explained in the early 60s by McCullough and Till, 

who discovered also their cellular ability of self-renewing [58, 59]. In the 70s, researchers 

isolated pluripotent embryocarcinoma cells (ECC) [60, 61], which promoted the idea of 

isolating embryonic stem cells (ESC) from the inner cell mass of a blastocyst, which was 

accomplished in the early 80s [62-64]. The use of murine pluripotent ESCs (murine D3 cell 

line) derived from an 3.5-day old blastocyst was further explored due to their ability to 

differentiate in vitro into endo-, meso-, ecto-derm germ layers; and, therefore, to any type of 

cells present in the mouse [65]. Therefore, the differentiation of ESCs was further studied as 

a potential test for screening developmental toxic responses of chemicals. As described by 

Spielmann [66], following the hanging drop culture technique, in the absence of leukemia 

inhibitory factor (mLIF) and the presence of fetal bovine serum, the ESCs form aggregates, 

called embryonic bodies (EBs). The EBs, which mimic the anterior pre-steak embryos, could 

spontaneously differentiate into foci of beating cardiomyocytes (Figure 3), which is the 

morphological endpoint for screening developmental toxicity in the 10-day EST assay.           

 

Figure 3: The validated 10-day differentiation protocol of the EST. On day 0, undifferentiated 

single cell suspensions are cultured in hanging drops. On day 3, the formed cell aggregates, 

the EBs, are transferred and further cultured in supplemented cell culture medium. On day 5, 

single EBs are plated on tissue culture plates, in which they are differentiated into 

contracting cardiomyocytes, which are microscopically evaluated on day 10.        

 

In the EVCAM validation study in 2002, 20 chemicals, which were classified as in vivo non-, 

weak or potent embryotoxicants, were assessed with the EST developmental toxicity assay 

in four laboratories in a blind trial [28, 31, 67]. For concluding on the developmental toxicity, 
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three endpoints were evaluated: the inhibition of differentiation of D3 cells, as well as the 

inhibition of growth of D3 cells and 3T3 cells, facilitating the study of differences in sensitivity 

between embryonic and adult cells. The murine 3T3 cell line derives from mouse fibroblast 

cells and mimics the maternal side. Based on the improved biostatistical prediction model 

[31], the EST predicted with 78% overall accuracy the developmental toxicity of the tested 

compounds [28]. The strong embryotoxicants were 100% predicted with 83% precision. The 

predictivity of non- and weak embryotoxicants was 73 and 69% [28]. Considering the 

validation outcome, EST is an applicable assay for classifying a variety of chemicals and, 

especially, for sufficiently predicting strong embryotoxicants. Given also that it is an animal-

free assay, as well as less time consuming and cheaper compared to other in vitro assays, 

the EST is widely accepted and applicable as a test strategy for further prioritizing additional 

testing of chemicals, especially in the pharmaceutical sector [68]. On the other hand, the 

EST is relatively simple, as it lacks the interaction of a more complex biological system and 

metabolic capacity [69]. Additionally, the microscopical evaluation of contracting 

cardiomyocytes is the single qualitative endpoint that determines the developmental effect of 

the tested compounds on the differentiation process, which could also lead to a more 

subjective conclusion [26]. Therefore, the predictivity and applicability domain of EST could 

be further improved for achieving a read-out useful for regulatory purposes. The addition of 

quantitative endpoints, the incorporation of toxicokinetic information and the development of 

in silico prediction models could increase the accuracy and predictivity of the model, which 

could be of use in a battery of alternative tests representing key stages in development [70-

72]. Moreover, like with the WEC, the incorporation of metabolic activity could be an 

additional advantage for building biokinetic systems and, therefore, for improving the 

applicability of the EST [73]. The extension of the differentiation endpoints to multiple tissues 

(neural, bone, cartilage and epithelial tissues) and the identification of molecular biomarkers 

(genes and proteins) of developmental toxicity are some of the further suggestions for 

improving the classical EST [68, 74]. 

 

4. The importance of toxicokinetics in developmental toxicity  
4.1. The role of placenta 

The placenta is an active endocrine organ with a dynamic profile during pregnancy [75]. Its 

role is to supply the fetus with oxygen, nutrients and hormones from the mother, as well as 

to remove metabolic waste from the fetal to maternal side via blood circulation [76, 77]. 

Mammalian placentas are classified into three groups (haemochorial, endotheliochorial and 

epitheliochorial) depending on the number of layers that exist between the maternal and fetal 

side [78]. The human haematochorial placenta includes a layer of tissue, which separates 



Chapter 1 

21 
	

the maternal from the fetal site, consisting of the endothelium of fetal capillaries and the 

trophoblast, which contains the cytotrophoblast and syncytiotrophoblast (maternal border) 

[79, 80]. Similar to the structure of human placenta are those of rat and rabbit, which are the 

two main species used for studying developmental toxicity [78]. While the placenta was 

originally considered to function as a barrier for protecting the fetus from harmful 

substances, after the thalidomide tragedy it has been shown that xenobiotics can cross it 

and reach the embryos or fetuses, possibly causing developmental adverse effects [77, 80]. 

The mechanism for placental transfer could vary from passive diffusion, active transport, 

facilitated diffusion, and filtration to pinocytosis [81]. Passive diffusion is suggested to be the 

main mechanism of placental transfer of xenobiotics. The amount of transfer of xenobiotics 

is determined by their physicochemical properties, such as molecular weight, lipophilicity and 

ionization. The binding affinity of xenobiotics to plasma proteins, such as albumin and a1-

acid glycoprotein, is of additional interest as it leads to increased passive placental diffusion 

with gestation days [82]. Moreover, the placenta has metabolic capacity, which is low 

compared to the enzymatic metabolic capacity of liver, but notable, considering its capability 

to transform parent compounds to more potent embryotoxic metabolites [83-85]. Therefore, 

more emphasis is given to placental toxicokinetic studies, which focus on determining the 

fate of a chemical when it penetrates the placental barrier and endangers the embryonic 

development. The combination of in vitro or in silico models for toxicokinetics with in vitro 

models for studying developmental toxicity are a necessity for improving the predictability of 

alternatives to animal testing methodologies and extrapolating in vitro findings to the in vivo 

situation [86-88]. 

        

4.2. Modelling placental transfer – the BeWo approach 

In 1968, Pattillo and Gey [89] developed the human BeWo cell line, which originated from a 

choriocarcinoma (the hormone-synthesizing trophoblast cells in vitro). BeWo cells can be 

grown in transwell models, which are divided into an apical and basolateral compartment, 

mimicking the maternal and fetal side, respectively [90, 91]. BeWo cells maintain the 

morphological characteristics of trophoblasts of human placenta, including undifferentiated 

cytotrophoblasts and syncytiotrophoblast [92], and are useful in placental transfer studies 

due to their ability to form a polarized and confluent monolayer, mimicking the human 

placenta [90, 91, 93]. Additionally, similarly to the in vivo situation, the BeWo cell line 

expresses xenobiotic metabolizing enzymes, such as Cyp1a1, Cyp3a4 and Cyp2c9 and, 

therefore, it is of use for investigating in vitro placental metabolism [81, 94, 95]. Previous 

studies have shown that the transport rates of xenobiotics measured with the BeWo model 

satisfactory correlate with the transport rates in the ex vivo human placenta perfusion system 
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[72, 91], which is the in vitro system closest to the in vivo situation [96]. The advantages of 

the BeWo model are that it is less time consuming, less expensive and not dependent on the 

availability of fresh human placental tissue after delivery. However, considering the dynamic 

profile of the in vivo placenta [76], the greatest limitation of both systems is that they cannot 

accurately predict the function of human placenta during the first and second trimester of 

pregnancy. On the other hand, previous studies suggested that the evaluation of the in vitro 

developmental toxicity of chemicals in the EST in combination with their placental transfer 

rates determined with the BeWo model, improved the prediction of the in vivo developmental 

toxicity [97, 98]. Therefore, the addition of the placental transfer models would be valuable 

for improving the in vivo predictability of in vitro models and, consequently for promoting the 

concept of using a battery of multidirectional alternative techniques for improving the 

classical risk assessment approach. 

 

5. Toxicogenomics  
5.1. A molecular-based readout of developmental toxicity  

Technological progress has empowered the development and implementation of molecular 

based approaches, which can investigate thousands of endpoints in one assay and improve 

the “classical” in vitro testing readout [99]. The so-called omics approaches are tools that 

enable the study of the transcriptome, proteome, epigenome and metabolome of biological 

systems for providing information for better understanding the biological processes [99-101].  

Toxicogenomics is the application of omics technologies for studying responses to chemical 

substances on the molecular level and identifying or predicting mechanisms of induced 

toxicity [102]. For identifying such toxic responses, studies on the level of mRNA 

(transcriptomics), including single-gene studies with RT-PCR, microarrays or next-

generation sequencing, gained much attention during the last decades [102].  

Compounds from different classes of chemicals might have similar morphological effects, 

while the underlying mechanism of toxicity could be different. Moreover, alterations on the 

level of the transcription of the genome may precede morphological toxic responses and, 

therefore, may present early gene-biomarkers that can have a predictive value in revealing 

the forthcoming developmental toxicity. Considering also the high conservation on the 

molecular mechanisms between different species, transcriptomics could facilitate a better 

interspecies extrapolation based on insight in the mechanisms underlying maldevelopment 

due to exposure to different classes of compounds [1, 101-103]. 

The first toxicogenomic studies were performed in the field of carcinogenesis [104], while 

more studies followed including assessments of developmental toxic responses [105]. The 
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identification of gene-biomarkers of developmental toxicity is a useful tool for characterizing 

and classifying chemicals with high sensitivity and predictability [102]. Moreover, they could 

improve our understanding in the developmental processes and how these are affected after 

exposure to chemicals. Implementing the available alternative in vitro assays (WEC, EST 

and zebrafish embryo test (ZET)), the developmental toxicity of different classes of 

chemicals, including endocrine disruptors [106, 107], azole antifungals [108-111], metals 

[112, 113], retinoic acid [55, 114] and anticonvulsants [115, 116], lead to the elucidation of in 

vitro mechanisms of action, setting also the background for building in vivo and in vitro 

correlations and cross-model comparisons. 

 

5.2. Tools for analysis of transcriptomic data  

The concept of performing transcriptomics in one single experiment using the mRNA array 

chip technology is based on the rule of hybridization between nucleic acids. All the genes (of 

the tested species) are represented on the chip by oligonucleotides, amounting to tens of 

thousands of genes on a single chip, which are immobilized on a solid matrix [117, 118]. 

Applying fluorescence labels on the biological samples under assessment, the levels of 

hybridization can be quantified and provide a measure of the expression level of individual 

genes [119]. The fluorescent signal is read by a scanner and is translated to the effect of the 

compound on the gene expression [120, 121].  

Microarrays studies generate big data sets, in which the information about the specific 

effects of the tested compounds to gene expression responses is hidden. Once the data set 

is complete, quality control assessment is required. Normalization of data is also a crucial 

step for correcting the distribution of intensity values due to technical factors rather than 

biological variations [122, 123]. The application of statistical stringency criteria, such as p-

value and a false discovery rate (FDR), for identifying the significance of the regulated genes 

based on the degree of similarity between the exposed and control groups, is the tool to 

handle this set of data [124]. The further application of fold change (FD) of gene expression 

as an additional cutoff value provides a statistical tool to select relevant gene expression 

changes, taking into account the margin of difference in the expression of genes between 

exposed and control conditions. The visualization of the relationship of the significantly 

identified genes is performed with hierarchical clustering and principle component analysis 

(PCA) methods [125, 126]. The hierarchical clustering better describes the similarities of 

changes in the gene expression responses, while PCA illustrates the variance due to 

exposure conditions [127, 128]. Both these methods are classification approaches.  

For individual gene annotation and functional analysis, data could be manually obtained from 

databases such as National Center for Biotechnology Information (NCBI) [129], Gene 
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Ontology (GO) [129, 130], Comparative Toxicogenome Database (CTD) [131], GeneCards 

[132] and the Rat Genome Database (RGD) [133].  

For practical reasons (size of data) and for interpreting biological relationships between the 

genes, the whole set of the statistically significant identified genes could be annotated to 

biological processes, molecular functions (GO) and pathways (KEGG and Wiki Pathways) 

with the Database for Annotation, Visualization and Integrated Discovery (DAVID) [134-136]. 

For studying the specific connections of genes within a gene-set, pathway analysis with 

STITCH, STRING and Wiki Pathways is performed. The visualization of the pathway 

analysis could be performed with publicly available programs, such as Cytoscape [137] and 

PathVisio [138] or commercially available tools, such as MetaCore and Ingenuity Pathway 

Analysis Tool [139].  

All the aforementioned tools use a predefined set of genes to identify the molecular functions 

and pathways that might be involved in the gene-set of question. Tox-profiler and Gene Set 

Enrichment Analysis (GSEA) programs use the whole expression data set for determining 

the distribution of the effect of genes, to which their functional role in a pathway is predefined 

[140, 141]. Following this methodology, even individual genes that do not meet the applied 

statistical stringency criteria, but with important roles in GO or pathways, could be identified 

[141-143].    

 

6. The role of retinoic acid in developing embryos 

Retinoic acid (RA) is the active metabolite of vitamin A (retinol) [144]. The conversion of 

vitamin A to RA is a crucial time- and place- dependent event influenced by homeostasis, 

which is regulated by a cascade of synthesizing and metabolizing enzymes [108, 114, 144, 

145]. RA is essential during any developmental and reproductive phase of mammalian 

species for directing the growth and differentiation of cells, tissues and organs [146]. 

Deficiency or overload of RA could lead to adverse morphological outcomes in embryos, 

children or adults [147].   

In the 1930s and 1940s, maternal vitamin A deficiency was suspected to cause 

abnormalities of skeleton, eye and heart in the rat offspring [8, 148]. Later, overdosing of RA 

was found to be the cause of teratogenicity also in rats including exencephaly, hydrocephaly, 

cleft palate, facial abnormalities, and spina bifida [148, 149]. In the early 1980s, vitamin A 

supplements were prescribed to pregnant women, leading to birth defects [150] and, 

consequently, RA was established as human teratogen causing craniofacial abnormalities 

[151, 152], heart dysfunction [153] and hypoplasia of thymus [154]. Due to the variety of 

morphological alterations that either deficiency or overload of RA caused, its importance in 
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embryogenesis was considered. In the late 1980s, RA was characterized as a morphogen, 

highlighting its role as regulator of growth and differentiation during embryogenesis [155]. 

The balanced level of RA drives the patterning of an early developing embryo along the 

anterior-posterior axis [156]. RA is further located in the paraxial mesoderm of embryos 

undergoing neurulation and is involved in caudal development as well as brain segmentation 

and neural differentiation [147, 157]. Additionally, its presence in neural crest cell 

development and differentiation determines the normal growth of peripheral tissues and 

organs, as neural crest cells are “donor” cells, directed by RA and contribute to the 

development of other regions, such as craniofacial, branchial arches, heart and limbs, 

initiated by this cell migration [158-160]. Concluding, the balance of synthesis and 

metabolism of RA determines whether it acts as a morphogen or a teratogen in vertebrates. 

Interestingly, some xenobiotics, for instance azoles [161] and ethanol [162] have been 

suggested to directly or indirectly disturb the RA balance and lead to RA-related adverse 

morphological outcomes [146]. 

  

7. Azole fungicides – a possible connection with retinoic acid 

Azoles form a class of chemicals with antifungal activity and wide applicability in the clinical 

and agricultural domain [161]. Azoles are sub-divided into imidazoles and triazoles, which 

contain two and three nitrogen atoms in the five-membered azole ring, respectively. The first 

report on the antifungal activity of an azole compound appeared in the early 1940s, while 

more azole compounds were further investigated for this capacity in the 1960s, after the 

introduction of three novel compounds clotrimazole, miconazole and econazole. Miconazole 

was the first approved azole in 1978. Imidazoles, the firstly synthesized azoles, were 

replaced by triazoles after reports concerning their incapability to completely treat persistent 

fungal infections. Additionally, it was noticed that triazoles have a wider spectrum of 

applicability, while the induced toxicity was limited compared to imidazoles [163]. On the 

other hand, since the use of azoles was increased, doubts about their safety arose, with 

additional focus on their ability to cross the placenta and affect the unborn child [161]. 

Therefore, more studies on the mechanism of their fungicidal and toxicological mode of 

action were initiated.  

The mechanism of fungicidal action is based on inhibiting the fungal Cyp51, the catalyst for 

converting lanosterol to ergosterol. Elimination of the ergosterol biosynthesis leads to 

instability and permeability of the cell membrane, resulting in fungal cell death [164-166]. 

Due to the high conservation of enzymes among the biological systems, mammalian Cyp51 

is also affected during treatment with azoles [167], disturbing the sterol biosynthesis 

pathway. However, the toxicological mechanism of action of azoles is suggested to be 



General introduction 

26 
 

correlated with the disturbance of Cyp26a1 function, which is a key regulator of RA 

homeostasis in mammalian systems by metabolizing excess levels of RA [55, 168, 169]. A 

variety of similar teratogenic outcomes, including craniofacial malformations, abnormalities in 

brain segmentation and branchial arches formation, was detected when in vivo and in vitro 

embryos were exposed to either azoles or RA, suggesting that they might share the same 

mode of embryotoxicity [109, 114]. Additional studies on the level of the transcriptome of in 

vitro systems, such as rat WEC [109], EST [110] and ZET [108], supported this theory, 

showing the upregulation of Cyp26a1 and other RA related genes upon exposure to azoles.  

Since there are limitations on the available in vivo data concerning their relative potencies as 

to developmental toxicity of azoles, more studies are needed. The additional implementation 

of molecular endpoints to elucidate their mechanism of action may improve the mechanistic 

understanding of differences in azole embryotoxicity and can be valuable for new risk 

assessment approaches [108-110]. 

In the present thesis, twelve azoles (nine known and three new compounds) (Figure 4) were 

evaluated regarding their developmental toxicity profile in the rat WEC and EST enabling 

comparison with their in vivo potencies (Table 2). Table 2 summarizes the developmental 

toxicity data of the nine known azoles, including information about the duration of exposure, 

the doses to which animals were exposed by gavage, as well as the number of fetuses and 

litters that were examined and the number or percentage of these that showed 

morphological and/or functional alterations. Since we observed a variety of morphological 

alterations, Table 2 includes also the morphological endpoint that was considered for each 

compound for further calculating the dose at which there was a 10% extra incidence of 

malformations (BMD10). Three of the tested azoles are novel compounds, which BASF SE 

kindly provided to us together with their in vivo prenatal developmental toxicity data. For 

concluding upon the in vivo potency of the tested azoles and given the limited available data 

of the three novel compounds, a qualitative in vivo potency ranking concept was applied in 

the present thesis. For implementing this approach of in vivo analysis, the profiles of the 

tested compounds were characterized as potent, moderate and weak or non-potent, as 

illustrated in the last column of Table 2.  
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Figure 4: Chemical structures of the twelve azoles included in this thesis 
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Table 2: Developmental toxicity after in vivo rat exposure to the twelve azoles under 

assessment  

Compounds Days of 
exposure 

Dose 
(mg/kg 
bw/day) 

No. of 
fetuses/litters 

Incidence of 
morphological 
alterations in 
fetuses/litters 

Morphological 
endpoint 

Potency 
group 

Flusilazole GD 
6-15 

0 
0.4 
2 

10 
50 

250 

-/- 
-/- 
-/- 
-/- 
-/- 
-/- 

0/0 
5/5 
2/2 
5/5 
5/4 
4/2 

Absence of renal 
papilla 
[170] 

Potent 

Difenoconazole GD 
6-15 

0 
2 

20 
100 
200 

182/25 
176/25 
172/24 
168/23 
160/24 

0/0 
1/1 
0/0 
2/2 
4/3 

Ossification, 
deformation 

thoracic 
[171] 

 

Weak 

Ketoconazole GD 
6-17 

0 
25 
75 

-/22 
4/22 
-/3 

-/0 
-/3 
-/3 

Cleft palate  
[172] 

 
Potent 

Miconazole GD 
7-17 

0 
10 
30 

100 

128/34 
122/32 
158/26 
144/21 

0/1 
0/0 
2/0 
0/0 

Skeletal 
malformations 

[173] 
Intermediate 

Prothioconazole GD 
6-19 

0 
20 
80 

750 

-/- 
-/- 
-/- 
-/- 

23.5%/95.2% 
18.2%/77.8% 
27.6%/88.9% 
33.6%/95.7% 

Rudimentary 
ribs 

 [174] 
 

Intermediate 

Triadimefon GD 
6-15 

0 
10 
30 

100 

48/20 
52/17 
54/19 
84/22 

1/1 
16/10 
13/10 
5719 

Supernumerary 
ribs 

 [175] 
Intermediate 

Fenarimol GD 
6-15 

0 
5 

13 
35 

-/- 
-/- 
-/- 
-/- 

9%/25% 
0%/0% 
0%/0% 

30%/62% 

Hydronephrosis 
[176] Intermediate 

Propiconazole GD 
6-15 

0 
30 
90 

300 

129/22 
136/21 
146/22 
137/22 

0/0 
1/1 
4/4 

53/16 

Rudimentary 
ribs 

 [177] 
Weak 

Tebuconazole GD 
6-15 

0 
30 
60 

120 

144/24 
137/24 
127/22 
116/24 

29/14 
40/17 
38/17 
48/20 

Supernumery 
ribs, ossification  

[178] 
Intermediate 

B595 GD 
6-19 

0 
200 
600 

95/10 
74/8 

† 

1/1 
0/0 
† 

No 
morphological 

alteration  
(BASF) 

Weak 

B599 GD 
6-19 

0 
100 
250 

95/10 
99/10 

† 

1/1 
12/2 

† 

Cleft palate 
(BASF) Potent 

B600 GD 
6-19 

0 
200 
600 

95/10 
99/10 

104/10 

1/1 
0/0 
5/2 

Cleft palate 
(BASF) Intermediate 

-: data not available; †: lethality of fetuses and litters 
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8. Objective and outline of this thesis 
8.1. Objective of the thesis 

The objective of the research described in this thesis is to improve the detection of 

developmental toxicity of azole compounds with in vitro models (WEC and EST) and 

enhance the knowledge on the molecular level providing a mechanistic insight into the 

embryotoxicity of these compounds. Both the WEC and EST are validated in vitro methods 

for studying the developmental toxic capacity of many chemical substances. The WEC is 

based on exposing embryos to chemicals starting on gestational day 10 for 48 hours, while 

the major part of organogenesis occurs, similar to the in vivo situation. Continuous 

monitoring and final morphological evaluation of the embryonic development (including 

endpoints of both development and differentiation) are considered for concluding about the 

embryotoxicity of chemicals. Similarly, following a 10-day protocol, in the EST, stem cells are 

exposed to chemicals and their differentiation to contracting cardiomyocytes is the endpoint 

for concluding upon the induced embryotoxicity. The addition of the BeWo model, which 

mimics the placental barrier, may enhance the predictive value of both developmental 

toxicity tests by combining relative placental transfer rates with the classical endpoints of 

WEC and EST assays. Previous studies already demonstrated that this combination with 

BeWo assay data increased the accuracy of EST based predictions [97, 98]. The evaluation 

of global or specific gene expression changes with microarrays (transcriptomics) and Real 

Time-PCR could also increase the mechanistic knowledge, as well as the sensitivity and 

predictability of both WEC and EST assays [52, 102, 110]. The consequent identification of a 

set of biomarkers for the toxicological and pharmacological mode of action may improve the 

characterization of the embryotoxicity of compounds, and the optimization of development 

new chemicals, while reducing animal experimentation. The choice of azoles as the 

chemical group under assessment is based on their potential to induce teratogenicity in a 

dose dependent manner, while they are widely used in medicine and agriculture as 

fungicides. Moreover, previous studies suggested that azoles and RA share the same 

morphological teratogenic outcome, revealing also similar gene expression changes [114]. 

Overall, the implementation of alternative in vitro assays, together with toxicokinetic data and 

combined with molecular-based approaches may be valuable for improving the mechanistic 

elucidation of the in vivo developmental toxicity of azoles, providing a testing approach that 

notably eliminates or reduces the use of animals. A schematic overview of the experiments 

included in this thesis is illustrated in Figure 5. 
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8.2. Outline of the thesis 

Considering that embryotoxic responses are critically dependent on the timing of exposure 

during embryo development, in chapter 2 we examined the time- dependent developmental 

effects in the rat WEC exposed to flusilazole, and their link to RA mediated pathways. To this 

end, we assessed the effects of 4-hour exposure of WEC rat embryos to 300μM FLU during 

four developmental time windows (0-4, 4-8, 24-28 and 44-48 h), evaluating morphological 

parameters, expression and localization of five gene-biomarkers of the RA, differentiation 

and sterol biosynthesis pathways.  

Subsequently, in chapter 3 we compared the morphological changes in the WEC induced 

by exposure to six azoles with their early (0-4 h) gene expression profiling (transcriptomics) 

at equipotent concentrations for any of the tested compounds. Additionally, we studied the 

differences in gene signatures after exposing the same system for a longer period (0-24 h). 

Considering that toxicological responses are much dependent on the applied dose or 

concentration, we performed also a dose-response assessment of the gene regulation after 

shortly (0-4 h) exposing rat WEC to flusilazole.  

In chapter 4, we evaluated the gene specific responses by implementing the transcriptomics 

approach in the WEC upon exposure to six additional azoles for 4 hours (0-4 h) and we 

combined them with previously (obtained from chapter 3) collected transcriptomics data of 

the WEC. Applying the identified gene-sets, indicators of toxicological and fungicidal 

mechanism of action, we compared the morphological adverse outcomes of the tested 

twelve azoles in both in vivo and WEC in vitro systems, with the responses of the selected 

molecular pathways.  

Chapter 5 provides a combined analysis of the twelve azoles tested in the WEC and EST 

system. The addition of placental transfer rates (toxicokinetics) and re-calculation of effective 

concentrations of the twelve azoles in both in vitro systems are taken into account for 

correlations with the in vivo collected data. Supplementary targeted gene expression was 

evaluated for revealing the usefulness of pre-selected biomarkers of developmental toxicity 

and fungicidal action.  

Chapter 6 summarizes the results of the previous chapters of this thesis and provides a 

discussion on alternative in vitro approaches for testing the developmental toxicity of 

chemical substances with greater focus on azoles. Emphasis is also given on the 

implementation of transcriptomics as a tool for increasing the predictability of in vitro 

techniques. Future perspectives for improving the current testing approaches in 

developmental toxicology are also presented.  
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Figure 5: Schematic overview of the experimental designs as described in each chapter of 

this thesis, including information for the test system or the combination of them, the 

exposure conditions (compounds and duration of treatment) and the methods of analysis.   
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Abstract  

Embryotoxic responses are critically dependent on the timing of exposure during 

embryo development. Here, we examined the time- dependent developmental effects 

in rat embryos exposed to flusilazole (FLU), and their link to retinoic acid (RA) 

mediated pathways. To this end, we assessed the effects of 4-hour exposure of rat 

embryos in vitro to 300μM FLU during four developmental time windows (0-4, 4-8, 

24-28 and 44-48 h), evaluating morphological parameters, expression and 

localization of five genes directly or indirectly linked with the RA pathway. These 

were RA- (Cyp26a1 and Dhrs3), differentiation- (Gbx2 and Cdx1) and sterol 

biosynthesis- (Cyp51) related genes. Extended exposure for 48 hours to 300μM FLU 

resulted in morphological changes, typical for triazoles and RA, while the 4h 

exposure times did not. Time dependent significant upregulation of the five selected 

genes was observed. These results corroborate that the embryotoxic responses to 

FLU are correlated with the regulation of the RA pathway. Thus, these gene 

expression markers can be considered early biomarkers of FLU-induced potential 

developmental toxicity later in the development. 

 

Key words: Whole embryo culture; Flusilazole; Retinoic acid; time-dependent; 

developmental toxicity; gene expression; in situ hybridization 
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Introduction 

 

On 1 July 2007, the Regulation on Registration, Evaluation, Authorization and 

Restriction of Chemicals (REACH) was implemented by the European Union (EU) to 

decrease chemical risks for both humans and the environment. Consequently, there 

is a demand to assess the safety of all current and future chemicals, which will utilize 

millions of laboratory animals. The assessment of possible developmental toxicants 

through the application of alternative techniques may reduce animal use and 

enhance mechanistically driven risk assessment [1-4]. 

According to ECVAM (European Centre for the Validation of Alternative Methods), 

the rat post-implantation whole embryo culture (WEC) is a standardized alternative in 

vitro method for identifying developmental toxicants after exposure during early 

organogenesis [2, 5-7]. The advantage of this method is that early organogenesis 

and neurulation can be continuously monitored during this 48-hour critical period [2, 

6], while there is a high level of concordance between human and rodent in vivo 

development during this embryonic stage [6, 8, 9]. On the other hand, possible 

limitations of this model could be the lack of maternal metabolism and the restricted 

48- hour experimental window. However, validation studies have proved that by 

using the WEC assay, the developmental toxicity of chemical substances can be 

studied taking into consideration a variety of both morphological and molecular 

endpoints [5, 6, 10-12]. 

Triazoles are a category of fungicides widely used in both medicine and agriculture 

[13, 14]. The triazoles’ mechanism of pharmacological action is based on inhibiting 

the fungal Cyp51, the catalyst for converting lanosterol to ergosterol. This inhibition 

causes increased fungal cell wall (exterior membrane) permeability and cell death 

[15, 16]. In mammalian systems some triazoles may induce developmental toxicity 

[17, 18]. One of the triazoles, Flusilazole (FLU), has been extensively used as a 

model compound in the study of induced developmental toxicity [18-20]. 

In vivo and in vitro studies have suggested that the mechanism of developmental 

toxicity of FLU is associated with the expression changes of genes, such as Cyp26a1 

and Dhrs3, which participate in the mechanisms of growth and differentiation [21, 22]. 

In detail, data from in vitro techniques have suggested that the embryotoxicity of 

triazoles is promoted through the retinoic acid (RA) pathway, on account of 

similarities in both morphological embryotoxic outcome and read-outs of selected 

biomarkers after exposure to either triazoles or RA [2, 23-25]. Furthermore, recent 

animal studies demonstrate commonly regulated morphological characteristics, 
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which support the aforementioned hypothesis concerning the involvement of the RA 

pathway [22].  The most common malformations introduced by FLU and RA are 

craniofacial and posterior axis defects, disturbance of neural crest cell (NCC) 

migration, altered branchial arch development and abnormal hindbrain segmentation 

[26, 27].   

Given that developmental toxicity may be highly dependent on the embryonic stage 

when exposure occurs, it is of interest to compare different exposure time windows, 

and compare the differences in the magnitude of gene expression responses that 

may underlie developmental toxicity upon exposure during these different time 

windows. This allows determination of time windows which would be most sensitive 

to detect gene expression changes as biomarkers of developmental toxicity induced 

by specific groups of compounds, such as the triazole group. The two selected genes 

for this study, Cyp26a1 and Dhrs3, are actively involved in balancing embryonic RA 

concentration and, therefore, respond to RA- like exposures [2, 28, 29]. Furthermore, 

the next two RA-related genes, Gbx2 and Cdx1, are involved in craniofacial 

development, posterior axis, early embryonic patterning and cardiovascular formation 

[2, 30-34], while the last selected gene, Cyp51, is linked to steroid biosynthesis [21]. 

Changes in expression of these genes have been shown to be associated with a 

malformation when there was an over-accumulation of RA in the embryonic body 

[35]. The role of these genes in the toxicological mechanism of FLU’s action could be 

the key for explaining FLU-induced teratogenicity in a stage- dependent manner 

during early embryonic development. In this study, we assess the time- dependent 

induced teratogenicity after exposure of rat WEC to FLU during different time 

windows by monitoring phenotypic and genotypic alterations, the latter with RT-PCR 

and in situ hybridization. 
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Materials and Methods 

Animal care  

Animal studies were approved and performed in concordance with institutional and 

federal regulations at the National Institute of Public Health and the Environment 

(RIVM). Wistar rats (HsdCpd:WU) (Harlan, The Netherlands) were housed at the 

RIVM Animal Care facility in a climate controlled room with a 12h light cycle (04:00-

16:00 dark). After acclimatizing for 14 days, virgin female rats were mated with male 

rats for 3 hours (9:00-12:00). The presence of copulatory plug in the female rats was 

considered evidence of pregnancy, and more precisely, as gestational day 0 (GD0). 

The dams were housed in different cages where their clinical condition was 

monitored daily. 

 

Rat whole embryo culture 

The whole embryo culture (WEC) technique was performed in accordance with the 

validated method of Piersma [6]. Previous experiments were conducted in the same 

laboratory following the same protocol [4, 13, 36]. On the 10th gestational day, 

between 9:00 and 12:00 AM, dams were euthanatized by intracardiac injection of 

T61R (Intervet, The Netherlands). Rat embryos were immediately explanted from the 

mother’s uterus. The peripheral trophoblastic cell zone and the parietal yolk sac 

membrane were removed under the microscope leaving both the visceral yolk sac 

and ectoplacental cone intact. Embryos with 1-5 somites were cultured for 

morphological assessment while embryos with 2-4 somites were cultured for gene 

expression studies. Each embryo was placed individually in a flask with 2 mL culture 

medium. The medium was a mix of 90% pregnant bovine serum and 10% rat serum 

(Biochrom, Berlin, Germany), diluted with 14% Hank’s solution (Gibco) and 

supplemented with 1.57 mg/mL D-glucose and L-methionine (Sigma-Aldrich, 

Zwijndrecht, The Netherlands). The culture flasks with embryos in culture medium 

were placed in rotating incubators where they were completely protected from light 

and were stabilized at 37.7oC. A gas mixture was also provided 5 times for 30 

seconds during the culture period, with an increasing content of oxygen: on the first 

day (GD10) at 9:00 and 16:00 (5% O2 : 5% CO2 : 90% N2), on the second day 

(GD11) at 9:00 and 16:00 (20% O2 : 5% CO2 : 75% N2) and on the third day at 9:00 

(40% O2 : 5% CO2 : 55% N2).  
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Flusilazole exposure 

Flusilazole (FLU, CAS number 85509-19-9, Sigma-Aldrich, Zwijndrecht, The 

Netherlands) was dissolved in dimethyl sulfoxide (DMSO, Sigma-Aldrich, 

Zwijndrecht) and added to the culture medium at a final concentration of 300μΜ FLU 

and 0.1% DMSO. In agreement with previous studies, DMSO control embryos were 

also cultured, to enable assurance that the morphological or gene expression 

alterations were due to FLU exposure. The exposure dose was indicated by a pilot 

experiment on cultured embryos at 0, 30, 100 and 300μM of FLU for 48 h. The 

embryos were further exposed to 300μM FLU during one of four 4-hour timeframes 

during the whole culture period of 48 hours: 0-4h, 4-8h, 24-28h, and 44-48h. Rat 

samples, which were cultured for study the morphological outcome after exposing to 

300μM FLU, were collected in the end of the 48 h WEC culture period. Morphological 

alterations were also assessed for embryos exposed to 300μM of FLU during the 

whole culture period (48 h in total). Gene expression signature was studied for 

embryos that were exposed according to the aforementioned methodology (0-4h, 4-

8h, 24-28h, and 44-48h). These embryos were collected for further studying the 

expression of the selecting genes immediately after the end of their exposure (4h, 8h, 

28h and 48h). In addition to these samples, we exposed rat embryos to the same 

concentration of FLU (300μM) during 0-4h and we continued their culture into 

refreshed medium without FLU until the end of the culture period of 48h. For studying 

the localization of the genes with in situ hybridization technique, additional embryos 

were exposed to 300μM FLU following the same methodology as in the gene 

expression experiments. The embryos were immediately collected after the end of 

their exposure (4h, 8h, 28h and 48h).  

 

Morphological Scoring 

Embryos, that were cultured for 48 h (whole culture period), were scored according to 

the Total Morphological Score (TMS) system taking into account a variety of 

morphological endpoints [37]. The morphological endpoints include growth 

parameters (crown-rump length, head diameter, number of somites and yolk sac 

diameter) and developmental parameters, such as yolk sac blood circulation, heart, 

embryo turning, caudal neural tube, optic and otic system, fore- and hind- limb, 

branchial arches, mandibular and maxillary process and the shape and size of 

somites.       
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Whole embryo RNA isolation  

For the gene expression analysis, cultured embryos were quickly scored on the basis 

of their somite number, their position in the yolk sac, the neural tube developmental 

stage, the crown-rump length and the head diameter. They were further isolated from 

the yolk sac and ectoplacental cone, placed in 200μM RNAlater (Ambion, Austin, 

Texas), stored for one week at 4oC, and then at -80oC for further processing with the 

lowest possible amount of RNAlater.  After the embryos were thawed on ice, they 

were homogenized by passing them 10 times though a 1mL syringe with a 26G 

needle for small (4h-, 8h- and 28h-) embryos or with a 22G needle for large (48h-) 

embryos. The RNA of the homogenized lysate was further isolated by using the 

RNeasy Micro Plus RNA isolation kit (CAS number 74034, Qiagen, the Netherlands). 

Eluting with 14μM of RNA-free H2O, final volumes of 12μL RNA were obtained and 

tested on both Nanodrop (Nanodrop Technologies Inc., Wilmington, Delaware) and 

2100 BioAnalyzer (Agilent Technologies, Palo Alto, California) to establish the RNA 

quality and quantity. The RNA samples with an absorbance value between 1.9 and 

2.2 (ratio 260mm/280mm) and RNA integrity number (RIN) higher than 7, were 

further used for gene expression analysis with Real Time-PCR. The RNA samples 

were stored at -80oC. 

 

cDNA synthesis 

For performing the RT-PCR analysis, cDNA was synthesized by using the 

QuantiTect® Reverse Transcription Kit (CAS number 205210, Qiagen, The 

Netherlands), in accordance with the manufacturer’s instructions. The produced 

embryonic cDNA template was used for the later standardization of the Real-Time 

PCR by mixing the cDNA templates of all the samples from the same category 

(exposed during 0-4h, 4-8h, 24-28h, and 44-48h and cultured till 4th, 8th, 28th and 48th 

hour, respectively, or exposed during 0-4h and cultured till 48th hour). In addition to 

the synthesis of cDNA template (300ng/μL) of each sample, both No Reverse 

Transcription (No RT) and No Template Control (NTC) were prepared for excluding 

the possibility of contamination with genomic DNA (gDNA) and assessing the 

efficiency of the method and selected experimental conditions.  

 

Gene expression – Quantitative RT-PCR  

We quantified the expression levels of the five aforementioned selected genes in the 

rat embryos by performing Real-Time PCR with the Rotor-Gene Q (Qiagen, the 
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Netherlands). Moreover, we used three housekeeping genes to ensure the 

consistency of the expression levels of the genes under assessment. The following 

QuantiTect SYBR Primer Assays were purchased by Qiagen (The Netherlands): 

primers for genes under assessment; Cyp26a1 (Rn_Cyp26a1_1_SG QuantiTect 

Primer Assay, QT00191191), Gbx2 (Rn_RGD:621866_1_SG QuantiTect Primer 

Assay, QT00416738), Cdx1 (Rn_Cdx1_1_SG QuantiTect Primer Assay, 

QT00482013), Cyp51 (Rn_Cyp51_1_SG QuantiTect Primer Assay, QT00195552), 

Dhrs3 (Rn_Dhrs3_1_SG QuantiTect Primer Assay, QT01615348), and primers for 

housekeeping genes Hprt1 (Rn_Hprt1_2_SG QuantiTect Primer Assay, 

QT00365722), Polr2a (Rn_Polr2a_1_SG QuantiTect Primer Assay, QT00379477) 

and Actb (Rn_Actb_1_SG QuantiTect Primer Assay, QT00193473). For the 

quantification of the gene expression of each gene in the WEC samples, eight 

different standard curves were constructed for the five genes under assessment and 

the three housekeeping genes for every developmental time window, because of the 

complicated and unstable nature of the WEC. For preparing the standard curve, a 

pool mixture, consisting of 2 μL of each sample from the same time window-group, 

was used for the quantification of every gene. According to the manufacturer’s 

instructions, 12.5μL of QuantiFast SYBR Green Master mix was mixed with 2.5μL of 

QuantiTect Primer Assay of every primer. 10μL of template cDNA diluted with 

RNase-free H2O was added and a three-step RT-PCR with melting curve was 

performed. Before the cDNA amplification, a hold step of 5 min at 95oC was 

preceded for activation of the HotStarTAq Plus DNA Polymerase. The cDNA was 

amplified in a 3-step cycling of 40 cycles. The pre-denaturation step of the sample 

was the “hold-step” of 10 min at 95oC. The denaturation of the sample was performed 

for 10 s at 95oC, followed by combined annealing for 15 s at 60oC and, then, for 20 s 

at 72oC. The No Template Control (NTC) and No Reverse Transcriptase (no RT) 

control were included in every RT-PCR run for assessing the reliability of the 

produced results. The melting curve of every PCR product was also studied after 

every run in order to assure the efficiency and sensitivity of both primers and assay. 

The standard, cycling and melting curves, as well as the threshold, were 

automatically calculated by the software Rotor-Gene 2.3.1.49. We normalized the 

expression of the genes under assessment with the housekeeping gene Hprt1, which 

was constantly expressed among all the different developmental time windows under 

assessment compared to Polr2a and Actb.  
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RNA probes  

Before starting the whole mount in situ hybridization of rat embryos, anti-sense RNA 

digoxigenin (DIG) -labelled probes were synthesized for the five genes under 

assessment. Anti-sense RNA probes were designed with the Primer-BLAST tool on 

the NCBI website by following the complete RefSeq sequences of the five genes of 

interest (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Primers were purchased from 

Invitrogen (Life Technologies, Breda, the Netherlands). The summary of their 

sequences are presented in table 1. Primers were used for one-step RT-PCR with 

Titan One Tube RT-PCR System (Roche Applied Science). After the purification of 

the acquired PCR product with the QIAquick PCR purification kit (Qiagen, Venlo, the 

Netherlands), a nested PCR was performed in order to amplify the specific PCR 

product.  Another purification step of the obtained DNA template followed. For 

synthesizing the RNA DIG-labelled probes, an incubation step of the PCR product 

with T3 and T7 polymerases followed. Before using the DIG-labelled probes, a step 

with post-reaction clean-up columns (Sigma spinTM Sequencing Reaction Clean-up) 

purchased from Sigma-Aldrich (Zwijndrecht, the Netherlands) was conducted for 

cleaning the obtained product. 
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Table 1: Designed primer sequences used for RNA probe synthesis 
Primer Strand Type of PCR Sequence 

Cyp26a1 Forward One step RT-PCR GAAGTGAGCGGTTGTCTGGA 

Cyp26a1 Reverse One step RT-PCR TAGTGAAGCTGTCTGCCACG 

Cyp26a1 Forward Nested PCR ATTAACCCTCACTAAAGGGAGAAGTGAGCGGTTGTCTGGA 

Cyp26a1 Reverse Nested PCR TAATACGACTCACTATAGGGAGAGGAGCTCTGTGGACGAT 

Dhrs3 Forward One step RT-PCR TTTTGTCCACCGCCTCCTAC 

Dhrs3 Reverse One step RT-PCR CCCTGAAACATCTCGGTGCT 

Dhrs3 Forward Nested PCR ATTAACCCTCACTAAAGGGAGAGGAGATTCGGCAGATGGG 

Dhrs3 Reverse Nested PCR TAATACGACTCACTATAGGGCCCTGAAACATCTCGGTGCT 

Gbx2 Forward One step RT-PCR CACCGGCTACCCCATGTTTA 

Gbx2 Reverse One step RT-PCR CCGTCTTGGAATTGGCGTTG 

Gbx2 Forward Nested PCR ATTAACCCTCACTAAAGGGAGGCAAGGGAAAGACGAGTCA 

Gbx2 Reverse Nested PCR TAATACGACTCACTATAGGGCCGTCTTGGAATTGGCGTTG 

Cdx1 Forward One step RT-PCR GACAAGGACTCCCCCGTGTA 

Cdx1 Reverse One step RT-PCR GCATTGGTGGGGCATAGACT 

Cdx1 Forward Nested PCR ATTAACCCTCACTAAAGGGAAACTTGGGTCTCACAGAGCG 

Cdx1 Reverse Nested PCR TAATACGACTCACTATAGGGGAGTGGGCAAGCTACTTGGT 

Cyp51 Forward One step RT-PCR GCCTGGATGGGCTTCTTTCT 

Cyp51 Reverse One step RT-PCR TCCAAGCCGGAATCTCCCTA 

Cyp51 Forward Nested PCR ATTAACCCTCACTAAAGGGAGGGAGGATCTGCCTCCCTTA 

Cyp51 Reverse Nested PCR TAATACGACTCACTATAGGGCACACTGGCTCCTTGTTCCT 

 

  

Table 1: Designed primer sequences used for RNA probe synthesis 

Primer Strand Type of PCR Sequence 

Cyp26a1 Forward One step RT-PCR GAAGTGAGCGGTTGTCTGGA 
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Gbx2 Reverse One step RT-PCR CCGTCTTGGAATTGGCGTTG 

Gbx2 Forward Nested PCR ATTAACCCTCACTAAAGGGAGGCAAGGGAAAGACGAGTCA 

Gbx2 Reverse Nested PCR TAATACGACTCACTATAGGGCCGTCTTGGAATTGGCGTTG 

Cdx1 Forward One step RT-PCR GACAAGGACTCCCCCGTGTA 
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In Situ Hybridization  

Embryos exposed to 300 µM FLU during the time frames 0-4, 4-8, 24-28 or 44-48h, 

respectively, were morphologically scored and one of each group was used for 

performing in situ hybridization. The whole mount in situ hybridization was strictly 

performed only on embryos that appeared morphologically intact. The in situ 

hybridization technique was performed by following the protocol previously described 

by Wilkinson [38]. The application of this method required modifications for analysing 

the expression patterns of the five selected genes (Cyp26a1, Dhrs3, Gbx2, Cdx1 and 

Cyp51) depending on the developmental stage of the rat embryos. In brief, both 

control and FLU exposed embryos were washed in 1x phosphate-buffered saline 

(PBS, Invitrogen), fixed overnight at 4oC in 4% Paraformaldehyde (PFA, Sigma-

Aldrich) dissolved in 1x PBS and progressively dehydrated in 1x PBS-Methanol 

(MeOH, Merck) dilutions with gradually increased concentration of MeOH. The 

dehydrated embryos were stored in 100% MeOH at -20oC for several months. Before 

starting the in situ hybridization, the embryos were gradually rehydrated in 1x PBS-

MeOH dilutions with increased concentration of 1x PBS followed by four washing 

steps with PTW (1x PBS with 0.1% Tween (Merck)). For increasing the permeability 

of the outer embryonic membrane, embryos were treated with 10μg/mL Proteinase K 

(Roche) in PTW at room temperature. For embryos in GD10, 10μg/mL Proteinase K 

were applied for 7 min, while for embryos in their GD11 and GD12 the treatment 

lasted for 10 and 12 min, respectively. After this, embryos were washed three times 

with PTW and fixed in 4% PFA. Afterwards, the embryos were prehybridized for 3 

hours at 70oC in hybridization buffer containing 50 % deionized formamide (Ambion), 

5x SSC (Invitrogen), 500 μg/mL tRNA (Sigma-Aldrich), 50 μg/mL heparine (Sigma-

Aldrich), 0.1% Tween20 (Merck), adjusted at pH 6.0 with 1 M citric acid. The 

hybridization step was followed by replacing the hybridization buffer with a mixture of 

fresh hybridization buffer with RNA DIG-labelled probe for the gene of interest in a 

final concentration of 1 μg/mL, pre-heated for 10 min. The incubation at 70oC was 

continued overnight for completing the hybridization step. During the second day of 

this procedure, five washing steps with dilutions of SSC [38] were carried out in order 

to remove the probe that was not annealed in order to target the embryonic RNA of 

the gene of interest. Pre-block of embryos for 3h at room temperature in a mixture of 

PTW with 2% sheep serum and 0.2% Bovine Serum Albumin (BSA) (Sigma-Aldrich) 

was introduced for avoiding increased background noise. Overnight incubation of 

embryos was performed at 4oC with anti-DIG antibody solution in PBT at a final 

concentration of 0.5 μg/mL on a shaking platform. During the third day of the in situ 
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hybridization protocol, the embryos were washed six times with PBT and staining 

buffer, which contained 100 mM Tris pH 9.5, 50 mM MgCl2, 100 mM NaCl, 0.1% 

Tween20, 5 mM levamisole (Sigma-Aldrich). Then, embryos were stained with a 

staining mixture, containing 20 μL NBT/BCIP (Roche) per 1mL staining buffer. The 

staining step was terminated when the obtained signal was optimal by microscopic 

observation, which was additionally dependent on both the developmental stage of 

every embryo under assessment and the gene of interest. The staining procedure 

was completed by washing the embryos three times in PTW followed by overnight 

fixation in 4% PFA at 4oC. For making photomicrographs of the stained embryos, an 

overnight incubation step in 100 % glycerol (Sigma-Aldrich) at room temperature in 

the dark on a shaking plate was additionally required.  

 

Statistical Analysis for Morphological endpoints  

For determining the significance of the differences in morphological endpoints 

between the FLU treated groups of WEC and their controls, we performed the 

parametric Student’s t-test (unpaired) and the non-parametric Mann Whitney test, for 

both two-sided, with 95% confidence intervals. Each group included 8 rat embryos 

cultured individually in separate culture flasks.  These two statistical approaches 

revealed similarities in the significance of effects detected for each morphological 

endpoint. Therefore, the statistically significant difference of the experimental values 

that has been calculated by the Student’s t-test is presented in the figures and tables 

in this research paper.  

 

Gene expression analysis - data processing  

The parametric Student’s t-test two-sided mathematical approach was used to 

assess statistical significance on the rat WEC gene expression analysis. Every 

exposure window group included data from 8 treated embryos tested versus 8 control 

embryos.. An exception was the group, in which the embryos were exposed for the 

first 4 hours and further cultured for 44 hours in refreshed culture medium, that 

included only 2 treated embryos versus 2 control embryos.  In any case the 

confidence interval was set to 95%.    
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Results  

Morphological analysis of embryos  

Table 2 summarizes the TMS results of embryo development after exposure to 300 

μM FLU during the exposure time windows: 0-4, 4-8, 24-28, 44-48 and 0-48 h. We 

observed a statistically significantly lower TMS in the 4-8h, 24-48h and 0-48 h  

groups compared to controls. The 0-48-hour exposure caused the largest effect on 

TMS, including significant embryonic malformations. As illustrated in both Figure 1 

and Table 2, we observed a statistically significant malformed profile of the rat 

embryos that were continuously exposed to 300μM FLU for 48 hours. We found that 

the most common morphological alterations after exposure for 48 hours were the 

failure in closure of the caudal neural tube, and malformations of the branchial arches 

and mandibular and maxillary process. Additionally, we detected general growth 

retardation in these embryos (reduced crown-rump length and head diameter), 

including retarded brain segmentation and reduced limb growth.      

Specific morphological defects were limited and scattered among the different groups 

of 4-hour treatment with FLU. More precisely, these defects included abnormal 

development of the otic system after exposure to 300μM FLU during the 4-8th hour of 

culture. After exposure between the 24-28th hour of culture there was an effect on the 

quality of the formed somite shape.  

 

 

Figure 1: Rat WEC cultured in 0.1% DMSO (A), 300μM FLU for 48h (B and C). 

Compared to the control embryo (A), observed malformations are indicated with the 

yellow arrows: abnormal mandibular formation (B), open caudal neural tube (C, nt) 

and failure of the formation of the otocyst (C, os)  
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hybridization protocol, the embryos were washed six times with PBT and staining 

buffer, which contained 100 mM Tris pH 9.5, 50 mM MgCl2, 100 mM NaCl, 0.1% 

Tween20, 5 mM levamisole (Sigma-Aldrich). Then, embryos were stained with a 

staining mixture, containing 20 μL NBT/BCIP (Roche) per 1mL staining buffer. The 

staining step was terminated when the obtained signal was optimal by microscopic 

observation, which was additionally dependent on both the developmental stage of 

every embryo under assessment and the gene of interest. The staining procedure 

was completed by washing the embryos three times in PTW followed by overnight 

fixation in 4% PFA at 4oC. For making photomicrographs of the stained embryos, an 

overnight incubation step in 100 % glycerol (Sigma-Aldrich) at room temperature in 

the dark on a shaking plate was additionally required.  

 

Statistical Analysis for Morphological endpoints  

For determining the significance of the differences in morphological endpoints 

between the FLU treated groups of WEC and their controls, we performed the 

parametric Student’s t-test (unpaired) and the non-parametric Mann Whitney test, for 

both two-sided, with 95% confidence intervals. Each group included 8 rat embryos 

cultured individually in separate culture flasks.  These two statistical approaches 

revealed similarities in the significance of effects detected for each morphological 

endpoint. Therefore, the statistically significant difference of the experimental values 

that has been calculated by the Student’s t-test is presented in the figures and tables 

in this research paper.  

 

Gene expression analysis - data processing  

The parametric Student’s t-test two-sided mathematical approach was used to 

assess statistical significance on the rat WEC gene expression analysis. Every 

exposure window group included data from 8 treated embryos tested versus 8 control 

embryos.. An exception was the group, in which the embryos were exposed for the 

first 4 hours and further cultured for 44 hours in refreshed culture medium, that 

included only 2 treated embryos versus 2 control embryos.  In any case the 

confidence interval was set to 95%.    
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Table 2: Overview of morphological effects of 300 μM FLU in the rat WEC assay. Each number represents a mean ± SD  

(N=8, Student’s t-test: * p < 0.05, ** p < 0.005, *** p < 0.0005, **** p < 0.0001).  

Compound Concentra-
tion (μM) 

Time of 
exposure 

(h) 
TMS CRL 

(mm) S48h - S0h FORE MID HIND CAUD OTIC OPTIC BRAN MAND-
MAX LIMB SOM HEART 

FLU 0 0-48 h 
67.88 ± 

1.41 

3.95 ± 

0.22 

23.62 

± 0.74 

5 ± 0 5 ± 0 5 ± 0 5 ± 0 

4.6 

± 0.44 

4.1 

± 0.23 

5 ± 0 

4.9 

± 0.35 

4.4 

± 0.35 

5 ± 0 5 ± 0 

FLU 300 0-4 h 
67.44 ± 

1.15 

3.93 ± 

0.10 

23 

± 0.46 

5 ± 0 5 ± 0 5 ± 0 
4.9 ± 

0.35 

4.5 

± 0.38 

4.2 

± 0.26 

5 ± 0 

4.75 

± 0.46 

4.25 

± 0.27 

4.8 

± 0.35 

5 ± 0 

FLU 300 4-8 h 

66.6 

± 1.06* 

3.8 ± 

0.12 

23.9 ± 

0.83 

4.8 ± 

0.37 
5 ± 0 5 ± 0 5 ± 0 

4.1 

± 0.23* 

4 ± 0 5 ± 0 

4.6 

± 0.5 

4.1 

± 0.58 

5 ± 0 5 ± 0 

FLU 300 24-28 h 

65.8 

± 1.4** 

4.02 ± 

0.11 

26.7 

± 0.5 

5 ± 0 5 ± 0 5 ± 0 5 ± 0 

4.8 

± 0.36 

4 ± 0 5 ± 0 

4.8 

± 0.4 

4.1 

± 0.42 

4.5 

± 0.53  

* 

5 ± 0 

FLU 300 44-48 h 

66.5 

± 2.09 

4.01± 

0.06 

23.4 

± 0.74 

5 ± 0 5 ± 0 5 ± 0 5 ± 0 

4.6 

± 0.23 

4.06 

± 0.18 

5 ± 0 

4.75 

± 0.46 

4.5 

± 0 

5 ± 0 5 ± 0 

FLU 300 0-48 h 

44 

± 2 **** 

3.35 ± 

0.13 

*** 

19.75 

± 0.96 

**** 

3.5 ± 

0.58 **** 
4 ± 0 

2.75 

± 0.96 

**** 

1 ± 0 **** 3 ± 0 **** 

3.25 

± 0.96 * 

1.25 

± 0.5 **** 

2.75 

± 1.5 * 

3 

± 0 **** 

5 ± 0 5 ± 0 

CRL: crown-rump length; S48h- S0h: number of somites that formed during the culture period of rat WEC; FORE: forebrain; MID: midbrain; HIND: hindbrain; 

CAUD: caudal neural tube; OTIC: otic system; OPTIC: optic system; BRAN: branchial arches; MAND-MAX: mandibular and maxillary process; LIMB: fore- 

and hind- limb formation; SOM: quality of somites and HEART: heart.
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Gene expression analysis  

Figure 2 presents the somitogenesis of the embryos of which gene expression was further 

analysed with qRT-PCR. These embryos were firstly assessed in terms of any morphological 

alteration. The results presented in Figure 2 reveal that exposed embryos had a normal 

somite number. These embryos were used for gene expression analysis. In this way, we 

excluded rat embryos of which the phenotype was affected either due to their exposure to 

FLU or biological variability, because we focused on investigating possible early alterations 

on the transcriptome level provoked by exposure to FLU.  

As shown in Figure 3, when rat embryos were exposed during various 4-hour time windows, 

a general increased trend in the expression of each of the five selected genes was detected. 

The highest average fold induction gene expression was observed in embryos that were 

exposed during the 44-48 h time window, however, the variation in response was also 

highest in this group.  

In more detail, Cyp26a1 expression shows a gradual increase of approximately 2.5-, 3.5-, 

3.5- and 6- fold induction among the developmental windows of 0-4, 4-8, 24-28 and 44-48 

hours of exposure. Relatively similar results were observed for the gene Dhrs3.    

Gbx2 and Cdx1 showed statistically significant upregulation after exposure during 0-4 and 4-

8 hours only. For both of these genes, an upward trend of their expression was revealed by 

taking into consideration the first two time windows of exposure. However, when the 

embryos were exposed at their 24th hour of development for 4h (till their 28th hour of culture), 

the expression of both Gbx2 and Cdx1 was lower than that observed for the control levels. 

On the other hand, Gbx2 and Cdx1 expression levels after exposure to 300μM FLU during 

44-48 h of culture were raised approximately to the same level observed for the 4-8 h time 

window.  

Cyp51 did not show any significant regulation in these experiments, with expression levels 

ranging from 1.5 to 2.4-fold higher than control, albeit not statistically significant.   

Finally, when embryos were left until 48 hours culture after exposure between 0 and 4 hours, 

the expression of these genes seems to rebound to lower levels than those observed for 

unexposed 48-hr embryos with approximately 0.6 to 0.8 fold induction, depending on the 

gene under assessment.  
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Figure 2: Somitogenesis in rat embryos exposed to 300 μM FLU during four different 

developmental time windows. A comparison on the number of somites between control and 

treated embryos at the end of the exposure period. No statistically significant differences 

were observed. Each bar represents a mean ± SD (N=8 for 0-4, 4-8, 24-28, 44-48 h, t-test, p 

> 0.05). 

 

Figure 3: Effect of exposure to 300μM FLU for 4 hours in the rat WEC during different 

developmental time windows. The relative fold induction of gene expression of compound-

treated versus vehicle-treated embryos within exposure window groups was calculated after 

normalizing with the reference housekeeping gene Hprt1 and expressing the control (0.1% 
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DMSO) for each time point as 1. Each bar represents a mean ± SD (N=8 vs. 8 for 0-4, 4-8, 

24-28, 44-48 h and N=2 vs. 2 for 0-4h exposure and till 48th hour culture). Embryos were 

analysed after 48 hours of culture (five bars on the left) or directly after exposure (all other 

bars). 

 

In situ hybridization 

Table 3 summarizes the results after hybridization of representative GD12 embryos exposed 

to FLU for the last 4 hours of culture, as this experimental group showed the clearest 

changes in gene expression as observed under the microscope. There is a clear FLU-

related effect on the expression of Cyp26a1 and Dhrs3. Cyp26a1 is localized in the head 

region (fore- and mid-brain cavity), on the 1st branchial arch and the forelimbs (Table 3 

pictures A and B). However, there is a higher expression in the tail and head regions of the 

embryo exposed to FLU as compared to the untreated control embryo.  Embryos exposed to 

FLU showed a higher expression of Dhrs3 in the fore-, mid- and hind-brain regions than 

control embryos. Similar to the case of Cyp26a1, Dhrs3 was notably localized on the 1st 

branchial arch. Particular localization of Dhrs3 was also observed in the forelimbs.  

Gbx2, Cdx1 and Cyp51 transcripts did not show any specific expression pattern change after 

exposure to FLU. As previously mentioned, Gbx2 and Cdx1 have a function in rhombomere 

segmentation and axial patterning, respectively. These two genes were indeed expressed in 

the lower rhombomeres, where NCC migration is occurring later in the development for 

establishing the branchial arches and the otic system.  

Cyp51, a gene involved in sterol biosynthesis, is expressed in all tissues, nucleated cells and 

at acrosomes on the outer membrane of the Golgi apparatus [39]. This gene is abundantly 

expressed in 48h- embryos without exhibiting a particular pattern, in both control and FLU-

exposed rat embryos (Table 3, pictures I and J).   
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Table 3: Whole mount in situ hybridization of five genes in control and 300 μM FLU-treated 

embryos on GD12 after exposure during the 44-48 hour time window. Arrows indicate areas 

of expression changes after FLU exposure (see text for explanation).  
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Discussion  

Exposure of rat embryos in culture for 48h to 300µM FLU caused typical morphological 

changes including abnormal craniofacial and neural development, and ear and branchial 

arches defects. This pattern of malformations is similar to that observed after exposure to 

RA [2, 26, 35]. This commonly abnormal phenotype of embryos exposed to either FLU or RA 

supports the hypothesis that the phenotype induced by FLU is caused by disturbance of RA- 

mediated pathways. In addition, we observed specific responses of rat embryos on both the 

morphological and molecular level after exposure to FLU during different developmental time 

windows, which is reminiscent of earlier observations [24, 40]. 

A transcriptome analysis of embryos exposed to FLU and other triazoles have revealed the 

disturbance of RA-related gene families [23, 35]. Therefore, we hypothesized that 

representatives from this gene family could be used as biomarkers for detecting toxic effects 

induced by FLU during the selected time-windows.  

Effects of exposure to FLU on the genes studied could be established even in the very early 

developmental time window (0-4 h). This is even earlier than the 4-6 h time window, which 

has been shown before as a sensitive period for studying effects of xenobiotic exposures on 

the level of the transcriptome [2, 41, 42]. 

Robinson et al. [35], using a transcriptomic analysis of rat embryos exposed to FLU during 

the 0-4 hour time window, has clearly revealed the activation of pathways related to RA 

metabolism, hindbrain development and neurogenesis. More concrete gene expression 

analysis has pointed out that the most pronounced gene targets of these bioprocesses were 

two of the gene-targets of our study, Cyp26a1 and Dhrs3 [35]. As already mentioned, both 

these genes are involved in the metabolism of RA and in maintaining optimal RA 

concentrations along the anterior-posterior axis during growth and differentiation. When RA 

levels increase in the embryonic body, both Cyp26a1 and Dhrs3 are upregulated, resulting in 

an increased breakdown of RA, as well as in inhibition of its production. High RA exposures 

have been shown to induce developmental toxicity in a time- and dose- dependent manner 

[8, 23, 43, 44]. An increased expression of these directly related RA genes, Cyp26a1 and 

Dhrs3, is clearly illustrated in our study. In agreement with the quantification of the gene 

expression by RT-PCR, Cyp26a1 and Dhrs3 are both highly expressed in 48h- embryos at 

the sites of the observed malformations, in agreement with published data [28, 45-47]. The 

effects on the head and otic system are connected with the disturbance of these two genes 

after prolonged exposure to FLU or other xenobiotics with a similar mode of action. 

Moreover, deficient caudal neural tube closure due to extended exposure is associated with 

overexpression of Cyp26a1 in the tail end of the embryo, which aims to restore the balance 
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of an increased concentration of RA. Conclusively, both FLU and RA result in gene 

expression changes indicating disturbed RA balance, leading to embryonic malformations.           

Gbx2 has an important role in hindbrain development, in combination with the growth factor 

FgF8 and Hox genes. All these genes are known as specific “pattern forming” transcriptional 

factors [23, 26, 42], which are also controlled by RA- related pathways. When rat embryos 

were exposed to either RA or triazoles, the downregulation of growth and transcriptional 

factors led to the abnormal upregulation of Gbx2, probably aiming to restoring the disturbed 

balance [18]. Figure 3 illustrates an upward trend on the Gbx2 expression after FLU 

exposure in the different developmental windows addressed. This could be explained by its 

crucial role on initiating the NCC migration and rhombomeres segmentation in the early 

embryonic stages following by the later hindbrain development. The expression of Gbx2 was 

more pronounced after FLU exposure and the possible over-accumulation of RA in the rat 

embryos [26]. However, in situ localization of Gbx2 did not reveal any specific localization 

during the developmental stages assessed.  

The upregulation of Cdx1 could also be involved in the morphological effects of long-term 

exposure of rat embryos to FLU. Cdx1 expression is initiated by an increased embryonic RA 

level and activation of Wnt signalling in a tissue- and stage- specific manner. This affects 

early axis patterning, as well as later limb formation and intestinal development through 

regulation of e.g. Fgf, Wnta3 and Hox genes [48-52]. Prinos et al. [49] have proposed a 

model for Cdx1 expression in mouse studies, in which they have shown an increased 

expression during GD 7.5, followed by its stabilization during GD 8.5 due to the activation of 

a Cdx1 autoregulatory loop [53].  In mammalian systems, Cdx1 has an altered role after GD 

9 and 11 in mouse and rat, respectively [50], actively participating in the organization of the 

gastrointestinal tract development in collaboration with Cdx2 [53]. The dysmorphology of rat 

embryos exposed to FLU for 48 h is likely related to the abnormal expression of Cdx1.   

In agreement with this, our study shows the same upward expression pattern for both Gbx2 

and Cdx1 in early embryonic developmental stages, which drops in the 24-28h (11th 

gestational day) developmental time window under assessment. The decreased expression 

of these two genes may be related to the embryonic stage specificity of their function, 

regulated by local RA-concentrations. Concurrent changes in Cyp26a1 and Dhrs3 indeed 

indicate changes in levels of RA.  

The pharmacological mechanism of action of FLU is based on the inhibition of the enzyme 

Cyp51, which is important in the fungal sterol biosynthesis pathway [21]. Therefore, Cyp51 

was selected as a potential biomarker in the present study. Interestingly, previous studies on 

the Embryonic Stem Cell test (EST) and Zebrafish Embryo Test (ZET) have shown 

upregulation of this gene after exposure to FLU [23, 54]. Additionally, a study from de Jong 
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et al. [13], has illustrated the relatively high correlation of developmental effects between 

EST, ZET and WEC. However, Cyp51 expression was not significantly affected in our study. 

This suggests that sterol/cholesterol biosynthesis may be less sensitive compared to the RA 

metabolism or embryonic development bioprocesses during early development [18]. 

Therefore, the applied 4-h exposure in our study appeared inadequate for observing an 

effect of FLU on Cyp51 in RT-PCR. Our in situ staining shows that Cyp51 is abundantly 

expressed throughout the rat embryos, but is not visibly affected by exposure to FLU during 

any of the four developmental stages assessed. The abundant expression is in agreement 

with the general role of this gene during embryo development. Studies with ZET have 

suggested that intestine, liver and central nervous system (CNS) development are greatly 

dependent on Cyp51 because of its crucial role in lipid and glucose metabolism [55-57]. An 

additionally indirect effect of Cyp51 embryonic expression could be induced via its 

participation to the fibroblast growth factor receptor (Fgfr2) mediated pathway. Fgfr2, in 

combination with the Wnt signalling pathway, has a crucial role in the heart development by 

modulating the myocyte proliferation [58]. Increased levels of RA trigger and downregulate 

both Fgfr2 and Wnt pathways [59]. Huang et al. [60] have suggested that the mutations on 

Fgfr2 could be associated with abnormal differentiation, as well as skeletal and cardiac 

abnormalities. Moreover, all these abnormalities have been clinically reported from Antley-

Bixler syndrome patients, who were exposed to Fluconazole, another antifungal azole 

related to RA [60-62]. Therefore, there would be an indirect link of disturbed Cyp51 

expression to RA related malformations 

In summary, there is a stage- specific gene expression response of cultured rat embryos 

exposed to FLU, which could be detected with early molecular biomarkers during crucial 

time- windows of early development, in the absence of concurrent morphological effects. 

The directly RA-related genes, Cyp26a1 and Dhrs3, are the most significantly upregulated 

after embryonic exposure to FLU during all four selected time windows. Moreover, they 

revealed a pronounced pattern of induction at the sites of the most common FLU-induced 

abnormalities. Furthermore, Gbx2 and Cdx1 expression changes after FLU-exposure were 

observed to be dependent on the applied exposure windows. In conclusion, the response of 

selected gene biomarkers is dependent on the time window and precedes the development 

of morphologically observable malformations. Such biomarkers can therefore be employed 

as useful tools for early detection of possible teratogenic properties of xenobiotic compounds 

which belong in the group of triazoles. 

 



FLU induces spatio-temporal gene expression patterns in the rat WEC 

64 
 

Acknowledgements 

This work was supported by BASF SE.  

 

Notes 

The authors declare that they have no conflict of interest.   



Chapter 2 

65 
	

References      

1. Dreisig, K., et al., Predictive value of 
cell assays for developmental toxicity 
and embryotoxicity of conazole 
fungicides. Altex, 2013. 30(3): p. 319-
30. 

2. Luijten, M., et al., Transcriptomics 
analysis of retinoic acid embryotoxicity 
in rat postimplantation whole embryo 
culture. Reprod Toxicol, 2010. 30(2): 
p. 333-40. 

3. Piersma, A.H., et al., Evaluation of an 
alternative in vitro test battery for 
detecting reproductive toxicants. 
Reprod Toxicol, 2013. 38: p. 53-64. 

4. Robinson, J.F., et al., Embryotoxicant-
Specific Transcriptomic Responses in 
Rat Postimplantation Whole-Embryo 
Culture. Toxicological Sciences, 2010. 
118(2): p. 675-685. 

5. Ellis-Hutchings, R.G. and E.W. 
Carney, Whole embryo culture: a 
“New” technique that enabled decades 
of mechanistic discoveries. Birth 
Defects Research Part B: 
Developmental and Reproductive 
Toxicology, 2010. 89(4): p. 304-312. 

6. Piersma, A.H., Validation of alternative 
methods for developmental toxicity 
testing. Toxicol Lett, 2004. 149(1-3): p. 
147-53. 

7. Sogorb, M.A., et al., An integrated 
approach for detecting embryotoxicity 
and developmental toxicity of 
environmental contaminants using in 
vitro alternative methods. Toxicol Lett, 
2014. 230(2): p. 356-67. 

8. Fang, H., et al., Transcriptome 
analysis of early organogenesis in 
human embryos. Dev Cell, 2010. 
19(1): p. 174-84. 

9. Irie, N. and S. Kuratani, Comparative 
transcriptome analysis reveals 
vertebrate phylotypic period during 
organogenesis. 2011. 2: p. 248. 

10. Chapin, R., et al., State of the art in 
developmental toxicity screening 
methods and a way forward: a 
meeting report addressing embryonic 
stem cells, whole embryo culture, and 
zebrafish. Birth Defects Res B Dev 
Reprod Toxicol, 2008. 83(4): p. 446-
56. 

11. Giavini, E. and E. Menegola, 
Biomarkers of teratogenesis: 

suggestions from animal studies. 
Reprod Toxicol, 2012. 34(2): p. 180-5. 

12. Harris, C., Rodent whole embryo 
culture. Methods Mol Biol, 2012. 889: 
p. 215-37. 

13. de Jong, E., et al., Comparison of the 
mouse Embryonic Stem cell Test, the 
rat Whole Embryo Culture and the 
Zebrafish Embryotoxicity Test as 
alternative methods for developmental 
toxicity testing of six 1,2,4-triazoles. 
Toxicol Appl Pharmacol, 2011. 253(2): 
p. 103-11. 

14. Martin, M.T., et al., Toxicogenomic 
study of triazole fungicides and 
perfluoroalkyl acids in rat livers 
predicts toxicity and categorizes 
chemicals based on mechanisms of 
toxicity. Toxicol Sci, 2007. 97(2): p. 
595-613. 

15. Kjaerstad, M.B., et al., Endocrine 
disrupting effects in vitro of conazole 
antifungals used as pesticides and 
pharmaceuticals. Reprod Toxicol, 
2010. 30(4): p. 573-82. 

16. Trosken, E.R., et al., Comparison of 
lanosterol-14 alpha-demethylase 
(CYP51) of human and Candida 
albicans for inhibition by different 
antifungal azoles. Toxicology, 2006. 
228(1): p. 24-32. 

17. Giavini, E. and E. Menegola, Are azole 
fungicides a teratogenic risk for human 
conceptus? Toxicol Lett, 2010. 198(2): 
p. 106-11. 

18. Robinson, J.F., et al., Triazole induced 
concentration-related gene signatures 
in rat whole embryo culture. Reprod 
Toxicol, 2012. 34(2): p. 275-83. 

19. Menegola, E., et al., Study on the 
common teratogenic pathway elicited 
by the fungicides triazole-derivatives. 
Toxicol In Vitro, 2005. 19(6): p. 737-
48. 

20. Menegola, E., et al., Effects of 
mixtures of azole fungicides in 
postimplantation rat whole-embryo 
cultures. Arch Toxicol, 2013. 87(11): p. 
1989-97. 

21. Goetz, A.K., et al., Disruption of 
testosterone homeostasis as a mode 
of action for the reproductive toxicity of 
triazole fungicides in the male rat. 
Toxicol Sci, 2007. 95(1): p. 227-39. 



FLU induces spatio-temporal gene expression patterns in the rat WEC 

66 
 

22. Mineshima, H., et al., Malformation 
spectrum induced by ketoconazole 
after single administration to pregnant 
rats during the critical period - 
comparison with vitamin A-induced 
malformation spectrum. J Appl 
Toxicol, 2012. 32(2): p. 98-107. 

23. Hermsen, S.A., et al., Triazole-induced 
gene expression changes in the 
zebrafish embryo. Reprod Toxicol, 
2012. 34(2): p. 216-24. 

24. Marotta, F. and G.M. Tiboni, Molecular 
aspects of azoles-induced 
teratogenesis. Expert Opin Drug 
Metab Toxicol, 2010. 6(4): p. 461-82. 

25. Pennimpede, T., et al., Analysis of 
Cyp26b1/Rarg compound-null mice 
reveals two genetically separable 
effects of retinoic acid on limb 
outgrowth. Dev Biol, 2010. 339(1): p. 
179-86. 

26. Menegola, E., et al., Relationship 
between hindbrain segmentation, 
neural crest cell migration and 
branchial arch abnormalities in rat 
embryos exposed to fluconazole and 
retinoic acid in vitro. Reprod Toxicol, 
2004. 18(1): p. 121-30. 

27. Menegola, E., et al., Craniofacial and 
axial skeletal defects induced by the 
fungicide triadimefon in the mouse. 
Birth Defects Res B Dev Reprod 
Toxicol, 2005. 74(2): p. 185-95. 

28. Billings, S.E., et al., The retinaldehyde 
reductase DHRS3 is essential for 
preventing the formation of excess 
retinoic acid during embryonic 
development. Faseb j, 2013. 27(12): p. 
4877-89. 

29. Kam, R.K., et al., Dhrs3 protein 
attenuates retinoic acid signaling and 
is required for early embryonic 
patterning. J Biol Chem, 2013. 
288(44): p. 31477-87. 

30. Li, J.Y. and A.L. Joyner, Otx2 and 
Gbx2 are required for refinement and 
not induction of mid-hindbrain gene 
expression. Development, 2001. 
128(24): p. 4979-91. 

31. Li, K., J. Zhang, and J.Y. Li, Gbx2 
plays an essential but transient role in 
the formation of thalamic nuclei. PLoS 
One, 2012. 7(10): p. e47111. 

32. Lickert, H., et al., Wnt/(beta)-catenin 
signaling regulates the expression of 
the homeobox gene Cdx1 in 

embryonic intestine. Development, 
2000. 127(17): p. 3805-13. 

33. Meyer, B.I. and P. Gruss, Mouse Cdx-
1 expression during gastrulation. 
Development, 1993. 117(1): p. 191-
203. 

34. Millet, S., et al., A role for Gbx2 in 
repression of Otx2 and positioning the 
mid/hindbrain organizer. Nature, 1999. 
401(6749): p. 161-4. 

35. Robinson, J.F., et al., A comparison of 
gene expression responses in rat 
whole embryo culture and in vivo: 
time-dependent retinoic acid-induced 
teratogenic response. Toxicol Sci, 
2012. 126(1): p. 242-54. 

36. Tonk, E.C., et al., Valproic acid-
induced gene expression responses in 
rat whole embryo culture and 
comparison across in vitro 
developmental and non-
developmental models. Reprod 
Toxicol, 2013. 41: p. 57-66. 

37. Brown, N.A. and S. Fabro, 
Quantitation of rat embryonic 
development in vitro: a morphological 
scoring system. Teratology, 1981. 
24(1): p. 65-78. 

38. Wilkinson, D.G. and M.A. Nieto, 
Detection of messenger RNA by in situ 
hybridization to tissue sections and 
whole mounts. Methods Enzymol, 
1993. 225: p. 361-73. 

39. Debeljak, N., M. Fink, and D. Rozman, 
Many facets of mammalian lanosterol 
14alpha-demethylase from the 
evolutionarily conserved cytochrome 
P450 family CYP51. Arch Biochem 
Biophys, 2003. 409(1): p. 159-71. 

40. Lee, Y.M., et al., Retinoic acid stage-
dependently alters the migration 
pattern and identity of hindbrain neural 
crest cells. Development, 1995. 
121(3): p. 825-37. 

41. Balmer, N.V., et al., From transient 
transcriptome responses to disturbed 
neurodevelopment: role of histone 
acetylation and methylation as 
epigenetic switch between reversible 
and irreversible drug effects. Arch 
Toxicol, 2014. 88(7): p. 1451-68. 

42. Robinson, J.F., A. Verhoef, and A.H. 
Piersma, Transcriptomic analysis of 
neurulation and early organogenesis 
in rat embryos: an in vivo and ex vivo 
comparison. Toxicol Sci, 2012. 126(1): 
p. 255-66. 



Chapter 2 

67 
	

43. del Corral, R.D., et al., Opposing FGF 
and Retinoid Pathways Control Ventral 
Neural Pattern, Neuronal 
Differentiation, and Segmentation 
during Body Axis Extension. Neuron, 
2003. 40(1): p. 65-79. 

44. Rhinn, M. and P. Dolle, Retinoic acid 
signalling during development. 
Development, 2012. 139(5): p. 843-58. 

45. Abu-Abed, S., et al., The retinoic acid-
metabolizing enzyme, CYP26A1, is 
essential for normal hindbrain 
patterning, vertebral identity, and 
development of posterior structures. 
Genes Dev, 2001. 15(2): p. 226-40. 

46. MacLean, G., et al., Cloning of a novel 
retinoic-acid metabolizing cytochrome 
P450, Cyp26B1, and comparative 
expression analysis with Cyp26A1 
during early murine development. 
Mech Dev, 2001. 107(1-2): p. 195-
201. 

47. Tahayato, A., P. Dolle, and M. 
Petkovich, Cyp26C1 encodes a novel 
retinoic acid-metabolizing enzyme 
expressed in the hindbrain, inner ear, 
first branchial arch and tooth buds 
during murine development. Gene 
Expr Patterns, 2003. 3(4): p. 449-54. 

48. Beland, M., et al., Cdx1 autoregulation 
is governed by a novel Cdx1-LEF1 
transcription complex. Mol Cell Biol, 
2004. 24(11): p. 5028-38. 

49. Prinos, P., et al., Multiple pathways 
governing Cdx1 expression during 
murine development. Dev Biol, 2001. 
239(2): p. 257-69. 

50. Rankin, E.B., et al., Putative intestine-
specific enhancers located in 5' 
sequence of the CDX1 gene regulate 
CDX1 expression in the intestine. Am 
J Physiol Gastrointest Liver Physiol, 
2004. 286(5): p. G872-80. 

51. van den Akker, E., et al., Cdx1 and 
Cdx2 have overlapping functions in 
anteroposterior patterning and 
posterior axis elongation. 
Development, 2002. 129(9): p. 2181-
93. 

52. Young, T. and J. Deschamps, Hox, 
Cdx, and anteroposterior patterning in 
the mouse embryo. Curr Top Dev Biol, 
2009. 88: p. 235-55. 

53. Grainger, S., A. Hryniuk, and D. 
Lohnes, Cdx1 and Cdx2 exhibit 
transcriptional specificity in the 

intestine. PLoS One, 2013. 8(1): p. 
e54757. 

54. van Dartel, D.A., et al., Concentration-
dependent gene expression 
responses to flusilazole in embryonic 
stem cell differentiation cultures. 
Toxicol Appl Pharmacol, 2011. 251(2): 
p. 110-8. 

55. Archer, A., et al., Transcriptional 
activity and developmental expression 
of liver X receptor (lxr) in zebrafish. 
Dev Dyn, 2008. 237(4): p. 1090-8. 

56. Archer, A., et al., Fasting-induced 
FGF21 is repressed by LXR activation 
via recruitment of an HDAC3 
corepressor complex in mice. Mol 
Endocrinol, 2012. 26(12): p. 1980-90. 

57. Pinto, C.L., et al., Lxr regulates lipid 
metabolic and visual perception 
pathways during zebrafish 
development. Mol Cell Endocrinol, 
2016. 419: p. 29-43. 

58. Merki, E., et al., Epicardial retinoid X 
receptor alpha is required for 
myocardial growth and coronary artery 
formation. Proc Natl Acad Sci U S A, 
2005. 102(51): p. 18455-60. 

59. Jagtap, S., et al., All-trans retinoic acid 
and basic fibroblast growth factor 
synergistically direct pluripotent 
human embryonic stem cells to 
extraembryonic lineages. Stem Cell 
Res, 2013. 10(2): p. 228-40. 

60. Huang, N., et al., Diversity and 
function of mutations in p450 
oxidoreductase in patients with Antley-
Bixler syndrome and disordered 
steroidogenesis. Am J Hum Genet, 
2005. 76(5): p. 729-49. 

61. Keber, R., et al., Mouse knockout of 
the cholesterogenic cytochrome P450 
lanosterol 14alpha-demethylase 
(Cyp51) resembles Antley-Bixler 
syndrome. J Biol Chem, 2011. 
286(33): p. 29086-97. 

62. Schmidt, K., et al., Cholesterol 
metabolism: the main pathway acting 
downstream of cytochrome P450 
oxidoreductase in skeletal 
development of the limb. Mol Cell Biol, 
2009. 29(10): p. 2716-29. 



	

	

	



	

	

Chapter 3 

 

Embryotoxic and pharmacologic potency ranking of six azoles in 
the rat Whole Embryo Culture by morphological and transcriptomic 
analysis 
 

Myrto Dimopoulou, Aart Verhoef, Jeroen L.A. Pennings, Bennard van Ravenzwaay, Ivonne 

M.C.M. Rietjens and Aldert H. Piersma 

Toxicology and Applied Pharmacology (2017) 322; 15-26 

 



Embryotoxic and pharmacologic potency ranking of azoles in the rat WEC 

70 
 

Abstract 

Differential gene expression analysis in the rat Whole Embryo Culture (WEC) assay 

provides mechanistic insight into the embryotoxicity of test compounds. In our study, we 

hypothesized that comparative analysis of the transcriptomes of rat embryos exposed to six 

azoles (flusilazole, triadimefon, ketoconazole, miconazole, difenoconazole and 

prothioconazole) could lead to a better mechanism-based understanding of their 

embryotoxicity and pharmacological action. For evaluating embryotoxicity, we applied the 

total morphological scoring system (TMS) in embryos exposed for 48 hours. The compounds 

tested showed embryotoxicity in a dose-response fashion. Functional analysis of differential 

gene expression after 4 hours exposure at the ID10 (effective dose for 10% decreased TMS), 

revealed the sterol biosynthesis pathway and embryonic development genes, dominated by 

genes in the retinoic acid (RA) pathway, albeit in a differential way. Flusilazole, ketoconazole 

and triadimefon were the most potent compounds affecting the RA pathway, while in terms 

of regulation of sterol function, difenoconazole and ketoconazole showed the most 

pronounced effects. Dose-dependent analysis of the effects of flusilazole revealed that the 

RA pathway related genes were already differentially expressed at low dose levels while the 

sterol pathway showed strong regulation at higher embryotoxic doses, suggesting that this 

pathway is less predictive for the observed embryotoxicity. A similar analysis at the 24-hour 

time point indicated an additional time-dependent difference in the aforementioned pathways 

regulated by flusilazole. In summary, the rat WEC assay in combination with transcriptomics 

could add a mechanistic insight into the embryotoxic potency ranking and pharmacological 

mode of action of the tested compounds. 

 

Keywords: Whole Embryo Culture, toxicogenomics, azoles, retinoic acid, embryonic 

development, sterol biosynthesis   
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Introduction 

Supranational regulatory guidelines, such as the European legislation of Registration, 

Evaluation, Authorization and Restriction of Chemicals (REACH), demand the use of large 

numbers of experimental animals for the risk assessment of chemicals [1]. Reproductive and 

developmental toxicity studies require almost 65% of experimental animals needed overall 

[1, 2]. The necessity of reduction, refinement and replacement of animal testing has 

stimulated the design and application of alternative assays for the hazard identification of 

developmental toxicants [3-5]. Alternative techniques vary from cell-based methods to organ 

culture, organ-on-a-chip, whole embryo cultures to in silico simulation models [4, 6, 7].  

The rat Whole Embryo Culture (WEC) technique is an alternative method for assessing 

possible developmental toxicants, and it is used for screening studies due to its numerous 

benefits [8, 9]. This technique allows the continuous monitoring of embryonic development 

during gestational days (GD) 10 to 12, when a major part of organogenesis occurs [10]. 

Additionally, the complexity of the entire embryo is included, and development mimics the in 

vivo situation in terms of both morphology and gene expression signatures [11]. The 

limitations of this method include the restricted experimental duration and the absence of 

metabolic activity, as well as the lack of maternal interaction. Various metabolic systems 

added to WEC have shown activity [12, 13]. However, even with the addition of metabolic 

activity, some classes of proembryotoxicants would not be classified properly in in vitro 

testing systems, such as the WEC [14].  Furthermore, it has been suggested that direct 

testing of the parent compounds and metabolites individually might provide a solution if 

metabolic pathways are known  [13-15]. Overall, the rat WEC is considered a valuable tool 

for screening xenobiotics and prioritizing further steps in risk assessment of possible 

embryotoxicants [16-18]. Previous studies have shown that apart from screening 

morphological endpoints for evaluating possible developmental toxicants in the WEC model, 

the implementation of technologically advanced molecular-based assays could improve its 

value as a predictive assay [4, 19, 20]. Previous studies have shown that gene expression 

changes, related to toxic responses of biological systems, are not only associated with 

morphological outcomes, but also precede them [21]. Additionally, literature data indicate 

that different compounds might cause a similar adverse outcome, while the underlying 

mechanisms of toxicity might be different. Transcriptomics approaches could enhance 

mechanistic knowledge of embryotoxicants [20, 22]. An additional advantage of 

transcriptomics is that the evaluation of molecular signatures could contribute to the 

identification of biomarkers for detecting embryotoxicity among different classes of 

compounds [20, 23]. Furthermore, due to the high conservation of many molecular 

pathways, these biomarkers could improve the extrapolation of results obtained from in vitro 
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studies to the in vivo situation and contribute to understanding interspecies differences [22, 

24].  

Azoles form a class of compounds, known for their potential to induce teratogenic effects in 

mammals in a dose dependent manner [25, 26]. They are fungicides with either agricultural 

or clinical use. Their mode of pharmacological action in the fungal cell is based on the 

inhibition of the conversion of lanosterol to ergosterol via disturbing the enzyme involved 

being Cyp51, which is the mediator for securing the robustness of fungal membranes [27, 

28]. The toxicological mechanism of azoles is partly unknown. However, when in vivo and in 

vitro mammalian systems are exposed to either azoles or retinoic acid (RA), a variety of 

similar teratogenic responses have been observed, including abnormalities in craniofacial 

development, brain segmentation and branchial arches formation [29-32]. Therefore, azoles 

might have a shared mechanism of toxicological action with RA-induced embryotoxicity, 

which is supported by gene expression studies showing that the enzyme Cyp26a1, a key 

regulator of embryonic RA concentration, was upregulated in a common manner [32-34]. 

Thus, Cyp26a1 and Cyp51 appear as candidate biomarkers for embryotoxicity and 

pharmacologic activity of azoles, respectively. However, this does not exclude that other 

mechanisms may be involved as well.  

In order to assess the usefulness of transcriptomics readouts in assessing relative 

embryotoxic potencies and the underlying modes of action, we have studied the morphologic 

and transcriptomic responses of six azoles in WEC and compared their potencies with 

existing in vivo data. We included flusilazole (FLU) [35, 36], triadimefon (TDF) [37, 38] and 

ketoconazole (KTZ) [39, 40] as relatively strong embryotoxicants in vivo; miconazole (MCZ) 

[41] as weak embryotoxicant; difenoconazole (DFZ) [42] and prothioconazole (PTZ) [43] as 

non- embryotoxicants.  
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Materials and Methods 

Animal care 

Animal studies were approved and performed in concordance with institutional and federal 

regulations at the National Institute of Public Health and the Environment (RIVM). Wistar rats 

(HsdCpd:WU) (Harlan, The Netherlands) were housed at the RIVM Animal Care facility in a 

climate-controlled room with a 12h light cycle (04:00-16:00 dark). Water and food were 

provided ad libitum. After acclimating for 2 weeks, virgin female rats were housed with male 

rats for a 3-hour mating period (9:00-12:00) (GD 0). Mated dams were individually housed. 

The clinical condition of all the animals was monitored daily.  

 

Rat Whole Embryo Culture  

The WEC technique was performed in accordance with the validated method of Piersma [9]. 

On GD 10, between 9:00 and 12:00 a.m., dams were euthanized by intracardiac injection of 

T61R (Intervet, The Netherlands). Rat embryos were immediately separated from the uterus. 

The peripheral trophoblastic cell zone and parietal yolk sac membrane were removed under 

the microscope leaving both the visceral yolk sac and ectoplacental cone intact. Embryos 

with 1-5 somites were cultured for morphological assessment while embryos with 2-4 

somites were cultured for gene expression studies, which increases precision of the 

embryonic stage sufficient for gene expression analysis [32]. Embryos were separately 

cultured in flasks with 2 mL culture medium, which was a mixture of 90% pregnant bovine 

serum and 10% rat serum (Biochrom, Berlin, Germany), diluted with 14% Hank’s solution 

(Gibco) and supplemented with 1.6 mg/mL D-glucose and 75 µg/mL L-methionine (Sigma-

Aldrich, Zwijndrecht, The Netherlands). Afterwards, the culture flasks were placed in rotating 

incubators, which were completely protected from light and their internal temperature was 

permanently at 37.7oC. The cultured flasks were oxygenated twice daily for 30 seconds per 

time, with increasing concentration of oxygen: on the first day (GD10) at 9:00 and 16:00 (5% 

O2, 5% CO2, 90% N2), on the second day (GD11) at 9:00 and 16:00 (20% O2, 5% CO2, 75% 

N2) and on the third day (GD12) at 9:00 (40% O2, 5% CO2, 55% N2). 

 

Morphological assessment and statistical analysis of individual endpoints 

Embryos (exposed to test compounds and controls) were cultured for 48 h (whole culture 

period; 0-48h) and were scored according to the TMS system taking into account 20 

morphological endpoints [44]. These morphological endpoints were sub-divided into groups, 

which included growth parameters (yolk sac diameter, crown-rump length, head diameter 

and number of somites) and developmental/functional parameters, such as yolk sac and 
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allantoic blood circulation, heart formation and heart beating, embryo- turning, caudal neural 

tube, optic and otic system, fore- and hind- limb, branchial arches, mandibular and maxillary 

process and the shape and size of somites. Average scores of each of the morphological 

endpoints were calculated for identifying any possible specific and selective embryotoxic 

effects of the tested compounds in rat embryos.   

Within each exposure group, including also the vehicle control (DMSO), 8 rat embryos were 

evaluated. For normalizing the obtained data and eliminating daily variation, the embryos 

within the same exposure group were derived from different dams and they were cultured 

over different culture days. Statistical analysis was performed using the parametric Student’s 

t-test (unpaired), two-sided, and with 95% confidence intervals. Images of the examined 

embryos (exposed for 48 hours to either DMSO or tested compounds) were obtained using 

an Olympus SZX9 camera and Olympus DP software. The pictures were taken at x20 

magnification. For specific observations, x32 magnification was used.   

 

Test compounds and exposure concentrations  

The following six azoles were tested in rat WEC for 48 hours (0-48h) in a range of 

concentrations with the lowest concentration inducing no morphological effect to the highest 

being the maximal achievable concentration in culture:  

difenoconazole (DFZ; CAS# 119446-68-3, Sigma-Aldrich, Zwijndrecht, The Netherlands) at 

20, 60, 200 and 600 µM; flusilazole (FLU; CAS# 85509-19-9, Sigma-Aldrich, Zwijndrecht, 

The Netherlands) at 2, 6, 20, 60, 200 and 600 µM; ketoconazole (KTZ; CAS# 65277-42-1, 

Sigma-Aldrich, Zwijndrecht) at 2, 6, 20, 60 and 200 µM; miconazole (MCZ; CAS# 22916-47-

8, Sigma-Aldrich, Zwijndrecht, The Netherlands) at 2, 6, 20, 60, 200 and 600 µM; 

prothioconazole (PTZ; CAS# 178928-70-6, Sigma-Aldrich, Zwijndrecht, The Netherlands) at 

60, 200 and 600 µM and triadimefon (TDF; CAS# 43121-43-3, Sigma-Aldrich, Zwijndrecht, 

The Netherlands) at 20, 60, 200 and 600 µM. All the compounds were dissolved in dimethyl 

sulfoxide (DMSO, Sigma-Aldrich, Zwijndrecht, The Netherlands), and all embryos were 

exposed to a final DMSO concentration of 0.1%. As it has been previously described, this 

concentration of DMSO did not significantly alter the morphology (4, 24 and 48h) and has 

limited effects on gene expression after either 4h or 24h of exposure at the same 

concentration (0.1%) [11, 24, 45]. For finding the appropriate concentration at which the 

microarrays were conducted, we calculated the concentration which results to 10% reduction 

of the control TMS (ID10) with both PROAST [46] and Graphpad software 

(www.graphpad.com). Therefore, for microarray analysis, rat WEC were exposed for 4 hours 

(0-4h) to FLU at testing concentrations of 0.002, 0.02, 0.2, 2, 25, 200 µM (tenfold 
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concentration intervals) for 4 hours (0-4h), while they were also exposed to the established 

ID10 of 25µM for 24 hours (0-24h). The remaining compounds were tested in the rat WEC for 

4 hours (0-4h) at their ID10 values: DFZ at 110µM, KTZ at 40µM, MCZ at 25µM and TDF at 

150µM, as derived from the concentration response curves on TMS. Rat embryos which 

were treated with PTZ were exposed to the calculated ID10 (250 μM) and at 60 μM. All the 

treated embryos were immediately collected after the end of their exposure and stored for 

performing the microarray analysis.            

 

Whole embryo RNA isolation  

For transcriptomics, cultured embryos were quickly scored on the basis of their somite 

number, their position in the yolk sac, neural tube developmental stage, crown-rump length 

and head diameter. They were then isolated from the yolk sac and ectoplacental cone, 

placed in 200μM RNAlater (Ambion, Austin, Texas), stored for one week at 4oC, and then 

stored for further processing at -80oC with the lowest possible amount of RNAlater.  After the 

embryos were thawed on ice, they were separately homogenized by passing them 10 times 

though a 1mL syringe with a 26G needle. The RNA of the homogenized lysate was further 

isolated by using the RNeasy Micro Plus RNA isolation kit (CAS number 74034, Qiagen, the 

Netherlands). Eluting with 14μM of RNase-free H2O, final volumes of 12μL RNA were 

obtained and tested on both Nanodrop (Nanodrop Technologies Inc., Wilmington, Delaware) 

and 2100 BioAnalyzer (Agilent Technologies, Palo Alto, California) to establish the RNA 

quality and quantity. The RNA samples with an absorbance value between 1.9 and 2.2 (ratio 

260mm/280mm) and RNA integrity number (RIN) higher than 7, were further used for 

performing the microarray analysis. RNA samples were stored at -80oC. 

 

Microarray hybridization 

RNA hybridization and microarray experimentation were performed by the Dutch Service 

and Support Provider (MAD) of the University of Amsterdam, the Netherlands. In brief, for 

every sample, RNA was amplified, biotin-labelled and hybridized to Affymetrix GeneChip HT 

RG-230 PM Array Plates according to the provided protocols by Affymetrix (Santa Clara, 

CA). After staining, the HT Array plate was read by the Affymetrix GeneChip® HT Scanner 

and analyzed by the Affymetrix GeneChip® Operating Software. For performing the 

aforementioned steps, the GeneTitan® Hybridization, Wash, and Stain Kit for 3’ IVT Arrays 

(cat no. 901530) was used. In total, 112 arrays were analyzed. For the exposure to 

compounds tested at singe concentrations, 8 embryos per compound were prepared, while 

for the exposure to FLU for which more than one concentration was tested, 7 embryos for 

each concentration were included.  
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Microarray analysis and data processing 

The quality control (QC) and the normalization of the microarray data were performed using 

the ArrayAnalysis.org webpage (www.arrayanalysis.org) [47], designed by the Department 

of Bioinformatics in Maastricht University. Raw microarray values were inspected for their 

quality by assessing the 3´/5´ ratios for β-actin and GAPDH, RNA degradation, background 

intensity, signal quality and the probe-set homogeneity with NUSE (Normalized Unscaled 

Standard Error) and RLE (Relative Log Expression). After the QC, two samples were 

excluded from the analysis because they did not fulfil the aforementioned quality criteria. 

The Affymetrix CEL files were further normalized by using the Robust Multichip Average 

(RMA) algorithm [48] and the Brainarray custom CDF version 19 probe set annotation 

(http://brainarray.mbni.med.umich.edu/Brainarray/default.asp) [49]. In total, 13,877 probe 

sets, each corresponding to an Entrez Gene ID, were further evaluated by performing a 

statistical analysis in R (www.R-project.org) and Microsoft Excel.      

 

Identification of differentially expressed genes 

Normalized data was transformed to log scale. For each exposure group (i.e. a compound at 

a concentration and time point), gene expression data were compared to the appropriate 

control (unexposed embryos at the same time point), for calculating absolute average fold 

changes of individual gene expression. Differentially expressed genes were identified by 

using ANOVA, using a p-value < 0.001 and a False Discovery Rate (FDR) of 10%, as 

stringency criteria. Genes differentially expressed in at least one of the 8 or 7 rat WEC 

samples from the corresponding exposure groups were combined for further analysis.  

Gene expression responses were visualized using a heatmap combined with hierarchical 

clustering (Euclidean distance, Ward linkage) as well as Principal Component Analysis 

(PCA). Each bar in the heatmap represents the average of the gene expression in the 

experimental group compared to the appropriate control group. 

 

Functional interpretation analysis of differentially expressed genes  

Functional annotation and overrepresentation analysis were performed using DAVID 

(https://david.ncifcrf.gov/) [50]. Additionally, functional annotations were added from the 

literature [51, 52]. For genes involved in RA pathway, general development and sterol 

biosynthesis pathway, gene expression data per pathway were combined to absolute 

average fold changes per pathway. Next, the absolute average fold changes per exposure 

group were plotted against the compound concentration used. In the case of FLU multiple 

concentrations were tested, allowing data for other compounds to be compared against the 
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flusilazole dose-response curve to assess the relative potency in each pathway. Finally, 

gene expression and functionality were visualized as a network using Cytoscape version 

2.8.3 (www.cytoscape.org) [53]. 

 

In vivo data analysis  

A literature survey was performed to determine the in vivo developmental toxic profile of the 

six tested azoles. We selected studies performed in rats orally exposed to the tested 

compounds during either GD6-15 or GD7-16 at multiple dose regimes. Studies with at least 

one control group and two dose groups were selected to allow analysis using the 

Benchmark Dose (BMD) approach. The BMD values were calculated on the basis of an 

increase in the incidence of skeletal malformations or cleft palate, selected as sensitive 

endpoints of in vivo developmental toxicity. A concentration-response curve was fitted to the 

data to determine the BMD for the selected benchmark response (BMR) for each tested 

azole. The BMD was defined as 10% additional incidence of skeletal malformations or cleft 

palate (BMD10). The BMD10 of each compound was calculated with the PROAST software 

[46] using dichotomous concentration-response models (quantal data). Several models were 

fitted, included gamma, logistic, loglogistic, probit, logprobit, multistage and Weibull. The 

selection of the best model was determined based on the goodness of fit (p-value>0.05), 

given also the lowest BMD value.The developmental lowest effect levels (dLEL), obtained 

from the EPA ToxREF database [54], were also considered for comparison.  

  



Embryotoxic and pharmacologic potency ranking of azoles in the rat WEC 

78 
 

Results  

 

Morphological assessment and definition of ID10 values 

All azoles induced developmental toxicity in a dose dependent manner in the WEC assay 

(Tables 1&2). Highest concentrations without statistically significant effects on TMS were 20 

µM for FLU, KTZ and MCZ, and 60 µM for DFZ, PTZ and TDF, respectively. At embryotoxic 

concentrations, FLU, KTZ and MCZ mostly affected the closure of the neural tube, the 

formation of branchial arches and early organogenesis of the optic cup. PTZ and DFZ were 

less potent but showed comparable abnormalities such as somitogenesis and disturbance of 

closure of the neural tube, as well as retarded development of both otic and optic cups at 

high doses. On the other hand, TDF affected the development of the branchial arches and 

the neural tube, while not affecting any of the other morphological endpoints. After 

evaluating the TMS concentration-response curves in the rat WEC, the ranking of 

decreasing potency of the six tested azoles was KTZ, MCZ, FLU, DFZ, TDF and PTZ 

(Figure 1). The ID10 concentrations of all tested compounds were calculated from Figure 1 to 

apply them as exposure concentrations in subsequent WEC experiments for performing 

transcriptomic analysis.       
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Table 1: Representative pictures of rat WEC exposed to the tested azoles at a range of 

concentrations for 48 hours. The morphology of embryos exposed at the lowest 

concentration of each compound was identical with those in the control group (DMSO). 

The pictures were taken at x20 magnification. For specific observations, x32 magnification was used
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Results  

 

Morphological assessment and definition of ID10 values 

All azoles induced developmental toxicity in a dose dependent manner in the WEC assay 

(Tables 1&2). Highest concentrations without statistically significant effects on TMS were 20 

µM for FLU, KTZ and MCZ, and 60 µM for DFZ, PTZ and TDF, respectively. At embryotoxic 

concentrations, FLU, KTZ and MCZ mostly affected the closure of the neural tube, the 

formation of branchial arches and early organogenesis of the optic cup. PTZ and DFZ were 

less potent but showed comparable abnormalities such as somitogenesis and disturbance of 

closure of the neural tube, as well as retarded development of both otic and optic cups at 

high doses. On the other hand, TDF affected the development of the branchial arches and 

the neural tube, while not affecting any of the other morphological endpoints. After 

evaluating the TMS concentration-response curves in the rat WEC, the ranking of 

decreasing potency of the six tested azoles was KTZ, MCZ, FLU, DFZ, TDF and PTZ 

(Figure 1). The ID10 concentrations of all tested compounds were calculated from Figure 1 to 

apply them as exposure concentrations in subsequent WEC experiments for performing 

transcriptomic analysis.       
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Table 2: Overview of morphological effects of the tested azoles in the rat WEC assay.  

Compound Concentra-
tion (µM) TMS CRL (mm) S48h – S0h FORE MID HIND CAUD OTIC OPTIC BRAN MAND-MAX SOM HEART 

DMSO 0 67.4±0.8 4.2±0.2 24±1.1 - - - - - - - - - - 

DFZ 20 66.1±2.1 4.1±0.2 24±0.5 - - - - - - - - - - 
 60 65.4±1.4 4.1±0.2 23±1.4 - - - * - - - - - - 

 200 50.2±2.2** 3.1±0.2**** 18±1.6* * ** ** ** ** * * ** * * 
 600 14.8±0.9**** # # *** ** *** *** **** *** *** **** *** *** 

FLU 2 66.6±0.5 4.2±0.2 24±1.2 - - - - - - - - - - 
 6 66.0±1 4.2±0.2 24±0.3 - - - - - - - - - - 

 20 60.8±4.7 4.0±0.3 22±1.6 - - - - - - - - - - 

 60 53.9±2.6* 3.9±0.2 17±2.0 - - - * - - - - - - 
 200 37.4±9.1*** 3.2±0.2**** 15±3.0* * ** ** ** *** * * ** - * 

 600 18.6±2.5**** 1.5±0.5**** 9±0.7** *** ** *** **** **** ** ** **** ** *** 

KTZ 2 66.9±1.2 4.2±0.2 23±0.7 - - - - - - - - - - 

 6 66.8±1.2 4.2±0.2 24±0.5 - - - - - - - - - - 

 20 63.3±2.5 4.1±0.3 23±1.7 - - - - - - - - - - 
 60 54.4±3.7* 3.9±0.3 16±1.8 - - - * - - - - - - 

 200 15.6±0.5*** # # * ** ** ** *** * * * ** * 

MCZ 2 66.7±0.8 4.1±0.2 24±0.5 - - - - - - - - - - 

 6 63.0±7.6 4.1±0.3 23±2.5 - - - - - - - - - - 
 20 61.0±3.4 4.0±0.2 22±1.5 - - - - - - - - - - 

 60 58.3±6.2* 4.1±0.3 23±1.2 - - - * - - - - - - 
 200 30.2±6.1*** 2.9±0.7**** 13±2.7* * ** ** ** *** * * ** - * 

 600 20.6±3.6**** # 12±2.1** *** *** *** **** **** ** ** **** ** *** 

PTZ 60 65.8±4.2 4.1±0.3 24±1.1 - - - - - - - - - - 
 200 62.4±2.6** 3.9±0.2 23±1.1 * * * * ** * * * ** - 

 600 33.1±9.8**** 2.7±0.4**** 10±2.7** *** *** *** *** *** *** ** *** *** *** 

TDF 20 66.4±1.1 4.1±0.2 24±0.8 - - - - - - - - - - 
 60 65.4±1.1 4.1±0.2 24±0.9 - - - * - - - - - - 
 200 55.8±5.1** 3.8±0.2** 20±2.2* * ** ** ** ** * * ** * * 

 600 18.8±2.4**** 2.4±0.2**** 10±3.4**
* *** *** *** *** **** *** *** **** *** *** 

Each number represents a mean ± SD (N=8, Student’s t-test: * p < 0.05, ** p < 0.005, *** p < 0.0005, **** p < 0.0001). CRL: crown-rump length; S48h- S0h: number of somites that formed during the culture period of rat WEC; 

FORE: forebrain; MID: midbrain; HIND: hindbrain; CAUD: caudal neural tube; OTIC: otic system; OPTIC: optic system; BRAN: branchial arches; MAND-MAX: mandibular and maxillary process; SOM: quality of somites and 

HEART: heart; “#”: could not be measured. 
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Figure 1: Total Morphological Score (TMS) concentration responses of 6 azoles in rat WEC 

after 48 hours of culture. Each point represents a mean ±SD (N=8). 

 

Microarrays and identification of significant responses  

 Rat embryos were exposed to ID10 concentrations of azoles detected in the WEC assay 

based on the TMS score to study effects on the level of their transcriptome. Embryos 

exposed to ID10 concentrations for either 4 or 24 hours had not yet developed any 

morphologically observable alterations. For example, somitogenesis, a general hallmark of 

the progress of embryo development, was unaffected (Figure 2, A and B).   

Gene expression data were analysed by comparing each compound with the control group 

using ANOVA with significance threshold p £ 0.001 (t-test) and an FDR value of 10%. Figure 

3 shows an overview of gene expression changes of the 87 genes showing statistically 

significant responses. Using DAVID for functional annotation of significantly regulated 

genes, three main enriched gene groups were identified: RA pathway, general development 

and sterol biosynthesis pathway. The numbers of genes that were included in these 

pathways was 12, 29 and 17, respectively (Table 3). The genes in the RA pathway were a 

subset of the list referred to as the general development related genes.  
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Figure 2: Somitogenesis in rat embryos exposed to the six tested azoles for 4 hours (A) or 

24 hours (B) and further used for microarray analysis. Each point represents the mean ±SD 

of embryos which belong in the same group of exposure. The number of embryos per group 

is N=8 for single doses per treatment (For 4-hour treatments: DMSO, FLU 25µM, DFZ 

110µM, KTZ 40µM, MCZ 25µM, TDF 150µM, and for 24-hour treatments: DMSO, FLU 

25µM).  The number of embryos exposed for 4 hours to FLU is N=7 for each dose (0.002, 

0.02, 0.2, 2, 200µM).  
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Table 3: Gene-set compositions of the three main enriched gene groups: RA pathway, 

general development and sterol biosynthesis pathway. The numbers of genes included in 

these pathways is 12, 29 and 17, respectively. 

RA pathway  
 
 

(12) 

General 
development  

 
(29) 

Sterol biosynthesis 
pathway  

 
(17) 

Hoxa1 Hoxa1 Pcsk9 

Gbx2 Gbx2 Srebf2 
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Figure 3: Hierarchical clustering of gene expression in rat embryos exposed to six azoles. In 

total 87 genes were significantly regulated after at least one of the treatments. Each bar in 

the heatmap represents the average of the gene expression in the experimental group 

compared to the appropriate control group. The 87 genes were further categorized into three 

groups of biological processes RA pathway (RA), general embryonic development (DEV) 

and sterol biosynthesis pathway (STE), illustrated as black bars on the right part of this 

figure.   

  

Network analysis: Relating exposures to pathways and responsive genes  

Figure 4 illustrates the relationships between exposures, genes and pathways as observed 

in the present study (Figure 3) using Cytoscape network visualization. Generally, this 

network analysis demonstrates that embryonic 4-hour exposure to FLU and TDF at or, for 

FLU, above the ID10 provoked an up- or down-regulation of genes involved in general 

embryonic development and in the RA pathway. In contrast, embryonic exposure to KTZ or 

DFZ at their respective ID10, for 4 hours was primarily linked to the dysregulation of genes 

related to the sterol biosynthesis pathway. Prolonged exposure of rat embryos at 25µM of 
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FLU caused a notable upregulation of genes related to the sterol biosynthesis pathway, 

while the response of the genes participating in the general embryonic development and the 

RA pathway was varied from up- to down- regulation. PTZ and MCZ were the two 

compounds with the least effects on the embryonic pathways and the involved genes under 

investigation.  

 

Figure 4: Cytoscape network visualization of 87 significantly regulated genes due to rat 

WEC exposure to azoles. Grey cycled nodes represent the 87 genes, yellow and green 

squared nodes illustrate the compounds and the associated biological processes, 

respectively. Connections between exposure and regulated pathways demonstrate 

upregulation (red line), or downregulation (green line) and links of genes to pathways (blue 

line). 

 

Concentration-dependence of gene expression changes 

Figure 5 illustrates the absolute average fold change of the expression of genes participating 

in the three aforementioned biological pathways upon exposure to increasing concentrations 

of FLU. Clearly, the lowest FLU concentration tested already showed regulation of each of 
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the three pathways considered. All pathways responded concentration dependently on 

exposure to FLU. The RA pathway showed the highest magnitude of regulation. The sterol 

biosynthesis pathway regulation was substantially affected at the highest concentration 

tested (200µM), whereas the general development pathway already showed a response at 

lower concentrations. At the ID10 of FLU (25µM), the RA pathway and general embryonic 

development showed a more pronounced effect compared to the sterol biosynthesis 

pathway, at given fold change of 1.41, 1.27 and 1.07, respectively.  

Within pathways, individual genes showed differences in responses. In the general 

development gene set, Tbx4 was upregulated in a concentration-dependent manner, while 

Hoxa1 was downregulated with the same trend (Figure 3). However, the expression of both 

genes was almost not altered when rat embryos were exposed at 25µM (ID10). As to the RA 

pathway and general development, in 4h- exposed embryos at 25µM of FLU there was a 

pronounced up regulation of Cyp26a1, Dhrs3, Gbx2, Lhx1, Hoxa1 and Wnt5a. Their 

expression was quantified to be respectively 3.0, 2.0, 1.5, 1.5, 1.5 and 1.2 fold higher 

compared to the control. Tbx4 and Mafb were expressed in a more pronounced way at 

concentrations lower than the ID10. Sterol-related genes were expressed with slight 

fluctuations and revealed a remarkable 1.2 fold upward trend when embryos were exposed 

to 200µM. Some of the genes in this pathway that did not follow this general trend were 

Abca1, which showed an upward trend at the lowest dose of 0.002µM of FLU, while Pcsk9 

and Msmo1had an upward trend of expression at 25 and 200µM. Some other representative 

genes which contributed to the enrichment of the sterol biosynthesis pathway, such as 

Cyp51, Sqle, and Hmgcr, did show a regular rise of their absolute fold change in response, 

up to 1.3 fold at the highest concentration of FLU tested.     
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Figure 5: Concentration-dependent effects on enriched biological processes of FLU in rat 

WEC, relative to the vehicle control (=1.0), expressed as an average absolute fold change of 

all genes in each pathway.  

 

Comparing gene set responses at the morphological ID10 of six azoles 

The potency of the six tested azoles as to the regulation the three functional gene groups 

was assessed at the ID10 of each compound individually. FLU dose-response curves (Figure 

5) were used for comparison.  

FLU exposure at its ID10 showed a greater response on the RA pathway (1.41) compared to 

the five remaining ID10 exposures. The other compounds, in the order of 

TDF>KTZ>DFZ>MCZ>PTZ, showed a decreasing magnitude of response on the RA 

pathway at their ID10 (Figure 6, A), quantified to 1.33, 1.24, 1.17, 1.13 and 1.08 fold, 

respectively. The commonly most responsive genes were Cyp26a1, Dhrs3 and Gbx2. On 

the other hand, Wnt5a was the least responsive and Mafb was the most downregulated with 

the exception of a slightly but not statistically significant upregulated response to MCZ (1.23 

fold change) (Figure 3). Exposure to FLU (1.3) and TDF (1.25) at their ID10 resulted in a 

similar response magnitude on general embryonic development related genes (Figure 6, B). 

The remaining compounds followed in the order of KTZ>MCZ»DFZ>PTZ (1.21, 1.13, 1.14 

and 1.09, respectively). The difference in response magnitude of this gene group between 

compounds was small, indicating that it mimics the morphological ID10 rather well. (Figure 6, 

B). Interestingly, Tbx4 was most down regulated due to WEC exposure to either MCZ or 

PTZ. The most upregulated genes were the aforementioned RA-related genes, as well as 

Lhx1, Hoxa1, Ngfr and Fgfbp3.      
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In contrast to the above pathways, WEC exposure to DFZ (1.423) and KTZ (1.420) 

appeared to have a greater effect than FLU on the sterol biosynthesis pathway. TDF had an 

intermediate potency, and the least potent compounds were MCZ (1.10), FLU (1.07) and 

PTZ (1.07). (Figure 6, C; DFZ>KTZ>TDF>MCZ»FLU»PTZ). Both DFZ and KTZ upregulated 

Msmo1, Hsd17b7 and Sqle. Cyp51 was also upregulated by these two compounds, as well 

as by TDF. The commonly downregulated gene among the tested compounds was Abca1.  
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Figure 6: Functional analysis of dose-dependent (ID10) effects of tested azoles in rat WEC 

compared to the effects of FLU in a dose range per pathway. The response of the pathway 
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is expressed as average fold change associated with RA pathway (A), general development 

(B) and sterol biosynthesis pathway (C) is compared to vehicle control (=1.0).  

 

A comparison of gene expression responses within selected pathways between 4- 
and 24-h of exposure to FLU 

Gene expression changes in response to FLU exposure in the RA and general embryonic 

development pathways varied in magnitude with exposure time. This was evident in the 

expression of Cyp26a1, Cyp26b1, Hoxc10, Mafb and Wnt5a, biomarkers of the RA pathway, 

(Figure 7, A). Similarly, genes in the general embryonic development pathway showed a 

varied response magnitude among genes, dependent on exposure duration. In the 

embryonic development pathway, Ngfr and Lhx1 were upregulated in embryos exposed for 4 

hours to almost twice the extent observed upon 24 hours of exposure. In contrast, Pcsk9 

and Tbx4 were 2-fold more responsive after the prolonged exposure than after the short 

exposure (Figure 7, B).      

In contrast, in the sterol biosynthesis pathway (Figure 7, C), the magnitude of gene 

expression of all genes was considerably higher in embryos exposed to FLU for 24 hours 

than in those exposed for 4 hours. The sterol-related genes, Hmgcr and Mvd, only showed 

regulation in embryos after prolonged (24-hour) FLU-treatment.  
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Figure 7: A comparison of gene expression regulation in embryos exposed for 4 (blue) or 24 

hours (red) to FLU at 25µM (ID10) per functional pathway, RA pathway (A), general 

development (B) and sterol biosynthesis pathway (C).  
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Comparison of in vitro with in vivo data 

Data on the developmental toxic profile of the six tested azoles were obtained from literature 

in vivo studies. A potency raking was performed after calculating the BMD10 values, 

evaluating incidences of skeletal malformations and cleft palate. Table 4 contains an 

overview of the in vivo calculated BMD10 values and dLEL values, as well as in vitro results 

from the present study, including the ID10 values of morphological data (TMS) and response 

of genes participating in the RA pathway. It should be noted that for some compounds, e.g. 

miconazole, there is a limited availability of in vivo data. Additional data regarding the 

inhibition of Cyp26a1 are included, which were kindly provided by BASF SE laboratories of 

Experimental Toxicology and Ecology.  

In vivo exposure to FLU, KTZ and TDF caused cleft palate, while FLU was also inducing 

renal malformations, such as absence of renal papilla, a type of malformation generally not 

typical for azoles. Furthermore, rat in vivo exposure to DFZ and PTZ was associated with 

skeletal alterations, which included formation of supernumerary rudimentary ribs, extra 

ossification and deformation of thoracic vertebrae. FLU and KTZ were the most potent 

embryotoxicants in vivo, following TDF and MCZ. DFZ and PTZ were the compounds with 

less severe effects. Data derived from the EPA ToxRef database were in agreement with the 

aforementioned observations. In vitro studies on the inhibition of Cyp26a1, after exposure to 

the four out of six tested compounds, show that MCZ and TDF were the most potent 

compounds, while PTZ and KTZ inhibited the regulation of Cyp26a1 at higher 

concentrations.       

 

Table 4: Overview of in vivo and in vitro developmental toxicity data of the tested azoles. 

Compound 

in vivo in vitro 

BMD10 

(µmol/kg) 

dLEL 

(µmol/kg)[54] 

ID10 

(TMS) 

RA response 

(abs fold 
change) 

IC50 Cyp26a1 
inhibition 

(µM) 

PTZ 917.8[43] 290.8 250 1.08 3.02 

DFZ 596.5[42] 421.5 110 1.17 - 

MCZ 258.3[41] - 25 1.13 0.44 

TDF 91.5[37, 38] 171.4 150 1.33 2.29 

KTZ 20.1[39, 40] - 40 1.25 12.02 

FLU 9.1[36] 1.3 25 1.41 - 
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Discussion  

In agreement with previous studies [25, 32, 51, 55], we observed a variety of concentration 

dependent embryotoxic responses in rat embryos, cultured and exposed in vitro to six azoles 

for 48 hours during GD 10-12. During this particular time window, major aspects of 

organogenesis and neurulation take place [11, 32, 33, 56]. Commonly observed 

malformations in in vitro systems exposed to embryotoxic azoles were axial defects, 

craniofacial malformations and impaired branchial arches formation [26, 57, 58]. KTZ and 

MCZ have been described to specifically affect heart function via dysregulating the K+ and 

Ca2+ channels leading to heart-related syndromes [59].     

In vivo developmental toxicity studies have been performed assessing the embryotoxic 

profile of the six tested compounds. As to cleft palate and skeletal malformations observed 

at gestation day 21 (GD21), FLU, KTZ and TDF were the most potent embryotoxic 

compounds, while MCZ, DFZ were less potent. PTZ induced embryotoxicity only at very high 

concentration, which are likely to be unattainable in in vivo situation, and thus in line with the 

very low embryotoxicity potential of this compound (Table 4). WEC morphology (Figure 1, 

Table 1, 2 & 4) assessed at GD12 indicated FLU, KTZ and MCZ as the most potent 

compounds, while TDF, DFZ and PTZ were less potent.  

Following whole genome analysis in WEC exposed to each of the six azoles at their ID10 for 

effects on the TMS, we identified 87 genes significantly regulated by at least one of the 

tested compounds (ANOVA, p<0.001). Three gene sets (DAVID) were overrepresented 

among the regulated genes, related to the RA pathway, general embryonic development and 

the sterol biosynthesis pathway, respectively [24, 51]. Each of the gene sets showed some 

regulation for all compounds tested, likely reflecting non-toxic adaptive regulation at lower 

concentrations, given the absence of concomitant toxic effects (Figure 5). Such gene 

expression responses have been observed regularly in other systems as well [60, 61]. 

Above a certain exposure level the magnitude of regulation increased, in parallel with 

observed morphological effects, indicating that a threshold of adversity had been crossed 

[62]. 

We have additionally identified genes that were significantly regulated but they did not 

participate in the aforementioned pathways of interest. The genes with the highest fold 

change were Zfp703, Txnip, Stambpl1, Lrrc75a, Cyp2u1 and Fam101a, which were 

regulated by at least one of the tested compounds. Zfp703, Lrrc75a, Cyp2u1 and Fam101a 

do indirectly interact with RA in rat embryos. Their significant regulation identified in embryos 

exposed to FLU, KTZ and TDF. They have a crucial role in repressing transcription, 

oxidative stress or dysregulation of bone maturation related pathways. Additionally, Txnip is 

dysregulated after rat exposure to DFZ, which could be related to responses to oxidative 
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stress and negative regulation of cell division [63, 64]. These genes are of general interest 

for assessing the genomic regulation after embryonic exposure to xenobiotics.  

The responsive general embryonic development gene set is involved in a variety of 

developmental processes and is highly dominated by RA related genes. The RA pathway 

has the crucial role of regulating the spatiotemporal balance of RA in the developing embryo, 

supporting normal growth and differentiation. Perturbations in the RA pathway may therefore 

be indicative of possible embryotoxicity, as they have been implicated in the toxicological 

mode of action of azoles [32]. 

The sterol biosynthesis pathway represents the pharmacological mode of action of azoles in 

mammalian species. Azoles have been designed to intervene with Cyp51, disturbing the 

conversion of lanosterol to ergosterol, which stabilizes the fungal cell wall. The interference 

with Cyp51 and other sterol- related genes after treatment with azole compounds, indicate 

their efficacy concerning the pharmacological, crop protection purposes of their application. 

Thus, whilst the RA pathway is relevant for embryotoxicity, the sterol pathway is relevant for 

the intended mode of action of azoles. 

The 4-hour concentration-response of FLU revealed a similar curve for TMS as for the RA 

pathway, whereas the sterol biosynthesis pathway showed strong responses at higher 

exposures only, corroborating that modulation of the RA pathway, and not of the sterol 

biosynthesis pathway, is primarily involved in the embryotoxic response.  

Furthermore, at sub-embryotoxic concentrations, FLU exposure caused an upregulation of 

Tbx4 followed by a downregulation with increasing concentration, whereas Hoxa1 showed 

the opposite expression pattern. Also MCZ at its ID10 of 25µM showed upregulation of Tbx4 

and downregulation of both Hoxa1 and Hoxc4, similarly to the gene expression profile of 

embryos exposed to FLU at sub-embryotoxic concentration of 0.2 µM, indicating potency 

differences between both compounds. Tbx4 is regulated by Hox and Wnt gene families [65, 

66], the expression of which is affected by local RA levels, which would explain the effect of 

FLU exposure on the regulation of Tbx4. The observed biphasic response is intriguing. One 

might speculate that Tbx4 upregulation is countered by increasing toxic responses 

represented by extensive regulation of the RA pathway at higher concentrations. Both Hoxa1 

and Tbx4 have a crucial role in embryonic development, with specific sites of action at the 

anterior-posterior patterning and limb formation, respectively [67, 68].  Tbx4 is also as a 

transcription factor in the early lung mesoderm, promoting the co-ordination of Fgf (mainly 

Fgf8) and Gli proteins for the forthcoming lung development [69]. In the case of MCZ, the 

increased regulation of Tbx4 at the ID10 could be also associated with the already described 

morphological effects on heart formation [70]. Their non-monotonic regulation patterns with 
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increasing exposure makes genes such as Tbx4 and Hoxa1 less useful as biomarkers of 

embryotoxic response.  

As illustrated in Figure 6 (A, B, C), rat WEC exposure to FLU, TDF and KTZ at their ID10 

revealed marked upregulation of genes related to general embryonic development and the 

RA pathway, showing most extensive upregulation of Cyp26a1 and Dhrs3 (Figure 3). The 

relative magnitude of the RA pathway regulation by the tested compounds is in line with their 

in vivo potency ranking (Table 4). Single genes within the RA pathway such as Cyp26a1, did 

not show this ranking (Table 4), indicating that whole pathway regulation may be a better 

indicator for embryotoxic potency than single genes [52].             

Sterol-related gene expression regulation was most extensive in embryos exposed to DFZ 

and KTZ (Figure 6C). We observed the significant induction of Cyp51, Msmo1, Hmgcr and 

Sqle, which are indicators of increased pharmacological activity. Cyp51 is the major 

biomarker of the pharmacological mode of action of our tested compounds. Among all, 

Msmo1 was the highest regulated single gene. Msmo1 role has been recently described as 

a determinant gene in fatty acid transcription, via interacting with the mammalian liver X 

receptors (LXRs). The LXRs are involved in the regulation of lipid and fatty acid metabolism 

and have an important role in central nervous system (CNS) development and, especially, in 

midbrain neurogenesis [71]. Additionally, LXR proteins could bind to retinoid X receptors 

(RXR), form heterodimers and control the regulation of gene expression. Interestingly, Gad 

et al., [72] have suggested that RA and lipid metabolism related-genes, such as Msmo1, 

Cyp51, and Hsd17b, might be indirectly associated, when they tested in bovine culture both 

under in vivo and in vitro experimental conditions.    

The occurrence and type of malformations is dependent on the timing of exposure in 

pregnancy [62]. The same holds for gene expression regulation by chemical exposures [21, 

32]. The embryo development gene set showed time-dependent higher as well as lower 

regulation of individual genes, whereas the sterol pathway consistently showed higher gene 

expression responses after longer exposure. In the sterol pathway, Msmo1, Cyp51, Hmgr, 

Sqle and Pcsk9 were the most quantitatively pronounced genes at 24h- FLU exposed 

embryos, which are involved in the cascade of sterol related enzymatic reactions [73].  

Furthermore, among the RA- related genes Cyp26a1, Dhrs3, Mafb and Gbx2 were more 

upregulated in 4h than 24h FLU exposed embryos [74]. Cyp26a1, Dhrs3 and Mafb play a 

role in determining RA levels in the embryo. On the other hand, Cyp26b1 and Hoxc10 were 

relatively highly upregulated at the later time point. These genes have a different expression 

pattern in the embryo as compared to e.g. Cyp26a1. Additionally, there was a higher 

regulation of Ngfr, Lhx1 and Fgfbp3 in 4-hour exposed embryos to FLU, compared to 24-

hour of exposure. These genes are important contributors to general embryonic 
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development. Ngfr has a crucial role in the development of neurons in the embryonic brain, 

while it has been suggested as a mediator for activating thyroid hormone [75]. Lhx1 has 

been suggested to co-operate with Pax6 in mouse embryos for forming the anterior 

thalamus [76, 77]. Another study about the development of Xenopus and chick embryos has 

shown that Lhx1 is a transcription factor for nephric duct formation during development, 

which is triggered by RA and is collaborating with Hox genes, Pax2 and Pax8 transcriptional 

factors for further activation of Gata3 and the Wnt signalling pathway [78]. These 

observations illustrate the spatiotemporal differences in sensitivity of regulatory processes in 

embryogenesis, the perturbation of which underlies the specification of malformations. This 

aspect is likewise important when employing gene expression data for toxicity profiling. 

Comparing the RA- with the sterol biosynthesis pathway, our data indicate that those 

compounds which more strongly affect the RA pathway, belong to the group of embryotoxic 

ones, whereas those who affect the sterol biosynthesis pathway, or those who have low 

activity on both pathways are less embryotoxic.  

The data also show other differences in gene expression pattern that could be used to 

elucidate additional pathways involved in embryotoxicity. This analysis shows the usefulness 

of investigation of gene expression modulation to obtain mechanistic information pertinent to 

assess the toxicity versus functional efficacy of chemicals. The comparison of relatively 

simple markers such as Cyp26a1 for the RA pathway (undesired or off target effects) and 

Cyp51 for the sterol biosynthesis pathway (pharmacological or on-target effect) could 

potentially be used for the optimization in the development of new compounds.  
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Abstract 

We evaluated the effect of six azoles on embryonic development in the rat whole embryo 

culture (WEC). Using the total morphological scoring system (TMS), we calculated the ID10 

concentration (effective dose for 10% decrease in TMS). For evaluating gene specific 

responses, we combined previously and newly collected transcriptomics data of rat WEC 

exposed to a total of twelve azoles at their ID10 for 4 hours. Results revealed shared 

expressions responses in genes involved in the retinoic acid (RA) and sterol biosynthesis 

pathways, which are respectively representatives of developmental toxicity and targeted 

fungicidal action of the azoles. Azoles with more pronounced effects on the regulation of RA-

associated genes were generally characterized as more potent embryotoxicants. Overall, 

compounds with strong sterol biosynthesis related responses and low RA related responses 

were considered as more favourable candidates, as they specifically regulated genes related 

to a desired target response. Among the identified sterol associated genes, we detected that 

methylsterol monooxygenase 1 (Msmo1) was more sensitively induced compared to Cyp51, 

a classical biomarker of this pathway. Therefore, we suggest that Msmo1 could be a better 

biomarker for screening the fungicidal value of azoles. In summary, we conclude that the 

embryonic regulation of RA and sterol metabolic pathways could be indicators for ranking 

azoles as embryotoxicants and determining their drug efficacy.  

 

Keywords: Whole embryo culture; Toxicogenomics; Embryonic development; Azoles; 

Retinoic Acid; Sterol biosynthesis  
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Introduction 

Regulatory guidelines for the risk assessment of chemicals require relatively high numbers 

of experimental animals for reproductive and developmental toxicity testing [1]. To reduce, 

refine and replace the use of laboratory animals, a variety of alternative assays has been 

developed over the past decades, including simple cell-line assays, organ cultures or more 

complicated whole embryo culture techniques and organs-on-a chip [2, 3].  

An advanced in vitro model that mimics in vivo organogenesis and embryonic development 

is the rat whole embryo culture (WEC) technique [4, 5]. It is a widely used technique for 

screening embryotoxicants by monitoring both neurulation and organogenesis during 

gestational days (GD) 10 to 12 [6]. A variety of morphological endpoints is combined in the 

Total Morphological Score (TMS) [4]. Applying the TMS in rat WEC, effects of chemicals on 

the embryonic growth and development can be studied both qualitatively and quantitatively.  

WEC also enables the implementation of toxicogenomic-based approaches for mechanistic 

evaluation of the embryotoxic profile of xenobiotics. Gene signatures can predate and 

predict morphological consequences of toxic stimuli [7-11]. Furthermore, transcriptomics can 

be applied to identify biomarkers for detecting specific embryotoxic responses [9]. 

Azoles are antifungal agents for clinical and agricultural use. They have been designed to 

affect the Cyp51 enzyme, which catalyses the conversion of lanosterol to ergosterol on the 

fungal cell membrane, and leads to cell death when affected [12]. In mammalian systems, 

Cyp51 is less sensitive to azoles, but still critical for the sterol biosynthesis pathway. 

Moreover, azoles can induce many toxic responses in mammals by disturbing P450- 

mediated pathways and interfering with retinoic acid (RA) homeostasis [7, 13-15]. RA is 

crucial for maintaining balanced embryonic growth and differentiation, and Cyp26a1 is its 

key regulatory metabolic enzyme, catalysing the first step in the degradation of RA, [16, 17]. 

Previous in vivo and in vitro studies suggest that when rat embryos were exposed to either 

RA or azoles, similar teratogenic outcomes were observed, including craniofacial and axial 

defects [5, 8, 16, 18]. Therefore, RA modulation may play a role in the developmental toxicity 

due to azole exposure.    

In our previous study [7], we combined the WEC technique with transcriptomic analysis for 

determining the effects of six azoles. Gene expression signatures of embryos exposed to the 

six tested azoles suggested that a RA-associated gene set corresponded with the 

toxicological mode of action while a sterol biosynthesis-related gene set represented the 

fungicidal activity of the azole compounds. In the present study, we assessed the relative 

embryotoxic potencies of six additional compounds - three known and three novel azoles - 

by performing a global gene expression profiling of these azoles. Subsequently, the gene 

expression data of all twelve compounds were evaluated in one combined analysis, 
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focussing on the RA and sterol biosynthesis pathways. We aimed to define biomarkers 

related to the aforementioned pathways, as promising molecular endpoints for classifying the 

desired fungicidal as well as the embryotoxic responses of azoles, and correlating the latter 

with available in vivo embryotoxicity data.   
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Materials and Methods 

Animal care 

As described in our previous WEC studies [7, 14], all the animal studies were approved and 

performed at the National Institute of Public Health and the Environment (RIVM) in 

concordance with European regulations. Wistar rats (HsdCpd:WU) (Harlan, The 

Netherlands) were housed at the RIVM Animal Care facility in a climate-controlled room with 

a 12h light cycle (04:00-16:00 dark). Water and food were provided ad libitum. After 

acclimating for 2 weeks, virgin female rats were housed with male rats for a 3-hour mating 

period (9:00-12:00, described as GD 0). Mated dams were afterwards individually housed. 

Rats were daily monitored for their general health condition during the period of the present 

study.  

 

Rat Whole Embryo Culture  

Following previous studies [4, 7, 8, 10, 14], on GD 10, between 9:00 and 12:00 a.m., dams 

were euthanized by intracardiac injection of T61R (Intervet, The Netherlands). Rat embryos 

were immediately separated from the uterus. The peripheral trophoblastic cell zone and 

parietal yolk sac membrane were removed under the microscope leaving both the visceral 

yolk sac and ectoplacental cone intact. Embryos with 1-5 somites were further cultured, 

while only embryos with 2-4 somites were used for gene expression studies [8]. Embryos 

were separately cultured in flasks with 2 mL culture medium, containing 90% pregnant 

bovine serum and 10% rat serum (Biochrom, Berlin, Germany), diluted with 14% Hank’s 

solution (Gibco) and supplemented with 1.6 mg/mL D-glucose and 75 µg/mL L-methionine 

(Sigma-Aldrich, Zwijndrecht, The Netherlands). The culture flasks were placed in rotating 

incubators, completely protected from light exposure and with stable internal temperature of 

37.7oC. A mixture of gas was supplied twice daily for 30 seconds, with increasing 

concentration of oxygen: on the first day (GD10) at 9:00 and 16:00 (5% O2, 5% CO2, 90% 

N2), on the second day (GD11) at 9:00 and 16:00 (20% O2, 5% CO2, 75% N2) and on the 

third day (GD12) at 9:00 (40% O2, 5% CO2, 55% N2). 

 

Morphological assessment and statistical analysis of individual endpoints 

Embryos were cultured for 48 h (GD 10-12) and morphologically assessed according to the 

TMS system [19]. Twenty morphological endpoints were included in this morphological 

assessment, which were sub-divided into two basic groups. These represented growth 

parameters (including yolk sac diameter, crown-rump length, head diameter and number of 

somites) and developmental/functional parameters, such as yolk sac and allantoic blood 
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circulation, heart formation and heart beating, embryo- turning, caudal neural tube, optic and 

otic system, fore- and hind- limb, branchial arches, mandibular and maxillary process and 

the shape and size of somites. The TMS is a quantitative system for identifying any possible 

specific and selective embryotoxic effect of the tested compounds in rat embryos. Therefore, 

the sum of scores for each of the morphological endpoints was calculated for detecting any 

morphological alteration and for comparing with the time-matched controls. Within each 

exposure group, including also the vehicle control (DMSO), 8 rat embryos were evaluated. 

For normalizing the data and eliminating daily variation, the GD10 embryos within the same 

exposure group were derived from dams sacrificed on different days. Statistical analysis was 

performed using the parametric (Student’s t-test) and non-parametric (Mann-Whitney) 

(unpaired), two-sided, and with 95% confidence intervals. Due to high agreement between 

these approaches, the significance values deriving from the Student’s t-test are shown here. 

Images of the examined embryos (exposed for 48 hours to either DMSO or tested 

compounds) were obtained using an Olympus SZX9 camera at ×20 magnification and 

Olympus DP software.   

 

Test compounds and exposure concentrations  

This study combines data of six known azole compounds from our previous publication [7] 

and additional data of three known and three new azoles derived from the present study. For 

the present study, the following three known and three novel azoles were tested in rat WEC 

for 48 hours (0-48h) in a range of concentrations with the lowest concentration inducing no 

morphological effect to the highest being the maximal achievable concentration in culture. 

The three known azoles were: fenarimol (FEN; CAS#60168-88-9, purity 99.9 %, Sigma-

Aldrich, Zwijndrecht, The Netherlands); propiconazole (PRO; CAS#60207-90-1, purity 99.1 

%, Sigma-Aldrich, Zwijndrecht, The Netherlands); and tebuconazole (TEB; CAS#107534-96-

3, purity 99.4 %, Sigma-Aldrich, Zwijndrecht) at 20, 60 200 and 600 µM. BASF SE 

(Ludwigshafen, Germany) kindly provided the three novel azole-compounds (with purity > 95 

%) and their chemical information is summarised in Table 1. B595 and B600 were tested at 

60, 200 and 600 µM; and B599 at 2, 6, 20 and 60 µM. All the compounds were dissolved in 

dimethyl sulfoxide (DMSO, Sigma-Aldrich, Zwijndrecht, The Netherlands), and all embryos 

were exposed to a final DMSO concentration of 0.1%. As has been previously described, 

0.1% DMSO did not significantly alter the morphology (4 and 48h) and has limited effects on 

gene expression after 4h of exposure [7, 10]. The concentration at which rat WEC were 

exposed to conduct the gene expression analysis was in the same line of concept with our 

previous study [7] and calculated after completing the morphological assessment of rat 

embryos (48 hours). Next, we calculated the concentration which results to 10% reduction of 
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the control TMS (ID10) with both PROAST [20] and Graphpad software 

(www.graphpad.com). For microarray analysis, rat WEC were exposed for 4 hours (0-4h) to 

the tested compounds at their ID10 values: FEN at 140µM, PRO at 220µM, TEB at 115µM, 

B595 at 180µM, B599 at 5µM, and B600 at 110µM, as derived from the concentration 

response curves on TMS.       

 

Table 1: Chemical information of the three novel azoles tested in the present study. 

Code Structure Molecular weight (g/mol) 

B595 

 

415.4 

B599 

 

418.5 

B600 

 

434.3 

 

Whole embryo RNA isolation  

For transcriptomics, 4-hour cultured embryos were quickly scored on the basis of their 

somite number, their position in the yolk sac, neural tube developmental stage, crown-rump 

length and head diameter. They were then isolated from the yolk sac and ectoplacental 

cone, placed in 200μL RNAlater (Ambion, Austin, Texas), stored for one week at 4oC, and 

then stored for further processing at -80oC.  After the embryos were thawed on ice, they 

were separately homogenized by passing them 10 times though a 1mL syringe with a 26G 

needle. RNA was further isolated by using the RNeasy Micro Plus RNA isolation kit (CAS 

number 74034, Qiagen, the Netherlands) and manufacturer’s protocol. RNA was eluted with 
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14μM RNase-free H2O and stored at -80oC. Quantity and quality of the isolated RNA were 

measured with Nanodrop (Nanodrop Technologies Inc., Wilmington, Delaware) and 2100 

BioAnalyzer (Agilent Technologies, Palo Alto, California). Samples with absorbance value 

between 1.9 and 2.2 (ratio 260mm/280mm) and RNA integrity number (RIN) higher than 8 

were further used for performing the microarray analysis.  

 

Microarray hybridization 

RNA hybridization and microarray experimentations were performed by the Dutch Service 

and Support Provider (MAD) of the University of Amsterdam, the Netherlands. In agreement 

with our previous publication [7], for every sample, RNA was amplified, biotin-labelled and 

hybridized to Affymetrix GeneChip HT RG-230 PM Array Plates according to the provided 

protocols by Affymetrix (Santa Clara, CA). After staining, the HT Array plate was read by the 

Affymetrix GeneChip® HT Scanner and analyzed by the Affymetrix GeneChip® Operating 

Software. For performing the aforementioned steps, the GeneTitan® Hybridization, Wash, 

and Stain Kit for 3’ IVT Arrays (cat no. 901530) was used. In total, 56 arrays were further 

analysed (8 embryos per exposure group, 6 tested compounds and 1 control group). 

 

Microarray analysis and data processing 

The quality control (QC) and the normalization of the microarray data were performed using 

the Affymetrix array QC pipeline at ArrayAnalysis.org webpage (www.arrayanalysis.org) [21], 

designed by the Department of Bioinformatics in Maastricht University. Due to normal 

expected biological differences between the two studies ([7] and present) and, consequently, 

to eliminate any experimental-specific gene responses, the raw data were separately 

normalized with their appropriate control for each study and accordingly processed. Raw 

microarray data were inspected for their quality by assessing the 3´/5´ ratios for β-actin and 

GAPDH, RNA degradation, background intensity, signal quality and the probe-set 

homogeneity with NUSE (Normalized Unscaled Standard Error) and RLE (Relative Log 

Expression). The Affymetrix CEL files were further normalized by using the Robust Multichip 

Average (RMA) algorithm [22] and the Brainarray custom CDF version 19 probe set 

annotation (http://brainarray.mbni.med.umich.edu/Brainarray/default.asp) [23]. In total, 

13,877 probe sets, each corresponding to an Entrez Gene ID, were further evaluated by 

performing a statistical analysis in R (www.R-project.org) and Microsoft Excel. Raw and 

normalized data were deposited in NCBI GEO (www.ncbi.nlm.nih.gov/geo/) under accession 

number GSE102082.  
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Identification of significantly altered genes 

Normalized data were log transformed. For each exposure condition, gene expression data 

were compared to the appropriate control (each study has a separate control group), for 

calculating absolute average fold changes of individual gene expression. Differentially 

expressed genes were identified by using ANOVA, using a p-value < 0.001 and a False 

Discovery Rate (FDR) of 10%, as stringency criteria. The statistical criteria were set similar 

to earlier published studies from our laboratory, and they partly determined the number of 

genes differentially expressed. The 53 genes, which were differentially expressed in at least 

one of the eight rat WEC samples from their respective exposure groups, were combined for 

further analysis. Gene expression responses were visualized using a heatmap combined 

with hierarchical clustering (Euclidean distance, Ward linkage) as well as Principal 

Component Analysis (PCA). Each bar in the heatmap represents the average of the gene 

expression in the experimental group compared to the respective control group of each 

study. 

 

Functional interpretation analysis of differentially expressed genes  

Following the concept of our previous study [7], functional annotation and overrepresentation 

analysis were performed using DAVID (https://david.ncifcrf.gov/) [24] and literature data [5, 

17, 25]. Here, we additionally applied the gene sets already identified from our previous 

study, which included genes participating in RA pathway, general development and the 

sterol biosynthesis pathway. Furthermore, we indicated three additional pathways that 

importantly identified genes belong to apoptosis, neural differentiation, and vessel formation. 

The combined gene expression data were summarized to absolute average fold changes 

per pathway. Next, the absolute average fold changes of genes of interest or of the whole 

pathway per exposure group were plotted against the compound concentration used. Finally, 

the absolute fold change of gene expression per RA and sterol biosynthesis pathways 

versus the used ID10 concentrations and the relative in vivo potencies of the tested 

compounds in rat embryos were plotted in a 3D plot using R.  

 

In vivo data analysis  

In addition to previously derived in vivo data [7], a literature overview was performed to 

determine the in vivo developmental toxic profile of the three known  azoles. Applying the 

same criteria concerning the species, chemical exposure during specific GD and scheme of 

dosing range, we selected studies performed in rats orally exposed to the tested compounds 

during either GD6-15 or GD7-16 at multiple dose regimes. Studies with at least one control 
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group and two dose groups were selected to allow analysis using the Benchmark Dose 

(BMD) approach. The BMD values were calculated based on the evidence of adverse 

skeletal changes or cleft palate formation, both selected as sensitive endpoints of in vivo 

developmental toxicity and specific for the tested group of chemicals. For some of the tested 

compounds, other morphological endpoints were considered for calculating the BMD values, 

dependent on the specificity of the malformations observed. A concentration-response curve 

was fitted to the data to determine the BMD for the selected benchmark response (BMR) for 

each tested azole. The BMD was defined as 10% additional incidence of adverse skeletal 

changes, cleft palate or any other relevant morphological alteration (BMD10). The BMD10 of 

each compound was calculated with BMD and PROAST software [20] using dichotomous 

concentration-response models (quantal data). Among the several models that were fitted, 

the selection of the best model was determined based on the goodness of fit (p-value>0.05). 

The in vivo prenatal developmental toxicity data for the three new azoles were provided by 

BASF. For the three novel compounds, given the available data, we proceeded with a 

qualitative in vivo potency ranking concept, which was adjusted and applied in our study, 

including also the known compounds. For implementing this approach of in vivo analysis, the 

profiles of the tested compounds were characterized as potent, moderate and weak or non-

potent.         
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Results 

Relative potency of azoles causing morphological alterations in rat WEC  

All azoles induced some form of developmental toxicity in a concentration-dependent 

manner in WEC (Figure 1, Table 2).  All newly tested compounds showed statistically 

significant effects on TMS at concentrations higher than 60 µM, except B599, which affected 

TMS at 20 µM (Table 2). Caudal neural tube and somite formation were the most sensitive 

parameters for all compounds, except PRO. ID10 concentrations on TMS were calculated for 

all the tested compounds from Figure 1, after combining the current and our previous study 

[7]. The decreasing potency ranking of the tested azoles was as follows: B599 > FLU ~ MCZ 

> KTZ > DFZ ~ B600 > TEB > FEN > TDF > B595 > PRO > PTZ with ID10s of 5, 25, 40, 110, 

115, 140, 150, 180, 220 and 250 µM, respectively.  

 

 

 

Figure 1: Total Morphological Score (TMS) concentration-responses of twelve azoles in the 

rat WEC after 48 hours of exposure. Each point represents a mean ± SD (N=8). The curves 

for the six compounds in the left side list were reproduced from [7]. 

 

  



Tr
an

sc
rip

to
m

ic
s 

of
 a

zo
le

s 
in

 th
e 

ra
t W

EC
 

11
4 

 Ta
bl

e 
2:

 O
ve

rv
ie

w
 o

f m
or

ph
ol

og
ic

al
 e

ffe
ct

s 
of

 th
e 

te
st

ed
 a

zo
le

s 
in

 th
e 

ra
t W

EC
 a

ss
ay

. 

C
om

po
un

d 
C

on
ce

nt
ra

-
tio

n 
(μ

M
) 

TM
S

 
C

R
L 

(m
m

) 
S

48
h–

 S
0h

 
FO

R
E

 
M

ID
 

H
IN

D
 

C
A

U
D

 
O

TI
C

 
O

P
TI

C
 

B
R

A
N

 
M

A
N

D
-M

A
X

 
S

O
M

 
H

E
A

R
T 

D
M

S
O

 
0 

65
.8

±1
0.

7 
4±

0.
11

 
25

±0
.8

3 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 

FE
N

 

20
 

65
.9

±1
.7

4 
4.

1±
0.

09
 

24
±0

.9
2 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

60
 

63
.8

±1
.6

2 
4.

0±
0.

27
 

24
±1

.2
8 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

20
0 

51
.7

±7
.7

1*
*

* 
3.

7±
0.

19
 

20
±2

.0
0*

*
* 

- 
- 

- 
**

 
* 

- 
* 

* 
**

 
- 

60
0 

19
.8

±3
.3

5*
*

**
 

2.
3±

0.
52

**
* 

# 
**

**
 

**
**

 
**

**
 

**
* 

**
**

 
**

**
 

**
**

 
**

**
 

**
**

 
**

**
 

P
R

O
 

20
 

65
.2

±1
.7

1 
4.

0±
0.

16
 

25
±0

.9
2 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

60
 

64
.4

±1
.7

5 
4.

1±
0.

09
 

24
±0

.9
2 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

20
0 

60
.0

±5
.0

4*
 

3.
8±

0.
18

 
23

±1
.1

3*
 

- 
- 

- 
- 

- 
- 

* 
- 

- 
- 

60
0 

31
.8

±8
.2

4*
*

**
 

3.
1±

0.
32

**
* 

# 
**

**
 

**
**

 
**

**
 

**
**

 
**

* 
**

**
 

**
**

 
**

 
**

**
 

**
**

 

TE
B

 

20
 

65
.7

±1
.0

7 
4.

2±
0.

14
 

24
±0

.5
2 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

60
 

63
.6

±2
.0

3 
4.

0±
0.

28
 

23
±0

.9
3 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

20
0 

52
.4

±5
.2

2*
* 

3.
7±

0.
16

 
19

±2
.0

0*
 

- 
- 

- 
**

 
- 

- 
* 

- 
**

 
- 

60
0 

15
.3

±2
0.

5*
*

**
 

1.
7±

0.
10

* 
# 

**
**

 
**

**
 

**
**

 
**

* 
**

**
 

**
**

 
**

**
 

**
**

 
**

**
 

**
**

 

B
59

5 

60
 

66
.2

±0
.8

4 
3.

9±
0.

17
 

24
±1

.1
9 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

20
0 

57
.7

±4
.2

4*
 

3.
7±

0.
19

* 
22

±1
.9

3*
 

- 
- 

- 
* 

- 
- 

- 
- 

**
 

- 

60
0 

27
.9

±1
2.

12
**

* 
2.

9±
0.

58
**

**
 

14
±4

.9
6*

*
**

 
**

**
 

**
**

 
**

**
 

**
* 

**
* 

**
* 

**
**

 
**

* 
**

**
 

**
**

 

B
59

9 

2 
65

.9
±0

.9
2 

4.
0±

0.
19

 
24

±0
.0

0 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 

6 
59

.8
±3

.6
0 

4.
0±

0.
14

 
23

±0
.7

1 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 

20
 

45
.3

±7
.1

0*
* 

3.
7±

0.
16

 
18

±1
.2

8*
*

* 
**

 
- 

- 
**

* 
**

 
- 

**
 

- 
**

 
- 

60
 

24
.4

±3
.5

7*
*

**
 

2.
7±

0.
23

**
* 

12
±3

.7
8*

*
**

 
**

**
 

**
* 

**
**

 
**

* 
**

**
 

**
**

 
**

**
 

**
* 

**
**

 
**

**
 

B
60

0 

60
 

65
.1

±1
.3

2 
3.

9±
0.

37
 

24
±0

.6
4 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

20
0 

50
.3

±1
.6

0*
 

3.
5±

0.
23

* 
23

±0
.9

2*
 

- 
- 

* 
**

 
- 

- 
* 

* 
- 

* 

60
0 

19
.0

±3
.6

7*
*

**
 

1.
9±

0.
50

**
**

 
# 

**
**

 
**

**
 

**
**

 
**

* 
**

**
 

**
**

 
**

**
 

**
**

 
**

**
 

**
**

 

Ea
ch

 n
um

be
r r

ep
re

se
nt

s 
a 

m
ea

n 
± 

SD
 (N

=8
, S

tu
de

nt
’s

 t-
te

st
: *

 p
 <

 0
.0

5,
 *

* 
p 

< 
0.

00
5,

 *
**

 p
 <

 0
.0

00
5,

 *
**

* 
p 

< 
0.

00
01

). 
C

R
L:

 c
ro

w
n-

ru
m

p 
le

ng
th

; S
48

h-
 S

0h
: n

um
be

r o
f s

om
ite

s 
th

at
 f

or
m

ed
 d

ur
in

g 
th

e 
cu

ltu
re

 p
er

io
d 

of
 r

at
 W

EC
; 

FO
R

E:
 f

or
eb

ra
in

; 
M

ID
: 

m
id

br
ai

n;
 H

IN
D

: 
hi

nd
br

ai
n;

 C
AU

D
: 

ca
ud

al
 n

eu
ra

l t
ub

e;
 O

TI
C

: 
ot

ic
 s

ys
te

m
; 

O
PT

IC
: 

op
tic

 s
ys

te
m

; 
BR

AN
: b

ra
nc

hi
al

 a
rc

he
s;

 M
AN

D
-M

AX
: m

an
di

bu
la

r a
nd

 m
ax

illa
ry

 p
ro

ce
ss

; S
O

M
: q

ua
lit

y 
of

 s
om

ite
s 

an
d 

H
EA

R
T:

 h
ea

rt;
 “#

”: 
co

ul
d 

no
t b

e 
m

ea
su

re
d.

 

Transcriptomics of azoles in the rat WEC 

112 
 

group and two dose groups were selected to allow analysis using the Benchmark Dose 

(BMD) approach. The BMD values were calculated based on the evidence of adverse 

skeletal changes or cleft palate formation, both selected as sensitive endpoints of in vivo 

developmental toxicity and specific for the tested group of chemicals. For some of the tested 

compounds, other morphological endpoints were considered for calculating the BMD values, 

dependent on the specificity of the malformations observed. A concentration-response curve 

was fitted to the data to determine the BMD for the selected benchmark response (BMR) for 

each tested azole. The BMD was defined as 10% additional incidence of adverse skeletal 

changes, cleft palate or any other relevant morphological alteration (BMD10). The BMD10 of 

each compound was calculated with BMD and PROAST software [20] using dichotomous 

concentration-response models (quantal data). Among the several models that were fitted, 

the selection of the best model was determined based on the goodness of fit (p-value>0.05). 

The in vivo prenatal developmental toxicity data for the three new azoles were provided by 

BASF. For the three novel compounds, given the available data, we proceeded with a 

qualitative in vivo potency ranking concept, which was adjusted and applied in our study, 

including also the known compounds. For implementing this approach of in vivo analysis, the 

profiles of the tested compounds were characterized as potent, moderate and weak or non-

potent.         
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Table 2: Overview of morphological effects of the tested azoles in the rat WEC assay. 

Compound Concentra-
tion (μM) TMS CRL (mm) S48h– S0h FORE MID HIND CAUD OTIC OPTIC BRAN MAND-MAX SOM HEART 

DMSO 0 65.8±10.7 4±0.11 25±0.83 - - - - - - - - - - 

FEN 

20 65.9±1.74 4.1±0.09 24±0.92 - - - - - - - - - - 

60 63.8±1.62 4.0±0.27 24±1.28 - - - - - - - - - - 

200 51.7±7.71**
* 3.7±0.19 20±2.00**

* - - - ** * - * * ** - 

600 19.8±3.35**
** 2.3±0.52*** # **** **** **** *** **** **** **** **** **** **** 

PRO 

20 65.2±1.71 4.0±0.16 25±0.92 - - - - - - - - - - 

60 64.4±1.75 4.1±0.09 24±0.92 - - - - - - - - - - 

200 60.0±5.04* 3.8±0.18 23±1.13* - - - - - - * - - - 

600 31.8±8.24**
** 3.1±0.32*** # **** **** **** **** *** **** **** ** **** **** 

TEB 

20 65.7±1.07 4.2±0.14 24±0.52 - - - - - - - - - - 

60 63.6±2.03 4.0±0.28 23±0.93 - - - - - - - - - - 

200 52.4±5.22** 3.7±0.16 19±2.00* - - - ** - - * - ** - 

600 15.3±20.5**
** 1.7±0.10* # **** **** **** *** **** **** **** **** **** **** 

B595 

60 66.2±0.84 3.9±0.17 24±1.19 - - - - - - - - - - 

200 57.7±4.24* 3.7±0.19* 22±1.93* - - - * - - - - ** - 

600 27.9±12.12
*** 2.9±0.58**** 14±4.96**

** **** **** **** *** *** *** **** *** **** **** 

B599 

2 65.9±0.92 4.0±0.19 24±0.00 - - - - - - - - - - 

6 59.8±3.60 4.0±0.14 23±0.71 - - - - - - - - - - 

20 45.3±7.10** 3.7±0.16 18±1.28**
* ** - - *** ** - ** - ** - 

60 24.4±3.57**
** 2.7±0.23*** 12±3.78**

** **** *** **** *** **** **** **** *** **** **** 

B600 

60 65.1±1.32 3.9±0.37 24±0.64 - - - - - - - - - - 

200 50.3±1.60* 3.5±0.23* 23±0.92* - - * ** - - * * - * 

600 19.0±3.67**
** 1.9±0.50**** # **** **** **** *** **** **** **** **** **** **** 

Each number represents a mean ± SD (N=8, Student’s t-test: * p < 0.05, ** p < 0.005, *** p < 0.0005, **** p < 0.0001). CRL: crown-rump length; S48h- S0h: number of somites 
that formed during the culture period of rat WEC; FORE: forebrain; MID: midbrain; HIND: hindbrain; CAUD: caudal neural tube; OTIC: otic system; OPTIC: optic system; 
BRAN: branchial arches; MAND-MAX: mandibular and maxillary process; SOM: quality of somites and HEART: heart; “#”: could not be measured. 
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Significantly regulated genes across twelve azoles  

For studying the effect of the tested azoles on the transcriptome, embryos were exposed for 

4 hours on GD10 (0-4 hours of culture) to the ID10 concentration of each compound, as 

calculated from Figure 1. Somite formation was unaffected directly after all 4-hour 

exposures, indicating the absence of developmental delays at that stage  (Figure 2).   

 

Figure 2: Somitogenesis in rat embryos exposed for 4 hours to six azoles at their ID10 

concentration, collected for whole transcriptome analysis. Individual data with mean ± SD 

are plotted (N=8 embryos per group).  

    

For analysing the gene expression data, we compared each exposure group with the 

appropriate concurrent vehicle control and we applied the same stringency criteria as 

mentioned previously (p-value < 0.001 and FDR of 10%) [7]. The combined data analysis 

revealed 53 genes that were statistically significantly regulated by at least one of the twelve 

azoles. As shown in Figure 3, embryonic exposure to KTZ and DFZ caused the highest 

number of statistically significant regulation of genes. On the other hand, MCZ and PTZ did 

not show statistically significantly regulated genes under the stringency criteria applied. 

The hierarchical clustering of the expression data of the 53 genes is illustrated as a heatmap 

(Figure 4). Pathway analysis using DAVID revealed enrichment of genes involved in six 

pathways or processes; RA metabolism, general development, sterol biosynthesis, 

apoptosis, neural differentiation and vessel formation (Figure 4, right panel). For some of the 

genes, an overlap was observed among pathways. For example, Cyp26a1 appears both in 

the RA pathway and in the general development pathway.    
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Figure 3: Number of genes statistically significantly regulated by each azole at the ID10 on 

TMS among the tested azoles (p-value<0.001 and FDR 10%). 

 

Figure 4: Hierarchical clustering of the average gene expression change in rat WEC by 

twelve azoles (N=8, p-value<0.001 and FDR 10%), with which 53 genes were identified as 

statistically significantly regulated by at least one of the compounds. Right panel: gene 

functionality in six pathways: RA (RA), general development (DEV), sterol biosynthesis 
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(STE), apoptosis (APO), neural differentiation (NEU) and vessel formation (VES). Colors 

indicate changes to vehicle. Red, up-regulation; green, down-regulation; yellow, unchanged.     

Quantitative gene expression changes in the RA and sterol biosynthesis pathways  

Within the six functional gene groups that were identified, the RA and sterol biosynthesis 

pathways were further analysed. As illustrated in Figure 5, the RA pathway showed a higher 

magnitude of regulation compared to the sterol biosynthesis pathway in embryos exposed to 

most compounds, excluding DFZ, MCZ and PTZ. DFZ induced regulation of both pathways 

to the same extent. MCZ and PTZ revealed a lack of response of both pathways under the 

significance thresholds applied.  

 

 

Figure 5: Quantitative gene expression changes, related to the RA and sterol biosynthesis 

pathways, of twelve azoles in the rat WEC. 

 

Gene expression changes observed throughout the sterol biosynthesis pathway  

The sterol biosynthesis pathway in mammalian systems consists of a cascade of enzymatic 

reactions initiated by fatty acid degradation. As in fungi, lanosterol is further converted to 

intermediate moieties, which are substrates for Cyp51, Msmo1 and Nsdhl for synthesizing 

cholesterol (Figure 6A).  

We numbered the enzymes included on the microarray in the order of appearance in the 

sterol biosynthesis pathway (Figure 6A) and plotted their gene expression changes by the 

different azoles (Figure 6B). Msmo1 showed the highest gene expression regulation after 

exposure to the tested compounds, except for PTZ, TEB and B599 (Figure 6B). The greatest 

effect on the regulation of Msmo1 was observed in rat embryos exposed to DFZ (1.96), KTZ 

(1.82) and TDF (1.55). The remaining genes were regulated in a relatively similar expression 

ratio, with the exception of Dhcr7 in the case of PRO, which reached almost the same level 

of expression of Msmo1 (Figure 6B), at a fold change of 1.5. 
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A     

 
B 

 

Figure 6: A. The sterol biosynthesis pathway in the Rattus norvegicus, including the main 

intermediate moieties and the contributing enzymes adapted from www.wikipathways.org 

[26] and [27]. B. The quantitative regulation of the genes that participate in the sterol 

biosynthesis pathway in rat WEC exposed to twelve azoles. 
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A general comparison of in vivo and in vitro data 

In vivo studies on rat embryos, in which the developmental toxic profile of the twelve azoles 

was tested, were further analysed and the BMD10 value of each compound was calculated 

(Table 3). With these data, we performed a potency ranking based on the calculated BMD10 

concentration, which was based on an overall assessment of doses-dependent embryotoxic 

effects. The BMD10 was derived based on the most sensitive endpoint, which might differ 

between compounds. Abnormalities might include skeletal defects, cleft palate, and absence 

of renal papilla or hydronephrosis. For the three novel compounds B595, B599 and B600, in 

vivo prenatal developmental toxicity data were provided by BASF SE laboratories. The 

potency ranking of these compounds was qualitatively performed based on limited dose-

response information [28] and resulted in the following order: B599 > B600 > B595. Based 

on the in vivo qualitative and quantitative (where applicable) data, we allocated the twelve 

tested compounds into one of three developmental toxicity potency groups. The most potent 

compounds were B599, FLU and KTZ. The moderately  embryotoxic compounds in vivo 

were B600, FEN, MCZ, TDF and TEB, while the weak or non-potent compounds were B595, 

DFZ, PRO and PTZ (Table 3). Table 3 contains also our in vitro data of the twelve azoles, 

including the ID10 concentrations based on TMS.  

 
Figure 7 shows a comparison of RA pathway regulation (x-axis), ID10 in WEC (y-axis) and 

sterol biosynthesis pathway regulation (z-axis) with in vivo potency groups (Table 3, bar 

colour). B599, FLU and KTZ, the potent developmental toxicants profile both in vivo (red 

bars) and in vitro (low ID10 in the WEC assay), tended to have a more pronounced effect on 

regulation of the RA pathway (Figure 7). The compounds with moderate developmental toxic 

profile (yellow bars) showed a more limited effect on the RA and sterol biosynthesis 

pathways. MCZ was classified as a moderate compound in the in vivo situation, which was 

not in agreement with the morphological assessment of embryos in the WEC assay. 

Additionally, the transcriptomic data revealed an absence of gene-responses in embryos 

exposed to this azole (Figure 3). These data were similar to the transcriptome data obtained 

from embryos exposed to PTZ, which was selected as a non-toxic compound for our study. 

In contrast, PRO, a weak embryotoxicant in vivo and in vitro, presented a strong RA-related 

profile, similar to TDF. DFZ and KTZ conceded a comparable regulation of the sterol 

biosynthesis pathway, but DFZ did not significantly disturb the RA-related genes. For the 

remainder of the compounds, we found mixed responses, with a stronger regulation of the 

RA pathway than of the sterol biosynthesis pathway (Figure 7).   
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Table 3: Overview of in vivo and in vitro developmental toxicity data of twelve azoles. 

Compound 

in vitro WEC in vivo 

ID10 

(µM) 

BMD10 

(µmol/kg) 
Potency Group 

B599 5 - Potent 

FLU 25 9.1 [29] Potent 

MCZ 25 258.3 [30] Moderate 

KTZ 40 20.1 [31] Potent 

B600 110 - Moderate 

DFZ 110 596.5 [32] Weak 

TEB 115 275.8 [33] Moderate 

FEN 140 88.5 [34] Moderate 

TDF 150 91.5 [35] Moderate 

B595 180 - Weak 

PRO 220 386.7 [36] Weak 

PTZ 250 917.8 [37] Weak 
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Figure 7: Correlation of in vivo and in vitro in the rat WEC data for twelve tested azoles. 

Bars with red, yellow and green colour indicate in a qualitative way the potent, moderate and 

weak or non-toxic in vivo profile of these azoles. The length of the bars represents the in 

vitro ID10 concentration (y-axis).    
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Discussion 

In the present study, azoles induced concentration dependent developmental toxic 

responses in rat WEC, including abnormalities in neural tube closure, formation of the 

branchial arches and development of the otic cup. Embryos exposed in vivo to the same 

azoles demonstrated commonly observed abnormalities for triazoles , including cleft palate 

[31] and skeletal abnormalities [30, 32, 33, 35-37], or hydronephrosis [34] and abnormalities 

in the urogenital system [29]. It should be noted that some of these abnormalities are 

induced in vivo at stages beyond the WEC developmental period. The pattern of 

abnormalities due to either in vivo or in vitro exposure to azoles is similar to that observed 

after exposure to RA [5, 8]. This observation is supportive of an involvement of the RA 

pathway in the developmental toxicity of azoles. Comparing in vitro ID10 with the in vivo 

BMD10 levels (Table 3), we concluded that potency ranking in the WEC was largely similar to 

the potency ranking in the in vivo situation.  

We identified 53 genes statistically significantly regulated (ANOVA, p-value<0.001, FDR 

10%) by at least one of the compounds, which were further categorized into six functional 

gene-groups. We further analysed the responses of genes associated with the sterol 

biosynthesis and RA pathways, due to their crucial role for determining the fungicidal mode 

of action (sterol biosynthesis pathway) and the embryotoxic potency (RA pathway) of the 

tested compounds. 

Among the regulated sterol biosynthesis related genes, Msmo1 showed the highest increase 

in expression, after embryonic exposure to KTZ and DFZ, as well as TDF and PRO. Despite 

the fact that mammalian systems are less sensitive than fungal systems to azoles [38], the 

expression of sterol related genes in both biological systems determines azoles’ fungicidal 

activity. The observed significant induction of Msmo1 (or its synonym, Sc4mol) was also 

identified in previous studies in the rat WEC [7, 25], as well as in the zebrafish test (ZET) 

[39] and Embryonic Stem Cell Test (EST) [40]. Additionally, considering that the expression 

pattern of all the individual sterol related genes was constant among the tested compounds 

(Figure 6B), we suggest that Msmo1 could be a more sensitive biomarker compared to the 

already characterized biomarker Cyp51 [12] for studying the fungicidal activity. However, for 

concluding about the extent of each gene’s specific importance in the sterol biosynthesis 

pathway, studies on the level of the metabolome are needed. Msmo1 is involved in an 

oxidation-reduction process, while it is also associated with malformations, such as 

microcephaly and congenital cataract, which could be linked with its extra role in the central 

nervous system development (CNS), and especially in the midbrain neurogenesis [41]. Pinto 

at al. [42] described that Msmo1 transcription is activated by the liver X receptors (LXR), 

which are binding to the retinoid X receptors (RXR), a connection that could be further 
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associated with RA. Additionally, Srebp transcriptional factors regulate the cholesterol 

biosynthesis pathway in mammalian systems, via interacting with the binding sites of Hmgcr 

and Fdft1 in the mevalonate arm in the beginning of the pathway [43]. Srebp interacts 

directly with LXR and therefore may indirectly regulate genes in the sterol biosynthesis 

pathway [42, 44].  

Additionally, we observed that the potent in vivo and in vitro embryotoxicants, as well as the 

moderate TDF and the weak PRO, altered the expression of RA-related genes in a similar 

manner. The commonly highest upregulated gene was Cyp26a1, which is upregulated for 

metabolizing excess level of RA [45]. Therefore, we suggest that the overexpression of the 

RA pathway could be the underlying mechanism of induced developmental toxicity of azoles 

in the rat WEC. Consequently, the application of RA-related biomarkers is valuable for 

distinguishing highly potent embryotoxicants within the same class of chemicals. 

MCZ, a compound with potent in vitro and moderate in vivo embryotoxic potency, lacked a 

statistically significant response on the level of transcriptome in our combined analysis.  This 

suggests that transcriptomics may not be the optimal method to detect the embryotoxic 

mode of action of MCZ. Apoptosis, an additionally identified functional gene group, was 

extensively regulated by the azoles that showed the highest response of RA-related genes. 

Interestingly, similar to the strong in vitro embryotoxicants FLU, KTZ and B599, MCZ did 

show enhanced expression of Ngfr, an apoptosis related gene (Figure 4). Ngfr is associated 

with neuron differentiation in the brain region [46], while it has been also suggested to be 

mediator for thyroid hormone activation [47] and a negative regulator of angiogenesis [48]. 

Another apoptosis related strong effect was identified on the expression of Fam101a, which 

is localized in the midbrain and forebrain of 5-somite stage embryos [49, 50], while it is 

involved in the bone maturation and interacts with RA [51]. Furthermore, Txnip, a general 

biomarker of stress responses, is related with the dysregulation of cell division [52, 53]. The 

similarity of expression among genes of RA and apoptosis pathways could support our 

hypothesis that RA related responses are directly linked to developmental toxic responses 

and, therefore, could justify the consequent embryotoxicity of the corresponding azoles. 

Moreover, Lhx1, the most pronounced expressed gene among the neural differentiation 

related genes, was remarkably affected in WEC exposed to B599, FLU, KTZ and TDF, 

which are among the most potent compounds. Lhx1 has been also suggested to be 

indirectly associated with RA and RA-related morphological alterations. It is localized in the 

brain and has been shown to interact with development related genes and transcriptional 

factors [54], such as the Hox and Pax genes, and therefore, it could be indirectly correlated 

with the activation of the Gata and Wnt signalling pathways [55-57]. Karavanov et al. [58] 
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have also described its additional role in the kidney development during embryonic 

development and in later stages for maintaining the function of the ureteric bud.  

Embryos exposed to azoles with high ID10 concentrations disclosed a notable 

downregulation of a set of genes, which could explain the sensitivity of the WEC system 

compared to the in vivo screening in ranking DFZ and PRO. The highest regulation of Ifrd1, 

which participates in neuron differentiation and general development pathways (Figure 4), 

could be associated with cellular stress in multicellular organisms according to Zhao et al. 

[59]. In those embryos, we also observed a significant accompanied downregulation of both 

Arrdc4, a protein that regulates the ubiquitin-protein transferase activity [60], and Txnip 

(Figure 4). Txnip is a member of the alpha arrestin protein family (to which Arrdc4 belongs 

too), however the exact mechanism of collaboration of these two genes has not been 

elucidated yet [61].  

To summarize, we investigated the potency ranking of twelve azoles in the rat WEC, the vast 

majority of which was in line with the in vivo potency ranking. We also studied the 

toxicological and fungicidal mode of action of the selected compounds on the level of 

transcriptome using the set of biomarkers that has been previously selected [7]. We 

concluded that the most potent embryotoxicants, both in vivo and in vitro, revealed an 

overexpression of genes that participated in RA related pathways, and were associated with 

apoptosis and stress responses. Moreover, we identified responses of genes that 

participated in the sterol biosynthesis pathway and, therefore, related to the fungicidal mode 

of action. We found that Msmo1 was a more sensitive biomarker for screening the functional 

efficacy of azoles compared to Cyp51, which could improve the in vitro assessment of 

existing and future antifungal chemicals. 
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Abstract 

In the present study, we show the value of combining toxico-dynamic and -kinetic in vitro 

approaches for embryotoxicity testing of azoles. We also report on the alterations in gene 

expression induced by azoles. Both the whole embryo culture (WEC) assay and the 

embryonic stem cells test (EST) predicted the in vivo potency ranking of the twelve tested 

azoles with moderate accuracy. Combining these results with relative placental transfer rates 

(Papp values) as determined in the BeWo cell culture model, increased the predictability of 

both WEC and EST, with R2 values increasing from 0.51 to 0.87 and from 0.35 to 0.60, 

respectively. The comparison of these in vitro systems correlated well (R2 = 0.67), correctly 

identifying the strong and weak embryotoxicants. Evaluating specific gene responses related 

with the toxicological and fungicidal mode of action of the tested azoles in WEC and EST, 

we observed that the differential regulation of Dhrs3 and Msmo1 reached higher magnitudes 

in both systems compared to Cyp26a1 and Cyp51. Establishing sensitive biomarkers across 

all the in vitro systems for studying the underlying mechanism of action of chemicals, such 

as azoles, is valuable for comparing alternative in vitro models and for improving insight in 

the mechanism of developmental toxicity of chemicals.  

 

Key words: Whole embryo culture; stem cell test; placental transfer; azoles; biomarkers; 

embryotoxicity    
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Introduction 

The risk assessment of chemicals is still highly dependent on the use of experimental 

animals [1, 2]. Additionally, complying with the European chemical safety legislation 

(REACH), the number of experimental animals will dramatically increase, reaching an 

estimated 22 million vertebrates [3, 4]. Reproductive and developmental toxicology requires 

the highest percentage of experimental animals, which may reach an estimated 60% [5, 6]. 

Over the past decades, awareness has risen about the necessity of developing alternative 

approaches to animal testing for reducing, refining and replacing the animal testing [7]. A 

number of in vitro alternative assays has been developed for screening developmental 

toxicants, including cell lines, single organs and whole embryo cultures. The European 

Centre for the Validation of Alternative Methods (EVCAM) has already validated the 

Embryonic Stem Cell test (EST), the limb bud micromass test and the rat Whole Embryo 

Culture (WEC) assay as alternative in vitro tests for studying the developmental toxicity of 

xenobiotics [3, 8, 9]. 

Among these alternative tests for screening developmental toxicity, only the EST does not 

require the use of animals or animal-derived tissue [9, 10]. Murine pluripotent embryonic 

stem cells can be isolated, cultured and further differentiated to a variety of cell-types, such 

as cardiomyocytes, neural, red blood cells and others [11, 12]. One requirement for the 

differentiation is the formation of multicellular aggregates, the embryonic bodies (EBs), which 

allows the induction of cells of endo-, meso- and ectoderm after continuous in vitro culture, 

mimicking the egg-cylinder stage of an in vivo 5-day old embryo [13]. However, the EST is a 

simplified method, as only one morphological endpoint, the assessment of contracting 

cardiomyocytes following the 10-day differentiation protocol, is considered. Additionally, it 

lacks both the complexity and programmed pattern formation of a whole organism and has 

not any metabolic capacity [3, 9]. The rat WEC is a more complex model, which mimics quite 

well the in vivo situation [14, 15]. In the WEC assay a variety of morphological endpoints, 

quantitatively summarized as a total morphological score, is evaluated for concluding about 

any possible effect on the embryonic growth and development [16, 17]. This model covers 

gestational day (GD) 10 to 12, when neurulation and organogenesis occur. This critical time 

window gives an important advantage for closely monitoring the developmental toxicity in the 

rat WEC, but on the other hand is one of the restrictions of the system as it is not applicable 

for other time windows of development [3, 18].  

One common disadvantage of EST and WEC is the different exposure situation compared to 

in vivo [19]. The placenta is an important organ during the pregnancy, required for the 

transportation of nutrients, oxygen and hormones from the mother to the fetus, as well as for 

removing waste products from the embryonic side [20, 21]. Xenobiotics are differently 
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transferred across the placenta according to their physicochemical properties [22]. 

Therefore, its evaluation would allow better prediction of to which extent the embryo or fetus 

will be exposed to possible embryotoxicants [19, 23, 24]. The ex vivo placental perfusion 

model is a human-based system for studying the transport of xenobiotics across the 

placenta. However, this model is laborious and dependent on the availability of fresh 

placentas that are donated from mothers after deliveries [25]. An alternative to the ex vivo 

placental perfusion model is the BeWo transport assay, which is easy, fast and cheap. The 

BeWo b30 cell line, human choriocarcinoma derived cells, grow on permeable membranes 

from transwell inserts and form a confluent cell layer (the BeWo layer) [25-27]. Using the 

transwell system, it is possible to mimic the in vivo situation, by dividing the well in the 

basolateral and apical compartments, which are related to the maternal and embryonic 

sides, respectively [28]. By exposing the apical compartment to the xenobiotic under 

assessment, its transportation to the basolateral compartment can be measured. 

The assessment of embryotoxic profiles of xenobiotics in the EST and the rat WEC, in 

combination with the BeWo model, enables the evaluation of the morphological effects at 

concentrations that have been corrected for the placental transfer [29, 30]. Furthermore, 

because gene expression responses precede the corresponding morphological changes 

and, consequently, could predict them, gene expression studies could be further 

implemented here for elucidating the mode of toxicological action of the testing compounds 

[31-33]. Consequently, the combination of more in vitro assays with multi-target readouts 

may improve the predictions of embryotoxic responses, distinguishing classes of chemicals 

or identifying unique signatures within the same chemical group [34-36].  

Azoles are antifungal agents with agricultural and clinical use [37]. They have been designed 

to interact with the sterol biosynthesis pathway and further inhibit the fungal Cyp51, which is 

the catalyst for converting lanosterol to ergosterol, disturbing the fungal cell-membrane 

integrity [37, 38]. Some of the azoles have previously shown embryotoxicity in in vivo 

systems, mainly introducing abnormalities related with craniofacial alterations and skeletal 

dysmorphogenesis [29, 39-43]. The main cause of their increased embryotoxicity has been 

postulated to be their interaction with retinoic acid (RA) -related enzymes, such as Cyp26a1 

and Dhrs3, which are modulators of the RA homeostasis in mammalian systems [40, 44-46]. 

RA has been shown to be a morphogen in vertebrate embryogenesis [45, 47]. 

 In the present study, twelve azoles were tested in the EST and the obtained results were 

compared to WEC assay results, which have been reported in our previous study [48]. 

Furthermore, their placental transport rates, obtained with the BeWo model, were combined 

with the effective concentrations in the EST and WEC, to assess if an improvement of the 

correlation between in vitro and in vivo developmental toxicity (potency ranking) could be 
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achieved. We also compared the expression of four genes, two biomarkers of the 

toxicological (Cyp26a1 and Dhrs3) and two of the intended fungicidal (Cyp51 and Msmo1) 

mode of action of azoles.    
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Materials and Methods 

Chemicals 

Nine azoles compounds were purchased from Sigma-Aldrich (Zwijndrecht, The 

Netherlands); flusilazole (FLU; CAS# 85509-19-9); difenoconazole (DFZ; CAS# 119446-68-

3); ketoconazole (KTZ; CAS# 65277-42-1); prothioconazole (PTZ; CAS# 178928-70-6); 

triadimefon (TDF; CAS# 43121-43-3); fenarimol (FEN; CAS#60168-88-9); propiconazole 

(PRO; CAS#60207-90-1); and tebuconazole (TEB; CAS#107534-96-3). Miconazole (MCZ, 

CAS# 22916-47-8) was purchased from Sigma-Aldrich and Alfa Aesar (Germany). BASF SE 

(Ludwigshafen, Germany) kindly provided three novel azoles, encoded as B595, B599 and 

B600, of which the chemical structures are shown in Figure 1. All the compounds, tested in 

the EST, were dissolved in dimethyl sulfoxide (DMSO, Sigma-Aldrich, Zwijndrecht, The 

Netherlands) at 0.25 % v/v final concentration in the culture medium. Antipyrine (CAS# 60-

80-0) and amoxicillin (CAS# 26787-78-0) were purchased from Sigma (Germany) and were 

used as controls for high and low permeability in the BeWo transport tests, respectively. 

They were dissolved in DMSO at a maximum 0.5 % v/v final concentration in HBSS 

(Biochrom, Germany) in cell culture. Fluorescein (CAS# 2321-07-5, Sigma, Germany) was 

used as paracellular transfer control in the BeWo model and was dissolved in HBSS.   



Chapter 5 

137 
	

 

Figure 1: Chemical structures of the twelve azoles under assessment 

 

Embryonic stem cell test (EST) 

Pluripotent stem cell culture 

Murine D3 embryonic stem (ES-D3) cells (ATCC, Rockville, MD) were cultured in 

polystyrene cell culture petri dishes of 35mm diameter (Corning) in humidified atmosphere at 

37oC and 5% CO2 and they were routinely subcultured every 2-3 days. They were 

maintained in culture medium, which consisted of Dulbecco’s modified Eagle’s medium 

(DMEM, Gibco) supplemented with 20% fetal bovine serum (Greiner Bio-One), 1% non-

essential amino acids (Gibco), 1% penicillin/streptomycin (Gibco), 2mM L-glutamine (Gibco) 

and 0.1mM β-mercaptoethanol (Sigma-Aldrich). To maintain the pluripotency of the ES-D3 

cells, murine leukemia inhibitor factor (mLIF; ESGRO, Millipore, the Netherlands) was 

directly added to the culture petri dish at a final concentration of 1000 units/mL.   
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Cardiomyocyte differentiation assay 

Cardiac differentiation of ES-D3 cells was performed according to the protocol [12] using the 

previously described culture medium without containing mLIF. In brief, stem cell suspensions 

of 15x104 cells/mL were further diluted to 3.75x104 cells/mL and placed on ice before starting 

the hanging drops protocol. Next, 20 µL of stem cell suspension was placed on the inner 

part of the lid of a 100 mm diameter petri dish (Greiner Bio-One) containing 5 mL phosphate 

buffered saline (PBS, Gibco), Ca2+ and Mg2+ free, resulting to hanging drops. Each petri dish 

contained 56 drops, and each drop consisted of 750 cells. The dishes were cultured for three 

days at 37oC and 5% CO2, during which the ES-D3 proliferated and formed cell-aggregates, 

called embryonic bodies (EBs). On day three, EBs were transferred to a 60mm-diameter 

bacterial petri dish (Greiner Bio-One), containing 5 mL culture medium without mLIF, and 

were further cultured under the same conditions for two days. After, each individual EB was 

transferred to a single well in a 24-well plate (TPP, Trasadingen, Switzerland), containing 

1mL culture medium without mLIF. After five days, the cardiac differentiation was 

microscopically determined by examining whether the EBs had turn into contracting 

myocardial cells. The plates were scored as positive or negative based on the presence or 

absence of contracting myocardial cells, respectively. For each test compound, the chemical 

exposure started at the differentiation day 3 and refreshed at day 5 when EBs were 

transferred in a new plate-setup. Except for KTZ, all the tested compounds were tested at a 

range of concentration from 0.01 µM to 300 µM. The highest concentration at which KTZ 

tested was 100 µM. For each compound, three independent experiments were performed 

(biological replicates), while each experimental day the experiments were performed in 

duplicates (technical replicates). Additionally, solvent and medium control cultures were 

separately observed for each of the tested compounds. Tests were accepted when 21 out of 

24 EBs exposed to the solvent control (0.25% v/v DMSO) were contracting. The number of 

positive EBs was expressed as fraction of total control (24 EBs).  

 

Cell viability assay 

ES-D3 cells were seeded in a 96-well plate (Greiner Bio-One) diluted to 1x104 cells/mL (500 

cells per well) in culture medium containing mLIF and incubated at 37oC and 5% CO2 to 

allow cell adherence. Afterwards, 150 µL culture medium was added to full-fill each well up 

to 200 µL volume. After continuous incubation for three days, the culture medium was 

removed and replaced with freshly made exposure medium (200 µL), supplemented with 

mLIF and containing the corresponding test compound and concentration for each exposure. 

On day 5, 100 µL of the supernatant medium was removed and 20 µL of CellTiter-Blue 

(G8081, Promega, Leiden, the Netherlands) was added in each of the wells and incubated 
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for two more hours. The assay measures the metabolic capacity of viable cells exposed to 

the tested chemicals to reduce resazurin (blue) into resorufin (pink), which is highly 

fluorescent. The non-viable cells lose this metabolic capacity and, therefore, their do not 

generate a fluorescent signal. The fluorescence was read using SpectraMax® M2 

spectrofluorometer (Molecular Devices, Berkshire, United Kingdom) at 544 nm and 590 nm 

(excitation and emission, respectively). Two independent experiments, in six technical 

replicates each, were performed for each of the tested compounds. Solvent (0.25% v/v 

DMSO), positive (0.1 µg/mL 5-FU) and negative (500 µg/mL Penicillin) controls were 

included in every experiment in six replicates.   

 

Concentration-response curves and determination of both ID50 and IC50 

Results from the EST were analysed and concentration-response curves were fitted using 

the PROAST software [49]. Based on the fit of the curve and with 95% confidence intervals, 

we calculated the concentration (ID50) at which the number of contracting cells were reduced 

to 50% of the control (0.25% v/v DMSO). Following the same rationale, we also calculated 

the IC50 concentration at which exposed cells resulted to 50% decrease in cell viability by 

analysing the data obtained from the corresponding assays. The calculated ID50 

concentration for each of the tested compounds was further applied for performing the gene 

expression studies.  

 

EST exposure to azoles for gene expression analysis 

The experimentally calculated ID50 concentrations for each of the tested azoles were: 23.5 

µM FLU, 13.6 µM DFZ, 13.5 µM KTZ, 20.5 µM MCZ, 122 µM PTZ, 31.8 µM TDF, 77.5 µM 

FEN, 78.6 µM PRO, 57.8 µM TEB, 36.7 µM B595, 7.2 µM B599 and 31.8 µM B600. 

Following the cardiomyocyte differentiation protocol, we exposed the EBs on day 3 and we 

collected them after 24 hours of exposure (day 4) in eppendorf tubes, containing 800 µL 

RNAprotect (Qiagen, Cat. # 76526), which were further stored at -20 oC prior to RNA 

extraction. Concurrent solvent (0.25 % v/v DMSO) and culture medium controls were 

exposed and collected similarly to the exposed cultures. All the exposure groups consisted 

of 8 replicates and the control groups contained 12 replicates. Additionally, extra plates 

containing EBs (three independent experiments in duplicates) exposed to the tested azoles 

at their ID50 were further cultured, following the 10-day EST differentiation protocol. Then, 

they were microscopically examined to determine whether the efficiency of the applied 

concentration for inhibiting the cardiomyocyte contraction is indeed 50%. Three independent 
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experiments, in technical duplicate each, were performed, including also solvent and culture 

medium controls.  

 

RNA isolation  

Before starting the RNA isolation, samples were thawed on ice. RNA was further isolated 

using the RNeasy Mini-extraction kit (Qiagen, Cat. # 74104), following manufacturer’s 

protocol. In brief, tubes containing the EBs were spun down and excess volume of 

RNAprotect was discarded. Then, we added the RLT buffer and by gently pipetting the EBs 

were broken down into smaller pieces. We treated the samples with QIAshredder (Qiagen, 

Cat. # 79654) for better homogenization and therefore, for increasing the RNA yields. Then, 

the lysates were transferred into RNeasy spin columns for purifying the RNA extracts. We 

additionally treated the extracts with the RNase-Free DNase set (Qiagen, Cat.  # 79254), for 

achieving better purification. Quantity and quality of RNA yields were determined with 

Nanodrop (Nanodrop Technologies Inc., Wilmington, Delaware) and 2100 BioAnalyzer 

(Aligent Technologies, Amstelveen, the Netherlands). Samples with absorbance values 

between 1.9 and 2.2 (ratio 260 nm/280 nm) and RNA integrity number (RIN) higher than 8 

were further used for performing the gene expression study.  

 

Gene expression with Real-Time PCR 

For performing the RT-PCR analysis, cDNA was synthesized by using the high-capacity 

cDNA archive kit containing random hexamer primers (Applied Biosystems, Foster City, CA, 

Cat. # 4368814), according to manufacturer’s instructions. The quantification of the mRNA of 

the genes of interest was measured with TagMan gene expression assays (Applied 

Biosystems) on a 7500 Fast Real-Time PCR system. We followed the two-step PCR 

protocol provided by the manufacturer, which included the following thermal cycling 

conditions: 95oC for 20s for the first cycle, followed by 40 cycles of 95oC for 3 s and 60oC for 

30 s. The measured mRNA markers were Cyp26a1 (Applied Biosystems, Cat. # 

Mm00514486_m1), Dhrs3 (Applied Biosystems, Cat. # Mm00488080_m1), Cyp51 (Applied 

Biosystems, Cat. # Mm00490968_m1) and Msmo1 (Applied Biosystems, Cat. # 

Mm00499390_m1). The used housekeeping genes were Hprt1 (Applied Biosystems, Cat.  # 

Mm03024075_m1) for Cyp26a1 and Dhrs3, and Polr2a (Applied Biosystems, Cat. # 

Mm00839502_m1) for Cyp51 and Msmo1. The No Template Control (NTC) and No Reverse 

Transcriptase (no RT) control were included in every RT-PCR run for assessing the reliability 

of the produced results. The mRNA expression was normalized to the value of Hprt1 or 
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Polr2a for each of the reactions according to the comparative Ct method (ΔΔCt) and the 

obtained results were relatively expressed in fold induction of gene expression.     

 

 Gene expression analysis-data processing 

The parametric Student’s t-test two-sided with p < 0.05 approach was used for determining 

the statistical significance on the expression of the selected genes in EST exposed to 

chemicals compared to this exposed to the solvent control (DMSO). All the exposure and 

control (DMSO and medium) groups consisted of 8 and 12 samples, respectively. 

 

BeWo Transport Model 

BeWo b30 culture 

The BeWo b30 culture and transport experiments were performed as described in Li et al. 

[29, 30] with slight adaptations. The BeWo b30 cell line was purchased from AddexBio (Cat. 

# C0030002, Lot. # 7985832; San Diego, USA). It was confirmed to be bacteria, yeast and 

mycoplasma negative (certificate of analysis from AddexBio). For maintaining and culturing 

the BeWo cell line, Dulbecco’s Modified Eagle’s Medium (DMEM) (Cat. # FG0445), HBSS 

without phenol red with Ca2+Mg2+ (Cat. # L2035), Fetal Bovine Serum (FBS) Superior (Cat. # 

S0615, Lot. # 0114F), Penicillin/Streptomycin solution (Cat. # A2213), Trypsin / EDTA 0.05 

% / 0.002 % (Cat. # L2143) and PBS without Ca2+Mg2 (Cat. # L1825) were purchased from 

Biochrom, Germany. Sodium Pyruvate (Cat. # 11360-039) was purchased from Gibco Life 

Sciences, Germany. BeWo b30 cells (passages 24-36) were routinely subcultured, 3 to 4 

times per week, and maintained in polystyrene cell-culture flasks (TRP, Switzerland) in 

culture medium consisted of DMEM supplemented with 10% (v/v) FBS, 1% (v/v) 

Penicillin/Streptomycin solution and 1% (v/v) Sodium Pyruvate under a humidified 

atmosphere of 5% CO2 at 37oC. The cells were harvested after their treatment with 0.05% 

trypsin-EDTA solution. For their subculture (passage), they were seeded in a new cell 

culture flask at a density of 2 to 2.5 x 106 cells/flask and incubated at 37oC and 5% CO2. For 

transport experiment, they were transferred to 12-well plates with transwell polycarbonate 

membranes (12 mm diameter, 0.4 µM pore size; Cat. # 3401, Corning Costar, USA) pre-

coated with human placental collagen type IV (Cat. #5533, Sigma-Aldrich), where they were 

seeded at a density of 1 x 105 cell/cm2 in a 0.5 mL volume (apical compartment), while the 

basolateral compartment contained 1.5 mL culture medium. The culture conditions were the 

same as during the simple cell maintenance (37oC and 5% CO2). The medium in both 

compartments was daily changed until day 6 of post-seeding, when the transfer experiments 

were performed.  
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BeWo transport experiments 

For the Bewo transport model, literature data obtained from Li et al. [29, 30] and additional 

experimental data generated by BASF SE (Germany) were used in this study. The BeWo 

experimental data were generated following the methodology described in these literature 

studies with slight adaptations. Before starting the transfer experiments, the wells were 

equilibrated in HBSS in both compartments for 30 minutes in the incubator and 

transepithelial electrical resistance (TEER) values were measured using a voltmeter (EVOM 

X, Cat. No. 72564, World Precision Instruments, USA) with an EVOM electrode set (STx2, 

World Precision Instruments, USA). The plates were placed under a hot plate at 37°C to 

minimize temperature effects. TEER values were corrected for collagen-coated wells without 

the presence of cells, and transformed in Ω x cm2, by multiplying the measured values in Ω 

per the insert area (1.12 cm2). Only wells showing a TEER value ≥ 44 Ω x cm2) were used 

for transfer experiments. Fresh stock solutions of the compounds were made (10 mM FLU, 

DFZ, MCZ, TDF, amoxicillin and antipyrine in DMSO; 1 mM fluorescein in HBSS) and 

working solutions were made by diluting in HBSS 200x for FLU, DFZ, TDF, amoxicillin and 

antipyrine, and a dilution of 1000x for MCZ. The resulting exposure concentrations were 50 

µM for FLU, DFZ, TDF, amoxicillin and antipyrine, and 10 µM for MCZ, with a maximum 

concentration of 0.5% DMSO in any case. These chosen concentrations were based on the 

preparatory cell viability experiment results, which showed that the cell viability of 3-day 

BeWo cells was not affected after exposure to 50 µM of FLU, DFZ and TDF. However, due 

to decreased cell viability at the concentration of 20 µM of MCZ (75.9 ± 3.0 % viability), the 

BeWo transport experiments for MCZ were performed at 10 µM. Fluorescein was diluted 50 

times in HBSS leading to an exposure solution of 20 µM, which was added at the performed 

experiments as a paracellular control (restricted transfer in the presence of BeWo cells). 

During the substance preparation and transfer experiments, the test compounds were 

protected from light exposure due to their increased sensitivity (especially for MCZ and 

fluorescein). Starting the transport experiments, 0.5 mL of the exposure solutions of each of 

the test substances and controls were added into the apical compartment and 1.5 mL of 

HBSS (transport buffer) to the basolateral compartment. Directly after exposure, 0.2 mL 

samples of the exposure solutions (in triplicate) were collected in 96 deep well plates 

(Thermo Fisher Scientific, Germany). After 15, 30, 60 and 90 min of plate incubation in a 

humidified atmosphere with 5 % CO2 at 37 oC, samples of 0.2 mL were collected from the 

basolateral compartment and replaced by an equal volume of HBSS. At the end of the 

transport experiments, an additional sample of 0.2 mL was collected form the apical 

compartment, for calculating the recovered amount of every tested compound. In each 

transport experiment, antipyrine and amoxicillin were included as controls of high and low 
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permeability of the BeWo layers, respectively. Collected samples were stored at -20 °C for 

further determining their transport rates by LC-MS analysis, conducted at the contract 

research organization Pharmacelsus GmbH (Germany). 

In the end of the transport experiments, the transwells were washed twice with HBSS and 

equilibrated for 30 min in the incubator, with 0.5 mL HBSS in the apical, and 1.5 mL HBSS in 

the basolateral compartment. TEER was measured again using the previously described 

method. Hereafter, 0.5 mL of MTT working solution and 1.5 mL of culture medium were 

added to the apical and basolateral compartments, respectively. After incubation of 30 

minutes at 37 oC, MTT (apical compartment) was replaced by 800 µL 95% DMSO in HBSS. 

After 30 s of shaking, 150 µL of samples from the apical compartment were collected and 

divided in triplicate in a 96-well plate (TRP, Switzerland). The absorbance was measured at 

wavelengths 570 and 690 nm using spectrophotometer (Wallac Equipment). 

  

Ultra-High Performance Liquid Chromatography (UHPLC) Analysis  

Samples were analysed using the Accela 1250 ultra-high performance liquid 

chromatography (UHPLC) to quantify the amount of the tested azoles that were transferred 

from the apical to basolateral compartment and, based on these data, to calculate their 

transport rates and relative Papp values. Samples with 3 µL injection volume were 

separated on an analytical column (Accucore PFP, 2.6 µm, 50 cm x 2.1 mm) with a pre-

column (C6-Phenyl, 4 cm x 2 mm, Phenomenex, Germany). The UHPLC was performed in 

the gradient mode using acetonitrile + 0.2% heptafluoro butyric acid (HFBA), as the organic 

phase, and 0.1% formic acid (FA) in nanopure water, as aqueous phase. Eluents were 

pumped (Dionex UltiMate 3000 RS pump) with a flow rate of 0.6 ml/min. Measurements 

applying the Orbitrap™ technology with the Q-Exactive plus mass spectrometer (MS) were 

used to analyze the samples. As MS tune file, a generic tune file was used. The [M+H]+ ion 

of the diisooctyl phthalate (m/z391.28429), which is ubiquitously present in the solvent 

system, was used as a lock mass for internal mass calibration. The MS was operated in the 

positive full scan mode, the accurate masses of the monitoring ions ±5 mDa were used for 

test item and internal standard peak integration. Further analyzer settings were as follows: 

maximum injection time 150 ms, sheath gas 40, aux gas 10, sweep gas 2, spray voltage 3.8 

kV, capillary temperature 350°C and heater 350°C. For analyzing the LC-MS data, the 

operating software Xcalibur 4.0.27.19 was used. 
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Analysis of BeWo transport data  

For each of the test compounds, the concentration of the samples collected at 0, 15, 30, 60 

and 90 min from the basolateral, as well as from a sample from the apical compartment at 

90 min were determined and converted to nmol. For each compound, the linear appearance 

rate in the basolateral compartment was calculated, used for estimating the apparent 

permeability (Papp) coefficients, according to the following formula:  

!"##	%&'(()%)'*+	 %,- =
∆0
∆+

1×3&  

For calculating the amount of the test compound ΔQ (nmol), transported to the basolateral 

chamber after certain duration of the transport experiment, Δt (s), we applied the following 

formula:  ∆Q at t x+1 = [amount determined at t x+1 (µM) x 1.5 mL] + [amount removed at t x 

(µM) x 0.2 mL]. A (1.12 cm2) is the insert surface area and Co is the determined actual 

exposure concentration (µM). The relative Papp values were calculated by dividing the Papp 

coefficient values of each test compound with the Papp coefficient value of antipyrine 

(reference compound). The recovery of each test compounds was also calculated by adding 

the amount (nmol) of the compound in the apical and basolateral compartment at t90, 

adjusted with the actual exposure amount (nmol) in the apical compartment (0.5 mL), which 

was set at 100%. 

 

In vivo data analysis 

As previously described, we collected literature data regarding the in vivo developmental 

toxic profile of the twelve tested azoles [48]. In brief, we selected studies performed in rats, 

which were orally exposed to the tested compounds during either GD 6-15 or GD 7-16 at 

multiple dose regimes. Studies with at least one control group and two dose groups were 

selected to allow analysis using the Benchmark Dose (BMD) approach. The BMD values 

were calculated based on the evidence of sensitive endpoints of in vivo developmental 

toxicity. A concentration-response curve was fitted to the data to determine the BMD for the 

selected benchmark response (BMR) for each tested azole. The BMD was defined as 10% 

additional incidence of developmental toxicity (BMD10) with BMD and PROAST software 

[49], using dichotomous concentration-response models (quantal data). Among the several 

models that were fitted, the selection of the best model was determined based on the 

goodness of fit (p-value>0.05). The in vivo prenatal developmental toxicity data for the three 

new azoles were provided by BASF. For the three novel compounds, given the available 

data, we proceeded with a qualitative in vivo potency ranking concept, which was adjusted 

and applied in our study, including also the known compounds. For implementing this 
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approach of in vivo analysis, the profiles of the tested compounds were characterized as 

potent, moderate and weak or non-potent. 

 

Correlation tests 

To determine the relationship between the different alternative assays (EST and WEC), with 

or without their combination with the BeWo transfer model, we plotted their calculated ID50 

against ID10 values, respectively. The ID10 concentrations in the rat WEC were obtained from 

our previous study [48]. Then, we fitted a line based on minimizing the sum of residuals of 

the horizontal and vertical distances of the data to the line, to which fit is characterized by 

the coefficient of determination R2, representing the fraction of variation. For evaluating 

whether any of the alternative in vitro assays could better predict the in vivo developmental 

toxic profile of the tested azoles, we plotted the in vivo BMD10 concentrations versus the 

calculated ID50 or ID10 in the case of the EST or WEC, respectively. Additionally, we 

corrected the calculated ID50 and ID10 values with the relative Papp values to evaluate 

whether their correlations with the in vivo BMD10 values may be improved.  

Moreover, we investigated how the two in vitro systems (WEC and EST) could predict the 

expression of 4 genes of interest, which could be further associated with the induced 

developmental toxic profile in rat embryos due to exposure to the tested azoles. The 

expression of the selected genes were obtained from our previous transcriptomics analysis 

[48].  
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Results 

Effect of azoles in inhibiting the differentiation of ES-D3 cells  

All azoles induced a concentration-dependent inhibition of cardiomyocyte differentiation in 

the EST (Figure 2). Except for MCZ and B595, all the ID50 values were observed at 

concentrations much lower than those that caused cytotoxic effects on the cells, assuring 

that the effects did not occur due to cytotoxicity, but because of differentiation inhibition by 

the test compound. B599, KTZ and DFZ were the most potent azoles, showing ID50 values in 

a range of 7 to 14 µM. ID50s of MCZ, FLU, TDF, B600 and B595 were between 20 and 37 

µM. TEB, FEN and PRO were moderately strong embryotoxicants in the EST, revealing 

ID50s ranging between 55 and 80 µM. PTZ was the weakest azole with an ID50 at 122 µM.    
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Figure 2: Concentration-dependent effects of the twelve azoles in the EST, illustrated with 

the black cycles (●) and black line, representing three independent experiments in technical 

duplicates. Concentration-dependent effects of the twelve azoles on viability of the ES-D3 

cells, illustrated with the red open squares (□) and red dashed line, representing two 

independent experiments in six technical replicates. 

 

In vitro transport of compounds in the BeWo model 

Table 1 shows the relative Papp values of twelve azoles as well as antipyrine (high 

permeability control) and amoxicillin (low permeability control) as used in the present study. 

Before starting the transport experiments and at the end of them, the TEER values were 

measured for controlling the membrane integrity, showing no statistically significant change 

in the average of two biologically independent experiments (each performed in triplicate). 

The additional restriction of fluorescein transport (paracellular control) was considered as an 

extra parameter for reassuring the validity of the obtained results (data not shown).   

The transport experiments were initiated by adding in the apical compartment 50 µM for 

FLU, DFZ, TDF and both controls, and 10 µM for MCZ due to its cytotoxicity at 20 and 50 

µM (pilot experiment, data not shown).  

Figure 3 illustrates the amount of tested compounds detected in the basolateral 

compartment at different sampling times in the transport experiment. The high transwell 

passage of antipyrine (positive control), and the limited transport of amoxicillin (negative 

control), showed the validity of the performed experiments. Up to 60 min, the concentration 

of the azoles to the basolateral compartment increased in a linear fashion with time and, 

therefore, the data obtained after 60 min of incubation were used for calculating the Papp 

coefficient and relative Papp values (Table 1).  

MCZ did not show linear transfer to the basolateral compartment through the BeWo layer, 

which might be related to problems with the chemical analysis, so that hardly any transport 

to the basolateral compartment through the BeWo layer was detected (Figure 3), leading to 

unreliable Papp coefficient and relative Papp values (Table 1). We decided to exclude MCZ 

for further comparative analyses.          	
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Figure 3:  The transferred amount into the basolateral compartment over time for the four 

tested azoles in the BeWo model, in addition to the high (antipyrine) and low (amoxicillin) 

permeability controls. The initial concentration was 50 µM (25 nmol) for all the tested 

compounds including the controls, except for MCZ, which was tested at 10 µM (5 nmol). 

Data represent the mean ± SD of two biological replicates, each of which was performed in 

technical triplicate.  
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Table 1: Papp coefficient and relative Papp values of twelve azoles (mean ± SD) and the 

permeability controls in the BeWo model. Four of the tested azoles (including the controls) 

were tested in the laboratories of BASF (this paper) and the other eight were obtained from 

Li et al., as indicated.  

compound 
Papp coefficient 

(10-6 cm/s)a 
Relative Papp value 

FLUb 24.25 ± 3.3 0.53 

DFZb 9.46 ± 2.1 0.21 

KTZc 31 ± 2.4 0.79 

MCZb 0.87 ± 0.7 0.02 

PTZc 16 ± 2.7 0.40 

TDFb 36.28 ± 8.1 0.79 

FENc 21 ± 3.2 0.55 

PROc 27 ± 3.8 0.70 

TEBc 33 ± 4.3 0.86 

B595d 3.0 ± 0.4 0.08 

B599d 18.4 ± 1.1 0.47 

B600d 7.9 ± 1.0 0.20 

Amoxicillinb 6.75 ± 1.1 0.15 

Antipyrineb 46.00 ± 3.9 1.00 

a: Mean ± SD 
b: Experimental data from this paper 
c: Obtained from Li et al.[29]  
d: Obtained from Li et al.[30]  

 

Correlations of in vivo and in vitro developmental toxicity of azoles 

The BMD10 value of each compound was calculated from in vivo prenatal developmental 

toxicity studies performed with each of the nine azoles (Table 2), considering abnormalities 

in skeleton, cleft palate formation, absence of renal papilla and hydronephrosis. For the 

three coded compounds provided by BASF SE, we concluded upon a qualitative potency 
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ranking, due to limitations on the available in vivo data, characterizing B599, B600 and B595 

as a potent, moderate and weak azole, respectively. 

 

Table 2: Overview of in vivo developmental toxicity data of nine azoles. 

Compound 
In vivo BMD10  

(µmol/kg bw) 

FLU 9.1 [50] 

DFZ 596.5 [51] 

KTZ  20.1 [52] 

MCZ 258.3 [53] 

PTZ 917.8 [54] 

TDF 91.5 [55] 

FEN 88.5 [56] 

PRO 386.7 [57] 

TEB 275.8 [58] 

 

For deciding upon the developmental toxicity data derived from both the rat WEC and EST in 

combination with the BeWo model, we corrected their ID10 (WEC) [48] and ID50 

concentrations (EST) by dividing them with their respective relative Papp values.  

Figure 4A and 4B show the moderately strong correlations between the ID concentrations of 

twelve and eleven (excluding MCZ) azoles in WEC versus EST, with close to identical R2 

values of 0.67 and 0.66. As shown in figure 5 and 6, the potency rankings were similar 

showing that in both in vitro models B599, KTZ and FLU were the most potent, while B600, 

PTZ and B595 were the weakest azoles.  

For correlating the in vivo BMD10 concentrations with the obtained in vitro WEC and EST ID 

values, we proceeded with eight compounds (MCZ was excluded as well as the three coded 

compounds, for which limited in vivo dose-response information was available). For these 

eight azoles, their in vivo BMD10 concentrations were better correlated with the ID10 

concentrations in the rat WEC when they were corrected with the BeWo relative Papp values 

(R2 = 0.87) compared to the non-corrected values (R2 = 0.51) (Figure 5). Similarly in Figure 

6, the corrected ID50 concentrations of the eight azoles tested in the EST were better 
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correlated with the in vivo BMD10, resulting in an R2 = 0.60, compared to the poorer 

correlation coefficient of 0.35 that the non-corrected ID50 showed.  

 

 

Figure 4: Correlation between the ID values of (A) twelve and (B) eleven azoles tested in the 

WEC and EST, respectively.  

 

 

 

Figure 5: Correlation of the in vivo BMD10 (µmol/kg bw) with ID10 (µM, ◊) and ID10 as 

corrected with relative Papp values (µM, ♦), determined in the BeWo model, for eight azoles 

tested in the WEC, excluding MCZ and the three coded azoles obtained from BASF SE.    
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Figure 6: Correlation of the in vivo BMD10 (µmol/kg bw) with ID50 (µM, ) and ID50 as 

corrected with relative Papp values (µM, ▼), determined in the BeWo model, for eight 

azoles tested in the EST, excluding MCZ and the three coded azoles obtained from BASF 

SE.  

 

Quantitative comparison of gene expression changes in the EST  

In a previous study in WEC [48], we showed that early embryotoxic responses to azoles 

were associated with the regulation of RA-  regulating genes; Cyp26a1 and Dhrs3. 

Furthermore, in the same study, we observed that the sterol-mediated biosynthesis pathway 

genes, Cyp51 and Msmo1, also showed an extensive response to these azoles. Now, for 

comparison, we quantified the expression of the aforementioned four genes in the EST, 

exposed to the same azoles. As illustrated in Figure 7, the expression of Cyp26a1 in EST 

exposed to any of the tested compounds at their ID50s tended to be supressed, while the 

expression Dhrs3 generally showed upregulation, which was significant after exposure to 

FLU, MCZ and B599 with a 4.3, 3.2 and 3.3 fold change, respectively. The fold change 

induction of Cyp51 in the EST ranged from 1.5 to 2.5. Additionally, the expression of Msmo1 

showed similar changes as Cyp51, with exposures to FLU, MCZ, TEB and PRO, reaching 

fold changes of 2.4, 2.6, 3.0 and 2.5, respectively. Lower fold induction of both Cyp51 and 

Msmo1 expression was observed after exposure to the ID50 of PTZ, TDF and B595. Except 

for exposure to FEN and TEB, the upregulation of the RA related gene Dhrs3 was higher 

compared to the sterol related genes, Cyp51 and Msmo1.    
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Figure 7: Fold induction of four genes, Cyp26a1, Dhrs3, Cyp51 and Msmo1 in the EST 

exposed to ID50 concentrations of each of the twelve azoles. Each bar represents a mean ± 

SD (N=8 for tested compounds and N=12 for solvent control and medium control).  



A comparison of EST and WEC combined with the BeWo placental model 

154 
 

Discussion  

In the present study, we assessed the concentration-dependent embryotoxicity of twelve 

azoles in the murine EST, by testing the inhibition of contracting cardiomyocyte 

differentiation (Figure 2). We performed a cross-model comparison, using results from our 

previous study [48], in which the same azoles were tested in the rat WEC. The potencies of 

the twelve azoles tested in the rat WEC versus the murine EST, based on the calculated ID10 

and ID50 concentrations respectively, were reasonably well correlated (R2 = 0.67). This was 

in agreement with the correlation that de Jong et al. have previously reported using six 

azoles, among which two were in common with those in our study, similarly tested in the 

WEC and EST [42]. Both these in vitro models correctly detected the strong 

embryotoxicants, B599, FLU, KTZ and MCZ, as well as the weakest azoles PRO and PTZ. 

Considering the in vivo potencies of the tested azoles, their correlations with the potency 

ranking in the WEC and EST assays led to moderate and rather weak relationships, 

represented with an R2 = 0.51 and R2 = 0.35, respectively. The better association of in vivo 

data with those derived from the WEC model may reflect the biological complexity of WEC 

compared to EST [3, 9]. The rat WEC contains intact embryos, which may respond to both 

external and internal signals in a more comprehensive manner [59-61], compared to stem 

cells, which is a less complex multicellular system [11] and, therefore, their responses to any 

stimuli are likely more specific and probably restricted. For example, while examining the 

embryotoxic effects in rat WEC exposed to a chemical, we assessed a large number of 

morphological endpoints, including growth and differentiation parameters. On the other 

hand, the chemical assessment in the EST is based on microscopical observation of 

contracting cardiomyocytes only, which led to qualitative conclusions that could be less 

detailed compared to WEC [3]. Moreover, the limited applicability domain of EST and the 

limitations on the time window of each of the in vitro tests, may explain the differences in in 

vitro potency ranking of azoles between the WEC and EST, as well as their deviation from 

their in vivo embryotoxic potency [9, 62].         

The co-implementation of the BeWo model, for correcting the ID10 and ID50 concentrations in 

WEC and EST led to considerable improvements in the predictability of both in vitro models 

of in vivo developmental toxicity, showing R2 of 0.87 and 0.60, respectively. Previous studies 

showed that the BeWo model is quite well associated with the ex vivo placental model and, 

subsequently, it is an adequate model for initial screening the placental transfer rates of 

chemicals [21, 25, 28]. The BeWo layer is a reductionistic model of the intact placenta, but it 

shows the importance of combining in vitro assays for designing batteries of alternative 

testing approaches [26, 27]. The estimated relative Papp values showed that, although 

azoles belong to the same chemical group, their placental transfer rates diverge. In 
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experiments in which the integrity of the BeWo layer was shown to be intact, increased 

relative Papp values characterized increased transport of the chemical. However, attention 

should be given to those compounds that showed a low Papp value, such as B595, because 

they may have accumulated into the BeWo cells and, therefore, lead to false negative 

conclusions [30]. The elevated intracellular accumulation of B595 could be also linked to 

increased placental toxicity, which may be related to the increased in vivo post-implantation 

losses [30]. Furthermore, in this study, we showed that MCZ did not pass through the BeWo 

layer to the basolateral compartment (Figure 3), but also even directly after its addition to the 

apical compartment it could not be detected (low recovery rate). MCZ might be bound to the 

polycarbonate membrane of the transwell plate or accumulated in the BeWo cells. Another 

explanation could be the metabolism of the parent compound, to MCZ-metabolites. Similarly 

to the human placenta, the BeWo cell layer has enzymatic activity, reflected by the 

expression of Cyp enzymes, Cyp1a1, Cyp3a4 and Cyp2c9 [63]. The last two enzymes are 

also responsible for drug metabolism in the liver [64]. Despite the fact that metabolism is a 

realistic aspect in in vivo and in vitro (when is applied) systems, the assumption of 

metabolism of MCZ in the BeWo cells might be unlikely because of short duration between 

exposure and sampling. Because of the poor ability of BeWo model to predict the placental 

transport rate of MCZ, we excluded MCZ from further analyses.           

Here, we also observed that the estimated relative placental transfer rates were dependent 

on the molecular weight of the tested azoles, showing a very good correlation characterized 

with an R2 of 0.70 (data not shown). KTZ was excluded from this association, because while 

it has the highest molecular weight (531.43 g/mol) of the selected tested azoles, its relative 

transport rate was estimated to 0.79, which was among the highest calculated values. In 

general, chemicals with low molecular weight are expected to pass easier through the in vivo 

placental barrier, while increased lipophilicity may additionally support their transport [25, 

65]. Similarly to the in vivo placental transfer, the transport of xenobiotics in the human ex 

vivo perfusion placental system is dependent on physicochemical properties [25], which may 

also affect the transport of chemicals through the BeWo cells due to high agreement 

between these two systems [27]. Therefore, supplementary research on the 

physicochemical and molecular properties of the tested compounds could further elucidate 

the mechanism of BeWo model transfer and explain the observed behaviour of both MCZ 

and KTZ in the present study. Furthermore, the characterization of possible interactions 

between the compounds and membrane transporters could give additional information for 

the permeability of chemicals through the BeWo layer [29].   

The RA concentration in mammals is regulated by Dhrs3 and Cyp26a1 expression, by 

synthesizing and metabolizing it, respectively, to maintain its balance for optimal embryonic 
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growth and differentiation [44, 45, 47, 66]. Therefore, regulation of RA-related gene 

expression may be linked to embryotoxic responses [46, 60]. In line with the functionality of 

these genes, in EST the strong embryotoxicants in vitro; FLU, MCZ and B599, upregulated 

Dhrs3. and downregulated Cyp26a1. In WEC, both these genes were upregulated. The rat 

WEC does have a more complex biological structure, organized as a whole network of more 

sophisticated responses, similar to in vivo embryos [60, 61]. Developmental effects are often 

localized to specific parts of embryos. Similarly, as illustrated in our previous study [44], the 

expression of Cyp26a1 is relatively high in the brain region and in the tail end of the embryo. 

Subsequently, by homogenization for quantifying gene expression changes in whole 

embryos, the dilution of the observed effects is inevitable, which may mask region-specific 

effects in the embryo.  Therefore, EST may be a more straightforward in vitro screening 

system for detecting explicit RA related effects on the gene regulation level, due to its 

biological simplicity.       

In the present research, we also observed that the effects on the regulation of the selected 

sterol-related genes in the EST followed the same pattern of expression as in the rat WEC. 

However, as in a previous study [40], the level of induction was greater in the case of gene 

expression studies in the EST, which may indicate differences in sensitivity between the 

systems and, subsequently, quick gene-mediated responses to chemical exposure. Both the 

selected genes (Cyp51 and Msmo1) are participating in the same step in the mammalian 

sterol biosynthesis pathway [37, 67]. However, the higher induction of Msmo1 in screening 

sterol-mediated responses in both WEC and EST, supports our previous suggestion of 

replacing Cyp51 by Msmo1 for further compound testing as a major sterol-related biomarker 

for assessing relevant effects of chemicals in in vitro systems [48].   

In conclusion, Dhrs3 and Msmo1 could be sensitive biomarkers for screening RA- and 

sterol- mediated responses, respectively, in both WEC and EST. Supportive results were 

observed in transcriptomics studies in the rat WEC, zebrafish embryo test (ZET) and EST 

after exposure to azoles, in which the sensitivity of these genes suggested that they could be 

valuable candidate-biomarkers for screening the mode of embryotoxicity of azoles [40-43].   

In summary, we observed that the potency ranking of the in vitro developmental toxicity of 

the chemical class of azoles in the WEC and EST correlated quite well. Additionally, we 

showed that the prediction of in vitro developmental toxicity of azoles was notably improved 

when both WEC and EST were combined with the BeWo model, incorporating simple in vitro 

placental kinetics. Elucidating the mechanisms of action of azoles in the EST, we revealed 

that Dhrs3 and Msmo1 were expressed within a similar pattern compared to their expression 

in the rat WEC. Considering the relatively high response magnitude of Dhrs3, as well as the 

detection of Cyp26a1 suppression in the EST, we suggested that EST might be an adequate 
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in vitro system to screen direct RA-mediated effects on the level of the genome after 

exposure to azoles. However, answering intricate questions regarding the complexity of 

toxicological responses in more complex biological systems, WEC may be more informative. 

Overall, defining universal gene-biomarkers among the available in vitro systems may 

facilitate a better cross-model comparison and improve the in vitro - in vivo extrapolations for 

better predicting developmental toxicants.  
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v General discussion 

Alternatives for animal testing  

In chapters 2, 3, 4 and 5 of this thesis, emphasis is given on implementing alternative 

approaches for testing the developmental toxicity of pharmaceutical and chemical 

substances for reducing the number of experimental animals [1, 2], while targeting to mimic 

the in vivo situation and, therefore, to improve the predictions for humans. In chapter 5, we 

showed that the rat WEC and murine EST sufficiently correlated with R2=0.67 in predicting 

the embryotoxic responses of the twelve azoles. Beside the good correlation of predictions in 

the in vitro assays, there was also a high agreement between the in vivo and in vitro data 

(Chapter 4 and 5), either obtained from the rat WEC (R2=0.87) or murine EST (R2=0.60), 

when the correlated data were combined with the relative placental transport rates of azoles. 

Moreover, increased accuracy was detected in both in vitro assays corrected with BeWo 

model data concerning their predictability of in vivo potent and weak or non-potent azoles. 

This confirms the importance of applying a battery of complementary in vitro assays for 

succeeding in mimicking the complexity of the in vivo situation and, subsequently, improving 

the in vivo to in vitro correlation [3-6]. On the other hand, interspecies differences in both 

toxicokinetics as well as toxicodynamics should always be taken into consideration during 

the risk assessment of chemicals in order to avoid future tragedies, such as the thalidomide 

incidence back in 1960s [4]. The available animal-based models predict the human 

developmental toxicity with 60-80% success, demonstrating a partly successful approach for 

screening and categorizing developmental toxicants. This illustrates the potential of 

alternatives to animal approaches for predicting developmental toxicity of chemicals in a 

faster and less costly way, highlighting priorities of further testing for eliminating the risk for 

humans and the environment [6].   

The implementation of embryonic stem cell tests in developmental toxicology is currently 

possibly the simplest non-animal assay for screening embryotoxicants, with reduced time 

and cost providing experimental advantages [7-9]. In chapter 5, for studying the 

developmental specific effects of azoles in inhibiting the differentiation phase of ESCs, we 

selected to expose the system to the tested compounds from day 3 onwards [10-12]. The 

selection of the appropriate time window is a crucial factor for elucidating the functional 

processes of the ECs, as well as for contributing to the prediction models of developmental 

toxicology (for example based on in vivo and in vitro correlations described in chapter 5). 

The time window of the 10-day protocol of the EST includes both the proliferation and 

differentiation phases [6, 8]. The starting point of the EST mimics stem cells in a 3.5-day old 

embryo (mouse). On day 3, the EBs demonstrate the egg-cylinder stage of a 5-day old 

embryo, including the three germ layers of meso-, ecto- and endoderm, from which other 
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types of cells and organs are further structured and organized. It is emphasized that until day 

3 of the EST differentiation protocol, the proliferation phase dominates, while from day 3 

onwards the differentiation gradually increases [13]. However, restrictions regarding the 

applicability domain of the EST and the sensitivity of the time window, at which the test is 

performed, could have a significant effect on the read-out of the murine EST itself [2, 3]. 

Despite the careful selection of the exposure time window in chapter 5, the morphological 

assessment of differentiated ESCs into beating cardiomyocytes is the only microscopically 

qualitative way for concluding on the developmental toxicity of compounds in the EST, which 

could also lead to subjective classifications [4]. Knowing that effects on the level of genome 

precede the manifestations of toxicity, by studying the regulation of gene expression in a 

biologically simple system, such as the EST, we may conclude upon the underlying 

mechanism of toxicity. 

As presented in chapters 2, 3 and 4, the application of more complicated in vitro systems, 

such as the rat WEC, may eliminate some of the restrictions of EST, which follow from its 

simplicity (referring to its applicability domain and sensitivity of time window), and may 

enhance possible descriptions of morphogenetic relationships in the cellular or organ 

networks that normally exist in a whole organism [3, 4, 6, 14, 15]. The quantitative 

assessment (TMS system) of rat embryos on GD 12 may better predict the effects of 

chemicals during this developmental time window, as it is closer to the in vivo situation [16-

18], while the applicability domain of this developmental toxicity test is increased compared 

to the strictly defined domain for the cardiac EST [6]. Another advantage of the rat WEC is 

the constant monitoring and evaluation of the 48-hour developmental phase, which is 

comparable to a large extent with both the rat and human in vivo situation and it gives 

information not only for the success of the culture itself, but also for early embryotoxicity of 

the tested compounds [14, 19]. Despite the advantages or disadvantages of the rat WEC 

and murine EST, which can to some extent be eliminated when the assays are combined, 

the greatest restrictions of these alternatives are the absence of metabolism and the lack of 

the placenta (including the maternal side). The importance of the presence of the placenta is 

partly illustrated in chapter 5, showing a notable improvement in detecting possible 

embryotoxicants by additionally implementing the in vitro BeWo placental model combining it 

with the alternative developmental toxicity tests [4, 15, 20].  

 

Limitations and improvements of the in vitro methodologies  

The metabolism 

In chapter 4 and 5 of this thesis, we examined the developmental toxicity profile of twelve 

azoles in the rat WEC and EST. In either the in vivo or in vitro developmental toxicity studies, 
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the profiles of parent compounds are assessed concerning their possible embryotoxicity. 

Absorption, distribution, metabolism and excretion (ADME) information on chemicals, for 

which the toxic profile is evaluated, is highly important for concluding on the targeted effects 

or for understanding any possible adverse effects in tissues or whole organs. It is known that 

the induced developmental toxicity is not always due to the parent compound, since it could 

be also caused by the formed metabolites [20, 21]. On the other hand, the teratogenicity of 

some chemicals could be decreased due to the metabolism of the parent compound to less 

toxic products. In the in vivo systems, the embryonic enzymatic activity is almost absent. 

However, possible metabolites of parent compounds may end up in embryos either via 

placental transfer of maternally metabolized compounds or via metabolism of the 

compounds in the placenta itself.  

Azoles are chemicals that are absorbed and rapidly metabolized in excretable products, 

which means that they will not bioaccumulate in the biological system. It has been suggested 

that in fish the azole metabolites are two orders of magnitude less toxic than the azole-

parent compounds [22]. In mammals, azoles are strong inhibitors of several Cyp450 

enzymes, especially of the drug related phase I metabolic enzymes Cyp2c9, Cyp2c19 and 

Cyp3a4  and the steroidogenesis enzymes Cyp17, Cyp19 and Cyp51 [23, 24]. Azole-related 

inhibition of Cyp450 enzymes, which disturbs the metabolism of other drugs, may lead to 

toxic effects, which are associated with the accumulation (overdosing) of the non-azole 

drugs, but not because of azoles themselves [23]. Furthermore, the azole-mediated 

modulation of phase III transporters, such as the multidrug transporter P-glycoprotein Abcb1, 

which is active during liver regeneration and hepatocarcinogenesis, may increase the azole- 

liver uptake and, therefore, affect the sterol metabolism, causing increased (maternal) 

toxicity [24, 25]. Additionally, it has been also found that in invertebrates the increased 

toxicity of azoles is probably because of the appearance of toxic metabolites and alterations 

in the phase II metabolic enzyme glutathione-S-transferase [22]. Overall, it can be concluded 

that the developmental toxicity of azoles is induced by the parent compound and is not the 

result of metabolism. However, attention should be given to some azoles, such as 

triadimefon, for which a metabolite (triadimenol) is recognised and registered as an 

individual azole, as well as prothioconazole, which is a non-embryotoxicant (NOAEL= 80 

mg/kg bw/day), while its metabolite desthio-prothioconazole is quite potent (NOAEL=1 

mg/kg bw/day) [26, 27].      

For avoiding both false negative and false positive characterization of the tested compounds 

in in vitro models, metabolism can be introduced by adding extra in vitro systems, rich in 

enzymatic activity, such as microsomes, postmitochondrial supernatants and hepatocytes, to 

the in vitro cultures [28-30]. For example, some proteratogenic compounds, such as alpha-
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cyclophosphamide, were correctly classified when tested in in vitro systems including 

metabolic activity, otherwise their classification was false negative [21, 29, 31, 32]. However, 

some previous attempts showed that when adding metabolic activity to the in vitro systems 

for developmental toxicity, undesirable results were observed [29]. First, some metabolic 

systems alone were too cytotoxic for the cultured system. Another issue when the enzymatic 

activity is added for correlating the in vivo with the in vivo results is that the formed 

metabolites are not the same among the species (human versus rat) while their 

concentrations vary dependent on the applied species or on the embryonic stage [20, 33]. 

As a practical solution, it has been suggested that the separate assessment of the parent 

compound and its known metabolites in the same embryonic system (dependent on the 

species) could provide the information needed for building the underlying pharmacokinetics 

[28, 29].    

 

The placental transfer model  

The co-implementation of placental transfer studies in the alternative in vitro assays could 

facilitate a prediction closer to the in vivo situation, which might be considered as a more 

realistic approach for studying developmental toxicities than in vitro alternatives alone [34, 

35]. In chapter 5, the BeWo model has been combined with the rat WEC and the murine 

EST for re-calculating the effective concentrations of the tested azoles in these in vitro 

systems, as well as for estimating whether these compounds could be cytotoxic for the 

placenta itself. The correlations of the in vitro with the in vivo potency ranking were notably 

improved in chapter 5 compared to the data in chapter 3 and 4, showing the importance of 

applying combined in vitro approaches in developmental toxicity testing. The pregnancy is a 

complex situation and the placenta is the coordinator of maternal and fetal communication 

[36-40]. Therefore, either the impact of chemicals on the placenta or the placental transfer of 

chemicals from the maternal to the embryonic side could lead to undesirable developmental 

outcomes [41, 42].  

As illustrated in chapter 5 and previous studies, the BeWo model is capable to predict the 

relative placental transfer rates of azoles and other compounds [43-45]. Despite the fact that 

azoles belong to the same chemical class, placental enzymatic and protein binding activity, 

physicochemical and molecular properties of compounds affect the ability of the compounds 

to cross the placenta [46-48].  The BeWo transfer model is a simplified method for mimicking 

the placental barrier [49-51], with which it is possible to roughly estimate the relative 

transport rates of chemicals [41]. The good agreement between the transport rates 

calculated with the BeWo assay and the placental perfusion system [45, 50], gives us 

confidence in interpreting the obtained results. On the other hand, it should be noted that the 
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origin of the cell line (malignant gestational choriocarcinoma of human male fetal placenta) 

and the stage of embryonic development (last stage of pregnancy) could be limitations of the 

system, which may lead to results irrelevant to the in vivo situation. Additionally, considering 

that the characteristics of the placenta are continuously altered during pregnancy and this 

may affect the overall capability of compounds to cause developmental effects, the 

development of a placental model that mimics the early and critical stages of pregnancy 

could increase the knowledge upon the effect of compounds in each relevant period of 

embryonic development. Therefore, the correction of effective concentrations calculated 

from the WEC and EST (Chapter 5) with more relevant kinetics of the early placenta could 

be more informative. Moreover, further assessment on how placental enzymatic activity and 

protein binding (albumin) could affect the transfer rates of compounds may give an additive 

value to this in vitro system [45]. BeWo cells do have enzymatic activity, represented by 

Cyp1a1, Cyp3a4 and Cyp2c9 enzymes, which may be capable of metabolizing the parent 

compound, when added in the apical compartment of the transwell plates [46, 48]. As 

presented in Chapter 5, taking MCZ as an example of a compound with difficult 

characteristics in the BeWo assay, we showed that the calculation of its transfer rate (Papp 

value) was not possible. This may be related to several potential confounding factors: MCZ 

may accumulate in the BeWo cells, such as in the case of B595, or be absorbed to the 

polycarbonate membrane or the transwell plate itself. Another scenario could be that 

because of MCZ’s chemical instability and/or the increased enzymatic activity of the BeWo 

cells, MCZ might be converted to other products or metabolites that either cannot be 

detected or are unknown so far, but they might induce cytotoxicity in BeWo cells at 

concentrations higher that 10 µM. In clinical human studies, MCZ has been found to interact 

with many CYPs enzymes, among which CYP1A2, CYP3A4 and CYP2C9 [52], which are 

also present in the BeWo cell line [41]. Therefore, metabolism or transformation of MCZ to 

another potent product may explain its behaviour in the placental transfer assay in Chapter 
5.  

 

Molecular endpoints in developmental toxicity 

The implementation of technologically advanced high throughput assays, varying from 

targeted single gene assays to whole genome screening, to detect gene expression changes 

as responses to embryotoxicants gives new dynamics in developmental toxicity testing [4, 

19, 53, 54]. In chapter 2 and in other studies, it has been shown that quantification and 

localization of FLU-mediated gene expression changes, related to toxic responses, are not 

only associated with morphological effects, but also precede them, revealing their value as a 

tool with increased sensitivity and predictability [55, 56]. Following the same rationale in 
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chapter 3, 4 and 5, the application of toxicogenomics in both rat WEC and murine EST 

aimed to better understand the mechanism by which azoles affect the biological systems 

inducing developmental toxicity. Therefore, toxicogenomics provides information for 

characterizing responses related to chemicals, for better classifying them based on the 

underlying mode of toxicological action and for linking toxic responses across different 

models and biological systems providing also insight in possible interspecies differences 

[54].          

 

Characterization of transcriptional responses 

The adverse outcome in embryonic development is dependent on the time and duration of 

exposure during pregnancy [57], as it has been also confirmed in chapter 2 and 3. Similarly, 

the homeostatic gene expression responses are highly dependent on the timing of exposure 

and the applied dose in both in vivo and in vitro systems [55, 58]. Effects of exposure of rat 

WEC to the same concentration of FLU among different developmental time windows were 

presented in Chapter 2, showing that the expression of genes during the earliest 

developmental window of 0-4 hours (GD 10) can predict effects on the same genes in 

subsequent developmental stages during the 2-day culture period, preceding the adverse 

developmental outcome. Chapter 3 illustrates confirmatory information, indicating that the 

expression of developmental related genes fluctuates while the sterol related genes respond 

consistently more pronounced after longer exposure.  

Studying the changes in expression of genes in both in vivo and in vitro (WEC) rat embryos 

during the time window of early embryogenesis (GD 10-12), it was shown that the absolute 

magnitude of expression of genes related to developmental processes was increased over 

the time [19]. The observed regulation of biological processes, including neural tube 

formation, early organogenesis of the central nervous system (CNS), ear, eye, limbs and 

heart, in in vivo and in vitro rat embryos was also correlated with the situation in human 

embryos, showing the same directionality and magnitude of gene expression changes 

corresponding to the developmental time window [19, 59]. Hartl et al. [60] and Mitiku and 

Baker [61] determined that murine transcripts and proteins associated with cell differentiation 

and early organ development are higher expressed in embryos during GD 8-8.5, which 

equals GD 10 in rat embryos. For example, murine embryonic exposure to methylmercury 

(MeHg) showed a time-dependent regulation of developmental related processes during 

early neurulation [62, 63]. Therefore, the transcriptional responses of biological systems 

demonstrate a time-dependent fingerprinting reflecting the dynamics of the progressive 

developmental processes. In vivo and in vitro exposure of rat embryos to RA (which is 

known as a common teratogen), illustrates the comparable time-dependent gene expression 
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changes during neurulation and early organogenesis, showing a peak in the number of 

regulated genes at the 4- and 6- hour exposure time point in in vitro and in vivo embryos, 

respectively [64]. Genes related to the anteroposterior patterning and RA metabolism were 

more significantly regulated in both systems in the same direction and with a comparable 

magnitude of the effect [64] 

Additionally, in chapter 3, with increasing the concentrations of FLU, the number of 

regulated genes is also expanded. The dose of embryonic exposure to embryotoxicants is a 

factor that determines the number of regulated genes associated with the observed 

developmental effects. In developmental toxicology, taking advantage of the increased 

sensitivity of toxicogenomics, the assessment of transcriptome changes, at lower 

concentrations than those that cause developmental effects, is used to explore the 

characterization of chemicals in in vivo rodent systems or in vitro assays including the rat 

WEC [54], EST [65] and ZET [66]. For example, increasing the dose of cadmium in studies 

with in vivo exposed murine embryos, the number of regulated genes was monotonically 

increased. However, the pattern of gene expression was changed, showing different 

functional associations and revealing the most sensitively regulated pathways for the 

underlying mechanism of toxicological mode of action. Furthermore, we need to consider 

that the applied dose for studying the predictability of toxicogenomics influences the 

sensitivity of the method. Additionally, the excessive perturbations in the level of gene 

transcription may disturb the biological homeostasis and lead to adverse effects [67]. 

Overall, for concluding whether gene expression changes, occurring after embryonic 

exposure to xenobiotics, could lead or be linked to adverse effects, knowledge on the time- 

and dose- dependent functionality and sensitivity of gene expression is valuable.        

 

Classification of transcriptional responses     

Toxicogenomics has been reported to enhance the discrimination of chemical classes 

providing a better understanding of the molecular mode of action of embryotoxicants [53, 

68]. Previous studies have indicated that compounds derived from different chemical classes 

could reveal the same adverse morphological effects in biological systems, but the different 

gene expression changes could nominate different underlying mechanisms of induced 

toxicity. Another study in the rat WEC showed that the morphological assessment of 

exposed embryos to four different chemicals (caffeine, MeHg, monobutyl phthalate and 

monoacetic acid) was not adequate for concluding upon the developmental toxicity of these 

compounds alone [69]. However, additional gene expression screening predicted the 

specificity of each compound in regulating the underlying mechanisms of toxicity [69]. Similar 

results were observed in a transcriptomic study with mouse embryos, which were exposed in 
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utero to arsenic and cadmium while undergoing neurulation [70]. Both these metals are 

neurotoxic and cause neural tube defects, while the unique embryotoxic responses on the 

transcriptome level to each of them were shown to be associated with specific functional 

groups of genes, as well as to the shared mechanisms of toxicity [70].  

Furthermore, chemicals within the same class may share common chemical structural 

characteristics, physicochemical properties and similar modes of toxicological action [71]. 

Consequently, toxicogenomics approaches could classify compounds and distinguish 

toxicants and non-toxicants, as shown in chapters 3, 4 and 5. Identification of specific sets 

of genes, which are sensitive in predicting different transcriptional responses due to 

differences in the class or potency of chemicals, and their application as “differentiation 

track” improved the predictability of toxicogenomics studies [65, 72, 73]. The set of these 

genes, the so-called gene biomarkers, can reveal the regulation of pathways that are related 

to the induced developmental toxicity of chemicals (Chapter 2 and 3) and facilitate across-

model comparisons (Chapter 5). Additionally, the regulation of biomarkers may be in 

agreement with the in vivo and in vitro potency ranking of chemicals, showing also similar 

effects on the regulation of the identified pathways of toxicity (mode of action) when 

evaluated at the same level of effective concentration (Chapters 4 and 5). For example, 

effects of triazole analogues on comparisons in the ZET, EST and rat WEC [74-76] 

demonstrated similar results regarding the sensitivity of the regulated gene-biomarkers 

related to the observed developmental toxic effects, which assisted a valuable cross-model 

comparison, while presenting results in high agreement with the in vivo situation [77].      

In chapter 3 and 4, we showed that one of the tested azoles, MCZ, was in the same range 

of embryotoxic potency (ID10) as the rest of the selected compounds in the WEC. Despite its 

potent in vitro and moderate in vivo profile, MCZ did not cause any statistically significant 

change on the level of WEC transcriptome. However, as analysed in chapter 5, MCZ 

caused an excessive effect on the developmental related gene (Dhrs3) under assessment in 

the EST, comparable to the effect of the most potent embryotoxicants; FLU and B599. Thus, 

the applicability domain of the selected in vitro test and the selected gene biomarker used is 

another factor that determines whether the embryotoxicity of a compound is correctly 

predicted and accurately classified [57, 78, 79]. Another example was given by Robinson et 

al. [69], who showed that four distinct teratogens induced equivalent levels of embryotoxicity 

in the rat WEC, with main effects on the closure of the neural tube and causing ear 

abnormalities. However, gene expression assessment revealed limited similarities in the 

identified functional groups of genes, showing the complexity of the underlying mechanism 

of embryotoxicity of each tested compound [69]. Similarly, Theunissen et al. [80] observed 

that neurodevelopmental toxicants did not reveal an overlap in regulation of gene responses 
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in the neural ETS (ESTn). Therefore, it is suggested that the category approach combined 

with the read-across concept can increase the accuracy of in vitro predictions, while 

enhancing at the same time the background knowledge on the underlying mechanisms of 

toxicity [81].              

 

Interspecies comparisons of transcriptional responses 

Transcriptomics can be a key approach for conducting interspecies comparison and 

extrapolate the observations from the in vitro to the in vivo situation on the level of their 

transcriptome dynamics, elucidating mechanisms of induced developmental toxicity, while 

understanding how the applicability domain of in vitro systems influences the accuracy of 

these predictions [79]. Interestingly, in chapter 5, we illustrated the good correlation of gene 

responses related to the developmental toxicity of the tested azoles in the rat WEC and 

murine EST. We also observed that the compounds with greatest manifestations of toxicity 

in the WEC and EST, also caused the greatest effect on regulating the sensitive genes 

related to embryotoxic responses (RA pathway), facts that were in agreement with the in 

vivo literature data. These observations may improve the extrapolation of in vitro 

observations to the human situation. The latter is also supported by Irie and Kuratabi [82], 

who have suggested that the “hourglass” model can better morphologically and genetically 

describe the developmental processes of vertebrates, in contrast to the “funnel-like” model. 

In the same study, a comparative transcriptome analysis of vertebrate embryos showed that 

the gene responses during the pharyngula stage were similar, while they were less 

conserved during the earlier and later stages of development [82]. Therefore, both the 

comparison and extrapolation of obtained results among different vertebrate models applied 

at comparatively similar developmental stages might be more accurate and relevant to the 

human situation. Confirmatory data were obtained from a comparative transcriptomics study 

between in vivo and in vitro (WEC) rat embryos, which showed similarities at the gene and 

functional level, without being exposed to any xenobiotic [19]. Moreover, the increased 

conservation of molecular pathways between the rat WEC, in vivo rat embryos [19] and 

human embryos [59, 83] suggests that gene biomarkers of developmental toxicity can 

facilitate a more accurate mechanistically-based approach for extrapolating an in vitro 

mechanism of toxicity to the human situation. Additionally similar functional MeHg-mediated 

transcriptional responses were observed between in vitro murine embryos, rat WEC and 

differentiated murine ESC in cardiomyocytes and neural cells, in contrast to the non-

developing systems murine brain-, kidney- and embryonic fibroblast- derived tissues [84]. 

Overall, the correlation of transcriptome signatures in the in vitro developmental models with 

the in vivo developing systems supports the applicability and importance of the in vitro 
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developmental models in improving the genome-based predictions related also with the 

human situation.        

 

Alternative approaches in risk assessment of embryotoxicants  

Alternative approaches in developmental toxicity based on in vitro methodologies and gene 

expression analysis may improve the current strategies for conducting risk assessment on 

embryotoxicants [68, 81, 85-87].  

The traditional risk assessment makes use of specific levels (NOAELs) and/or benchmark 

doses (BMDs, chapter 3, 4 and 5) or their lower confidence limits (BMDLs) for deciding on 

the safety of compounds and estimating acceptable levels of daily intake. Here, we selected 

the rat WEC (chapter 2, 3 and 4) and murine EST (chapter 5) as appropriate whole 

organism and cellular system, respectively, to study the pathway of toxicity of azoles. The 

calculated ID values of the tested compounds were further compared with the in vivo BMD 

values (calculated based on embryonic malformations) for concluding upon their reliability as 

alternative assays (chapter 3, 4 and 5). The addition of the kinetics of placental transport 

obtained from the BeWo placental model, as shown in chapter 5, confirmed the crucial role 

of biokinetics in enhancing the predictability of in vitro systems. Variances in the 

predictability of developmental toxicants may be observed due to differences in the exposure 

route, lack of maternal site and the developmental stages of the applied in vivo and in vitro 

biological systems. An additional important point of concern, which may increase the 

discrepancies between the in vivo and in vitro extrapolations, is the variety of observed 

malformations (skeletal, craniofacial, urogenital) and the limitations of the available in vivo 

data, which led us to conduct a qualitative analysis instead of a quantitative BMD-based 

approach, simplifying our observations (chapter 4).  

Considering the increased sensitivity of transcriptomics, gene expression analysis may be 

applied as an extra endpoint for assessing possible changes in the genome level of 

biological systems after exposure to chemicals at the lowest part of their concentration-

response curve, at which manifestations of developmental toxicity are absent [68, 88]. 

Studying the expression of single genes (chapter 2 and 5) or pathways (chapter 3 and 4) 

related with the molecular mechanism of teratogenicity in the WEC and EST exposed to the 

morphologically equally potent concentrations (ID10 and ID50, respectively), we observed that 

the strong embryotoxic azoles in vivo caused also an increased upregulation of the 

biomarkers of RA-mediated pathway. However, it should be noted that the threshold for the 

effect on single genes or pathways might not be adequate for concluding on the threshold of 

relevant biological responses on the level of tissues, organs and whole organism 

(adaptation) and thus on the threshold of adversity [86]. Therefore, despite the fact that gene 
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expression regulation is considered more sensitive compared to morphological changes 

after exposure to chemicals, the question about the threshold of adversity of gene responses 

needs to be answered in a case by case manner. 

In conclusion, for performing risk assessment on the developmental toxicity of azoles, dose-

response curves derived from alternative to animal testing approaches, such as the WEC 

and EST combined with the BeWo assay, can accurately predict the morphological changes 

in high agreement with the in vivo studies. Additionally, defining/qualifying biomarkers of 

toxicity, at equally toxic concentrations (ID10 and ID50), may give an insight in mechanistic 

aspects relevant for building an adverse outcome pathway (AOP) for azoles and assisting 

the quantitative in vitro-in vivo extrapolation (QIVIVE) [89-91], while possibly explaining the 

mechanism of retaining homeostasis in the level below the threshold of adversity [86, 92-94].            

 

Retinoic acid and azoles: direct or indirect connection with teratogenic effects? 

RA has been characterized as a morphogen, but also as a teratogen depending on its 

homeostasis in the biological systems under development [95]. Embryos exposed to RA and 

azoles suffered from similar morphological abnormalities, suggesting that they might share 

the same mechanism of developmental toxicity (chapter 2, 3, 4, 5) [64, 74]. Gene 

expression studies supported the idea of a shared toxicological mechanism of action 

between RA and azoles, revealing a common pattern in regulation of gene-sets that are 

related with RA metabolism (Cyp26a1, Dhrs3, Rarb) and general embryonic development 

(Hox family, Gbx2, Cdx1) (chapter 2, 3, 4, 5). In chapters 3, 4 and 5, we showed that the 

most potent embryotoxic azoles in both in vitro and in vivo assays, revealed a more 

pronounced effect on the upregulation of RA-related genes in the WEC and EST, when 

tested at equally toxic concentrations. The AOP of RA based on cellular in vitro systems 

(EST) and whole organisms (rat WEC and ZET) suggested that there is a molecular 

interaction of RA with enzymes that synthesize (Dhrs3) or metabolize (Cyp26a1) RA, 

affecting also genes that are responsible for anteroposterior patterning (Hox genes) and for 

caudal neural growth (Gbx2 and Rldh) [96]. The dysregulation of the RA homeostasis 

triggers also the expression of Fgf and Wnt pathways, which have a crucial role in the 

general embryonic development, leading to skeletal and heart abnormalities [97-99]. Signals 

of RA-related coordinator-genes that belong to the Crabp family and suppression of 

transcriptional growth factors, such as the Tgf-β family, can also lead to the RA-related 

teratogenic outcome of azoles, such as cleft palate, craniofacial malformations and skeletal 

abnormalities (chapter 3 and 4) [22, 23, 100].  

Alternatively, while trying to identify the exact mechanism of teratogenicity of azoles, it has 

also been suggested that the inhibition of the steroid related gene Cyp19 could indirectly 
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lead to teratogenic outcomes after maternal exposure to azoles, causing in the first place 

placental hypertrophy, which further leads to increased transfer of azoles to the fetal side 

[22, 23]. Azoles have been designed to intervene with the fungal Cyp51 gene, but they were 

also found to interact with mammalian Cyp51 and other off-target Cyp genes [101]. Despite 

the fact that the potency is ten times lower in the mammalian systems compared to the 

fungal ones, dysregulation of mammalian Cyp51 gene expression can lead to side-effects 

related to the sterol biosynthesis pathway and endocrine disruption, including steps of 

synthesis of bile acids, corticoids, glucocorticoids and sex steroids [22-24]. Therefore, Cyp51 

is considered as a classical gene biomarker for the fungicidal mode of action, related to the 

mammalian sterol biosynthesis pathway (Chapter 2 and 3). In chapter 4 and 5, we 

observed that the expression of Msmo1, which catalyses the same step of lanosterol 

synthesis in the sterol biosynthesis pathway as Cyp51 and Nsdhl, shows a more extensive 

response in both WEC and EST when they were exposed to azoles, compared to Cyp51. 

Subsequently, Msmo1 may be a more accurate gene biomarker for screening sterol-

mediated responses among different in vitro testing systems. On the other hand, the 

inhibitory effect of azoles on Cyp19, which is the biomarker of the mammalian aromatase 

activity, might be of importance for detecting effects on steroidogenesis [23]. It is essential to 

mention here that it is not sure yet whether the detected magnitude of response of the sterol-

related genes is actually causing the adverse effects, considering that this requires further 

consideration of the effective concentration, the duration of exposure and the extent of the 

effect itself. At present, the threshold of adversity is unknown and, therefore, more research 

is needed for setting the limits of adverse and adaptive responses using gene biomarkers.      
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v Future perspectives 
 

Developmental toxicants could cause birth defects during any stage of pregnancy. The 

implemented in vitro assays and in vivo studies should be carefully designed for being able 

to detect embryotoxicity. Therefore, except for considering the complexity of the dynamic 

profile of a pregnancy, both the dynamics and kinetics of chemicals also need to be taken 

into account. Improving the alternative testing approaches to more intelligent testing 

strategies combining individual assays according to their different biological applicability 

domains, the selected read-outs will increase our knowledge leading to reliable extrapolation 

of data to the in vivo situation. However, further actions need to be taken for improving the 

alternatives for animal testing in order to provide future valuable information to expand our 

current knowledge on developmental toxicity and move the field one-step forward. The 

following points are some challenges that need more attention and are given here as 

suggestions for future advancements.       

 

The role of alternative assays in the Risk Assessment  

Risk assessment is still based on animal-derived dose-response data for evaluating possible 

risks for the human health and the environment [102]. The question here is whether we will 

ever be able to stop relying on animal data and start building risk assessment approaches 

based on in vitro data for predicting risks relevant to the human being. The present thesis 

provides information about the precision of in vitro assays for predicting the in vivo 

developmental toxicity of the selected azoles. Additional evaluation of more classes of 

chemicals could increase our knowledge and trust to alternative methods. Moreover, 

evaluation of the parent compounds and their metabolites could increase the correlation 

between in vivo and in vitro data [29]. The individual in vitro exposure of developmental 

toxicity assays to metabolites or the addition of systems with metabolic capacity may be 

valuable for building more precise QIVIVE [103]. Beside metabolism, other pharmacokinetic 

data concerning the absorption, distribution and excretion, will improve the prediction by 

accurately defining the dose and duration of exposure of the selected biological system to 

chemicals [103, 104]. In this thesis, an example on incorporating toxico- dynamic and kinetic 

information is given by combining both the WEC and EST with the BeWo assay (mimicking 

placental transfer), which resulted in more accurate predictions, better comparable to the in 

vivo developmental toxicity of the tested compounds. Future optimization of the BeWo assay 

may give more accurate results, especially focusing on to which extent the tested 

compounds could accumulate into the cells and/or bind to the polycarbonate membrane and 

the transwell plate itself, for exploring the underlying pharmacokinetic properties of azoles on 
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placental systems.  Making use of in vitro concentration-response data in addition to in vivo 

observations, the implementation of physiologically based pharmacokinetic (PBPK) 

modelling is an emerging approach, which has been successfully incorporated for building in 

vitro- in silico predictions for in vivo developmental toxicity [105-107]. A retro-PBPK 

modelling has been also suggested, with which an association between the dose and the 

hazard will be created by calculating the dose needed to reach a tissue concentration as 

found in the in vitro test [91, 93].   

Omics – A way to understanding biological responses 

Omics approaches can boost the predictability of in vitro assays by identifying pathways and 

mechanisms of toxic responses of embryotoxicants for facilitating a better extrapolation of 

the obtained information to the human situation [54]. Defining molecular biomarkers of 

effects can enhance the knowledge about the dynamics of transcriptional responses during 

development and will support the interpretation of biological responses for understanding the 

underlying AOPs [87, 96]. The further combination of transcriptomics and metabolomics data 

would improve our knowledge on the role of transcriptome changes as toxic responses to 

alterations on the metabolome level [108], which may reflect the importance of these events 

in decoding the threshold of adversity of chemicals and the mechanism of restoring the 

homeostasis due to chemical stimuli [109, 110]. The present thesis provides information 

regarding transcriptional responses to equivalent toxic concentrations of azoles in the WEC 

and EST, showing the sensitivity of gene-biomarkers in detecting in vivo embryotoxic 

responses. However, for performing potency ranking based on the regulation of functional 

pathways related to teratogenic outcomes (for example, RA pathway), the applied 

concentration of the tested chemicals should be kept equal instead of testing equitoxic levels 

as needed when studying the modes of action.         

 

Defining the threshold of adversity 

Piersma et al. [57] have suggested that developmental toxicants have a threshold of 

adversity. Transcriptomics can detect toxic responses due to chemical exposure in a more 

sensitive way compared to evaluation of manifestations of toxicity. However, the level at 

which gene regulation leads to adversity requires a definition. Without clearly distinguishing 

adverse and adaptive gene responses, transcriptomics and other omics approaches cannot 

be implemented for conducting risk assessment of chemicals. Based on literature evidence, 

regulation of developmental toxic pathways may lead to adverse responses, while induction 

of transcriptional and metabolic pathways may be translated to adaptive responses [57, 67, 

111, 112]. However, their exact definition is still a question, which could be answered only by 

further in vitro research for determining dose-response relationships of individual genes or 
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identified pathways of toxicity that are further associated with changes in the level of cells, 

tissues and organs [90, 94].  

 

Innovative in silico models  

The toxicokinetics and toxicodynamics knowledge derived from in vivo and in vitro assays of 

developmental toxicity testing, as well as the technological innovations could be further 

incorporated for building advanced in silico models for improving the prediction of the toxicity 

of chemicals and having an impact on future risk assessment strategies [89, 93, 113]. 

However, the understanding of physiological processes during development, which 

coordinate the cellular networks during normal morphogenesis (growth and differentiation 

processes) could give an insight to biological responses starting from the gene signalling 

until the organ formation. Knudsen et al. [88] have proposed computational systems that 

simulate the normal embryogenesis incorporating morphological data derived from in vivo 

and  in vitro observations, as well as information obtained from developmental pathway 

analysis. The future vision is that advanced bioinformatics may be the key for building in vitro 

screening tools to integrate relevant complex biological information into statistical models, 

based on AOPs, omics approaches and in vivo observations [87, 114]. Therefore, the 

following aim of this “virtual embryo” system is to identify how chemical stimuli could affect 

the normal developmental processes and their association with perturbations of toxicity, 

such as neural tube defects, formation of cleft palate and other manifestations of 

embryotoxicity. The completion of this model would be a challenge and it may support the 

future mechanistic-based risk assessment for evaluating chemical and biological 

interactions, as well as for prioritizing further testing of chemicals [114].       

 

v Conclusion 

In this thesis, we have shown that the implementation of alternatives to in vivo assays could 

accurately predict the developmental toxicity of the selected azoles. The addition of even 

simple toxicokinetics, derived from the BeWo model, for evaluating the relative placental 

transfer rate of the tested chemicals, improved the correlation of in vitro with in vivo potency 

ranking, showing the importance of applying a battery of alternative assays in developmental 

toxicity testing approaches. Moreover, evaluating transcriptional responses in both the WEC 

and EST developmental toxicity tests, we identified sensitive gene biomarkers and pathways 

that preceded the manifestations of developmental toxicity, elucidating the mode of 

toxicological action of azoles and facilitating across-models comparisons.  
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Summary of the thesis 

The implementation of regulations for protecting both humans and the environment from 

potential chemical health hazards, as well as the increase of global pressure for reducing, 

refining and replacing animal experiments promote the development and application of 

alternatives to in vivo developmental toxicity studies. Due to the complexity of the 

reproductive cycle, combined in vitro approaches, focusing on morphological, molecular and 

toxicokinetic parameters, could better define the developmental toxicity of chemicals. In this 

thesis, azoles, which are a group of chemicals with antifungal activity, are under 

investigation. These compounds show marked differences in developmental toxicity potency 

and similarities with retinoic acid (RA)- related teratogenicity.   

 

Chapter 1 of this thesis introduced information regarding the background of reproductive 

and developmental toxicology, including scientific concerns and the impact of past 

teratogenic outcomes on the society. For screening developmental teratogens, in vitro 

approaches have been proposed and successfully applied. Their combination may better 

mimic the in vivo embryo and, therefore, increase the accuracy in predicting possible 

developmental toxicants. Additional co-implementation of molecular approaches may give an 

insight in the mode of action underlying the observed effects. Azoles were selected in the 

present thesis due to evidence for possibly increasing developmental toxicity through 

dysregulating the balance of the RA pathways in the mammalian system. The chapter also 

described the objectives and outline of the research.          

 

In chapter 2, we examined the time- dependent developmental effects in rat embryos 

exposed in vitro to flusilazole (FLU), and their link to RA mediated pathways. To this end, we 

assessed the effects of 4-hour exposure of whole embryo culture (WEC) embryos to 300μM 

FLU during four developmental time windows (0-4, 4-8, 24-28 and 44-48 h), evaluated 

morphological parameters, as well as expression and localization of five genes directly or 

indirectly linked with the RA pathway. A stage- specific gene expression response of 

cultured rat embryos exposed to FLU was detected, which preceded the development of 

morphologically observable malformations. During all the tested time windows, the most 

pronounced effect was observed in the regulation of RA-related genes. Therefore, it was 

concluded that such biomarkers can be employed as useful tools for early detection of 

possible teratogenic properties of compounds that belong to the triazole- group or of 

compounds with a similar teratogenic mode of action.  
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Chapter 3 provides mechanistic insight into the embryotoxicity of six azoles tested in the rat 

WEC. Here, we evaluated dose-dependent embryotoxicity of azoles in the rat WEC, 

calculating the concentration at which the total morphological score (TMS) is 10% decreased 

(ID10). For the azoles tested we compared the in vitro ID10 for embryotoxicity to the in vivo 

effective doses, while we also performed a comparative analysis for understanding the 

toxicological and pharmacological mode of action of azoles in the rat WEC at the level of the 

transcriptome. Functional analysis of differential gene expression after 4 hours exposure at 

the ID10 revealed regulation of the sterol biosynthesis pathway and embryonic development 

genes, dominated by genes in the RA pathway, albeit in a differential way. FLU, 

ketoconazole and triadimefon were the most potent compounds affecting the RA pathway, 

while in terms of regulation of sterol function, difenoconazole and ketoconazole showed the 

most pronounced effects. A similar analysis at the 24-hour time point indicated an additional 

time-dependent difference in the aforementioned pathways regulated by FLU. Strong in vivo 

embryotoxic azoles showed also an increased regulation of the RA pathway when tested in 

vitro. On the other hand, weak or non- embryotoxic azoles showed a non-significant effect 

on genes that belong in the RA pathway. These observations led us to the conclusion that 

the toxicological mode of action of azoles was mediated through the RA pathway. In 

summary, the rat WEC assay in combination with transcriptomics could add mechanistic 

insight into the embryotoxic potency ranking and functional efficacy of the tested 

compounds, showing Cyp26a1 and Cyp51 as leader biomarkers of the off- and on- target 

effects, respectively. 

 

Similarly to the previous chapter, in chapter 4, the potency ranking of the majority of the 

twelve tested azoles obtained based on the TMS in the WEC assay was in agreement with 

the in vivo potency ranking. Additionally, our expanded transcriptomics data, including gene 

specific responses of twelve azoles tested at their ID10 in the rat WEC for 4 hours, confirmed 

the observations of chapter 3 with another set of azoles. Potent embryotoxicants in both in 

vivo and in vitro assays caused more pronounced effects on the dysregulation of RA- 

mediated genes. Furthermore, azoles with more pronounced effects on the sterol 

biosynthesis mediated pathway were tested at a higher concentration, but with the same 

level of effect (ID10). Due to the increased concentration needed for reaching the same level 

of morphological effects and the absence of RA-mediated pathway regulation, these azoles 

were considered as more favourable candidates for clinical and agricultural use. Focusing on 

monitoring the fungicidal activity of azoles, we also detected an increased sensitivity of the 

expression of Msmo1, which is an enzyme participating in converting lanosterol for 

synthesizing cholesterol in the mammalian sterol biosynthesis, together with Cyp51and 

Nsdhl. This observation led us to the conclusion that Msmo1 could be a better biomarker of 
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effect on the sterol biosynthesis pathway compared to the classical biomarker of this 

pathway, Cyp51, and this may be of use for further improvement of the assessment of 

fungicidal activity of azoles or chemicals with similar mode of action.  

 

Chapter 5 shows the value of combining toxico-dynamic and -kinetic in vitro approaches for 

embryotoxicity testing of azoles. We also report on the alterations in gene expression 

induced by azoles. Both the WEC assay and the embryonic stem cells test (EST) predicted 

the in vivo potency ranking of the twelve tested azoles with moderate accuracy. Combining 

these results with relative placental transfer rates (Papp values) as determined in the BeWo 

cell culture model, increased the predictability of both WEC and EST, with R2 values 

increasing from 0.51 to 0.87 and from 0.35 to 0.60, respectively. The comparison of these in 

vitro systems correlated well (R2 = 0.67), correctly identifying the strong and weak 

embryotoxicants. Evaluating specific gene responses related with the toxicological and 

fungicidal mode of action of the tested azoles in WEC and EST, we observed that the 

differential regulation of Dhrs3 and Msmo1 reached higher magnitudes in both systems 

compared to Cyp26a1 and Cyp51. Establishing sensitive biomarkers across all the in vitro 

systems for studying the underlying mechanism of action of chemicals, such as azoles, is 

valuable for comparing alternative in vitro models and for improving insight in the mechanism 

of developmental toxicity of chemicals.  

 

Chapter 6 of this thesis presented the general discussion and future perspectives on 

different topics raised based on the results obtained in the previously described experimental 

chapters. The results suggested that the combination of in vitro assays for screening the 

developmental toxicity of azoles may lead to predictions that are more accurate and in 

agreement with the in vivo observations. The addition of toxico-kinetics, which the BeWo 

placental transfer model offered, notably improved the correlations of in vivo and in vitro 

data. Furthermore, the co- implementation of transcriptomics and the identification of gene 

biomarkers revealed that despite the tested azoles were classified in the same chemical 

group, they might have a different mode of toxicological action. In conclusion, future 

combination of in vitro and in silico alternative approaches appear to be of advantage for 

screening and prioritizing chemical testing, in the process of assessing the consequences of 

chemical exposure for human health and the environment.
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